Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * eCryptfs: Linux filesystem encryption layer
0004  *
0005  * Copyright (C) 1997-2004 Erez Zadok
0006  * Copyright (C) 2001-2004 Stony Brook University
0007  * Copyright (C) 2004-2007 International Business Machines Corp.
0008  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
0009  *          Michael C. Thompson <mcthomps@us.ibm.com>
0010  */
0011 
0012 #include <crypto/hash.h>
0013 #include <crypto/skcipher.h>
0014 #include <linux/fs.h>
0015 #include <linux/mount.h>
0016 #include <linux/pagemap.h>
0017 #include <linux/random.h>
0018 #include <linux/compiler.h>
0019 #include <linux/key.h>
0020 #include <linux/namei.h>
0021 #include <linux/file.h>
0022 #include <linux/scatterlist.h>
0023 #include <linux/slab.h>
0024 #include <asm/unaligned.h>
0025 #include <linux/kernel.h>
0026 #include <linux/xattr.h>
0027 #include "ecryptfs_kernel.h"
0028 
0029 #define DECRYPT     0
0030 #define ENCRYPT     1
0031 
0032 /**
0033  * ecryptfs_from_hex
0034  * @dst: Buffer to take the bytes from src hex; must be at least of
0035  *       size (src_size / 2)
0036  * @src: Buffer to be converted from a hex string representation to raw value
0037  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
0038  */
0039 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
0040 {
0041     int x;
0042     char tmp[3] = { 0, };
0043 
0044     for (x = 0; x < dst_size; x++) {
0045         tmp[0] = src[x * 2];
0046         tmp[1] = src[x * 2 + 1];
0047         dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
0048     }
0049 }
0050 
0051 /**
0052  * ecryptfs_calculate_md5 - calculates the md5 of @src
0053  * @dst: Pointer to 16 bytes of allocated memory
0054  * @crypt_stat: Pointer to crypt_stat struct for the current inode
0055  * @src: Data to be md5'd
0056  * @len: Length of @src
0057  *
0058  * Uses the allocated crypto context that crypt_stat references to
0059  * generate the MD5 sum of the contents of src.
0060  */
0061 static int ecryptfs_calculate_md5(char *dst,
0062                   struct ecryptfs_crypt_stat *crypt_stat,
0063                   char *src, int len)
0064 {
0065     int rc = crypto_shash_tfm_digest(crypt_stat->hash_tfm, src, len, dst);
0066 
0067     if (rc) {
0068         printk(KERN_ERR
0069                "%s: Error computing crypto hash; rc = [%d]\n",
0070                __func__, rc);
0071         goto out;
0072     }
0073 out:
0074     return rc;
0075 }
0076 
0077 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
0078                           char *cipher_name,
0079                           char *chaining_modifier)
0080 {
0081     int cipher_name_len = strlen(cipher_name);
0082     int chaining_modifier_len = strlen(chaining_modifier);
0083     int algified_name_len;
0084     int rc;
0085 
0086     algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
0087     (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
0088     if (!(*algified_name)) {
0089         rc = -ENOMEM;
0090         goto out;
0091     }
0092     snprintf((*algified_name), algified_name_len, "%s(%s)",
0093          chaining_modifier, cipher_name);
0094     rc = 0;
0095 out:
0096     return rc;
0097 }
0098 
0099 /**
0100  * ecryptfs_derive_iv
0101  * @iv: destination for the derived iv vale
0102  * @crypt_stat: Pointer to crypt_stat struct for the current inode
0103  * @offset: Offset of the extent whose IV we are to derive
0104  *
0105  * Generate the initialization vector from the given root IV and page
0106  * offset.
0107  *
0108  * Returns zero on success; non-zero on error.
0109  */
0110 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
0111                loff_t offset)
0112 {
0113     int rc = 0;
0114     char dst[MD5_DIGEST_SIZE];
0115     char src[ECRYPTFS_MAX_IV_BYTES + 16];
0116 
0117     if (unlikely(ecryptfs_verbosity > 0)) {
0118         ecryptfs_printk(KERN_DEBUG, "root iv:\n");
0119         ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
0120     }
0121     /* TODO: It is probably secure to just cast the least
0122      * significant bits of the root IV into an unsigned long and
0123      * add the offset to that rather than go through all this
0124      * hashing business. -Halcrow */
0125     memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
0126     memset((src + crypt_stat->iv_bytes), 0, 16);
0127     snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
0128     if (unlikely(ecryptfs_verbosity > 0)) {
0129         ecryptfs_printk(KERN_DEBUG, "source:\n");
0130         ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
0131     }
0132     rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
0133                     (crypt_stat->iv_bytes + 16));
0134     if (rc) {
0135         ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
0136                 "MD5 while generating IV for a page\n");
0137         goto out;
0138     }
0139     memcpy(iv, dst, crypt_stat->iv_bytes);
0140     if (unlikely(ecryptfs_verbosity > 0)) {
0141         ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
0142         ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
0143     }
0144 out:
0145     return rc;
0146 }
0147 
0148 /**
0149  * ecryptfs_init_crypt_stat
0150  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
0151  *
0152  * Initialize the crypt_stat structure.
0153  */
0154 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
0155 {
0156     struct crypto_shash *tfm;
0157     int rc;
0158 
0159     tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
0160     if (IS_ERR(tfm)) {
0161         rc = PTR_ERR(tfm);
0162         ecryptfs_printk(KERN_ERR, "Error attempting to "
0163                 "allocate crypto context; rc = [%d]\n",
0164                 rc);
0165         return rc;
0166     }
0167 
0168     memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
0169     INIT_LIST_HEAD(&crypt_stat->keysig_list);
0170     mutex_init(&crypt_stat->keysig_list_mutex);
0171     mutex_init(&crypt_stat->cs_mutex);
0172     mutex_init(&crypt_stat->cs_tfm_mutex);
0173     crypt_stat->hash_tfm = tfm;
0174     crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
0175 
0176     return 0;
0177 }
0178 
0179 /**
0180  * ecryptfs_destroy_crypt_stat
0181  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
0182  *
0183  * Releases all memory associated with a crypt_stat struct.
0184  */
0185 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
0186 {
0187     struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
0188 
0189     crypto_free_skcipher(crypt_stat->tfm);
0190     crypto_free_shash(crypt_stat->hash_tfm);
0191     list_for_each_entry_safe(key_sig, key_sig_tmp,
0192                  &crypt_stat->keysig_list, crypt_stat_list) {
0193         list_del(&key_sig->crypt_stat_list);
0194         kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
0195     }
0196     memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
0197 }
0198 
0199 void ecryptfs_destroy_mount_crypt_stat(
0200     struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
0201 {
0202     struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
0203 
0204     if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
0205         return;
0206     mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
0207     list_for_each_entry_safe(auth_tok, auth_tok_tmp,
0208                  &mount_crypt_stat->global_auth_tok_list,
0209                  mount_crypt_stat_list) {
0210         list_del(&auth_tok->mount_crypt_stat_list);
0211         if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
0212             key_put(auth_tok->global_auth_tok_key);
0213         kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
0214     }
0215     mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
0216     memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
0217 }
0218 
0219 /**
0220  * virt_to_scatterlist
0221  * @addr: Virtual address
0222  * @size: Size of data; should be an even multiple of the block size
0223  * @sg: Pointer to scatterlist array; set to NULL to obtain only
0224  *      the number of scatterlist structs required in array
0225  * @sg_size: Max array size
0226  *
0227  * Fills in a scatterlist array with page references for a passed
0228  * virtual address.
