Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * eCryptfs: Linux filesystem encryption layer
0004  * In-kernel key management code.  Includes functions to parse and
0005  * write authentication token-related packets with the underlying
0006  * file.
0007  *
0008  * Copyright (C) 2004-2006 International Business Machines Corp.
0009  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
0010  *              Michael C. Thompson <mcthomps@us.ibm.com>
0011  *              Trevor S. Highland <trevor.highland@gmail.com>
0012  */
0013 
0014 #include <crypto/hash.h>
0015 #include <crypto/skcipher.h>
0016 #include <linux/string.h>
0017 #include <linux/pagemap.h>
0018 #include <linux/key.h>
0019 #include <linux/random.h>
0020 #include <linux/scatterlist.h>
0021 #include <linux/slab.h>
0022 #include "ecryptfs_kernel.h"
0023 
0024 /*
0025  * request_key returned an error instead of a valid key address;
0026  * determine the type of error, make appropriate log entries, and
0027  * return an error code.
0028  */
0029 static int process_request_key_err(long err_code)
0030 {
0031     int rc = 0;
0032 
0033     switch (err_code) {
0034     case -ENOKEY:
0035         ecryptfs_printk(KERN_WARNING, "No key\n");
0036         rc = -ENOENT;
0037         break;
0038     case -EKEYEXPIRED:
0039         ecryptfs_printk(KERN_WARNING, "Key expired\n");
0040         rc = -ETIME;
0041         break;
0042     case -EKEYREVOKED:
0043         ecryptfs_printk(KERN_WARNING, "Key revoked\n");
0044         rc = -EINVAL;
0045         break;
0046     default:
0047         ecryptfs_printk(KERN_WARNING, "Unknown error code: "
0048                 "[0x%.16lx]\n", err_code);
0049         rc = -EINVAL;
0050     }
0051     return rc;
0052 }
0053 
0054 static int process_find_global_auth_tok_for_sig_err(int err_code)
0055 {
0056     int rc = err_code;
0057 
0058     switch (err_code) {
0059     case -ENOENT:
0060         ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
0061         break;
0062     case -EINVAL:
0063         ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
0064         break;
0065     default:
0066         rc = process_request_key_err(err_code);
0067         break;
0068     }
0069     return rc;
0070 }
0071 
0072 /**
0073  * ecryptfs_parse_packet_length
0074  * @data: Pointer to memory containing length at offset
0075  * @size: This function writes the decoded size to this memory
0076  *        address; zero on error
0077  * @length_size: The number of bytes occupied by the encoded length
0078  *
0079  * Returns zero on success; non-zero on error
0080  */
0081 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
0082                  size_t *length_size)
0083 {
0084     int rc = 0;
0085 
0086     (*length_size) = 0;
0087     (*size) = 0;
0088     if (data[0] < 192) {
0089         /* One-byte length */
0090         (*size) = data[0];
0091         (*length_size) = 1;
0092     } else if (data[0] < 224) {
0093         /* Two-byte length */
0094         (*size) = (data[0] - 192) * 256;
0095         (*size) += data[1] + 192;
0096         (*length_size) = 2;
0097     } else if (data[0] == 255) {
0098         /* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
0099         ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
0100                 "supported\n");
0101         rc = -EINVAL;
0102         goto out;
0103     } else {
0104         ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
0105         rc = -EINVAL;
0106         goto out;
0107     }
0108 out:
0109     return rc;
0110 }
0111 
0112 /**
0113  * ecryptfs_write_packet_length
0114  * @dest: The byte array target into which to write the length. Must
0115  *        have at least ECRYPTFS_MAX_PKT_LEN_SIZE bytes allocated.
0116  * @size: The length to write.
0117  * @packet_size_length: The number of bytes used to encode the packet
0118  *                      length is written to this address.
0119  *
0120  * Returns zero on success; non-zero on error.
0121  */
0122 int ecryptfs_write_packet_length(char *dest, size_t size,
0123                  size_t *packet_size_length)
0124 {
0125     int rc = 0;
0126 
0127     if (size < 192) {
0128         dest[0] = size;
0129         (*packet_size_length) = 1;
0130     } else if (size < 65536) {
0131         dest[0] = (((size - 192) / 256) + 192);
0132         dest[1] = ((size - 192) % 256);
0133         (*packet_size_length) = 2;
0134     } else {
0135         /* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
0136         rc = -EINVAL;
0137         ecryptfs_printk(KERN_WARNING,
0138                 "Unsupported packet size: [%zd]\n", size);
0139     }
0140     return rc;
0141 }
0142 
0143 static int
0144 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
0145             char **packet, size_t *packet_len)
0146 {
0147     size_t i = 0;
0148     size_t data_len;
0149     size_t packet_size_len;
0150     char *message;
0151     int rc;
0152 
0153     /*
0154      *              ***** TAG 64 Packet Format *****
0155      *    | Content Type                       | 1 byte       |
0156      *    | Key Identifier Size                | 1 or 2 bytes |
0157      *    | Key Identifier                     | arbitrary    |
0158      *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
0159      *    | Encrypted File Encryption Key      | arbitrary    |
0160      */
0161     data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
0162             + session_key->encrypted_key_size);
0163     *packet = kmalloc(data_len, GFP_KERNEL);
0164     message = *packet;
0165     if (!message) {
0166         ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
0167         rc = -ENOMEM;
0168         goto out;
0169     }
0170     message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
0171     rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
0172                       &packet_size_len);
0173     if (rc) {
0174         ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
0175                 "header; cannot generate packet length\n");
0176         goto out;
0177     }
0178     i += packet_size_len;
0179     memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
0180     i += ECRYPTFS_SIG_SIZE_HEX;
0181     rc = ecryptfs_write_packet_length(&message[i],
0182                       session_key->encrypted_key_size,
0183                       &packet_size_len);
0184     if (rc) {
0185         ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
0186                 "header; cannot generate packet length\n");
0187         goto out;
0188     }
0189     i += packet_size_len;
0190     memcpy(&message[i], session_key->encrypted_key,
0191            session_key->encrypted_key_size);
0192     i += session_key->encrypted_key_size;
0193     *packet_len = i;
0194 out:
0195     return rc;
0196 }
0197 
0198 static int
0199 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
0200             struct ecryptfs_message *msg)
0201 {
0202     size_t i = 0;
0203     char *data;
0204     size_t data_len;
0205     size_t m_size;
0206     size_t message_len;
0207     u16 checksum = 0;
0208     u16 expected_checksum = 0;
0209     int rc;
0210 
0211     /*
0212      *              ***** TAG 65 Packet Format *****
0213      *         | Content Type             | 1 byte       |
0214      *         | Status Indicator         | 1 byte       |
0215      *         | File Encryption Key Size | 1 or 2 bytes |
0216      *         | File Encryption Key      | arbitrary    |
0217      */
0218     message_len = msg->data_len;
0219     data = msg->data;
0220     if (message_len < 4) {
0221         rc = -EIO;
0222         goto out;
0223     }
0224     if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
0225         ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
0226         rc = -EIO;
0227         goto out;
0228     }
0229     if (data[i++]) {
0230         ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
0231                 "[%d]\n", data[i-1]);
0232         rc = -EIO;
0233         goto out;
0234     }
0235     rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
0236     if (rc) {
0237         ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
0238                 "rc = [%d]\n", rc);
0239         goto out;
0240     }
0241     i += data_len;
0242     if (message_len < (i + m_size)) {
0243         ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
0244                 "is shorter than expected\n");
0245         rc = -EIO;
0246         goto out;
0247     }
0248     if (m_size < 3) {
0249         ecryptfs_printk(KERN_ERR,
0250                 "The decrypted key is not long enough to "
0251                 "include a cipher code and checksum\n");
0252         rc = -EIO;
0253         goto out;
0254     }
0255     *cipher_code = data[i++];
0256     /* The decrypted key includes 1 byte cipher code and 2 byte checksum */
0257     session_key->decrypted_key_size = m_size - 3;
0258     if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
0259         ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
0260                 "the maximum key size [%d]\n",
0261                 session_key->decrypted_key_size,
0262                 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
0263         rc = -EIO;
0264         goto out;
0265     }
0266     memcpy(session_key->decrypted_key, &data[i],
0267            session_key->decrypted_key_size);
0268     i += session_key->decrypted_key_size;
0269     expected_checksum += (unsigned char)(data[i++]) << 8;
0270     expected_checksum += (unsigned char)(data[i++]);
0271     for (i = 0; i < session_key->decrypted_key_size; i++)
0272         checksum += session_key->decrypted_key[i];
0273     if (expected_checksum != checksum) {
0274         ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
0275                 "encryption  key; expected [%x]; calculated "
0276                 "[%x]\n", expected_checksum, checksum);
0277         rc = -EIO;
0278     }
0279 out:
0280     return rc;
0281 }
0282 
0283 
0284 static int
0285 write_tag_66_packet(char *signature, u8 cipher_code,
0286             struct ecryptfs_crypt_stat *crypt_stat, char **packet,
0287             size_t *packet_len)
0288 {
0289     size_t i = 0;
0290     size_t j;
0291     size_t data_len;
0292     size_t checksum = 0;
0293     size_t packet_size_len;
0294     char *message;
0295     int rc;
0296 
0297     /*
0298      *              ***** TAG 66 Packet Format *****
0299      *         | Content Type             | 1 byte       |
0300      *         | Key Identifier Size      | 1 or 2 bytes |
0301      *         | Key Identifier           | arbitrary    |
0302      *         | File Encryption Key Size | 1 or 2 bytes |
0303      *         | File Encryption Key      | arbitrary    |
0304      */
0305     data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
0306     *packet = kmalloc(data_len, GFP_KERNEL);
0307     message = *packet;
0308     if (!message) {
0309         ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
0310         rc = -ENOMEM;
0311         goto out;
0312     }
0313     message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
0314     rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
0315                       &packet_size_len);
0316     if (rc) {
0317         ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
0318                 "header; cannot generate packet length\n");
0319         goto out;
0320     }
0321     i += packet_size_len;
0322     memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
0323     i += ECRYPTFS_SIG_SIZE_HEX;
0324     /* The encrypted key includes 1 byte cipher code and 2 byte checksum */
0325     rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
0326                       &packet_size_len);
0327     if (rc) {
0328         ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
0329                 "header; cannot generate packet length\n");
0330         goto out;
0331     }
0332     i += packet_size_len;
0333     message[i++] = cipher_code;
0334     memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
0335     i += crypt_stat->key_size;
0336     for (j = 0; j < crypt_stat->key_size; j++)
0337         checksum += crypt_stat->key[j];
0338     message[i++] = (checksum / 256) % 256;
0339     message[i++] = (checksum % 256);
0340     *packet_len = i;
0341 out:
0342     return rc;
0343 }
0344 
0345 static int
0346 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
0347             struct ecryptfs_message *msg)
0348 {
0349     size_t i = 0;
0350     char *data;
0351     size_t data_len;
0352     size_t message_len;
0353     int rc;
0354 
0355     /*
0356      *              ***** TAG 65 Packet Format *****
0357      *    | Content Type                       | 1 byte       |
0358      *    | Status Indicator                   | 1 byte       |
0359      *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
0360      *    | Encrypted File Encryption Key      | arbitrary    |
0361      */
0362     message_len = msg->data_len;
0363     data = msg->data;
0364     /* verify that everything through the encrypted FEK size is present */
0365     if (message_len < 4) {
0366         rc = -EIO;
0367         printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
0368                "message length is [%d]\n", __func__, message_len, 4);
0369         goto out;
0370     }
0371     if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
0372         rc = -EIO;
0373         printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
0374                __func__);
0375         goto out;
0376     }
0377     if (data[i++]) {
0378         rc = -EIO;
0379         printk(KERN_ERR "%s: Status indicator has non zero "
0380                "value [%d]\n", __func__, data[i-1]);
0381 
0382         goto out;
0383     }
0384     rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
0385                       &data_len);
0386     if (rc) {
0387         ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
0388                 "rc = [%d]\n", rc);
0389         goto out;
0390     }
0391     i += data_len;
0392     if (message_len < (i + key_rec->enc_key_size)) {
0393         rc = -EIO;
0394         printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
0395                __func__, message_len, (i + key_rec->enc_key_size));
0396         goto out;
0397     }
0398     if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
0399         rc = -EIO;
0400         printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
0401                "the maximum key size [%d]\n", __func__,
0402                key_rec->enc_key_size,
0403                ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
0404         goto out;
0405     }
0406     memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
0407 out:
0408     return rc;
0409 }
0410 
0411 /**
0412  * ecryptfs_verify_version
0413  * @version: The version number to confirm
0414  *
0415  * Returns zero on good version; non-zero otherwise
0416  */
0417 static int ecryptfs_verify_version(u16 version)
0418 {
0419     int rc = 0;
0420     unsigned char major;
0421     unsigned char minor;
0422 
0423     major = ((version >> 8) & 0xFF);
0424     minor = (version & 0xFF);
0425     if (major != ECRYPTFS_VERSION_MAJOR) {
0426         ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
0427                 "Expected [%d]; got [%d]\n",
0428                 ECRYPTFS_VERSION_MAJOR, major);
0429         rc = -EINVAL;
0430         goto out;
0431     }
0432     if (minor != ECRYPTFS_VERSION_MINOR) {
0433         ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
0434                 "Expected [%d]; got [%d]\n",
0435                 ECRYPTFS_VERSION_MINOR, minor);
0436         rc = -EINVAL;
0437         goto out;
0438     }
0439 out:
0440     return rc;
0441 }
0442 
0443 /**
0444  * ecryptfs_verify_auth_tok_from_key
0445  * @auth_tok_key: key containing the authentication token
0446  * @auth_tok: authentication token
0447  *
0448  * Returns zero on valid auth tok; -EINVAL if the payload is invalid; or
0449  * -EKEYREVOKED if the key was revoked before we acquired its semaphore.
