Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * fs/dcache.c
0004  *
0005  * Complete reimplementation
0006  * (C) 1997 Thomas Schoebel-Theuer,
0007  * with heavy changes by Linus Torvalds
0008  */
0009 
0010 /*
0011  * Notes on the allocation strategy:
0012  *
0013  * The dcache is a master of the icache - whenever a dcache entry
0014  * exists, the inode will always exist. "iput()" is done either when
0015  * the dcache entry is deleted or garbage collected.
0016  */
0017 
0018 #include <linux/ratelimit.h>
0019 #include <linux/string.h>
0020 #include <linux/mm.h>
0021 #include <linux/fs.h>
0022 #include <linux/fscrypt.h>
0023 #include <linux/fsnotify.h>
0024 #include <linux/slab.h>
0025 #include <linux/init.h>
0026 #include <linux/hash.h>
0027 #include <linux/cache.h>
0028 #include <linux/export.h>
0029 #include <linux/security.h>
0030 #include <linux/seqlock.h>
0031 #include <linux/memblock.h>
0032 #include <linux/bit_spinlock.h>
0033 #include <linux/rculist_bl.h>
0034 #include <linux/list_lru.h>
0035 #include "internal.h"
0036 #include "mount.h"
0037 
0038 /*
0039  * Usage:
0040  * dcache->d_inode->i_lock protects:
0041  *   - i_dentry, d_u.d_alias, d_inode of aliases
0042  * dcache_hash_bucket lock protects:
0043  *   - the dcache hash table
0044  * s_roots bl list spinlock protects:
0045  *   - the s_roots list (see __d_drop)
0046  * dentry->d_sb->s_dentry_lru_lock protects:
0047  *   - the dcache lru lists and counters
0048  * d_lock protects:
0049  *   - d_flags
0050  *   - d_name
0051  *   - d_lru
0052  *   - d_count
0053  *   - d_unhashed()
0054  *   - d_parent and d_subdirs
0055  *   - childrens' d_child and d_parent
0056  *   - d_u.d_alias, d_inode
0057  *
0058  * Ordering:
0059  * dentry->d_inode->i_lock
0060  *   dentry->d_lock
0061  *     dentry->d_sb->s_dentry_lru_lock
0062  *     dcache_hash_bucket lock
0063  *     s_roots lock
0064  *
0065  * If there is an ancestor relationship:
0066  * dentry->d_parent->...->d_parent->d_lock
0067  *   ...
0068  *     dentry->d_parent->d_lock
0069  *       dentry->d_lock
0070  *
0071  * If no ancestor relationship:
0072  * arbitrary, since it's serialized on rename_lock
0073  */
0074 int sysctl_vfs_cache_pressure __read_mostly = 100;
0075 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
0076 
0077 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
0078 
0079 EXPORT_SYMBOL(rename_lock);
0080 
0081 static struct kmem_cache *dentry_cache __read_mostly;
0082 
0083 const struct qstr empty_name = QSTR_INIT("", 0);
0084 EXPORT_SYMBOL(empty_name);
0085 const struct qstr slash_name = QSTR_INIT("/", 1);
0086 EXPORT_SYMBOL(slash_name);
0087 const struct qstr dotdot_name = QSTR_INIT("..", 2);
0088 EXPORT_SYMBOL(dotdot_name);
0089 
0090 /*
0091  * This is the single most critical data structure when it comes
0092  * to the dcache: the hashtable for lookups. Somebody should try
0093  * to make this good - I've just made it work.
0094  *
0095  * This hash-function tries to avoid losing too many bits of hash
0096  * information, yet avoid using a prime hash-size or similar.
0097  */
0098 
0099 static unsigned int d_hash_shift __read_mostly;
0100 
0101 static struct hlist_bl_head *dentry_hashtable __read_mostly;
0102 
0103 static inline struct hlist_bl_head *d_hash(unsigned int hash)
0104 {
0105     return dentry_hashtable + (hash >> d_hash_shift);
0106 }
0107 
0108 #define IN_LOOKUP_SHIFT 10
0109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
0110 
0111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
0112                     unsigned int hash)
0113 {
0114     hash += (unsigned long) parent / L1_CACHE_BYTES;
0115     return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
0116 }
0117 
0118 struct dentry_stat_t {
0119     long nr_dentry;
0120     long nr_unused;
0121     long age_limit;     /* age in seconds */
0122     long want_pages;    /* pages requested by system */
0123     long nr_negative;   /* # of unused negative dentries */
0124     long dummy;     /* Reserved for future use */
0125 };
0126 
0127 static DEFINE_PER_CPU(long, nr_dentry);
0128 static DEFINE_PER_CPU(long, nr_dentry_unused);
0129 static DEFINE_PER_CPU(long, nr_dentry_negative);
0130 
0131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
0132 /* Statistics gathering. */
0133 static struct dentry_stat_t dentry_stat = {
0134     .age_limit = 45,
0135 };
0136 
0137 /*
0138  * Here we resort to our own counters instead of using generic per-cpu counters
0139  * for consistency with what the vfs inode code does. We are expected to harvest
0140  * better code and performance by having our own specialized counters.
0141  *
0142  * Please note that the loop is done over all possible CPUs, not over all online
0143  * CPUs. The reason for this is that we don't want to play games with CPUs going
0144  * on and off. If one of them goes off, we will just keep their counters.
0145  *
0146  * glommer: See cffbc8a for details, and if you ever intend to change this,
0147  * please update all vfs counters to match.
0148  */
0149 static long get_nr_dentry(void)
0150 {
0151     int i;
0152     long sum = 0;
0153     for_each_possible_cpu(i)
0154         sum += per_cpu(nr_dentry, i);
0155     return sum < 0 ? 0 : sum;
0156 }
0157 
0158 static long get_nr_dentry_unused(void)
0159 {
0160     int i;
0161     long sum = 0;
0162     for_each_possible_cpu(i)
0163         sum += per_cpu(nr_dentry_unused, i);
0164     return sum < 0 ? 0 : sum;
0165 }
0166 
0167 static long get_nr_dentry_negative(void)
0168 {
0169     int i;
0170     long sum = 0;
0171 
0172     for_each_possible_cpu(i)
0173         sum += per_cpu(nr_dentry_negative, i);
0174     return sum < 0 ? 0 : sum;
0175 }
0176 
0177 static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
0178               size_t *lenp, loff_t *ppos)
0179 {
0180     dentry_stat.nr_dentry = get_nr_dentry();
0181     dentry_stat.nr_unused = get_nr_dentry_unused();
0182     dentry_stat.nr_negative = get_nr_dentry_negative();
0183     return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
0184 }
0185 
0186 static struct ctl_table fs_dcache_sysctls[] = {
0187     {
0188         .procname   = "dentry-state",
0189         .data       = &dentry_stat,
0190         .maxlen     = 6*sizeof(long),
0191         .mode       = 0444,
0192         .proc_handler   = proc_nr_dentry,
0193     },
0194     { }
0195 };
0196 
0197 static int __init init_fs_dcache_sysctls(void)
0198 {
0199     register_sysctl_init("fs", fs_dcache_sysctls);
0200     return 0;
0201 }
0202 fs_initcall(init_fs_dcache_sysctls);
0203 #endif
0204 
0205 /*
0206  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
0207  * The strings are both count bytes long, and count is non-zero.
0208  */
0209 #ifdef CONFIG_DCACHE_WORD_ACCESS
0210 
0211 #include <asm/word-at-a-time.h>
0212 /*
0213  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
0214  * aligned allocation for this particular component. We don't
0215  * strictly need the load_unaligned_zeropad() safety, but it
0216  * doesn't hurt either.
0217  *
0218  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
0219  * need the careful unaligned handling.
0220  */
0221 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
0222 {
0223     unsigned long a,b,mask;
0224 
0225     for (;;) {
0226         a = read_word_at_a_time(cs);
0227         b = load_unaligned_zeropad(ct);
0228         if (tcount < sizeof(unsigned long))
0229             break;
0230         if (unlikely(a != b))
0231             return 1;
0232         cs += sizeof(unsigned long);
0233         ct += sizeof(unsigned long);
0234         tcount -= sizeof(unsigned long);
0235         if (!tcount)
0236             return 0;
0237     }
0238     mask = bytemask_from_count(tcount);
0239     return unlikely(!!((a ^ b) & mask));
0240 }
0241 
0242 #else
0243 
0244 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
0245 {
0246     do {
0247         if (*cs != *ct)
0248             return 1;
0249         cs++;
0250         ct++;
0251         tcount--;
0252     } while (tcount);
0253     return 0;
0254 }
0255 
0256 #endif
0257 
0258 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
0259 {
0260     /*
0261      * Be careful about RCU walk racing with rename:
0262      * use 'READ_ONCE' to fetch the name pointer.
0263      *
0264      * NOTE! Even if a rename will mean that the length
0265      * was not loaded atomically, we don't care. The
0266      * RCU walk will check the sequence count eventually,
0267      * and catch it. And we won't overrun the buffer,
0268      * because we're reading the name pointer atomically,
0269      * and a dentry name is guaranteed to be properly
0270      * terminated with a NUL byte.
0271      *
0272      * End result: even if 'len' is wrong, we'll exit
0273      * early because the data cannot match (there can
0274      * be no NUL in the ct/tcount data)
0275      */
0276     const unsigned char *cs = READ_ONCE(dentry->d_name.name);
0277 
0278     return dentry_string_cmp(cs, ct, tcount);
0279 }
0280 
0281 struct external_name {
0282     union {
0283         atomic_t count;
0284         struct rcu_head head;
0285     } u;
0286     unsigned char name[];
0287 };
0288 
0289 static inline struct external_name *external_name(struct dentry *dentry)
0290 {
0291     return container_of(dentry->d_name.name, struct external_name, name[0]);
0292 }
0293 
0294 static void __d_free(struct rcu_head *head)
0295 {
0296     struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
0297 
0298     kmem_cache_free(dentry_cache, dentry); 
0299 }
0300 
0301 static void __d_free_external(struct rcu_head *head)
0302 {
0303     struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
0304     kfree(external_name(dentry));
0305     kmem_cache_free(dentry_cache, dentry);
0306 }
0307 
0308 static inline int dname_external(const struct dentry *dentry)
0309 {
0310     return dentry->d_name.name != dentry->d_iname;
0311 }
0312 
0313 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
0314 {
0315     spin_lock(&dentry->d_lock);
0316     name->name = dentry->d_name;
0317     if (unlikely(dname_external(dentry))) {
0318         atomic_inc(&external_name(dentry)->u.count);
0319     } else {
0320         memcpy(name->inline_name, dentry->d_iname,
0321                dentry->d_name.len + 1);
0322         name->name.name = name->inline_name;
0323     }
0324     spin_unlock(&dentry->d_lock);
0325 }
0326 EXPORT_SYMBOL(take_dentry_name_snapshot);
0327 
0328 void release_dentry_name_snapshot(struct name_snapshot *name)
0329 {
0330     if (unlikely(name->name.name != name->inline_name)) {
0331         struct external_name *p;
0332         p = container_of(name->name.name, struct external_name, name[0]);
0333         if (unlikely(atomic_dec_and_test(&p->u.count)))
0334             kfree_rcu(p, u.head);
0335     }
0336 }
0337 EXPORT_SYMBOL(release_dentry_name_snapshot);
0338 
0339 static inline void __d_set_inode_and_type(struct dentry *dentry,
0340                       struct inode *inode,
0341                       unsigned type_flags)
0342 {
0343     unsigned flags;
0344 
0345     dentry->d_inode = inode;
0346     flags = READ_ONCE(dentry->d_flags);
0347     flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
0348     flags |= type_flags;
0349     smp_store_release(&dentry->d_flags, flags);
0350 }
0351 
0352 static inline void __d_clear_type_and_inode(struct dentry *dentry)
0353 {
0354     unsigned flags = READ_ONCE(dentry->d_flags);
0355 
0356     flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
0357     WRITE_ONCE(dentry->d_flags, flags);
0358     dentry->d_inode = NULL;
0359     if (dentry->d_flags & DCACHE_LRU_LIST)
0360         this_cpu_inc(nr_dentry_negative);
0361 }
0362 
0363 static void dentry_free(struct dentry *dentry)
0364 {
0365     WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
0366     if (unlikely(dname_external(dentry))) {
0367         struct external_name *p = external_name(dentry);
0368         if (likely(atomic_dec_and_test(&p->u.count))) {
0369             call_rcu(&dentry->d_u.d_rcu, __d_free_external);
0370             return;
0371         }
0372     }
0373     /* if dentry was never visible to RCU, immediate free is OK */
0374     if (dentry->d_flags & DCACHE_NORCU)
0375         __d_free(&dentry->d_u.d_rcu);
0376     else
0377         call_rcu(&dentry->d_u.d_rcu, __d_free);
0378 }
0379 
0380 /*
0381  * Release the dentry's inode, using the filesystem
0382  * d_iput() operation if defined.
0383  */
0384 static void dentry_unlink_inode(struct dentry * dentry)
0385     __releases(dentry->d_lock)
0386     __releases(dentry->d_inode->i_lock)
0387 {
0388     struct inode *inode = dentry->d_inode;
0389 
0390     raw_write_seqcount_begin(&dentry->d_seq);
0391     __d_clear_type_and_inode(dentry);
0392     hlist_del_init(&dentry->d_u.d_alias);
0393     raw_write_seqcount_end(&dentry->d_seq);
0394     spin_unlock(&dentry->d_lock);
0395     spin_unlock(&inode->i_lock);
0396     if (!inode->i_nlink)
0397         fsnotify_inoderemove(inode);
0398     if (dentry->d_op && dentry->d_op->d_iput)
0399         dentry->d_op->d_iput(dentry, inode);
0400     else
0401         iput(inode);
0402 }
0403 
0404 /*
0405  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
0406  * is in use - which includes both the "real" per-superblock
0407  * LRU list _and_ the DCACHE_SHRINK_LIST use.
0408  *
0409  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
0410  * on the shrink list (ie not on the superblock LRU list).