0229  *
0230  * Returns the number of scatterlist structs in array used
0231  */
0232 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
0233             int sg_size)
0234 {
0235     int i = 0;
0236     struct page *pg;
0237     int offset;
0238     int remainder_of_page;
0239 
0240     sg_init_table(sg, sg_size);
0241 
0242     while (size > 0 && i < sg_size) {
0243         pg = virt_to_page(addr);
0244         offset = offset_in_page(addr);
0245         sg_set_page(&sg[i], pg, 0, offset);
0246         remainder_of_page = PAGE_SIZE - offset;
0247         if (size >= remainder_of_page) {
0248             sg[i].length = remainder_of_page;
0249             addr += remainder_of_page;
0250             size -= remainder_of_page;
0251         } else {
0252             sg[i].length = size;
0253             addr += size;
0254             size = 0;
0255         }
0256         i++;
0257     }
0258     if (size > 0)
0259         return -ENOMEM;
0260     return i;
0261 }
0262 
0263 struct extent_crypt_result {
0264     struct completion completion;
0265     int rc;
0266 };
0267 
0268 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
0269 {
0270     struct extent_crypt_result *ecr = req->data;
0271 
0272     if (rc == -EINPROGRESS)
0273         return;
0274 
0275     ecr->rc = rc;
0276     complete(&ecr->completion);
0277 }
0278 
0279 /**
0280  * crypt_scatterlist
0281  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
0282  * @dst_sg: Destination of the data after performing the crypto operation
0283  * @src_sg: Data to be encrypted or decrypted
0284  * @size: Length of data
0285  * @iv: IV to use
0286  * @op: ENCRYPT or DECRYPT to indicate the desired operation
0287  *
0288  * Returns the number of bytes encrypted or decrypted; negative value on error
0289  */
0290 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
0291                  struct scatterlist *dst_sg,
0292                  struct scatterlist *src_sg, int size,
0293                  unsigned char *iv, int op)
0294 {
0295     struct skcipher_request *req = NULL;
0296     struct extent_crypt_result ecr;
0297     int rc = 0;
0298 
0299     if (unlikely(ecryptfs_verbosity > 0)) {
0300         ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
0301                 crypt_stat->key_size);
0302         ecryptfs_dump_hex(crypt_stat->key,
0303                   crypt_stat->key_size);
0304     }
0305 
0306     init_completion(&ecr.completion);
0307 
0308     mutex_lock(&crypt_stat->cs_tfm_mutex);
0309     req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
0310     if (!req) {
0311         mutex_unlock(&crypt_stat->cs_tfm_mutex);
0312         rc = -ENOMEM;
0313         goto out;
0314     }
0315 
0316     skcipher_request_set_callback(req,
0317             CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
0318             extent_crypt_complete, &ecr);
0319     /* Consider doing this once, when the file is opened */
0320     if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
0321         rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
0322                         crypt_stat->key_size);
0323         if (rc) {
0324             ecryptfs_printk(KERN_ERR,
0325                     "Error setting key; rc = [%d]\n",
0326                     rc);
0327             mutex_unlock(&crypt_stat->cs_tfm_mutex);
0328             rc = -EINVAL;
0329             goto out;
0330         }
0331         crypt_stat->flags |= ECRYPTFS_KEY_SET;
0332     }
0333     mutex_unlock(&crypt_stat->cs_tfm_mutex);
0334     skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
0335     rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
0336                  crypto_skcipher_decrypt(req);
0337     if (rc == -EINPROGRESS || rc == -EBUSY) {
0338         struct extent_crypt_result *ecr = req->base.data;
0339 
0340         wait_for_completion(&ecr->completion);
0341         rc = ecr->rc;
0342         reinit_completion(&ecr->completion);
0343     }
0344 out:
0345     skcipher_request_free(req);
0346     return rc;
0347 }
0348 
0349 /*
0350  * lower_offset_for_page
0351  *
0352  * Convert an eCryptfs page index into a lower byte offset
0353  */
0354 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
0355                     struct page *page)
0356 {
0357     return ecryptfs_lower_header_size(crypt_stat) +
0358            ((loff_t)page->index << PAGE_SHIFT);
0359 }
0360 
0361 /**
0362  * crypt_extent
0363  * @crypt_stat: crypt_stat containing cryptographic context for the
0364  *              encryption operation
0365  * @dst_page: The page to write the result into
0366  * @src_page: The page to read from
0367  * @extent_offset: Page extent offset for use in generating IV
0368  * @op: ENCRYPT or DECRYPT to indicate the desired operation
0369  *
0370  * Encrypts or decrypts one extent of data.
0371  *
0372  * Return zero on success; non-zero otherwise
0373  */
0374 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
0375             struct page *dst_page,
0376             struct page *src_page,
0377             unsigned long extent_offset, int op)
0378 {
0379     pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
0380     loff_t extent_base;
0381     char extent_iv[ECRYPTFS_MAX_IV_BYTES];
0382     struct scatterlist src_sg, dst_sg;
0383     size_t extent_size = crypt_stat->extent_size;
0384     int rc;
0385 
0386     extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
0387     rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
0388                 (extent_base + extent_offset));
0389     if (rc) {
0390         ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
0391             "extent [0x%.16llx]; rc = [%d]\n",
0392             (unsigned long long)(extent_base + extent_offset), rc);
0393         goto out;
0394     }
0395 
0396     sg_init_table(&src_sg, 1);
0397     sg_init_table(&dst_sg, 1);
0398 
0399     sg_set_page(&src_sg, src_page, extent_size,
0400             extent_offset * extent_size);
0401     sg_set_page(&dst_sg, dst_page, extent_size,
0402             extent_offset * extent_size);
0403 
0404     rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
0405                    extent_iv, op);
0406     if (rc < 0) {
0407         printk(KERN_ERR "%s: Error attempting to crypt page with "
0408                "page_index = [%ld], extent_offset = [%ld]; "
0409                "rc = [%d]\n", __func__, page_index, extent_offset, rc);
0410         goto out;
0411     }
0412     rc = 0;
0413 out:
0414     return rc;
0415 }
0416 
0417 /**
0418  * ecryptfs_encrypt_page
0419  * @page: Page mapped from the eCryptfs inode for the file; contains
0420  *        decrypted content that needs to be encrypted (to a temporary
0421  *        page; not in place) and written out to the lower file
0422  *
0423  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
0424  * that eCryptfs pages may straddle the lower pages -- for instance,
0425  * if the file was created on a machine with an 8K page size
0426  * (resulting in an 8K header), and then the file is copied onto a
0427  * host with a 32K page size, then when reading page 0 of the eCryptfs
0428  * file, 24K of page 0 of the lower file will be read and decrypted,
0429  * and then 8K of page 1 of the lower file will be read and decrypted.
0430  *
0431  * Returns zero on success; negative on error
0432  */
0433 int ecryptfs_encrypt_page(struct page *page)
0434 {
0435     struct inode *ecryptfs_inode;
0436     struct ecryptfs_crypt_stat *crypt_stat;
0437     char *enc_extent_virt;
0438     struct page *enc_extent_page = NULL;
0439     loff_t extent_offset;
0440     loff_t lower_offset;
0441     int rc = 0;
0442 
0443     ecryptfs_inode = page->mapping->host;
0444     crypt_stat =
0445         &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
0446     BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
0447     enc_extent_page = alloc_page(GFP_USER);
0448     if (!enc_extent_page) {
0449         rc = -ENOMEM;
0450         ecryptfs_printk(KERN_ERR, "Error allocating memory for "
0451                 "encrypted extent\n");
0452         goto out;
0453     }
0454 
0455     for (extent_offset = 0;
0456          extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
0457          extent_offset++) {
0458         rc = crypt_extent(crypt_stat, enc_extent_page, page,
0459                   extent_offset, ENCRYPT);
0460         if (rc) {
0461             printk(KERN_ERR "%s: Error encrypting extent; "
0462                    "rc = [%d]\n", __func__, rc);
0463             goto out;
0464         }
0465     }
0466 
0467     lower_offset = lower_offset_for_page(crypt_stat, page);
0468     enc_extent_virt = kmap(enc_extent_page);
0469     rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
0470                   PAGE_SIZE);
0471     kunmap(enc_extent_page);
0472     if (rc < 0) {
0473         ecryptfs_printk(KERN_ERR,
0474             "Error attempting to write lower page; rc = [%d]\n",
0475             rc);
0476         goto out;
0477     }
0478     rc = 0;
0479 out:
0480     if (enc_extent_page) {
0481         __free_page(enc_extent_page);
0482     }
0483     return rc;
0484 }
0485 
0486 /**
0487  * ecryptfs_decrypt_page
0488  * @page: Page mapped from the eCryptfs inode for the file; data read
0489  *        and decrypted from the lower file will be written into this
0490  *        page
0491  *
0492  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
0493  * that eCryptfs pages may straddle the lower pages -- for instance,
0494  * if the file was created on a machine with an 8K page size
0495  * (resulting in an 8K header), and then the file is copied onto a
0496  * host with a 32K page size, then when reading page 0 of the eCryptfs
0497  * file, 24K of page 0 of the lower file will be read and decrypted,
0498  * and then 8K of page 1 of the lower file will be read and decrypted.