0450  */
0451 static int
0452 ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
0453                   struct ecryptfs_auth_tok **auth_tok)
0454 {
0455     int rc = 0;
0456 
0457     (*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
0458     if (IS_ERR(*auth_tok)) {
0459         rc = PTR_ERR(*auth_tok);
0460         *auth_tok = NULL;
0461         goto out;
0462     }
0463 
0464     if (ecryptfs_verify_version((*auth_tok)->version)) {
0465         printk(KERN_ERR "Data structure version mismatch. Userspace "
0466                "tools must match eCryptfs kernel module with major "
0467                "version [%d] and minor version [%d]\n",
0468                ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
0469         rc = -EINVAL;
0470         goto out;
0471     }
0472     if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
0473         && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
0474         printk(KERN_ERR "Invalid auth_tok structure "
0475                "returned from key query\n");
0476         rc = -EINVAL;
0477         goto out;
0478     }
0479 out:
0480     return rc;
0481 }
0482 
0483 static int
0484 ecryptfs_find_global_auth_tok_for_sig(
0485     struct key **auth_tok_key,
0486     struct ecryptfs_auth_tok **auth_tok,
0487     struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
0488 {
0489     struct ecryptfs_global_auth_tok *walker;
0490     int rc = 0;
0491 
0492     (*auth_tok_key) = NULL;
0493     (*auth_tok) = NULL;
0494     mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
0495     list_for_each_entry(walker,
0496                 &mount_crypt_stat->global_auth_tok_list,
0497                 mount_crypt_stat_list) {
0498         if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
0499             continue;
0500 
0501         if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
0502             rc = -EINVAL;
0503             goto out;
0504         }
0505 
0506         rc = key_validate(walker->global_auth_tok_key);
0507         if (rc) {
0508             if (rc == -EKEYEXPIRED)
0509                 goto out;
0510             goto out_invalid_auth_tok;
0511         }
0512 
0513         down_write(&(walker->global_auth_tok_key->sem));
0514         rc = ecryptfs_verify_auth_tok_from_key(
0515                 walker->global_auth_tok_key, auth_tok);
0516         if (rc)
0517             goto out_invalid_auth_tok_unlock;
0518 
0519         (*auth_tok_key) = walker->global_auth_tok_key;
0520         key_get(*auth_tok_key);
0521         goto out;
0522     }
0523     rc = -ENOENT;
0524     goto out;
0525 out_invalid_auth_tok_unlock:
0526     up_write(&(walker->global_auth_tok_key->sem));
0527 out_invalid_auth_tok:
0528     printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
0529     walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
0530     key_put(walker->global_auth_tok_key);
0531     walker->global_auth_tok_key = NULL;
0532 out:
0533     mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
0534     return rc;
0535 }
0536 
0537 /**
0538  * ecryptfs_find_auth_tok_for_sig
0539  * @auth_tok_key: key containing the authentication token
0540  * @auth_tok: Set to the matching auth_tok; NULL if not found
0541  * @mount_crypt_stat: inode crypt_stat crypto context
0542  * @sig: Sig of auth_tok to find
0543  *
0544  * For now, this function simply looks at the registered auth_tok's
0545  * linked off the mount_crypt_stat, so all the auth_toks that can be
0546  * used must be registered at mount time. This function could
0547  * potentially try a lot harder to find auth_tok's (e.g., by calling
0548  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
0549  * that static registration of auth_tok's will no longer be necessary.
0550  *
0551  * Returns zero on no error; non-zero on error
0552  */
0553 static int
0554 ecryptfs_find_auth_tok_for_sig(
0555     struct key **auth_tok_key,
0556     struct ecryptfs_auth_tok **auth_tok,
0557     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
0558     char *sig)
0559 {
0560     int rc = 0;
0561 
0562     rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
0563                            mount_crypt_stat, sig);
0564     if (rc == -ENOENT) {
0565         /* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
0566          * mount_crypt_stat structure, we prevent to use auth toks that
0567          * are not inserted through the ecryptfs_add_global_auth_tok
0568          * function.
0569          */
0570         if (mount_crypt_stat->flags
0571                 & ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
0572             return -EINVAL;
0573 
0574         rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
0575                                sig);
0576     }
0577     return rc;
0578 }
0579 
0580 /*
0581  * write_tag_70_packet can gobble a lot of stack space. We stuff most
0582  * of the function's parameters in a kmalloc'd struct to help reduce
0583  * eCryptfs' overall stack usage.
0584  */
0585 struct ecryptfs_write_tag_70_packet_silly_stack {
0586     u8 cipher_code;
0587     size_t max_packet_size;
0588     size_t packet_size_len;
0589     size_t block_aligned_filename_size;
0590     size_t block_size;
0591     size_t i;
0592     size_t j;
0593     size_t num_rand_bytes;
0594     struct mutex *tfm_mutex;
0595     char *block_aligned_filename;
0596     struct ecryptfs_auth_tok *auth_tok;
0597     struct scatterlist src_sg[2];
0598     struct scatterlist dst_sg[2];
0599     struct crypto_skcipher *skcipher_tfm;
0600     struct skcipher_request *skcipher_req;
0601     char iv[ECRYPTFS_MAX_IV_BYTES];
0602     char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
0603     char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
0604     struct crypto_shash *hash_tfm;
0605     struct shash_desc *hash_desc;
0606 };
0607 
0608 /*
0609  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
0610  * @filename: NULL-terminated filename string
0611  *
0612  * This is the simplest mechanism for achieving filename encryption in
0613  * eCryptfs. It encrypts the given filename with the mount-wide
0614  * filename encryption key (FNEK) and stores it in a packet to @dest,
0615  * which the callee will encode and write directly into the dentry
0616  * name.