0411  *
0412  * The per-cpu "nr_dentry_unused" counters are updated with
0413  * the DCACHE_LRU_LIST bit.
0414  *
0415  * The per-cpu "nr_dentry_negative" counters are only updated
0416  * when deleted from or added to the per-superblock LRU list, not
0417  * from/to the shrink list. That is to avoid an unneeded dec/inc
0418  * pair when moving from LRU to shrink list in select_collect().
0419  *
0420  * These helper functions make sure we always follow the
0421  * rules. d_lock must be held by the caller.
0422  */
0423 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
0424 static void d_lru_add(struct dentry *dentry)
0425 {
0426     D_FLAG_VERIFY(dentry, 0);
0427     dentry->d_flags |= DCACHE_LRU_LIST;
0428     this_cpu_inc(nr_dentry_unused);
0429     if (d_is_negative(dentry))
0430         this_cpu_inc(nr_dentry_negative);
0431     WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
0432 }
0433 
0434 static void d_lru_del(struct dentry *dentry)
0435 {
0436     D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
0437     dentry->d_flags &= ~DCACHE_LRU_LIST;
0438     this_cpu_dec(nr_dentry_unused);
0439     if (d_is_negative(dentry))
0440         this_cpu_dec(nr_dentry_negative);
0441     WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
0442 }
0443 
0444 static void d_shrink_del(struct dentry *dentry)
0445 {
0446     D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
0447     list_del_init(&dentry->d_lru);
0448     dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
0449     this_cpu_dec(nr_dentry_unused);
0450 }
0451 
0452 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
0453 {
0454     D_FLAG_VERIFY(dentry, 0);
0455     list_add(&dentry->d_lru, list);
0456     dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
0457     this_cpu_inc(nr_dentry_unused);
0458 }
0459 
0460 /*
0461  * These can only be called under the global LRU lock, ie during the
0462  * callback for freeing the LRU list. "isolate" removes it from the
0463  * LRU lists entirely, while shrink_move moves it to the indicated
0464  * private list.
0465  */
0466 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
0467 {
0468     D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
0469     dentry->d_flags &= ~DCACHE_LRU_LIST;
0470     this_cpu_dec(nr_dentry_unused);
0471     if (d_is_negative(dentry))
0472         this_cpu_dec(nr_dentry_negative);
0473     list_lru_isolate(lru, &dentry->d_lru);
0474 }
0475 
0476 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
0477                   struct list_head *list)
0478 {
0479     D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
0480     dentry->d_flags |= DCACHE_SHRINK_LIST;
0481     if (d_is_negative(dentry))
0482         this_cpu_dec(nr_dentry_negative);
0483     list_lru_isolate_move(lru, &dentry->d_lru, list);
0484 }
0485 
0486 static void ___d_drop(struct dentry *dentry)
0487 {
0488     struct hlist_bl_head *b;
0489     /*
0490      * Hashed dentries are normally on the dentry hashtable,
0491      * with the exception of those newly allocated by
0492      * d_obtain_root, which are always IS_ROOT:
0493      */
0494     if (unlikely(IS_ROOT(dentry)))
0495         b = &dentry->d_sb->s_roots;
0496     else
0497         b = d_hash(dentry->d_name.hash);
0498 
0499     hlist_bl_lock(b);
0500     __hlist_bl_del(&dentry->d_hash);
0501     hlist_bl_unlock(b);
0502 }
0503 
0504 void __d_drop(struct dentry *dentry)
0505 {
0506     if (!d_unhashed(dentry)) {
0507         ___d_drop(dentry);
0508         dentry->d_hash.pprev = NULL;
0509         write_seqcount_invalidate(&dentry->d_seq);
0510     }
0511 }
0512 EXPORT_SYMBOL(__d_drop);
0513 
0514 /**
0515  * d_drop - drop a dentry
0516  * @dentry: dentry to drop
0517  *
0518  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
0519  * be found through a VFS lookup any more. Note that this is different from
0520  * deleting the dentry - d_delete will try to mark the dentry negative if
0521  * possible, giving a successful _negative_ lookup, while d_drop will
0522  * just make the cache lookup fail.
0523  *
0524  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
0525  * reason (NFS timeouts or autofs deletes).
0526  *
0527  * __d_drop requires dentry->d_lock
0528  *
0529  * ___d_drop doesn't mark dentry as "unhashed"
0530  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
0531  */
0532 void d_drop(struct dentry *dentry)
0533 {
0534     spin_lock(&dentry->d_lock);
0535     __d_drop(dentry);
0536     spin_unlock(&dentry->d_lock);
0537 }
0538 EXPORT_SYMBOL(d_drop);
0539 
0540 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
0541 {
0542     struct dentry *next;
0543     /*
0544      * Inform d_walk() and shrink_dentry_list() that we are no longer
0545      * attached to the dentry tree
0546      */
0547     dentry->d_flags |= DCACHE_DENTRY_KILLED;
0548     if (unlikely(list_empty(&dentry->d_child)))
0549         return;
0550     __list_del_entry(&dentry->d_child);
0551     /*
0552      * Cursors can move around the list of children.  While we'd been
0553      * a normal list member, it didn't matter - ->d_child.next would've
0554      * been updated.  However, from now on it won't be and for the
0555      * things like d_walk() it might end up with a nasty surprise.
0556      * Normally d_walk() doesn't care about cursors moving around -
0557      * ->d_lock on parent prevents that and since a cursor has no children
0558      * of its own, we get through it without ever unlocking the parent.
0559      * There is one exception, though - if we ascend from a child that
0560      * gets killed as soon as we unlock it, the next sibling is found
0561      * using the value left in its ->d_child.next.  And if _that_
0562      * pointed to a cursor, and cursor got moved (e.g. by lseek())
0563      * before d_walk() regains parent->d_lock, we'll end up skipping
0564      * everything the cursor had been moved past.
0565      *
0566      * Solution: make sure that the pointer left behind in ->d_child.next
0567      * points to something that won't be moving around.  I.e. skip the
0568      * cursors.
0569      */
0570     while (dentry->d_child.next != &parent->d_subdirs) {
0571         next = list_entry(dentry->d_child.next, struct dentry, d_child);
0572         if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
0573             break;
0574         dentry->d_child.next = next->d_child.next;
0575     }
0576 }
0577 
0578 static void __dentry_kill(struct dentry *dentry)
0579 {
0580     struct dentry *parent = NULL;
0581     bool can_free = true;
0582     if (!IS_ROOT(dentry))
0583         parent = dentry->d_parent;
0584 
0585     /*
0586      * The dentry is now unrecoverably dead to the world.
0587      */
0588     lockref_mark_dead(&dentry->d_lockref);
0589 
0590     /*
0591      * inform the fs via d_prune that this dentry is about to be
0592      * unhashed and destroyed.
0593      */
0594     if (dentry->d_flags & DCACHE_OP_PRUNE)
0595         dentry->d_op->d_prune(dentry);
0596 
0597     if (dentry->d_flags & DCACHE_LRU_LIST) {
0598         if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
0599             d_lru_del(dentry);
0600     }
0601     /* if it was on the hash then remove it */
0602     __d_drop(dentry);
0603     dentry_unlist(dentry, parent);
0604     if (parent)
0605         spin_unlock(&parent->d_lock);
0606     if (dentry->d_inode)
0607         dentry_unlink_inode(dentry);
0608     else
0609         spin_unlock(&dentry->d_lock);
0610     this_cpu_dec(nr_dentry);
0611     if (dentry->d_op && dentry->d_op->d_release)
0612         dentry->d_op->d_release(dentry);
0613 
0614     spin_lock(&dentry->d_lock);
0615     if (dentry->d_flags & DCACHE_SHRINK_LIST) {
0616         dentry->d_flags |= DCACHE_MAY_FREE;
0617         can_free = false;
0618     }
0619     spin_unlock(&dentry->d_lock);
0620     if (likely(can_free))
0621         dentry_free(dentry);
0622     cond_resched();
0623 }
0624 
0625 static struct dentry *__lock_parent(struct dentry *dentry)
0626 {
0627     struct dentry *parent;
0628     rcu_read_lock();
0629     spin_unlock(&dentry->d_lock);
0630 again:
0631     parent = READ_ONCE(dentry->d_parent);
0632     spin_lock(&parent->d_lock);
0633     /*
0634      * We can't blindly lock dentry until we are sure
0635      * that we won't violate the locking order.
0636      * Any changes of dentry->d_parent must have
0637      * been done with parent->d_lock held, so
0638      * spin_lock() above is enough of a barrier
0639      * for checking if it's still our child.
0640      */
0641     if (unlikely(parent != dentry->d_parent)) {
0642         spin_unlock(&parent->d_lock);
0643         goto again;
0644     }
0645     rcu_read_unlock();
0646     if (parent != dentry)
0647         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
0648     else
0649         parent = NULL;
0650     return parent;
0651 }
0652 
0653 static inline struct dentry *lock_parent(struct dentry *dentry)
0654 {
0655     struct dentry *parent = dentry->d_parent;
0656     if (IS_ROOT(dentry))
0657         return NULL;
0658     if (likely(spin_trylock(&parent->d_lock)))
0659         return parent;
0660     return __lock_parent(dentry);
0661 }
0662 
0663 static inline bool retain_dentry(struct dentry *dentry)
0664 {
0665     WARN_ON(d_in_lookup(dentry));
0666 
0667     /* Unreachable? Get rid of it */
0668     if (unlikely(d_unhashed(dentry)))
0669         return false;
0670 
0671     if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
0672         return false;
0673 
0674     if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
0675         if (dentry->d_op->d_delete(dentry))
0676             return false;
0677     }
0678 
0679     if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
0680         return false;
0681 
0682     /* retain; LRU fodder */
0683     dentry->d_lockref.count--;
0684     if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
0685         d_lru_add(dentry);
0686     else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
0687         dentry->d_flags |= DCACHE_REFERENCED;
0688     return true;
0689 }
0690 
0691 void d_mark_dontcache(struct inode *inode)
0692 {
0693     struct dentry *de;
0694 
0695     spin_lock(&inode->i_lock);
0696     hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
0697         spin_lock(&de->d_lock);
0698         de->d_flags |= DCACHE_DONTCACHE;
0699         spin_unlock(&de->d_lock);
0700     }
0701     inode->i_state |= I_DONTCACHE;
0702     spin_unlock(&inode->i_lock);
0703 }
0704 EXPORT_SYMBOL(d_mark_dontcache);
0705 
0706 /*
0707  * Finish off a dentry we've decided to kill.
0708  * dentry->d_lock must be held, returns with it unlocked.
0709  * Returns dentry requiring refcount drop, or NULL if we're done.
0710  */
0711 static struct dentry *dentry_kill(struct dentry *dentry)
0712     __releases(dentry->d_lock)
0713 {
0714     struct inode *inode = dentry->d_inode;
0715     struct dentry *parent = NULL;
0716 
0717     if (inode && unlikely(!spin_trylock(&inode->i_lock)))
0718         goto slow_positive;
0719 
0720     if (!IS_ROOT(dentry)) {
0721         parent = dentry->d_parent;
0722         if (unlikely(!spin_trylock(&parent->d_lock))) {
0723             parent = __lock_parent(dentry);
0724             if (likely(inode || !dentry->d_inode))
0725                 goto got_locks;
0726             /* negative that became positive */
0727             if (parent)
0728                 spin_unlock(&parent->d_lock);
0729             inode = dentry->d_inode;
0730             goto slow_positive;
0731         }
0732     }
0733     __dentry_kill(dentry);
0734     return parent;
0735 
0736 slow_positive:
0737     spin_unlock(&dentry->d_lock);
0738     spin_lock(&inode->i_lock);
0739     spin_lock(&dentry->d_lock);
0740     parent = lock_parent(dentry);
0741 got_locks:
0742     if (unlikely(dentry->d_lockref.count != 1)) {
0743         dentry->d_lockref.count--;
0744     } else if (likely(!retain_dentry(dentry))) {
0745         __dentry_kill(dentry);
0746         return parent;
0747     }
0748     /* we are keeping it, after all */
0749     if (inode)
0750         spin_unlock(&inode->i_lock);
0751     if (parent)
0752         spin_unlock(&parent->d_lock);
0753     spin_unlock(&dentry->d_lock);
0754     return NULL;
0755 }
0756 
0757 /*
0758  * Try to do a lockless dput(), and return whether that was successful.
0759  *
0760  * If unsuccessful, we return false, having already taken the dentry lock.
0761  *
0762  * The caller needs to hold the RCU read lock, so that the dentry is
0763  * guaranteed to stay around even if the refcount goes down to zero!
0764  */
0765 static inline bool fast_dput(struct dentry *dentry)
0766 {
0767     int ret;
0768     unsigned int d_flags;
0769 
0770     /*
0771      * If we have a d_op->d_delete() operation, we sould not
0772      * let the dentry count go to zero, so use "put_or_lock".
0773      */
0774     if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
0775         return lockref_put_or_lock(&dentry->d_lockref);
0776 
0777     /*
0778      * .. otherwise, we can try to just decrement the
0779      * lockref optimistically.
0780      */
0781     ret = lockref_put_return(&dentry->d_lockref);
0782 
0783     /*
0784      * If the lockref_put_return() failed due to the lock being held
0785      * by somebody else, the fast path has failed. We will need to
0786      * get the lock, and then check the count again.
0787      */
0788     if (unlikely(ret < 0)) {
0789         spin_lock(&dentry->d_lock);
0790         if (dentry->d_lockref.count > 1) {
0791             dentry->d_lockref.count--;
0792             spin_unlock(&dentry->d_lock);
0793             return true;
0794         }
0795         return false;
0796     }
0797 
0798     /*
0799      * If we weren't the last ref, we're done.
0800      */
0801     if (ret)
0802         return true;
0803 
0804     /*
0805      * Careful, careful. The reference count went down
0806      * to zero, but we don't hold the dentry lock, so
0807      * somebody else could get it again, and do another
0808      * dput(), and we need to not race with that.
