0001
0002
0003 #include <linux/bitops.h>
0004 #include <linux/slab.h>
0005 #include <linux/blkdev.h>
0006 #include <linux/sched/mm.h>
0007 #include <linux/atomic.h>
0008 #include <linux/vmalloc.h>
0009 #include "ctree.h"
0010 #include "volumes.h"
0011 #include "zoned.h"
0012 #include "rcu-string.h"
0013 #include "disk-io.h"
0014 #include "block-group.h"
0015 #include "transaction.h"
0016 #include "dev-replace.h"
0017 #include "space-info.h"
0018
0019
0020 #define BTRFS_REPORT_NR_ZONES 4096
0021
0022 #define WP_MISSING_DEV ((u64)-1)
0023
0024 #define WP_CONVENTIONAL ((u64)-2)
0025
0026
0027
0028
0029
0030
0031
0032
0033 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL)
0034 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G)
0035 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G)
0036
0037 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
0038 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
0039
0040
0041 #define BTRFS_NR_SB_LOG_ZONES 2
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5)
0052
0053
0054
0055
0056
0057
0058
0059 #define BTRFS_MAX_ZONE_SIZE SZ_8G
0060 #define BTRFS_MIN_ZONE_SIZE SZ_4M
0061
0062 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
0063
0064 static inline bool sb_zone_is_full(const struct blk_zone *zone)
0065 {
0066 return (zone->cond == BLK_ZONE_COND_FULL) ||
0067 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
0068 }
0069
0070 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
0071 {
0072 struct blk_zone *zones = data;
0073
0074 memcpy(&zones[idx], zone, sizeof(*zone));
0075
0076 return 0;
0077 }
0078
0079 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
0080 u64 *wp_ret)
0081 {
0082 bool empty[BTRFS_NR_SB_LOG_ZONES];
0083 bool full[BTRFS_NR_SB_LOG_ZONES];
0084 sector_t sector;
0085 int i;
0086
0087 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
0088 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
0089 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
0090 full[i] = sb_zone_is_full(&zones[i]);
0091 }
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110 if (empty[0] && empty[1]) {
0111
0112 *wp_ret = zones[0].start << SECTOR_SHIFT;
0113 return -ENOENT;
0114 } else if (full[0] && full[1]) {
0115
0116 struct address_space *mapping = bdev->bd_inode->i_mapping;
0117 struct page *page[BTRFS_NR_SB_LOG_ZONES];
0118 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
0119 int i;
0120
0121 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
0122 u64 bytenr;
0123
0124 bytenr = ((zones[i].start + zones[i].len)
0125 << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
0126
0127 page[i] = read_cache_page_gfp(mapping,
0128 bytenr >> PAGE_SHIFT, GFP_NOFS);
0129 if (IS_ERR(page[i])) {
0130 if (i == 1)
0131 btrfs_release_disk_super(super[0]);
0132 return PTR_ERR(page[i]);
0133 }
0134 super[i] = page_address(page[i]);
0135 }
0136
0137 if (super[0]->generation > super[1]->generation)
0138 sector = zones[1].start;
0139 else
0140 sector = zones[0].start;
0141
0142 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
0143 btrfs_release_disk_super(super[i]);
0144 } else if (!full[0] && (empty[1] || full[1])) {
0145 sector = zones[0].wp;
0146 } else if (full[0]) {
0147 sector = zones[1].wp;
0148 } else {
0149 return -EUCLEAN;
0150 }
0151 *wp_ret = sector << SECTOR_SHIFT;
0152 return 0;
0153 }
0154
0155
0156
0157
0158 static inline u32 sb_zone_number(int shift, int mirror)
0159 {
0160 u64 zone;
0161
0162 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
0163 switch (mirror) {
0164 case 0: zone = 0; break;
0165 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
0166 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
0167 }
0168
0169 ASSERT(zone <= U32_MAX);
0170
0171 return (u32)zone;
0172 }
0173
0174 static inline sector_t zone_start_sector(u32 zone_number,
0175 struct block_device *bdev)
0176 {
0177 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
0178 }
0179
0180 static inline u64 zone_start_physical(u32 zone_number,
0181 struct btrfs_zoned_device_info *zone_info)
0182 {
0183 return (u64)zone_number << zone_info->zone_size_shift;
0184 }
0185
0186
0187
0188
0189
0190
0191 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
0192 struct blk_zone *zones, unsigned int nr_zones)
0193 {
0194 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
0195 sector_t bdev_size = bdev_nr_sectors(device->bdev);
0196 unsigned int i;
0197
0198 pos >>= SECTOR_SHIFT;
0199 for (i = 0; i < nr_zones; i++) {
0200 zones[i].start = i * zone_sectors + pos;
0201 zones[i].len = zone_sectors;
0202 zones[i].capacity = zone_sectors;
0203 zones[i].wp = zones[i].start + zone_sectors;
0204 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
0205 zones[i].cond = BLK_ZONE_COND_NOT_WP;
0206
0207 if (zones[i].wp >= bdev_size) {
0208 i++;
0209 break;
0210 }
0211 }
0212
0213 return i;
0214 }
0215