0617  */
0618 int
0619 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
0620                  size_t *packet_size,
0621                  struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
0622                  char *filename, size_t filename_size)
0623 {
0624     struct ecryptfs_write_tag_70_packet_silly_stack *s;
0625     struct key *auth_tok_key = NULL;
0626     int rc = 0;
0627 
0628     s = kzalloc(sizeof(*s), GFP_KERNEL);
0629     if (!s)
0630         return -ENOMEM;
0631 
0632     (*packet_size) = 0;
0633     rc = ecryptfs_find_auth_tok_for_sig(
0634         &auth_tok_key,
0635         &s->auth_tok, mount_crypt_stat,
0636         mount_crypt_stat->global_default_fnek_sig);
0637     if (rc) {
0638         printk(KERN_ERR "%s: Error attempting to find auth tok for "
0639                "fnek sig [%s]; rc = [%d]\n", __func__,
0640                mount_crypt_stat->global_default_fnek_sig, rc);
0641         goto out;
0642     }
0643     rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
0644         &s->skcipher_tfm,
0645         &s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
0646     if (unlikely(rc)) {
0647         printk(KERN_ERR "Internal error whilst attempting to get "
0648                "tfm and mutex for cipher name [%s]; rc = [%d]\n",
0649                mount_crypt_stat->global_default_fn_cipher_name, rc);
0650         goto out;
0651     }
0652     mutex_lock(s->tfm_mutex);
0653     s->block_size = crypto_skcipher_blocksize(s->skcipher_tfm);
0654     /* Plus one for the \0 separator between the random prefix
0655      * and the plaintext filename */
0656     s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
0657     s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
0658     if ((s->block_aligned_filename_size % s->block_size) != 0) {
0659         s->num_rand_bytes += (s->block_size
0660                       - (s->block_aligned_filename_size
0661                      % s->block_size));
0662         s->block_aligned_filename_size = (s->num_rand_bytes
0663                           + filename_size);
0664     }
0665     /* Octet 0: Tag 70 identifier
0666      * Octets 1-N1: Tag 70 packet size (includes cipher identifier
0667      *              and block-aligned encrypted filename size)
0668      * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
0669      * Octet N2-N3: Cipher identifier (1 octet)
0670      * Octets N3-N4: Block-aligned encrypted filename
0671      *  - Consists of a minimum number of random characters, a \0
0672      *    separator, and then the filename */
0673     s->max_packet_size = (ECRYPTFS_TAG_70_MAX_METADATA_SIZE
0674                   + s->block_aligned_filename_size);
0675     if (!dest) {
0676         (*packet_size) = s->max_packet_size;
0677         goto out_unlock;
0678     }
0679     if (s->max_packet_size > (*remaining_bytes)) {
0680         printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
0681                "[%zd] available\n", __func__, s->max_packet_size,
0682                (*remaining_bytes));
0683         rc = -EINVAL;
0684         goto out_unlock;
0685     }
0686 
0687     s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
0688     if (!s->skcipher_req) {
0689         printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
0690                "skcipher_request_alloc for %s\n", __func__,
0691                crypto_skcipher_driver_name(s->skcipher_tfm));
0692         rc = -ENOMEM;
0693         goto out_unlock;
0694     }
0695 
0696     skcipher_request_set_callback(s->skcipher_req,
0697                       CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
0698 
0699     s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
0700                         GFP_KERNEL);
0701     if (!s->block_aligned_filename) {
0702         rc = -ENOMEM;
0703         goto out_unlock;
0704     }
0705     dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
0706     rc = ecryptfs_write_packet_length(&dest[s->i],
0707                       (ECRYPTFS_SIG_SIZE
0708                        + 1 /* Cipher code */
0709                        + s->block_aligned_filename_size),
0710                       &s->packet_size_len);
0711     if (rc) {
0712         printk(KERN_ERR "%s: Error generating tag 70 packet "
0713                "header; cannot generate packet length; rc = [%d]\n",
0714                __func__, rc);
0715         goto out_free_unlock;
0716     }
0717     s->i += s->packet_size_len;
0718     ecryptfs_from_hex(&dest[s->i],
0719               mount_crypt_stat->global_default_fnek_sig,
0720               ECRYPTFS_SIG_SIZE);
0721     s->i += ECRYPTFS_SIG_SIZE;
0722     s->cipher_code = ecryptfs_code_for_cipher_string(
0723         mount_crypt_stat->global_default_fn_cipher_name,
0724         mount_crypt_stat->global_default_fn_cipher_key_bytes);
0725     if (s->cipher_code == 0) {
0726         printk(KERN_WARNING "%s: Unable to generate code for "
0727                "cipher [%s] with key bytes [%zd]\n", __func__,
0728                mount_crypt_stat->global_default_fn_cipher_name,
0729                mount_crypt_stat->global_default_fn_cipher_key_bytes);
0730         rc = -EINVAL;
0731         goto out_free_unlock;
0732     }
0733     dest[s->i++] = s->cipher_code;
0734     /* TODO: Support other key modules than passphrase for
0735      * filename encryption */
0736     if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
0737         rc = -EOPNOTSUPP;
0738         printk(KERN_INFO "%s: Filename encryption only supports "
0739                "password tokens\n", __func__);
0740         goto out_free_unlock;
0741     }
0742     s->hash_tfm = crypto_alloc_shash(ECRYPTFS_TAG_70_DIGEST, 0, 0);
0743     if (IS_ERR(s->hash_tfm)) {
0744             rc = PTR_ERR(s->hash_tfm);
0745             printk(KERN_ERR "%s: Error attempting to "
0746                    "allocate hash crypto context; rc = [%d]\n",
0747                    __func__, rc);
0748             goto out_free_unlock;
0749     }
0750 
0751     s->hash_desc = kmalloc(sizeof(*s->hash_desc) +
0752                    crypto_shash_descsize(s->hash_tfm), GFP_KERNEL);
0753     if (!s->hash_desc) {
0754         rc = -ENOMEM;
0755         goto out_release_free_unlock;
0756     }
0757 
0758     s->hash_desc->tfm = s->hash_tfm;
0759 
0760     rc = crypto_shash_digest(s->hash_desc,
0761                  (u8 *)s->auth_tok->token.password.session_key_encryption_key,
0762                  s->auth_tok->token.password.session_key_encryption_key_bytes,
0763                  s->hash);
0764     if (rc) {
0765         printk(KERN_ERR
0766                "%s: Error computing crypto hash; rc = [%d]\n",
0767                __func__, rc);
0768         goto out_release_free_unlock;
0769     }
0770     for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
0771         s->block_aligned_filename[s->j] =
0772             s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
0773         if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
0774             == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
0775             rc = crypto_shash_digest(s->hash_desc, (u8 *)s->hash,
0776                         ECRYPTFS_TAG_70_DIGEST_SIZE,
0777                         s->tmp_hash);
0778             if (rc) {
0779                 printk(KERN_ERR
0780                        "%s: Error computing crypto hash; "
0781                        "rc = [%d]\n", __func__, rc);
0782                 goto out_release_free_unlock;
0783             }
0784             memcpy(s->hash, s->tmp_hash,
0785                    ECRYPTFS_TAG_70_DIGEST_SIZE);
0786         }
0787         if (s->block_aligned_filename[s->j] == '\0')
0788             s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
0789     }
0790     memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
0791            filename_size);
0792     rc = virt_to_scatterlist(s->block_aligned_filename,
0793                  s->block_aligned_filename_size, s->src_sg, 2);
0794     if (rc < 1) {
0795         printk(KERN_ERR "%s: Internal error whilst attempting to "
0796                "convert filename memory to scatterlist; rc = [%d]. "
0797                "block_aligned_filename_size = [%zd]\n", __func__, rc,
0798                s->block_aligned_filename_size);
0799         goto out_release_free_unlock;
0800     }
0801     rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
0802                  s->dst_sg, 2);
0803     if (rc < 1) {
0804         printk(KERN_ERR "%s: Internal error whilst attempting to "
0805                "convert encrypted filename memory to scatterlist; "
0806                "rc = [%d]. block_aligned_filename_size = [%zd]\n",
0807                __func__, rc, s->block_aligned_filename_size);
0808         goto out_release_free_unlock;
0809     }
0810     /* The characters in the first block effectively do the job
0811      * of the IV here, so we just use 0's for the IV. Note the
0812      * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
0813      * >= ECRYPTFS_MAX_IV_BYTES. */
0814     rc = crypto_skcipher_setkey(
0815         s->skcipher_tfm,
0816         s->auth_tok->token.password.session_key_encryption_key,
0817         mount_crypt_stat->global_default_fn_cipher_key_bytes);
0818     if (rc < 0) {
0819         printk(KERN_ERR "%s: Error setting key for crypto context; "
0820                "rc = [%d]. s->auth_tok->token.password.session_key_"
0821                "encryption_key = [0x%p]; mount_crypt_stat->"
0822                "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
0823                rc,
0824                s->auth_tok->token.password.session_key_encryption_key,
0825                mount_crypt_stat->global_default_fn_cipher_key_bytes);
0826         goto out_release_free_unlock;
0827     }
0828     skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
0829                    s->block_aligned_filename_size, s->iv);
0830     rc = crypto_skcipher_encrypt(s->skcipher_req);
0831     if (rc) {
0832         printk(KERN_ERR "%s: Error attempting to encrypt filename; "
0833                "rc = [%d]\n", __func__, rc);
0834         goto out_release_free_unlock;
0835     }
0836     s->i += s->block_aligned_filename_size;
0837     (*packet_size) = s->i;
0838     (*remaining_bytes) -= (*packet_size);
0839 out_release_free_unlock:
0840     crypto_free_shash(s->hash_tfm);
0841 out_free_unlock:
0842     kfree_sensitive(s->block_aligned_filename);
0843 out_unlock:
0844     mutex_unlock(s->tfm_mutex);
0845 out:
0846     if (auth_tok_key) {
0847         up_write(&(auth_tok_key->sem));
0848         key_put(auth_tok_key);
0849     }
0850     skcipher_request_free(s->skcipher_req);
0851     kfree_sensitive(s->hash_desc);
0852     kfree(s);
0853     return rc;
0854 }
0855 
0856 struct ecryptfs_parse_tag_70_packet_silly_stack {
0857     u8 cipher_code;
0858     size_t max_packet_size;
0859     size_t packet_size_len;
0860     size_t parsed_tag_70_packet_size;
0861     size_t block_aligned_filename_size;
0862     size_t block_size;
0863     size_t i;
0864     struct mutex *tfm_mutex;
0865     char *decrypted_filename;
0866     struct ecryptfs_auth_tok *auth_tok;
0867     struct scatterlist src_sg[2];
0868     struct scatterlist dst_sg[2];
0869     struct crypto_skcipher *skcipher_tfm;
0870     struct skcipher_request *skcipher_req;
0871     char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
0872     char iv[ECRYPTFS_MAX_IV_BYTES];
0873     char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE + 1];
0874 };
0875 
0876 /**
0877  * ecryptfs_parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
0878  * @filename: This function kmalloc's the memory for the filename
0879  * @filename_size: This function sets this to the amount of memory
0880  *                 kmalloc'd for the filename
0881  * @packet_size: This function sets this to the the number of octets
0882  *               in the packet parsed
0883  * @mount_crypt_stat: The mount-wide cryptographic context
0884  * @data: The memory location containing the start of the tag 70
0885  *        packet
0886  * @max_packet_size: The maximum legal size of the packet to be parsed
0887  *                   from @data
0888  *
0889  * Returns zero on success; non-zero otherwise
0890  */
0891 int
0892 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
0893                  size_t *packet_size,
0894                  struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
0895                  char *data, size_t max_packet_size)
0896 {
0897     struct ecryptfs_parse_tag_70_packet_silly_stack *s;
0898     struct key *auth_tok_key = NULL;
0899     int rc = 0;
0900 
0901     (*packet_size) = 0;
0902     (*filename_size) = 0;
0903     (*filename) = NULL;
0904     s = kzalloc(sizeof(*s), GFP_KERNEL);
0905     if (!s)
0906         return -ENOMEM;
0907 
0908     if (max_packet_size < ECRYPTFS_TAG_70_MIN_METADATA_SIZE) {
0909         printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
0910                "at least [%d]\n", __func__, max_packet_size,
0911                ECRYPTFS_TAG_70_MIN_METADATA_SIZE);
0912         rc = -EINVAL;
0913         goto out;
0914     }
0915     /* Octet 0: Tag 70 identifier
0916      * Octets 1-N1: Tag 70 packet size (includes cipher identifier
0917      *              and block-aligned encrypted filename size)
0918      * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
0919      * Octet N2-N3: Cipher identifier (1 octet)
0920      * Octets N3-N4: Block-aligned encrypted filename
0921      *  - Consists of a minimum number of random numbers, a \0
0922      *    separator, and then the filename */
0923     if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
0924         printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
0925                "tag [0x%.2x]\n", __func__,
0926                data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
0927         rc = -EINVAL;
0928         goto out;
0929     }
0930     rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
0931                       &s->parsed_tag_70_packet_size,
0932                       &s->packet_size_len);
0933     if (rc) {
0934         printk(KERN_WARNING "%s: Error parsing packet length; "
0935                "rc = [%d]\n", __func__, rc);
0936         goto out;
0937     }
0938     s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
0939                       - ECRYPTFS_SIG_SIZE - 1);
0940     if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
0941         > max_packet_size) {
0942         printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
0943                "size is [%zd]\n", __func__, max_packet_size,
0944                (1 + s->packet_size_len + 1
0945             + s->block_aligned_filename_size));
0946         rc = -EINVAL;
0947         goto out;
0948     }
0949     (*packet_size) += s->packet_size_len;
0950     ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
0951             ECRYPTFS_SIG_SIZE);
0952     s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
0953     (*packet_size) += ECRYPTFS_SIG_SIZE;
0954     s->cipher_code = data[(*packet_size)++];
0955     rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
0956     if (rc) {
0957         printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
0958                __func__, s->cipher_code);
0959         goto out;
0960     }
0961     rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