0499  *
0500  * Returns zero on success; negative on error
0501  */
0502 int ecryptfs_decrypt_page(struct page *page)
0503 {
0504     struct inode *ecryptfs_inode;
0505     struct ecryptfs_crypt_stat *crypt_stat;
0506     char *page_virt;
0507     unsigned long extent_offset;
0508     loff_t lower_offset;
0509     int rc = 0;
0510 
0511     ecryptfs_inode = page->mapping->host;
0512     crypt_stat =
0513         &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
0514     BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
0515 
0516     lower_offset = lower_offset_for_page(crypt_stat, page);
0517     page_virt = kmap(page);
0518     rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
0519                  ecryptfs_inode);
0520     kunmap(page);
0521     if (rc < 0) {
0522         ecryptfs_printk(KERN_ERR,
0523             "Error attempting to read lower page; rc = [%d]\n",
0524             rc);
0525         goto out;
0526     }
0527 
0528     for (extent_offset = 0;
0529          extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
0530          extent_offset++) {
0531         rc = crypt_extent(crypt_stat, page, page,
0532                   extent_offset, DECRYPT);
0533         if (rc) {
0534             printk(KERN_ERR "%s: Error decrypting extent; "
0535                    "rc = [%d]\n", __func__, rc);
0536             goto out;
0537         }
0538     }
0539 out:
0540     return rc;
0541 }
0542 
0543 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
0544 
0545 /**
0546  * ecryptfs_init_crypt_ctx
0547  * @crypt_stat: Uninitialized crypt stats structure
0548  *
0549  * Initialize the crypto context.
0550  *
0551  * TODO: Performance: Keep a cache of initialized cipher contexts;
0552  * only init if needed
0553  */
0554 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
0555 {
0556     char *full_alg_name;
0557     int rc = -EINVAL;
0558 
0559     ecryptfs_printk(KERN_DEBUG,
0560             "Initializing cipher [%s]; strlen = [%d]; "
0561             "key_size_bits = [%zd]\n",
0562             crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
0563             crypt_stat->key_size << 3);
0564     mutex_lock(&crypt_stat->cs_tfm_mutex);
0565     if (crypt_stat->tfm) {
0566         rc = 0;
0567         goto out_unlock;
0568     }
0569     rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
0570                             crypt_stat->cipher, "cbc");
0571     if (rc)
0572         goto out_unlock;
0573     crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
0574     if (IS_ERR(crypt_stat->tfm)) {
0575         rc = PTR_ERR(crypt_stat->tfm);
0576         crypt_stat->tfm = NULL;
0577         ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
0578                 "Error initializing cipher [%s]\n",
0579                 full_alg_name);
0580         goto out_free;
0581     }
0582     crypto_skcipher_set_flags(crypt_stat->tfm,
0583                   CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
0584     rc = 0;
0585 out_free:
0586     kfree(full_alg_name);
0587 out_unlock:
0588     mutex_unlock(&crypt_stat->cs_tfm_mutex);
0589     return rc;
0590 }
0591 
0592 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
0593 {
0594     int extent_size_tmp;
0595 
0596     crypt_stat->extent_mask = 0xFFFFFFFF;
0597     crypt_stat->extent_shift = 0;
0598     if (crypt_stat->extent_size == 0)
0599         return;
0600     extent_size_tmp = crypt_stat->extent_size;
0601     while ((extent_size_tmp & 0x01) == 0) {
0602         extent_size_tmp >>= 1;
0603         crypt_stat->extent_mask <<= 1;
0604         crypt_stat->extent_shift++;
0605     }
0606 }
0607 
0608 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
0609 {
0610     /* Default values; may be overwritten as we are parsing the
0611      * packets. */
0612     crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
0613     set_extent_mask_and_shift(crypt_stat);
0614     crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
0615     if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
0616         crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
0617     else {
0618         if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
0619             crypt_stat->metadata_size =
0620                 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
0621         else
0622             crypt_stat->metadata_size = PAGE_SIZE;
0623     }
0624 }
0625 
0626 /*
0627  * ecryptfs_compute_root_iv
0628  *
0629  * On error, sets the root IV to all 0's.
0630  */
0631 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
0632 {
0633     int rc = 0;
0634     char dst[MD5_DIGEST_SIZE];
0635 
0636     BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
0637     BUG_ON(crypt_stat->iv_bytes <= 0);
0638     if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
0639         rc = -EINVAL;
0640         ecryptfs_printk(KERN_WARNING, "Session key not valid; "
0641                 "cannot generate root IV\n");
0642         goto out;
0643     }
0644     rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
0645                     crypt_stat->key_size);
0646     if (rc) {
0647         ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
0648                 "MD5 while generating root IV\n");
0649         goto out;
0650     }
0651     memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
0652 out:
0653     if (rc) {
0654         memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
0655         crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
0656     }
0657     return rc;
0658 }
0659 
0660 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
0661 {
0662     get_random_bytes(crypt_stat->key, crypt_stat->key_size);
0663     crypt_stat->flags |= ECRYPTFS_KEY_VALID;
0664     ecryptfs_compute_root_iv(crypt_stat);
0665     if (unlikely(ecryptfs_verbosity > 0)) {
0666         ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
0667         ecryptfs_dump_hex(crypt_stat->key,
0668                   crypt_stat->key_size);
0669     }
0670 }
0671 
0672 /**
0673  * ecryptfs_copy_mount_wide_flags_to_inode_flags
0674  * @crypt_stat: The inode's cryptographic context
0675  * @mount_crypt_stat: The mount point's cryptographic context
0676  *
0677  * This function propagates the mount-wide flags to individual inode
0678  * flags.
0679  */
0680 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
0681     struct ecryptfs_crypt_stat *crypt_stat,
0682     struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
0683 {
0684     if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
0685         crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
0686     if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
0687         crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
0688     if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
0689         crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
0690         if (mount_crypt_stat->flags
0691             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
0692             crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
0693         else if (mount_crypt_stat->flags
0694              & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
0695             crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
0696     }
0697 }
0698 
0699 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
0700     struct ecryptfs_crypt_stat *crypt_stat,
0701     struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
0702 {
0703     struct ecryptfs_global_auth_tok *global_auth_tok;
0704     int rc = 0;
0705 
0706     mutex_lock(&crypt_stat->keysig_list_mutex);
0707     mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
0708 
0709     list_for_each_entry(global_auth_tok,
0710                 &mount_crypt_stat->global_auth_tok_list,
0711                 mount_crypt_stat_list) {
0712         if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
0713             continue;
0714         rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
0715         if (rc) {
0716             printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
0717             goto out;
0718         }
0719     }
0720 
0721 out:
0722     mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
0723     mutex_unlock(&crypt_stat->keysig_list_mutex);
0724     return rc;
0725 }
0726 
0727 /**
0728  * ecryptfs_set_default_crypt_stat_vals
0729  * @crypt_stat: The inode's cryptographic context
0730  * @mount_crypt_stat: The mount point's cryptographic context
0731  *
0732  * Default values in the event that policy does not override them.
0733  */
0734 static void ecryptfs_set_default_crypt_stat_vals(
0735     struct ecryptfs_crypt_stat *crypt_stat,
0736     struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
0737 {
0738     ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
0739                               mount_crypt_stat);
0740     ecryptfs_set_default_sizes(crypt_stat);
0741     strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
0742     crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
0743     crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
0744     crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
0745     crypt_stat->mount_crypt_stat = mount_crypt_stat;
0746 }
0747 
0748 /**
0749  * ecryptfs_new_file_context
0750  * @ecryptfs_inode: The eCryptfs inode
0751  *
0752  * If the crypto context for the file has not yet been established,
0753  * this is where we do that.  Establishing a new crypto context
0754  * involves the following decisions:
0755  *  - What cipher to use?
0756  *  - What set of authentication tokens to use?
0757  * Here we just worry about getting enough information into the
0758  * authentication tokens so that we know that they are available.
0759  * We associate the available authentication tokens with the new file
0760  * via the set of signatures in the crypt_stat struct.  Later, when
0761  * the headers are actually written out, we may again defer to
0762  * userspace to perform the encryption of the session key; for the
0763  * foreseeable future, this will be the case with public key packets.