0216 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
0217 struct blk_zone *zones, unsigned int *nr_zones)
0218 {
0219 struct btrfs_zoned_device_info *zinfo = device->zone_info;
0220 u32 zno;
0221 int ret;
0222
0223 if (!*nr_zones)
0224 return 0;
0225
0226 if (!bdev_is_zoned(device->bdev)) {
0227 ret = emulate_report_zones(device, pos, zones, *nr_zones);
0228 *nr_zones = ret;
0229 return 0;
0230 }
0231
0232
0233 if (zinfo->zone_cache) {
0234 unsigned int i;
0235
0236 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
0237 zno = pos >> zinfo->zone_size_shift;
0238
0239
0240
0241
0242 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
0243
0244 for (i = 0; i < *nr_zones; i++) {
0245 struct blk_zone *zone_info;
0246
0247 zone_info = &zinfo->zone_cache[zno + i];
0248 if (!zone_info->len)
0249 break;
0250 }
0251
0252 if (i == *nr_zones) {
0253
0254 memcpy(zones, zinfo->zone_cache + zno,
0255 sizeof(*zinfo->zone_cache) * *nr_zones);
0256 return 0;
0257 }
0258 }
0259
0260 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
0261 copy_zone_info_cb, zones);
0262 if (ret < 0) {
0263 btrfs_err_in_rcu(device->fs_info,
0264 "zoned: failed to read zone %llu on %s (devid %llu)",
0265 pos, rcu_str_deref(device->name),
0266 device->devid);
0267 return ret;
0268 }
0269 *nr_zones = ret;
0270 if (!ret)
0271 return -EIO;
0272
0273
0274 if (zinfo->zone_cache)
0275 memcpy(zinfo->zone_cache + zno, zones,
0276 sizeof(*zinfo->zone_cache) * *nr_zones);
0277
0278 return 0;
0279 }
0280
0281
0282 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
0283 {
0284 struct btrfs_path *path;
0285 struct btrfs_root *root = fs_info->dev_root;
0286 struct btrfs_key key;
0287 struct extent_buffer *leaf;
0288 struct btrfs_dev_extent *dext;
0289 int ret = 0;
0290
0291 key.objectid = 1;
0292 key.type = BTRFS_DEV_EXTENT_KEY;
0293 key.offset = 0;
0294
0295 path = btrfs_alloc_path();
0296 if (!path)
0297 return -ENOMEM;
0298
0299 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0300 if (ret < 0)
0301 goto out;
0302
0303 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
0304 ret = btrfs_next_leaf(root, path);
0305 if (ret < 0)
0306 goto out;
0307
0308 if (ret > 0) {
0309 ret = -EUCLEAN;
0310 goto out;
0311 }
0312 }
0313
0314 leaf = path->nodes[0];
0315 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
0316 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
0317 ret = 0;
0318
0319 out:
0320 btrfs_free_path(path);
0321
0322 return ret;
0323 }
0324
0325 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
0326 {
0327 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0328 struct btrfs_device *device;
0329 int ret = 0;
0330
0331
0332 if (!btrfs_fs_incompat(fs_info, ZONED))
0333 return 0;
0334
0335 mutex_lock(&fs_devices->device_list_mutex);
0336 list_for_each_entry(device, &fs_devices->devices, dev_list) {
0337
0338 if (!device->bdev)
0339 continue;
0340
0341 ret = btrfs_get_dev_zone_info(device, true);
0342 if (ret)
0343 break;
0344 }
0345 mutex_unlock(&fs_devices->device_list_mutex);
0346
0347 return ret;
0348 }
0349
0350 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
0351 {
0352 struct btrfs_fs_info *fs_info = device->fs_info;
0353 struct btrfs_zoned_device_info *zone_info = NULL;
0354 struct block_device *bdev = device->bdev;
0355 unsigned int max_active_zones;
0356 unsigned int nactive;
0357 sector_t nr_sectors;
0358 sector_t sector = 0;
0359 struct blk_zone *zones = NULL;
0360 unsigned int i, nreported = 0, nr_zones;
0361 sector_t zone_sectors;
0362 char *model, *emulated;
0363 int ret;
0364
0365
0366
0367
0368
0369 if (!btrfs_fs_incompat(fs_info, ZONED))
0370 return 0;
0371
0372 if (device->zone_info)
0373 return 0;
0374
0375 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
0376 if (!zone_info)
0377 return -ENOMEM;
0378
0379 device->zone_info = zone_info;
0380
0381 if (!bdev_is_zoned(bdev)) {
0382 if (!fs_info->zone_size) {
0383 ret = calculate_emulated_zone_size(fs_info);
0384 if (ret)
0385 goto out;
0386 }
0387
0388 ASSERT(fs_info->zone_size);
0389 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
0390 } else {
0391 zone_sectors = bdev_zone_sectors(bdev);
0392 }
0393
0394
0395 ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0);
0396 zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
0397
0398
0399 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
0400 btrfs_err_in_rcu(fs_info,
0401 "zoned: %s: zone size %llu larger than supported maximum %llu",
0402 rcu_str_deref(device->name),
0403 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
0404 ret = -EINVAL;
0405 goto out;
0406 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
0407 btrfs_err_in_rcu(fs_info,
0408 "zoned: %s: zone size %llu smaller than supported minimum %u",
0409 rcu_str_deref(device->name),
0410 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
0411 ret = -EINVAL;
0412 goto out;
