Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * fs/dax.c - Direct Access filesystem code
0004  * Copyright (c) 2013-2014 Intel Corporation
0005  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
0006  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
0007  */
0008 
0009 #include <linux/atomic.h>
0010 #include <linux/blkdev.h>
0011 #include <linux/buffer_head.h>
0012 #include <linux/dax.h>
0013 #include <linux/fs.h>
0014 #include <linux/highmem.h>
0015 #include <linux/memcontrol.h>
0016 #include <linux/mm.h>
0017 #include <linux/mutex.h>
0018 #include <linux/pagevec.h>
0019 #include <linux/sched.h>
0020 #include <linux/sched/signal.h>
0021 #include <linux/uio.h>
0022 #include <linux/vmstat.h>
0023 #include <linux/pfn_t.h>
0024 #include <linux/sizes.h>
0025 #include <linux/mmu_notifier.h>
0026 #include <linux/iomap.h>
0027 #include <linux/rmap.h>
0028 #include <asm/pgalloc.h>
0029 
0030 #define CREATE_TRACE_POINTS
0031 #include <trace/events/fs_dax.h>
0032 
0033 static inline unsigned int pe_order(enum page_entry_size pe_size)
0034 {
0035     if (pe_size == PE_SIZE_PTE)
0036         return PAGE_SHIFT - PAGE_SHIFT;
0037     if (pe_size == PE_SIZE_PMD)
0038         return PMD_SHIFT - PAGE_SHIFT;
0039     if (pe_size == PE_SIZE_PUD)
0040         return PUD_SHIFT - PAGE_SHIFT;
0041     return ~0;
0042 }
0043 
0044 /* We choose 4096 entries - same as per-zone page wait tables */
0045 #define DAX_WAIT_TABLE_BITS 12
0046 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
0047 
0048 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
0049 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
0050 #define PG_PMD_NR   (PMD_SIZE >> PAGE_SHIFT)
0051 
0052 /* The order of a PMD entry */
0053 #define PMD_ORDER   (PMD_SHIFT - PAGE_SHIFT)
0054 
0055 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
0056 
0057 static int __init init_dax_wait_table(void)
0058 {
0059     int i;
0060 
0061     for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
0062         init_waitqueue_head(wait_table + i);
0063     return 0;
0064 }
0065 fs_initcall(init_dax_wait_table);
0066 
0067 /*
0068  * DAX pagecache entries use XArray value entries so they can't be mistaken
0069  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
0070  * and two more to tell us if the entry is a zero page or an empty entry that
0071  * is just used for locking.  In total four special bits.
0072  *
0073  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
0074  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
0075  * block allocation.
0076  */
0077 #define DAX_SHIFT   (4)
0078 #define DAX_LOCKED  (1UL << 0)
0079 #define DAX_PMD     (1UL << 1)
0080 #define DAX_ZERO_PAGE   (1UL << 2)
0081 #define DAX_EMPTY   (1UL << 3)
0082 
0083 static unsigned long dax_to_pfn(void *entry)
0084 {
0085     return xa_to_value(entry) >> DAX_SHIFT;
0086 }
0087 
0088 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
0089 {
0090     return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
0091 }
0092 
0093 static bool dax_is_locked(void *entry)
0094 {
0095     return xa_to_value(entry) & DAX_LOCKED;
0096 }
0097 
0098 static unsigned int dax_entry_order(void *entry)
0099 {
0100     if (xa_to_value(entry) & DAX_PMD)
0101         return PMD_ORDER;
0102     return 0;
0103 }
0104 
0105 static unsigned long dax_is_pmd_entry(void *entry)
0106 {
0107     return xa_to_value(entry) & DAX_PMD;
0108 }
0109 
0110 static bool dax_is_pte_entry(void *entry)
0111 {
0112     return !(xa_to_value(entry) & DAX_PMD);
0113 }
0114 
0115 static int dax_is_zero_entry(void *entry)
0116 {
0117     return xa_to_value(entry) & DAX_ZERO_PAGE;
0118 }
0119 
0120 static int dax_is_empty_entry(void *entry)
0121 {
0122     return xa_to_value(entry) & DAX_EMPTY;
0123 }
0124 
0125 /*
0126  * true if the entry that was found is of a smaller order than the entry
0127  * we were looking for
0128  */
0129 static bool dax_is_conflict(void *entry)
0130 {
0131     return entry == XA_RETRY_ENTRY;
0132 }
0133 
0134 /*
0135  * DAX page cache entry locking
0136  */
0137 struct exceptional_entry_key {
0138     struct xarray *xa;
0139     pgoff_t entry_start;
0140 };
0141 
0142 struct wait_exceptional_entry_queue {
0143     wait_queue_entry_t wait;
0144     struct exceptional_entry_key key;
0145 };
0146 
0147 /**
0148  * enum dax_wake_mode: waitqueue wakeup behaviour
0149  * @WAKE_ALL: wake all waiters in the waitqueue
0150  * @WAKE_NEXT: wake only the first waiter in the waitqueue
0151  */
0152 enum dax_wake_mode {
0153     WAKE_ALL,
0154     WAKE_NEXT,
0155 };
0156 
0157 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
0158         void *entry, struct exceptional_entry_key *key)
0159 {
0160     unsigned long hash;
0161     unsigned long index = xas->xa_index;
0162 
0163     /*
0164      * If 'entry' is a PMD, align the 'index' that we use for the wait
0165      * queue to the start of that PMD.  This ensures that all offsets in
0166      * the range covered by the PMD map to the same bit lock.
0167      */
0168     if (dax_is_pmd_entry(entry))
0169         index &= ~PG_PMD_COLOUR;
0170     key->xa = xas->xa;
0171     key->entry_start = index;
0172 
0173     hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
0174     return wait_table + hash;
0175 }
0176 
0177 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
0178         unsigned int mode, int sync, void *keyp)
0179 {
0180     struct exceptional_entry_key *key = keyp;
0181     struct wait_exceptional_entry_queue *ewait =
0182         container_of(wait, struct wait_exceptional_entry_queue, wait);
0183 
0184     if (key->xa != ewait->key.xa ||
0185         key->entry_start != ewait->key.entry_start)
0186         return 0;
0187     return autoremove_wake_function(wait, mode, sync, NULL);
0188 }
0189 
0190 /*
0191  * @entry may no longer be the entry at the index in the mapping.
0192  * The important information it's conveying is whether the entry at
0193  * this index used to be a PMD entry.
0194  */
0195 static void dax_wake_entry(struct xa_state *xas, void *entry,
0196                enum dax_wake_mode mode)
0197 {
0198     struct exceptional_entry_key key;
0199     wait_queue_head_t *wq;
0200 
0201     wq = dax_entry_waitqueue(xas, entry, &key);
0202 
0203     /*
0204      * Checking for locked entry and prepare_to_wait_exclusive() happens
0205      * under the i_pages lock, ditto for entry handling in our callers.
0206      * So at this point all tasks that could have seen our entry locked
0207      * must be in the waitqueue and the following check will see them.
0208      */
0209     if (waitqueue_active(wq))
0210         __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
0211 }
0212 
0213 /*
0214  * Look up entry in page cache, wait for it to become unlocked if it
0215  * is a DAX entry and return it.  The caller must subsequently call
0216  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
0217  * if it did.  The entry returned may have a larger order than @order.
0218  * If @order is larger than the order of the entry found in i_pages, this
0219  * function returns a dax_is_conflict entry.
0220  *
0221  * Must be called with the i_pages lock held.
0222  */
0223 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
0224 {
0225     void *entry;
0226     struct wait_exceptional_entry_queue ewait;
0227     wait_queue_head_t *wq;
0228 
0229     init_wait(&ewait.wait);
0230     ewait.wait.func = wake_exceptional_entry_func;
0231 
0232     for (;;) {
0233         entry = xas_find_conflict(xas);
0234         if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
0235             return entry;
0236         if (dax_entry_order(entry) < order)
0237             return XA_RETRY_ENTRY;
0238         if (!dax_is_locked(entry))
0239             return entry;
0240 
0241         wq = dax_entry_waitqueue(xas, entry, &ewait.key);
0242         prepare_to_wait_exclusive(wq, &ewait.wait,
0243                       TASK_UNINTERRUPTIBLE);
0244         xas_unlock_irq(xas);
0245         xas_reset(xas);
0246         schedule();
0247         finish_wait(wq, &ewait.wait);
0248         xas_lock_irq(xas);
0249     }
0250 }
0251 
0252 /*
0253  * The only thing keeping the address space around is the i_pages lock
0254  * (it's cycled in clear_inode() after removing the entries from i_pages)
0255  * After we call xas_unlock_irq(), we cannot touch xas->xa.