0962                         &s->auth_tok, mount_crypt_stat,
0963                         s->fnek_sig_hex);
0964     if (rc) {
0965         printk(KERN_ERR "%s: Error attempting to find auth tok for "
0966                "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
0967                rc);
0968         goto out;
0969     }
0970     rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->skcipher_tfm,
0971                             &s->tfm_mutex,
0972                             s->cipher_string);
0973     if (unlikely(rc)) {
0974         printk(KERN_ERR "Internal error whilst attempting to get "
0975                "tfm and mutex for cipher name [%s]; rc = [%d]\n",
0976                s->cipher_string, rc);
0977         goto out;
0978     }
0979     mutex_lock(s->tfm_mutex);
0980     rc = virt_to_scatterlist(&data[(*packet_size)],
0981                  s->block_aligned_filename_size, s->src_sg, 2);
0982     if (rc < 1) {
0983         printk(KERN_ERR "%s: Internal error whilst attempting to "
0984                "convert encrypted filename memory to scatterlist; "
0985                "rc = [%d]. block_aligned_filename_size = [%zd]\n",
0986                __func__, rc, s->block_aligned_filename_size);
0987         goto out_unlock;
0988     }
0989     (*packet_size) += s->block_aligned_filename_size;
0990     s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
0991                     GFP_KERNEL);
0992     if (!s->decrypted_filename) {
0993         rc = -ENOMEM;
0994         goto out_unlock;
0995     }
0996     rc = virt_to_scatterlist(s->decrypted_filename,
0997                  s->block_aligned_filename_size, s->dst_sg, 2);
0998     if (rc < 1) {
0999         printk(KERN_ERR "%s: Internal error whilst attempting to "
1000                "convert decrypted filename memory to scatterlist; "
1001                "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1002                __func__, rc, s->block_aligned_filename_size);
1003         goto out_free_unlock;
1004     }
1005 
1006     s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
1007     if (!s->skcipher_req) {
1008         printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1009                "skcipher_request_alloc for %s\n", __func__,
1010                crypto_skcipher_driver_name(s->skcipher_tfm));
1011         rc = -ENOMEM;
1012         goto out_free_unlock;
1013     }
1014 
1015     skcipher_request_set_callback(s->skcipher_req,
1016                       CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
1017 
1018     /* The characters in the first block effectively do the job of
1019      * the IV here, so we just use 0's for the IV. Note the
1020      * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1021      * >= ECRYPTFS_MAX_IV_BYTES. */
1022     /* TODO: Support other key modules than passphrase for
1023      * filename encryption */
1024     if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1025         rc = -EOPNOTSUPP;
1026         printk(KERN_INFO "%s: Filename encryption only supports "
1027                "password tokens\n", __func__);
1028         goto out_free_unlock;
1029     }
1030     rc = crypto_skcipher_setkey(
1031         s->skcipher_tfm,
1032         s->auth_tok->token.password.session_key_encryption_key,
1033         mount_crypt_stat->global_default_fn_cipher_key_bytes);
1034     if (rc < 0) {
1035         printk(KERN_ERR "%s: Error setting key for crypto context; "
1036                "rc = [%d]. s->auth_tok->token.password.session_key_"
1037                "encryption_key = [0x%p]; mount_crypt_stat->"
1038                "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1039                rc,
1040                s->auth_tok->token.password.session_key_encryption_key,
1041                mount_crypt_stat->global_default_fn_cipher_key_bytes);
1042         goto out_free_unlock;
1043     }
1044     skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
1045                    s->block_aligned_filename_size, s->iv);
1046     rc = crypto_skcipher_decrypt(s->skcipher_req);
1047     if (rc) {
1048         printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1049                "rc = [%d]\n", __func__, rc);
1050         goto out_free_unlock;
1051     }
1052 
1053     while (s->i < s->block_aligned_filename_size &&
1054            s->decrypted_filename[s->i] != '\0')
1055         s->i++;
1056     if (s->i == s->block_aligned_filename_size) {
1057         printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1058                "find valid separator between random characters and "
1059                "the filename\n", __func__);
1060         rc = -EINVAL;
1061         goto out_free_unlock;
1062     }
1063     s->i++;
1064     (*filename_size) = (s->block_aligned_filename_size - s->i);
1065     if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1066         printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1067                "invalid\n", __func__, (*filename_size));
1068         rc = -EINVAL;
1069         goto out_free_unlock;
1070     }
1071     (*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1072     if (!(*filename)) {
1073         rc = -ENOMEM;
1074         goto out_free_unlock;
1075     }
1076     memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1077     (*filename)[(*filename_size)] = '\0';
1078 out_free_unlock:
1079     kfree(s->decrypted_filename);
1080 out_unlock:
1081     mutex_unlock(s->tfm_mutex);
1082 out:
1083     if (rc) {
1084         (*packet_size) = 0;
1085         (*filename_size) = 0;
1086         (*filename) = NULL;
1087     }
1088     if (auth_tok_key) {
1089         up_write(&(auth_tok_key->sem));
1090         key_put(auth_tok_key);
1091     }
1092     skcipher_request_free(s->skcipher_req);
1093     kfree(s);
1094     return rc;
1095 }
1096 
1097 static int
1098 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1099 {
1100     int rc = 0;
1101 
1102     (*sig) = NULL;
1103     switch (auth_tok->token_type) {
1104     case ECRYPTFS_PASSWORD:
1105         (*sig) = auth_tok->token.password.signature;
1106         break;
1107     case ECRYPTFS_PRIVATE_KEY:
1108         (*sig) = auth_tok->token.private_key.signature;
1109         break;
1110     default:
1111         printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1112                auth_tok->token_type);
1113         rc = -EINVAL;
1114     }
1115     return rc;
1116 }
1117 
1118 /**
1119  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1120  * @auth_tok: The key authentication token used to decrypt the session key
1121  * @crypt_stat: The cryptographic context
1122  *
1123  * Returns zero on success; non-zero error otherwise.
1124  */
1125 static int
1126 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1127                   struct ecryptfs_crypt_stat *crypt_stat)
1128 {
1129     u8 cipher_code = 0;
1130     struct ecryptfs_msg_ctx *msg_ctx;
1131     struct ecryptfs_message *msg = NULL;
1132     char *auth_tok_sig;
1133     char *payload = NULL;
1134     size_t payload_len = 0;
1135     int rc;
1136 
1137     rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1138     if (rc) {
1139         printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1140                auth_tok->token_type);
1141         goto out;
1142     }
1143     rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1144                  &payload, &payload_len);
1145     if (rc) {
1146         ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1147         goto out;
1148     }
1149     rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1150     if (rc) {
1151         ecryptfs_printk(KERN_ERR, "Error sending message to "
1152                 "ecryptfsd: %d\n", rc);
1153         goto out;
1154     }
1155     rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1156     if (rc) {
1157         ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1158                 "from the user space daemon\n");
1159         rc = -EIO;
1160         goto out;
1161     }
1162     rc = parse_tag_65_packet(&(auth_tok->session_key),
1163                  &cipher_code, msg);
1164     if (rc) {
1165         printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1166                rc);
1167         goto out;
1168     }
1169     auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1170     memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1171            auth_tok->session_key.decrypted_key_size);
1172     crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1173     rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1174     if (rc) {
1175         ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1176                 cipher_code);
1177         goto out;
1178     }
1179     crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1180     if (ecryptfs_verbosity > 0) {
1181         ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1182         ecryptfs_dump_hex(crypt_stat->key,
1183                   crypt_stat->key_size);
1184     }
1185 out:
1186     kfree(msg);
1187     kfree(payload);
1188     return rc;
1189 }
1190 
1191 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1192 {
1193     struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1194     struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1195 
1196     list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1197                  auth_tok_list_head, list) {
1198         list_del(&auth_tok_list_item->list);
1199         kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1200                 auth_tok_list_item);
1201     }
1202 }
1203 
1204 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1205 
1206 /**
1207  * parse_tag_1_packet
1208  * @crypt_stat: The cryptographic context to modify based on packet contents
1209  * @data: The raw bytes of the packet.
1210  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1211  *                 a new authentication token will be placed at the
1212  *                 end of this list for this packet.
1213  * @new_auth_tok: Pointer to a pointer to memory that this function
1214  *                allocates; sets the memory address of the pointer to
1215  *                NULL on error. This object is added to the
1216  *                auth_tok_list.
1217  * @packet_size: This function writes the size of the parsed packet
1218  *               into this memory location; zero on error.
1219  * @max_packet_size: The maximum allowable packet size
1220  *
1221  * Returns zero on success; non-zero on error.
1222  */
1223 static int
1224 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1225            unsigned char *data, struct list_head *auth_tok_list,
1226            struct ecryptfs_auth_tok **new_auth_tok,
1227            size_t *packet_size, size_t max_packet_size)
1228 {
1229     size_t body_size;
1230     struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1231     size_t length_size;
1232     int rc = 0;
1233 
1234     (*packet_size) = 0;
1235     (*new_auth_tok) = NULL;
1236     /**
1237      * This format is inspired by OpenPGP; see RFC 2440
1238      * packet tag 1
1239      *
1240      * Tag 1 identifier (1 byte)
1241      * Max Tag 1 packet size (max 3 bytes)
1242      * Version (1 byte)
1243      * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1244      * Cipher identifier (1 byte)
1245      * Encrypted key size (arbitrary)
1246      *
1247      * 12 bytes minimum packet size
1248      */
1249     if (unlikely(max_packet_size < 12)) {
1250         printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1251         rc = -EINVAL;
1252         goto out;
1253     }
1254     if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1255         printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1256                ECRYPTFS_TAG_1_PACKET_TYPE);
1257         rc = -EINVAL;
1258         goto out;
1259     }
1260     /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1261      * at end of function upon failure */
1262     auth_tok_list_item =
1263         kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1264                   GFP_KERNEL);
1265     if (!auth_tok_list_item) {
1266         printk(KERN_ERR "Unable to allocate memory\n");
1267         rc = -ENOMEM;
1268         goto out;
1269     }
1270     (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1271     rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1272                       &length_size);
1273     if (rc) {
1274         printk(KERN_WARNING "Error parsing packet length; "
1275                "rc = [%d]\n", rc);
1276         goto out_free;
1277     }
1278     if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1279         printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1280         rc = -EINVAL;
1281         goto out_free;
1282     }
1283     (*packet_size) += length_size;
1284     if (unlikely((*packet_size) + body_size > max_packet_size)) {
1285         printk(KERN_WARNING "Packet size exceeds max\n");
1286         rc = -EINVAL;
1287         goto out_free;
1288     }
1289     if (unlikely(data[(*packet_size)++] != 0x03)) {
1290         printk(KERN_WARNING "Unknown version number [%d]\n",
1291                data[(*packet_size) - 1]);
1292         rc = -EINVAL;
1293         goto out_free;
1294     }
1295     ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1296             &data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1297     *packet_size += ECRYPTFS_SIG_SIZE;
1298     /* This byte is skipped because the kernel does not need to
1299      * know which public key encryption algorithm was used */
1300     (*packet_size)++;
1301     (*new_auth_tok)->session_key.encrypted_key_size =
1302         body_size - (ECRYPTFS_SIG_SIZE + 2);
1303     if ((*new_auth_tok)->session_key.encrypted_key_size
1304         > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1305         printk(KERN_WARNING "Tag 1 packet contains key larger "
1306                "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1307         rc = -EINVAL;
1308         goto out_free;
1309     }
1310     memcpy((*new_auth_tok)->session_key.encrypted_key,
1311            &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1312     (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1313     (*new_auth_tok)->session_key.flags &=
1314         ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1315     (*new_auth_tok)->session_key.flags |=
1316         ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1317     (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1318     (*new_auth_tok)->flags = 0;
1319     (*new_auth_tok)->session_key.flags &=
1320         ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1321     (*new_auth_tok)->session_key.flags &=
1322         ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1323     list_add(&auth_tok_list_item->list, auth_tok_list);
1324     goto out;
1325 out_free:
1326     (*new_auth_tok) = NULL;
1327     memset(auth_tok_list_item, 0,
1328            sizeof(struct ecryptfs_auth_tok_list_item));
1329     kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1330             auth_tok_list_item);
1331 out:
1332     if (rc)
1333         (*packet_size) = 0;
1334     return rc;
1335 }
1336 
1337 /**
1338  * parse_tag_3_packet
1339  * @crypt_stat: The cryptographic context to modify based on packet
1340  *              contents.
