Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  *  fs/eventpoll.c (Efficient event retrieval implementation)
0004  *  Copyright (C) 2001,...,2009  Davide Libenzi
0005  *
0006  *  Davide Libenzi <davidel@xmailserver.org>
0007  */
0008 
0009 #include <linux/init.h>
0010 #include <linux/kernel.h>
0011 #include <linux/sched/signal.h>
0012 #include <linux/fs.h>
0013 #include <linux/file.h>
0014 #include <linux/signal.h>
0015 #include <linux/errno.h>
0016 #include <linux/mm.h>
0017 #include <linux/slab.h>
0018 #include <linux/poll.h>
0019 #include <linux/string.h>
0020 #include <linux/list.h>
0021 #include <linux/hash.h>
0022 #include <linux/spinlock.h>
0023 #include <linux/syscalls.h>
0024 #include <linux/rbtree.h>
0025 #include <linux/wait.h>
0026 #include <linux/eventpoll.h>
0027 #include <linux/mount.h>
0028 #include <linux/bitops.h>
0029 #include <linux/mutex.h>
0030 #include <linux/anon_inodes.h>
0031 #include <linux/device.h>
0032 #include <linux/uaccess.h>
0033 #include <asm/io.h>
0034 #include <asm/mman.h>
0035 #include <linux/atomic.h>
0036 #include <linux/proc_fs.h>
0037 #include <linux/seq_file.h>
0038 #include <linux/compat.h>
0039 #include <linux/rculist.h>
0040 #include <net/busy_poll.h>
0041 
0042 /*
0043  * LOCKING:
0044  * There are three level of locking required by epoll :
0045  *
0046  * 1) epmutex (mutex)
0047  * 2) ep->mtx (mutex)
0048  * 3) ep->lock (rwlock)
0049  *
0050  * The acquire order is the one listed above, from 1 to 3.
0051  * We need a rwlock (ep->lock) because we manipulate objects
0052  * from inside the poll callback, that might be triggered from
0053  * a wake_up() that in turn might be called from IRQ context.
0054  * So we can't sleep inside the poll callback and hence we need
0055  * a spinlock. During the event transfer loop (from kernel to
0056  * user space) we could end up sleeping due a copy_to_user(), so
0057  * we need a lock that will allow us to sleep. This lock is a
0058  * mutex (ep->mtx). It is acquired during the event transfer loop,
0059  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
0060  * Then we also need a global mutex to serialize eventpoll_release_file()
0061  * and ep_free().
0062  * This mutex is acquired by ep_free() during the epoll file
0063  * cleanup path and it is also acquired by eventpoll_release_file()
0064  * if a file has been pushed inside an epoll set and it is then
0065  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
0066  * It is also acquired when inserting an epoll fd onto another epoll
0067  * fd. We do this so that we walk the epoll tree and ensure that this
0068  * insertion does not create a cycle of epoll file descriptors, which
0069  * could lead to deadlock. We need a global mutex to prevent two
0070  * simultaneous inserts (A into B and B into A) from racing and
0071  * constructing a cycle without either insert observing that it is
0072  * going to.
0073  * It is necessary to acquire multiple "ep->mtx"es at once in the
0074  * case when one epoll fd is added to another. In this case, we
0075  * always acquire the locks in the order of nesting (i.e. after
0076  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
0077  * before e2->mtx). Since we disallow cycles of epoll file
0078  * descriptors, this ensures that the mutexes are well-ordered. In
0079  * order to communicate this nesting to lockdep, when walking a tree
0080  * of epoll file descriptors, we use the current recursion depth as
0081  * the lockdep subkey.
0082  * It is possible to drop the "ep->mtx" and to use the global
0083  * mutex "epmutex" (together with "ep->lock") to have it working,
0084  * but having "ep->mtx" will make the interface more scalable.
0085  * Events that require holding "epmutex" are very rare, while for
0086  * normal operations the epoll private "ep->mtx" will guarantee
0087  * a better scalability.
0088  */
0089 
0090 /* Epoll private bits inside the event mask */
0091 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
0092 
0093 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
0094 
0095 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
0096                 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
0097 
0098 /* Maximum number of nesting allowed inside epoll sets */
0099 #define EP_MAX_NESTS 4
0100 
0101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
0102 
0103 #define EP_UNACTIVE_PTR ((void *) -1L)
0104 
0105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
0106 
0107 struct epoll_filefd {
0108     struct file *file;
0109     int fd;
0110 } __packed;
0111 
0112 /* Wait structure used by the poll hooks */
0113 struct eppoll_entry {
0114     /* List header used to link this structure to the "struct epitem" */
0115     struct eppoll_entry *next;
0116 
0117     /* The "base" pointer is set to the container "struct epitem" */
0118     struct epitem *base;
0119 
0120     /*
0121      * Wait queue item that will be linked to the target file wait
0122      * queue head.
0123      */
0124     wait_queue_entry_t wait;
0125 
0126     /* The wait queue head that linked the "wait" wait queue item */
0127     wait_queue_head_t *whead;
0128 };
0129 
0130 /*
0131  * Each file descriptor added to the eventpoll interface will
0132  * have an entry of this type linked to the "rbr" RB tree.
0133  * Avoid increasing the size of this struct, there can be many thousands
0134  * of these on a server and we do not want this to take another cache line.
0135  */
0136 struct epitem {
0137     union {
0138         /* RB tree node links this structure to the eventpoll RB tree */
0139         struct rb_node rbn;
0140         /* Used to free the struct epitem */
0141         struct rcu_head rcu;
0142     };
0143 
0144     /* List header used to link this structure to the eventpoll ready list */
0145     struct list_head rdllink;
0146 
0147     /*
0148      * Works together "struct eventpoll"->ovflist in keeping the
0149      * single linked chain of items.
0150      */
0151     struct epitem *next;
0152 
0153     /* The file descriptor information this item refers to */
0154     struct epoll_filefd ffd;
0155 
0156     /* List containing poll wait queues */
0157     struct eppoll_entry *pwqlist;
0158 
0159     /* The "container" of this item */
0160     struct eventpoll *ep;
0161 
0162     /* List header used to link this item to the "struct file" items list */
0163     struct hlist_node fllink;
0164 
0165     /* wakeup_source used when EPOLLWAKEUP is set */
0166     struct wakeup_source __rcu *ws;
0167 
0168     /* The structure that describe the interested events and the source fd */
0169     struct epoll_event event;
0170 };
0171 
0172 /*
0173  * This structure is stored inside the "private_data" member of the file
0174  * structure and represents the main data structure for the eventpoll
0175  * interface.
0176  */
0177 struct eventpoll {
0178     /*
0179      * This mutex is used to ensure that files are not removed
0180      * while epoll is using them. This is held during the event
0181      * collection loop, the file cleanup path, the epoll file exit
0182      * code and the ctl operations.
0183      */
0184     struct mutex mtx;
0185 
0186     /* Wait queue used by sys_epoll_wait() */
0187     wait_queue_head_t wq;
0188 
0189     /* Wait queue used by file->poll() */
0190     wait_queue_head_t poll_wait;
0191 
0192     /* List of ready file descriptors */
0193     struct list_head rdllist;
0194 
0195     /* Lock which protects rdllist and ovflist */
0196     rwlock_t lock;
0197 
0198     /* RB tree root used to store monitored fd structs */
0199     struct rb_root_cached rbr;
0200 
0201     /*
0202      * This is a single linked list that chains all the "struct epitem" that
0203      * happened while transferring ready events to userspace w/out
0204      * holding ->lock.
0205      */
0206     struct epitem *ovflist;
0207 
0208     /* wakeup_source used when ep_scan_ready_list is running */
0209     struct wakeup_source *ws;
0210 
0211     /* The user that created the eventpoll descriptor */
0212     struct user_struct *user;
0213 
0214     struct file *file;
0215 
0216     /* used to optimize loop detection check */
0217     u64 gen;
0218     struct hlist_head refs;
0219 
0220 #ifdef CONFIG_NET_RX_BUSY_POLL
0221     /* used to track busy poll napi_id */
0222     unsigned int napi_id;
0223 #endif
0224 
0225 #ifdef CONFIG_DEBUG_LOCK_ALLOC
0226     /* tracks wakeup nests for lockdep validation */
0227     u8 nests;
0228 #endif
0229 };
0230 
0231 /* Wrapper struct used by poll queueing */
0232 struct ep_pqueue {
0233     poll_table pt;
0234     struct epitem *epi;
0235 };
0236 
0237 /*
0238  * Configuration options available inside /proc/sys/fs/epoll/
0239  */
0240 /* Maximum number of epoll watched descriptors, per user */
0241 static long max_user_watches __read_mostly;
0242 
0243 /*
0244  * This mutex is used to serialize ep_free() and eventpoll_release_file().
0245  */
0246 static DEFINE_MUTEX(epmutex);
0247 
0248 static u64 loop_check_gen = 0;
0249 
0250 /* Used to check for epoll file descriptor inclusion loops */
0251 static struct eventpoll *inserting_into;
0252 
0253 /* Slab cache used to allocate "struct epitem" */
0254 static struct kmem_cache *epi_cache __read_mostly;
0255 
0256 /* Slab cache used to allocate "struct eppoll_entry" */
0257 static struct kmem_cache *pwq_cache __read_mostly;
0258 
0259 /*
0260  * List of files with newly added links, where we may need to limit the number
0261  * of emanating paths. Protected by the epmutex.