0256  */
0257 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
0258 {
0259     struct wait_exceptional_entry_queue ewait;
0260     wait_queue_head_t *wq;
0261 
0262     init_wait(&ewait.wait);
0263     ewait.wait.func = wake_exceptional_entry_func;
0264 
0265     wq = dax_entry_waitqueue(xas, entry, &ewait.key);
0266     /*
0267      * Unlike get_unlocked_entry() there is no guarantee that this
0268      * path ever successfully retrieves an unlocked entry before an
0269      * inode dies. Perform a non-exclusive wait in case this path
0270      * never successfully performs its own wake up.
0271      */
0272     prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
0273     xas_unlock_irq(xas);
0274     schedule();
0275     finish_wait(wq, &ewait.wait);
0276 }
0277 
0278 static void put_unlocked_entry(struct xa_state *xas, void *entry,
0279                    enum dax_wake_mode mode)
0280 {
0281     if (entry && !dax_is_conflict(entry))
0282         dax_wake_entry(xas, entry, mode);
0283 }
0284 
0285 /*
0286  * We used the xa_state to get the entry, but then we locked the entry and
0287  * dropped the xa_lock, so we know the xa_state is stale and must be reset
0288  * before use.
0289  */
0290 static void dax_unlock_entry(struct xa_state *xas, void *entry)
0291 {
0292     void *old;
0293 
0294     BUG_ON(dax_is_locked(entry));
0295     xas_reset(xas);
0296     xas_lock_irq(xas);
0297     old = xas_store(xas, entry);
0298     xas_unlock_irq(xas);
0299     BUG_ON(!dax_is_locked(old));
0300     dax_wake_entry(xas, entry, WAKE_NEXT);
0301 }
0302 
0303 /*
0304  * Return: The entry stored at this location before it was locked.
0305  */
0306 static void *dax_lock_entry(struct xa_state *xas, void *entry)
0307 {
0308     unsigned long v = xa_to_value(entry);
0309     return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
0310 }
0311 
0312 static unsigned long dax_entry_size(void *entry)
0313 {
0314     if (dax_is_zero_entry(entry))
0315         return 0;
0316     else if (dax_is_empty_entry(entry))
0317         return 0;
0318     else if (dax_is_pmd_entry(entry))
0319         return PMD_SIZE;
0320     else
0321         return PAGE_SIZE;
0322 }
0323 
0324 static unsigned long dax_end_pfn(void *entry)
0325 {
0326     return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
0327 }
0328 
0329 /*
0330  * Iterate through all mapped pfns represented by an entry, i.e. skip
0331  * 'empty' and 'zero' entries.
0332  */
0333 #define for_each_mapped_pfn(entry, pfn) \
0334     for (pfn = dax_to_pfn(entry); \
0335             pfn < dax_end_pfn(entry); pfn++)
0336 
0337 static inline bool dax_mapping_is_cow(struct address_space *mapping)
0338 {
0339     return (unsigned long)mapping == PAGE_MAPPING_DAX_COW;
0340 }
0341 
0342 /*
0343  * Set the page->mapping with FS_DAX_MAPPING_COW flag, increase the refcount.
0344  */
0345 static inline void dax_mapping_set_cow(struct page *page)
0346 {
0347     if ((uintptr_t)page->mapping != PAGE_MAPPING_DAX_COW) {
0348         /*
0349          * Reset the index if the page was already mapped
0350          * regularly before.
0351          */
0352         if (page->mapping)
0353             page->index = 1;
0354         page->mapping = (void *)PAGE_MAPPING_DAX_COW;
0355     }
0356     page->index++;
0357 }
0358 
0359 /*
0360  * When it is called in dax_insert_entry(), the cow flag will indicate that
0361  * whether this entry is shared by multiple files.  If so, set the page->mapping
0362  * FS_DAX_MAPPING_COW, and use page->index as refcount.
0363  */
0364 static void dax_associate_entry(void *entry, struct address_space *mapping,
0365         struct vm_area_struct *vma, unsigned long address, bool cow)
0366 {
0367     unsigned long size = dax_entry_size(entry), pfn, index;
0368     int i = 0;
0369 
0370     if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
0371         return;
0372 
0373     index = linear_page_index(vma, address & ~(size - 1));
0374     for_each_mapped_pfn(entry, pfn) {
0375         struct page *page = pfn_to_page(pfn);
0376 
0377         if (cow) {
0378             dax_mapping_set_cow(page);
0379         } else {
0380             WARN_ON_ONCE(page->mapping);
0381             page->mapping = mapping;
0382             page->index = index + i++;
0383         }
0384     }
0385 }
0386 
0387 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
0388         bool trunc)
0389 {
0390     unsigned long pfn;
0391 
0392     if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
0393         return;
0394 
0395     for_each_mapped_pfn(entry, pfn) {
0396         struct page *page = pfn_to_page(pfn);
0397 
0398         WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
0399         if (dax_mapping_is_cow(page->mapping)) {
0400             /* keep the CoW flag if this page is still shared */
0401             if (page->index-- > 0)
0402                 continue;
0403         } else
0404             WARN_ON_ONCE(page->mapping && page->mapping != mapping);
0405         page->mapping = NULL;
0406         page->index = 0;
0407     }
0408 }
0409 
0410 static struct page *dax_busy_page(void *entry)
0411 {
0412     unsigned long pfn;
0413 
0414     for_each_mapped_pfn(entry, pfn) {
0415         struct page *page = pfn_to_page(pfn);
0416 
0417         if (page_ref_count(page) > 1)
0418             return page;
0419     }
0420     return NULL;
0421 }
0422 
0423 /*
0424  * dax_lock_page - Lock the DAX entry corresponding to a page
0425  * @page: The page whose entry we want to lock
0426  *
0427  * Context: Process context.
0428  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
0429  * not be locked.
0430  */
0431 dax_entry_t dax_lock_page(struct page *page)
0432 {
0433     XA_STATE(xas, NULL, 0);
0434     void *entry;
0435 
0436     /* Ensure page->mapping isn't freed while we look at it */
0437     rcu_read_lock();
0438     for (;;) {
0439         struct address_space *mapping = READ_ONCE(page->mapping);
0440 
0441         entry = NULL;
0442         if (!mapping || !dax_mapping(mapping))
0443             break;
0444 
0445         /*
0446          * In the device-dax case there's no need to lock, a
0447          * struct dev_pagemap pin is sufficient to keep the
0448          * inode alive, and we assume we have dev_pagemap pin
0449          * otherwise we would not have a valid pfn_to_page()
0450          * translation.
0451          */
0452         entry = (void *)~0UL;
0453         if (S_ISCHR(mapping->host->i_mode))
0454             break;
0455 
0456         xas.xa = &mapping->i_pages;
0457         xas_lock_irq(&xas);
0458         if (mapping != page->mapping) {
0459             xas_unlock_irq(&xas);
0460             continue;
0461         }
0462         xas_set(&xas, page->index);
0463         entry = xas_load(&xas);
0464         if (dax_is_locked(entry)) {
0465             rcu_read_unlock();
0466             wait_entry_unlocked(&xas, entry);
0467             rcu_read_lock();
0468             continue;
0469         }
0470         dax_lock_entry(&xas, entry);
0471         xas_unlock_irq(&xas);
0472         break;
0473     }
0474     rcu_read_unlock();
0475     return (dax_entry_t)entry;
0476 }
0477 
0478 void dax_unlock_page(struct page *page, dax_entry_t cookie)
0479 {
0480     struct address_space *mapping = page->mapping;
0481     XA_STATE(xas, &mapping->i_pages, page->index);
0482 
0483     if (S_ISCHR(mapping->host->i_mode))
0484         return;
0485 
0486     dax_unlock_entry(&xas, (void *)cookie);
0487 }
0488 
0489 /*
0490  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping
0491  * @mapping: the file's mapping whose entry we want to lock
0492  * @index: the offset within this file
0493  * @page: output the dax page corresponding to this dax entry
0494  *
0495  * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry
0496  * could not be locked.