1341  * @data: The raw bytes of the packet.
1342  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1343  *                 a new authentication token will be placed at the end
1344  *                 of this list for this packet.
1345  * @new_auth_tok: Pointer to a pointer to memory that this function
1346  *                allocates; sets the memory address of the pointer to
1347  *                NULL on error. This object is added to the
1348  *                auth_tok_list.
1349  * @packet_size: This function writes the size of the parsed packet
1350  *               into this memory location; zero on error.
1351  * @max_packet_size: maximum number of bytes to parse
1352  *
1353  * Returns zero on success; non-zero on error.
1354  */
1355 static int
1356 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1357            unsigned char *data, struct list_head *auth_tok_list,
1358            struct ecryptfs_auth_tok **new_auth_tok,
1359            size_t *packet_size, size_t max_packet_size)
1360 {
1361     size_t body_size;
1362     struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1363     size_t length_size;
1364     int rc = 0;
1365 
1366     (*packet_size) = 0;
1367     (*new_auth_tok) = NULL;
1368     /**
1369      *This format is inspired by OpenPGP; see RFC 2440
1370      * packet tag 3
1371      *
1372      * Tag 3 identifier (1 byte)
1373      * Max Tag 3 packet size (max 3 bytes)
1374      * Version (1 byte)
1375      * Cipher code (1 byte)
1376      * S2K specifier (1 byte)
1377      * Hash identifier (1 byte)
1378      * Salt (ECRYPTFS_SALT_SIZE)
1379      * Hash iterations (1 byte)
1380      * Encrypted key (arbitrary)
1381      *
1382      * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1383      */
1384     if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1385         printk(KERN_ERR "Max packet size too large\n");
1386         rc = -EINVAL;
1387         goto out;
1388     }
1389     if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1390         printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1391                ECRYPTFS_TAG_3_PACKET_TYPE);
1392         rc = -EINVAL;
1393         goto out;
1394     }
1395     /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1396      * at end of function upon failure */
1397     auth_tok_list_item =
1398         kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1399     if (!auth_tok_list_item) {
1400         printk(KERN_ERR "Unable to allocate memory\n");
1401         rc = -ENOMEM;
1402         goto out;
1403     }
1404     (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1405     rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1406                       &length_size);
1407     if (rc) {
1408         printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1409                rc);
1410         goto out_free;
1411     }
1412     if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1413         printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1414         rc = -EINVAL;
1415         goto out_free;
1416     }
1417     (*packet_size) += length_size;
1418     if (unlikely((*packet_size) + body_size > max_packet_size)) {
1419         printk(KERN_ERR "Packet size exceeds max\n");
1420         rc = -EINVAL;
1421         goto out_free;
1422     }
1423     (*new_auth_tok)->session_key.encrypted_key_size =
1424         (body_size - (ECRYPTFS_SALT_SIZE + 5));
1425     if ((*new_auth_tok)->session_key.encrypted_key_size
1426         > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1427         printk(KERN_WARNING "Tag 3 packet contains key larger "
1428                "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1429         rc = -EINVAL;
1430         goto out_free;
1431     }
1432     if (unlikely(data[(*packet_size)++] != 0x04)) {
1433         printk(KERN_WARNING "Unknown version number [%d]\n",
1434                data[(*packet_size) - 1]);
1435         rc = -EINVAL;
1436         goto out_free;
1437     }
1438     rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1439                         (u16)data[(*packet_size)]);
1440     if (rc)
1441         goto out_free;
1442     /* A little extra work to differentiate among the AES key
1443      * sizes; see RFC2440 */
1444     switch(data[(*packet_size)++]) {
1445     case RFC2440_CIPHER_AES_192:
1446         crypt_stat->key_size = 24;
1447         break;
1448     default:
1449         crypt_stat->key_size =
1450             (*new_auth_tok)->session_key.encrypted_key_size;
1451     }
1452     rc = ecryptfs_init_crypt_ctx(crypt_stat);
1453     if (rc)
1454         goto out_free;
1455     if (unlikely(data[(*packet_size)++] != 0x03)) {
1456         printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1457         rc = -ENOSYS;
1458         goto out_free;
1459     }
1460     /* TODO: finish the hash mapping */
1461     switch (data[(*packet_size)++]) {
1462     case 0x01: /* See RFC2440 for these numbers and their mappings */
1463         /* Choose MD5 */
1464         memcpy((*new_auth_tok)->token.password.salt,
1465                &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1466         (*packet_size) += ECRYPTFS_SALT_SIZE;
1467         /* This conversion was taken straight from RFC2440 */
1468         (*new_auth_tok)->token.password.hash_iterations =
1469             ((u32) 16 + (data[(*packet_size)] & 15))
1470                 << ((data[(*packet_size)] >> 4) + 6);
1471         (*packet_size)++;
1472         /* Friendly reminder:
1473          * (*new_auth_tok)->session_key.encrypted_key_size =
1474          *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1475         memcpy((*new_auth_tok)->session_key.encrypted_key,
1476                &data[(*packet_size)],
1477                (*new_auth_tok)->session_key.encrypted_key_size);
1478         (*packet_size) +=
1479             (*new_auth_tok)->session_key.encrypted_key_size;
1480         (*new_auth_tok)->session_key.flags &=
1481             ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1482         (*new_auth_tok)->session_key.flags |=
1483             ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1484         (*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1485         break;
1486     default:
1487         ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1488                 "[%d]\n", data[(*packet_size) - 1]);
1489         rc = -ENOSYS;
1490         goto out_free;
1491     }
1492     (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1493     /* TODO: Parametarize; we might actually want userspace to
1494      * decrypt the session key. */
1495     (*new_auth_tok)->session_key.flags &=
1496                 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1497     (*new_auth_tok)->session_key.flags &=
1498                 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1499     list_add(&auth_tok_list_item->list, auth_tok_list);
1500     goto out;
1501 out_free:
1502     (*new_auth_tok) = NULL;
1503     memset(auth_tok_list_item, 0,
1504            sizeof(struct ecryptfs_auth_tok_list_item));
1505     kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1506             auth_tok_list_item);
1507 out:
1508     if (rc)
1509         (*packet_size) = 0;
1510     return rc;
1511 }
1512 
1513 /**
1514  * parse_tag_11_packet
1515  * @data: The raw bytes of the packet
1516  * @contents: This function writes the data contents of the literal
1517  *            packet into this memory location
1518  * @max_contents_bytes: The maximum number of bytes that this function
1519  *                      is allowed to write into contents
1520  * @tag_11_contents_size: This function writes the size of the parsed
1521  *                        contents into this memory location; zero on
1522  *                        error
1523  * @packet_size: This function writes the size of the parsed packet
1524  *               into this memory location; zero on error
1525  * @max_packet_size: maximum number of bytes to parse
1526  *
1527  * Returns zero on success; non-zero on error.
1528  */
1529 static int
1530 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1531             size_t max_contents_bytes, size_t *tag_11_contents_size,
1532             size_t *packet_size, size_t max_packet_size)
1533 {
1534     size_t body_size;
1535     size_t length_size;
1536     int rc = 0;
1537 
1538     (*packet_size) = 0;
1539     (*tag_11_contents_size) = 0;
1540     /* This format is inspired by OpenPGP; see RFC 2440
1541      * packet tag 11
1542      *
1543      * Tag 11 identifier (1 byte)
1544      * Max Tag 11 packet size (max 3 bytes)
1545      * Binary format specifier (1 byte)
1546      * Filename length (1 byte)
1547      * Filename ("_CONSOLE") (8 bytes)
1548      * Modification date (4 bytes)
1549      * Literal data (arbitrary)
1550      *
1551      * We need at least 16 bytes of data for the packet to even be
1552      * valid.