0262  */
0263 struct epitems_head {
0264     struct hlist_head epitems;
0265     struct epitems_head *next;
0266 };
0267 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
0268 
0269 static struct kmem_cache *ephead_cache __read_mostly;
0270 
0271 static inline void free_ephead(struct epitems_head *head)
0272 {
0273     if (head)
0274         kmem_cache_free(ephead_cache, head);
0275 }
0276 
0277 static void list_file(struct file *file)
0278 {
0279     struct epitems_head *head;
0280 
0281     head = container_of(file->f_ep, struct epitems_head, epitems);
0282     if (!head->next) {
0283         head->next = tfile_check_list;
0284         tfile_check_list = head;
0285     }
0286 }
0287 
0288 static void unlist_file(struct epitems_head *head)
0289 {
0290     struct epitems_head *to_free = head;
0291     struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
0292     if (p) {
0293         struct epitem *epi= container_of(p, struct epitem, fllink);
0294         spin_lock(&epi->ffd.file->f_lock);
0295         if (!hlist_empty(&head->epitems))
0296             to_free = NULL;
0297         head->next = NULL;
0298         spin_unlock(&epi->ffd.file->f_lock);
0299     }
0300     free_ephead(to_free);
0301 }
0302 
0303 #ifdef CONFIG_SYSCTL
0304 
0305 #include <linux/sysctl.h>
0306 
0307 static long long_zero;
0308 static long long_max = LONG_MAX;
0309 
0310 static struct ctl_table epoll_table[] = {
0311     {
0312         .procname   = "max_user_watches",
0313         .data       = &max_user_watches,
0314         .maxlen     = sizeof(max_user_watches),
0315         .mode       = 0644,
0316         .proc_handler   = proc_doulongvec_minmax,
0317         .extra1     = &long_zero,
0318         .extra2     = &long_max,
0319     },
0320     { }
0321 };
0322 
0323 static void __init epoll_sysctls_init(void)
0324 {
0325     register_sysctl("fs/epoll", epoll_table);
0326 }
0327 #else
0328 #define epoll_sysctls_init() do { } while (0)
0329 #endif /* CONFIG_SYSCTL */
0330 
0331 static const struct file_operations eventpoll_fops;
0332 
0333 static inline int is_file_epoll(struct file *f)
0334 {
0335     return f->f_op == &eventpoll_fops;
0336 }
0337 
0338 /* Setup the structure that is used as key for the RB tree */
0339 static inline void ep_set_ffd(struct epoll_filefd *ffd,
0340                   struct file *file, int fd)
0341 {
0342     ffd->file = file;
0343     ffd->fd = fd;
0344 }
0345 
0346 /* Compare RB tree keys */
0347 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
0348                  struct epoll_filefd *p2)
0349 {
0350     return (p1->file > p2->file ? +1:
0351             (p1->file < p2->file ? -1 : p1->fd - p2->fd));
0352 }
0353 
0354 /* Tells us if the item is currently linked */
0355 static inline int ep_is_linked(struct epitem *epi)
0356 {
0357     return !list_empty(&epi->rdllink);
0358 }
0359 
0360 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
0361 {
0362     return container_of(p, struct eppoll_entry, wait);
0363 }
0364 
0365 /* Get the "struct epitem" from a wait queue pointer */
0366 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
0367 {
0368     return container_of(p, struct eppoll_entry, wait)->base;
0369 }
0370 
0371 /**
0372  * ep_events_available - Checks if ready events might be available.
0373  *
0374  * @ep: Pointer to the eventpoll context.
0375  *
0376  * Return: a value different than %zero if ready events are available,
0377  *          or %zero otherwise.
0378  */
0379 static inline int ep_events_available(struct eventpoll *ep)
0380 {
0381     return !list_empty_careful(&ep->rdllist) ||
0382         READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
0383 }
0384 
0385 #ifdef CONFIG_NET_RX_BUSY_POLL
0386 static bool ep_busy_loop_end(void *p, unsigned long start_time)
0387 {
0388     struct eventpoll *ep = p;
0389 
0390     return ep_events_available(ep) || busy_loop_timeout(start_time);
0391 }
0392 
0393 /*
0394  * Busy poll if globally on and supporting sockets found && no events,
0395  * busy loop will return if need_resched or ep_events_available.
0396  *
0397  * we must do our busy polling with irqs enabled
0398  */
0399 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
0400 {
0401     unsigned int napi_id = READ_ONCE(ep->napi_id);
0402 
0403     if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
0404         napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
0405                    BUSY_POLL_BUDGET);
0406         if (ep_events_available(ep))
0407             return true;
0408         /*
0409          * Busy poll timed out.  Drop NAPI ID for now, we can add
0410          * it back in when we have moved a socket with a valid NAPI
0411          * ID onto the ready list.
0412          */
0413         ep->napi_id = 0;
0414         return false;
0415     }
0416     return false;
0417 }
0418 
0419 /*
0420  * Set epoll busy poll NAPI ID from sk.
0421  */
0422 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
0423 {
0424     struct eventpoll *ep;
0425     unsigned int napi_id;
0426     struct socket *sock;
0427     struct sock *sk;
0428 
0429     if (!net_busy_loop_on())
0430         return;
0431 
0432     sock = sock_from_file(epi->ffd.file);
0433     if (!sock)
0434         return;
0435 
0436     sk = sock->sk;
0437     if (!sk)
0438         return;
0439 
0440     napi_id = READ_ONCE(sk->sk_napi_id);
0441     ep = epi->ep;
0442 
0443     /* Non-NAPI IDs can be rejected
0444      *  or
0445      * Nothing to do if we already have this ID
0446      */
0447     if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
0448         return;
0449 
0450     /* record NAPI ID for use in next busy poll */
0451     ep->napi_id = napi_id;
0452 }
0453 
0454 #else
0455 
0456 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
0457 {
0458     return false;
0459 }
0460 
0461 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
0462 {
0463 }
0464 
0465 #endif /* CONFIG_NET_RX_BUSY_POLL */
0466 
0467 /*
0468  * As described in commit 0ccf831cb lockdep: annotate epoll
0469  * the use of wait queues used by epoll is done in a very controlled
0470  * manner. Wake ups can nest inside each other, but are never done
0471  * with the same locking. For example:
0472  *
0473  *   dfd = socket(...);
0474  *   efd1 = epoll_create();
0475  *   efd2 = epoll_create();
0476  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
0477  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
0478  *
0479  * When a packet arrives to the device underneath "dfd", the net code will
0480  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
0481  * callback wakeup entry on that queue, and the wake_up() performed by the
0482  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
0483  * (efd1) notices that it may have some event ready, so it needs to wake up
0484  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
0485  * that ends up in another wake_up(), after having checked about the
0486  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
0487  * avoid stack blasting.
0488  *
0489  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
0490  * this special case of epoll.
0491  */
0492 #ifdef CONFIG_DEBUG_LOCK_ALLOC
0493 
0494 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
0495 {
0496     struct eventpoll *ep_src;
0497     unsigned long flags;
0498     u8 nests = 0;
0499 
0500     /*
0501      * To set the subclass or nesting level for spin_lock_irqsave_nested()
0502      * it might be natural to create a per-cpu nest count. However, since
0503      * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
0504      * schedule() in the -rt kernel, the per-cpu variable are no longer
0505      * protected. Thus, we are introducing a per eventpoll nest field.
0506      * If we are not being call from ep_poll_callback(), epi is NULL and
0507      * we are at the first level of nesting, 0. Otherwise, we are being
0508      * called from ep_poll_callback() and if a previous wakeup source is
0509      * not an epoll file itself, we are at depth 1 since the wakeup source
0510      * is depth 0. If the wakeup source is a previous epoll file in the
0511      * wakeup chain then we use its nests value and record ours as
0512      * nests + 1. The previous epoll file nests value is stable since its
0513      * already holding its own poll_wait.lock.
0514      */
0515     if (epi) {
0516         if ((is_file_epoll(epi->ffd.file))) {
0517             ep_src = epi->ffd.file->private_data;
0518             nests = ep_src->nests;
0519         } else {
0520             nests = 1;
0521         }
0522     }
0523     spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
0524     ep->nests = nests + 1;
0525     wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
0526     ep->nests = 0;
0527     spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
0528 }
0529 
0530 #else
0531 
0532 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
0533 {
0534     wake_up_poll(&ep->poll_wait, EPOLLIN);
0535 }
0536 
0537 #endif
0538 
0539 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
0540 {
0541     wait_queue_head_t *whead;
0542 
0543     rcu_read_lock();
0544     /*
0545      * If it is cleared by POLLFREE, it should be rcu-safe.
0546      * If we read NULL we need a barrier paired with
0547      * smp_store_release() in ep_poll_callback(), otherwise
0548      * we rely on whead->lock.
0549      */
0550     whead = smp_load_acquire(&pwq->whead);
0551     if (whead)
0552         remove_wait_queue(whead, &pwq->wait);
0553     rcu_read_unlock();
0554 }
0555 
0556 /*
0557  * This function unregisters poll callbacks from the associated file
0558  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
0559  * ep_free).
0560  */
0561 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
0562 {
0563     struct eppoll_entry **p = &epi->pwqlist;
0564     struct eppoll_entry *pwq;
0565 
0566     while ((pwq = *p) != NULL) {
0567         *p = pwq->next;
0568         ep_remove_wait_queue(pwq);
0569         kmem_cache_free(pwq_cache, pwq);
0570     }
0571 }
0572 
0573 /* call only when ep->mtx is held */
0574 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
0575 {
0576     return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
0577 }
0578 
0579 /* call only when ep->mtx is held */
0580 static inline void ep_pm_stay_awake(struct epitem *epi)
0581 {
0582     struct wakeup_source *ws = ep_wakeup_source(epi);
0583 
0584     if (ws)
0585         __pm_stay_awake(ws);
0586 }
0587 
0588 static inline bool ep_has_wakeup_source(struct epitem *epi)
0589 {
0590     return rcu_access_pointer(epi->ws) ? true : false;
0591 }
0592 
0593 /* call when ep->mtx cannot be held (ep_poll_callback) */
0594 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
0595 {
0596     struct wakeup_source *ws;
0597 
0598     rcu_read_lock();
0599     ws = rcu_dereference(epi->ws);
0600     if (ws)
0601         __pm_stay_awake(ws);
0602     rcu_read_unlock();
0603 }
0604 
0605 
0606 /*
0607  * ep->mutex needs to be held because we could be hit by
0608  * eventpoll_release_file() and epoll_ctl().