0497  */
0498 dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index,
0499         struct page **page)
0500 {
0501     XA_STATE(xas, NULL, 0);
0502     void *entry;
0503 
0504     rcu_read_lock();
0505     for (;;) {
0506         entry = NULL;
0507         if (!dax_mapping(mapping))
0508             break;
0509 
0510         xas.xa = &mapping->i_pages;
0511         xas_lock_irq(&xas);
0512         xas_set(&xas, index);
0513         entry = xas_load(&xas);
0514         if (dax_is_locked(entry)) {
0515             rcu_read_unlock();
0516             wait_entry_unlocked(&xas, entry);
0517             rcu_read_lock();
0518             continue;
0519         }
0520         if (!entry ||
0521             dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
0522             /*
0523              * Because we are looking for entry from file's mapping
0524              * and index, so the entry may not be inserted for now,
0525              * or even a zero/empty entry.  We don't think this is
0526              * an error case.  So, return a special value and do
0527              * not output @page.
0528              */
0529             entry = (void *)~0UL;
0530         } else {
0531             *page = pfn_to_page(dax_to_pfn(entry));
0532             dax_lock_entry(&xas, entry);
0533         }
0534         xas_unlock_irq(&xas);
0535         break;
0536     }
0537     rcu_read_unlock();
0538     return (dax_entry_t)entry;
0539 }
0540 
0541 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index,
0542         dax_entry_t cookie)
0543 {
0544     XA_STATE(xas, &mapping->i_pages, index);
0545 
0546     if (cookie == ~0UL)
0547         return;
0548 
0549     dax_unlock_entry(&xas, (void *)cookie);
0550 }
0551 
0552 /*
0553  * Find page cache entry at given index. If it is a DAX entry, return it
0554  * with the entry locked. If the page cache doesn't contain an entry at
0555  * that index, add a locked empty entry.
0556  *
0557  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
0558  * either return that locked entry or will return VM_FAULT_FALLBACK.
0559  * This will happen if there are any PTE entries within the PMD range
0560  * that we are requesting.
0561  *
0562  * We always favor PTE entries over PMD entries. There isn't a flow where we
0563  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
0564  * insertion will fail if it finds any PTE entries already in the tree, and a
0565  * PTE insertion will cause an existing PMD entry to be unmapped and
0566  * downgraded to PTE entries.  This happens for both PMD zero pages as
0567  * well as PMD empty entries.
0568  *
0569  * The exception to this downgrade path is for PMD entries that have
0570  * real storage backing them.  We will leave these real PMD entries in
0571  * the tree, and PTE writes will simply dirty the entire PMD entry.
0572  *
0573  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
0574  * persistent memory the benefit is doubtful. We can add that later if we can
0575  * show it helps.
0576  *
0577  * On error, this function does not return an ERR_PTR.  Instead it returns
0578  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
0579  * overlap with xarray value entries.
0580  */
0581 static void *grab_mapping_entry(struct xa_state *xas,
0582         struct address_space *mapping, unsigned int order)
0583 {
0584     unsigned long index = xas->xa_index;
0585     bool pmd_downgrade; /* splitting PMD entry into PTE entries? */
0586     void *entry;
0587 
0588 retry:
0589     pmd_downgrade = false;
0590     xas_lock_irq(xas);
0591     entry = get_unlocked_entry(xas, order);
0592 
0593     if (entry) {
0594         if (dax_is_conflict(entry))
0595             goto fallback;
0596         if (!xa_is_value(entry)) {
0597             xas_set_err(xas, -EIO);
0598             goto out_unlock;
0599         }
0600 
0601         if (order == 0) {
0602             if (dax_is_pmd_entry(entry) &&
0603                 (dax_is_zero_entry(entry) ||
0604                  dax_is_empty_entry(entry))) {
0605                 pmd_downgrade = true;
0606             }
0607         }
0608     }
0609 
0610     if (pmd_downgrade) {
0611         /*
0612          * Make sure 'entry' remains valid while we drop
0613          * the i_pages lock.
0614          */
0615         dax_lock_entry(xas, entry);
0616 
0617         /*
0618          * Besides huge zero pages the only other thing that gets
0619          * downgraded are empty entries which don't need to be
0620          * unmapped.
0621          */
0622         if (dax_is_zero_entry(entry)) {
0623             xas_unlock_irq(xas);
0624             unmap_mapping_pages(mapping,
0625                     xas->xa_index & ~PG_PMD_COLOUR,
0626                     PG_PMD_NR, false);
0627             xas_reset(xas);
0628             xas_lock_irq(xas);
0629         }
0630 
0631         dax_disassociate_entry(entry, mapping, false);
0632         xas_store(xas, NULL);   /* undo the PMD join */
0633         dax_wake_entry(xas, entry, WAKE_ALL);
0634         mapping->nrpages -= PG_PMD_NR;
0635         entry = NULL;
0636         xas_set(xas, index);
0637     }
0638 
0639     if (entry) {
0640         dax_lock_entry(xas, entry);
0641     } else {
0642         unsigned long flags = DAX_EMPTY;
0643 
0644         if (order > 0)
0645             flags |= DAX_PMD;
0646         entry = dax_make_entry(pfn_to_pfn_t(0), flags);
0647         dax_lock_entry(xas, entry);
0648         if (xas_error(xas))
0649             goto out_unlock;
0650         mapping->nrpages += 1UL << order;
0651     }
0652 
0653 out_unlock:
0654     xas_unlock_irq(xas);
0655     if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
0656         goto retry;
0657     if (xas->xa_node == XA_ERROR(-ENOMEM))
0658         return xa_mk_internal(VM_FAULT_OOM);
0659     if (xas_error(xas))
0660         return xa_mk_internal(VM_FAULT_SIGBUS);
0661     return entry;
0662 fallback:
0663     xas_unlock_irq(xas);
0664     return xa_mk_internal(VM_FAULT_FALLBACK);
0665 }
0666 
0667 /**
0668  * dax_layout_busy_page_range - find first pinned page in @mapping
0669  * @mapping: address space to scan for a page with ref count > 1
0670  * @start: Starting offset. Page containing 'start' is included.
0671  * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
0672  *       pages from 'start' till the end of file are included.
0673  *
0674  * DAX requires ZONE_DEVICE mapped pages. These pages are never
0675  * 'onlined' to the page allocator so they are considered idle when
0676  * page->count == 1. A filesystem uses this interface to determine if
0677  * any page in the mapping is busy, i.e. for DMA, or other
0678  * get_user_pages() usages.
0679  *
0680  * It is expected that the filesystem is holding locks to block the
0681  * establishment of new mappings in this address_space. I.e. it expects
0682  * to be able to run unmap_mapping_range() and subsequently not race
0683  * mapping_mapped() becoming true.
0684  */
0685 struct page *dax_layout_busy_page_range(struct address_space *mapping,
0686                     loff_t start, loff_t end)
0687 {
0688     void *entry;
0689     unsigned int scanned = 0;
0690     struct page *page = NULL;
0691     pgoff_t start_idx = start >> PAGE_SHIFT;
0692     pgoff_t end_idx;
0693     XA_STATE(xas, &mapping->i_pages, start_idx);
0694 
0695     /*
0696      * In the 'limited' case get_user_pages() for dax is disabled.