0413 }
0414
0415 nr_sectors = bdev_nr_sectors(bdev);
0416 zone_info->zone_size_shift = ilog2(zone_info->zone_size);
0417 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429 if (bdev_is_zoned(bdev)) {
0430 zone_info->max_zone_append_size = min_t(u64,
0431 (u64)bdev_max_zone_append_sectors(bdev) << SECTOR_SHIFT,
0432 (u64)bdev_max_segments(bdev) << PAGE_SHIFT);
0433 } else {
0434 zone_info->max_zone_append_size =
0435 (u64)bdev_max_segments(bdev) << PAGE_SHIFT;
0436 }
0437 if (!IS_ALIGNED(nr_sectors, zone_sectors))
0438 zone_info->nr_zones++;
0439
0440 max_active_zones = bdev_max_active_zones(bdev);
0441 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
0442 btrfs_err_in_rcu(fs_info,
0443 "zoned: %s: max active zones %u is too small, need at least %u active zones",
0444 rcu_str_deref(device->name), max_active_zones,
0445 BTRFS_MIN_ACTIVE_ZONES);
0446 ret = -EINVAL;
0447 goto out;
0448 }
0449 zone_info->max_active_zones = max_active_zones;
0450
0451 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
0452 if (!zone_info->seq_zones) {
0453 ret = -ENOMEM;
0454 goto out;
0455 }
0456
0457 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
0458 if (!zone_info->empty_zones) {
0459 ret = -ENOMEM;
0460 goto out;
0461 }
0462
0463 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
0464 if (!zone_info->active_zones) {
0465 ret = -ENOMEM;
0466 goto out;
0467 }
0468
0469 zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
0470 if (!zones) {
0471 ret = -ENOMEM;
0472 goto out;
0473 }
0474
0475
0476
0477
0478
0479
0480 if (populate_cache && bdev_is_zoned(device->bdev)) {
0481 zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
0482 zone_info->nr_zones);
0483 if (!zone_info->zone_cache) {
0484 btrfs_err_in_rcu(device->fs_info,
0485 "zoned: failed to allocate zone cache for %s",
0486 rcu_str_deref(device->name));
0487 ret = -ENOMEM;
0488 goto out;
0489 }
0490 }
0491
0492
0493 nactive = 0;
0494 while (sector < nr_sectors) {
0495 nr_zones = BTRFS_REPORT_NR_ZONES;
0496 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
0497 &nr_zones);
0498 if (ret)
0499 goto out;
0500
0501 for (i = 0; i < nr_zones; i++) {
0502 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
0503 __set_bit(nreported, zone_info->seq_zones);
0504 switch (zones[i].cond) {
0505 case BLK_ZONE_COND_EMPTY:
0506 __set_bit(nreported, zone_info->empty_zones);
0507 break;
0508 case BLK_ZONE_COND_IMP_OPEN:
0509 case BLK_ZONE_COND_EXP_OPEN:
0510 case BLK_ZONE_COND_CLOSED:
0511 __set_bit(nreported, zone_info->active_zones);
0512 nactive++;
0513 break;
0514 }
0515 nreported++;
0516 }
0517 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
0518 }
0519
0520 if (nreported != zone_info->nr_zones) {
0521 btrfs_err_in_rcu(device->fs_info,
0522 "inconsistent number of zones on %s (%u/%u)",
0523 rcu_str_deref(device->name), nreported,
0524 zone_info->nr_zones);
0525 ret = -EIO;
0526 goto out;
0527 }
0528
0529 if (max_active_zones) {
0530 if (nactive > max_active_zones) {
0531 btrfs_err_in_rcu(device->fs_info,
0532 "zoned: %u active zones on %s exceeds max_active_zones %u",
0533 nactive, rcu_str_deref(device->name),
0534 max_active_zones);
0535 ret = -EIO;
0536 goto out;
0537 }
0538 atomic_set(&zone_info->active_zones_left,
0539 max_active_zones - nactive);
0540 }
0541
0542
0543 nr_zones = BTRFS_NR_SB_LOG_ZONES;
0544 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
0545 u32 sb_zone;
0546 u64 sb_wp;
0547 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
0548
0549 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
0550 if (sb_zone + 1 >= zone_info->nr_zones)
0551 continue;
0552
0553 ret = btrfs_get_dev_zones(device,
0554 zone_start_physical(sb_zone, zone_info),
0555 &zone_info->sb_zones[sb_pos],
0556 &nr_zones);
0557 if (ret)
0558 goto out;
0559
0560 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
0561 btrfs_err_in_rcu(device->fs_info,
0562 "zoned: failed to read super block log zone info at devid %llu zone %u",
0563 device->devid, sb_zone);
0564 ret = -EUCLEAN;
0565 goto out;
0566 }
0567
0568
0569
0570
0571
0572 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
0573 BLK_ZONE_TYPE_CONVENTIONAL)
0574 continue;
0575
0576 ret = sb_write_pointer(device->bdev,
0577 &zone_info->sb_zones[sb_pos], &sb_wp);
0578 if (ret != -ENOENT && ret) {
0579 btrfs_err_in_rcu(device->fs_info,
0580 "zoned: super block log zone corrupted devid %llu zone %u",
0581 device->devid, sb_zone);
0582 ret = -EUCLEAN;
0583 goto out;
0584 }
0585 }
0586
0587
0588 kfree(zones);
0589
0590 switch (bdev_zoned_model(bdev)) {
0591 case BLK_ZONED_HM:
0592 model = "host-managed zoned";
0593 emulated = "";
0594 break;
0595 case BLK_ZONED_HA:
0596 model = "host-aware zoned";
0597 emulated = "";
0598 break;
0599 case BLK_ZONED_NONE:
0600 model = "regular";
0601 emulated = "emulated ";
0602 break;
0603 default:
0604