0764  *
0765  * Returns zero on success; non-zero otherwise
0766  */
0767 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
0768 {
0769     struct ecryptfs_crypt_stat *crypt_stat =
0770         &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
0771     struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
0772         &ecryptfs_superblock_to_private(
0773             ecryptfs_inode->i_sb)->mount_crypt_stat;
0774     int cipher_name_len;
0775     int rc = 0;
0776 
0777     ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
0778     crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
0779     ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
0780                               mount_crypt_stat);
0781     rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
0782                              mount_crypt_stat);
0783     if (rc) {
0784         printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
0785                "to the inode key sigs; rc = [%d]\n", rc);
0786         goto out;
0787     }
0788     cipher_name_len =
0789         strlen(mount_crypt_stat->global_default_cipher_name);
0790     memcpy(crypt_stat->cipher,
0791            mount_crypt_stat->global_default_cipher_name,
0792            cipher_name_len);
0793     crypt_stat->cipher[cipher_name_len] = '\0';
0794     crypt_stat->key_size =
0795         mount_crypt_stat->global_default_cipher_key_size;
0796     ecryptfs_generate_new_key(crypt_stat);
0797     rc = ecryptfs_init_crypt_ctx(crypt_stat);
0798     if (rc)
0799         ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
0800                 "context for cipher [%s]: rc = [%d]\n",
0801                 crypt_stat->cipher, rc);
0802 out:
0803     return rc;
0804 }
0805 
0806 /**
0807  * ecryptfs_validate_marker - check for the ecryptfs marker
0808  * @data: The data block in which to check
0809  *
0810  * Returns zero if marker found; -EINVAL if not found
0811  */
0812 static int ecryptfs_validate_marker(char *data)
0813 {
0814     u32 m_1, m_2;
0815 
0816     m_1 = get_unaligned_be32(data);
0817     m_2 = get_unaligned_be32(data + 4);
0818     if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
0819         return 0;
0820     ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
0821             "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
0822             MAGIC_ECRYPTFS_MARKER);
0823     ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
0824             "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
0825     return -EINVAL;
0826 }
0827 
0828 struct ecryptfs_flag_map_elem {
0829     u32 file_flag;
0830     u32 local_flag;
0831 };
0832 
0833 /* Add support for additional flags by adding elements here. */
0834 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
0835     {0x00000001, ECRYPTFS_ENABLE_HMAC},
0836     {0x00000002, ECRYPTFS_ENCRYPTED},
0837     {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
0838     {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
0839 };
0840 
0841 /**
0842  * ecryptfs_process_flags
0843  * @crypt_stat: The cryptographic context
0844  * @page_virt: Source data to be parsed
0845  * @bytes_read: Updated with the number of bytes read
0846  */
0847 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
0848                   char *page_virt, int *bytes_read)
0849 {
0850     int i;
0851     u32 flags;
0852 
0853     flags = get_unaligned_be32(page_virt);
0854     for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
0855         if (flags & ecryptfs_flag_map[i].file_flag) {
0856             crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
0857         } else
0858             crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
0859     /* Version is in top 8 bits of the 32-bit flag vector */
0860     crypt_stat->file_version = ((flags >> 24) & 0xFF);
0861     (*bytes_read) = 4;
0862 }
0863 
0864 /**
0865  * write_ecryptfs_marker
0866  * @page_virt: The pointer to in a page to begin writing the marker
0867  * @written: Number of bytes written
0868  *
0869  * Marker = 0x3c81b7f5
0870  */
0871 static void write_ecryptfs_marker(char *page_virt, size_t *written)
0872 {
0873     u32 m_1, m_2;
0874 
0875     get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
0876     m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
0877     put_unaligned_be32(m_1, page_virt);
0878     page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
0879     put_unaligned_be32(m_2, page_virt);
0880     (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
0881 }
0882 
0883 void ecryptfs_write_crypt_stat_flags(char *page_virt,
0884                      struct ecryptfs_crypt_stat *crypt_stat,
0885                      size_t *written)
0886 {
0887     u32 flags = 0;
0888     int i;
0889 
0890     for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
0891         if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
0892             flags |= ecryptfs_flag_map[i].file_flag;
0893     /* Version is in top 8 bits of the 32-bit flag vector */
0894     flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
0895     put_unaligned_be32(flags, page_virt);
0896     (*written) = 4;
0897 }
0898 
0899 struct ecryptfs_cipher_code_str_map_elem {
0900     char cipher_str[16];
0901     u8 cipher_code;
0902 };
0903 
0904 /* Add support for additional ciphers by adding elements here. The
0905  * cipher_code is whatever OpenPGP applications use to identify the
0906  * ciphers. List in order of probability. */
0907 static struct ecryptfs_cipher_code_str_map_elem
0908 ecryptfs_cipher_code_str_map[] = {
0909     {"aes",RFC2440_CIPHER_AES_128 },
0910     {"blowfish", RFC2440_CIPHER_BLOWFISH},
0911     {"des3_ede", RFC2440_CIPHER_DES3_EDE},
0912     {"cast5", RFC2440_CIPHER_CAST_5},
0913     {"twofish", RFC2440_CIPHER_TWOFISH},
0914     {"cast6", RFC2440_CIPHER_CAST_6},
0915     {"aes", RFC2440_CIPHER_AES_192},
0916     {"aes", RFC2440_CIPHER_AES_256}
0917 };
0918 
0919 /**
0920  * ecryptfs_code_for_cipher_string
0921  * @cipher_name: The string alias for the cipher
0922  * @key_bytes: Length of key in bytes; used for AES code selection
0923  *
0924  * Returns zero on no match, or the cipher code on match
0925  */
0926 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
0927 {
0928     int i;
0929     u8 code = 0;
0930     struct ecryptfs_cipher_code_str_map_elem *map =
0931         ecryptfs_cipher_code_str_map;
0932 
0933     if (strcmp(cipher_name, "aes") == 0) {
0934         switch (key_bytes) {
0935         case 16:
0936             code = RFC2440_CIPHER_AES_128;
0937             break;
0938         case 24:
0939             code = RFC2440_CIPHER_AES_192;
0940             break;
0941         case 32:
0942             code = RFC2440_CIPHER_AES_256;
0943         }
0944     } else {
0945         for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
0946             if (strcmp(cipher_name, map[i].cipher_str) == 0) {
0947                 code = map[i].cipher_code;
0948                 break;
0949             }
0950     }
0951     return code;
0952 }
0953 
0954 /**
0955  * ecryptfs_cipher_code_to_string
0956  * @str: Destination to write out the cipher name
0957  * @cipher_code: The code to convert to cipher name string
0958  *
0959  * Returns zero on success
0960  */
0961 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
0962 {
0963     int rc = 0;
0964     int i;
0965 
0966     str[0] = '\0';
0967     for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
0968         if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
0969             strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
0970     if (str[0] == '\0') {
0971         ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
0972                 "[%d]\n", cipher_code);
0973         rc = -EINVAL;
0974     }
0975     return rc;
0976 }
0977 
0978 int ecryptfs_read_and_validate_header_region(struct inode *inode)
0979 {
0980     u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
0981     u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
0982     int rc;
0983 
0984     rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
0985                  inode);
0986     if (rc < 0)
0987         return rc;
0988     else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
0989         return -EINVAL;
0990     rc = ecryptfs_validate_marker(marker);
0991     if (!rc)
0992         ecryptfs_i_size_init(file_size, inode);
0993     return rc;
0994 }
0995 
0996 void
0997 ecryptfs_write_header_metadata(char *virt,
0998                    struct ecryptfs_crypt_stat *crypt_stat,
0999                    size_t *written)
1000 {
1001     u32 header_extent_size;
1002     u16 num_header_extents_at_front;
1003 
1004     header_extent_size = (u32)crypt_stat->extent_size;
1005     num_header_extents_at_front =
1006         (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1007     put_unaligned_be32(header_extent_size, virt);
1008     virt += 4;
1009     put_unaligned_be16(num_header_extents_at_front, virt);
1010     (*written) = 6;
1011 }
1012 
1013 struct kmem_cache *ecryptfs_header_cache;
1014 
1015 /**
1016  * ecryptfs_write_headers_virt
1017  * @page_virt: The virtual address to write the headers to
1018  * @max: The size of memory allocated at page_virt
1019  * @size: Set to the number of bytes written by this function
1020  * @crypt_stat: The cryptographic context
1021  * @ecryptfs_dentry: The eCryptfs dentry
1022  *
1023  * Format version: 1
1024  *
1025  *   Header Extent:
1026  *     Octets 0-7:        Unencrypted file size (big-endian)
1027  *     Octets 8-15:       eCryptfs special marker
1028  *     Octets 16-19:      Flags
1029  *      Octet 16:         File format version number (between 0 and 255)
1030  *      Octets 17-18:     Reserved
1031  *      Octet 19:         Bit 1 (lsb): Reserved
1032  *                        Bit 2: Encrypted?