0697      */
0698     if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
0699         return NULL;
0700 
0701     if (!dax_mapping(mapping) || !mapping_mapped(mapping))
0702         return NULL;
0703 
0704     /* If end == LLONG_MAX, all pages from start to till end of file */
0705     if (end == LLONG_MAX)
0706         end_idx = ULONG_MAX;
0707     else
0708         end_idx = end >> PAGE_SHIFT;
0709     /*
0710      * If we race get_user_pages_fast() here either we'll see the
0711      * elevated page count in the iteration and wait, or
0712      * get_user_pages_fast() will see that the page it took a reference
0713      * against is no longer mapped in the page tables and bail to the
0714      * get_user_pages() slow path.  The slow path is protected by
0715      * pte_lock() and pmd_lock(). New references are not taken without
0716      * holding those locks, and unmap_mapping_pages() will not zero the
0717      * pte or pmd without holding the respective lock, so we are
0718      * guaranteed to either see new references or prevent new
0719      * references from being established.
0720      */
0721     unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
0722 
0723     xas_lock_irq(&xas);
0724     xas_for_each(&xas, entry, end_idx) {
0725         if (WARN_ON_ONCE(!xa_is_value(entry)))
0726             continue;
0727         if (unlikely(dax_is_locked(entry)))
0728             entry = get_unlocked_entry(&xas, 0);
0729         if (entry)
0730             page = dax_busy_page(entry);
0731         put_unlocked_entry(&xas, entry, WAKE_NEXT);
0732         if (page)
0733             break;
0734         if (++scanned % XA_CHECK_SCHED)
0735             continue;
0736 
0737         xas_pause(&xas);
0738         xas_unlock_irq(&xas);
0739         cond_resched();
0740         xas_lock_irq(&xas);
0741     }
0742     xas_unlock_irq(&xas);
0743     return page;
0744 }
0745 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
0746 
0747 struct page *dax_layout_busy_page(struct address_space *mapping)
0748 {
0749     return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
0750 }
0751 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
0752 
0753 static int __dax_invalidate_entry(struct address_space *mapping,
0754                       pgoff_t index, bool trunc)
0755 {
0756     XA_STATE(xas, &mapping->i_pages, index);
0757     int ret = 0;
0758     void *entry;
0759 
0760     xas_lock_irq(&xas);
0761     entry = get_unlocked_entry(&xas, 0);
0762     if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
0763         goto out;
0764     if (!trunc &&
0765         (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
0766          xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
0767         goto out;
0768     dax_disassociate_entry(entry, mapping, trunc);
0769     xas_store(&xas, NULL);
0770     mapping->nrpages -= 1UL << dax_entry_order(entry);
0771     ret = 1;
0772 out:
0773     put_unlocked_entry(&xas, entry, WAKE_ALL);
0774     xas_unlock_irq(&xas);
0775     return ret;
0776 }
0777 
0778 /*
0779  * Delete DAX entry at @index from @mapping.  Wait for it
0780  * to be unlocked before deleting it.
0781  */
0782 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
0783 {
0784     int ret = __dax_invalidate_entry(mapping, index, true);
0785 
0786     /*
0787      * This gets called from truncate / punch_hole path. As such, the caller
0788      * must hold locks protecting against concurrent modifications of the
0789      * page cache (usually fs-private i_mmap_sem for writing). Since the
0790      * caller has seen a DAX entry for this index, we better find it
0791      * at that index as well...
0792      */
0793     WARN_ON_ONCE(!ret);
0794     return ret;
0795 }
0796 
0797 /*
0798  * Invalidate DAX entry if it is clean.
0799  */
0800 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
0801                       pgoff_t index)
0802 {
0803     return __dax_invalidate_entry(mapping, index, false);
0804 }
0805 
0806 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
0807 {
0808     return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
0809 }
0810 
0811 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
0812 {
0813     pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
0814     void *vto, *kaddr;
0815     long rc;
0816     int id;
0817 
0818     id = dax_read_lock();
0819     rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
0820                 &kaddr, NULL);
0821     if (rc < 0) {
0822         dax_read_unlock(id);
0823         return rc;
0824     }
0825     vto = kmap_atomic(vmf->cow_page);
0826     copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
0827     kunmap_atomic(vto);
0828     dax_read_unlock(id);
0829     return 0;
0830 }
0831 
0832 /*
0833  * MAP_SYNC on a dax mapping guarantees dirty metadata is
0834  * flushed on write-faults (non-cow), but not read-faults.
0835  */
0836 static bool dax_fault_is_synchronous(const struct iomap_iter *iter,
0837         struct vm_area_struct *vma)
0838 {
0839     return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) &&
0840         (iter->iomap.flags & IOMAP_F_DIRTY);
0841 }
0842 
0843 static bool dax_fault_is_cow(const struct iomap_iter *iter)
0844 {
0845     return (iter->flags & IOMAP_WRITE) &&
0846         (iter->iomap.flags & IOMAP_F_SHARED);
0847 }
0848 
0849 /*
0850  * By this point grab_mapping_entry() has ensured that we have a locked entry
0851  * of the appropriate size so we don't have to worry about downgrading PMDs to
0852  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
0853  * already in the tree, we will skip the insertion and just dirty the PMD as
0854  * appropriate.
0855  */
0856 static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf,
0857         const struct iomap_iter *iter, void *entry, pfn_t pfn,
0858         unsigned long flags)
0859 {
0860     struct address_space *mapping = vmf->vma->vm_file->f_mapping;
0861     void *new_entry = dax_make_entry(pfn, flags);
0862     bool dirty = !dax_fault_is_synchronous(iter, vmf->vma);
0863     bool cow = dax_fault_is_cow(iter);
0864 
0865     if (dirty)
0866         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
0867 
0868     if (cow || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) {
0869         unsigned long index = xas->xa_index;
0870         /* we are replacing a zero page with block mapping */
0871         if (dax_is_pmd_entry(entry))
0872             unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
0873                     PG_PMD_NR, false);
0874         else /* pte entry */
0875             unmap_mapping_pages(mapping, index, 1, false);
0876     }
0877 
0878     xas_reset(xas);
0879     xas_lock_irq(xas);
0880     if (cow || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
0881         void *old;
0882 
0883         dax_disassociate_entry(entry, mapping, false);
0884         dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address,
0885                 cow);
0886         /*
0887          * Only swap our new entry into the page cache if the current
0888          * entry is a zero page or an empty entry.  If a normal PTE or
0889          * PMD entry is already in the cache, we leave it alone.  This
0890          * means that if we are trying to insert a PTE and the
0891          * existing entry is a PMD, we will just leave the PMD in the
0892          * tree and dirty it if necessary.
0893          */
0894         old = dax_lock_entry(xas, new_entry);
0895         WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
0896                     DAX_LOCKED));
0897         entry = new_entry;
0898     } else {
0899         xas_load(xas);  /* Walk the xa_state */
0900     }
0901 
0902     if (dirty)
0903         xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
0904 
0905     if (cow)
0906         xas_set_mark(xas, PAGECACHE_TAG_TOWRITE);
0907 
0908     xas_unlock_irq(xas);
0909     return entry;
0910 }
0911 
0912 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
0913         struct address_space *mapping, void *entry)
0914 {
0915     unsigned long pfn, index, count, end;
0916     long ret = 0;
0917     struct vm_area_struct *vma;
0918 
0919     /*
0920      * A page got tagged dirty in DAX mapping? Something is seriously
0921      * wrong.
0922      */
0923     if (WARN_ON(!xa_is_value(entry)))
0924         return -EIO;
0925 
0926     if (unlikely(dax_is_locked(entry))) {
0927         void *old_entry = entry;
0928 
0929         entry = get_unlocked_entry(xas, 0);
0930 
0931         /* Entry got punched out / reallocated? */
0932         if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
0933             goto put_unlocked;
0934         /*
0935          * Entry got reallocated elsewhere? No need to writeback.
0936          * We have to compare pfns as we must not bail out due to
0937          * difference in lockbit or entry type.
0938          */
0939         if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
0940             goto put_unlocked;
0941         if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
0942                     dax_is_zero_entry(entry))) {
0943             ret = -EIO;
0944             goto put_unlocked;
0945         }
0946 
0947         /* Another fsync thread may have already done this entry */
0948         if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
0949             goto put_unlocked;
0950     }
0951 
0952     /* Lock the entry to serialize with page faults */
0953     dax_lock_entry(xas, entry);
0954 
0955     /*
0956      * We can clear the tag now but we have to be careful so that concurrent
0957      * dax_writeback_one() calls for the same index cannot finish before we
0958      * actually flush the caches. This is achieved as the calls will look
0959      * at the entry only under the i_pages lock and once they do that
0960      * they will see the entry locked and wait for it to unlock.