0609  */
0610 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
0611 {
0612     /*
0613      * Steal the ready list, and re-init the original one to the
0614      * empty list. Also, set ep->ovflist to NULL so that events
0615      * happening while looping w/out locks, are not lost. We cannot
0616      * have the poll callback to queue directly on ep->rdllist,
0617      * because we want the "sproc" callback to be able to do it
0618      * in a lockless way.
0619      */
0620     lockdep_assert_irqs_enabled();
0621     write_lock_irq(&ep->lock);
0622     list_splice_init(&ep->rdllist, txlist);
0623     WRITE_ONCE(ep->ovflist, NULL);
0624     write_unlock_irq(&ep->lock);
0625 }
0626 
0627 static void ep_done_scan(struct eventpoll *ep,
0628              struct list_head *txlist)
0629 {
0630     struct epitem *epi, *nepi;
0631 
0632     write_lock_irq(&ep->lock);
0633     /*
0634      * During the time we spent inside the "sproc" callback, some
0635      * other events might have been queued by the poll callback.
0636      * We re-insert them inside the main ready-list here.
0637      */
0638     for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
0639          nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
0640         /*
0641          * We need to check if the item is already in the list.
0642          * During the "sproc" callback execution time, items are
0643          * queued into ->ovflist but the "txlist" might already
0644          * contain them, and the list_splice() below takes care of them.
0645          */
0646         if (!ep_is_linked(epi)) {
0647             /*
0648              * ->ovflist is LIFO, so we have to reverse it in order
0649              * to keep in FIFO.
0650              */
0651             list_add(&epi->rdllink, &ep->rdllist);
0652             ep_pm_stay_awake(epi);
0653         }
0654     }
0655     /*
0656      * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
0657      * releasing the lock, events will be queued in the normal way inside
0658      * ep->rdllist.
0659      */
0660     WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
0661 
0662     /*
0663      * Quickly re-inject items left on "txlist".
0664      */
0665     list_splice(txlist, &ep->rdllist);
0666     __pm_relax(ep->ws);
0667 
0668     if (!list_empty(&ep->rdllist)) {
0669         if (waitqueue_active(&ep->wq))
0670             wake_up(&ep->wq);
0671     }
0672 
0673     write_unlock_irq(&ep->lock);
0674 }
0675 
0676 static void epi_rcu_free(struct rcu_head *head)
0677 {
0678     struct epitem *epi = container_of(head, struct epitem, rcu);
0679     kmem_cache_free(epi_cache, epi);
0680 }
0681 
0682 /*
0683  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
0684  * all the associated resources. Must be called with "mtx" held.
0685  */
0686 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
0687 {
0688     struct file *file = epi->ffd.file;
0689     struct epitems_head *to_free;
0690     struct hlist_head *head;
0691 
0692     lockdep_assert_irqs_enabled();
0693 
0694     /*
0695      * Removes poll wait queue hooks.
0696      */
0697     ep_unregister_pollwait(ep, epi);
0698 
0699     /* Remove the current item from the list of epoll hooks */
0700     spin_lock(&file->f_lock);
0701     to_free = NULL;
0702     head = file->f_ep;
0703     if (head->first == &epi->fllink && !epi->fllink.next) {
0704         file->f_ep = NULL;
0705         if (!is_file_epoll(file)) {
0706             struct epitems_head *v;
0707             v = container_of(head, struct epitems_head, epitems);
0708             if (!smp_load_acquire(&v->next))
0709                 to_free = v;
0710         }
0711     }
0712     hlist_del_rcu(&epi->fllink);
0713     spin_unlock(&file->f_lock);
0714     free_ephead(to_free);
0715 
0716     rb_erase_cached(&epi->rbn, &ep->rbr);
0717 
0718     write_lock_irq(&ep->lock);
0719     if (ep_is_linked(epi))
0720         list_del_init(&epi->rdllink);
0721     write_unlock_irq(&ep->lock);
0722 
0723     wakeup_source_unregister(ep_wakeup_source(epi));
0724     /*
0725      * At this point it is safe to free the eventpoll item. Use the union
0726      * field epi->rcu, since we are trying to minimize the size of
0727      * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
0728      * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
0729      * use of the rbn field.
0730      */
0731     call_rcu(&epi->rcu, epi_rcu_free);
0732 
0733     percpu_counter_dec(&ep->user->epoll_watches);
0734 
0735     return 0;
0736 }
0737 
0738 static void ep_free(struct eventpoll *ep)
0739 {
0740     struct rb_node *rbp;
0741     struct epitem *epi;
0742 
0743     /* We need to release all tasks waiting for these file */
0744     if (waitqueue_active(&ep->poll_wait))
0745         ep_poll_safewake(ep, NULL);
0746 
0747     /*
0748      * We need to lock this because we could be hit by
0749      * eventpoll_release_file() while we're freeing the "struct eventpoll".
0750      * We do not need to hold "ep->mtx" here because the epoll file
0751      * is on the way to be removed and no one has references to it
0752      * anymore. The only hit might come from eventpoll_release_file() but
0753      * holding "epmutex" is sufficient here.
0754      */
0755     mutex_lock(&epmutex);
0756 
0757     /*
0758      * Walks through the whole tree by unregistering poll callbacks.
0759      */
0760     for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
0761         epi = rb_entry(rbp, struct epitem, rbn);
0762 
0763         ep_unregister_pollwait(ep, epi);
0764         cond_resched();
0765     }
0766 
0767     /*
0768      * Walks through the whole tree by freeing each "struct epitem". At this
0769      * point we are sure no poll callbacks will be lingering around, and also by
0770      * holding "epmutex" we can be sure that no file cleanup code will hit
0771      * us during this operation. So we can avoid the lock on "ep->lock".
0772      * We do not need to lock ep->mtx, either, we only do it to prevent
0773      * a lockdep warning.
0774      */
0775     mutex_lock(&ep->mtx);
0776     while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
0777         epi = rb_entry(rbp, struct epitem, rbn);
0778         ep_remove(ep, epi);
0779         cond_resched();
0780     }
0781     mutex_unlock(&ep->mtx);
0782 
0783     mutex_unlock(&epmutex);
0784     mutex_destroy(&ep->mtx);
0785     free_uid(ep->user);
0786     wakeup_source_unregister(ep->ws);
0787     kfree(ep);
0788 }
0789 
0790 static int ep_eventpoll_release(struct inode *inode, struct file *file)
0791 {
0792     struct eventpoll *ep = file->private_data;
0793 
0794     if (ep)
0795         ep_free(ep);
0796 
0797     return 0;
0798 }
0799 
0800 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
0801 
0802 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
0803 {
0804     struct eventpoll *ep = file->private_data;
0805     LIST_HEAD(txlist);
0806     struct epitem *epi, *tmp;
0807     poll_table pt;
0808     __poll_t res = 0;
0809 
0810     init_poll_funcptr(&pt, NULL);
0811 
0812     /* Insert inside our poll wait queue */
0813     poll_wait(file, &ep->poll_wait, wait);
0814 
0815     /*
0816      * Proceed to find out if wanted events are really available inside
0817      * the ready list.
0818      */
0819     mutex_lock_nested(&ep->mtx, depth);
0820     ep_start_scan(ep, &txlist);
0821     list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
0822         if (ep_item_poll(epi, &pt, depth + 1)) {
0823             res = EPOLLIN | EPOLLRDNORM;
0824             break;
0825         } else {
0826             /*
0827              * Item has been dropped into the ready list by the poll
0828              * callback, but it's not actually ready, as far as
0829              * caller requested events goes. We can remove it here.
0830              */
0831             __pm_relax(ep_wakeup_source(epi));
0832             list_del_init(&epi->rdllink);
0833         }
0834     }
0835     ep_done_scan(ep, &txlist);
0836     mutex_unlock(&ep->mtx);
0837     return res;
0838 }
0839 
0840 /*
0841  * Differs from ep_eventpoll_poll() in that internal callers already have
0842  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
0843  * is correctly annotated.
0844  */
0845 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
0846                  int depth)
0847 {
0848     struct file *file = epi->ffd.file;
0849     __poll_t res;
0850 
0851     pt->_key = epi->event.events;
0852     if (!is_file_epoll(file))
0853         res = vfs_poll(file, pt);
0854     else
0855         res = __ep_eventpoll_poll(file, pt, depth);
0856     return res & epi->event.events;
0857 }
0858 
0859 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
0860 {
0861     return __ep_eventpoll_poll(file, wait, 0);
0862 }
0863 
0864 #ifdef CONFIG_PROC_FS
0865 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
0866 {
0867     struct eventpoll *ep = f->private_data;
0868     struct rb_node *rbp;
0869 
0870     mutex_lock(&ep->mtx);
0871     for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
0872         struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
0873         struct inode *inode = file_inode(epi->ffd.file);
0874 
0875         seq_printf(m, "tfd: %8d events: %8x data: %16llx "
0876                " pos:%lli ino:%lx sdev:%x\n",
0877                epi->ffd.fd, epi->event.events,
0878                (long long)epi->event.data,
0879                (long long)epi->ffd.file->f_pos,
0880                inode->i_ino, inode->i_sb->s_dev);
0881         if (seq_has_overflowed(m))
0882             break;
0883     }
0884     mutex_unlock(&ep->mtx);
0885 }
0886 #endif
0887 
0888 /* File callbacks that implement the eventpoll file behaviour */
0889 static const struct file_operations eventpoll_fops = {
0890 #ifdef CONFIG_PROC_FS
0891     .show_fdinfo    = ep_show_fdinfo,
0892 #endif
0893     .release    = ep_eventpoll_release,
0894     .poll       = ep_eventpoll_poll,
0895     .llseek     = noop_llseek,
0896 };
0897 
0898 /*
0899  * This is called from eventpoll_release() to unlink files from the eventpoll
0900  * interface. We need to have this facility to cleanup correctly files that are
0901  * closed without being removed from the eventpoll interface.