1033  *                        Bits 3-8: Reserved
1034  *     Octets 20-23:      Header extent size (big-endian)
1035  *     Octets 24-25:      Number of header extents at front of file
1036  *                        (big-endian)
1037  *     Octet  26:         Begin RFC 2440 authentication token packet set
1038  *   Data Extent 0:
1039  *     Lower data (CBC encrypted)
1040  *   Data Extent 1:
1041  *     Lower data (CBC encrypted)
1042  *   ...
1043  *
1044  * Returns zero on success
1045  */
1046 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1047                        size_t *size,
1048                        struct ecryptfs_crypt_stat *crypt_stat,
1049                        struct dentry *ecryptfs_dentry)
1050 {
1051     int rc;
1052     size_t written;
1053     size_t offset;
1054 
1055     offset = ECRYPTFS_FILE_SIZE_BYTES;
1056     write_ecryptfs_marker((page_virt + offset), &written);
1057     offset += written;
1058     ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1059                     &written);
1060     offset += written;
1061     ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1062                        &written);
1063     offset += written;
1064     rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1065                           ecryptfs_dentry, &written,
1066                           max - offset);
1067     if (rc)
1068         ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1069                 "set; rc = [%d]\n", rc);
1070     if (size) {
1071         offset += written;
1072         *size = offset;
1073     }
1074     return rc;
1075 }
1076 
1077 static int
1078 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1079                     char *virt, size_t virt_len)
1080 {
1081     int rc;
1082 
1083     rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1084                   0, virt_len);
1085     if (rc < 0)
1086         printk(KERN_ERR "%s: Error attempting to write header "
1087                "information to lower file; rc = [%d]\n", __func__, rc);
1088     else
1089         rc = 0;
1090     return rc;
1091 }
1092 
1093 static int
1094 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1095                  struct inode *ecryptfs_inode,
1096                  char *page_virt, size_t size)
1097 {
1098     int rc;
1099     struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1100     struct inode *lower_inode = d_inode(lower_dentry);
1101 
1102     if (!(lower_inode->i_opflags & IOP_XATTR)) {
1103         rc = -EOPNOTSUPP;
1104         goto out;
1105     }
1106 
1107     inode_lock(lower_inode);
1108     rc = __vfs_setxattr(&init_user_ns, lower_dentry, lower_inode,
1109                 ECRYPTFS_XATTR_NAME, page_virt, size, 0);
1110     if (!rc && ecryptfs_inode)
1111         fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1112     inode_unlock(lower_inode);
1113 out:
1114     return rc;
1115 }
1116 
1117 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1118                            unsigned int order)
1119 {
1120     struct page *page;
1121 
1122     page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1123     if (page)
1124         return (unsigned long) page_address(page);
1125     return 0;
1126 }
1127 
1128 /**
1129  * ecryptfs_write_metadata
1130  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1131  * @ecryptfs_inode: The newly created eCryptfs inode
1132  *
1133  * Write the file headers out.  This will likely involve a userspace
1134  * callout, in which the session key is encrypted with one or more
1135  * public keys and/or the passphrase necessary to do the encryption is
1136  * retrieved via a prompt.  Exactly what happens at this point should
1137  * be policy-dependent.
1138  *
1139  * Returns zero on success; non-zero on error
1140  */
1141 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1142                 struct inode *ecryptfs_inode)
1143 {
1144     struct ecryptfs_crypt_stat *crypt_stat =
1145         &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1146     unsigned int order;
1147     char *virt;
1148     size_t virt_len;
1149     size_t size = 0;
1150     int rc = 0;
1151 
1152     if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1153         if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1154             printk(KERN_ERR "Key is invalid; bailing out\n");
1155             rc = -EINVAL;
1156             goto out;
1157         }
1158     } else {
1159         printk(KERN_WARNING "%s: Encrypted flag not set\n",
1160                __func__);
1161         rc = -EINVAL;
1162         goto out;
1163     }
1164     virt_len = crypt_stat->metadata_size;
1165     order = get_order(virt_len);
1166     /* Released in this function */
1167     virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1168     if (!virt) {
1169         printk(KERN_ERR "%s: Out of memory\n", __func__);
1170         rc = -ENOMEM;
1171         goto out;
1172     }
1173     /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1174     rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1175                      ecryptfs_dentry);
1176     if (unlikely(rc)) {
1177         printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1178                __func__, rc);
1179         goto out_free;
1180     }
1181     if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1182         rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1183                               virt, size);
1184     else
1185         rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1186                              virt_len);
1187     if (rc) {
1188         printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1189                "rc = [%d]\n", __func__, rc);
1190         goto out_free;
1191     }
1192 out_free:
1193     free_pages((unsigned long)virt, order);
1194 out:
1195     return rc;
1196 }
1197 
1198 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1199 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1200 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1201                  char *virt, int *bytes_read,
1202                  int validate_header_size)
1203 {
1204     int rc = 0;
1205     u32 header_extent_size;
1206     u16 num_header_extents_at_front;
1207 
1208     header_extent_size = get_unaligned_be32(virt);
1209     virt += sizeof(__be32);
1210     num_header_extents_at_front = get_unaligned_be16(virt);
1211     crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1212                      * (size_t)header_extent_size));
1213     (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1214     if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1215         && (crypt_stat->metadata_size
1216         < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1217         rc = -EINVAL;
1218         printk(KERN_WARNING "Invalid header size: [%zd]\n",
1219                crypt_stat->metadata_size);
1220     }
1221     return rc;
1222 }
1223 
1224 /**
1225  * set_default_header_data
1226  * @crypt_stat: The cryptographic context
1227  *
1228  * For version 0 file format; this function is only for backwards
1229  * compatibility for files created with the prior versions of
1230  * eCryptfs.
1231  */
1232 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1233 {
1234     crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1235 }
1236 
1237 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1238 {
1239     struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1240     struct ecryptfs_crypt_stat *crypt_stat;
1241     u64 file_size;
1242 
1243     crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1244     mount_crypt_stat =
1245         &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1246     if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1247         file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1248         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1249             file_size += crypt_stat->metadata_size;
1250     } else
1251         file_size = get_unaligned_be64(page_virt);
1252     i_size_write(inode, (loff_t)file_size);
1253     crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1254 }
1255 
1256 /**
1257  * ecryptfs_read_headers_virt
1258  * @page_virt: The virtual address into which to read the headers
1259  * @crypt_stat: The cryptographic context
1260  * @ecryptfs_dentry: The eCryptfs dentry
1261  * @validate_header_size: Whether to validate the header size while reading
1262  *
1263  * Read/parse the header data. The header format is detailed in the
1264  * comment block for the ecryptfs_write_headers_virt() function.
1265  *
1266  * Returns zero on success
1267  */
1268 static int ecryptfs_read_headers_virt(char *page_virt,
1269                       struct ecryptfs_crypt_stat *crypt_stat,
1270                       struct dentry *ecryptfs_dentry,
1271                       int validate_header_size)
1272 {
1273     int rc = 0;
1274     int offset;
1275     int bytes_read;
1276 
1277     ecryptfs_set_default_sizes(crypt_stat);
1278     crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1279         ecryptfs_dentry->d_sb)->mount_crypt_stat;
1280     offset = ECRYPTFS_FILE_SIZE_BYTES;
1281     rc = ecryptfs_validate_marker(page_virt + offset);
1282     if (rc)
1283         goto out;
1284     if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1285         ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1286     offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1287     ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1288     if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1289         ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1290                 "file version [%d] is supported by this "
1291                 "version of eCryptfs\n",
1292                 crypt_stat->file_version,
1293                 ECRYPTFS_SUPPORTED_FILE_VERSION);
1294         rc = -EINVAL;
1295         goto out;
1296     }
1297     offset += bytes_read;
1298     if (crypt_stat->file_version >= 1) {
1299         rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1300                        &bytes_read, validate_header_size);
1301         if (rc) {
1302             ecryptfs_printk(KERN_WARNING, "Error reading header "
1303                     "metadata; rc = [%d]\n", rc);
1304         }
1305         offset += bytes_read;
1306     } else
1307         set_default_header_data(crypt_stat);
1308     rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1309                        ecryptfs_dentry);
1310 out:
1311     return rc;
1312 }
1313 
1314 /**
1315  * ecryptfs_read_xattr_region
1316  * @page_virt: The vitual address into which to read the xattr data
1317  * @ecryptfs_inode: The eCryptfs inode
1318  *
1319  * Attempts to read the crypto metadata from the extended attribute
1320  * region of the lower file.