0961      */
0962     xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
0963     xas_unlock_irq(xas);
0964 
0965     /*
0966      * If dax_writeback_mapping_range() was given a wbc->range_start
0967      * in the middle of a PMD, the 'index' we use needs to be
0968      * aligned to the start of the PMD.
0969      * This allows us to flush for PMD_SIZE and not have to worry about
0970      * partial PMD writebacks.
0971      */
0972     pfn = dax_to_pfn(entry);
0973     count = 1UL << dax_entry_order(entry);
0974     index = xas->xa_index & ~(count - 1);
0975     end = index + count - 1;
0976 
0977     /* Walk all mappings of a given index of a file and writeprotect them */
0978     i_mmap_lock_read(mapping);
0979     vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
0980         pfn_mkclean_range(pfn, count, index, vma);
0981         cond_resched();
0982     }
0983     i_mmap_unlock_read(mapping);
0984 
0985     dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
0986     /*
0987      * After we have flushed the cache, we can clear the dirty tag. There
0988      * cannot be new dirty data in the pfn after the flush has completed as
0989      * the pfn mappings are writeprotected and fault waits for mapping
0990      * entry lock.
0991      */
0992     xas_reset(xas);
0993     xas_lock_irq(xas);
0994     xas_store(xas, entry);
0995     xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
0996     dax_wake_entry(xas, entry, WAKE_NEXT);
0997 
0998     trace_dax_writeback_one(mapping->host, index, count);
0999     return ret;
1000 
1001  put_unlocked:
1002     put_unlocked_entry(xas, entry, WAKE_NEXT);
1003     return ret;
1004 }
1005 
1006 /*
1007  * Flush the mapping to the persistent domain within the byte range of [start,
1008  * end]. This is required by data integrity operations to ensure file data is
1009  * on persistent storage prior to completion of the operation.
1010  */
1011 int dax_writeback_mapping_range(struct address_space *mapping,
1012         struct dax_device *dax_dev, struct writeback_control *wbc)
1013 {
1014     XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
1015     struct inode *inode = mapping->host;
1016     pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
1017     void *entry;
1018     int ret = 0;
1019     unsigned int scanned = 0;
1020 
1021     if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1022         return -EIO;
1023 
1024     if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
1025         return 0;
1026 
1027     trace_dax_writeback_range(inode, xas.xa_index, end_index);
1028 
1029     tag_pages_for_writeback(mapping, xas.xa_index, end_index);
1030 
1031     xas_lock_irq(&xas);
1032     xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
1033         ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
1034         if (ret < 0) {
1035             mapping_set_error(mapping, ret);
1036             break;
1037         }
1038         if (++scanned % XA_CHECK_SCHED)
1039             continue;
1040 
1041         xas_pause(&xas);
1042         xas_unlock_irq(&xas);
1043         cond_resched();
1044         xas_lock_irq(&xas);
1045     }
1046     xas_unlock_irq(&xas);
1047     trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1048     return ret;
1049 }
1050 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1051 
1052 static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos,
1053         size_t size, void **kaddr, pfn_t *pfnp)
1054 {
1055     pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1056     int id, rc = 0;
1057     long length;
1058 
1059     id = dax_read_lock();
1060     length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1061                    DAX_ACCESS, kaddr, pfnp);
1062     if (length < 0) {
1063         rc = length;
1064         goto out;
1065     }
1066     if (!pfnp)
1067         goto out_check_addr;
1068     rc = -EINVAL;
1069     if (PFN_PHYS(length) < size)
1070         goto out;
1071     if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1072         goto out;
1073     /* For larger pages we need devmap */
1074     if (length > 1 && !pfn_t_devmap(*pfnp))
1075         goto out;
1076     rc = 0;
1077 
1078 out_check_addr:
1079     if (!kaddr)
1080         goto out;
1081     if (!*kaddr)
1082         rc = -EFAULT;
1083 out:
1084     dax_read_unlock(id);
1085     return rc;
1086 }
1087 
1088 /**
1089  * dax_iomap_cow_copy - Copy the data from source to destination before write
1090  * @pos:    address to do copy from.
1091  * @length: size of copy operation.
1092  * @align_size: aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE)
1093  * @srcmap: iomap srcmap
1094  * @daddr:  destination address to copy to.
1095  *
1096  * This can be called from two places. Either during DAX write fault (page
1097  * aligned), to copy the length size data to daddr. Or, while doing normal DAX
1098  * write operation, dax_iomap_actor() might call this to do the copy of either
1099  * start or end unaligned address. In the latter case the rest of the copy of
1100  * aligned ranges is taken care by dax_iomap_actor() itself.
1101  */
1102 static int dax_iomap_cow_copy(loff_t pos, uint64_t length, size_t align_size,
1103         const struct iomap *srcmap, void *daddr)
1104 {
1105     loff_t head_off = pos & (align_size - 1);
1106     size_t size = ALIGN(head_off + length, align_size);
1107     loff_t end = pos + length;
1108     loff_t pg_end = round_up(end, align_size);
1109     bool copy_all = head_off == 0 && end == pg_end;
1110     void *saddr = 0;
1111     int ret = 0;
1112 
1113     ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL);
1114     if (ret)
1115         return ret;
1116 
1117     if (copy_all) {
1118         ret = copy_mc_to_kernel(daddr, saddr, length);
1119         return ret ? -EIO : 0;
1120     }
1121 
1122     /* Copy the head part of the range */
1123     if (head_off) {
1124         ret = copy_mc_to_kernel(daddr, saddr, head_off);
1125         if (ret)
1126             return -EIO;
1127     }
1128 
1129     /* Copy the tail part of the range */
1130     if (end < pg_end) {
1131         loff_t tail_off = head_off + length;
1132         loff_t tail_len = pg_end - end;
1133 
1134         ret = copy_mc_to_kernel(daddr + tail_off, saddr + tail_off,
1135                     tail_len);
1136         if (ret)
1137             return -EIO;
1138     }
1139     return 0;
1140 }
1141 
1142 /*
1143  * The user has performed a load from a hole in the file.  Allocating a new
1144  * page in the file would cause excessive storage usage for workloads with
1145  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1146  * If this page is ever written to we will re-fault and change the mapping to
1147  * point to real DAX storage instead.