0902  */
0903 void eventpoll_release_file(struct file *file)
0904 {
0905     struct eventpoll *ep;
0906     struct epitem *epi;
0907     struct hlist_node *next;
0908 
0909     /*
0910      * We don't want to get "file->f_lock" because it is not
0911      * necessary. It is not necessary because we're in the "struct file"
0912      * cleanup path, and this means that no one is using this file anymore.
0913      * So, for example, epoll_ctl() cannot hit here since if we reach this
0914      * point, the file counter already went to zero and fget() would fail.
0915      * The only hit might come from ep_free() but by holding the mutex
0916      * will correctly serialize the operation. We do need to acquire
0917      * "ep->mtx" after "epmutex" because ep_remove() requires it when called
0918      * from anywhere but ep_free().
0919      *
0920      * Besides, ep_remove() acquires the lock, so we can't hold it here.
0921      */
0922     mutex_lock(&epmutex);
0923     if (unlikely(!file->f_ep)) {
0924         mutex_unlock(&epmutex);
0925         return;
0926     }
0927     hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) {
0928         ep = epi->ep;
0929         mutex_lock_nested(&ep->mtx, 0);
0930         ep_remove(ep, epi);
0931         mutex_unlock(&ep->mtx);
0932     }
0933     mutex_unlock(&epmutex);
0934 }
0935 
0936 static int ep_alloc(struct eventpoll **pep)
0937 {
0938     int error;
0939     struct user_struct *user;
0940     struct eventpoll *ep;
0941 
0942     user = get_current_user();
0943     error = -ENOMEM;
0944     ep = kzalloc(sizeof(*ep), GFP_KERNEL);
0945     if (unlikely(!ep))
0946         goto free_uid;
0947 
0948     mutex_init(&ep->mtx);
0949     rwlock_init(&ep->lock);
0950     init_waitqueue_head(&ep->wq);
0951     init_waitqueue_head(&ep->poll_wait);
0952     INIT_LIST_HEAD(&ep->rdllist);
0953     ep->rbr = RB_ROOT_CACHED;
0954     ep->ovflist = EP_UNACTIVE_PTR;
0955     ep->user = user;
0956 
0957     *pep = ep;
0958 
0959     return 0;
0960 
0961 free_uid:
0962     free_uid(user);
0963     return error;
0964 }
0965 
0966 /*
0967  * Search the file inside the eventpoll tree. The RB tree operations
0968  * are protected by the "mtx" mutex, and ep_find() must be called with
0969  * "mtx" held.
0970  */
0971 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
0972 {
0973     int kcmp;
0974     struct rb_node *rbp;
0975     struct epitem *epi, *epir = NULL;
0976     struct epoll_filefd ffd;
0977 
0978     ep_set_ffd(&ffd, file, fd);
0979     for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
0980         epi = rb_entry(rbp, struct epitem, rbn);
0981         kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
0982         if (kcmp > 0)
0983             rbp = rbp->rb_right;
0984         else if (kcmp < 0)
0985             rbp = rbp->rb_left;
0986         else {
0987             epir = epi;
0988             break;
0989         }
0990     }
0991 
0992     return epir;
0993 }
0994 
0995 #ifdef CONFIG_KCMP
0996 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
0997 {
0998     struct rb_node *rbp;
0999     struct epitem *epi;
1000 
1001     for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1002         epi = rb_entry(rbp, struct epitem, rbn);
1003         if (epi->ffd.fd == tfd) {
1004             if (toff == 0)
1005                 return epi;
1006             else
1007                 toff--;
1008         }
1009         cond_resched();
1010     }
1011 
1012     return NULL;
1013 }
1014 
1015 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1016                      unsigned long toff)
1017 {
1018     struct file *file_raw;
1019     struct eventpoll *ep;
1020     struct epitem *epi;
1021 
1022     if (!is_file_epoll(file))
1023         return ERR_PTR(-EINVAL);
1024 
1025     ep = file->private_data;
1026 
1027     mutex_lock(&ep->mtx);
1028     epi = ep_find_tfd(ep, tfd, toff);
1029     if (epi)
1030         file_raw = epi->ffd.file;
1031     else
1032         file_raw = ERR_PTR(-ENOENT);
1033     mutex_unlock(&ep->mtx);
1034 
1035     return file_raw;
1036 }
1037 #endif /* CONFIG_KCMP */
1038 
1039 /*
1040  * Adds a new entry to the tail of the list in a lockless way, i.e.
1041  * multiple CPUs are allowed to call this function concurrently.
1042  *
1043  * Beware: it is necessary to prevent any other modifications of the
1044  *         existing list until all changes are completed, in other words
1045  *         concurrent list_add_tail_lockless() calls should be protected
1046  *         with a read lock, where write lock acts as a barrier which
1047  *         makes sure all list_add_tail_lockless() calls are fully
1048  *         completed.
1049  *
1050  *        Also an element can be locklessly added to the list only in one
1051  *        direction i.e. either to the tail or to the head, otherwise
1052  *        concurrent access will corrupt the list.
1053  *
1054  * Return: %false if element has been already added to the list, %true
1055  * otherwise.
1056  */
1057 static inline bool list_add_tail_lockless(struct list_head *new,
1058                       struct list_head *head)
1059 {
1060     struct list_head *prev;
1061 
1062     /*
1063      * This is simple 'new->next = head' operation, but cmpxchg()
1064      * is used in order to detect that same element has been just
1065      * added to the list from another CPU: the winner observes
1066      * new->next == new.
1067      */
1068     if (cmpxchg(&new->next, new, head) != new)
1069         return false;
1070 
1071     /*
1072      * Initially ->next of a new element must be updated with the head
1073      * (we are inserting to the tail) and only then pointers are atomically
1074      * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1075      * updated before pointers are actually swapped and pointers are
1076      * swapped before prev->next is updated.
1077      */
1078 
1079     prev = xchg(&head->prev, new);
1080 
1081     /*
1082      * It is safe to modify prev->next and new->prev, because a new element
1083      * is added only to the tail and new->next is updated before XCHG.
1084      */
1085 
1086     prev->next = new;
1087     new->prev = prev;
1088 
1089     return true;
1090 }
1091 
1092 /*
1093  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1094  * i.e. multiple CPUs are allowed to call this function concurrently.
1095  *
1096  * Return: %false if epi element has been already chained, %true otherwise.
1097  */
1098 static inline bool chain_epi_lockless(struct epitem *epi)
1099 {
1100     struct eventpoll *ep = epi->ep;
1101 
1102     /* Fast preliminary check */
1103     if (epi->next != EP_UNACTIVE_PTR)
1104         return false;
1105 
1106     /* Check that the same epi has not been just chained from another CPU */
1107     if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1108         return false;
1109 
1110     /* Atomically exchange tail */
1111     epi->next = xchg(&ep->ovflist, epi);
1112 
1113     return true;
1114 }
1115 
1116 /*
1117  * This is the callback that is passed to the wait queue wakeup
1118  * mechanism. It is called by the stored file descriptors when they
1119  * have events to report.
1120  *
1121  * This callback takes a read lock in order not to contend with concurrent
1122  * events from another file descriptor, thus all modifications to ->rdllist
1123  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1124  * ep_scan_ready_list(), which stops all list modifications and guarantees
1125  * that lists state is seen correctly.
1126  *
1127  * Another thing worth to mention is that ep_poll_callback() can be called
1128  * concurrently for the same @epi from different CPUs if poll table was inited
1129  * with several wait queues entries.  Plural wakeup from different CPUs of a
1130  * single wait queue is serialized by wq.lock, but the case when multiple wait
1131  * queues are used should be detected accordingly.  This is detected using
1132  * cmpxchg() operation.
1133  */
1134 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1135 {
1136     int pwake = 0;
1137     struct epitem *epi = ep_item_from_wait(wait);
1138     struct eventpoll *ep = epi->ep;
1139     __poll_t pollflags = key_to_poll(key);
1140     unsigned long flags;
1141     int ewake = 0;
1142 
1143     read_lock_irqsave(&ep->lock, flags);
1144 
1145     ep_set_busy_poll_napi_id(epi);
1146 
1147     /*
1148      * If the event mask does not contain any poll(2) event, we consider the
1149      * descriptor to be disabled. This condition is likely the effect of the
1150      * EPOLLONESHOT bit that disables the descriptor when an event is received,
1151      * until the next EPOLL_CTL_MOD will be issued.
1152      */
1153     if (!(epi->event.events & ~EP_PRIVATE_BITS))
1154         goto out_unlock;
1155 
1156     /*
1157      * Check the events coming with the callback. At this stage, not
1158      * every device reports the events in the "key" parameter of the
1159      * callback. We need to be able to handle both cases here, hence the
1160      * test for "key" != NULL before the event match test.
1161      */
1162     if (pollflags && !(pollflags & epi->event.events))
1163         goto out_unlock;
1164 
1165     /*
1166      * If we are transferring events to userspace, we can hold no locks
1167      * (because we're accessing user memory, and because of linux f_op->poll()
1168      * semantics). All the events that happen during that period of time are
1169      * chained in ep->ovflist and requeued later on.
1170      */
1171     if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1172         if (chain_epi_lockless(epi))
1173             ep_pm_stay_awake_rcu(epi);
1174     } else if (!ep_is_linked(epi)) {
1175         /* In the usual case, add event to ready list. */
1176         if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1177             ep_pm_stay_awake_rcu(epi);
1178     }
1179 
1180     /*
1181      * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1182      * wait list.