0809      *
0810      * However, there is a very special and common case
0811      * where we don't care, because there is nothing to
0812      * do: the dentry is still hashed, it does not have
0813      * a 'delete' op, and it's referenced and already on
0814      * the LRU list.
0815      *
0816      * NOTE! Since we aren't locked, these values are
0817      * not "stable". However, it is sufficient that at
0818      * some point after we dropped the reference the
0819      * dentry was hashed and the flags had the proper
0820      * value. Other dentry users may have re-gotten
0821      * a reference to the dentry and change that, but
0822      * our work is done - we can leave the dentry
0823      * around with a zero refcount.
0824      *
0825      * Nevertheless, there are two cases that we should kill
0826      * the dentry anyway.
0827      * 1. free disconnected dentries as soon as their refcount
0828      *    reached zero.
0829      * 2. free dentries if they should not be cached.
0830      */
0831     smp_rmb();
0832     d_flags = READ_ONCE(dentry->d_flags);
0833     d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
0834             DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
0835 
0836     /* Nothing to do? Dropping the reference was all we needed? */
0837     if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
0838         return true;
0839 
0840     /*
0841      * Not the fast normal case? Get the lock. We've already decremented
0842      * the refcount, but we'll need to re-check the situation after
0843      * getting the lock.
0844      */
0845     spin_lock(&dentry->d_lock);
0846 
0847     /*
0848      * Did somebody else grab a reference to it in the meantime, and
0849      * we're no longer the last user after all? Alternatively, somebody
0850      * else could have killed it and marked it dead. Either way, we
0851      * don't need to do anything else.
0852      */
0853     if (dentry->d_lockref.count) {
0854         spin_unlock(&dentry->d_lock);
0855         return true;
0856     }
0857 
0858     /*
0859      * Re-get the reference we optimistically dropped. We hold the
0860      * lock, and we just tested that it was zero, so we can just
0861      * set it to 1.
0862      */
0863     dentry->d_lockref.count = 1;
0864     return false;
0865 }
0866 
0867 
0868 /* 
0869  * This is dput
0870  *
0871  * This is complicated by the fact that we do not want to put
0872  * dentries that are no longer on any hash chain on the unused
0873  * list: we'd much rather just get rid of them immediately.
0874  *
0875  * However, that implies that we have to traverse the dentry
0876  * tree upwards to the parents which might _also_ now be
0877  * scheduled for deletion (it may have been only waiting for
0878  * its last child to go away).
0879  *
0880  * This tail recursion is done by hand as we don't want to depend
0881  * on the compiler to always get this right (gcc generally doesn't).
0882  * Real recursion would eat up our stack space.
0883  */
0884 
0885 /*
0886  * dput - release a dentry
0887  * @dentry: dentry to release 
0888  *
0889  * Release a dentry. This will drop the usage count and if appropriate
0890  * call the dentry unlink method as well as removing it from the queues and
0891  * releasing its resources. If the parent dentries were scheduled for release
0892  * they too may now get deleted.
0893  */
0894 void dput(struct dentry *dentry)
0895 {
0896     while (dentry) {
0897         might_sleep();
0898 
0899         rcu_read_lock();
0900         if (likely(fast_dput(dentry))) {
0901             rcu_read_unlock();
0902             return;
0903         }
0904 
0905         /* Slow case: now with the dentry lock held */
0906         rcu_read_unlock();
0907 
0908         if (likely(retain_dentry(dentry))) {
0909             spin_unlock(&dentry->d_lock);
0910             return;
0911         }
0912 
0913         dentry = dentry_kill(dentry);
0914     }
0915 }
0916 EXPORT_SYMBOL(dput);
0917 
0918 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
0919 __must_hold(&dentry->d_lock)
0920 {
0921     if (dentry->d_flags & DCACHE_SHRINK_LIST) {
0922         /* let the owner of the list it's on deal with it */
0923         --dentry->d_lockref.count;
0924     } else {
0925         if (dentry->d_flags & DCACHE_LRU_LIST)
0926             d_lru_del(dentry);
0927         if (!--dentry->d_lockref.count)
0928             d_shrink_add(dentry, list);
0929     }
0930 }
0931 
0932 void dput_to_list(struct dentry *dentry, struct list_head *list)
0933 {
0934     rcu_read_lock();
0935     if (likely(fast_dput(dentry))) {
0936         rcu_read_unlock();
0937         return;
0938     }
0939     rcu_read_unlock();
0940     if (!retain_dentry(dentry))
0941         __dput_to_list(dentry, list);
0942     spin_unlock(&dentry->d_lock);
0943 }
0944 
0945 /* This must be called with d_lock held */
0946 static inline void __dget_dlock(struct dentry *dentry)
0947 {
0948     dentry->d_lockref.count++;
0949 }
0950 
0951 static inline void __dget(struct dentry *dentry)
0952 {
0953     lockref_get(&dentry->d_lockref);
0954 }
0955 
0956 struct dentry *dget_parent(struct dentry *dentry)
0957 {
0958     int gotref;
0959     struct dentry *ret;
0960     unsigned seq;
0961 
0962     /*
0963      * Do optimistic parent lookup without any
0964      * locking.
0965      */
0966     rcu_read_lock();
0967     seq = raw_seqcount_begin(&dentry->d_seq);
0968     ret = READ_ONCE(dentry->d_parent);
0969     gotref = lockref_get_not_zero(&ret->d_lockref);
0970     rcu_read_unlock();
0971     if (likely(gotref)) {
0972         if (!read_seqcount_retry(&dentry->d_seq, seq))
0973             return ret;
0974         dput(ret);
0975     }
0976 
0977 repeat:
0978     /*
0979      * Don't need rcu_dereference because we re-check it was correct under
0980      * the lock.
0981      */
0982     rcu_read_lock();
0983     ret = dentry->d_parent;
0984     spin_lock(&ret->d_lock);
0985     if (unlikely(ret != dentry->d_parent)) {
0986         spin_unlock(&ret->d_lock);
0987         rcu_read_unlock();
0988         goto repeat;
0989     }
0990     rcu_read_unlock();
0991     BUG_ON(!ret->d_lockref.count);
0992     ret->d_lockref.count++;
0993     spin_unlock(&ret->d_lock);
0994     return ret;
0995 }
0996 EXPORT_SYMBOL(dget_parent);
0997 
0998 static struct dentry * __d_find_any_alias(struct inode *inode)
0999 {
1000     struct dentry *alias;
1001 
1002     if (hlist_empty(&inode->i_dentry))
1003         return NULL;
1004     alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1005     __dget(alias);
1006     return alias;
1007 }
1008 
1009 /**
1010  * d_find_any_alias - find any alias for a given inode
1011  * @inode: inode to find an alias for
1012  *
1013  * If any aliases exist for the given inode, take and return a
1014  * reference for one of them.  If no aliases exist, return %NULL.
1015  */
1016 struct dentry *d_find_any_alias(struct inode *inode)
1017 {
1018     struct dentry *de;
1019 
1020     spin_lock(&inode->i_lock);
1021     de = __d_find_any_alias(inode);
1022     spin_unlock(&inode->i_lock);
1023     return de;
1024 }
1025 EXPORT_SYMBOL(d_find_any_alias);
1026 
1027 static struct dentry *__d_find_alias(struct inode *inode)
1028 {
1029     struct dentry *alias;
1030 
1031     if (S_ISDIR(inode->i_mode))
1032         return __d_find_any_alias(inode);
1033 
1034     hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1035         spin_lock(&alias->d_lock);
1036         if (!d_unhashed(alias)) {
1037             __dget_dlock(alias);
1038             spin_unlock(&alias->d_lock);
1039             return alias;
1040         }
1041         spin_unlock(&alias->d_lock);
1042     }
1043     return NULL;
1044 }
1045 
1046 /**
1047  * d_find_alias - grab a hashed alias of inode
1048  * @inode: inode in question
1049  *
1050  * If inode has a hashed alias, or is a directory and has any alias,
1051  * acquire the reference to alias and return it. Otherwise return NULL.
1052  * Notice that if inode is a directory there can be only one alias and
1053  * it can be unhashed only if it has no children, or if it is the root
1054  * of a filesystem, or if the directory was renamed and d_revalidate
1055  * was the first vfs operation to notice.
1056  *
1057  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1058  * any other hashed alias over that one.
1059  */
1060 struct dentry *d_find_alias(struct inode *inode)
1061 {
1062     struct dentry *de = NULL;
1063 
1064     if (!hlist_empty(&inode->i_dentry)) {
1065         spin_lock(&inode->i_lock);
1066         de = __d_find_alias(inode);
1067         spin_unlock(&inode->i_lock);
1068     }
1069     return de;
1070 }
1071 EXPORT_SYMBOL(d_find_alias);
1072 
1073 /*
1074  *  Caller MUST be holding rcu_read_lock() and be guaranteed
1075  *  that inode won't get freed until rcu_read_unlock().
1076  */
1077 struct dentry *d_find_alias_rcu(struct inode *inode)
1078 {
1079     struct hlist_head *l = &inode->i_dentry;
1080     struct dentry *de = NULL;
1081 
1082     spin_lock(&inode->i_lock);
1083     // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1084     // used without having I_FREEING set, which means no aliases left
1085     if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1086         if (S_ISDIR(inode->i_mode)) {
1087             de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1088         } else {
1089             hlist_for_each_entry(de, l, d_u.d_alias)
1090                 if (!d_unhashed(de))
1091                     break;
1092         }
1093     }
1094     spin_unlock(&inode->i_lock);
1095     return de;
1096 }
1097 
1098 /*
1099  *  Try to kill dentries associated with this inode.
1100  * WARNING: you must own a reference to inode.
1101  */
1102 void d_prune_aliases(struct inode *inode)
1103 {
1104     struct dentry *dentry;
1105 restart:
1106     spin_lock(&inode->i_lock);
1107     hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1108         spin_lock(&dentry->d_lock);
1109         if (!dentry->d_lockref.count) {
1110             struct dentry *parent = lock_parent(dentry);
1111             if (likely(!dentry->d_lockref.count)) {
1112                 __dentry_kill(dentry);
1113                 dput(parent);
1114                 goto restart;
1115             }
1116             if (parent)
1117                 spin_unlock(&parent->d_lock);
1118         }
1119         spin_unlock(&dentry->d_lock);
1120     }
1121     spin_unlock(&inode->i_lock);
1122 }
1123 EXPORT_SYMBOL(d_prune_aliases);
1124 
1125 /*
1126  * Lock a dentry from shrink list.
1127  * Called under rcu_read_lock() and dentry->d_lock; the former
1128  * guarantees that nothing we access will be freed under us.
1129  * Note that dentry is *not* protected from concurrent dentry_kill(),
1130  * d_delete(), etc.
1131  *
1132  * Return false if dentry has been disrupted or grabbed, leaving
1133  * the caller to kick it off-list.  Otherwise, return true and have
1134  * that dentry's inode and parent both locked.
1135  */
1136 static bool shrink_lock_dentry(struct dentry *dentry)
1137 {
1138     struct inode *inode;
1139     struct dentry *parent;
1140 
1141     if (dentry->d_lockref.count)
1142         return false;
1143 
1144     inode = dentry->d_inode;
1145     if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1146         spin_unlock(&dentry->d_lock);
1147         spin_lock(&inode->i_lock);
1148         spin_lock(&dentry->d_lock);
1149         if (unlikely(dentry->d_lockref.count))
1150             goto out;
1151         /* changed inode means that somebody had grabbed it */
1152         if (unlikely(inode != dentry->d_inode))
1153             goto out;
1154     }
1155 
1156     parent = dentry->d_parent;
1157     if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1158         return true;
1159 
1160     spin_unlock(&dentry->d_lock);
1161     spin_lock(&parent->d_lock);
1162     if (unlikely(parent != dentry->d_parent)) {
1163         spin_unlock(&parent->d_lock);
1164         spin_lock(&dentry->d_lock);
1165         goto out;
1166     }
1167     spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1168     if (likely(!dentry->d_lockref.count))
1169         return true;
1170     spin_unlock(&parent->d_lock);
1171 out:
1172     if (inode)
1173         spin_unlock(&inode->i_lock);
1174     return false;
1175 }
1176 
1177 void shrink_dentry_list(struct list_head *list)
1178 {
1179     while (!list_empty(list)) {
1180         struct dentry *dentry, *parent;
1181 
1182         dentry = list_entry(list->prev, struct dentry, d_lru);
1183         spin_lock(&dentry->d_lock);
1184         rcu_read_lock();
1185         if (!shrink_lock_dentry(dentry)) {
1186             bool can_free = false;
1187             rcu_read_unlock();
1188             d_shrink_del(dentry);
1189             if (dentry->d_lockref.count < 0)
1190                 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1191             spin_unlock(&dentry->d_lock);
1192             if (can_free)
1193                 dentry_free(dentry);
1194             continue;
1195         }
1196         rcu_read_unlock();
1197         d_shrink_del(dentry);
1198         parent = dentry->d_parent;
1199         if (parent != dentry)
1200             __dput_to_list(parent, list);
1201         __dentry_kill(dentry);
1202     }
1203 }
1204 
1205 static enum lru_status dentry_lru_isolate(struct list_head *item,
1206         struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1207 {
1208     struct list_head *freeable = arg;
1209     struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1210 
1211 
1212     /*
1213      * we are inverting the lru lock/dentry->d_lock here,
1214      * so use a trylock. If we fail to get the lock, just skip
1215      * it
1216      */
1217     if (!spin_trylock(&dentry->d_lock))
1218         return LRU_SKIP;
1219 
1220     /*
1221      * Referenced dentries are still in use. If they have active
1222      * counts, just remove them from the LRU. Otherwise give them
1223      * another pass through the LRU.
1224      */
1225     if (dentry->d_lockref.count) {
1226         d_lru_isolate(lru, dentry);
1227         spin_unlock(&dentry->d_lock);
1228         return LRU_REMOVED;
1229     }
1230 
1231     if (dentry->d_flags & DCACHE_REFERENCED) {
1232         dentry->d_flags &= ~DCACHE_REFERENCED;
1233         spin_unlock(&dentry->d_lock);
1234 
1235         /*
1236          * The list move itself will be made by the common LRU code. At
1237          * this point, we've dropped the dentry->d_lock but keep the
1238          * lru lock. This is safe to do, since every list movement is
1239          * protected by the lru lock even if both locks are held.