1553      */
1554     if (max_packet_size < 16) {
1555         printk(KERN_ERR "Maximum packet size too small\n");
1556         rc = -EINVAL;
1557         goto out;
1558     }
1559     if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1560         printk(KERN_WARNING "Invalid tag 11 packet format\n");
1561         rc = -EINVAL;
1562         goto out;
1563     }
1564     rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1565                       &length_size);
1566     if (rc) {
1567         printk(KERN_WARNING "Invalid tag 11 packet format\n");
1568         goto out;
1569     }
1570     if (body_size < 14) {
1571         printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1572         rc = -EINVAL;
1573         goto out;
1574     }
1575     (*packet_size) += length_size;
1576     (*tag_11_contents_size) = (body_size - 14);
1577     if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1578         printk(KERN_ERR "Packet size exceeds max\n");
1579         rc = -EINVAL;
1580         goto out;
1581     }
1582     if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1583         printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1584                "expected size\n");
1585         rc = -EINVAL;
1586         goto out;
1587     }
1588     if (data[(*packet_size)++] != 0x62) {
1589         printk(KERN_WARNING "Unrecognizable packet\n");
1590         rc = -EINVAL;
1591         goto out;
1592     }
1593     if (data[(*packet_size)++] != 0x08) {
1594         printk(KERN_WARNING "Unrecognizable packet\n");
1595         rc = -EINVAL;
1596         goto out;
1597     }
1598     (*packet_size) += 12; /* Ignore filename and modification date */
1599     memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1600     (*packet_size) += (*tag_11_contents_size);
1601 out:
1602     if (rc) {
1603         (*packet_size) = 0;
1604         (*tag_11_contents_size) = 0;
1605     }
1606     return rc;
1607 }
1608 
1609 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1610                       struct ecryptfs_auth_tok **auth_tok,
1611                       char *sig)
1612 {
1613     int rc = 0;
1614 
1615     (*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1616     if (IS_ERR(*auth_tok_key)) {
1617         (*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1618         if (IS_ERR(*auth_tok_key)) {
1619             printk(KERN_ERR "Could not find key with description: [%s]\n",
1620                   sig);
1621             rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1622             (*auth_tok_key) = NULL;
1623             goto out;
1624         }
1625     }
1626     down_write(&(*auth_tok_key)->sem);
1627     rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1628     if (rc) {
1629         up_write(&(*auth_tok_key)->sem);
1630         key_put(*auth_tok_key);
1631         (*auth_tok_key) = NULL;
1632         goto out;
1633     }
1634 out:
1635     return rc;
1636 }
1637 
1638 /**
1639  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1640  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1641  * @crypt_stat: The cryptographic context
1642  *
1643  * Returns zero on success; non-zero error otherwise
1644  */
1645 static int
1646 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1647                      struct ecryptfs_crypt_stat *crypt_stat)
1648 {
1649     struct scatterlist dst_sg[2];
1650     struct scatterlist src_sg[2];
1651     struct mutex *tfm_mutex;
1652     struct crypto_skcipher *tfm;
1653     struct skcipher_request *req = NULL;
1654     int rc = 0;
1655 
1656     if (unlikely(ecryptfs_verbosity > 0)) {
1657         ecryptfs_printk(
1658             KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1659             auth_tok->token.password.session_key_encryption_key_bytes);
1660         ecryptfs_dump_hex(
1661             auth_tok->token.password.session_key_encryption_key,
1662             auth_tok->token.password.session_key_encryption_key_bytes);
1663     }
1664     rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
1665                             crypt_stat->cipher);
1666     if (unlikely(rc)) {
1667         printk(KERN_ERR "Internal error whilst attempting to get "
1668                "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1669                crypt_stat->cipher, rc);
1670         goto out;
1671     }
1672     rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1673                  auth_tok->session_key.encrypted_key_size,
1674                  src_sg, 2);
1675     if (rc < 1 || rc > 2) {
1676         printk(KERN_ERR "Internal error whilst attempting to convert "
1677             "auth_tok->session_key.encrypted_key to scatterlist; "
1678             "expected rc = 1; got rc = [%d]. "
1679                "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1680             auth_tok->session_key.encrypted_key_size);
1681         goto out;
1682     }
1683     auth_tok->session_key.decrypted_key_size =
1684         auth_tok->session_key.encrypted_key_size;
1685     rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1686                  auth_tok->session_key.decrypted_key_size,
1687                  dst_sg, 2);
1688     if (rc < 1 || rc > 2) {
1689         printk(KERN_ERR "Internal error whilst attempting to convert "
1690             "auth_tok->session_key.decrypted_key to scatterlist; "
1691             "expected rc = 1; got rc = [%d]\n", rc);
1692         goto out;
1693     }
1694     mutex_lock(tfm_mutex);
1695     req = skcipher_request_alloc(tfm, GFP_KERNEL);
1696     if (!req) {
1697         mutex_unlock(tfm_mutex);
1698         printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1699                "skcipher_request_alloc for %s\n", __func__,
1700                crypto_skcipher_driver_name(tfm));
1701         rc = -ENOMEM;
1702         goto out;
1703     }
1704 
1705     skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
1706                       NULL, NULL);
1707     rc = crypto_skcipher_setkey(
1708         tfm, auth_tok->token.password.session_key_encryption_key,
1709         crypt_stat->key_size);
1710     if (unlikely(rc < 0)) {
1711         mutex_unlock(tfm_mutex);
1712         printk(KERN_ERR "Error setting key for crypto context\n");
1713         rc = -EINVAL;
1714         goto out;
1715     }
1716     skcipher_request_set_crypt(req, src_sg, dst_sg,
1717                    auth_tok->session_key.encrypted_key_size,
1718                    NULL);
1719     rc = crypto_skcipher_decrypt(req);
1720     mutex_unlock(tfm_mutex);
1721     if (unlikely(rc)) {
1722         printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1723         goto out;
1724     }
1725     auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1726     memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1727            auth_tok->session_key.decrypted_key_size);
1728     crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1729     if (unlikely(ecryptfs_verbosity > 0)) {
1730         ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1731                 crypt_stat->key_size);
1732         ecryptfs_dump_hex(crypt_stat->key,
1733                   crypt_stat->key_size);
1734     }
1735 out:
1736     skcipher_request_free(req);
1737     return rc;
1738 }
1739 
1740 /**
1741  * ecryptfs_parse_packet_set
1742  * @crypt_stat: The cryptographic context
1743  * @src: Virtual address of region of memory containing the packets
1744  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1745  *
1746  * Get crypt_stat to have the file's session key if the requisite key
1747  * is available to decrypt the session key.
1748  *
1749  * Returns Zero if a valid authentication token was retrieved and
1750  * processed; negative value for file not encrypted or for error
1751  * conditions.
1752  */
1753 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1754                   unsigned char *src,
1755                   struct dentry *ecryptfs_dentry)
1756 {
1757     size_t i = 0;
1758     size_t found_auth_tok;
1759     size_t next_packet_is_auth_tok_packet;
1760     struct list_head auth_tok_list;
1761     struct ecryptfs_auth_tok *matching_auth_tok;
1762     struct ecryptfs_auth_tok *candidate_auth_tok;
1763     char *candidate_auth_tok_sig;
1764     size_t packet_size;
1765     struct ecryptfs_auth_tok *new_auth_tok;
1766     unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1767     struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1768     size_t tag_11_contents_size;
1769     size_t tag_11_packet_size;
1770     struct key *auth_tok_key = NULL;
1771     int rc = 0;
1772 
1773     INIT_LIST_HEAD(&auth_tok_list);
1774     /* Parse the header to find as many packets as we can; these will be
1775      * added the our &auth_tok_list */
1776     next_packet_is_auth_tok_packet = 1;
1777     while (next_packet_is_auth_tok_packet) {
1778         size_t max_packet_size = ((PAGE_SIZE - 8) - i);
1779 
1780         switch (src[i]) {
1781         case ECRYPTFS_TAG_3_PACKET_TYPE:
1782             rc = parse_tag_3_packet(crypt_stat,
1783                         (unsigned char *)&src[i],
1784                         &auth_tok_list, &new_auth_tok,
1785                         &packet_size, max_packet_size);
1786             if (rc) {
1787                 ecryptfs_printk(KERN_ERR, "Error parsing "
1788                         "tag 3 packet\n");
1789                 rc = -EIO;
1790                 goto out_wipe_list;
1791             }
1792             i += packet_size;
1793             rc = parse_tag_11_packet((unsigned char *)&src[i],
1794                          sig_tmp_space,
1795                          ECRYPTFS_SIG_SIZE,
1796                          &tag_11_contents_size,
1797                          &tag_11_packet_size,
1798                          max_packet_size);
1799             if (rc) {
1800                 ecryptfs_printk(KERN_ERR, "No valid "
1801                         "(ecryptfs-specific) literal "
1802                         "packet containing "
1803                         "authentication token "
1804                         "signature found after "
1805                         "tag 3 packet\n");
1806                 rc = -EIO;
1807                 goto out_wipe_list;
1808             }
1809             i += tag_11_packet_size;
1810             if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1811                 ecryptfs_printk(KERN_ERR, "Expected "
1812                         "signature of size [%d]; "
1813                         "read size [%zd]\n",
1814                         ECRYPTFS_SIG_SIZE,
1815                         tag_11_contents_size);
1816                 rc = -EIO;
1817                 goto out_wipe_list;
1818             }
1819             ecryptfs_to_hex(new_auth_tok->token.password.signature,
1820                     sig_tmp_space, tag_11_contents_size);
1821             new_auth_tok->token.password.signature[
1822                 ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1823             crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1824             break;
1825         case ECRYPTFS_TAG_1_PACKET_TYPE:
1826             rc = parse_tag_1_packet(crypt_stat,
1827                         (unsigned char *)&src[i],
1828                         &auth_tok_list, &new_auth_tok,
1829                         &packet_size, max_packet_size);
1830             if (rc) {
1831                 ecryptfs_printk(KERN_ERR, "Error parsing "
1832                         "tag 1 packet\n");
1833                 rc = -EIO;
1834                 goto out_wipe_list;
1835             }
1836             i += packet_size;
1837             crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1838             break;
1839         case ECRYPTFS_TAG_11_PACKET_TYPE:
1840             ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1841                     "(Tag 11 not allowed by itself)\n");
1842             rc = -EIO;
1843             goto out_wipe_list;
1844         default:
1845             ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1846                     "of the file header; hex value of "
1847                     "character is [0x%.2x]\n", i, src[i]);
1848             next_packet_is_auth_tok_packet = 0;
1849         }
1850     }
1851     if (list_empty(&auth_tok_list)) {
1852         printk(KERN_ERR "The lower file appears to be a non-encrypted "
1853                "eCryptfs file; this is not supported in this version "
1854                "of the eCryptfs kernel module\n");
1855         rc = -EINVAL;
1856         goto out;
1857     }
1858     /* auth_tok_list contains the set of authentication tokens
1859      * parsed from the metadata. We need to find a matching
1860      * authentication token that has the secret component(s)
1861      * necessary to decrypt the EFEK in the auth_tok parsed from
1862      * the metadata. There may be several potential matches, but
1863      * just one will be sufficient to decrypt to get the FEK. */
1864 find_next_matching_auth_tok:
1865     found_auth_tok = 0;
1866     list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1867         candidate_auth_tok = &auth_tok_list_item->auth_tok;
1868         if (unlikely(ecryptfs_verbosity > 0)) {
1869             ecryptfs_printk(KERN_DEBUG,
1870                     "Considering candidate auth tok:\n");
1871             ecryptfs_dump_auth_tok(candidate_auth_tok);
1872         }
1873         rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1874                            candidate_auth_tok);
1875         if (rc) {
1876             printk(KERN_ERR
1877                    "Unrecognized candidate auth tok type: [%d]\n",
1878                    candidate_auth_tok->token_type);
1879             rc = -EINVAL;
1880             goto out_wipe_list;
1881         }
1882         rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1883                            &matching_auth_tok,
1884                            crypt_stat->mount_crypt_stat,
1885                            candidate_auth_tok_sig);
1886         if (!rc) {
1887             found_auth_tok = 1;
1888             goto found_matching_auth_tok;
1889         }
1890     }
1891     if (!found_auth_tok) {
1892         ecryptfs_printk(KERN_ERR, "Could not find a usable "
1893                 "authentication token\n");
1894         rc = -EIO;
1895         goto out_wipe_list;
1896     }
1897 found_matching_auth_tok:
1898     if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1899         memcpy(&(candidate_auth_tok->token.private_key),
1900                &(matching_auth_tok->token.private_key),
1901                sizeof(struct ecryptfs_private_key));