1148  */
1149 static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1150         const struct iomap_iter *iter, void **entry)
1151 {
1152     struct inode *inode = iter->inode;
1153     unsigned long vaddr = vmf->address;
1154     pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1155     vm_fault_t ret;
1156 
1157     *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE);
1158 
1159     ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1160     trace_dax_load_hole(inode, vmf, ret);
1161     return ret;
1162 }
1163 
1164 #ifdef CONFIG_FS_DAX_PMD
1165 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1166         const struct iomap_iter *iter, void **entry)
1167 {
1168     struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1169     unsigned long pmd_addr = vmf->address & PMD_MASK;
1170     struct vm_area_struct *vma = vmf->vma;
1171     struct inode *inode = mapping->host;
1172     pgtable_t pgtable = NULL;
1173     struct page *zero_page;
1174     spinlock_t *ptl;
1175     pmd_t pmd_entry;
1176     pfn_t pfn;
1177 
1178     zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1179 
1180     if (unlikely(!zero_page))
1181         goto fallback;
1182 
1183     pfn = page_to_pfn_t(zero_page);
1184     *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn,
1185                   DAX_PMD | DAX_ZERO_PAGE);
1186 
1187     if (arch_needs_pgtable_deposit()) {
1188         pgtable = pte_alloc_one(vma->vm_mm);
1189         if (!pgtable)
1190             return VM_FAULT_OOM;
1191     }
1192 
1193     ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1194     if (!pmd_none(*(vmf->pmd))) {
1195         spin_unlock(ptl);
1196         goto fallback;
1197     }
1198 
1199     if (pgtable) {
1200         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1201         mm_inc_nr_ptes(vma->vm_mm);
1202     }
1203     pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1204     pmd_entry = pmd_mkhuge(pmd_entry);
1205     set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1206     spin_unlock(ptl);
1207     trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1208     return VM_FAULT_NOPAGE;
1209 
1210 fallback:
1211     if (pgtable)
1212         pte_free(vma->vm_mm, pgtable);
1213     trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1214     return VM_FAULT_FALLBACK;
1215 }
1216 #else
1217 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1218         const struct iomap_iter *iter, void **entry)
1219 {
1220     return VM_FAULT_FALLBACK;
1221 }
1222 #endif /* CONFIG_FS_DAX_PMD */
1223 
1224 static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size)
1225 {
1226     const struct iomap *iomap = &iter->iomap;
1227     const struct iomap *srcmap = iomap_iter_srcmap(iter);
1228     unsigned offset = offset_in_page(pos);
1229     pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1230     void *kaddr;
1231     long ret;
1232 
1233     ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr,
1234                 NULL);
1235     if (ret < 0)
1236         return ret;
1237     memset(kaddr + offset, 0, size);
1238     if (srcmap->addr != iomap->addr) {
1239         ret = dax_iomap_cow_copy(pos, size, PAGE_SIZE, srcmap,
1240                      kaddr);
1241         if (ret < 0)
1242             return ret;
1243         dax_flush(iomap->dax_dev, kaddr, PAGE_SIZE);
1244     } else
1245         dax_flush(iomap->dax_dev, kaddr + offset, size);
1246     return ret;
1247 }
1248 
1249 static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1250 {
1251     const struct iomap *iomap = &iter->iomap;
1252     const struct iomap *srcmap = iomap_iter_srcmap(iter);
1253     loff_t pos = iter->pos;
1254     u64 length = iomap_length(iter);
1255     s64 written = 0;
1256 
1257     /* already zeroed?  we're done. */
1258     if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1259         return length;
1260 
1261     do {
1262         unsigned offset = offset_in_page(pos);
1263         unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1264         pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1265         long rc;
1266         int id;
1267 
1268         id = dax_read_lock();
1269         if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1270             rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1271         else
1272             rc = dax_memzero(iter, pos, size);
1273         dax_read_unlock(id);
1274 
1275         if (rc < 0)
1276             return rc;
1277         pos += size;
1278         length -= size;
1279         written += size;
1280     } while (length > 0);
1281 
1282     if (did_zero)
1283         *did_zero = true;
1284     return written;
1285 }
1286 
1287 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1288         const struct iomap_ops *ops)
1289 {
1290     struct iomap_iter iter = {
1291         .inode      = inode,
1292         .pos        = pos,
1293         .len        = len,
1294         .flags      = IOMAP_DAX | IOMAP_ZERO,
1295     };
1296     int ret;
1297 
1298     while ((ret = iomap_iter(&iter, ops)) > 0)
1299         iter.processed = dax_zero_iter(&iter, did_zero);
1300     return ret;
1301 }
1302 EXPORT_SYMBOL_GPL(dax_zero_range);
1303 
1304 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1305         const struct iomap_ops *ops)
1306 {
1307     unsigned int blocksize = i_blocksize(inode);
1308     unsigned int off = pos & (blocksize - 1);
1309 
1310     /* Block boundary? Nothing to do */
1311     if (!off)
1312         return 0;
1313     return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1314 }
1315 EXPORT_SYMBOL_GPL(dax_truncate_page);
1316 
1317 static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1318         struct iov_iter *iter)
1319 {
1320     const struct iomap *iomap = &iomi->iomap;
1321     const struct iomap *srcmap = &iomi->srcmap;
1322     loff_t length = iomap_length(iomi);
1323     loff_t pos = iomi->pos;
1324     struct dax_device *dax_dev = iomap->dax_dev;
1325     loff_t end = pos + length, done = 0;
1326     bool write = iov_iter_rw(iter) == WRITE;
1327     ssize_t ret = 0;
1328     size_t xfer;
1329     int id;
1330 
1331     if (!write) {
1332         end = min(end, i_size_read(iomi->inode));
1333         if (pos >= end)
1334             return 0;
1335 
1336         if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1337             return iov_iter_zero(min(length, end - pos), iter);
1338     }
1339 
1340     /*
1341      * In DAX mode, enforce either pure overwrites of written extents, or
1342      * writes to unwritten extents as part of a copy-on-write operation.
1343      */
1344     if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED &&
1345             !(iomap->flags & IOMAP_F_SHARED)))
1346         return -EIO;
1347 
1348     /*
1349      * Write can allocate block for an area which has a hole page mapped
1350      * into page tables. We have to tear down these mappings so that data
1351      * written by write(2) is visible in mmap.
1352      */
1353     if (iomap->flags & IOMAP_F_NEW) {
1354         invalidate_inode_pages2_range(iomi->inode->i_mapping,
1355                           pos >> PAGE_SHIFT,
1356                           (end - 1) >> PAGE_SHIFT);
1357     }
1358 
1359     id = dax_read_lock();
1360     while (pos < end) {
1361         unsigned offset = pos & (PAGE_SIZE - 1);
1362         const size_t size = ALIGN(length + offset, PAGE_SIZE);
1363         pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1364         ssize_t map_len;
1365         bool recovery = false;
1366         void *kaddr;
1367 
1368         if (fatal_signal_pending(current)) {
1369             ret = -EINTR;
1370             break;
1371         }
1372 
1373         map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1374                 DAX_ACCESS, &kaddr, NULL);
1375         if (map_len == -EIO && iov_iter_rw(iter) == WRITE) {
1376             map_len = dax_direct_access(dax_dev, pgoff,
1377                     PHYS_PFN(size), DAX_RECOVERY_WRITE,
1378                     &kaddr, NULL);
1379             if (map_len > 0)
1380                 recovery = true;
1381         }
1382         if (map_len < 0) {
1383             ret = map_len;
1384             break;
1385         }
1386 
1387         if (write &&
1388             srcmap->type != IOMAP_HOLE && srcmap->addr != iomap->addr) {
1389             ret = dax_iomap_cow_copy(pos, length, PAGE_SIZE, srcmap,
1390                          kaddr);
1391             if (ret)
1392                 break;
1393         }
1394 
1395         map_len = PFN_PHYS(map_len);
1396         kaddr += offset;
1397         map_len -= offset;
1398         if (map_len > end - pos)
1399             map_len = end - pos;
1400 
1401         if (recovery)
1402             xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
1403                     map_len, iter);
1404         else if (write)
1405             xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1406                     map_len, iter);
1407         else
1408             xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1409                     map_len, iter);
1410 
1411         pos += xfer;
1412         length -= xfer;
1413         done += xfer;
1414 
1415         if (xfer == 0)
1416             ret = -EFAULT;
1417         if (xfer < map_len)
1418             break;
1419     }
1420     dax_read_unlock(id);
1421 
1422     return done ? done : ret;
1423 }
1424 
1425 /**
1426  * dax_iomap_rw - Perform I/O to a DAX file
1427  * @iocb:   The control block for this I/O
1428  * @iter:   The addresses to do I/O from or to
1429  * @ops:    iomap ops passed from the file system
1430  *
1431  * This function performs read and write operations to directly mapped
1432  * persistent memory.  The callers needs to take care of read/write exclusion
1433  * and evicting any page cache pages in the region under I/O.