1240          *
1241          * This is guaranteed by the fact that all LRU management
1242          * functions are intermediated by the LRU API calls like
1243          * list_lru_add and list_lru_del. List movement in this file
1244          * only ever occur through this functions or through callbacks
1245          * like this one, that are called from the LRU API.
1246          *
1247          * The only exceptions to this are functions like
1248          * shrink_dentry_list, and code that first checks for the
1249          * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1250          * operating only with stack provided lists after they are
1251          * properly isolated from the main list.  It is thus, always a
1252          * local access.
1253          */
1254         return LRU_ROTATE;
1255     }
1256 
1257     d_lru_shrink_move(lru, dentry, freeable);
1258     spin_unlock(&dentry->d_lock);
1259 
1260     return LRU_REMOVED;
1261 }
1262 
1263 /**
1264  * prune_dcache_sb - shrink the dcache
1265  * @sb: superblock
1266  * @sc: shrink control, passed to list_lru_shrink_walk()
1267  *
1268  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1269  * is done when we need more memory and called from the superblock shrinker
1270  * function.
1271  *
1272  * This function may fail to free any resources if all the dentries are in
1273  * use.
1274  */
1275 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1276 {
1277     LIST_HEAD(dispose);
1278     long freed;
1279 
1280     freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1281                      dentry_lru_isolate, &dispose);
1282     shrink_dentry_list(&dispose);
1283     return freed;
1284 }
1285 
1286 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1287         struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1288 {
1289     struct list_head *freeable = arg;
1290     struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1291 
1292     /*
1293      * we are inverting the lru lock/dentry->d_lock here,
1294      * so use a trylock. If we fail to get the lock, just skip
1295      * it
1296      */
1297     if (!spin_trylock(&dentry->d_lock))
1298         return LRU_SKIP;
1299 
1300     d_lru_shrink_move(lru, dentry, freeable);
1301     spin_unlock(&dentry->d_lock);
1302 
1303     return LRU_REMOVED;
1304 }
1305 
1306 
1307 /**
1308  * shrink_dcache_sb - shrink dcache for a superblock
1309  * @sb: superblock
1310  *
1311  * Shrink the dcache for the specified super block. This is used to free
1312  * the dcache before unmounting a file system.
1313  */
1314 void shrink_dcache_sb(struct super_block *sb)
1315 {
1316     do {
1317         LIST_HEAD(dispose);
1318 
1319         list_lru_walk(&sb->s_dentry_lru,
1320             dentry_lru_isolate_shrink, &dispose, 1024);
1321         shrink_dentry_list(&dispose);
1322     } while (list_lru_count(&sb->s_dentry_lru) > 0);
1323 }
1324 EXPORT_SYMBOL(shrink_dcache_sb);
1325 
1326 /**
1327  * enum d_walk_ret - action to talke during tree walk
1328  * @D_WALK_CONTINUE:    contrinue walk
1329  * @D_WALK_QUIT:    quit walk
1330  * @D_WALK_NORETRY: quit when retry is needed
1331  * @D_WALK_SKIP:    skip this dentry and its children
1332  */
1333 enum d_walk_ret {
1334     D_WALK_CONTINUE,
1335     D_WALK_QUIT,
1336     D_WALK_NORETRY,
1337     D_WALK_SKIP,
1338 };
1339 
1340 /**
1341  * d_walk - walk the dentry tree
1342  * @parent: start of walk
1343  * @data:   data passed to @enter() and @finish()
1344  * @enter:  callback when first entering the dentry
1345  *
1346  * The @enter() callbacks are called with d_lock held.
1347  */
1348 static void d_walk(struct dentry *parent, void *data,
1349            enum d_walk_ret (*enter)(void *, struct dentry *))
1350 {
1351     struct dentry *this_parent;
1352     struct list_head *next;
1353     unsigned seq = 0;
1354     enum d_walk_ret ret;
1355     bool retry = true;
1356 
1357 again:
1358     read_seqbegin_or_lock(&rename_lock, &seq);
1359     this_parent = parent;
1360     spin_lock(&this_parent->d_lock);
1361 
1362     ret = enter(data, this_parent);
1363     switch (ret) {
1364     case D_WALK_CONTINUE:
1365         break;
1366     case D_WALK_QUIT:
1367     case D_WALK_SKIP:
1368         goto out_unlock;
1369     case D_WALK_NORETRY:
1370         retry = false;
1371         break;
1372     }
1373 repeat:
1374     next = this_parent->d_subdirs.next;
1375 resume:
1376     while (next != &this_parent->d_subdirs) {
1377         struct list_head *tmp = next;
1378         struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1379         next = tmp->next;
1380 
1381         if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1382             continue;
1383 
1384         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1385 
1386         ret = enter(data, dentry);
1387         switch (ret) {
1388         case D_WALK_CONTINUE:
1389             break;
1390         case D_WALK_QUIT:
1391             spin_unlock(&dentry->d_lock);
1392             goto out_unlock;
1393         case D_WALK_NORETRY:
1394             retry = false;
1395             break;
1396         case D_WALK_SKIP:
1397             spin_unlock(&dentry->d_lock);
1398             continue;
1399         }
1400 
1401         if (!list_empty(&dentry->d_subdirs)) {
1402             spin_unlock(&this_parent->d_lock);
1403             spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1404             this_parent = dentry;
1405             spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1406             goto repeat;
1407         }
1408         spin_unlock(&dentry->d_lock);
1409     }
1410     /*
1411      * All done at this level ... ascend and resume the search.
1412      */
1413     rcu_read_lock();
1414 ascend:
1415     if (this_parent != parent) {
1416         struct dentry *child = this_parent;
1417         this_parent = child->d_parent;
1418 
1419         spin_unlock(&child->d_lock);
1420         spin_lock(&this_parent->d_lock);
1421 
1422         /* might go back up the wrong parent if we have had a rename. */
1423         if (need_seqretry(&rename_lock, seq))
1424             goto rename_retry;
1425         /* go into the first sibling still alive */
1426         do {
1427             next = child->d_child.next;
1428             if (next == &this_parent->d_subdirs)
1429                 goto ascend;
1430             child = list_entry(next, struct dentry, d_child);
1431         } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1432         rcu_read_unlock();
1433         goto resume;
1434     }
1435     if (need_seqretry(&rename_lock, seq))
1436         goto rename_retry;
1437     rcu_read_unlock();
1438 
1439 out_unlock:
1440     spin_unlock(&this_parent->d_lock);
1441     done_seqretry(&rename_lock, seq);
1442     return;
1443 
1444 rename_retry:
1445     spin_unlock(&this_parent->d_lock);
1446     rcu_read_unlock();
1447     BUG_ON(seq & 1);
1448     if (!retry)
1449         return;
1450     seq = 1;
1451     goto again;
1452 }
1453 
1454 struct check_mount {
1455     struct vfsmount *mnt;
1456     unsigned int mounted;
1457 };
1458 
1459 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1460 {
1461     struct check_mount *info = data;
1462     struct path path = { .mnt = info->mnt, .dentry = dentry };
1463 
1464     if (likely(!d_mountpoint(dentry)))
1465         return D_WALK_CONTINUE;
1466     if (__path_is_mountpoint(&path)) {
1467         info->mounted = 1;
1468         return D_WALK_QUIT;
1469     }
1470     return D_WALK_CONTINUE;
1471 }
1472 
1473 /**
1474  * path_has_submounts - check for mounts over a dentry in the
1475  *                      current namespace.
1476  * @parent: path to check.
1477  *
1478  * Return true if the parent or its subdirectories contain
1479  * a mount point in the current namespace.
1480  */
1481 int path_has_submounts(const struct path *parent)
1482 {
1483     struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1484 
1485     read_seqlock_excl(&mount_lock);
1486     d_walk(parent->dentry, &data, path_check_mount);
1487     read_sequnlock_excl(&mount_lock);
1488 
1489     return data.mounted;
1490 }
1491 EXPORT_SYMBOL(path_has_submounts);
1492 
1493 /*
1494  * Called by mount code to set a mountpoint and check if the mountpoint is
1495  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1496  * subtree can become unreachable).
1497  *
1498  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1499  * this reason take rename_lock and d_lock on dentry and ancestors.
1500  */
1501 int d_set_mounted(struct dentry *dentry)
1502 {
1503     struct dentry *p;
1504     int ret = -ENOENT;
1505     write_seqlock(&rename_lock);
1506     for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1507         /* Need exclusion wrt. d_invalidate() */
1508         spin_lock(&p->d_lock);
1509         if (unlikely(d_unhashed(p))) {
1510             spin_unlock(&p->d_lock);
1511             goto out;
1512         }
1513         spin_unlock(&p->d_lock);
1514     }
1515     spin_lock(&dentry->d_lock);
1516     if (!d_unlinked(dentry)) {
1517         ret = -EBUSY;
1518         if (!d_mountpoint(dentry)) {
1519             dentry->d_flags |= DCACHE_MOUNTED;
1520             ret = 0;
1521         }
1522     }
1523     spin_unlock(&dentry->d_lock);
1524 out:
1525     write_sequnlock(&rename_lock);
1526     return ret;
1527 }
1528 
1529 /*
1530  * Search the dentry child list of the specified parent,
1531  * and move any unused dentries to the end of the unused
1532  * list for prune_dcache(). We descend to the next level
1533  * whenever the d_subdirs list is non-empty and continue
1534  * searching.
1535  *
1536  * It returns zero iff there are no unused children,
1537  * otherwise  it returns the number of children moved to
1538  * the end of the unused list. This may not be the total
1539  * number of unused children, because select_parent can
1540  * drop the lock and return early due to latency
1541  * constraints.
1542  */
1543 
1544 struct select_data {
1545     struct dentry *start;
1546     union {
1547         long found;
1548         struct dentry *victim;
1549     };
1550     struct list_head dispose;
1551 };
1552 
1553 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1554 {
1555     struct select_data *data = _data;
1556     enum d_walk_ret ret = D_WALK_CONTINUE;
1557 
1558     if (data->start == dentry)
1559         goto out;
1560 
1561     if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1562         data->found++;
1563     } else {
1564         if (dentry->d_flags & DCACHE_LRU_LIST)
1565             d_lru_del(dentry);
1566         if (!dentry->d_lockref.count) {
1567             d_shrink_add(dentry, &data->dispose);
1568             data->found++;
1569         }
1570     }
1571     /*
1572      * We can return to the caller if we have found some (this
1573      * ensures forward progress). We'll be coming back to find
1574      * the rest.
1575      */
1576     if (!list_empty(&data->dispose))
1577         ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1578 out:
1579     return ret;
1580 }
1581 
1582 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1583 {
1584     struct select_data *data = _data;
1585     enum d_walk_ret ret = D_WALK_CONTINUE;
1586 
1587     if (data->start == dentry)
1588         goto out;
1589 
1590     if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1591         if (!dentry->d_lockref.count) {
1592             rcu_read_lock();
1593             data->victim = dentry;
1594             return D_WALK_QUIT;
1595         }
1596     } else {
1597         if (dentry->d_flags & DCACHE_LRU_LIST)
1598             d_lru_del(dentry);
1599         if (!dentry->d_lockref.count)
1600             d_shrink_add(dentry, &data->dispose);
1601     }
1602     /*
1603      * We can return to the caller if we have found some (this
1604      * ensures forward progress). We'll be coming back to find
1605      * the rest.
1606      */
1607     if (!list_empty(&data->dispose))
1608         ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1609 out:
1610     return ret;
1611 }
1612 
1613 /**
1614  * shrink_dcache_parent - prune dcache
1615  * @parent: parent of entries to prune
1616  *
1617  * Prune the dcache to remove unused children of the parent dentry.
1618  */
1619 void shrink_dcache_parent(struct dentry *parent)
1620 {
1621     for (;;) {
1622         struct select_data data = {.start = parent};
1623 
1624         INIT_LIST_HEAD(&data.dispose);
1625         d_walk(parent, &data, select_collect);
1626 
1627         if (!list_empty(&data.dispose)) {
1628             shrink_dentry_list(&data.dispose);
1629             continue;
1630         }
1631 
1632         cond_resched();
1633         if (!data.found)
1634             break;
1635         data.victim = NULL;
1636         d_walk(parent, &data, select_collect2);
1637         if (data.victim) {
1638             struct dentry *parent;
1639             spin_lock(&data.victim->d_lock);
1640             if (!shrink_lock_dentry(data.victim)) {
1641                 spin_unlock(&data.victim->d_lock);
1642                 rcu_read_unlock();
1643             } else {
1644                 rcu_read_unlock();
1645                 parent = data.victim->d_parent;
1646                 if (parent != data.victim)
1647                     __dput_to_list(parent, &data.dispose);
1648                 __dentry_kill(data.victim);
1649             }
1650         }
1651         if (!list_empty(&data.dispose))
1652             shrink_dentry_list(&data.dispose);
1653     }
1654 }
1655 EXPORT_SYMBOL(shrink_dcache_parent);
1656 
1657 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1658 {
1659     /* it has busy descendents; complain about those instead */
1660     if (!list_empty(&dentry->d_subdirs))
1661         return D_WALK_CONTINUE;
1662 
1663     /* root with refcount 1 is fine */
1664     if (dentry == _data && dentry->d_lockref.count == 1)
1665         return D_WALK_CONTINUE;
1666 
1667     printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1668             " still in use (%d) [unmount of %s %s]\n",
1669                dentry,
1670                dentry->d_inode ?