1902         up_write(&(auth_tok_key->sem));
1903         key_put(auth_tok_key);
1904         rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1905                                crypt_stat);
1906     } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1907         memcpy(&(candidate_auth_tok->token.password),
1908                &(matching_auth_tok->token.password),
1909                sizeof(struct ecryptfs_password));
1910         up_write(&(auth_tok_key->sem));
1911         key_put(auth_tok_key);
1912         rc = decrypt_passphrase_encrypted_session_key(
1913             candidate_auth_tok, crypt_stat);
1914     } else {
1915         up_write(&(auth_tok_key->sem));
1916         key_put(auth_tok_key);
1917         rc = -EINVAL;
1918     }
1919     if (rc) {
1920         struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1921 
1922         ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1923                 "session key for authentication token with sig "
1924                 "[%.*s]; rc = [%d]. Removing auth tok "
1925                 "candidate from the list and searching for "
1926                 "the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1927                 candidate_auth_tok_sig, rc);
1928         list_for_each_entry_safe(auth_tok_list_item,
1929                      auth_tok_list_item_tmp,
1930                      &auth_tok_list, list) {
1931             if (candidate_auth_tok
1932                 == &auth_tok_list_item->auth_tok) {
1933                 list_del(&auth_tok_list_item->list);
1934                 kmem_cache_free(
1935                     ecryptfs_auth_tok_list_item_cache,
1936                     auth_tok_list_item);
1937                 goto find_next_matching_auth_tok;
1938             }
1939         }
1940         BUG();
1941     }
1942     rc = ecryptfs_compute_root_iv(crypt_stat);
1943     if (rc) {
1944         ecryptfs_printk(KERN_ERR, "Error computing "
1945                 "the root IV\n");
1946         goto out_wipe_list;
1947     }
1948     rc = ecryptfs_init_crypt_ctx(crypt_stat);
1949     if (rc) {
1950         ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1951                 "context for cipher [%s]; rc = [%d]\n",
1952                 crypt_stat->cipher, rc);
1953     }
1954 out_wipe_list:
1955     wipe_auth_tok_list(&auth_tok_list);
1956 out:
1957     return rc;
1958 }
1959 
1960 static int
1961 pki_encrypt_session_key(struct key *auth_tok_key,
1962             struct ecryptfs_auth_tok *auth_tok,
1963             struct ecryptfs_crypt_stat *crypt_stat,
1964             struct ecryptfs_key_record *key_rec)
1965 {
1966     struct ecryptfs_msg_ctx *msg_ctx = NULL;
1967     char *payload = NULL;
1968     size_t payload_len = 0;
1969     struct ecryptfs_message *msg;
1970     int rc;
1971 
1972     rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1973                  ecryptfs_code_for_cipher_string(
1974                      crypt_stat->cipher,
1975                      crypt_stat->key_size),
1976                  crypt_stat, &payload, &payload_len);
1977     up_write(&(auth_tok_key->sem));
1978     key_put(auth_tok_key);
1979     if (rc) {
1980         ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1981         goto out;
1982     }
1983     rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1984     if (rc) {
1985         ecryptfs_printk(KERN_ERR, "Error sending message to "
1986                 "ecryptfsd: %d\n", rc);
1987         goto out;
1988     }
1989     rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1990     if (rc) {
1991         ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1992                 "from the user space daemon\n");
1993         rc = -EIO;
1994         goto out;
1995     }
1996     rc = parse_tag_67_packet(key_rec, msg);
1997     if (rc)
1998         ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1999     kfree(msg);
2000 out:
2001     kfree(payload);
2002     return rc;
2003 }
2004 /**
2005  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2006  * @dest: Buffer into which to write the packet
2007  * @remaining_bytes: Maximum number of bytes that can be writtn
2008  * @auth_tok_key: The authentication token key to unlock and put when done with
2009  *                @auth_tok
2010  * @auth_tok: The authentication token used for generating the tag 1 packet
2011  * @crypt_stat: The cryptographic context
2012  * @key_rec: The key record struct for the tag 1 packet
2013  * @packet_size: This function will write the number of bytes that end
2014  *               up constituting the packet; set to zero on error
2015  *
2016  * Returns zero on success; non-zero on error.
2017  */
2018 static int
2019 write_tag_1_packet(char *dest, size_t *remaining_bytes,
2020            struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
2021            struct ecryptfs_crypt_stat *crypt_stat,
2022            struct ecryptfs_key_record *key_rec, size_t *packet_size)
2023 {
2024     size_t i;
2025     size_t encrypted_session_key_valid = 0;
2026     size_t packet_size_length;
2027     size_t max_packet_size;
2028     int rc = 0;
2029 
2030     (*packet_size) = 0;
2031     ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2032               ECRYPTFS_SIG_SIZE);
2033     encrypted_session_key_valid = 0;
2034     for (i = 0; i < crypt_stat->key_size; i++)
2035         encrypted_session_key_valid |=
2036             auth_tok->session_key.encrypted_key[i];
2037     if (encrypted_session_key_valid) {
2038         memcpy(key_rec->enc_key,
2039                auth_tok->session_key.encrypted_key,
2040                auth_tok->session_key.encrypted_key_size);
2041         up_write(&(auth_tok_key->sem));
2042         key_put(auth_tok_key);
2043         goto encrypted_session_key_set;
2044     }
2045     if (auth_tok->session_key.encrypted_key_size == 0)
2046         auth_tok->session_key.encrypted_key_size =
2047             auth_tok->token.private_key.key_size;
2048     rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2049                      key_rec);
2050     if (rc) {
2051         printk(KERN_ERR "Failed to encrypt session key via a key "
2052                "module; rc = [%d]\n", rc);
2053         goto out;
2054     }
2055     if (ecryptfs_verbosity > 0) {
2056         ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2057         ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2058     }
2059 encrypted_session_key_set:
2060     /* This format is inspired by OpenPGP; see RFC 2440
2061      * packet tag 1 */
2062     max_packet_size = (1                         /* Tag 1 identifier */
2063                + 3                       /* Max Tag 1 packet size */
2064                + 1                       /* Version */
2065                + ECRYPTFS_SIG_SIZE       /* Key identifier */
2066                + 1                       /* Cipher identifier */
2067                + key_rec->enc_key_size); /* Encrypted key size */
2068     if (max_packet_size > (*remaining_bytes)) {
2069         printk(KERN_ERR "Packet length larger than maximum allowable; "
2070                "need up to [%td] bytes, but there are only [%td] "
2071                "available\n", max_packet_size, (*remaining_bytes));
2072         rc = -EINVAL;
2073         goto out;
2074     }
2075     dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2076     rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2077                       (max_packet_size - 4),
2078                       &packet_size_length);
2079     if (rc) {
2080         ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2081                 "header; cannot generate packet length\n");
2082         goto out;
2083     }
2084     (*packet_size) += packet_size_length;
2085     dest[(*packet_size)++] = 0x03; /* version 3 */
2086     memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2087     (*packet_size) += ECRYPTFS_SIG_SIZE;
2088     dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2089     memcpy(&dest[(*packet_size)], key_rec->enc_key,
2090            key_rec->enc_key_size);
2091     (*packet_size) += key_rec->enc_key_size;
2092 out:
2093     if (rc)
2094         (*packet_size) = 0;
2095     else
2096         (*remaining_bytes) -= (*packet_size);
2097     return rc;
2098 }
2099 
2100 /**
2101  * write_tag_11_packet
2102  * @dest: Target into which Tag 11 packet is to be written
2103  * @remaining_bytes: Maximum packet length
2104  * @contents: Byte array of contents to copy in
2105  * @contents_length: Number of bytes in contents
2106  * @packet_length: Length of the Tag 11 packet written; zero on error
2107  *
2108  * Returns zero on success; non-zero on error.
2109  */
2110 static int
2111 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2112             size_t contents_length, size_t *packet_length)
2113 {
2114     size_t packet_size_length;
2115     size_t max_packet_size;
2116     int rc = 0;
2117 
2118     (*packet_length) = 0;
2119     /* This format is inspired by OpenPGP; see RFC 2440
2120      * packet tag 11 */
2121     max_packet_size = (1                   /* Tag 11 identifier */
2122                + 3                 /* Max Tag 11 packet size */
2123                + 1                 /* Binary format specifier */
2124                + 1                 /* Filename length */
2125                + 8                 /* Filename ("_CONSOLE") */
2126                + 4                 /* Modification date */
2127                + contents_length); /* Literal data */
2128     if (max_packet_size > (*remaining_bytes)) {
2129         printk(KERN_ERR "Packet length larger than maximum allowable; "
2130                "need up to [%td] bytes, but there are only [%td] "
2131                "available\n", max_packet_size, (*remaining_bytes));
2132         rc = -EINVAL;
2133         goto out;
2134     }
2135     dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2136     rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2137                       (max_packet_size - 4),
2138                       &packet_size_length);
2139     if (rc) {
2140         printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2141                "generate packet length. rc = [%d]\n", rc);
2142         goto out;
2143     }
2144     (*packet_length) += packet_size_length;
2145     dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2146     dest[(*packet_length)++] = 8;
2147     memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2148     (*packet_length) += 8;
2149     memset(&dest[(*packet_length)], 0x00, 4);
2150     (*packet_length) += 4;
2151     memcpy(&dest[(*packet_length)], contents, contents_length);
2152     (*packet_length) += contents_length;
2153  out:
2154     if (rc)
2155         (*packet_length) = 0;
2156     else
2157         (*remaining_bytes) -= (*packet_length);
2158     return rc;
2159 }
2160 
2161 /**
2162  * write_tag_3_packet
2163  * @dest: Buffer into which to write the packet
2164  * @remaining_bytes: Maximum number of bytes that can be written
2165  * @auth_tok: Authentication token
2166  * @crypt_stat: The cryptographic context
2167  * @key_rec: encrypted key
2168  * @packet_size: This function will write the number of bytes that end
2169  *               up constituting the packet; set to zero on error
2170  *
2171  * Returns zero on success; non-zero on error.
2172  */
2173 static int
2174 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2175            struct ecryptfs_auth_tok *auth_tok,
2176            struct ecryptfs_crypt_stat *crypt_stat,
2177            struct ecryptfs_key_record *key_rec, size_t *packet_size)
2178 {
2179     size_t i;
2180     size_t encrypted_session_key_valid = 0;
2181     char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2182     struct scatterlist dst_sg[2];
2183     struct scatterlist src_sg[2];
2184     struct mutex *tfm_mutex = NULL;
2185     u8 cipher_code;
2186     size_t packet_size_length;
2187     size_t max_packet_size;
2188     struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2189         crypt_stat->mount_crypt_stat;
2190     struct crypto_skcipher *tfm;
2191     struct skcipher_request *req;
2192     int rc = 0;
2193 
2194     (*packet_size) = 0;
2195     ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2196               ECRYPTFS_SIG_SIZE);
2197     rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2198                             crypt_stat->cipher);
2199     if (unlikely(rc)) {
2200         printk(KERN_ERR "Internal error whilst attempting to get "
2201                "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2202                crypt_stat->cipher, rc);
2203         goto out;
2204     }
2205     if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2206         printk(KERN_WARNING "No key size specified at mount; "
2207                "defaulting to [%d]\n",
2208                crypto_skcipher_max_keysize(tfm));
2209         mount_crypt_stat->global_default_cipher_key_size =
2210             crypto_skcipher_max_keysize(tfm);
2211     }
2212     if (crypt_stat->key_size == 0)
2213         crypt_stat->key_size =
2214             mount_crypt_stat->global_default_cipher_key_size;
2215     if (auth_tok->session_key.encrypted_key_size == 0)
2216         auth_tok->session_key.encrypted_key_size =
2217             crypt_stat->key_size;
2218     if (crypt_stat->key_size == 24
2219         && strcmp("aes", crypt_stat->cipher) == 0) {
2220         memset((crypt_stat->key + 24), 0, 8);
2221         auth_tok->session_key.encrypted_key_size = 32;
2222     } else
2223         auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2224     key_rec->enc_key_size =
2225         auth_tok->session_key.encrypted_key_size;
2226     encrypted_session_key_valid = 0;
2227     for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2228         encrypted_session_key_valid |=
2229             auth_tok->session_key.encrypted_key[i];
2230     if (encrypted_session_key_valid) {
2231         ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2232                 "using auth_tok->session_key.encrypted_key, "
2233                 "where key_rec->enc_key_size = [%zd]\n",
2234                 key_rec->enc_key_size);
2235         memcpy(key_rec->enc_key,
2236                auth_tok->session_key.encrypted_key,
2237                key_rec->enc_key_size);
2238         goto encrypted_session_key_set;
2239     }
2240     if (auth_tok->token.password.flags &
2241         ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2242         ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2243                 "session key encryption key of size [%d]\n",
2244                 auth_tok->token.password.