0605 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
0606 bdev_zoned_model(bdev),
0607 rcu_str_deref(device->name));
0608 ret = -EOPNOTSUPP;
0609 goto out_free_zone_info;
0610 }
0611
0612 btrfs_info_in_rcu(fs_info,
0613 "%s block device %s, %u %szones of %llu bytes",
0614 model, rcu_str_deref(device->name), zone_info->nr_zones,
0615 emulated, zone_info->zone_size);
0616
0617 return 0;
0618
0619 out:
0620 kfree(zones);
0621 out_free_zone_info:
0622 btrfs_destroy_dev_zone_info(device);
0623
0624 return ret;
0625 }
0626
0627 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
0628 {
0629 struct btrfs_zoned_device_info *zone_info = device->zone_info;
0630
0631 if (!zone_info)
0632 return;
0633
0634 bitmap_free(zone_info->active_zones);
0635 bitmap_free(zone_info->seq_zones);
0636 bitmap_free(zone_info->empty_zones);
0637 vfree(zone_info->zone_cache);
0638 kfree(zone_info);
0639 device->zone_info = NULL;
0640 }
0641
0642 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
0643 struct blk_zone *zone)
0644 {
0645 unsigned int nr_zones = 1;
0646 int ret;
0647
0648 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
0649 if (ret != 0 || !nr_zones)
0650 return ret ? ret : -EIO;
0651
0652 return 0;
0653 }
0654
0655 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
0656 {
0657 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0658 struct btrfs_device *device;
0659 u64 zoned_devices = 0;
0660 u64 nr_devices = 0;
0661 u64 zone_size = 0;
0662 u64 max_zone_append_size = 0;
0663 const bool incompat_zoned = btrfs_fs_incompat(fs_info, ZONED);
0664 int ret = 0;
0665
0666
0667 list_for_each_entry(device, &fs_devices->devices, dev_list) {
0668 enum blk_zoned_model model;
0669
0670 if (!device->bdev)
0671 continue;
0672
0673 model = bdev_zoned_model(device->bdev);
0674
0675
0676
0677
0678
0679
0680 if (model == BLK_ZONED_HM ||
0681 (model == BLK_ZONED_HA && incompat_zoned) ||
0682 (model == BLK_ZONED_NONE && incompat_zoned)) {
0683 struct btrfs_zoned_device_info *zone_info;
0684
0685 zone_info = device->zone_info;
0686 zoned_devices++;
0687 if (!zone_size) {
0688 zone_size = zone_info->zone_size;
0689 } else if (zone_info->zone_size != zone_size) {
0690 btrfs_err(fs_info,
0691 "zoned: unequal block device zone sizes: have %llu found %llu",
0692 device->zone_info->zone_size,
0693 zone_size);
0694 ret = -EINVAL;
0695 goto out;
0696 }
0697 if (!max_zone_append_size ||
0698 (zone_info->max_zone_append_size &&
0699 zone_info->max_zone_append_size < max_zone_append_size))
0700 max_zone_append_size =
0701 zone_info->max_zone_append_size;
0702 }
0703 nr_devices++;
0704 }
0705
0706 if (!zoned_devices && !incompat_zoned)
0707 goto out;
0708
0709 if (!zoned_devices && incompat_zoned) {
0710
0711 btrfs_err(fs_info,
0712 "zoned: no zoned devices found on a zoned filesystem");
0713 ret = -EINVAL;
0714 goto out;
0715 }
0716
0717 if (zoned_devices && !incompat_zoned) {
0718 btrfs_err(fs_info,
0719 "zoned: mode not enabled but zoned device found");
0720 ret = -EINVAL;
0721 goto out;
0722 }
0723
0724 if (zoned_devices != nr_devices) {
0725 btrfs_err(fs_info,
0726 "zoned: cannot mix zoned and regular devices");
0727 ret = -EINVAL;
0728 goto out;
0729 }
0730
0731
0732
0733
0734
0735
0736 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
0737 btrfs_err(fs_info,
0738 "zoned: zone size %llu not aligned to stripe %u",
0739 zone_size, BTRFS_STRIPE_LEN);
0740 ret = -EINVAL;
0741 goto out;
0742 }
0743
0744 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
0745 btrfs_err(fs_info, "zoned: mixed block groups not supported");
0746 ret = -EINVAL;
0747 goto out;
0748 }
0749
0750 fs_info->zone_size = zone_size;
0751 fs_info->max_zone_append_size = ALIGN_DOWN(max_zone_append_size,
0752 fs_info->sectorsize);
0753 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
0754 if (fs_info->max_zone_append_size < fs_info->max_extent_size)
0755 fs_info->max_extent_size = fs_info->max_zone_append_size;
0756
0757
0758
0759
0760
0761 ret = btrfs_check_mountopts_zoned(fs_info);
0762 if (ret)
0763 goto out;
0764
0765 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
0766 out:
0767 return ret;
0768 }
0769
0770 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
0771 {
0772 if (!btrfs_is_zoned(info))
0773 return 0;
0774
0775
0776
0777
0778
0779 if (btrfs_test_opt(info, SPACE_CACHE)) {
0780 btrfs_err(info, "zoned: space cache v1 is not supported");
0781 return -EINVAL;
0782 }
0783
0784 if (btrfs_test_opt(info, NODATACOW)) {
0785 btrfs_err(info, "zoned: NODATACOW not supported");
0786 return -EINVAL;
0787 }
0788
0789 return 0;
0790 }
0791
0792 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
0793 int rw, u64 *bytenr_ret)
0794 {
0795 u64 wp;
0796 int ret;
0797
0798 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
0799 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
0800 return 0;
0801 }
0802
