Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * fs/direct-io.c
0004  *
0005  * Copyright (C) 2002, Linus Torvalds.
0006  *
0007  * O_DIRECT
0008  *
0009  * 04Jul2002    Andrew Morton
0010  *      Initial version
0011  * 11Sep2002    janetinc@us.ibm.com
0012  *      added readv/writev support.
0013  * 29Oct2002    Andrew Morton
0014  *      rewrote bio_add_page() support.
0015  * 30Oct2002    pbadari@us.ibm.com
0016  *      added support for non-aligned IO.
0017  * 06Nov2002    pbadari@us.ibm.com
0018  *      added asynchronous IO support.
0019  * 21Jul2003    nathans@sgi.com
0020  *      added IO completion notifier.
0021  */
0022 
0023 #include <linux/kernel.h>
0024 #include <linux/module.h>
0025 #include <linux/types.h>
0026 #include <linux/fs.h>
0027 #include <linux/mm.h>
0028 #include <linux/slab.h>
0029 #include <linux/highmem.h>
0030 #include <linux/pagemap.h>
0031 #include <linux/task_io_accounting_ops.h>
0032 #include <linux/bio.h>
0033 #include <linux/wait.h>
0034 #include <linux/err.h>
0035 #include <linux/blkdev.h>
0036 #include <linux/buffer_head.h>
0037 #include <linux/rwsem.h>
0038 #include <linux/uio.h>
0039 #include <linux/atomic.h>
0040 #include <linux/prefetch.h>
0041 
0042 #include "internal.h"
0043 
0044 /*
0045  * How many user pages to map in one call to get_user_pages().  This determines
0046  * the size of a structure in the slab cache
0047  */
0048 #define DIO_PAGES   64
0049 
0050 /*
0051  * Flags for dio_complete()
0052  */
0053 #define DIO_COMPLETE_ASYNC      0x01    /* This is async IO */
0054 #define DIO_COMPLETE_INVALIDATE     0x02    /* Can invalidate pages */
0055 
0056 /*
0057  * This code generally works in units of "dio_blocks".  A dio_block is
0058  * somewhere between the hard sector size and the filesystem block size.  it
0059  * is determined on a per-invocation basis.   When talking to the filesystem
0060  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
0061  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
0062  * to bio_block quantities by shifting left by blkfactor.
0063  *
0064  * If blkfactor is zero then the user's request was aligned to the filesystem's
0065  * blocksize.
0066  */
0067 
0068 /* dio_state only used in the submission path */
0069 
0070 struct dio_submit {
0071     struct bio *bio;        /* bio under assembly */
0072     unsigned blkbits;       /* doesn't change */
0073     unsigned blkfactor;     /* When we're using an alignment which
0074                        is finer than the filesystem's soft
0075                        blocksize, this specifies how much
0076                        finer.  blkfactor=2 means 1/4-block
0077                        alignment.  Does not change */
0078     unsigned start_zero_done;   /* flag: sub-blocksize zeroing has
0079                        been performed at the start of a
0080                        write */
0081     int pages_in_io;        /* approximate total IO pages */
0082     sector_t block_in_file;     /* Current offset into the underlying
0083                        file in dio_block units. */
0084     unsigned blocks_available;  /* At block_in_file.  changes */
0085     int reap_counter;       /* rate limit reaping */
0086     sector_t final_block_in_request;/* doesn't change */
0087     int boundary;           /* prev block is at a boundary */
0088     get_block_t *get_block;     /* block mapping function */
0089     dio_submit_t *submit_io;    /* IO submition function */
0090 
0091     loff_t logical_offset_in_bio;   /* current first logical block in bio */
0092     sector_t final_block_in_bio;    /* current final block in bio + 1 */
0093     sector_t next_block_for_io; /* next block to be put under IO,
0094                        in dio_blocks units */
0095 
0096     /*
0097      * Deferred addition of a page to the dio.  These variables are
0098      * private to dio_send_cur_page(), submit_page_section() and
0099      * dio_bio_add_page().
0100      */
0101     struct page *cur_page;      /* The page */
0102     unsigned cur_page_offset;   /* Offset into it, in bytes */
0103     unsigned cur_page_len;      /* Nr of bytes at cur_page_offset */
0104     sector_t cur_page_block;    /* Where it starts */
0105     loff_t cur_page_fs_offset;  /* Offset in file */
0106 
0107     struct iov_iter *iter;
0108     /*
0109      * Page queue.  These variables belong to dio_refill_pages() and
0110      * dio_get_page().
0111      */
0112     unsigned head;          /* next page to process */
0113     unsigned tail;          /* last valid page + 1 */
0114     size_t from, to;
0115 };
0116 
0117 /* dio_state communicated between submission path and end_io */
0118 struct dio {
0119     int flags;          /* doesn't change */
0120     blk_opf_t opf;          /* request operation type and flags */
0121     struct gendisk *bio_disk;
0122     struct inode *inode;
0123     loff_t i_size;          /* i_size when submitted */
0124     dio_iodone_t *end_io;       /* IO completion function */
0125 
0126     void *private;          /* copy from map_bh.b_private */
0127 
0128     /* BIO completion state */
0129     spinlock_t bio_lock;        /* protects BIO fields below */
0130     int page_errors;        /* errno from get_user_pages() */
0131     int is_async;           /* is IO async ? */
0132     bool defer_completion;      /* defer AIO completion to workqueue? */
0133     bool should_dirty;      /* if pages should be dirtied */
0134     int io_error;           /* IO error in completion path */
0135     unsigned long refcount;     /* direct_io_worker() and bios */
0136     struct bio *bio_list;       /* singly linked via bi_private */
0137     struct task_struct *waiter; /* waiting task (NULL if none) */
0138 
0139     /* AIO related stuff */
0140     struct kiocb *iocb;     /* kiocb */
0141     ssize_t result;                 /* IO result */
0142 
0143     /*
0144      * pages[] (and any fields placed after it) are not zeroed out at
0145      * allocation time.  Don't add new fields after pages[] unless you
0146      * wish that they not be zeroed.