2245                 session_key_encryption_key_bytes);
2246         memcpy(session_key_encryption_key,
2247                auth_tok->token.password.session_key_encryption_key,
2248                crypt_stat->key_size);
2249         ecryptfs_printk(KERN_DEBUG,
2250                 "Cached session key encryption key:\n");
2251         if (ecryptfs_verbosity > 0)
2252             ecryptfs_dump_hex(session_key_encryption_key, 16);
2253     }
2254     if (unlikely(ecryptfs_verbosity > 0)) {
2255         ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2256         ecryptfs_dump_hex(session_key_encryption_key, 16);
2257     }
2258     rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2259                  src_sg, 2);
2260     if (rc < 1 || rc > 2) {
2261         ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2262                 "for crypt_stat session key; expected rc = 1; "
2263                 "got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2264                 rc, key_rec->enc_key_size);
2265         rc = -ENOMEM;
2266         goto out;
2267     }
2268     rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2269                  dst_sg, 2);
2270     if (rc < 1 || rc > 2) {
2271         ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2272                 "for crypt_stat encrypted session key; "
2273                 "expected rc = 1; got rc = [%d]. "
2274                 "key_rec->enc_key_size = [%zd]\n", rc,
2275                 key_rec->enc_key_size);
2276         rc = -ENOMEM;
2277         goto out;
2278     }
2279     mutex_lock(tfm_mutex);
2280     rc = crypto_skcipher_setkey(tfm, session_key_encryption_key,
2281                     crypt_stat->key_size);
2282     if (rc < 0) {
2283         mutex_unlock(tfm_mutex);
2284         ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2285                 "context; rc = [%d]\n", rc);
2286         goto out;
2287     }
2288 
2289     req = skcipher_request_alloc(tfm, GFP_KERNEL);
2290     if (!req) {
2291         mutex_unlock(tfm_mutex);
2292         ecryptfs_printk(KERN_ERR, "Out of kernel memory whilst "
2293                 "attempting to skcipher_request_alloc for "
2294                 "%s\n", crypto_skcipher_driver_name(tfm));
2295         rc = -ENOMEM;
2296         goto out;
2297     }
2298 
2299     skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
2300                       NULL, NULL);
2301 
2302     rc = 0;
2303     ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2304             crypt_stat->key_size);
2305     skcipher_request_set_crypt(req, src_sg, dst_sg,
2306                    (*key_rec).enc_key_size, NULL);
2307     rc = crypto_skcipher_encrypt(req);
2308     mutex_unlock(tfm_mutex);
2309     skcipher_request_free(req);
2310     if (rc) {
2311         printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2312         goto out;
2313     }
2314     ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2315     if (ecryptfs_verbosity > 0) {
2316         ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2317                 key_rec->enc_key_size);
2318         ecryptfs_dump_hex(key_rec->enc_key,
2319                   key_rec->enc_key_size);
2320     }
2321 encrypted_session_key_set:
2322     /* This format is inspired by OpenPGP; see RFC 2440
2323      * packet tag 3 */
2324     max_packet_size = (1                         /* Tag 3 identifier */
2325                + 3                       /* Max Tag 3 packet size */
2326                + 1                       /* Version */
2327                + 1                       /* Cipher code */
2328                + 1                       /* S2K specifier */
2329                + 1                       /* Hash identifier */
2330                + ECRYPTFS_SALT_SIZE      /* Salt */
2331                + 1                       /* Hash iterations */
2332                + key_rec->enc_key_size); /* Encrypted key size */
2333     if (max_packet_size > (*remaining_bytes)) {
2334         printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2335                "there are only [%td] available\n", max_packet_size,
2336                (*remaining_bytes));
2337         rc = -EINVAL;
2338         goto out;
2339     }
2340     dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2341     /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2342      * to get the number of octets in the actual Tag 3 packet */
2343     rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2344                       (max_packet_size - 4),
2345                       &packet_size_length);
2346     if (rc) {
2347         printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2348                "generate packet length. rc = [%d]\n", rc);
2349         goto out;
2350     }
2351     (*packet_size) += packet_size_length;
2352     dest[(*packet_size)++] = 0x04; /* version 4 */
2353     /* TODO: Break from RFC2440 so that arbitrary ciphers can be
2354      * specified with strings */
2355     cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2356                               crypt_stat->key_size);
2357     if (cipher_code == 0) {
2358         ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2359                 "cipher [%s]\n", crypt_stat->cipher);
2360         rc = -EINVAL;
2361         goto out;
2362     }
2363     dest[(*packet_size)++] = cipher_code;
2364     dest[(*packet_size)++] = 0x03;  /* S2K */
2365     dest[(*packet_size)++] = 0x01;  /* MD5 (TODO: parameterize) */
2366     memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2367            ECRYPTFS_SALT_SIZE);
2368     (*packet_size) += ECRYPTFS_SALT_SIZE;   /* salt */
2369     dest[(*packet_size)++] = 0x60;  /* hash iterations (65536) */
2370     memcpy(&dest[(*packet_size)], key_rec->enc_key,
2371            key_rec->enc_key_size);
2372     (*packet_size) += key_rec->enc_key_size;
2373 out:
2374     if (rc)
2375         (*packet_size) = 0;
2376     else
2377         (*remaining_bytes) -= (*packet_size);
2378     return rc;
2379 }
2380 
2381 struct kmem_cache *ecryptfs_key_record_cache;
2382 
2383 /**
2384  * ecryptfs_generate_key_packet_set
2385  * @dest_base: Virtual address from which to write the key record set
2386  * @crypt_stat: The cryptographic context from which the
2387  *              authentication tokens will be retrieved
2388  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2389  *                   for the global parameters
2390  * @len: The amount written
2391  * @max: The maximum amount of data allowed to be written
2392  *
2393  * Generates a key packet set and writes it to the virtual address
2394  * passed in.
2395  *
2396  * Returns zero on success; non-zero on error.
2397  */
2398 int
2399 ecryptfs_generate_key_packet_set(char *dest_base,
2400                  struct ecryptfs_crypt_stat *crypt_stat,
2401                  struct dentry *ecryptfs_dentry, size_t *len,
2402                  size_t max)
2403 {
2404     struct ecryptfs_auth_tok *auth_tok;
2405     struct key *auth_tok_key = NULL;
2406     struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2407         &ecryptfs_superblock_to_private(
2408             ecryptfs_dentry->d_sb)->mount_crypt_stat;
2409     size_t written;
2410     struct ecryptfs_key_record *key_rec;
2411     struct ecryptfs_key_sig *key_sig;
2412     int rc = 0;
2413 
2414     (*len) = 0;
2415     mutex_lock(&crypt_stat->keysig_list_mutex);
2416     key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2417     if (!key_rec) {
2418         rc = -ENOMEM;
2419         goto out;
2420     }
2421     list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2422                 crypt_stat_list) {
2423         memset(key_rec, 0, sizeof(*key_rec));
2424         rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2425                                &auth_tok,
2426                                mount_crypt_stat,
2427                                key_sig->keysig);
2428         if (rc) {
2429             printk(KERN_WARNING "Unable to retrieve auth tok with "
2430                    "sig = [%s]\n", key_sig->keysig);
2431             rc = process_find_global_auth_tok_for_sig_err(rc);
2432             goto out_free;
2433         }
2434         if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2435             rc = write_tag_3_packet((dest_base + (*len)),
2436                         &max, auth_tok,
2437                         crypt_stat, key_rec,
2438                         &written);
2439             up_write(&(auth_tok_key->sem));
2440             key_put(auth_tok_key);
2441             if (rc) {
2442                 ecryptfs_printk(KERN_WARNING, "Error "
2443                         "writing tag 3 packet\n");
2444                 goto out_free;
2445             }
2446             (*len) += written;
2447             /* Write auth tok signature packet */
2448             rc = write_tag_11_packet((dest_base + (*len)), &max,
2449                          key_rec->sig,
2450                          ECRYPTFS_SIG_SIZE, &written);
2451             if (rc) {
2452                 ecryptfs_printk(KERN_ERR, "Error writing "
2453                         "auth tok signature packet\n");
2454                 goto out_free;
2455             }
2456             (*len) += written;
2457         } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2458             rc = write_tag_1_packet(dest_base + (*len), &max,
2459                         auth_tok_key, auth_tok,
2460                         crypt_stat, key_rec, &written);
2461             if (rc) {
2462                 ecryptfs_printk(KERN_WARNING, "Error "
2463                         "writing tag 1 packet\n");
2464                 goto out_free;
2465             }
2466             (*len) += written;
2467         } else {
2468             up_write(&(auth_tok_key->sem));
2469             key_put(auth_tok_key);
2470             ecryptfs_printk(KERN_WARNING, "Unsupported "
2471                     "authentication token type\n");
2472             rc = -EINVAL;
2473             goto out_free;
2474         }
2475     }
2476     if (likely(max > 0)) {
2477         dest_base[(*len)] = 0x00;
2478     } else {
2479         ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2480         rc = -EIO;
2481     }
2482 out_free:
2483     kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2484 out:
2485     if (rc)
2486         (*len) = 0;
2487     mutex_unlock(&crypt_stat->keysig_list_mutex);
2488     return rc;
2489 }
2490 
2491 struct kmem_cache *ecryptfs_key_sig_cache;
2492 
2493 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2494 {
2495     struct ecryptfs_key_sig *new_key_sig;
2496 
2497     new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2498     if (!new_key_sig)
2499         return -ENOMEM;
2500 
2501     memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2502     new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2503     /* Caller must hold keysig_list_mutex */
2504     list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2505 
2506     return 0;
2507 }
2508 
2509 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2510 
2511 int
2512 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2513                  char *sig, u32 global_auth_tok_flags)
2514 {
2515     struct ecryptfs_global_auth_tok *new_auth_tok;
2516 
2517     new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2518                     GFP_KERNEL);
2519     if (!new_auth_tok)
2520         return -ENOMEM;
2521 
2522     memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2523     new_auth_tok->flags = global_auth_tok_flags;
2524     new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2525     mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2526     list_add(&new_auth_tok->mount_crypt_stat_list,
2527          &mount_crypt_stat->global_auth_tok_list);
2528     mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2529     return 0;
2530 }
2531