1671                dentry->d_inode->i_ino : 0UL,
1672                dentry,
1673                dentry->d_lockref.count,
1674                dentry->d_sb->s_type->name,
1675                dentry->d_sb->s_id);
1676     WARN_ON(1);
1677     return D_WALK_CONTINUE;
1678 }
1679 
1680 static void do_one_tree(struct dentry *dentry)
1681 {
1682     shrink_dcache_parent(dentry);
1683     d_walk(dentry, dentry, umount_check);
1684     d_drop(dentry);
1685     dput(dentry);
1686 }
1687 
1688 /*
1689  * destroy the dentries attached to a superblock on unmounting
1690  */
1691 void shrink_dcache_for_umount(struct super_block *sb)
1692 {
1693     struct dentry *dentry;
1694 
1695     WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1696 
1697     dentry = sb->s_root;
1698     sb->s_root = NULL;
1699     do_one_tree(dentry);
1700 
1701     while (!hlist_bl_empty(&sb->s_roots)) {
1702         dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1703         do_one_tree(dentry);
1704     }
1705 }
1706 
1707 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1708 {
1709     struct dentry **victim = _data;
1710     if (d_mountpoint(dentry)) {
1711         __dget_dlock(dentry);
1712         *victim = dentry;
1713         return D_WALK_QUIT;
1714     }
1715     return D_WALK_CONTINUE;
1716 }
1717 
1718 /**
1719  * d_invalidate - detach submounts, prune dcache, and drop
1720  * @dentry: dentry to invalidate (aka detach, prune and drop)
1721  */
1722 void d_invalidate(struct dentry *dentry)
1723 {
1724     bool had_submounts = false;
1725     spin_lock(&dentry->d_lock);
1726     if (d_unhashed(dentry)) {
1727         spin_unlock(&dentry->d_lock);
1728         return;
1729     }
1730     __d_drop(dentry);
1731     spin_unlock(&dentry->d_lock);
1732 
1733     /* Negative dentries can be dropped without further checks */
1734     if (!dentry->d_inode)
1735         return;
1736 
1737     shrink_dcache_parent(dentry);
1738     for (;;) {
1739         struct dentry *victim = NULL;
1740         d_walk(dentry, &victim, find_submount);
1741         if (!victim) {
1742             if (had_submounts)
1743                 shrink_dcache_parent(dentry);
1744             return;
1745         }
1746         had_submounts = true;
1747         detach_mounts(victim);
1748         dput(victim);
1749     }
1750 }
1751 EXPORT_SYMBOL(d_invalidate);
1752 
1753 /**
1754  * __d_alloc    -   allocate a dcache entry
1755  * @sb: filesystem it will belong to
1756  * @name: qstr of the name
1757  *
1758  * Allocates a dentry. It returns %NULL if there is insufficient memory
1759  * available. On a success the dentry is returned. The name passed in is
1760  * copied and the copy passed in may be reused after this call.
1761  */
1762  
1763 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1764 {
1765     struct dentry *dentry;
1766     char *dname;
1767     int err;
1768 
1769     dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1770                       GFP_KERNEL);
1771     if (!dentry)
1772         return NULL;
1773 
1774     /*
1775      * We guarantee that the inline name is always NUL-terminated.
1776      * This way the memcpy() done by the name switching in rename
1777      * will still always have a NUL at the end, even if we might
1778      * be overwriting an internal NUL character
1779      */
1780     dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1781     if (unlikely(!name)) {
1782         name = &slash_name;
1783         dname = dentry->d_iname;
1784     } else if (name->len > DNAME_INLINE_LEN-1) {
1785         size_t size = offsetof(struct external_name, name[1]);
1786         struct external_name *p = kmalloc(size + name->len,
1787                           GFP_KERNEL_ACCOUNT |
1788                           __GFP_RECLAIMABLE);
1789         if (!p) {
1790             kmem_cache_free(dentry_cache, dentry); 
1791             return NULL;
1792         }
1793         atomic_set(&p->u.count, 1);
1794         dname = p->name;
1795     } else  {
1796         dname = dentry->d_iname;
1797     }   
1798 
1799     dentry->d_name.len = name->len;
1800     dentry->d_name.hash = name->hash;
1801     memcpy(dname, name->name, name->len);
1802     dname[name->len] = 0;
1803 
1804     /* Make sure we always see the terminating NUL character */
1805     smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1806 
1807     dentry->d_lockref.count = 1;
1808     dentry->d_flags = 0;
1809     spin_lock_init(&dentry->d_lock);
1810     seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1811     dentry->d_inode = NULL;
1812     dentry->d_parent = dentry;
1813     dentry->d_sb = sb;
1814     dentry->d_op = NULL;
1815     dentry->d_fsdata = NULL;
1816     INIT_HLIST_BL_NODE(&dentry->d_hash);
1817     INIT_LIST_HEAD(&dentry->d_lru);
1818     INIT_LIST_HEAD(&dentry->d_subdirs);
1819     INIT_HLIST_NODE(&dentry->d_u.d_alias);
1820     INIT_LIST_HEAD(&dentry->d_child);
1821     d_set_d_op(dentry, dentry->d_sb->s_d_op);
1822 
1823     if (dentry->d_op && dentry->d_op->d_init) {
1824         err = dentry->d_op->d_init(dentry);
1825         if (err) {
1826             if (dname_external(dentry))
1827                 kfree(external_name(dentry));
1828             kmem_cache_free(dentry_cache, dentry);
1829             return NULL;
1830         }
1831     }
1832 
1833     this_cpu_inc(nr_dentry);
1834 
1835     return dentry;
1836 }
1837 
1838 /**
1839  * d_alloc  -   allocate a dcache entry
1840  * @parent: parent of entry to allocate
1841  * @name: qstr of the name
1842  *
1843  * Allocates a dentry. It returns %NULL if there is insufficient memory
1844  * available. On a success the dentry is returned. The name passed in is
1845  * copied and the copy passed in may be reused after this call.
1846  */
1847 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1848 {
1849     struct dentry *dentry = __d_alloc(parent->d_sb, name);
1850     if (!dentry)
1851         return NULL;
1852     spin_lock(&parent->d_lock);
1853     /*
1854      * don't need child lock because it is not subject
1855      * to concurrency here
1856      */
1857     __dget_dlock(parent);
1858     dentry->d_parent = parent;
1859     list_add(&dentry->d_child, &parent->d_subdirs);
1860     spin_unlock(&parent->d_lock);
1861 
1862     return dentry;
1863 }
1864 EXPORT_SYMBOL(d_alloc);
1865 
1866 struct dentry *d_alloc_anon(struct super_block *sb)
1867 {
1868     return __d_alloc(sb, NULL);
1869 }
1870 EXPORT_SYMBOL(d_alloc_anon);
1871 
1872 struct dentry *d_alloc_cursor(struct dentry * parent)
1873 {
1874     struct dentry *dentry = d_alloc_anon(parent->d_sb);
1875     if (dentry) {
1876         dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1877         dentry->d_parent = dget(parent);
1878     }
1879     return dentry;
1880 }
1881 
1882 /**
1883  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1884  * @sb: the superblock
1885  * @name: qstr of the name
1886  *
1887  * For a filesystem that just pins its dentries in memory and never
1888  * performs lookups at all, return an unhashed IS_ROOT dentry.
1889  * This is used for pipes, sockets et.al. - the stuff that should
1890  * never be anyone's children or parents.  Unlike all other
1891  * dentries, these will not have RCU delay between dropping the
1892  * last reference and freeing them.
1893  *
1894  * The only user is alloc_file_pseudo() and that's what should
1895  * be considered a public interface.  Don't use directly.
1896  */
1897 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1898 {
1899     struct dentry *dentry = __d_alloc(sb, name);
1900     if (likely(dentry))
1901         dentry->d_flags |= DCACHE_NORCU;
1902     return dentry;
1903 }
1904 
1905 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1906 {
1907     struct qstr q;
1908 
1909     q.name = name;
1910     q.hash_len = hashlen_string(parent, name);
1911     return d_alloc(parent, &q);
1912 }
1913 EXPORT_SYMBOL(d_alloc_name);
1914 
1915 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1916 {
1917     WARN_ON_ONCE(dentry->d_op);
1918     WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1919                 DCACHE_OP_COMPARE   |
1920                 DCACHE_OP_REVALIDATE    |
1921                 DCACHE_OP_WEAK_REVALIDATE   |
1922                 DCACHE_OP_DELETE    |
1923                 DCACHE_OP_REAL));
1924     dentry->d_op = op;
1925     if (!op)
1926         return;
1927     if (op->d_hash)
1928         dentry->d_flags |= DCACHE_OP_HASH;
1929     if (op->d_compare)
1930         dentry->d_flags |= DCACHE_OP_COMPARE;
1931     if (op->d_revalidate)
1932         dentry->d_flags |= DCACHE_OP_REVALIDATE;
1933     if (op->d_weak_revalidate)
1934         dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1935     if (op->d_delete)
1936         dentry->d_flags |= DCACHE_OP_DELETE;
1937     if (op->d_prune)
1938         dentry->d_flags |= DCACHE_OP_PRUNE;
1939     if (op->d_real)
1940         dentry->d_flags |= DCACHE_OP_REAL;
1941 
1942 }
1943 EXPORT_SYMBOL(d_set_d_op);
1944 
1945 
1946 /*
1947  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1948  * @dentry - The dentry to mark
1949  *
1950  * Mark a dentry as falling through to the lower layer (as set with
1951  * d_pin_lower()).  This flag may be recorded on the medium.
1952  */
1953 void d_set_fallthru(struct dentry *dentry)
1954 {
1955     spin_lock(&dentry->d_lock);
1956     dentry->d_flags |= DCACHE_FALLTHRU;
1957     spin_unlock(&dentry->d_lock);
1958 }
1959 EXPORT_SYMBOL(d_set_fallthru);
1960 
1961 static unsigned d_flags_for_inode(struct inode *inode)
1962 {
1963     unsigned add_flags = DCACHE_REGULAR_TYPE;
1964 
1965     if (!inode)
1966         return DCACHE_MISS_TYPE;
1967 
1968     if (S_ISDIR(inode->i_mode)) {
1969         add_flags = DCACHE_DIRECTORY_TYPE;
1970         if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1971             if (unlikely(!inode->i_op->lookup))
1972                 add_flags = DCACHE_AUTODIR_TYPE;
1973             else
1974                 inode->i_opflags |= IOP_LOOKUP;
1975         }
1976         goto type_determined;
1977     }
1978 
1979     if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1980         if (unlikely(inode->i_op->get_link)) {
1981             add_flags = DCACHE_SYMLINK_TYPE;
1982             goto type_determined;
1983         }
1984         inode->i_opflags |= IOP_NOFOLLOW;
1985     }
1986 
1987     if (unlikely(!S_ISREG(inode->i_mode)))
1988         add_flags = DCACHE_SPECIAL_TYPE;
1989 
1990 type_determined:
1991     if (unlikely(IS_AUTOMOUNT(inode)))
1992         add_flags |= DCACHE_NEED_AUTOMOUNT;
1993     return add_flags;
1994 }
1995 
1996 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1997 {
1998     unsigned add_flags = d_flags_for_inode(inode);
1999     WARN_ON(d_in_lookup(dentry));
2000 
2001     spin_lock(&dentry->d_lock);
2002     /*
2003      * Decrement negative dentry count if it was in the LRU list.
2004      */
2005     if (dentry->d_flags & DCACHE_LRU_LIST)
2006         this_cpu_dec(nr_dentry_negative);
2007     hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2008     raw_write_seqcount_begin(&dentry->d_seq);
2009     __d_set_inode_and_type(dentry, inode, add_flags);
2010     raw_write_seqcount_end(&dentry->d_seq);
2011     fsnotify_update_flags(dentry);
2012     spin_unlock(&dentry->d_lock);
2013 }
2014 
2015 /**
2016  * d_instantiate - fill in inode information for a dentry
2017  * @entry: dentry to complete
2018  * @inode: inode to attach to this dentry
2019  *
2020  * Fill in inode information in the entry.
2021  *
2022  * This turns negative dentries into productive full members
2023  * of society.
2024  *
2025  * NOTE! This assumes that the inode count has been incremented
2026  * (or otherwise set) by the caller to indicate that it is now
2027  * in use by the dcache.
2028  */
2029  
2030 void d_instantiate(struct dentry *entry, struct inode * inode)
2031 {
2032     BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2033     if (inode) {
2034         security_d_instantiate(entry, inode);
2035         spin_lock(&inode->i_lock);
2036         __d_instantiate(entry, inode);
2037         spin_unlock(&inode->i_lock);
2038     }
2039 }
2040 EXPORT_SYMBOL(d_instantiate);
2041 
2042 /*
2043  * This should be equivalent to d_instantiate() + unlock_new_inode(),
2044  * with lockdep-related part of unlock_new_inode() done before
2045  * anything else.  Use that instead of open-coding d_instantiate()/
2046  * unlock_new_inode() combinations.