1183      */
1184     if (waitqueue_active(&ep->wq)) {
1185         if ((epi->event.events & EPOLLEXCLUSIVE) &&
1186                     !(pollflags & POLLFREE)) {
1187             switch (pollflags & EPOLLINOUT_BITS) {
1188             case EPOLLIN:
1189                 if (epi->event.events & EPOLLIN)
1190                     ewake = 1;
1191                 break;
1192             case EPOLLOUT:
1193                 if (epi->event.events & EPOLLOUT)
1194                     ewake = 1;
1195                 break;
1196             case 0:
1197                 ewake = 1;
1198                 break;
1199             }
1200         }
1201         wake_up(&ep->wq);
1202     }
1203     if (waitqueue_active(&ep->poll_wait))
1204         pwake++;
1205 
1206 out_unlock:
1207     read_unlock_irqrestore(&ep->lock, flags);
1208 
1209     /* We have to call this outside the lock */
1210     if (pwake)
1211         ep_poll_safewake(ep, epi);
1212 
1213     if (!(epi->event.events & EPOLLEXCLUSIVE))
1214         ewake = 1;
1215 
1216     if (pollflags & POLLFREE) {
1217         /*
1218          * If we race with ep_remove_wait_queue() it can miss
1219          * ->whead = NULL and do another remove_wait_queue() after
1220          * us, so we can't use __remove_wait_queue().
1221          */
1222         list_del_init(&wait->entry);
1223         /*
1224          * ->whead != NULL protects us from the race with ep_free()
1225          * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1226          * held by the caller. Once we nullify it, nothing protects
1227          * ep/epi or even wait.
1228          */
1229         smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1230     }
1231 
1232     return ewake;
1233 }
1234 
1235 /*
1236  * This is the callback that is used to add our wait queue to the
1237  * target file wakeup lists.
1238  */
1239 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1240                  poll_table *pt)
1241 {
1242     struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1243     struct epitem *epi = epq->epi;
1244     struct eppoll_entry *pwq;
1245 
1246     if (unlikely(!epi)) // an earlier allocation has failed
1247         return;
1248 
1249     pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1250     if (unlikely(!pwq)) {
1251         epq->epi = NULL;
1252         return;
1253     }
1254 
1255     init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1256     pwq->whead = whead;
1257     pwq->base = epi;
1258     if (epi->event.events & EPOLLEXCLUSIVE)
1259         add_wait_queue_exclusive(whead, &pwq->wait);
1260     else
1261         add_wait_queue(whead, &pwq->wait);
1262     pwq->next = epi->pwqlist;
1263     epi->pwqlist = pwq;
1264 }
1265 
1266 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1267 {
1268     int kcmp;
1269     struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1270     struct epitem *epic;
1271     bool leftmost = true;
1272 
1273     while (*p) {
1274         parent = *p;
1275         epic = rb_entry(parent, struct epitem, rbn);
1276         kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1277         if (kcmp > 0) {
1278             p = &parent->rb_right;
1279             leftmost = false;
1280         } else
1281             p = &parent->rb_left;
1282     }
1283     rb_link_node(&epi->rbn, parent, p);
1284     rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1285 }
1286 
1287 
1288 
1289 #define PATH_ARR_SIZE 5
1290 /*
1291  * These are the number paths of length 1 to 5, that we are allowing to emanate
1292  * from a single file of interest. For example, we allow 1000 paths of length
1293  * 1, to emanate from each file of interest. This essentially represents the
1294  * potential wakeup paths, which need to be limited in order to avoid massive
1295  * uncontrolled wakeup storms. The common use case should be a single ep which
1296  * is connected to n file sources. In this case each file source has 1 path
1297  * of length 1. Thus, the numbers below should be more than sufficient. These
1298  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1299  * and delete can't add additional paths. Protected by the epmutex.
1300  */
1301 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1302 static int path_count[PATH_ARR_SIZE];
1303 
1304 static int path_count_inc(int nests)
1305 {
1306     /* Allow an arbitrary number of depth 1 paths */
1307     if (nests == 0)
1308         return 0;
1309 
1310     if (++path_count[nests] > path_limits[nests])
1311         return -1;
1312     return 0;
1313 }
1314 
1315 static void path_count_init(void)
1316 {
1317     int i;
1318 
1319     for (i = 0; i < PATH_ARR_SIZE; i++)
1320         path_count[i] = 0;
1321 }
1322 
1323 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1324 {
1325     int error = 0;
1326     struct epitem *epi;
1327 
1328     if (depth > EP_MAX_NESTS) /* too deep nesting */
1329         return -1;
1330 
1331     /* CTL_DEL can remove links here, but that can't increase our count */
1332     hlist_for_each_entry_rcu(epi, refs, fllink) {
1333         struct hlist_head *refs = &epi->ep->refs;
1334         if (hlist_empty(refs))
1335             error = path_count_inc(depth);
1336         else
1337             error = reverse_path_check_proc(refs, depth + 1);
1338         if (error != 0)
1339             break;
1340     }
1341     return error;
1342 }
1343 
1344 /**
1345  * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1346  *                      links that are proposed to be newly added. We need to
1347  *                      make sure that those added links don't add too many
1348  *                      paths such that we will spend all our time waking up
1349  *                      eventpoll objects.
1350  *
1351  * Return: %zero if the proposed links don't create too many paths,
1352  *      %-1 otherwise.
1353  */
1354 static int reverse_path_check(void)
1355 {
1356     struct epitems_head *p;
1357 
1358     for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1359         int error;
1360         path_count_init();
1361         rcu_read_lock();
1362         error = reverse_path_check_proc(&p->epitems, 0);
1363         rcu_read_unlock();
1364         if (error)
1365             return error;
1366     }
1367     return 0;
1368 }
1369 
1370 static int ep_create_wakeup_source(struct epitem *epi)
1371 {
1372     struct name_snapshot n;
1373     struct wakeup_source *ws;
1374 
1375     if (!epi->ep->ws) {
1376         epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1377         if (!epi->ep->ws)
1378             return -ENOMEM;
1379     }
1380 
1381     take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1382     ws = wakeup_source_register(NULL, n.name.name);
1383     release_dentry_name_snapshot(&n);
1384 
1385     if (!ws)
1386         return -ENOMEM;
1387     rcu_assign_pointer(epi->ws, ws);
1388 
1389     return 0;
1390 }
1391 
1392 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1393 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1394 {
1395     struct wakeup_source *ws = ep_wakeup_source(epi);
1396 
1397     RCU_INIT_POINTER(epi->ws, NULL);
1398 
1399     /*
1400      * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1401      * used internally by wakeup_source_remove, too (called by
1402      * wakeup_source_unregister), so we cannot use call_rcu
1403      */
1404     synchronize_rcu();
1405     wakeup_source_unregister(ws);
1406 }
1407 
1408 static int attach_epitem(struct file *file, struct epitem *epi)
1409 {
1410     struct epitems_head *to_free = NULL;
1411     struct hlist_head *head = NULL;
1412     struct eventpoll *ep = NULL;
1413 
1414     if (is_file_epoll(file))
1415         ep = file->private_data;
1416 
1417     if (ep) {
1418         head = &ep->refs;
1419     } else if (!READ_ONCE(file->f_ep)) {
1420 allocate:
1421         to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1422         if (!to_free)
1423             return -ENOMEM;
1424         head = &to_free->epitems;
1425     }
1426     spin_lock(&file->f_lock);
1427     if (!file->f_ep) {
1428         if (unlikely(!head)) {
1429             spin_unlock(&file->f_lock);
1430             goto allocate;
1431         }
1432         file->f_ep = head;
1433         to_free = NULL;
1434     }
1435     hlist_add_head_rcu(&epi->fllink, file->f_ep);
1436     spin_unlock(&file->f_lock);
1437     free_ephead(to_free);
1438     return 0;
1439 }
1440 
1441 /*
1442  * Must be called with "mtx" held.
1443  */
1444 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1445              struct file *tfile, int fd, int full_check)
1446 {
1447     int error, pwake = 0;
1448     __poll_t revents;
1449     struct epitem *epi;
1450     struct ep_pqueue epq;
1451     struct eventpoll *tep = NULL;
1452 
1453     if (is_file_epoll(tfile))
1454         tep = tfile->private_data;
1455 
1456     lockdep_assert_irqs_enabled();
1457 
1458     if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1459                         max_user_watches) >= 0))
1460         return -ENOSPC;
1461     percpu_counter_inc(&ep->user->epoll_watches);
1462 
1463     if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1464         percpu_counter_dec(&ep->user->epoll_watches);
1465         return -ENOMEM;
1466     }
1467 
1468     /* Item initialization follow here ... */
1469     INIT_LIST_HEAD(&epi->rdllink);
1470     epi->ep = ep;
1471     ep_set_ffd(&epi->ffd, tfile, fd);
1472     epi->event = *event;
1473     epi->next = EP_UNACTIVE_PTR;
1474 
1475     if (tep)
1476         mutex_lock_nested(&tep->mtx, 1);
1477     /* Add the current item to the list of active epoll hook for this file */
1478     if (unlikely(attach_epitem(tfile, epi) < 0)) {
1479         if (tep)
1480             mutex_unlock(&tep->mtx);
1481         kmem_cache_free(epi_cache, epi);
1482         percpu_counter_dec(&ep->user->epoll_watches);
1483         return -ENOMEM;
1484     }
1485 
1486     if (full_check && !tep)
1487         list_file(tfile);
1488 
1489     /*
1490      * Add the current item to the RB tree. All RB tree operations are
1491      * protected by "mtx", and ep_insert() is called with "mtx" held.