0803 ret = sb_write_pointer(bdev, zones, &wp);
0804 if (ret != -ENOENT && ret < 0)
0805 return ret;
0806
0807 if (rw == WRITE) {
0808 struct blk_zone *reset = NULL;
0809
0810 if (wp == zones[0].start << SECTOR_SHIFT)
0811 reset = &zones[0];
0812 else if (wp == zones[1].start << SECTOR_SHIFT)
0813 reset = &zones[1];
0814
0815 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
0816 ASSERT(sb_zone_is_full(reset));
0817
0818 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
0819 reset->start, reset->len,
0820 GFP_NOFS);
0821 if (ret)
0822 return ret;
0823
0824 reset->cond = BLK_ZONE_COND_EMPTY;
0825 reset->wp = reset->start;
0826 }
0827 } else if (ret != -ENOENT) {
0828
0829
0830
0831
0832 u64 zone_end = 0;
0833
0834 if (wp == zones[0].start << SECTOR_SHIFT)
0835 zone_end = zones[1].start + zones[1].capacity;
0836 else if (wp == zones[1].start << SECTOR_SHIFT)
0837 zone_end = zones[0].start + zones[0].capacity;
0838 if (zone_end)
0839 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
0840 BTRFS_SUPER_INFO_SIZE);
0841
0842 wp -= BTRFS_SUPER_INFO_SIZE;
0843 }
0844
0845 *bytenr_ret = wp;
0846 return 0;
0847
0848 }
0849
0850 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
0851 u64 *bytenr_ret)
0852 {
0853 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
0854 sector_t zone_sectors;
0855 u32 sb_zone;
0856 int ret;
0857 u8 zone_sectors_shift;
0858 sector_t nr_sectors;
0859 u32 nr_zones;
0860
0861 if (!bdev_is_zoned(bdev)) {
0862 *bytenr_ret = btrfs_sb_offset(mirror);
0863 return 0;
0864 }
0865
0866 ASSERT(rw == READ || rw == WRITE);
0867
0868 zone_sectors = bdev_zone_sectors(bdev);
0869 if (!is_power_of_2(zone_sectors))
0870 return -EINVAL;
0871 zone_sectors_shift = ilog2(zone_sectors);
0872 nr_sectors = bdev_nr_sectors(bdev);
0873 nr_zones = nr_sectors >> zone_sectors_shift;
0874
0875 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
0876 if (sb_zone + 1 >= nr_zones)
0877 return -ENOENT;
0878
0879 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
0880 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
0881 zones);
0882 if (ret < 0)
0883 return ret;
0884 if (ret != BTRFS_NR_SB_LOG_ZONES)
0885 return -EIO;
0886
0887 return sb_log_location(bdev, zones, rw, bytenr_ret);
0888 }
0889
0890 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
0891 u64 *bytenr_ret)
0892 {
0893 struct btrfs_zoned_device_info *zinfo = device->zone_info;
0894 u32 zone_num;
0895
0896
0897
0898
0899
0900
0901
0902 if (!bdev_is_zoned(device->bdev)) {
0903 *bytenr_ret = btrfs_sb_offset(mirror);
0904 return 0;
0905 }
0906
0907 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
0908 if (zone_num + 1 >= zinfo->nr_zones)
0909 return -ENOENT;
0910
0911 return sb_log_location(device->bdev,
0912 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
0913 rw, bytenr_ret);
0914 }
0915
0916 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
0917 int mirror)
0918 {
0919 u32 zone_num;
0920
0921 if (!zinfo)
0922 return false;
0923
0924 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
0925 if (zone_num + 1 >= zinfo->nr_zones)
0926 return false;
0927
0928 if (!test_bit(zone_num, zinfo->seq_zones))
0929 return false;
0930
0931 return true;
0932 }
0933
0934 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
0935 {
0936 struct btrfs_zoned_device_info *zinfo = device->zone_info;
0937 struct blk_zone *zone;
0938 int i;
0939
0940 if (!is_sb_log_zone(zinfo, mirror))
0941 return 0;
0942
0943 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
0944 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
0945
0946 if (zone->cond == BLK_ZONE_COND_FULL) {
0947 zone++;
0948 continue;
0949 }
0950
0951 if (zone->cond == BLK_ZONE_COND_EMPTY)
0952 zone->cond = BLK_ZONE_COND_IMP_OPEN;
0953
0954 zone->wp += SUPER_INFO_SECTORS;
0955
0956 if (sb_zone_is_full(zone)) {
0957
0958
0959
0960
0961
0962
0963
0964
0965 if (zone->wp != zone->start + zone->capacity) {
0966 int ret;
0967
0968 ret = blkdev_zone_mgmt(device->bdev,
0969 REQ_OP_ZONE_FINISH, zone->start,
0970 zone->len, GFP_NOFS);
0971 if (ret)
0972 return ret;
0973 }
0974
0975 zone->wp = zone->start + zone->len;
0976 zone->cond = BLK_ZONE_COND_FULL;
0977 }
0978 return 0;
0979 }
0980
0981
0982 ASSERT(0);
0983 return -EIO;
0984 }
0985
0986 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
0987 {
0988 sector_t zone_sectors;
0989 sector_t nr_sectors;
0990 u8 zone_sectors_shift;
0991 u32 sb_zone;
0992 u32 nr_zones;
0993
0994 zone_sectors = bdev_zone_sectors(bdev);
0995 zone_sectors_shift = ilog2(zone_sectors);
0996 nr_sectors = bdev_nr_sectors(bdev);
0997 nr_zones = nr_sectors >> zone_sectors_shift;
0998
0999 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1000 if (sb_zone + 1 >= nr_zones)
1001 return -ENOENT;
1002
1003 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1004 zone_start_sector(sb_zone, bdev),
1005 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1006 }