1321  *
1322  * Returns zero on success; non-zero on error
1323  */
1324 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1325 {
1326     struct dentry *lower_dentry =
1327         ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1328     ssize_t size;
1329     int rc = 0;
1330 
1331     size = ecryptfs_getxattr_lower(lower_dentry,
1332                        ecryptfs_inode_to_lower(ecryptfs_inode),
1333                        ECRYPTFS_XATTR_NAME,
1334                        page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1335     if (size < 0) {
1336         if (unlikely(ecryptfs_verbosity > 0))
1337             printk(KERN_INFO "Error attempting to read the [%s] "
1338                    "xattr from the lower file; return value = "
1339                    "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1340         rc = -EINVAL;
1341         goto out;
1342     }
1343 out:
1344     return rc;
1345 }
1346 
1347 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1348                         struct inode *inode)
1349 {
1350     u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1351     u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1352     int rc;
1353 
1354     rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1355                      ecryptfs_inode_to_lower(inode),
1356                      ECRYPTFS_XATTR_NAME, file_size,
1357                      ECRYPTFS_SIZE_AND_MARKER_BYTES);
1358     if (rc < 0)
1359         return rc;
1360     else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1361         return -EINVAL;
1362     rc = ecryptfs_validate_marker(marker);
1363     if (!rc)
1364         ecryptfs_i_size_init(file_size, inode);
1365     return rc;
1366 }
1367 
1368 /*
1369  * ecryptfs_read_metadata
1370  *
1371  * Common entry point for reading file metadata. From here, we could
1372  * retrieve the header information from the header region of the file,
1373  * the xattr region of the file, or some other repository that is
1374  * stored separately from the file itself. The current implementation
1375  * supports retrieving the metadata information from the file contents
1376  * and from the xattr region.
1377  *
1378  * Returns zero if valid headers found and parsed; non-zero otherwise
1379  */
1380 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1381 {
1382     int rc;
1383     char *page_virt;
1384     struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1385     struct ecryptfs_crypt_stat *crypt_stat =
1386         &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1387     struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1388         &ecryptfs_superblock_to_private(
1389             ecryptfs_dentry->d_sb)->mount_crypt_stat;
1390 
1391     ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1392                               mount_crypt_stat);
1393     /* Read the first page from the underlying file */
1394     page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1395     if (!page_virt) {
1396         rc = -ENOMEM;
1397         goto out;
1398     }
1399     rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1400                  ecryptfs_inode);
1401     if (rc >= 0)
1402         rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1403                         ecryptfs_dentry,
1404                         ECRYPTFS_VALIDATE_HEADER_SIZE);
1405     if (rc) {
1406         /* metadata is not in the file header, so try xattrs */
1407         memset(page_virt, 0, PAGE_SIZE);
1408         rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1409         if (rc) {
1410             printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1411                    "file header region or xattr region, inode %lu\n",
1412                 ecryptfs_inode->i_ino);
1413             rc = -EINVAL;
1414             goto out;
1415         }
1416         rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1417                         ecryptfs_dentry,
1418                         ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1419         if (rc) {
1420             printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1421                    "file xattr region either, inode %lu\n",
1422                 ecryptfs_inode->i_ino);
1423             rc = -EINVAL;
1424         }
1425         if (crypt_stat->mount_crypt_stat->flags
1426             & ECRYPTFS_XATTR_METADATA_ENABLED) {
1427             crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1428         } else {
1429             printk(KERN_WARNING "Attempt to access file with "
1430                    "crypto metadata only in the extended attribute "
1431                    "region, but eCryptfs was mounted without "
1432                    "xattr support enabled. eCryptfs will not treat "
1433                    "this like an encrypted file, inode %lu\n",
1434                 ecryptfs_inode->i_ino);
1435             rc = -EINVAL;
1436         }
1437     }
1438 out:
1439     if (page_virt) {
1440         memset(page_virt, 0, PAGE_SIZE);
1441         kmem_cache_free(ecryptfs_header_cache, page_virt);
1442     }
1443     return rc;
1444 }
1445 
1446 /*
1447  * ecryptfs_encrypt_filename - encrypt filename
1448  *
1449  * CBC-encrypts the filename. We do not want to encrypt the same
1450  * filename with the same key and IV, which may happen with hard
1451  * links, so we prepend random bits to each filename.
1452  *
1453  * Returns zero on success; non-zero otherwise
1454  */
1455 static int
1456 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1457               struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1458 {
1459     int rc = 0;
1460 
1461     filename->encrypted_filename = NULL;
1462     filename->encrypted_filename_size = 0;
1463     if (mount_crypt_stat && (mount_crypt_stat->flags
1464                      & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1465         size_t packet_size;
1466         size_t remaining_bytes;
1467 
1468         rc = ecryptfs_write_tag_70_packet(
1469             NULL, NULL,
1470             &filename->encrypted_filename_size,
1471             mount_crypt_stat, NULL,
1472             filename->filename_size);
1473         if (rc) {
1474             printk(KERN_ERR "%s: Error attempting to get packet "
1475                    "size for tag 72; rc = [%d]\n", __func__,
1476                    rc);
1477             filename->encrypted_filename_size = 0;
1478             goto out;
1479         }
1480         filename->encrypted_filename =
1481             kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1482         if (!filename->encrypted_filename) {
1483             rc = -ENOMEM;
1484             goto out;
1485         }
1486         remaining_bytes = filename->encrypted_filename_size;
1487         rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1488                           &remaining_bytes,
1489                           &packet_size,
1490                           mount_crypt_stat,
1491                           filename->filename,
1492                           filename->filename_size);
1493         if (rc) {
1494             printk(KERN_ERR "%s: Error attempting to generate "
1495                    "tag 70 packet; rc = [%d]\n", __func__,
1496                    rc);
1497             kfree(filename->encrypted_filename);
1498             filename->encrypted_filename = NULL;
1499             filename->encrypted_filename_size = 0;
1500             goto out;
1501         }
1502         filename->encrypted_filename_size = packet_size;
1503     } else {
1504         printk(KERN_ERR "%s: No support for requested filename "
1505                "encryption method in this release\n", __func__);
1506         rc = -EOPNOTSUPP;
1507         goto out;
1508     }
1509 out:
1510     return rc;
1511 }
1512 
1513 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1514                   const char *name, size_t name_size)
1515 {
1516     int rc = 0;
1517 
1518     (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1519     if (!(*copied_name)) {
1520         rc = -ENOMEM;
1521         goto out;
1522     }
1523     memcpy((void *)(*copied_name), (void *)name, name_size);
1524     (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1525                          * in printing out the
1526                          * string in debug
1527                          * messages */
1528     (*copied_name_size) = name_size;
1529 out:
1530     return rc;
1531 }
1532 
1533 /**
1534  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1535  * @key_tfm: Crypto context for key material, set by this function
1536  * @cipher_name: Name of the cipher
1537  * @key_size: Size of the key in bytes
1538  *
1539  * Returns zero on success. Any crypto_tfm structs allocated here
1540  * should be released by other functions, such as on a superblock put
1541  * event, regardless of whether this function succeeds for fails.