0147      */
0148     union {
0149         struct page *pages[DIO_PAGES];  /* page buffer */
0150         struct work_struct complete_work;/* deferred AIO completion */
0151     };
0152 } ____cacheline_aligned_in_smp;
0153 
0154 static struct kmem_cache *dio_cache __read_mostly;
0155 
0156 /*
0157  * How many pages are in the queue?
0158  */
0159 static inline unsigned dio_pages_present(struct dio_submit *sdio)
0160 {
0161     return sdio->tail - sdio->head;
0162 }
0163 
0164 /*
0165  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
0166  */
0167 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
0168 {
0169     const enum req_op dio_op = dio->opf & REQ_OP_MASK;
0170     ssize_t ret;
0171 
0172     ret = iov_iter_get_pages2(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
0173                 &sdio->from);
0174 
0175     if (ret < 0 && sdio->blocks_available && dio_op == REQ_OP_WRITE) {
0176         struct page *page = ZERO_PAGE(0);
0177         /*
0178          * A memory fault, but the filesystem has some outstanding
0179          * mapped blocks.  We need to use those blocks up to avoid
0180          * leaking stale data in the file.
0181          */
0182         if (dio->page_errors == 0)
0183             dio->page_errors = ret;
0184         get_page(page);
0185         dio->pages[0] = page;
0186         sdio->head = 0;
0187         sdio->tail = 1;
0188         sdio->from = 0;
0189         sdio->to = PAGE_SIZE;
0190         return 0;
0191     }
0192 
0193     if (ret >= 0) {
0194         ret += sdio->from;
0195         sdio->head = 0;
0196         sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
0197         sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
0198         return 0;
0199     }
0200     return ret; 
0201 }
0202 
0203 /*
0204  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
0205  * buffered inside the dio so that we can call get_user_pages() against a
0206  * decent number of pages, less frequently.  To provide nicer use of the
0207  * L1 cache.
0208  */
0209 static inline struct page *dio_get_page(struct dio *dio,
0210                     struct dio_submit *sdio)
0211 {
0212     if (dio_pages_present(sdio) == 0) {
0213         int ret;
0214 
0215         ret = dio_refill_pages(dio, sdio);
0216         if (ret)
0217             return ERR_PTR(ret);
0218         BUG_ON(dio_pages_present(sdio) == 0);
0219     }
0220     return dio->pages[sdio->head];
0221 }
0222 
0223 /*
0224  * dio_complete() - called when all DIO BIO I/O has been completed
0225  *
0226  * This drops i_dio_count, lets interested parties know that a DIO operation
0227  * has completed, and calculates the resulting return code for the operation.
0228  *
0229  * It lets the filesystem know if it registered an interest earlier via
0230  * get_block.  Pass the private field of the map buffer_head so that
0231  * filesystems can use it to hold additional state between get_block calls and
0232  * dio_complete.
0233  */
0234 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
0235 {
0236     const enum req_op dio_op = dio->opf & REQ_OP_MASK;
0237     loff_t offset = dio->iocb->ki_pos;
0238     ssize_t transferred = 0;
0239     int err;
0240 
0241     /*
0242      * AIO submission can race with bio completion to get here while
0243      * expecting to have the last io completed by bio completion.
0244      * In that case -EIOCBQUEUED is in fact not an error we want
0245      * to preserve through this call.
0246      */
0247     if (ret == -EIOCBQUEUED)
0248         ret = 0;
0249 
0250     if (dio->result) {
0251         transferred = dio->result;
0252 
0253         /* Check for short read case */
0254         if (dio_op == REQ_OP_READ &&
0255             ((offset + transferred) > dio->i_size))
0256             transferred = dio->i_size - offset;
0257         /* ignore EFAULT if some IO has been done */
0258         if (unlikely(ret == -EFAULT) && transferred)
0259             ret = 0;
0260     }
0261 
0262     if (ret == 0)
0263         ret = dio->page_errors;
0264     if (ret == 0)
0265         ret = dio->io_error;
0266     if (ret == 0)
0267         ret = transferred;
0268 
0269     if (dio->end_io) {
0270         // XXX: ki_pos??
0271         err = dio->end_io(dio->iocb, offset, ret, dio->private);
0272         if (err)
0273             ret = err;
0274     }
0275 
0276     /*
0277      * Try again to invalidate clean pages which might have been cached by
0278      * non-direct readahead, or faulted in by get_user_pages() if the source
0279      * of the write was an mmap'ed region of the file we're writing.  Either
0280      * one is a pretty crazy thing to do, so we don't support it 100%.  If
0281      * this invalidation fails, tough, the write still worked...
0282      *
0283      * And this page cache invalidation has to be after dio->end_io(), as
0284      * some filesystems convert unwritten extents to real allocations in
0285      * end_io() when necessary, otherwise a racing buffer read would cache
0286      * zeros from unwritten extents.
0287      */
0288     if (flags & DIO_COMPLETE_INVALIDATE &&
0289         ret > 0 && dio_op == REQ_OP_WRITE &&
0290         dio->inode->i_mapping->nrpages) {
0291         err = invalidate_inode_pages2_range(dio->inode->i_mapping,
0292                     offset >> PAGE_SHIFT,
0293                     (offset + ret - 1) >> PAGE_SHIFT);
0294         if (err)
0295             dio_warn_stale_pagecache(dio->iocb->ki_filp);
0296     }
0297 
0298     inode_dio_end(dio->inode);
0299 
0300     if (flags & DIO_COMPLETE_ASYNC) {
0301         /*
0302          * generic_write_sync expects ki_pos to have been updated
0303          * already, but the submission path only does this for
0304          * synchronous I/O.