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1020 u64 hole_end, u64 num_bytes)
1021 {
1022 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1023 const u8 shift = zinfo->zone_size_shift;
1024 u64 nzones = num_bytes >> shift;
1025 u64 pos = hole_start;
1026 u64 begin, end;
1027 bool have_sb;
1028 int i;
1029
1030 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1031 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1032
1033 while (pos < hole_end) {
1034 begin = pos >> shift;
1035 end = begin + nzones;
1036
1037 if (end > zinfo->nr_zones)
1038 return hole_end;
1039
1040
1041 if (btrfs_dev_is_sequential(device, pos) &&
1042 find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
1043 pos += zinfo->zone_size;
1044 continue;
1045 }
1046
1047 have_sb = false;
1048 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1049 u32 sb_zone;
1050 u64 sb_pos;
1051
1052 sb_zone = sb_zone_number(shift, i);
1053 if (!(end <= sb_zone ||
1054 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1055 have_sb = true;
1056 pos = zone_start_physical(
1057 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1058 break;
1059 }
1060
1061
1062 sb_pos = btrfs_sb_offset(i);
1063 if (!(pos + num_bytes <= sb_pos ||
1064 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1065 have_sb = true;
1066 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1067 zinfo->zone_size);
1068 break;
1069 }
1070 }
1071 if (!have_sb)
1072 break;
1073 }
1074
1075 return pos;
1076 }
1077
1078 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1079 {
1080 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1081 unsigned int zno = (pos >> zone_info->zone_size_shift);
1082
1083
1084 if (zone_info->max_active_zones == 0)
1085 return true;
1086
1087 if (!test_bit(zno, zone_info->active_zones)) {
1088
1089 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1090 return false;
1091 if (test_and_set_bit(zno, zone_info->active_zones)) {
1092
1093 atomic_inc(&zone_info->active_zones_left);
1094 }
1095 }
1096
1097 return true;
1098 }
1099
1100 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1101 {
1102 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1103 unsigned int zno = (pos >> zone_info->zone_size_shift);
1104
1105
1106 if (zone_info->max_active_zones == 0)
1107 return;
1108
1109 if (test_and_clear_bit(zno, zone_info->active_zones))
1110 atomic_inc(&zone_info->active_zones_left);
1111 }
1112
1113 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1114 u64 length, u64 *bytes)
1115 {
1116 int ret;
1117
1118 *bytes = 0;
1119 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1120 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1121 GFP_NOFS);
1122 if (ret)
1123 return ret;
1124
1125 *bytes = length;
1126 while (length) {
1127 btrfs_dev_set_zone_empty(device, physical);
1128 btrfs_dev_clear_active_zone(device, physical);
1129 physical += device->zone_info->zone_size;
1130 length -= device->zone_info->zone_size;
1131 }
1132
1133 return 0;
1134 }
1135
1136 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1137 {
1138 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1139 const u8 shift = zinfo->zone_size_shift;
1140 unsigned long begin = start >> shift;
1141 unsigned long end = (start + size) >> shift;
1142 u64 pos;
1143 int ret;
1144
1145 ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1146 ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1147
1148 if (end > zinfo->nr_zones)
1149 return -ERANGE;
1150
1151
1152 if (find_next_bit(zinfo->seq_zones, begin, end) == end)
1153 return 0;
1154
1155
1156 if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
1157 find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
1158 return 0;
1159
1160 for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1161 u64 reset_bytes;
1162
1163 if (!btrfs_dev_is_sequential(device, pos) ||
1164 btrfs_dev_is_empty_zone(device, pos))
1165 continue;
1166
1167
1168 btrfs_warn_in_rcu(
1169 device->fs_info,
1170 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1171 rcu_str_deref(device->name), device->devid, pos >> shift);
1172 WARN_ON_ONCE(1);
1173
1174 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1175 &reset_bytes);
1176 if (ret)
1177 return ret;
1178 }
1179
1180 return 0;
1181 }
1182
1183
1184
1185
1186
1187
1188
1189 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1190 u64 *offset_ret, bool new)
1191 {
1192 struct btrfs_fs_info *fs_info = cache->fs_info;
1193 struct btrfs_root *root;
1194 struct btrfs_path *path;
1195 struct btrfs_key key;
1196 struct btrfs_key found_key;
1197 int ret;
1198 u64 length;
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210 if (new) {
1211 *offset_ret = 0;
1212 return 0;
1213 }
1214
1215 path = btrfs_alloc_path();
1216 if (!path)
1217 return -ENOMEM;
1218
1219 key.objectid = cache->start + cache->length;