2047  */
2048 void d_instantiate_new(struct dentry *entry, struct inode *inode)
2049 {
2050     BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2051     BUG_ON(!inode);
2052     lockdep_annotate_inode_mutex_key(inode);
2053     security_d_instantiate(entry, inode);
2054     spin_lock(&inode->i_lock);
2055     __d_instantiate(entry, inode);
2056     WARN_ON(!(inode->i_state & I_NEW));
2057     inode->i_state &= ~I_NEW & ~I_CREATING;
2058     smp_mb();
2059     wake_up_bit(&inode->i_state, __I_NEW);
2060     spin_unlock(&inode->i_lock);
2061 }
2062 EXPORT_SYMBOL(d_instantiate_new);
2063 
2064 struct dentry *d_make_root(struct inode *root_inode)
2065 {
2066     struct dentry *res = NULL;
2067 
2068     if (root_inode) {
2069         res = d_alloc_anon(root_inode->i_sb);
2070         if (res)
2071             d_instantiate(res, root_inode);
2072         else
2073             iput(root_inode);
2074     }
2075     return res;
2076 }
2077 EXPORT_SYMBOL(d_make_root);
2078 
2079 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2080                        struct inode *inode,
2081                        bool disconnected)
2082 {
2083     struct dentry *res;
2084     unsigned add_flags;
2085 
2086     security_d_instantiate(dentry, inode);
2087     spin_lock(&inode->i_lock);
2088     res = __d_find_any_alias(inode);
2089     if (res) {
2090         spin_unlock(&inode->i_lock);
2091         dput(dentry);
2092         goto out_iput;
2093     }
2094 
2095     /* attach a disconnected dentry */
2096     add_flags = d_flags_for_inode(inode);
2097 
2098     if (disconnected)
2099         add_flags |= DCACHE_DISCONNECTED;
2100 
2101     spin_lock(&dentry->d_lock);
2102     __d_set_inode_and_type(dentry, inode, add_flags);
2103     hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2104     if (!disconnected) {
2105         hlist_bl_lock(&dentry->d_sb->s_roots);
2106         hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2107         hlist_bl_unlock(&dentry->d_sb->s_roots);
2108     }
2109     spin_unlock(&dentry->d_lock);
2110     spin_unlock(&inode->i_lock);
2111 
2112     return dentry;
2113 
2114  out_iput:
2115     iput(inode);
2116     return res;
2117 }
2118 
2119 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2120 {
2121     return __d_instantiate_anon(dentry, inode, true);
2122 }
2123 EXPORT_SYMBOL(d_instantiate_anon);
2124 
2125 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2126 {
2127     struct dentry *tmp;
2128     struct dentry *res;
2129 
2130     if (!inode)
2131         return ERR_PTR(-ESTALE);
2132     if (IS_ERR(inode))
2133         return ERR_CAST(inode);
2134 
2135     res = d_find_any_alias(inode);
2136     if (res)
2137         goto out_iput;
2138 
2139     tmp = d_alloc_anon(inode->i_sb);
2140     if (!tmp) {
2141         res = ERR_PTR(-ENOMEM);
2142         goto out_iput;
2143     }
2144 
2145     return __d_instantiate_anon(tmp, inode, disconnected);
2146 
2147 out_iput:
2148     iput(inode);
2149     return res;
2150 }
2151 
2152 /**
2153  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2154  * @inode: inode to allocate the dentry for
2155  *
2156  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2157  * similar open by handle operations.  The returned dentry may be anonymous,
2158  * or may have a full name (if the inode was already in the cache).
2159  *
2160  * When called on a directory inode, we must ensure that the inode only ever
2161  * has one dentry.  If a dentry is found, that is returned instead of
2162  * allocating a new one.
2163  *
2164  * On successful return, the reference to the inode has been transferred
2165  * to the dentry.  In case of an error the reference on the inode is released.
2166  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2167  * be passed in and the error will be propagated to the return value,
2168  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2169  */
2170 struct dentry *d_obtain_alias(struct inode *inode)
2171 {
2172     return __d_obtain_alias(inode, true);
2173 }
2174 EXPORT_SYMBOL(d_obtain_alias);
2175 
2176 /**
2177  * d_obtain_root - find or allocate a dentry for a given inode
2178  * @inode: inode to allocate the dentry for
2179  *
2180  * Obtain an IS_ROOT dentry for the root of a filesystem.
2181  *
2182  * We must ensure that directory inodes only ever have one dentry.  If a
2183  * dentry is found, that is returned instead of allocating a new one.
2184  *
2185  * On successful return, the reference to the inode has been transferred
2186  * to the dentry.  In case of an error the reference on the inode is
2187  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2188  * error will be propagate to the return value, with a %NULL @inode
2189  * replaced by ERR_PTR(-ESTALE).
2190  */
2191 struct dentry *d_obtain_root(struct inode *inode)
2192 {
2193     return __d_obtain_alias(inode, false);
2194 }
2195 EXPORT_SYMBOL(d_obtain_root);
2196 
2197 /**
2198  * d_add_ci - lookup or allocate new dentry with case-exact name
2199  * @inode:  the inode case-insensitive lookup has found
2200  * @dentry: the negative dentry that was passed to the parent's lookup func
2201  * @name:   the case-exact name to be associated with the returned dentry
2202  *
2203  * This is to avoid filling the dcache with case-insensitive names to the
2204  * same inode, only the actual correct case is stored in the dcache for
2205  * case-insensitive filesystems.
2206  *
2207  * For a case-insensitive lookup match and if the case-exact dentry
2208  * already exists in the dcache, use it and return it.
2209  *
2210  * If no entry exists with the exact case name, allocate new dentry with
2211  * the exact case, and return the spliced entry.
2212  */
2213 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2214             struct qstr *name)
2215 {
2216     struct dentry *found, *res;
2217 
2218     /*
2219      * First check if a dentry matching the name already exists,
2220      * if not go ahead and create it now.
2221      */
2222     found = d_hash_and_lookup(dentry->d_parent, name);
2223     if (found) {
2224         iput(inode);
2225         return found;
2226     }
2227     if (d_in_lookup(dentry)) {
2228         found = d_alloc_parallel(dentry->d_parent, name,
2229                     dentry->d_wait);
2230         if (IS_ERR(found) || !d_in_lookup(found)) {
2231             iput(inode);
2232             return found;
2233         }
2234     } else {
2235         found = d_alloc(dentry->d_parent, name);
2236         if (!found) {
2237             iput(inode);
2238             return ERR_PTR(-ENOMEM);
2239         } 
2240     }
2241     res = d_splice_alias(inode, found);
2242     if (res) {
2243         d_lookup_done(found);
2244         dput(found);
2245         return res;
2246     }
2247     return found;
2248 }
2249 EXPORT_SYMBOL(d_add_ci);
2250 
2251 /**
2252  * d_same_name - compare dentry name with case-exact name
2253  * @parent: parent dentry
2254  * @dentry: the negative dentry that was passed to the parent's lookup func
2255  * @name:   the case-exact name to be associated with the returned dentry
2256  *
2257  * Return: true if names are same, or false
2258  */
2259 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2260          const struct qstr *name)
2261 {
2262     if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2263         if (dentry->d_name.len != name->len)
2264             return false;
2265         return dentry_cmp(dentry, name->name, name->len) == 0;
2266     }
2267     return parent->d_op->d_compare(dentry,
2268                        dentry->d_name.len, dentry->d_name.name,
2269                        name) == 0;
2270 }
2271 EXPORT_SYMBOL_GPL(d_same_name);
2272 
2273 /*
2274  * This is __d_lookup_rcu() when the parent dentry has
2275  * DCACHE_OP_COMPARE, which makes things much nastier.
2276  */
2277 static noinline struct dentry *__d_lookup_rcu_op_compare(
2278     const struct dentry *parent,
2279     const struct qstr *name,
2280     unsigned *seqp)
2281 {
2282     u64 hashlen = name->hash_len;
2283     struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2284     struct hlist_bl_node *node;
2285     struct dentry *dentry;
2286 
2287     hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2288         int tlen;
2289         const char *tname;
2290         unsigned seq;
2291 
2292 seqretry:
2293         seq = raw_seqcount_begin(&dentry->d_seq);
2294         if (dentry->d_parent != parent)
2295             continue;
2296         if (d_unhashed(dentry))
2297             continue;
2298         if (dentry->d_name.hash != hashlen_hash(hashlen))
2299             continue;
2300         tlen = dentry->d_name.len;
2301         tname = dentry->d_name.name;
2302         /* we want a consistent (name,len) pair */
2303         if (read_seqcount_retry(&dentry->d_seq, seq)) {
2304             cpu_relax();
2305             goto seqretry;
2306         }
2307         if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2308             continue;
2309         *seqp = seq;
2310         return dentry;
2311     }
2312     return NULL;
2313 }
2314 
2315 /**
2316  * __d_lookup_rcu - search for a dentry (racy, store-free)
2317  * @parent: parent dentry
2318  * @name: qstr of name we wish to find
2319  * @seqp: returns d_seq value at the point where the dentry was found
2320  * Returns: dentry, or NULL
2321  *
2322  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2323  * resolution (store-free path walking) design described in
2324  * Documentation/filesystems/path-lookup.txt.
2325  *
2326  * This is not to be used outside core vfs.
2327  *
2328  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2329  * held, and rcu_read_lock held. The returned dentry must not be stored into
2330  * without taking d_lock and checking d_seq sequence count against @seq
2331  * returned here.
2332  *
2333  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2334  * function.
2335  *
2336  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2337  * the returned dentry, so long as its parent's seqlock is checked after the
2338  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2339  * is formed, giving integrity down the path walk.
2340  *
2341  * NOTE! The caller *has* to check the resulting dentry against the sequence
2342  * number we've returned before using any of the resulting dentry state!
2343  */
2344 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2345                 const struct qstr *name,
2346                 unsigned *seqp)
2347 {
2348     u64 hashlen = name->hash_len;
2349     const unsigned char *str = name->name;
2350     struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2351     struct hlist_bl_node *node;
2352     struct dentry *dentry;
2353 
2354     /*
2355      * Note: There is significant duplication with __d_lookup_rcu which is
2356      * required to prevent single threaded performance regressions
2357      * especially on architectures where smp_rmb (in seqcounts) are costly.
2358      * Keep the two functions in sync.
2359      */
2360 
2361     if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2362         return __d_lookup_rcu_op_compare(parent, name, seqp);
2363 
2364     /*
2365      * The hash list is protected using RCU.
2366      *
2367      * Carefully use d_seq when comparing a candidate dentry, to avoid
2368      * races with d_move().
2369      *
2370      * It is possible that concurrent renames can mess up our list
2371      * walk here and result in missing our dentry, resulting in the
2372      * false-negative result. d_lookup() protects against concurrent
2373      * renames using rename_lock seqlock.
2374      *
2375      * See Documentation/filesystems/path-lookup.txt for more details.
2376      */
2377     hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2378         unsigned seq;
2379 
2380         /*
2381          * The dentry sequence count protects us from concurrent
2382          * renames, and thus protects parent and name fields.
2383          *
2384          * The caller must perform a seqcount check in order
2385          * to do anything useful with the returned dentry.
2386          *
2387          * NOTE! We do a "raw" seqcount_begin here. That means that
2388          * we don't wait for the sequence count to stabilize if it
2389          * is in the middle of a sequence change. If we do the slow
2390          * dentry compare, we will do seqretries until it is stable,
2391          * and if we end up with a successful lookup, we actually
2392          * want to exit RCU lookup anyway.
2393          *
2394          * Note that raw_seqcount_begin still *does* smp_rmb(), so
2395          * we are still guaranteed NUL-termination of ->d_name.name.
2396          */
2397         seq = raw_seqcount_begin(&dentry->d_seq);
2398         if (dentry->d_parent != parent)
2399             continue;
2400         if (d_unhashed(dentry))
2401             continue;
2402         if (dentry->d_name.hash_len != hashlen)
2403             continue;
2404         if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2405             continue;
2406         *seqp = seq;
2407         return dentry;
2408     }
2409     return NULL;
2410 }
2411 
2412 /**
2413  * d_lookup - search for a dentry
2414  * @parent: parent dentry
2415  * @name: qstr of name we wish to find
2416  * Returns: dentry, or NULL
2417  *
2418  * d_lookup searches the children of the parent dentry for the name in
2419  * question. If the dentry is found its reference count is incremented and the
2420  * dentry is returned. The caller must use dput to free the entry when it has
2421  * finished using it. %NULL is returned if the dentry does not exist.
2422  */
2423 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2424 {
2425     struct dentry *dentry;
2426     unsigned seq;
2427 
2428     do {
2429         seq = read_seqbegin(&rename_lock);
2430         dentry = __d_lookup(parent, name);
2431         if (dentry)
2432             break;
2433     } while (read_seqretry(&rename_lock, seq));
2434     return dentry;
2435 }
2436 EXPORT_SYMBOL(d_lookup);
2437 
2438 /**
2439  * __d_lookup - search for a dentry (racy)
2440  * @parent: parent dentry
2441  * @name: qstr of name we wish to find
2442  * Returns: dentry, or NULL
2443  *
2444  * __d_lookup is like d_lookup, however it may (rarely) return a
2445  * false-negative result due to unrelated rename activity.
2446  *
2447  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2448  * however it must be used carefully, eg. with a following d_lookup in
2449  * the case of failure.
2450  *
2451  * __d_lookup callers must be commented.
2452  */
2453 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2454 {
2455     unsigned int hash = name->hash;
2456     struct hlist_bl_head *b = d_hash(hash);
2457     struct hlist_bl_node *node;
2458     struct dentry *found = NULL;
2459     struct dentry *dentry;
2460 
2461     /*
2462      * Note: There is significant duplication with __d_lookup_rcu which is
2463      * required to prevent single threaded performance regressions
2464      * especially on architectures where smp_rmb (in seqcounts) are costly.
2465      * Keep the two functions in sync.
2466      */
2467 
2468     /*
2469      * The hash list is protected using RCU.
2470      *
2471      * Take d_lock when comparing a candidate dentry, to avoid races
2472      * with d_move().
2473      *
2474      * It is possible that concurrent renames can mess up our list
2475      * walk here and result in missing our dentry, resulting in the
2476      * false-negative result. d_lookup() protects against concurrent
2477      * renames using rename_lock seqlock.
2478      *
2479      * See Documentation/filesystems/path-lookup.txt for more details.
2480      */
2481     rcu_read_lock();
2482     
2483     hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2484 
2485         if (dentry->d_name.hash != hash)
2486             continue;
2487 
2488         spin_lock(&dentry->d_lock);
2489         if (dentry->d_parent != parent)
2490             goto next;
2491         if (d_unhashed(dentry))
2492             goto next;
2493 
2494         if (!d_same_name(dentry, parent, name))
2495             goto next;
2496 
2497         dentry->d_lockref.count++;
2498         found = dentry;
2499         spin_unlock(&dentry->d_lock);
2500         break;
2501 next:
2502         spin_unlock(&dentry->d_lock);
2503     }
2504     rcu_read_unlock();
2505 
2506     return found;
2507 }
2508 
2509 /**
2510  * d_hash_and_lookup - hash the qstr then search for a dentry
2511  * @dir: Directory to search in
2512  * @name: qstr of name we wish to find
2513  *
2514  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2515  */
2516 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2517 {
2518     /*
2519      * Check for a fs-specific hash function. Note that we must
2520      * calculate the standard hash first, as the d_op->d_hash()
2521      * routine may choose to leave the hash value unchanged.