0305          */
0306         dio->iocb->ki_pos += transferred;
0307 
0308         if (ret > 0 && dio_op == REQ_OP_WRITE)
0309             ret = generic_write_sync(dio->iocb, ret);
0310         dio->iocb->ki_complete(dio->iocb, ret);
0311     }
0312 
0313     kmem_cache_free(dio_cache, dio);
0314     return ret;
0315 }
0316 
0317 static void dio_aio_complete_work(struct work_struct *work)
0318 {
0319     struct dio *dio = container_of(work, struct dio, complete_work);
0320 
0321     dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
0322 }
0323 
0324 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
0325 
0326 /*
0327  * Asynchronous IO callback. 
0328  */
0329 static void dio_bio_end_aio(struct bio *bio)
0330 {
0331     struct dio *dio = bio->bi_private;
0332     const enum req_op dio_op = dio->opf & REQ_OP_MASK;
0333     unsigned long remaining;
0334     unsigned long flags;
0335     bool defer_completion = false;
0336 
0337     /* cleanup the bio */
0338     dio_bio_complete(dio, bio);
0339 
0340     spin_lock_irqsave(&dio->bio_lock, flags);
0341     remaining = --dio->refcount;
0342     if (remaining == 1 && dio->waiter)
0343         wake_up_process(dio->waiter);
0344     spin_unlock_irqrestore(&dio->bio_lock, flags);
0345 
0346     if (remaining == 0) {
0347         /*
0348          * Defer completion when defer_completion is set or
0349          * when the inode has pages mapped and this is AIO write.
0350          * We need to invalidate those pages because there is a
0351          * chance they contain stale data in the case buffered IO
0352          * went in between AIO submission and completion into the
0353          * same region.
0354          */
0355         if (dio->result)
0356             defer_completion = dio->defer_completion ||
0357                        (dio_op == REQ_OP_WRITE &&
0358                         dio->inode->i_mapping->nrpages);
0359         if (defer_completion) {
0360             INIT_WORK(&dio->complete_work, dio_aio_complete_work);
0361             queue_work(dio->inode->i_sb->s_dio_done_wq,
0362                    &dio->complete_work);
0363         } else {
0364             dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
0365         }
0366     }
0367 }
0368 
0369 /*
0370  * The BIO completion handler simply queues the BIO up for the process-context
0371  * handler.
0372  *
0373  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
0374  * implement a singly-linked list of completed BIOs, at dio->bio_list.
0375  */
0376 static void dio_bio_end_io(struct bio *bio)
0377 {
0378     struct dio *dio = bio->bi_private;
0379     unsigned long flags;
0380 
0381     spin_lock_irqsave(&dio->bio_lock, flags);
0382     bio->bi_private = dio->bio_list;
0383     dio->bio_list = bio;
0384     if (--dio->refcount == 1 && dio->waiter)
0385         wake_up_process(dio->waiter);
0386     spin_unlock_irqrestore(&dio->bio_lock, flags);
0387 }
0388 
0389 static inline void
0390 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
0391           struct block_device *bdev,
0392           sector_t first_sector, int nr_vecs)
0393 {
0394     struct bio *bio;
0395 
0396     /*
0397      * bio_alloc() is guaranteed to return a bio when allowed to sleep and
0398      * we request a valid number of vectors.
0399      */
0400     bio = bio_alloc(bdev, nr_vecs, dio->opf, GFP_KERNEL);
0401     bio->bi_iter.bi_sector = first_sector;
0402     if (dio->is_async)
0403         bio->bi_end_io = dio_bio_end_aio;
0404     else
0405         bio->bi_end_io = dio_bio_end_io;
0406     sdio->bio = bio;
0407     sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
0408 }
0409 
0410 /*
0411  * In the AIO read case we speculatively dirty the pages before starting IO.
0412  * During IO completion, any of these pages which happen to have been written
0413  * back will be redirtied by bio_check_pages_dirty().
0414  *
0415  * bios hold a dio reference between submit_bio and ->end_io.
0416  */
0417 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
0418 {
0419     const enum req_op dio_op = dio->opf & REQ_OP_MASK;
0420     struct bio *bio = sdio->bio;
0421     unsigned long flags;
0422 
0423     bio->bi_private = dio;
0424     /* don't account direct I/O as memory stall */
0425     bio_clear_flag(bio, BIO_WORKINGSET);
0426 
0427     spin_lock_irqsave(&dio->bio_lock, flags);
0428     dio->refcount++;
0429     spin_unlock_irqrestore(&dio->bio_lock, flags);
0430 
0431     if (dio->is_async && dio_op == REQ_OP_READ && dio->should_dirty)
0432         bio_set_pages_dirty(bio);
0433 
0434     dio->bio_disk = bio->bi_bdev->bd_disk;
0435 
0436     if (sdio->submit_io)
0437         sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
0438     else
0439         submit_bio(bio);
0440 
0441     sdio->bio = NULL;
0442     sdio->boundary = 0;
0443     sdio->logical_offset_in_bio = 0;
0444 }
0445 
0446 /*
0447  * Release any resources in case of a failure
0448  */
0449 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
0450 {
0451     while (sdio->head < sdio->tail)
0452         put_page(dio->pages[sdio->head++]);
0453 }
0454 
0455 /*
0456  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
0457  * returned once all BIOs have been completed.  This must only be called once
0458  * all bios have been issued so that dio->refcount can only decrease.  This
0459  * requires that the caller hold a reference on the dio.
0460  */
0461 static struct bio *dio_await_one(struct dio *dio)
0462 {
0463     unsigned long flags;
0464     struct bio *bio = NULL;
0465 
0466     spin_lock_irqsave(&dio->bio_lock, flags);
0467 
0468     /*
0469      * Wait as long as the list is empty and there are bios in flight.  bio
0470      * completion drops the count, maybe adds to the list, and wakes while
0471      * holding the bio_lock so we don't need set_current_state()'s barrier
0472      * and can call it after testing our condition.