1434  */
1435 ssize_t
1436 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1437         const struct iomap_ops *ops)
1438 {
1439     struct iomap_iter iomi = {
1440         .inode      = iocb->ki_filp->f_mapping->host,
1441         .pos        = iocb->ki_pos,
1442         .len        = iov_iter_count(iter),
1443         .flags      = IOMAP_DAX,
1444     };
1445     loff_t done = 0;
1446     int ret;
1447 
1448     if (!iomi.len)
1449         return 0;
1450 
1451     if (iov_iter_rw(iter) == WRITE) {
1452         lockdep_assert_held_write(&iomi.inode->i_rwsem);
1453         iomi.flags |= IOMAP_WRITE;
1454     } else {
1455         lockdep_assert_held(&iomi.inode->i_rwsem);
1456     }
1457 
1458     if (iocb->ki_flags & IOCB_NOWAIT)
1459         iomi.flags |= IOMAP_NOWAIT;
1460 
1461     while ((ret = iomap_iter(&iomi, ops)) > 0)
1462         iomi.processed = dax_iomap_iter(&iomi, iter);
1463 
1464     done = iomi.pos - iocb->ki_pos;
1465     iocb->ki_pos = iomi.pos;
1466     return done ? done : ret;
1467 }
1468 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1469 
1470 static vm_fault_t dax_fault_return(int error)
1471 {
1472     if (error == 0)
1473         return VM_FAULT_NOPAGE;
1474     return vmf_error(error);
1475 }
1476 
1477 /*
1478  * When handling a synchronous page fault and the inode need a fsync, we can
1479  * insert the PTE/PMD into page tables only after that fsync happened. Skip
1480  * insertion for now and return the pfn so that caller can insert it after the
1481  * fsync is done.
1482  */
1483 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1484 {
1485     if (WARN_ON_ONCE(!pfnp))
1486         return VM_FAULT_SIGBUS;
1487     *pfnp = pfn;
1488     return VM_FAULT_NEEDDSYNC;
1489 }
1490 
1491 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1492         const struct iomap_iter *iter)
1493 {
1494     vm_fault_t ret;
1495     int error = 0;
1496 
1497     switch (iter->iomap.type) {
1498     case IOMAP_HOLE:
1499     case IOMAP_UNWRITTEN:
1500         clear_user_highpage(vmf->cow_page, vmf->address);
1501         break;
1502     case IOMAP_MAPPED:
1503         error = copy_cow_page_dax(vmf, iter);
1504         break;
1505     default:
1506         WARN_ON_ONCE(1);
1507         error = -EIO;
1508         break;
1509     }
1510 
1511     if (error)
1512         return dax_fault_return(error);
1513 
1514     __SetPageUptodate(vmf->cow_page);
1515     ret = finish_fault(vmf);
1516     if (!ret)
1517         return VM_FAULT_DONE_COW;
1518     return ret;
1519 }
1520 
1521 /**
1522  * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1523  * @vmf:    vm fault instance
1524  * @iter:   iomap iter
1525  * @pfnp:   pfn to be returned
1526  * @xas:    the dax mapping tree of a file
1527  * @entry:  an unlocked dax entry to be inserted
1528  * @pmd:    distinguish whether it is a pmd fault
1529  */
1530 static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1531         const struct iomap_iter *iter, pfn_t *pfnp,
1532         struct xa_state *xas, void **entry, bool pmd)
1533 {
1534     const struct iomap *iomap = &iter->iomap;
1535     const struct iomap *srcmap = &iter->srcmap;
1536     size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1537     loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1538     bool write = iter->flags & IOMAP_WRITE;
1539     unsigned long entry_flags = pmd ? DAX_PMD : 0;
1540     int err = 0;
1541     pfn_t pfn;
1542     void *kaddr;
1543 
1544     if (!pmd && vmf->cow_page)
1545         return dax_fault_cow_page(vmf, iter);
1546 
1547     /* if we are reading UNWRITTEN and HOLE, return a hole. */
1548     if (!write &&
1549         (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1550         if (!pmd)
1551             return dax_load_hole(xas, vmf, iter, entry);
1552         return dax_pmd_load_hole(xas, vmf, iter, entry);
1553     }
1554 
1555     if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) {
1556         WARN_ON_ONCE(1);
1557         return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1558     }
1559 
1560     err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn);
1561     if (err)
1562         return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1563 
1564     *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags);
1565 
1566     if (write &&
1567         srcmap->type != IOMAP_HOLE && srcmap->addr != iomap->addr) {
1568         err = dax_iomap_cow_copy(pos, size, size, srcmap, kaddr);
1569         if (err)
1570             return dax_fault_return(err);
1571     }
1572 
1573     if (dax_fault_is_synchronous(iter, vmf->vma))
1574         return dax_fault_synchronous_pfnp(pfnp, pfn);
1575 
1576     /* insert PMD pfn */
1577     if (pmd)
1578         return vmf_insert_pfn_pmd(vmf, pfn, write);
1579 
1580     /* insert PTE pfn */
1581     if (write)
1582         return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1583     return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1584 }
1585 
1586 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1587                    int *iomap_errp, const struct iomap_ops *ops)
1588 {
1589     struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1590     XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1591     struct iomap_iter iter = {
1592         .inode      = mapping->host,
1593         .pos        = (loff_t)vmf->pgoff << PAGE_SHIFT,
1594         .len        = PAGE_SIZE,
1595         .flags      = IOMAP_DAX | IOMAP_FAULT,
1596     };
1597     vm_fault_t ret = 0;
1598     void *entry;
1599     int error;
1600 
1601     trace_dax_pte_fault(iter.inode, vmf, ret);
1602     /*
1603      * Check whether offset isn't beyond end of file now. Caller is supposed
1604      * to hold locks serializing us with truncate / punch hole so this is
1605      * a reliable test.
1606      */
1607     if (iter.pos >= i_size_read(iter.inode)) {
1608         ret = VM_FAULT_SIGBUS;
1609         goto out;
1610     }
1611 
1612     if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1613         iter.flags |= IOMAP_WRITE;
1614 
1615     entry = grab_mapping_entry(&xas, mapping, 0);
1616     if (xa_is_internal(entry)) {
1617         ret = xa_to_internal(entry);
1618         goto out;
1619     }
1620 
1621     /*
1622      * It is possible, particularly with mixed reads & writes to private
1623      * mappings, that we have raced with a PMD fault that overlaps with
1624      * the PTE we need to set up.  If so just return and the fault will be
1625      * retried.
1626      */
1627     if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1628         ret = VM_FAULT_NOPAGE;
1629         goto unlock_entry;
1630     }
1631 
1632     while ((error = iomap_iter(&iter, ops)) > 0) {
1633         if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1634             iter.processed = -EIO;  /* fs corruption? */
1635             continue;
1636         }
1637 
1638         ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1639         if (ret != VM_FAULT_SIGBUS &&
1640             (iter.iomap.flags & IOMAP_F_NEW)) {
1641             count_vm_event(PGMAJFAULT);
1642             count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1643             ret |= VM_FAULT_MAJOR;
1644         }
1645 
1646         if (!(ret & VM_FAULT_ERROR))
1647             iter.processed = PAGE_SIZE;
1648     }
1649 
1650     if (iomap_errp)
1651         *iomap_errp = error;
1652     if (!ret && error)
1653         ret = dax_fault_return(error);
1654 
1655 unlock_entry:
1656     dax_unlock_entry(&xas, entry);
1657 out:
1658     trace_dax_pte_fault_done(iter.inode, vmf, ret);
1659     return ret;
1660 }
1661 
1662 #ifdef CONFIG_FS_DAX_PMD
1663 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1664         pgoff_t max_pgoff)
1665 {
1666     unsigned long pmd_addr = vmf->address & PMD_MASK;
1667     bool write = vmf->flags & FAULT_FLAG_WRITE;
1668 
1669     /*
1670      * Make sure that the faulting address's PMD offset (color) matches
1671      * the PMD offset from the start of the file.  This is necessary so
1672      * that a PMD range in the page table overlaps exactly with a PMD
1673      * range in the page cache.
1674      */
1675     if ((vmf->pgoff & PG_PMD_COLOUR) !=
1676         ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1677         return true;
1678 
1679     /* Fall back to PTEs if we're going to COW */
1680     if (write && !(vmf->vma->vm_flags & VM_SHARED))
1681         return true;
1682 
1683     /* If the PMD would extend outside the VMA */
1684     if (pmd_addr < vmf->vma->vm_start)
1685         return true;
1686     if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1687         return true;
1688 
1689     /* If the PMD would extend beyond the file size */
1690     if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1691         return true;
1692 
1693     return false;
1694 }
1695 
1696 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1697                    const struct iomap_ops *ops)
1698 {
1699     struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1700     XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1701     struct iomap_iter iter = {
1702         .inode      = mapping->host,
1703         .len        = PMD_SIZE,
1704         .flags      = IOMAP_DAX | IOMAP_FAULT,
1705     };
1706     vm_fault_t ret = VM_FAULT_FALLBACK;
1707     pgoff_t max_pgoff;
1708     void *entry;
1709     int error;
1710 
1711     if (vmf->flags & FAULT_FLAG_WRITE)
1712         iter.flags |= IOMAP_WRITE;
1713 
1714     /*
1715      * Check whether offset isn't beyond end of file now. Caller is
1716      * supposed to hold locks serializing us with truncate / punch hole so
1717      * this is a reliable test.