2522      */
2523     name->hash = full_name_hash(dir, name->name, name->len);
2524     if (dir->d_flags & DCACHE_OP_HASH) {
2525         int err = dir->d_op->d_hash(dir, name);
2526         if (unlikely(err < 0))
2527             return ERR_PTR(err);
2528     }
2529     return d_lookup(dir, name);
2530 }
2531 EXPORT_SYMBOL(d_hash_and_lookup);
2532 
2533 /*
2534  * When a file is deleted, we have two options:
2535  * - turn this dentry into a negative dentry
2536  * - unhash this dentry and free it.
2537  *
2538  * Usually, we want to just turn this into
2539  * a negative dentry, but if anybody else is
2540  * currently using the dentry or the inode
2541  * we can't do that and we fall back on removing
2542  * it from the hash queues and waiting for
2543  * it to be deleted later when it has no users
2544  */
2545  
2546 /**
2547  * d_delete - delete a dentry
2548  * @dentry: The dentry to delete
2549  *
2550  * Turn the dentry into a negative dentry if possible, otherwise
2551  * remove it from the hash queues so it can be deleted later
2552  */
2553  
2554 void d_delete(struct dentry * dentry)
2555 {
2556     struct inode *inode = dentry->d_inode;
2557 
2558     spin_lock(&inode->i_lock);
2559     spin_lock(&dentry->d_lock);
2560     /*
2561      * Are we the only user?
2562      */
2563     if (dentry->d_lockref.count == 1) {
2564         dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2565         dentry_unlink_inode(dentry);
2566     } else {
2567         __d_drop(dentry);
2568         spin_unlock(&dentry->d_lock);
2569         spin_unlock(&inode->i_lock);
2570     }
2571 }
2572 EXPORT_SYMBOL(d_delete);
2573 
2574 static void __d_rehash(struct dentry *entry)
2575 {
2576     struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2577 
2578     hlist_bl_lock(b);
2579     hlist_bl_add_head_rcu(&entry->d_hash, b);
2580     hlist_bl_unlock(b);
2581 }
2582 
2583 /**
2584  * d_rehash - add an entry back to the hash
2585  * @entry: dentry to add to the hash
2586  *
2587  * Adds a dentry to the hash according to its name.
2588  */
2589  
2590 void d_rehash(struct dentry * entry)
2591 {
2592     spin_lock(&entry->d_lock);
2593     __d_rehash(entry);
2594     spin_unlock(&entry->d_lock);
2595 }
2596 EXPORT_SYMBOL(d_rehash);
2597 
2598 static inline unsigned start_dir_add(struct inode *dir)
2599 {
2600     /*
2601      * The caller holds a spinlock (dentry::d_lock). On !PREEMPT_RT
2602      * kernels spin_lock() implicitly disables preemption, but not on
2603      * PREEMPT_RT.  So for RT it has to be done explicitly to protect
2604      * the sequence count write side critical section against a reader
2605      * or another writer preempting, which would result in a live lock.
2606      */
2607     if (IS_ENABLED(CONFIG_PREEMPT_RT))
2608         preempt_disable();
2609     for (;;) {
2610         unsigned n = dir->i_dir_seq;
2611         if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2612             return n;
2613         cpu_relax();
2614     }
2615 }
2616 
2617 static inline void end_dir_add(struct inode *dir, unsigned int n,
2618                    wait_queue_head_t *d_wait)
2619 {
2620     smp_store_release(&dir->i_dir_seq, n + 2);
2621     if (IS_ENABLED(CONFIG_PREEMPT_RT))
2622         preempt_enable();
2623     wake_up_all(d_wait);
2624 }
2625 
2626 static void d_wait_lookup(struct dentry *dentry)
2627 {
2628     if (d_in_lookup(dentry)) {
2629         DECLARE_WAITQUEUE(wait, current);
2630         add_wait_queue(dentry->d_wait, &wait);
2631         do {
2632             set_current_state(TASK_UNINTERRUPTIBLE);
2633             spin_unlock(&dentry->d_lock);
2634             schedule();
2635             spin_lock(&dentry->d_lock);
2636         } while (d_in_lookup(dentry));
2637     }
2638 }
2639 
2640 struct dentry *d_alloc_parallel(struct dentry *parent,
2641                 const struct qstr *name,
2642                 wait_queue_head_t *wq)
2643 {
2644     unsigned int hash = name->hash;
2645     struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2646     struct hlist_bl_node *node;
2647     struct dentry *new = d_alloc(parent, name);
2648     struct dentry *dentry;
2649     unsigned seq, r_seq, d_seq;
2650 
2651     if (unlikely(!new))
2652         return ERR_PTR(-ENOMEM);
2653 
2654 retry:
2655     rcu_read_lock();
2656     seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2657     r_seq = read_seqbegin(&rename_lock);
2658     dentry = __d_lookup_rcu(parent, name, &d_seq);
2659     if (unlikely(dentry)) {
2660         if (!lockref_get_not_dead(&dentry->d_lockref)) {
2661             rcu_read_unlock();
2662             goto retry;
2663         }
2664         if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2665             rcu_read_unlock();
2666             dput(dentry);
2667             goto retry;
2668         }
2669         rcu_read_unlock();
2670         dput(new);
2671         return dentry;
2672     }
2673     if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2674         rcu_read_unlock();
2675         goto retry;
2676     }
2677 
2678     if (unlikely(seq & 1)) {
2679         rcu_read_unlock();
2680         goto retry;
2681     }
2682 
2683     hlist_bl_lock(b);
2684     if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2685         hlist_bl_unlock(b);
2686         rcu_read_unlock();
2687         goto retry;
2688     }
2689     /*
2690      * No changes for the parent since the beginning of d_lookup().
2691      * Since all removals from the chain happen with hlist_bl_lock(),
2692      * any potential in-lookup matches are going to stay here until
2693      * we unlock the chain.  All fields are stable in everything
2694      * we encounter.
2695      */
2696     hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2697         if (dentry->d_name.hash != hash)
2698             continue;
2699         if (dentry->d_parent != parent)
2700             continue;
2701         if (!d_same_name(dentry, parent, name))
2702             continue;
2703         hlist_bl_unlock(b);
2704         /* now we can try to grab a reference */
2705         if (!lockref_get_not_dead(&dentry->d_lockref)) {
2706             rcu_read_unlock();
2707             goto retry;
2708         }
2709 
2710         rcu_read_unlock();
2711         /*
2712          * somebody is likely to be still doing lookup for it;
2713          * wait for them to finish
2714          */
2715         spin_lock(&dentry->d_lock);
2716         d_wait_lookup(dentry);
2717         /*
2718          * it's not in-lookup anymore; in principle we should repeat
2719          * everything from dcache lookup, but it's likely to be what
2720          * d_lookup() would've found anyway.  If it is, just return it;
2721          * otherwise we really have to repeat the whole thing.
2722          */
2723         if (unlikely(dentry->d_name.hash != hash))
2724             goto mismatch;
2725         if (unlikely(dentry->d_parent != parent))
2726             goto mismatch;
2727         if (unlikely(d_unhashed(dentry)))
2728             goto mismatch;
2729         if (unlikely(!d_same_name(dentry, parent, name)))
2730             goto mismatch;
2731         /* OK, it *is* a hashed match; return it */
2732         spin_unlock(&dentry->d_lock);
2733         dput(new);
2734         return dentry;
2735     }
2736     rcu_read_unlock();
2737     /* we can't take ->d_lock here; it's OK, though. */
2738     new->d_flags |= DCACHE_PAR_LOOKUP;
2739     new->d_wait = wq;
2740     hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2741     hlist_bl_unlock(b);
2742     return new;
2743 mismatch:
2744     spin_unlock(&dentry->d_lock);
2745     dput(dentry);
2746     goto retry;
2747 }
2748 EXPORT_SYMBOL(d_alloc_parallel);
2749 
2750 /*
2751  * - Unhash the dentry
2752  * - Retrieve and clear the waitqueue head in dentry
2753  * - Return the waitqueue head
2754  */
2755 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2756 {
2757     wait_queue_head_t *d_wait;
2758     struct hlist_bl_head *b;
2759 
2760     lockdep_assert_held(&dentry->d_lock);
2761 
2762     b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2763     hlist_bl_lock(b);
2764     dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2765     __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2766     d_wait = dentry->d_wait;
2767     dentry->d_wait = NULL;
2768     hlist_bl_unlock(b);
2769     INIT_HLIST_NODE(&dentry->d_u.d_alias);
2770     INIT_LIST_HEAD(&dentry->d_lru);
2771     return d_wait;
2772 }
2773 
2774 void __d_lookup_unhash_wake(struct dentry *dentry)
2775 {
2776     spin_lock(&dentry->d_lock);
2777     wake_up_all(__d_lookup_unhash(dentry));
2778     spin_unlock(&dentry->d_lock);
2779 }
2780 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2781 
2782 /* inode->i_lock held if inode is non-NULL */
2783 
2784 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2785 {
2786     wait_queue_head_t *d_wait;
2787     struct inode *dir = NULL;
2788     unsigned n;
2789     spin_lock(&dentry->d_lock);
2790     if (unlikely(d_in_lookup(dentry))) {
2791         dir = dentry->d_parent->d_inode;
2792         n = start_dir_add(dir);
2793         d_wait = __d_lookup_unhash(dentry);
2794     }
2795     if (inode) {
2796         unsigned add_flags = d_flags_for_inode(inode);
2797         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2798         raw_write_seqcount_begin(&dentry->d_seq);
2799         __d_set_inode_and_type(dentry, inode, add_flags);
2800         raw_write_seqcount_end(&dentry->d_seq);
2801         fsnotify_update_flags(dentry);
2802     }
2803     __d_rehash(dentry);
2804     if (dir)
2805         end_dir_add(dir, n, d_wait);
2806     spin_unlock(&dentry->d_lock);
2807     if (inode)
2808         spin_unlock(&inode->i_lock);
2809 }
2810 
2811 /**
2812  * d_add - add dentry to hash queues
2813  * @entry: dentry to add
2814  * @inode: The inode to attach to this dentry
2815  *
2816  * This adds the entry to the hash queues and initializes @inode.
2817  * The entry was actually filled in earlier during d_alloc().
2818  */
2819 
2820 void d_add(struct dentry *entry, struct inode *inode)
2821 {
2822     if (inode) {
2823         security_d_instantiate(entry, inode);
2824         spin_lock(&inode->i_lock);
2825     }
2826     __d_add(entry, inode);
2827 }
2828 EXPORT_SYMBOL(d_add);
2829 
2830 /**
2831  * d_exact_alias - find and hash an exact unhashed alias
2832  * @entry: dentry to add
2833  * @inode: The inode to go with this dentry
2834  *
2835  * If an unhashed dentry with the same name/parent and desired
2836  * inode already exists, hash and return it.  Otherwise, return
2837  * NULL.
2838  *
2839  * Parent directory should be locked.
2840  */
2841 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2842 {
2843     struct dentry *alias;
2844     unsigned int hash = entry->d_name.hash;
2845 
2846     spin_lock(&inode->i_lock);
2847     hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2848         /*
2849          * Don't need alias->d_lock here, because aliases with
2850          * d_parent == entry->d_parent are not subject to name or
2851          * parent changes, because the parent inode i_mutex is held.
2852          */
2853         if (alias->d_name.hash != hash)
2854             continue;
2855         if (alias->d_parent != entry->d_parent)
2856             continue;
2857         if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2858             continue;
2859         spin_lock(&alias->d_lock);
2860         if (!d_unhashed(alias)) {
2861             spin_unlock(&alias->d_lock);
2862             alias = NULL;
2863         } else {
2864             __dget_dlock(alias);
2865             __d_rehash(alias);
2866             spin_unlock(&alias->d_lock);
2867         }
2868         spin_unlock(&inode->i_lock);
2869         return alias;
2870     }
2871     spin_unlock(&inode->i_lock);
2872     return NULL;
2873 }
2874 EXPORT_SYMBOL(d_exact_alias);
2875 
2876 static void swap_names(struct dentry *dentry, struct dentry *target)
2877 {
2878     if (unlikely(dname_external(target))) {
2879         if (unlikely(dname_external(dentry))) {
2880             /*
2881              * Both external: swap the pointers
2882              */
2883             swap(target->d_name.name, dentry->d_name.name);
2884         } else {
2885             /*
2886              * dentry:internal, target:external.  Steal target's
2887              * storage and make target internal.
2888              */
2889             memcpy(target->d_iname, dentry->d_name.name,
2890                     dentry->d_name.len + 1);
2891             dentry->d_name.name = target->d_name.name;
2892             target->d_name.name = target->d_iname;
2893         }
2894     } else {
2895         if (unlikely(dname_external(dentry))) {
2896             /*
2897              * dentry:external, target:internal.  Give dentry's
2898              * storage to target and make dentry internal
2899              */
2900             memcpy(dentry->d_iname, target->d_name.name,
2901                     target->d_name.len + 1);
2902             target->d_name.name = dentry->d_name.name;
2903             dentry->d_name.name = dentry->d_iname;
2904         } else {
2905             /*
2906              * Both are internal.