0473      */
0474     while (dio->refcount > 1 && dio->bio_list == NULL) {
0475         __set_current_state(TASK_UNINTERRUPTIBLE);
0476         dio->waiter = current;
0477         spin_unlock_irqrestore(&dio->bio_lock, flags);
0478         blk_io_schedule();
0479         /* wake up sets us TASK_RUNNING */
0480         spin_lock_irqsave(&dio->bio_lock, flags);
0481         dio->waiter = NULL;
0482     }
0483     if (dio->bio_list) {
0484         bio = dio->bio_list;
0485         dio->bio_list = bio->bi_private;
0486     }
0487     spin_unlock_irqrestore(&dio->bio_lock, flags);
0488     return bio;
0489 }
0490 
0491 /*
0492  * Process one completed BIO.  No locks are held.
0493  */
0494 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
0495 {
0496     blk_status_t err = bio->bi_status;
0497     const enum req_op dio_op = dio->opf & REQ_OP_MASK;
0498     bool should_dirty = dio_op == REQ_OP_READ && dio->should_dirty;
0499 
0500     if (err) {
0501         if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
0502             dio->io_error = -EAGAIN;
0503         else
0504             dio->io_error = -EIO;
0505     }
0506 
0507     if (dio->is_async && should_dirty) {
0508         bio_check_pages_dirty(bio); /* transfers ownership */
0509     } else {
0510         bio_release_pages(bio, should_dirty);
0511         bio_put(bio);
0512     }
0513     return err;
0514 }
0515 
0516 /*
0517  * Wait on and process all in-flight BIOs.  This must only be called once
0518  * all bios have been issued so that the refcount can only decrease.
0519  * This just waits for all bios to make it through dio_bio_complete.  IO
0520  * errors are propagated through dio->io_error and should be propagated via
0521  * dio_complete().
0522  */
0523 static void dio_await_completion(struct dio *dio)
0524 {
0525     struct bio *bio;
0526     do {
0527         bio = dio_await_one(dio);
0528         if (bio)
0529             dio_bio_complete(dio, bio);
0530     } while (bio);
0531 }
0532 
0533 /*
0534  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
0535  * to keep the memory consumption sane we periodically reap any completed BIOs
0536  * during the BIO generation phase.
0537  *
0538  * This also helps to limit the peak amount of pinned userspace memory.
0539  */
0540 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
0541 {
0542     int ret = 0;
0543 
0544     if (sdio->reap_counter++ >= 64) {
0545         while (dio->bio_list) {
0546             unsigned long flags;
0547             struct bio *bio;
0548             int ret2;
0549 
0550             spin_lock_irqsave(&dio->bio_lock, flags);
0551             bio = dio->bio_list;
0552             dio->bio_list = bio->bi_private;
0553             spin_unlock_irqrestore(&dio->bio_lock, flags);
0554             ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
0555             if (ret == 0)
0556                 ret = ret2;
0557         }
0558         sdio->reap_counter = 0;
0559     }
0560     return ret;
0561 }
0562 
0563 /*
0564  * Create workqueue for deferred direct IO completions. We allocate the
0565  * workqueue when it's first needed. This avoids creating workqueue for
0566  * filesystems that don't need it and also allows us to create the workqueue
0567  * late enough so the we can include s_id in the name of the workqueue.
0568  */
0569 int sb_init_dio_done_wq(struct super_block *sb)
0570 {
0571     struct workqueue_struct *old;
0572     struct workqueue_struct *wq = alloc_workqueue("dio/%s",
0573                               WQ_MEM_RECLAIM, 0,
0574                               sb->s_id);
0575     if (!wq)
0576         return -ENOMEM;
0577     /*
0578      * This has to be atomic as more DIOs can race to create the workqueue
0579      */
0580     old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
0581     /* Someone created workqueue before us? Free ours... */
0582     if (old)
0583         destroy_workqueue(wq);
0584     return 0;
0585 }
0586 
0587 static int dio_set_defer_completion(struct dio *dio)
0588 {
0589     struct super_block *sb = dio->inode->i_sb;
0590 
0591     if (dio->defer_completion)
0592         return 0;
0593     dio->defer_completion = true;
0594     if (!sb->s_dio_done_wq)
0595         return sb_init_dio_done_wq(sb);
0596     return 0;
0597 }
0598 
0599 /*
0600  * Call into the fs to map some more disk blocks.  We record the current number
0601  * of available blocks at sdio->blocks_available.  These are in units of the
0602  * fs blocksize, i_blocksize(inode).
0603  *
0604  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
0605  * it uses the passed inode-relative block number as the file offset, as usual.
0606  *
0607  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
0608  * has remaining to do.  The fs should not map more than this number of blocks.
0609  *
0610  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
0611  * indicate how much contiguous disk space has been made available at
0612  * bh->b_blocknr.
0613  *
0614  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
0615  * This isn't very efficient...
0616  *
0617  * In the case of filesystem holes: the fs may return an arbitrarily-large
0618  * hole by returning an appropriate value in b_size and by clearing
0619  * buffer_mapped().  However the direct-io code will only process holes one
0620  * block at a time - it will repeatedly call get_block() as it walks the hole.
0621  */
0622 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
0623                struct buffer_head *map_bh)
0624 {
0625     const enum req_op dio_op = dio->opf & REQ_OP_MASK;
0626     int ret;
0627     sector_t fs_startblk;   /* Into file, in filesystem-sized blocks */
0628     sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
0629     unsigned long fs_count; /* Number of filesystem-sized blocks */
0630     int create;
0631     unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
0632     loff_t i_size;
0633 
0634     /*
0635      * If there was a memory error and we've overwritten all the
0636      * mapped blocks then we can now return that memory error
0637      */
0638     ret = dio->page_errors;
0639     if (ret == 0) {
0640         BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
0641         fs_startblk = sdio->block_in_file >> sdio->blkfactor;
0642         fs_endblk = (sdio->final_block_in_request - 1) >>
0643                     sdio->blkfactor;
0644         fs_count = fs_endblk - fs_startblk + 1;
0645 
0646         map_bh->b_state = 0;
0647         map_bh->b_size = fs_count << i_blkbits;
0648 
0649         /*
0650          * For writes that could fill holes inside i_size on a
0651          * DIO_SKIP_HOLES filesystem we forbid block creations: only
0652          * overwrites are permitted. We will return early to the caller
0653          * once we see an unmapped buffer head returned, and the caller
0654          * will fall back to buffered I/O.