1492      */
1493     ep_rbtree_insert(ep, epi);
1494     if (tep)
1495         mutex_unlock(&tep->mtx);
1496 
1497     /* now check if we've created too many backpaths */
1498     if (unlikely(full_check && reverse_path_check())) {
1499         ep_remove(ep, epi);
1500         return -EINVAL;
1501     }
1502 
1503     if (epi->event.events & EPOLLWAKEUP) {
1504         error = ep_create_wakeup_source(epi);
1505         if (error) {
1506             ep_remove(ep, epi);
1507             return error;
1508         }
1509     }
1510 
1511     /* Initialize the poll table using the queue callback */
1512     epq.epi = epi;
1513     init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1514 
1515     /*
1516      * Attach the item to the poll hooks and get current event bits.
1517      * We can safely use the file* here because its usage count has
1518      * been increased by the caller of this function. Note that after
1519      * this operation completes, the poll callback can start hitting
1520      * the new item.
1521      */
1522     revents = ep_item_poll(epi, &epq.pt, 1);
1523 
1524     /*
1525      * We have to check if something went wrong during the poll wait queue
1526      * install process. Namely an allocation for a wait queue failed due
1527      * high memory pressure.
1528      */
1529     if (unlikely(!epq.epi)) {
1530         ep_remove(ep, epi);
1531         return -ENOMEM;
1532     }
1533 
1534     /* We have to drop the new item inside our item list to keep track of it */
1535     write_lock_irq(&ep->lock);
1536 
1537     /* record NAPI ID of new item if present */
1538     ep_set_busy_poll_napi_id(epi);
1539 
1540     /* If the file is already "ready" we drop it inside the ready list */
1541     if (revents && !ep_is_linked(epi)) {
1542         list_add_tail(&epi->rdllink, &ep->rdllist);
1543         ep_pm_stay_awake(epi);
1544 
1545         /* Notify waiting tasks that events are available */
1546         if (waitqueue_active(&ep->wq))
1547             wake_up(&ep->wq);
1548         if (waitqueue_active(&ep->poll_wait))
1549             pwake++;
1550     }
1551 
1552     write_unlock_irq(&ep->lock);
1553 
1554     /* We have to call this outside the lock */
1555     if (pwake)
1556         ep_poll_safewake(ep, NULL);
1557 
1558     return 0;
1559 }
1560 
1561 /*
1562  * Modify the interest event mask by dropping an event if the new mask
1563  * has a match in the current file status. Must be called with "mtx" held.
1564  */
1565 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1566              const struct epoll_event *event)
1567 {
1568     int pwake = 0;
1569     poll_table pt;
1570 
1571     lockdep_assert_irqs_enabled();
1572 
1573     init_poll_funcptr(&pt, NULL);
1574 
1575     /*
1576      * Set the new event interest mask before calling f_op->poll();
1577      * otherwise we might miss an event that happens between the
1578      * f_op->poll() call and the new event set registering.
1579      */
1580     epi->event.events = event->events; /* need barrier below */
1581     epi->event.data = event->data; /* protected by mtx */
1582     if (epi->event.events & EPOLLWAKEUP) {
1583         if (!ep_has_wakeup_source(epi))
1584             ep_create_wakeup_source(epi);
1585     } else if (ep_has_wakeup_source(epi)) {
1586         ep_destroy_wakeup_source(epi);
1587     }
1588 
1589     /*
1590      * The following barrier has two effects:
1591      *
1592      * 1) Flush epi changes above to other CPUs.  This ensures
1593      *    we do not miss events from ep_poll_callback if an
1594      *    event occurs immediately after we call f_op->poll().
1595      *    We need this because we did not take ep->lock while
1596      *    changing epi above (but ep_poll_callback does take
1597      *    ep->lock).
1598      *
1599      * 2) We also need to ensure we do not miss _past_ events
1600      *    when calling f_op->poll().  This barrier also
1601      *    pairs with the barrier in wq_has_sleeper (see
1602      *    comments for wq_has_sleeper).
1603      *
1604      * This barrier will now guarantee ep_poll_callback or f_op->poll
1605      * (or both) will notice the readiness of an item.
1606      */
1607     smp_mb();
1608 
1609     /*
1610      * Get current event bits. We can safely use the file* here because
1611      * its usage count has been increased by the caller of this function.
1612      * If the item is "hot" and it is not registered inside the ready
1613      * list, push it inside.
1614      */
1615     if (ep_item_poll(epi, &pt, 1)) {
1616         write_lock_irq(&ep->lock);
1617         if (!ep_is_linked(epi)) {
1618             list_add_tail(&epi->rdllink, &ep->rdllist);
1619             ep_pm_stay_awake(epi);
1620 
1621             /* Notify waiting tasks that events are available */
1622             if (waitqueue_active(&ep->wq))
1623                 wake_up(&ep->wq);
1624             if (waitqueue_active(&ep->poll_wait))
1625                 pwake++;
1626         }
1627         write_unlock_irq(&ep->lock);
1628     }
1629 
1630     /* We have to call this outside the lock */
1631     if (pwake)
1632         ep_poll_safewake(ep, NULL);
1633 
1634     return 0;
1635 }
1636 
1637 static int ep_send_events(struct eventpoll *ep,
1638               struct epoll_event __user *events, int maxevents)
1639 {
1640     struct epitem *epi, *tmp;
1641     LIST_HEAD(txlist);
1642     poll_table pt;
1643     int res = 0;
1644 
1645     /*
1646      * Always short-circuit for fatal signals to allow threads to make a
1647      * timely exit without the chance of finding more events available and
1648      * fetching repeatedly.
1649      */
1650     if (fatal_signal_pending(current))
1651         return -EINTR;
1652 
1653     init_poll_funcptr(&pt, NULL);
1654 
1655     mutex_lock(&ep->mtx);
1656     ep_start_scan(ep, &txlist);
1657 
1658     /*
1659      * We can loop without lock because we are passed a task private list.
1660      * Items cannot vanish during the loop we are holding ep->mtx.
1661      */
1662     list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1663         struct wakeup_source *ws;
1664         __poll_t revents;
1665 
1666         if (res >= maxevents)
1667             break;
1668 
1669         /*
1670          * Activate ep->ws before deactivating epi->ws to prevent
1671          * triggering auto-suspend here (in case we reactive epi->ws
1672          * below).
1673          *
1674          * This could be rearranged to delay the deactivation of epi->ws
1675          * instead, but then epi->ws would temporarily be out of sync
1676          * with ep_is_linked().
1677          */
1678         ws = ep_wakeup_source(epi);
1679         if (ws) {
1680             if (ws->active)
1681                 __pm_stay_awake(ep->ws);
1682             __pm_relax(ws);
1683         }
1684 
1685         list_del_init(&epi->rdllink);
1686 
1687         /*
1688          * If the event mask intersect the caller-requested one,
1689          * deliver the event to userspace. Again, we are holding ep->mtx,
1690          * so no operations coming from userspace can change the item.
1691          */
1692         revents = ep_item_poll(epi, &pt, 1);
1693         if (!revents)
1694             continue;
1695 
1696         events = epoll_put_uevent(revents, epi->event.data, events);
1697         if (!events) {
1698             list_add(&epi->rdllink, &txlist);
1699             ep_pm_stay_awake(epi);
1700             if (!res)
1701                 res = -EFAULT;
1702             break;
1703         }
1704         res++;
1705         if (epi->event.events & EPOLLONESHOT)
1706             epi->event.events &= EP_PRIVATE_BITS;
1707         else if (!(epi->event.events & EPOLLET)) {
1708             /*
1709              * If this file has been added with Level
1710              * Trigger mode, we need to insert back inside
1711              * the ready list, so that the next call to
1712              * epoll_wait() will check again the events
1713              * availability. At this point, no one can insert
1714              * into ep->rdllist besides us. The epoll_ctl()
1715              * callers are locked out by
1716              * ep_scan_ready_list() holding "mtx" and the
1717              * poll callback will queue them in ep->ovflist.
1718              */
1719             list_add_tail(&epi->rdllink, &ep->rdllist);
1720             ep_pm_stay_awake(epi);
1721         }
1722     }
1723     ep_done_scan(ep, &txlist);
1724     mutex_unlock(&ep->mtx);
1725 
1726     return res;
1727 }
1728 
1729 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1730 {
1731     struct timespec64 now;
1732 
1733     if (ms < 0)
1734         return NULL;
1735 
1736     if (!ms) {
1737         to->tv_sec = 0;
1738         to->tv_nsec = 0;
1739         return to;
1740     }
1741 
1742     to->tv_sec = ms / MSEC_PER_SEC;
1743     to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1744 
1745     ktime_get_ts64(&now);
1746     *to = timespec64_add_safe(now, *to);
1747     return to;
1748 }
1749 
1750 /*
1751  * autoremove_wake_function, but remove even on failure to wake up, because we
1752  * know that default_wake_function/ttwu will only fail if the thread is already
1753  * woken, and in that case the ep_poll loop will remove the entry anyways, not
1754  * try to reuse it.
1755  */
1756 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1757                        unsigned int mode, int sync, void *key)
1758 {
1759     int ret = default_wake_function(wq_entry, mode, sync, key);
1760 
1761     list_del_init(&wq_entry->entry);
1762     return ret;
1763 }
1764 
1765 /**
1766  * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1767  *           event buffer.
1768  *
1769  * @ep: Pointer to the eventpoll context.
1770  * @events: Pointer to the userspace buffer where the ready events should be
1771  *          stored.
1772  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1773  * @timeout: Maximum timeout for the ready events fetch operation, in
1774  *           timespec. If the timeout is zero, the function will not block,
1775  *           while if the @timeout ptr is NULL, the function will block
1776  *           until at least one event has been retrieved (or an error
1777  *           occurred).
1778  *
1779  * Return: the number of ready events which have been fetched, or an
1780  *          error code, in case of error.
1781  */
1782 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1783            int maxevents, struct timespec64 *timeout)
1784 {
1785     int res, eavail, timed_out = 0;
1786     u64 slack = 0;
1787     wait_queue_entry_t wait;
1788     ktime_t expires, *to = NULL;
1789 
1790     lockdep_assert_irqs_enabled();
1791 
1792     if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1793         slack = select_estimate_accuracy(timeout);
1794         to = &expires;
1795         *to = timespec64_to_ktime(*timeout);
1796     } else if (timeout) {
1797         /*
1798          * Avoid the unnecessary trip to the wait queue loop, if the
1799          * caller specified a non blocking operation.