1718      */
1719     max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1720 
1721     trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1722 
1723     if (xas.xa_index >= max_pgoff) {
1724         ret = VM_FAULT_SIGBUS;
1725         goto out;
1726     }
1727 
1728     if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1729         goto fallback;
1730 
1731     /*
1732      * grab_mapping_entry() will make sure we get an empty PMD entry,
1733      * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1734      * entry is already in the array, for instance), it will return
1735      * VM_FAULT_FALLBACK.
1736      */
1737     entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1738     if (xa_is_internal(entry)) {
1739         ret = xa_to_internal(entry);
1740         goto fallback;
1741     }
1742 
1743     /*
1744      * It is possible, particularly with mixed reads & writes to private
1745      * mappings, that we have raced with a PTE fault that overlaps with
1746      * the PMD we need to set up.  If so just return and the fault will be
1747      * retried.
1748      */
1749     if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1750             !pmd_devmap(*vmf->pmd)) {
1751         ret = 0;
1752         goto unlock_entry;
1753     }
1754 
1755     iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1756     while ((error = iomap_iter(&iter, ops)) > 0) {
1757         if (iomap_length(&iter) < PMD_SIZE)
1758             continue; /* actually breaks out of the loop */
1759 
1760         ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1761         if (ret != VM_FAULT_FALLBACK)
1762             iter.processed = PMD_SIZE;
1763     }
1764 
1765 unlock_entry:
1766     dax_unlock_entry(&xas, entry);
1767 fallback:
1768     if (ret == VM_FAULT_FALLBACK) {
1769         split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1770         count_vm_event(THP_FAULT_FALLBACK);
1771     }
1772 out:
1773     trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1774     return ret;
1775 }
1776 #else
1777 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1778                    const struct iomap_ops *ops)
1779 {
1780     return VM_FAULT_FALLBACK;
1781 }
1782 #endif /* CONFIG_FS_DAX_PMD */
1783 
1784 /**
1785  * dax_iomap_fault - handle a page fault on a DAX file
1786  * @vmf: The description of the fault
1787  * @pe_size: Size of the page to fault in
1788  * @pfnp: PFN to insert for synchronous faults if fsync is required
1789  * @iomap_errp: Storage for detailed error code in case of error
1790  * @ops: Iomap ops passed from the file system
1791  *
1792  * When a page fault occurs, filesystems may call this helper in
1793  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1794  * has done all the necessary locking for page fault to proceed
1795  * successfully.
1796  */
1797 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1798             pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1799 {
1800     switch (pe_size) {
1801     case PE_SIZE_PTE:
1802         return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1803     case PE_SIZE_PMD:
1804         return dax_iomap_pmd_fault(vmf, pfnp, ops);
1805     default:
1806         return VM_FAULT_FALLBACK;
1807     }
1808 }
1809 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1810 
1811 /*
1812  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1813  * @vmf: The description of the fault
1814  * @pfn: PFN to insert
1815  * @order: Order of entry to insert.
1816  *
1817  * This function inserts a writeable PTE or PMD entry into the page tables
1818  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1819  */
1820 static vm_fault_t
1821 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1822 {
1823     struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1824     XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1825     void *entry;
1826     vm_fault_t ret;
1827 
1828     xas_lock_irq(&xas);
1829     entry = get_unlocked_entry(&xas, order);
1830     /* Did we race with someone splitting entry or so? */
1831     if (!entry || dax_is_conflict(entry) ||
1832         (order == 0 && !dax_is_pte_entry(entry))) {
1833         put_unlocked_entry(&xas, entry, WAKE_NEXT);
1834         xas_unlock_irq(&xas);
1835         trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1836                               VM_FAULT_NOPAGE);
1837         return VM_FAULT_NOPAGE;
1838     }
1839     xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1840     dax_lock_entry(&xas, entry);
1841     xas_unlock_irq(&xas);
1842     if (order == 0)
1843         ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1844 #ifdef CONFIG_FS_DAX_PMD
1845     else if (order == PMD_ORDER)
1846         ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1847 #endif
1848     else
1849         ret = VM_FAULT_FALLBACK;
1850     dax_unlock_entry(&xas, entry);
1851     trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1852     return ret;
1853 }
1854 
1855 /**
1856  * dax_finish_sync_fault - finish synchronous page fault
1857  * @vmf: The description of the fault
1858  * @pe_size: Size of entry to be inserted
1859  * @pfn: PFN to insert
1860  *
1861  * This function ensures that the file range touched by the page fault is
1862  * stored persistently on the media and handles inserting of appropriate page
1863  * table entry.
1864  */
1865 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1866         enum page_entry_size pe_size, pfn_t pfn)
1867 {
1868     int err;
1869     loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1870     unsigned int order = pe_order(pe_size);
1871     size_t len = PAGE_SIZE << order;
1872 
1873     err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1874     if (err)
1875         return VM_FAULT_SIGBUS;
1876     return dax_insert_pfn_mkwrite(vmf, pfn, order);
1877 }
1878 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1879 
1880 static loff_t dax_range_compare_iter(struct iomap_iter *it_src,
1881         struct iomap_iter *it_dest, u64 len, bool *same)
1882 {
1883     const struct iomap *smap = &it_src->iomap;
1884     const struct iomap *dmap = &it_dest->iomap;
1885     loff_t pos1 = it_src->pos, pos2 = it_dest->pos;
1886     void *saddr, *daddr;
1887     int id, ret;
1888 
1889     len = min(len, min(smap->length, dmap->length));
1890 
1891     if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) {
1892         *same = true;
1893         return len;
1894     }
1895 
1896     if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) {
1897         *same = false;
1898         return 0;
1899     }
1900 
1901     id = dax_read_lock();
1902     ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE),
1903                       &saddr, NULL);
1904     if (ret < 0)
1905         goto out_unlock;
1906 
1907     ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE),
1908                       &daddr, NULL);
1909     if (ret < 0)
1910         goto out_unlock;
1911 
1912     *same = !memcmp(saddr, daddr, len);
1913     if (!*same)
1914         len = 0;
1915     dax_read_unlock(id);
1916     return len;
1917 
1918 out_unlock:
1919     dax_read_unlock(id);
1920     return -EIO;
1921 }
1922 
1923 int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff,
1924         struct inode *dst, loff_t dstoff, loff_t len, bool *same,
1925         const struct iomap_ops *ops)
1926 {
1927     struct iomap_iter src_iter = {
1928         .inode      = src,
1929         .pos        = srcoff,
1930         .len        = len,
1931         .flags      = IOMAP_DAX,
1932     };
1933     struct iomap_iter dst_iter = {
1934         .inode      = dst,
1935         .pos        = dstoff,
1936         .len        = len,
1937         .flags      = IOMAP_DAX,
1938     };
1939     int ret;
1940 
1941     while ((ret = iomap_iter(&src_iter, ops)) > 0) {
1942         while ((ret = iomap_iter(&dst_iter, ops)) > 0) {
1943             dst_iter.processed = dax_range_compare_iter(&src_iter,
1944                         &dst_iter, len, same);
1945         }
1946         if (ret <= 0)
1947             src_iter.processed = ret;
1948     }
1949     return ret;
1950 }
1951 
1952 int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in,
1953                   struct file *file_out, loff_t pos_out,
1954                   loff_t *len, unsigned int remap_flags,
1955                   const struct iomap_ops *ops)
1956 {
1957     return __generic_remap_file_range_prep(file_in, pos_in, file_out,
1958                            pos_out, len, remap_flags, ops);
1959 }
1960 EXPORT_SYMBOL_GPL(dax_remap_file_range_prep);