0655          *
0656          * Otherwise the decision is left to the get_blocks method,
0657          * which may decide to handle it or also return an unmapped
0658          * buffer head.
0659          */
0660         create = dio_op == REQ_OP_WRITE;
0661         if (dio->flags & DIO_SKIP_HOLES) {
0662             i_size = i_size_read(dio->inode);
0663             if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
0664                 create = 0;
0665         }
0666 
0667         ret = (*sdio->get_block)(dio->inode, fs_startblk,
0668                         map_bh, create);
0669 
0670         /* Store for completion */
0671         dio->private = map_bh->b_private;
0672 
0673         if (ret == 0 && buffer_defer_completion(map_bh))
0674             ret = dio_set_defer_completion(dio);
0675     }
0676     return ret;
0677 }
0678 
0679 /*
0680  * There is no bio.  Make one now.
0681  */
0682 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
0683         sector_t start_sector, struct buffer_head *map_bh)
0684 {
0685     sector_t sector;
0686     int ret, nr_pages;
0687 
0688     ret = dio_bio_reap(dio, sdio);
0689     if (ret)
0690         goto out;
0691     sector = start_sector << (sdio->blkbits - 9);
0692     nr_pages = bio_max_segs(sdio->pages_in_io);
0693     BUG_ON(nr_pages <= 0);
0694     dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
0695     sdio->boundary = 0;
0696 out:
0697     return ret;
0698 }
0699 
0700 /*
0701  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
0702  * that was successful then update final_block_in_bio and take a ref against
0703  * the just-added page.
0704  *
0705  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
0706  */
0707 static inline int dio_bio_add_page(struct dio_submit *sdio)
0708 {
0709     int ret;
0710 
0711     ret = bio_add_page(sdio->bio, sdio->cur_page,
0712             sdio->cur_page_len, sdio->cur_page_offset);
0713     if (ret == sdio->cur_page_len) {
0714         /*
0715          * Decrement count only, if we are done with this page
0716          */
0717         if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
0718             sdio->pages_in_io--;
0719         get_page(sdio->cur_page);
0720         sdio->final_block_in_bio = sdio->cur_page_block +
0721             (sdio->cur_page_len >> sdio->blkbits);
0722         ret = 0;
0723     } else {
0724         ret = 1;
0725     }
0726     return ret;
0727 }
0728         
0729 /*
0730  * Put cur_page under IO.  The section of cur_page which is described by
0731  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
0732  * starts on-disk at cur_page_block.
0733  *
0734  * We take a ref against the page here (on behalf of its presence in the bio).
0735  *
0736  * The caller of this function is responsible for removing cur_page from the
0737  * dio, and for dropping the refcount which came from that presence.
0738  */
0739 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
0740         struct buffer_head *map_bh)
0741 {
0742     int ret = 0;
0743 
0744     if (sdio->bio) {
0745         loff_t cur_offset = sdio->cur_page_fs_offset;
0746         loff_t bio_next_offset = sdio->logical_offset_in_bio +
0747             sdio->bio->bi_iter.bi_size;
0748 
0749         /*
0750          * See whether this new request is contiguous with the old.
0751          *
0752          * Btrfs cannot handle having logically non-contiguous requests
0753          * submitted.  For example if you have
0754          *
0755          * Logical:  [0-4095][HOLE][8192-12287]
0756          * Physical: [0-4095]      [4096-8191]
0757          *
0758          * We cannot submit those pages together as one BIO.  So if our
0759          * current logical offset in the file does not equal what would
0760          * be the next logical offset in the bio, submit the bio we
0761          * have.
0762          */
0763         if (sdio->final_block_in_bio != sdio->cur_page_block ||
0764             cur_offset != bio_next_offset)
0765             dio_bio_submit(dio, sdio);
0766     }
0767 
0768     if (sdio->bio == NULL) {
0769         ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
0770         if (ret)
0771             goto out;
0772     }
0773 
0774     if (dio_bio_add_page(sdio) != 0) {
0775         dio_bio_submit(dio, sdio);
0776         ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
0777         if (ret == 0) {
0778             ret = dio_bio_add_page(sdio);
0779             BUG_ON(ret != 0);
0780         }
0781     }
0782 out:
0783     return ret;
0784 }
0785 
0786 /*
0787  * An autonomous function to put a chunk of a page under deferred IO.
0788  *
0789  * The caller doesn't actually know (or care) whether this piece of page is in
0790  * a BIO, or is under IO or whatever.  We just take care of all possible 
0791  * situations here.  The separation between the logic of do_direct_IO() and
0792  * that of submit_page_section() is important for clarity.  Please don't break.
0793  *
0794  * The chunk of page starts on-disk at blocknr.
0795  *
0796  * We perform deferred IO, by recording the last-submitted page inside our
0797  * private part of the dio structure.  If possible, we just expand the IO
0798  * across that page here.
0799  *
0800  * If that doesn't work out then we put the old page into the bio and add this
0801  * page to the dio instead.
0802  */
0803 static inline int
0804 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
0805             unsigned offset, unsigned len, sector_t blocknr,
0806             struct buffer_head *map_bh)
0807 {
0808     const enum req_op dio_op = dio->opf & REQ_OP_MASK;
0809     int ret = 0;
0810     int boundary = sdio->boundary;  /* dio_send_cur_page may clear it */
0811 
0812     if (dio_op == REQ_OP_WRITE) {
0813         /*
0814          * Read accounting is performed in submit_bio()
0815          */
0816         task_io_account_write(len);
0817     }
0818 
0819     /*
0820      * Can we just grow the current page's presence in the dio?
0821      */
0822     if (sdio->cur_page == page &&
0823         sdio->cur_page_offset + sdio->cur_page_len == offset &&
0824         sdio->cur_page_block +
0825         (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
0826         sdio->cur_page_len += len;
0827         goto out;
0828     }
0829 
0830     /*
0831      * If there's a deferred page already there then send it.