2907              */
2908             unsigned int i;
2909             BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2910             for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2911                 swap(((long *) &dentry->d_iname)[i],
2912                      ((long *) &target->d_iname)[i]);
2913             }
2914         }
2915     }
2916     swap(dentry->d_name.hash_len, target->d_name.hash_len);
2917 }
2918 
2919 static void copy_name(struct dentry *dentry, struct dentry *target)
2920 {
2921     struct external_name *old_name = NULL;
2922     if (unlikely(dname_external(dentry)))
2923         old_name = external_name(dentry);
2924     if (unlikely(dname_external(target))) {
2925         atomic_inc(&external_name(target)->u.count);
2926         dentry->d_name = target->d_name;
2927     } else {
2928         memcpy(dentry->d_iname, target->d_name.name,
2929                 target->d_name.len + 1);
2930         dentry->d_name.name = dentry->d_iname;
2931         dentry->d_name.hash_len = target->d_name.hash_len;
2932     }
2933     if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2934         kfree_rcu(old_name, u.head);
2935 }
2936 
2937 /*
2938  * __d_move - move a dentry
2939  * @dentry: entry to move
2940  * @target: new dentry
2941  * @exchange: exchange the two dentries
2942  *
2943  * Update the dcache to reflect the move of a file name. Negative
2944  * dcache entries should not be moved in this way. Caller must hold
2945  * rename_lock, the i_mutex of the source and target directories,
2946  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2947  */
2948 static void __d_move(struct dentry *dentry, struct dentry *target,
2949              bool exchange)
2950 {
2951     struct dentry *old_parent, *p;
2952     wait_queue_head_t *d_wait;
2953     struct inode *dir = NULL;
2954     unsigned n;
2955 
2956     WARN_ON(!dentry->d_inode);
2957     if (WARN_ON(dentry == target))
2958         return;
2959 
2960     BUG_ON(d_ancestor(target, dentry));
2961     old_parent = dentry->d_parent;
2962     p = d_ancestor(old_parent, target);
2963     if (IS_ROOT(dentry)) {
2964         BUG_ON(p);
2965         spin_lock(&target->d_parent->d_lock);
2966     } else if (!p) {
2967         /* target is not a descendent of dentry->d_parent */
2968         spin_lock(&target->d_parent->d_lock);
2969         spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2970     } else {
2971         BUG_ON(p == dentry);
2972         spin_lock(&old_parent->d_lock);
2973         if (p != target)
2974             spin_lock_nested(&target->d_parent->d_lock,
2975                     DENTRY_D_LOCK_NESTED);
2976     }
2977     spin_lock_nested(&dentry->d_lock, 2);
2978     spin_lock_nested(&target->d_lock, 3);
2979 
2980     if (unlikely(d_in_lookup(target))) {
2981         dir = target->d_parent->d_inode;
2982         n = start_dir_add(dir);
2983         d_wait = __d_lookup_unhash(target);
2984     }
2985 
2986     write_seqcount_begin(&dentry->d_seq);
2987     write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2988 
2989     /* unhash both */
2990     if (!d_unhashed(dentry))
2991         ___d_drop(dentry);
2992     if (!d_unhashed(target))
2993         ___d_drop(target);
2994 
2995     /* ... and switch them in the tree */
2996     dentry->d_parent = target->d_parent;
2997     if (!exchange) {
2998         copy_name(dentry, target);
2999         target->d_hash.pprev = NULL;
3000         dentry->d_parent->d_lockref.count++;
3001         if (dentry != old_parent) /* wasn't IS_ROOT */
3002             WARN_ON(!--old_parent->d_lockref.count);
3003     } else {
3004         target->d_parent = old_parent;
3005         swap_names(dentry, target);
3006         list_move(&target->d_child, &target->d_parent->d_subdirs);
3007         __d_rehash(target);
3008         fsnotify_update_flags(target);
3009     }
3010     list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
3011     __d_rehash(dentry);
3012     fsnotify_update_flags(dentry);
3013     fscrypt_handle_d_move(dentry);
3014 
3015     write_seqcount_end(&target->d_seq);
3016     write_seqcount_end(&dentry->d_seq);
3017 
3018     if (dir)
3019         end_dir_add(dir, n, d_wait);
3020 
3021     if (dentry->d_parent != old_parent)
3022         spin_unlock(&dentry->d_parent->d_lock);
3023     if (dentry != old_parent)
3024         spin_unlock(&old_parent->d_lock);
3025     spin_unlock(&target->d_lock);
3026     spin_unlock(&dentry->d_lock);
3027 }
3028 
3029 /*
3030  * d_move - move a dentry
3031  * @dentry: entry to move
3032  * @target: new dentry
3033  *
3034  * Update the dcache to reflect the move of a file name. Negative
3035  * dcache entries should not be moved in this way. See the locking
3036  * requirements for __d_move.
3037  */
3038 void d_move(struct dentry *dentry, struct dentry *target)
3039 {
3040     write_seqlock(&rename_lock);
3041     __d_move(dentry, target, false);
3042     write_sequnlock(&rename_lock);
3043 }
3044 EXPORT_SYMBOL(d_move);
3045 
3046 /*
3047  * d_exchange - exchange two dentries
3048  * @dentry1: first dentry
3049  * @dentry2: second dentry
3050  */
3051 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
3052 {
3053     write_seqlock(&rename_lock);
3054 
3055     WARN_ON(!dentry1->d_inode);
3056     WARN_ON(!dentry2->d_inode);
3057     WARN_ON(IS_ROOT(dentry1));
3058     WARN_ON(IS_ROOT(dentry2));
3059 
3060     __d_move(dentry1, dentry2, true);
3061 
3062     write_sequnlock(&rename_lock);
3063 }
3064 
3065 /**
3066  * d_ancestor - search for an ancestor
3067  * @p1: ancestor dentry
3068  * @p2: child dentry
3069  *
3070  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
3071  * an ancestor of p2, else NULL.
3072  */
3073 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
3074 {
3075     struct dentry *p;
3076 
3077     for (p = p2; !IS_ROOT(p); p = p->d_parent) {
3078         if (p->d_parent == p1)
3079             return p;
3080     }
3081     return NULL;
3082 }
3083 
3084 /*
3085  * This helper attempts to cope with remotely renamed directories
3086  *
3087  * It assumes that the caller is already holding
3088  * dentry->d_parent->d_inode->i_mutex, and rename_lock
3089  *
3090  * Note: If ever the locking in lock_rename() changes, then please
3091  * remember to update this too...
3092  */
3093 static int __d_unalias(struct inode *inode,
3094         struct dentry *dentry, struct dentry *alias)
3095 {
3096     struct mutex *m1 = NULL;
3097     struct rw_semaphore *m2 = NULL;
3098     int ret = -ESTALE;
3099 
3100     /* If alias and dentry share a parent, then no extra locks required */
3101     if (alias->d_parent == dentry->d_parent)
3102         goto out_unalias;
3103 
3104     /* See lock_rename() */
3105     if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3106         goto out_err;
3107     m1 = &dentry->d_sb->s_vfs_rename_mutex;
3108     if (!inode_trylock_shared(alias->d_parent->d_inode))
3109         goto out_err;
3110     m2 = &alias->d_parent->d_inode->i_rwsem;
3111 out_unalias:
3112     __d_move(alias, dentry, false);
3113     ret = 0;
3114 out_err:
3115     if (m2)
3116         up_read(m2);
3117     if (m1)
3118         mutex_unlock(m1);
3119     return ret;
3120 }
3121 
3122 /**
3123  * d_splice_alias - splice a disconnected dentry into the tree if one exists
3124  * @inode:  the inode which may have a disconnected dentry
3125  * @dentry: a negative dentry which we want to point to the inode.
3126  *
3127  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3128  * place of the given dentry and return it, else simply d_add the inode
3129  * to the dentry and return NULL.
3130  *
3131  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3132  * we should error out: directories can't have multiple aliases.
3133  *
3134  * This is needed in the lookup routine of any filesystem that is exportable
3135  * (via knfsd) so that we can build dcache paths to directories effectively.
3136  *
3137  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3138  * is returned.  This matches the expected return value of ->lookup.
3139  *
3140  * Cluster filesystems may call this function with a negative, hashed dentry.
3141  * In that case, we know that the inode will be a regular file, and also this
3142  * will only occur during atomic_open. So we need to check for the dentry
3143  * being already hashed only in the final case.
3144  */
3145 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3146 {
3147     if (IS_ERR(inode))
3148         return ERR_CAST(inode);
3149 
3150     BUG_ON(!d_unhashed(dentry));
3151 
3152     if (!inode)
3153         goto out;
3154 
3155     security_d_instantiate(dentry, inode);
3156     spin_lock(&inode->i_lock);
3157     if (S_ISDIR(inode->i_mode)) {
3158         struct dentry *new = __d_find_any_alias(inode);
3159         if (unlikely(new)) {
3160             /* The reference to new ensures it remains an alias */
3161             spin_unlock(&inode->i_lock);
3162             write_seqlock(&rename_lock);
3163             if (unlikely(d_ancestor(new, dentry))) {
3164                 write_sequnlock(&rename_lock);
3165                 dput(new);
3166                 new = ERR_PTR(-ELOOP);
3167                 pr_warn_ratelimited(
3168                     "VFS: Lookup of '%s' in %s %s"
3169                     " would have caused loop\n",
3170                     dentry->d_name.name,
3171                     inode->i_sb->s_type->name,
3172                     inode->i_sb->s_id);
3173             } else if (!IS_ROOT(new)) {
3174                 struct dentry *old_parent = dget(new->d_parent);
3175                 int err = __d_unalias(inode, dentry, new);
3176                 write_sequnlock(&rename_lock);
3177                 if (err) {
3178                     dput(new);
3179                     new = ERR_PTR(err);
3180                 }
3181                 dput(old_parent);
3182             } else {
3183                 __d_move(new, dentry, false);
3184                 write_sequnlock(&rename_lock);
3185             }
3186             iput(inode);
3187             return new;
3188         }
3189     }
3190 out:
3191     __d_add(dentry, inode);
3192     return NULL;
3193 }
3194 EXPORT_SYMBOL(d_splice_alias);
3195 
3196 /*
3197  * Test whether new_dentry is a subdirectory of old_dentry.
3198  *
3199  * Trivially implemented using the dcache structure
3200  */
3201 
3202 /**
3203  * is_subdir - is new dentry a subdirectory of old_dentry
3204  * @new_dentry: new dentry
3205  * @old_dentry: old dentry
3206  *
3207  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3208  * Returns false otherwise.
3209  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3210  */
3211   
3212 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3213 {
3214     bool result;
3215     unsigned seq;
3216 
3217     if (new_dentry == old_dentry)
3218         return true;
3219 
3220     do {
3221         /* for restarting inner loop in case of seq retry */
3222         seq = read_seqbegin(&rename_lock);
3223         /*
3224          * Need rcu_readlock to protect against the d_parent trashing
3225          * due to d_move
3226          */
3227         rcu_read_lock();
3228         if (d_ancestor(old_dentry, new_dentry))
3229             result = true;
3230         else
3231             result = false;
3232         rcu_read_unlock();
3233     } while (read_seqretry(&rename_lock, seq));
3234 
3235     return result;
3236 }
3237 EXPORT_SYMBOL(is_subdir);
3238 
3239 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3240 {
3241     struct dentry *root = data;
3242     if (dentry != root) {
3243         if (d_unhashed(dentry) || !dentry->d_inode)
3244             return D_WALK_SKIP;
3245 
3246         if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3247             dentry->d_flags |= DCACHE_GENOCIDE;
3248             dentry->d_lockref.count--;
3249         }
3250     }
3251     return D_WALK_CONTINUE;
3252 }
3253 
3254 void d_genocide(struct dentry *parent)
3255 {
3256     d_walk(parent, parent, d_genocide_kill);
3257 }
3258 
3259 EXPORT_SYMBOL(d_genocide);
3260 
3261 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3262 {
3263     inode_dec_link_count(inode);
3264     BUG_ON(dentry->d_name.name != dentry->d_iname ||
3265         !hlist_unhashed(&dentry->d_u.d_alias) ||
3266         !d_unlinked(dentry));
3267     spin_lock(&dentry->d_parent->d_lock);
3268     spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3269     dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3270                 (unsigned long long)inode->i_ino);
3271     spin_unlock(&dentry->d_lock);
3272     spin_unlock(&dentry->d_parent->d_lock);
3273     d_instantiate(dentry, inode);
3274 }
3275 EXPORT_SYMBOL(d_tmpfile);
3276 
3277 static __initdata unsigned long dhash_entries;
3278 static int __init set_dhash_entries(char *str)
3279 {
3280     if (!str)
3281         return 0;
3282     dhash_entries = simple_strtoul(str, &str, 0);
3283     return 1;
3284 }
3285 __setup("dhash_entries=", set_dhash_entries);
3286 
3287 static void __init dcache_init_early(void)
3288 {
3289     /* If hashes are distributed across NUMA nodes, defer
3290      * hash allocation until vmalloc space is available.
3291      */
3292     if (hashdist)
3293         return;
3294 
3295     dentry_hashtable =
3296         alloc_large_system_hash("Dentry cache",
3297                     sizeof(struct hlist_bl_head),
3298                     dhash_entries,
3299                     13,
3300                     HASH_EARLY | HASH_ZERO,
3301                     &d_hash_shift,
3302                     NULL,
3303                     0,
3304                     0);
3305     d_hash_shift = 32 - d_hash_shift;
3306 }
3307 
3308 static void __init dcache_init(void)
3309 {
3310     /*
3311      * A constructor could be added for stable state like the lists,
3312      * but it is probably not worth it because of the cache nature
3313      * of the dcache.
3314      */
3315     dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3316         SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3317         d_iname);
3318 
3319     /* Hash may have been set up in dcache_init_early */
3320     if (!hashdist)
3321         return;
3322 
3323     dentry_hashtable =
3324         alloc_large_system_hash("Dentry cache",
3325                     sizeof(struct hlist_bl_head),
3326                     dhash_entries,
3327                     13,
3328                     HASH_ZERO,
3329                     &d_hash_shift,
3330                     NULL,
3331                     0,
3332                     0);
3333     d_hash_shift = 32 - d_hash_shift;
3334 }
3335 
3336 /* SLAB cache for __getname() consumers */
3337 struct kmem_cache *names_cachep __read_mostly;
3338 EXPORT_SYMBOL(names_cachep);
3339 
3340 void __init vfs_caches_init_early(void)
3341 {
3342     int i;
3343 
3344     for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3345         INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3346 
3347     dcache_init_early();
3348     inode_init_early();
3349 }
3350 
3351 void __init vfs_caches_init(void)
3352 {
3353     names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3354             SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3355 
3356     dcache_init();
3357     inode_init();
3358     files_init();
3359     files_maxfiles_init();
3360     mnt_init();
3361     bdev_cache_init();
3362     chrdev_init();
3363 }