1542  */
1543 static int
1544 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1545                 char *cipher_name, size_t *key_size)
1546 {
1547     char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1548     char *full_alg_name = NULL;
1549     int rc;
1550 
1551     *key_tfm = NULL;
1552     if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1553         rc = -EINVAL;
1554         printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1555               "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1556         goto out;
1557     }
1558     rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1559                             "ecb");
1560     if (rc)
1561         goto out;
1562     *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1563     if (IS_ERR(*key_tfm)) {
1564         rc = PTR_ERR(*key_tfm);
1565         printk(KERN_ERR "Unable to allocate crypto cipher with name "
1566                "[%s]; rc = [%d]\n", full_alg_name, rc);
1567         goto out;
1568     }
1569     crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1570     if (*key_size == 0)
1571         *key_size = crypto_skcipher_max_keysize(*key_tfm);
1572     get_random_bytes(dummy_key, *key_size);
1573     rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1574     if (rc) {
1575         printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1576                "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1577                rc);
1578         rc = -EINVAL;
1579         goto out;
1580     }
1581 out:
1582     kfree(full_alg_name);
1583     return rc;
1584 }
1585 
1586 struct kmem_cache *ecryptfs_key_tfm_cache;
1587 static struct list_head key_tfm_list;
1588 DEFINE_MUTEX(key_tfm_list_mutex);
1589 
1590 int __init ecryptfs_init_crypto(void)
1591 {
1592     INIT_LIST_HEAD(&key_tfm_list);
1593     return 0;
1594 }
1595 
1596 /**
1597  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1598  *
1599  * Called only at module unload time
1600  */
1601 int ecryptfs_destroy_crypto(void)
1602 {
1603     struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1604 
1605     mutex_lock(&key_tfm_list_mutex);
1606     list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1607                  key_tfm_list) {
1608         list_del(&key_tfm->key_tfm_list);
1609         crypto_free_skcipher(key_tfm->key_tfm);
1610         kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1611     }
1612     mutex_unlock(&key_tfm_list_mutex);
1613     return 0;
1614 }
1615 
1616 int
1617 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1618              size_t key_size)
1619 {
1620     struct ecryptfs_key_tfm *tmp_tfm;
1621     int rc = 0;
1622 
1623     BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1624 
1625     tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1626     if (key_tfm)
1627         (*key_tfm) = tmp_tfm;
1628     if (!tmp_tfm) {
1629         rc = -ENOMEM;
1630         goto out;
1631     }
1632     mutex_init(&tmp_tfm->key_tfm_mutex);
1633     strncpy(tmp_tfm->cipher_name, cipher_name,
1634         ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1635     tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1636     tmp_tfm->key_size = key_size;
1637     rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1638                      tmp_tfm->cipher_name,
1639                      &tmp_tfm->key_size);
1640     if (rc) {
1641         printk(KERN_ERR "Error attempting to initialize key TFM "
1642                "cipher with name = [%s]; rc = [%d]\n",
1643                tmp_tfm->cipher_name, rc);
1644         kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1645         if (key_tfm)
1646             (*key_tfm) = NULL;
1647         goto out;
1648     }
1649     list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1650 out:
1651     return rc;
1652 }
1653 
1654 /**
1655  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1656  * @cipher_name: the name of the cipher to search for
1657  * @key_tfm: set to corresponding tfm if found
1658  *
1659  * Searches for cached key_tfm matching @cipher_name
1660  * Must be called with &key_tfm_list_mutex held
1661  * Returns 1 if found, with @key_tfm set
1662  * Returns 0 if not found, with @key_tfm set to NULL
1663  */
1664 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1665 {
1666     struct ecryptfs_key_tfm *tmp_key_tfm;
1667 
1668     BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1669 
1670     list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1671         if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1672             if (key_tfm)
1673                 (*key_tfm) = tmp_key_tfm;
1674             return 1;
1675         }
1676     }
1677     if (key_tfm)
1678         (*key_tfm) = NULL;
1679     return 0;
1680 }
1681 
1682 /**
1683  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1684  *
1685  * @tfm: set to cached tfm found, or new tfm created
1686  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1687  * @cipher_name: the name of the cipher to search for and/or add
1688  *
1689  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1690  * Searches for cached item first, and creates new if not found.
1691  * Returns 0 on success, non-zero if adding new cipher failed
1692  */
1693 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1694                            struct mutex **tfm_mutex,
1695                            char *cipher_name)
1696 {
1697     struct ecryptfs_key_tfm *key_tfm;
1698     int rc = 0;
1699 
1700     (*tfm) = NULL;
1701     (*tfm_mutex) = NULL;
1702 
1703     mutex_lock(&key_tfm_list_mutex);
1704     if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1705         rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1706         if (rc) {
1707             printk(KERN_ERR "Error adding new key_tfm to list; "
1708                     "rc = [%d]\n", rc);
1709             goto out;
1710         }
1711     }
1712     (*tfm) = key_tfm->key_tfm;
1713     (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1714 out:
1715     mutex_unlock(&key_tfm_list_mutex);
1716     return rc;
1717 }
1718 
1719 /* 64 characters forming a 6-bit target field */
1720 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1721                          "EFGHIJKLMNOPQRST"
1722                          "UVWXYZabcdefghij"
1723                          "klmnopqrstuvwxyz");
1724 
1725 /* We could either offset on every reverse map or just pad some 0x00's
1726  * at the front here */
1727 static const unsigned char filename_rev_map[256] = {
1728     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1729     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1730     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1731     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1732     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1733     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1734     0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1735     0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1736     0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1737     0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1738     0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1739     0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1740     0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1741     0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1742     0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1743     0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1744 };
1745 
1746 /**
1747  * ecryptfs_encode_for_filename
1748  * @dst: Destination location for encoded filename
1749  * @dst_size: Size of the encoded filename in bytes
1750  * @src: Source location for the filename to encode
1751  * @src_size: Size of the source in bytes
1752  */
1753 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1754                   unsigned char *src, size_t src_size)
1755 {
1756     size_t num_blocks;
1757     size_t block_num = 0;
1758     size_t dst_offset = 0;
1759     unsigned char last_block[3];
1760 
1761     if (src_size == 0) {
1762         (*dst_size) = 0;
1763         goto out;
1764     }
1765     num_blocks = (src_size / 3);
1766     if ((src_size % 3) == 0) {
1767         memcpy(last_block, (&src[src_size - 3]), 3);
1768     } else {
1769         num_blocks++;
1770         last_block[2] = 0x00;
1771         switch (src_size % 3) {
1772         case 1:
1773             last_block[0] = src[src_size - 1];
1774             last_block[1] = 0x00;
1775             break;
1776         case 2:
1777             last_block[0] = src[src_size - 2];
1778             last_block[1] = src[src_size - 1];
1779         }
1780     }
1781     (*dst_size) = (num_blocks * 4);
1782     if (!dst)
1783         goto out;
1784     while (block_num < num_blocks) {
1785         unsigned char *src_block;
1786         unsigned char dst_block[4];
1787 
1788         if (block_num == (num_blocks - 1))
1789             src_block = last_block;
1790         else
1791             src_block = &src[block_num * 3];
1792         dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1793         dst_block[1] = (((src_block[0] << 4) & 0x30)
1794                 | ((src_block[1] >> 4) & 0x0F));
1795         dst_block[2] = (((src_block[1] << 2) & 0x3C)
1796                 | ((src_block[2] >> 6) & 0x03));
1797         dst_block[3] = (src_block[2] & 0x3F);
1798         dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1799         dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1800         dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1801         dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1802         block_num++;
1803     }
1804 out:
1805     return;
1806 }
1807 
1808 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1809 {
1810     /* Not exact; conservatively long. Every block of 4
1811      * encoded characters decodes into a block of 3
1812      * decoded characters. This segment of code provides
1813      * the caller with the maximum amount of allocated
1814      * space that @dst will need to point to in a
1815      * subsequent call. */
1816     return ((encoded_size + 1) * 3) / 4;
1817 }
1818 
1819 /**
1820  * ecryptfs_decode_from_filename
1821  * @dst: If NULL, this function only sets @dst_size and returns. If
1822  *       non-NULL, this function decodes the encoded octets in @src
1823  *       into the memory that @dst points to.
1824  * @dst_size: Set to the size of the decoded string.
1825  * @src: The encoded set of octets to decode.
1826  * @src_size: The size of the encoded set of octets to decode.