0832      */
0833     if (sdio->cur_page) {
0834         ret = dio_send_cur_page(dio, sdio, map_bh);
0835         put_page(sdio->cur_page);
0836         sdio->cur_page = NULL;
0837         if (ret)
0838             return ret;
0839     }
0840 
0841     get_page(page);     /* It is in dio */
0842     sdio->cur_page = page;
0843     sdio->cur_page_offset = offset;
0844     sdio->cur_page_len = len;
0845     sdio->cur_page_block = blocknr;
0846     sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
0847 out:
0848     /*
0849      * If boundary then we want to schedule the IO now to
0850      * avoid metadata seeks.
0851      */
0852     if (boundary) {
0853         ret = dio_send_cur_page(dio, sdio, map_bh);
0854         if (sdio->bio)
0855             dio_bio_submit(dio, sdio);
0856         put_page(sdio->cur_page);
0857         sdio->cur_page = NULL;
0858     }
0859     return ret;
0860 }
0861 
0862 /*
0863  * If we are not writing the entire block and get_block() allocated
0864  * the block for us, we need to fill-in the unused portion of the
0865  * block with zeros. This happens only if user-buffer, fileoffset or
0866  * io length is not filesystem block-size multiple.
0867  *
0868  * `end' is zero if we're doing the start of the IO, 1 at the end of the
0869  * IO.
0870  */
0871 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
0872         int end, struct buffer_head *map_bh)
0873 {
0874     unsigned dio_blocks_per_fs_block;
0875     unsigned this_chunk_blocks; /* In dio_blocks */
0876     unsigned this_chunk_bytes;
0877     struct page *page;
0878 
0879     sdio->start_zero_done = 1;
0880     if (!sdio->blkfactor || !buffer_new(map_bh))
0881         return;
0882 
0883     dio_blocks_per_fs_block = 1 << sdio->blkfactor;
0884     this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
0885 
0886     if (!this_chunk_blocks)
0887         return;
0888 
0889     /*
0890      * We need to zero out part of an fs block.  It is either at the
0891      * beginning or the end of the fs block.
0892      */
0893     if (end) 
0894         this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
0895 
0896     this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
0897 
0898     page = ZERO_PAGE(0);
0899     if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
0900                 sdio->next_block_for_io, map_bh))
0901         return;
0902 
0903     sdio->next_block_for_io += this_chunk_blocks;
0904 }
0905 
0906 /*
0907  * Walk the user pages, and the file, mapping blocks to disk and generating
0908  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
0909  * into submit_page_section(), which takes care of the next stage of submission
0910  *
0911  * Direct IO against a blockdev is different from a file.  Because we can
0912  * happily perform page-sized but 512-byte aligned IOs.  It is important that
0913  * blockdev IO be able to have fine alignment and large sizes.
0914  *
0915  * So what we do is to permit the ->get_block function to populate bh.b_size
0916  * with the size of IO which is permitted at this offset and this i_blkbits.
0917  *
0918  * For best results, the blockdev should be set up with 512-byte i_blkbits and
0919  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
0920  * fine alignment but still allows this function to work in PAGE_SIZE units.
0921  */
0922 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
0923             struct buffer_head *map_bh)
0924 {
0925     const enum req_op dio_op = dio->opf & REQ_OP_MASK;
0926     const unsigned blkbits = sdio->blkbits;
0927     const unsigned i_blkbits = blkbits + sdio->blkfactor;
0928     int ret = 0;
0929 
0930     while (sdio->block_in_file < sdio->final_block_in_request) {
0931         struct page *page;
0932         size_t from, to;
0933 
0934         page = dio_get_page(dio, sdio);
0935         if (IS_ERR(page)) {
0936             ret = PTR_ERR(page);
0937             goto out;
0938         }
0939         from = sdio->head ? 0 : sdio->from;
0940         to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
0941         sdio->head++;
0942 
0943         while (from < to) {
0944             unsigned this_chunk_bytes;  /* # of bytes mapped */
0945             unsigned this_chunk_blocks; /* # of blocks */
0946             unsigned u;
0947 
0948             if (sdio->blocks_available == 0) {
0949                 /*
0950                  * Need to go and map some more disk
0951                  */
0952                 unsigned long blkmask;
0953                 unsigned long dio_remainder;
0954 
0955                 ret = get_more_blocks(dio, sdio, map_bh);
0956                 if (ret) {
0957                     put_page(page);
0958                     goto out;
0959                 }
0960                 if (!buffer_mapped(map_bh))
0961                     goto do_holes;
0962 
0963                 sdio->blocks_available =
0964                         map_bh->b_size >> blkbits;
0965                 sdio->next_block_for_io =
0966                     map_bh->b_blocknr << sdio->blkfactor;
0967                 if (buffer_new(map_bh)) {
0968                     clean_bdev_aliases(
0969                         map_bh->b_bdev,
0970                         map_bh->b_blocknr,
0971                         map_bh->b_size >> i_blkbits);
0972                 }
0973 
0974                 if (!sdio->blkfactor)
0975                     goto do_holes;
0976 
0977                 blkmask = (1 << sdio->blkfactor) - 1;
0978                 dio_remainder = (sdio->block_in_file & blkmask);
0979 
0980                 /*
0981                  * If we are at the start of IO and that IO
0982                  * starts partway into a fs-block,
0983                  * dio_remainder will be non-zero.  If the IO
0984                  * is a read then we can simply advance the IO
0985                  * cursor to the first block which is to be
0986                  * read.  But if the IO is a write and the
0987                  * block was newly allocated we cannot do that;
0988                  * the start of the fs block must be zeroed out
0989                  * on-disk
0990                  */
0991                 if (!buffer_new(map_bh))
0992                     sdio->next_block_for_io += dio_remainder;
0993                 sdio->blocks_available -= dio_remainder;
0994             }
0995 do_holes:
0996             /* Handle holes */
0997             if (!buffer_mapped(map_bh)) {
0998                 loff_t i_size_aligned;
0999 
1000                 /* AKPM: eargh, -ENOTBLK is a hack */
1001                 if (dio_op == REQ_OP_WRITE) {
1002                     put_page(page);
1003                     return -ENOTBLK;
1004                 }
1005 
1006                 /*
1007                  * Be sure to account for a partial block as the
1008                  * last block in the file
1009                  */
1010                 i_size_aligned = ALIGN(i_size_read(dio->inode),
1011                             1 << blkbits);
1012                 if (sdio->block_in_file >=
1013                         i_size_aligned >> blkbits) {
1014                     /* We hit eof */
1015                     put_page(page);
1016                     goto out;
1017                 }
1018                 zero_user(page, from, 1 << blkbits);
1019                 sdio->block_in_file++;
1020                 from += 1 << blkbits;
1021                 dio->result += 1 << blkbits;
1022                 goto next_block;
1023             }
1024 
1025             /*
1026              * If we're performing IO which has an alignment which
1027              * is finer than the underlying fs, go check to see if
1028              * we must zero out the start of this block.