1800          */
1801         timed_out = 1;
1802     }
1803 
1804     /*
1805      * This call is racy: We may or may not see events that are being added
1806      * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1807      * with a non-zero timeout, this thread will check the ready list under
1808      * lock and will add to the wait queue.  For cases with a zero
1809      * timeout, the user by definition should not care and will have to
1810      * recheck again.
1811      */
1812     eavail = ep_events_available(ep);
1813 
1814     while (1) {
1815         if (eavail) {
1816             /*
1817              * Try to transfer events to user space. In case we get
1818              * 0 events and there's still timeout left over, we go
1819              * trying again in search of more luck.
1820              */
1821             res = ep_send_events(ep, events, maxevents);
1822             if (res)
1823                 return res;
1824         }
1825 
1826         if (timed_out)
1827             return 0;
1828 
1829         eavail = ep_busy_loop(ep, timed_out);
1830         if (eavail)
1831             continue;
1832 
1833         if (signal_pending(current))
1834             return -EINTR;
1835 
1836         /*
1837          * Internally init_wait() uses autoremove_wake_function(),
1838          * thus wait entry is removed from the wait queue on each
1839          * wakeup. Why it is important? In case of several waiters
1840          * each new wakeup will hit the next waiter, giving it the
1841          * chance to harvest new event. Otherwise wakeup can be
1842          * lost. This is also good performance-wise, because on
1843          * normal wakeup path no need to call __remove_wait_queue()
1844          * explicitly, thus ep->lock is not taken, which halts the
1845          * event delivery.
1846          *
1847          * In fact, we now use an even more aggressive function that
1848          * unconditionally removes, because we don't reuse the wait
1849          * entry between loop iterations. This lets us also avoid the
1850          * performance issue if a process is killed, causing all of its
1851          * threads to wake up without being removed normally.
1852          */
1853         init_wait(&wait);
1854         wait.func = ep_autoremove_wake_function;
1855 
1856         write_lock_irq(&ep->lock);
1857         /*
1858          * Barrierless variant, waitqueue_active() is called under
1859          * the same lock on wakeup ep_poll_callback() side, so it
1860          * is safe to avoid an explicit barrier.
1861          */
1862         __set_current_state(TASK_INTERRUPTIBLE);
1863 
1864         /*
1865          * Do the final check under the lock. ep_scan_ready_list()
1866          * plays with two lists (->rdllist and ->ovflist) and there
1867          * is always a race when both lists are empty for short
1868          * period of time although events are pending, so lock is
1869          * important.
1870          */
1871         eavail = ep_events_available(ep);
1872         if (!eavail)
1873             __add_wait_queue_exclusive(&ep->wq, &wait);
1874 
1875         write_unlock_irq(&ep->lock);
1876 
1877         if (!eavail)
1878             timed_out = !schedule_hrtimeout_range(to, slack,
1879                                   HRTIMER_MODE_ABS);
1880         __set_current_state(TASK_RUNNING);
1881 
1882         /*
1883          * We were woken up, thus go and try to harvest some events.
1884          * If timed out and still on the wait queue, recheck eavail
1885          * carefully under lock, below.
1886          */
1887         eavail = 1;
1888 
1889         if (!list_empty_careful(&wait.entry)) {
1890             write_lock_irq(&ep->lock);
1891             /*
1892              * If the thread timed out and is not on the wait queue,
1893              * it means that the thread was woken up after its
1894              * timeout expired before it could reacquire the lock.
1895              * Thus, when wait.entry is empty, it needs to harvest
1896              * events.
1897              */
1898             if (timed_out)
1899                 eavail = list_empty(&wait.entry);
1900             __remove_wait_queue(&ep->wq, &wait);
1901             write_unlock_irq(&ep->lock);
1902         }
1903     }
1904 }
1905 
1906 /**
1907  * ep_loop_check_proc - verify that adding an epoll file inside another
1908  *                      epoll structure does not violate the constraints, in
1909  *                      terms of closed loops, or too deep chains (which can
1910  *                      result in excessive stack usage).
1911  *
1912  * @ep: the &struct eventpoll to be currently checked.
1913  * @depth: Current depth of the path being checked.
1914  *
1915  * Return: %zero if adding the epoll @file inside current epoll
1916  *          structure @ep does not violate the constraints, or %-1 otherwise.
1917  */
1918 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1919 {
1920     int error = 0;
1921     struct rb_node *rbp;
1922     struct epitem *epi;
1923 
1924     mutex_lock_nested(&ep->mtx, depth + 1);
1925     ep->gen = loop_check_gen;
1926     for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1927         epi = rb_entry(rbp, struct epitem, rbn);
1928         if (unlikely(is_file_epoll(epi->ffd.file))) {
1929             struct eventpoll *ep_tovisit;
1930             ep_tovisit = epi->ffd.file->private_data;
1931             if (ep_tovisit->gen == loop_check_gen)
1932                 continue;
1933             if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1934                 error = -1;
1935             else
1936                 error = ep_loop_check_proc(ep_tovisit, depth + 1);
1937             if (error != 0)
1938                 break;
1939         } else {
1940             /*
1941              * If we've reached a file that is not associated with
1942              * an ep, then we need to check if the newly added
1943              * links are going to add too many wakeup paths. We do
1944              * this by adding it to the tfile_check_list, if it's
1945              * not already there, and calling reverse_path_check()
1946              * during ep_insert().
1947              */
1948             list_file(epi->ffd.file);
1949         }
1950     }
1951     mutex_unlock(&ep->mtx);
1952 
1953     return error;
1954 }
1955 
1956 /**
1957  * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
1958  *                 into another epoll file (represented by @ep) does not create
1959  *                 closed loops or too deep chains.
1960  *
1961  * @ep: Pointer to the epoll we are inserting into.
1962  * @to: Pointer to the epoll to be inserted.
1963  *
1964  * Return: %zero if adding the epoll @to inside the epoll @from
1965  * does not violate the constraints, or %-1 otherwise.
1966  */
1967 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
1968 {
1969     inserting_into = ep;
1970     return ep_loop_check_proc(to, 0);
1971 }
1972 
1973 static void clear_tfile_check_list(void)
1974 {
1975     rcu_read_lock();
1976     while (tfile_check_list != EP_UNACTIVE_PTR) {
1977         struct epitems_head *head = tfile_check_list;
1978         tfile_check_list = head->next;
1979         unlist_file(head);
1980     }
1981     rcu_read_unlock();
1982 }
1983 
1984 /*
1985  * Open an eventpoll file descriptor.
1986  */
1987 static int do_epoll_create(int flags)
1988 {
1989     int error, fd;
1990     struct eventpoll *ep = NULL;
1991     struct file *file;
1992 
1993     /* Check the EPOLL_* constant for consistency.  */
1994     BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1995 
1996     if (flags & ~EPOLL_CLOEXEC)
1997         return -EINVAL;
1998     /*
1999      * Create the internal data structure ("struct eventpoll").
2000      */
2001     error = ep_alloc(&ep);
2002     if (error < 0)
2003         return error;
2004     /*
2005      * Creates all the items needed to setup an eventpoll file. That is,
2006      * a file structure and a free file descriptor.
2007      */
2008     fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2009     if (fd < 0) {
2010         error = fd;
2011         goto out_free_ep;
2012     }
2013     file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2014                  O_RDWR | (flags & O_CLOEXEC));
2015     if (IS_ERR(file)) {
2016         error = PTR_ERR(file);
2017         goto out_free_fd;
2018     }
2019     ep->file = file;
2020     fd_install(fd, file);
2021     return fd;
2022 
2023 out_free_fd:
2024     put_unused_fd(fd);
2025 out_free_ep:
2026     ep_free(ep);
2027     return error;
2028 }
2029 
2030 SYSCALL_DEFINE1(epoll_create1, int, flags)
2031 {
2032     return do_epoll_create(flags);
2033 }
2034 
2035 SYSCALL_DEFINE1(epoll_create, int, size)
2036 {
2037     if (size <= 0)
2038         return -EINVAL;
2039 
2040     return do_epoll_create(0);
2041 }
2042 
2043 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2044                    bool nonblock)
2045 {
2046     if (!nonblock) {
2047         mutex_lock_nested(mutex, depth);
2048         return 0;
2049     }
2050     if (mutex_trylock(mutex))
2051         return 0;
2052     return -EAGAIN;
2053 }
2054 
2055 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2056          bool nonblock)
2057 {
2058     int error;
2059     int full_check = 0;
2060     struct fd f, tf;
2061     struct eventpoll *ep;
2062     struct epitem *epi;
2063     struct eventpoll *tep = NULL;
2064 
2065     error = -EBADF;
2066     f = fdget(epfd);
2067     if (!f.file)
2068         goto error_return;
2069 
2070     /* Get the "struct file *" for the target file */
2071     tf = fdget(fd);
2072     if (!tf.file)
2073         goto error_fput;
2074 
2075     /* The target file descriptor must support poll */
2076     error = -EPERM;
2077     if (!file_can_poll(tf.file))
2078         goto error_tgt_fput;
2079 
2080     /* Check if EPOLLWAKEUP is allowed */
2081     if (ep_op_has_event(op))
2082         ep_take_care_of_epollwakeup(epds);
2083 
2084     /*
2085      * We have to check that the file structure underneath the file descriptor
2086      * the user passed to us _is_ an eventpoll file. And also we do not permit
2087      * adding an epoll file descriptor inside itself.
2088      */
2089     error = -EINVAL;
2090     if (f.file == tf.file || !is_file_epoll(f.file))
2091         goto error_tgt_fput;
2092 
2093     /*
2094      * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2095      * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2096      * Also, we do not currently supported nested exclusive wakeups.