1827  */
1828 static void
1829 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1830                   const unsigned char *src, size_t src_size)
1831 {
1832     u8 current_bit_offset = 0;
1833     size_t src_byte_offset = 0;
1834     size_t dst_byte_offset = 0;
1835 
1836     if (!dst) {
1837         (*dst_size) = ecryptfs_max_decoded_size(src_size);
1838         goto out;
1839     }
1840     while (src_byte_offset < src_size) {
1841         unsigned char src_byte =
1842                 filename_rev_map[(int)src[src_byte_offset]];
1843 
1844         switch (current_bit_offset) {
1845         case 0:
1846             dst[dst_byte_offset] = (src_byte << 2);
1847             current_bit_offset = 6;
1848             break;
1849         case 6:
1850             dst[dst_byte_offset++] |= (src_byte >> 4);
1851             dst[dst_byte_offset] = ((src_byte & 0xF)
1852                          << 4);
1853             current_bit_offset = 4;
1854             break;
1855         case 4:
1856             dst[dst_byte_offset++] |= (src_byte >> 2);
1857             dst[dst_byte_offset] = (src_byte << 6);
1858             current_bit_offset = 2;
1859             break;
1860         case 2:
1861             dst[dst_byte_offset++] |= (src_byte);
1862             current_bit_offset = 0;
1863             break;
1864         }
1865         src_byte_offset++;
1866     }
1867     (*dst_size) = dst_byte_offset;
1868 out:
1869     return;
1870 }
1871 
1872 /**
1873  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1874  * @encoded_name: The encrypted name
1875  * @encoded_name_size: Length of the encrypted name
1876  * @mount_crypt_stat: The crypt_stat struct associated with the file name to encode
1877  * @name: The plaintext name
1878  * @name_size: The length of the plaintext name
1879  *
1880  * Encrypts and encodes a filename into something that constitutes a
1881  * valid filename for a filesystem, with printable characters.
1882  *
1883  * We assume that we have a properly initialized crypto context,
1884  * pointed to by crypt_stat->tfm.
1885  *
1886  * Returns zero on success; non-zero on otherwise
1887  */
1888 int ecryptfs_encrypt_and_encode_filename(
1889     char **encoded_name,
1890     size_t *encoded_name_size,
1891     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1892     const char *name, size_t name_size)
1893 {
1894     size_t encoded_name_no_prefix_size;
1895     int rc = 0;
1896 
1897     (*encoded_name) = NULL;
1898     (*encoded_name_size) = 0;
1899     if (mount_crypt_stat && (mount_crypt_stat->flags
1900                      & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1901         struct ecryptfs_filename *filename;
1902 
1903         filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1904         if (!filename) {
1905             rc = -ENOMEM;
1906             goto out;
1907         }
1908         filename->filename = (char *)name;
1909         filename->filename_size = name_size;
1910         rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1911         if (rc) {
1912             printk(KERN_ERR "%s: Error attempting to encrypt "
1913                    "filename; rc = [%d]\n", __func__, rc);
1914             kfree(filename);
1915             goto out;
1916         }
1917         ecryptfs_encode_for_filename(
1918             NULL, &encoded_name_no_prefix_size,
1919             filename->encrypted_filename,
1920             filename->encrypted_filename_size);
1921         if (mount_crypt_stat
1922             && (mount_crypt_stat->flags
1923                 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1924             (*encoded_name_size) =
1925                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1926                  + encoded_name_no_prefix_size);
1927         else
1928             (*encoded_name_size) =
1929                 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1930                  + encoded_name_no_prefix_size);
1931         (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1932         if (!(*encoded_name)) {
1933             rc = -ENOMEM;
1934             kfree(filename->encrypted_filename);
1935             kfree(filename);
1936             goto out;
1937         }
1938         if (mount_crypt_stat
1939             && (mount_crypt_stat->flags
1940                 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1941             memcpy((*encoded_name),
1942                    ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1943                    ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1944             ecryptfs_encode_for_filename(
1945                 ((*encoded_name)
1946                  + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1947                 &encoded_name_no_prefix_size,
1948                 filename->encrypted_filename,
1949                 filename->encrypted_filename_size);
1950             (*encoded_name_size) =
1951                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1952                  + encoded_name_no_prefix_size);
1953             (*encoded_name)[(*encoded_name_size)] = '\0';
1954         } else {
1955             rc = -EOPNOTSUPP;
1956         }
1957         if (rc) {
1958             printk(KERN_ERR "%s: Error attempting to encode "
1959                    "encrypted filename; rc = [%d]\n", __func__,
1960                    rc);
1961             kfree((*encoded_name));
1962             (*encoded_name) = NULL;
1963             (*encoded_name_size) = 0;
1964         }
1965         kfree(filename->encrypted_filename);
1966         kfree(filename);
1967     } else {
1968         rc = ecryptfs_copy_filename(encoded_name,
1969                         encoded_name_size,
1970                         name, name_size);
1971     }
1972 out:
1973     return rc;
1974 }
1975 
1976 static bool is_dot_dotdot(const char *name, size_t name_size)
1977 {
1978     if (name_size == 1 && name[0] == '.')
1979         return true;
1980     else if (name_size == 2 && name[0] == '.' && name[1] == '.')
1981         return true;
1982 
1983     return false;
1984 }
1985 
1986 /**
1987  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
1988  * @plaintext_name: The plaintext name
1989  * @plaintext_name_size: The plaintext name size
1990  * @sb: Ecryptfs's super_block
1991  * @name: The filename in cipher text
1992  * @name_size: The cipher text name size
1993  *
1994  * Decrypts and decodes the filename.
1995  *
1996  * Returns zero on error; non-zero otherwise
1997  */
1998 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
1999                      size_t *plaintext_name_size,
2000                      struct super_block *sb,
2001                      const char *name, size_t name_size)
2002 {
2003     struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2004         &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2005     char *decoded_name;
2006     size_t decoded_name_size;
2007     size_t packet_size;
2008     int rc = 0;
2009 
2010     if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2011         !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2012         if (is_dot_dotdot(name, name_size)) {
2013             rc = ecryptfs_copy_filename(plaintext_name,
2014                             plaintext_name_size,
2015                             name, name_size);
2016             goto out;
2017         }
2018 
2019         if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2020             strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2021                 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2022             rc = -EINVAL;
2023             goto out;
2024         }
2025 
2026         name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2027         name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2028         ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2029                           name, name_size);
2030         decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2031         if (!decoded_name) {
2032             rc = -ENOMEM;
2033             goto out;
2034         }
2035         ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2036                           name, name_size);
2037         rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2038                           plaintext_name_size,
2039                           &packet_size,
2040                           mount_crypt_stat,
2041                           decoded_name,
2042                           decoded_name_size);
2043         if (rc) {
2044             ecryptfs_printk(KERN_DEBUG,
2045                     "%s: Could not parse tag 70 packet from filename\n",
2046                     __func__);
2047             goto out_free;
2048         }
2049     } else {
2050         rc = ecryptfs_copy_filename(plaintext_name,
2051                         plaintext_name_size,
2052                         name, name_size);
2053         goto out;
2054     }
2055 out_free:
2056     kfree(decoded_name);
2057 out:
2058     return rc;
2059 }
2060 
2061 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16   143
2062 
2063 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2064                struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2065 {
2066     struct crypto_skcipher *tfm;
2067     struct mutex *tfm_mutex;
2068     size_t cipher_blocksize;
2069     int rc;
2070 
2071     if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2072         (*namelen) = lower_namelen;
2073         return 0;
2074     }
2075 
2076     rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2077             mount_crypt_stat->global_default_fn_cipher_name);
2078     if (unlikely(rc)) {
2079         (*namelen) = 0;
2080         return rc;
2081     }
2082 
2083     mutex_lock(tfm_mutex);
2084     cipher_blocksize = crypto_skcipher_blocksize(tfm);
2085     mutex_unlock(tfm_mutex);
2086 
2087     /* Return an exact amount for the common cases */
2088     if (lower_namelen == NAME_MAX
2089         && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2090         (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2091         return 0;
2092     }
2093 
2094     /* Return a safe estimate for the uncommon cases */
2095     (*namelen) = lower_namelen;
2096     (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2097     /* Since this is the max decoded size, subtract 1 "decoded block" len */
2098     (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2099     (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2100     (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2101     /* Worst case is that the filename is padded nearly a full block size */
2102     (*namelen) -= cipher_blocksize - 1;
2103 
2104     if ((*namelen) < 0)
2105         (*namelen) = 0;
2106 
2107     return 0;
2108 }