1029              */
1030             if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1031                 dio_zero_block(dio, sdio, 0, map_bh);
1032 
1033             /*
1034              * Work out, in this_chunk_blocks, how much disk we
1035              * can add to this page
1036              */
1037             this_chunk_blocks = sdio->blocks_available;
1038             u = (to - from) >> blkbits;
1039             if (this_chunk_blocks > u)
1040                 this_chunk_blocks = u;
1041             u = sdio->final_block_in_request - sdio->block_in_file;
1042             if (this_chunk_blocks > u)
1043                 this_chunk_blocks = u;
1044             this_chunk_bytes = this_chunk_blocks << blkbits;
1045             BUG_ON(this_chunk_bytes == 0);
1046 
1047             if (this_chunk_blocks == sdio->blocks_available)
1048                 sdio->boundary = buffer_boundary(map_bh);
1049             ret = submit_page_section(dio, sdio, page,
1050                           from,
1051                           this_chunk_bytes,
1052                           sdio->next_block_for_io,
1053                           map_bh);
1054             if (ret) {
1055                 put_page(page);
1056                 goto out;
1057             }
1058             sdio->next_block_for_io += this_chunk_blocks;
1059 
1060             sdio->block_in_file += this_chunk_blocks;
1061             from += this_chunk_bytes;
1062             dio->result += this_chunk_bytes;
1063             sdio->blocks_available -= this_chunk_blocks;
1064 next_block:
1065             BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1066             if (sdio->block_in_file == sdio->final_block_in_request)
1067                 break;
1068         }
1069 
1070         /* Drop the ref which was taken in get_user_pages() */
1071         put_page(page);
1072     }
1073 out:
1074     return ret;
1075 }
1076 
1077 static inline int drop_refcount(struct dio *dio)
1078 {
1079     int ret2;
1080     unsigned long flags;
1081 
1082     /*
1083      * Sync will always be dropping the final ref and completing the
1084      * operation.  AIO can if it was a broken operation described above or
1085      * in fact if all the bios race to complete before we get here.  In
1086      * that case dio_complete() translates the EIOCBQUEUED into the proper
1087      * return code that the caller will hand to ->complete().
1088      *
1089      * This is managed by the bio_lock instead of being an atomic_t so that
1090      * completion paths can drop their ref and use the remaining count to
1091      * decide to wake the submission path atomically.
1092      */
1093     spin_lock_irqsave(&dio->bio_lock, flags);
1094     ret2 = --dio->refcount;
1095     spin_unlock_irqrestore(&dio->bio_lock, flags);
1096     return ret2;
1097 }
1098 
1099 /*
1100  * This is a library function for use by filesystem drivers.
1101  *
1102  * The locking rules are governed by the flags parameter:
1103  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1104  *    scheme for dumb filesystems.
1105  *    For writes this function is called under i_mutex and returns with
1106  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1107  *    taken and dropped again before returning.
1108  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1109  *    internal locking but rather rely on the filesystem to synchronize
1110  *    direct I/O reads/writes versus each other and truncate.
1111  *
1112  * To help with locking against truncate we incremented the i_dio_count
1113  * counter before starting direct I/O, and decrement it once we are done.
1114  * Truncate can wait for it to reach zero to provide exclusion.  It is
1115  * expected that filesystem provide exclusion between new direct I/O
1116  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1117  * but other filesystems need to take care of this on their own.
1118  *
1119  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1120  * is always inlined. Otherwise gcc is unable to split the structure into
1121  * individual fields and will generate much worse code. This is important
1122  * for the whole file.
1123  */
1124 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1125         struct block_device *bdev, struct iov_iter *iter,
1126         get_block_t get_block, dio_iodone_t end_io,
1127         dio_submit_t submit_io, int flags)
1128 {
1129     unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1130     unsigned blkbits = i_blkbits;
1131     unsigned blocksize_mask = (1 << blkbits) - 1;
1132     ssize_t retval = -EINVAL;
1133     const size_t count = iov_iter_count(iter);
1134     loff_t offset = iocb->ki_pos;
1135     const loff_t end = offset + count;
1136     struct dio *dio;
1137     struct dio_submit sdio = { 0, };
1138     struct buffer_head map_bh = { 0, };
1139     struct blk_plug plug;
1140     unsigned long align = offset | iov_iter_alignment(iter);
1141 
1142     /*
1143      * Avoid references to bdev if not absolutely needed to give
1144      * the early prefetch in the caller enough time.
1145      */
1146 
1147     /* watch out for a 0 len io from a tricksy fs */
1148     if (iov_iter_rw(iter) == READ && !count)
1149         return 0;
1150 
1151     dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1152     if (!dio)
1153         return -ENOMEM;
1154     /*
1155      * Believe it or not, zeroing out the page array caused a .5%
1156      * performance regression in a database benchmark.  So, we take
1157      * care to only zero out what's needed.