2097      */
2098     if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2099         if (op == EPOLL_CTL_MOD)
2100             goto error_tgt_fput;
2101         if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2102                 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2103             goto error_tgt_fput;
2104     }
2105 
2106     /*
2107      * At this point it is safe to assume that the "private_data" contains
2108      * our own data structure.
2109      */
2110     ep = f.file->private_data;
2111 
2112     /*
2113      * When we insert an epoll file descriptor inside another epoll file
2114      * descriptor, there is the chance of creating closed loops, which are
2115      * better be handled here, than in more critical paths. While we are
2116      * checking for loops we also determine the list of files reachable
2117      * and hang them on the tfile_check_list, so we can check that we
2118      * haven't created too many possible wakeup paths.
2119      *
2120      * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2121      * the epoll file descriptor is attaching directly to a wakeup source,
2122      * unless the epoll file descriptor is nested. The purpose of taking the
2123      * 'epmutex' on add is to prevent complex toplogies such as loops and
2124      * deep wakeup paths from forming in parallel through multiple
2125      * EPOLL_CTL_ADD operations.
2126      */
2127     error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2128     if (error)
2129         goto error_tgt_fput;
2130     if (op == EPOLL_CTL_ADD) {
2131         if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2132             is_file_epoll(tf.file)) {
2133             mutex_unlock(&ep->mtx);
2134             error = epoll_mutex_lock(&epmutex, 0, nonblock);
2135             if (error)
2136                 goto error_tgt_fput;
2137             loop_check_gen++;
2138             full_check = 1;
2139             if (is_file_epoll(tf.file)) {
2140                 tep = tf.file->private_data;
2141                 error = -ELOOP;
2142                 if (ep_loop_check(ep, tep) != 0)
2143                     goto error_tgt_fput;
2144             }
2145             error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2146             if (error)
2147                 goto error_tgt_fput;
2148         }
2149     }
2150 
2151     /*
2152      * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2153      * above, we can be sure to be able to use the item looked up by
2154      * ep_find() till we release the mutex.
2155      */
2156     epi = ep_find(ep, tf.file, fd);
2157 
2158     error = -EINVAL;
2159     switch (op) {
2160     case EPOLL_CTL_ADD:
2161         if (!epi) {
2162             epds->events |= EPOLLERR | EPOLLHUP;
2163             error = ep_insert(ep, epds, tf.file, fd, full_check);
2164         } else
2165             error = -EEXIST;
2166         break;
2167     case EPOLL_CTL_DEL:
2168         if (epi)
2169             error = ep_remove(ep, epi);
2170         else
2171             error = -ENOENT;
2172         break;
2173     case EPOLL_CTL_MOD:
2174         if (epi) {
2175             if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2176                 epds->events |= EPOLLERR | EPOLLHUP;
2177                 error = ep_modify(ep, epi, epds);
2178             }
2179         } else
2180             error = -ENOENT;
2181         break;
2182     }
2183     mutex_unlock(&ep->mtx);
2184 
2185 error_tgt_fput:
2186     if (full_check) {
2187         clear_tfile_check_list();
2188         loop_check_gen++;
2189         mutex_unlock(&epmutex);
2190     }
2191 
2192     fdput(tf);
2193 error_fput:
2194     fdput(f);
2195 error_return:
2196 
2197     return error;
2198 }
2199 
2200 /*
2201  * The following function implements the controller interface for
2202  * the eventpoll file that enables the insertion/removal/change of
2203  * file descriptors inside the interest set.
2204  */
2205 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2206         struct epoll_event __user *, event)
2207 {
2208     struct epoll_event epds;
2209 
2210     if (ep_op_has_event(op) &&
2211         copy_from_user(&epds, event, sizeof(struct epoll_event)))
2212         return -EFAULT;
2213 
2214     return do_epoll_ctl(epfd, op, fd, &epds, false);
2215 }
2216 
2217 /*
2218  * Implement the event wait interface for the eventpoll file. It is the kernel
2219  * part of the user space epoll_wait(2).
2220  */
2221 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2222              int maxevents, struct timespec64 *to)
2223 {
2224     int error;
2225     struct fd f;
2226     struct eventpoll *ep;
2227 
2228     /* The maximum number of event must be greater than zero */
2229     if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2230         return -EINVAL;
2231 
2232     /* Verify that the area passed by the user is writeable */
2233     if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2234         return -EFAULT;
2235 
2236     /* Get the "struct file *" for the eventpoll file */
2237     f = fdget(epfd);
2238     if (!f.file)
2239         return -EBADF;
2240 
2241     /*
2242      * We have to check that the file structure underneath the fd
2243      * the user passed to us _is_ an eventpoll file.
2244      */
2245     error = -EINVAL;
2246     if (!is_file_epoll(f.file))
2247         goto error_fput;
2248 
2249     /*
2250      * At this point it is safe to assume that the "private_data" contains
2251      * our own data structure.
2252      */
2253     ep = f.file->private_data;
2254 
2255     /* Time to fish for events ... */
2256     error = ep_poll(ep, events, maxevents, to);
2257 
2258 error_fput:
2259     fdput(f);
2260     return error;
2261 }
2262 
2263 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2264         int, maxevents, int, timeout)
2265 {
2266     struct timespec64 to;
2267 
2268     return do_epoll_wait(epfd, events, maxevents,
2269                  ep_timeout_to_timespec(&to, timeout));
2270 }
2271 
2272 /*
2273  * Implement the event wait interface for the eventpoll file. It is the kernel
2274  * part of the user space epoll_pwait(2).
2275  */
2276 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2277               int maxevents, struct timespec64 *to,
2278               const sigset_t __user *sigmask, size_t sigsetsize)
2279 {
2280     int error;
2281 
2282     /*
2283      * If the caller wants a certain signal mask to be set during the wait,
2284      * we apply it here.
2285      */
2286     error = set_user_sigmask(sigmask, sigsetsize);
2287     if (error)
2288         return error;
2289 
2290     error = do_epoll_wait(epfd, events, maxevents, to);
2291 
2292     restore_saved_sigmask_unless(error == -EINTR);
2293 
2294     return error;
2295 }
2296 
2297 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2298         int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2299         size_t, sigsetsize)
2300 {
2301     struct timespec64 to;
2302 
2303     return do_epoll_pwait(epfd, events, maxevents,
2304                   ep_timeout_to_timespec(&to, timeout),
2305                   sigmask, sigsetsize);
2306 }
2307 
2308 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2309         int, maxevents, const struct __kernel_timespec __user *, timeout,
2310         const sigset_t __user *, sigmask, size_t, sigsetsize)
2311 {
2312     struct timespec64 ts, *to = NULL;
2313 
2314     if (timeout) {
2315         if (get_timespec64(&ts, timeout))
2316             return -EFAULT;
2317         to = &ts;
2318         if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2319             return -EINVAL;
2320     }
2321 
2322     return do_epoll_pwait(epfd, events, maxevents, to,
2323                   sigmask, sigsetsize);
2324 }
2325 
2326 #ifdef CONFIG_COMPAT
2327 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2328                  int maxevents, struct timespec64 *timeout,
2329                  const compat_sigset_t __user *sigmask,
2330                  compat_size_t sigsetsize)
2331 {
2332     long err;
2333 
2334     /*
2335      * If the caller wants a certain signal mask to be set during the wait,
2336      * we apply it here.
2337      */
2338     err = set_compat_user_sigmask(sigmask, sigsetsize);
2339     if (err)
2340         return err;
2341 
2342     err = do_epoll_wait(epfd, events, maxevents, timeout);
2343 
2344     restore_saved_sigmask_unless(err == -EINTR);
2345 
2346     return err;
2347 }
2348 
2349 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2350                struct epoll_event __user *, events,
2351                int, maxevents, int, timeout,
2352                const compat_sigset_t __user *, sigmask,
2353                compat_size_t, sigsetsize)
2354 {
2355     struct timespec64 to;
2356 
2357     return do_compat_epoll_pwait(epfd, events, maxevents,
2358                      ep_timeout_to_timespec(&to, timeout),
2359                      sigmask, sigsetsize);
2360 }
2361 
2362 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2363                struct epoll_event __user *, events,
2364                int, maxevents,
2365                const struct __kernel_timespec __user *, timeout,
2366                const compat_sigset_t __user *, sigmask,
2367                compat_size_t, sigsetsize)
2368 {
2369     struct timespec64 ts, *to = NULL;
2370 
2371     if (timeout) {
2372         if (get_timespec64(&ts, timeout))
2373             return -EFAULT;
2374         to = &ts;
2375         if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2376             return -EINVAL;
2377     }
2378 
2379     return do_compat_epoll_pwait(epfd, events, maxevents, to,
2380                      sigmask, sigsetsize);
2381 }
2382 
2383 #endif
2384 
2385 static int __init eventpoll_init(void)
2386 {
2387     struct sysinfo si;
2388 
2389     si_meminfo(&si);
2390     /*
2391      * Allows top 4% of lomem to be allocated for epoll watches (per user).
2392      */
2393     max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2394         EP_ITEM_COST;
2395     BUG_ON(max_user_watches < 0);
2396 
2397     /*
2398      * We can have many thousands of epitems, so prevent this from
2399      * using an extra cache line on 64-bit (and smaller) CPUs
2400      */
2401     BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2402 
2403     /* Allocates slab cache used to allocate "struct epitem" items */
2404     epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2405             0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2406 
2407     /* Allocates slab cache used to allocate "struct eppoll_entry" */
2408     pwq_cache = kmem_cache_create("eventpoll_pwq",
2409         sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2410     epoll_sysctls_init();
2411 
2412     ephead_cache = kmem_cache_create("ep_head",
2413         sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2414 
2415     return 0;
2416 }
2417 fs_initcall(eventpoll_init);