1158      */
1159     memset(dio, 0, offsetof(struct dio, pages));
1160 
1161     dio->flags = flags;
1162     if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1163         /* will be released by direct_io_worker */
1164         inode_lock(inode);
1165     }
1166 
1167     /* Once we sampled i_size check for reads beyond EOF */
1168     dio->i_size = i_size_read(inode);
1169     if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1170         retval = 0;
1171         goto fail_dio;
1172     }
1173 
1174     if (align & blocksize_mask) {
1175         if (bdev)
1176             blkbits = blksize_bits(bdev_logical_block_size(bdev));
1177         blocksize_mask = (1 << blkbits) - 1;
1178         if (align & blocksize_mask)
1179             goto fail_dio;
1180     }
1181 
1182     if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1183         struct address_space *mapping = iocb->ki_filp->f_mapping;
1184 
1185         retval = filemap_write_and_wait_range(mapping, offset, end - 1);
1186         if (retval)
1187             goto fail_dio;
1188     }
1189 
1190     /*
1191      * For file extending writes updating i_size before data writeouts
1192      * complete can expose uninitialized blocks in dumb filesystems.
1193      * In that case we need to wait for I/O completion even if asked
1194      * for an asynchronous write.
1195      */
1196     if (is_sync_kiocb(iocb))
1197         dio->is_async = false;
1198     else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1199         dio->is_async = false;
1200     else
1201         dio->is_async = true;
1202 
1203     dio->inode = inode;
1204     if (iov_iter_rw(iter) == WRITE) {
1205         dio->opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1206         if (iocb->ki_flags & IOCB_NOWAIT)
1207             dio->opf |= REQ_NOWAIT;
1208     } else {
1209         dio->opf = REQ_OP_READ;
1210     }
1211 
1212     /*
1213      * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1214      * so that we can call ->fsync.
1215      */
1216     if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1217         retval = 0;
1218         if (iocb_is_dsync(iocb))
1219             retval = dio_set_defer_completion(dio);
1220         else if (!dio->inode->i_sb->s_dio_done_wq) {
1221             /*
1222              * In case of AIO write racing with buffered read we
1223              * need to defer completion. We can't decide this now,
1224              * however the workqueue needs to be initialized here.
1225              */
1226             retval = sb_init_dio_done_wq(dio->inode->i_sb);
1227         }
1228         if (retval)
1229             goto fail_dio;
1230     }
1231 
1232     /*
1233      * Will be decremented at I/O completion time.
1234      */
1235     inode_dio_begin(inode);
1236 
1237     retval = 0;
1238     sdio.blkbits = blkbits;
1239     sdio.blkfactor = i_blkbits - blkbits;
1240     sdio.block_in_file = offset >> blkbits;
1241 
1242     sdio.get_block = get_block;
1243     dio->end_io = end_io;
1244     sdio.submit_io = submit_io;
1245     sdio.final_block_in_bio = -1;
1246     sdio.next_block_for_io = -1;
1247 
1248     dio->iocb = iocb;
1249 
1250     spin_lock_init(&dio->bio_lock);
1251     dio->refcount = 1;
1252 
1253     dio->should_dirty = user_backed_iter(iter) && iov_iter_rw(iter) == READ;
1254     sdio.iter = iter;
1255     sdio.final_block_in_request = end >> blkbits;
1256 
1257     /*
1258      * In case of non-aligned buffers, we may need 2 more
1259      * pages since we need to zero out first and last block.
1260      */
1261     if (unlikely(sdio.blkfactor))
1262         sdio.pages_in_io = 2;
1263 
1264     sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1265 
1266     blk_start_plug(&plug);
1267 
1268     retval = do_direct_IO(dio, &sdio, &map_bh);
1269     if (retval)
1270         dio_cleanup(dio, &sdio);
1271 
1272     if (retval == -ENOTBLK) {
1273         /*
1274          * The remaining part of the request will be
1275          * handled by buffered I/O when we return
1276          */
1277         retval = 0;
1278     }
1279     /*
1280      * There may be some unwritten disk at the end of a part-written
1281      * fs-block-sized block.  Go zero that now.
1282      */
1283     dio_zero_block(dio, &sdio, 1, &map_bh);
1284 
1285     if (sdio.cur_page) {
1286         ssize_t ret2;
1287 
1288         ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1289         if (retval == 0)
1290             retval = ret2;
1291         put_page(sdio.cur_page);
1292         sdio.cur_page = NULL;
1293     }
1294     if (sdio.bio)
1295         dio_bio_submit(dio, &sdio);
1296 
1297     blk_finish_plug(&plug);
1298 
1299     /*
1300      * It is possible that, we return short IO due to end of file.
1301      * In that case, we need to release all the pages we got hold on.
1302      */
1303     dio_cleanup(dio, &sdio);
1304 
1305     /*
1306      * All block lookups have been performed. For READ requests
1307      * we can let i_mutex go now that its achieved its purpose
1308      * of protecting us from looking up uninitialized blocks.
1309      */
1310     if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1311         inode_unlock(dio->inode);
1312 
1313     /*
1314      * The only time we want to leave bios in flight is when a successful
1315      * partial aio read or full aio write have been setup.  In that case
1316      * bio completion will call aio_complete.  The only time it's safe to
1317      * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1318      * This had *better* be the only place that raises -EIOCBQUEUED.
1319      */
1320     BUG_ON(retval == -EIOCBQUEUED);
1321     if (dio->is_async && retval == 0 && dio->result &&
1322         (iov_iter_rw(iter) == READ || dio->result == count))
1323         retval = -EIOCBQUEUED;
1324     else
1325         dio_await_completion(dio);
1326 
1327     if (drop_refcount(dio) == 0) {
1328         retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1329     } else
1330         BUG_ON(retval != -EIOCBQUEUED);
1331 
1332     return retval;
1333 
1334 fail_dio:
1335     if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
1336         inode_unlock(inode);
1337 
1338     kmem_cache_free(dio_cache, dio);
1339     return retval;
1340 }
1341 EXPORT_SYMBOL(__blockdev_direct_IO);
1342 
1343 static __init int dio_init(void)
1344 {
1345     dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1346     return 0;
1347 }
1348 module_init(dio_init)