1220 key.type = 0;
1221 key.offset = 0;
1222
1223 root = btrfs_extent_root(fs_info, key.objectid);
1224 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1225
1226 if (!ret)
1227 ret = -EUCLEAN;
1228 if (ret < 0)
1229 goto out;
1230
1231 ret = btrfs_previous_extent_item(root, path, cache->start);
1232 if (ret) {
1233 if (ret == 1) {
1234 ret = 0;
1235 *offset_ret = 0;
1236 }
1237 goto out;
1238 }
1239
1240 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1241
1242 if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1243 length = found_key.offset;
1244 else
1245 length = fs_info->nodesize;
1246
1247 if (!(found_key.objectid >= cache->start &&
1248 found_key.objectid + length <= cache->start + cache->length)) {
1249 ret = -EUCLEAN;
1250 goto out;
1251 }
1252 *offset_ret = found_key.objectid + length - cache->start;
1253 ret = 0;
1254
1255 out:
1256 btrfs_free_path(path);
1257 return ret;
1258 }
1259
1260 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1261 {
1262 struct btrfs_fs_info *fs_info = cache->fs_info;
1263 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1264 struct extent_map *em;
1265 struct map_lookup *map;
1266 struct btrfs_device *device;
1267 u64 logical = cache->start;
1268 u64 length = cache->length;
1269 int ret;
1270 int i;
1271 unsigned int nofs_flag;
1272 u64 *alloc_offsets = NULL;
1273 u64 *caps = NULL;
1274 u64 *physical = NULL;
1275 unsigned long *active = NULL;
1276 u64 last_alloc = 0;
1277 u32 num_sequential = 0, num_conventional = 0;
1278
1279 if (!btrfs_is_zoned(fs_info))
1280 return 0;
1281
1282
1283 if (!IS_ALIGNED(length, fs_info->zone_size)) {
1284 btrfs_err(fs_info,
1285 "zoned: block group %llu len %llu unaligned to zone size %llu",
1286 logical, length, fs_info->zone_size);
1287 return -EIO;
1288 }
1289
1290
1291 read_lock(&em_tree->lock);
1292 em = lookup_extent_mapping(em_tree, logical, length);
1293 read_unlock(&em_tree->lock);
1294
1295 if (!em)
1296 return -EINVAL;
1297
1298 map = em->map_lookup;
1299
1300 cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1301 if (!cache->physical_map) {
1302 ret = -ENOMEM;
1303 goto out;
1304 }
1305
1306 alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1307 if (!alloc_offsets) {
1308 ret = -ENOMEM;
1309 goto out;
1310 }
1311
1312 caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1313 if (!caps) {
1314 ret = -ENOMEM;
1315 goto out;
1316 }
1317
1318 physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1319 if (!physical) {
1320 ret = -ENOMEM;
1321 goto out;
1322 }
1323
1324 active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1325 if (!active) {
1326 ret = -ENOMEM;
1327 goto out;
1328 }
1329
1330 for (i = 0; i < map->num_stripes; i++) {
1331 bool is_sequential;
1332 struct blk_zone zone;
1333 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1334 int dev_replace_is_ongoing = 0;
1335
1336 device = map->stripes[i].dev;
1337 physical[i] = map->stripes[i].physical;
1338
1339 if (device->bdev == NULL) {
1340 alloc_offsets[i] = WP_MISSING_DEV;
1341 continue;
1342 }
1343
1344 is_sequential = btrfs_dev_is_sequential(device, physical[i]);
1345 if (is_sequential)
1346 num_sequential++;
1347 else
1348 num_conventional++;
1349
1350
1351
1352
1353
1354 if (!device->zone_info->max_active_zones)
1355 __set_bit(i, active);
1356
1357 if (!is_sequential) {
1358 alloc_offsets[i] = WP_CONVENTIONAL;
1359 continue;
1360 }
1361
1362
1363
1364
1365
1366 btrfs_dev_clear_zone_empty(device, physical[i]);
1367
1368 down_read(&dev_replace->rwsem);
1369 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1370 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1371 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
1372 up_read(&dev_replace->rwsem);
1373
1374
1375
1376
1377
1378 WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
1379 nofs_flag = memalloc_nofs_save();
1380 ret = btrfs_get_dev_zone(device, physical[i], &zone);
1381 memalloc_nofs_restore(nofs_flag);
1382 if (ret == -EIO || ret == -EOPNOTSUPP) {
1383 ret = 0;
1384 alloc_offsets[i] = WP_MISSING_DEV;
1385 continue;
1386 } else if (ret) {
1387 goto out;
1388 }
1389
1390 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1391 btrfs_err_in_rcu(fs_info,
1392 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1393 zone.start << SECTOR_SHIFT,
1394 rcu_str_deref(device->name), device->devid);
1395 ret = -EIO;
1396 goto out;
1397 }
1398
1399 caps[i] = (zone.capacity << SECTOR_SHIFT);
1400
1401 switch (zone.cond) {
1402 case BLK_ZONE_COND_OFFLINE:
1403 case BLK_ZONE_COND_READONLY:
1404 btrfs_err(fs_info,
1405 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1406 physical[i] >> device->zone_info->zone_size_shift,
1407 rcu_str_deref(device->name), device->devid);
1408 alloc_offsets[i] = WP_MISSING_DEV;
1409 break;
1410 case BLK_ZONE_COND_EMPTY:
1411 alloc_offsets[i] = 0;
1412 break;
1413 case BLK_ZONE_COND_FULL:
1414 alloc_offsets[i] = caps[i];
1415 break;
1416 default:
1417
1418 alloc_offsets[i] =
1419 ((zone.wp - zone.start) << SECTOR_SHIFT);
1420 __set_bit(i, active);
1421 break;
1422 }
1423 }
1424
1425 if (num_sequential > 0)
1426 cache->seq_zone = true;
1427
1428 if (num_conventional > 0) {
1429
1430 cache->zone_capacity = cache->length;
1431 ret = calculate_alloc_pointer(cache, &last_alloc, new);
1432 if (ret) {
1433 btrfs_err(fs_info,
1434 "zoned: failed to determine allocation offset of bg %llu",
1435 cache->start);
1436 goto out;
1437 } else if (map->num_stripes == num_conventional) {
1438 cache->alloc_offset = last_alloc;
1439 cache->zone_is_active = 1;
1440 goto out;
1441 }
1442 }
1443
1444 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1445 case 0:
1446 if (alloc_offsets[0] == WP_MISSING_DEV) {
1447 btrfs_err(fs_info,
1448 "zoned: cannot recover write pointer for zone %llu",
1449 physical[0]);
1450 ret = -EIO;
1451 goto out;
1452 }
1453 cache->alloc_offset = alloc_offsets[0];
1454 cache->zone_capacity = caps[0];
1455 cache->zone_is_active = test_bit(0, active);
1456 break;
1457 case BTRFS_BLOCK_GROUP_DUP:
1458 if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1459 btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1460 ret = -EINVAL;
1461 goto out;
1462 }
1463 if (alloc_offsets[0] == WP_MISSING_DEV) {
1464 btrfs_err(fs_info,
1465 "zoned: cannot recover write pointer for zone %llu",
1466 physical[0]);
1467 ret = -EIO;
1468 goto out;
1469 }
1470 if (alloc_offsets[1] == WP_MISSING_DEV) {
1471 btrfs_err(fs_info,
1472 "zoned: cannot recover write pointer for zone %llu",
1473 physical[1]);
1474 ret = -EIO;
1475 goto out;
1476 }
1477 if (alloc_offsets[0] != alloc_offsets[1]) {
1478 btrfs_err(fs_info,
1479 "zoned: write pointer offset mismatch of zones in DUP profile");
1480 ret = -EIO;
1481 goto out;
1482 }
1483 if (test_bit(0, active) != test_bit(1, active)) {
1484 if (!btrfs_zone_activate(cache)) {
1485 ret = -EIO;
1486 goto out;
1487 }
1488 } else {
1489 cache->zone_is_active = test_bit(0, active);
1490 }
1491 cache->alloc_offset = alloc_offsets[0];
1492 cache->zone_capacity = min(caps[0], caps[1]);
1493 break;
1494 case BTRFS_BLOCK_GROUP_RAID1:
1495 case BTRFS_BLOCK_GROUP_RAID0:
1496 case BTRFS_BLOCK_GROUP_RAID10:
1497 case BTRFS_BLOCK_GROUP_RAID5:
1498 case BTRFS_BLOCK_GROUP_RAID6:
1499
1500 default:
1501 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1502 btrfs_bg_type_to_raid_name(map->type));
1503 ret = -EINVAL;
1504 goto out;
1505 }
1506
1507 out:
1508 if (cache->alloc_offset > fs_info->zone_size) {
1509 btrfs_err(fs_info,
1510 "zoned: invalid write pointer %llu in block group %llu",
1511 cache->alloc_offset, cache->start);
1512 ret = -EIO;
1513 }
1514
1515 if (cache->alloc_offset > cache->zone_capacity) {
1516 btrfs_err(fs_info,
1517 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1518 cache->alloc_offset, cache->zone_capacity,
1519 cache->start);
1520 ret = -EIO;
1521 }
1522
1523
1524 if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1525 btrfs_err(fs_info,
1526 "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1527 logical, last_alloc, cache->alloc_offset);
1528 ret = -EIO;
1529 }
1530
1531 if (!ret) {
1532 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1533 if (cache->zone_is_active) {
1534 btrfs_get_block_group(cache);
1535 spin_lock(&fs_info->zone_active_bgs_lock);
1536 list_add_tail(&cache->active_bg_list,
1537 &fs_info->zone_active_bgs);
1538 spin_unlock(&fs_info->zone_active_bgs_lock);
1539 }
1540 } else {
1541 kfree(cache->physical_map);
1542 cache->physical_map = NULL;
1543 }
1544 bitmap_free(active);
1545 kfree(physical);
1546 kfree(caps);
1547 kfree(alloc_offsets);
1548 free_extent_map(em);
1549
1550 return ret;
1551 }
1552
1553 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1554 {
1555 u64 unusable, free;
1556
1557 if (!btrfs_is_zoned(cache->fs_info))
1558 return;
1559
1560 WARN_ON(cache->bytes_super != 0);
1561 unusable = (cache->alloc_offset - cache->used) +
1562 (cache->length - cache->zone_capacity);
1563 free = cache->zone_capacity - cache->alloc_offset;
1564
1565
1566 cache->last_byte_to_unpin = (u64)-1;
1567 cache->cached = BTRFS_CACHE_FINISHED;
1568 cache->free_space_ctl->free_space = free;
1569 cache->zone_unusable = unusable;
1570 }
1571
1572 void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1573 struct extent_buffer *eb)
1574 {
1575 struct btrfs_fs_info *fs_info = eb->fs_info;
1576
1577 if (!btrfs_is_zoned(fs_info) ||
1578 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1579 !list_empty(&eb->release_list))
1580 return;
1581
1582 set_extent_buffer_dirty(eb);
1583 set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1584 eb->start + eb->len - 1, EXTENT_DIRTY);
1585 memzero_extent_buffer(eb, 0, eb->len);
1586 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1587
1588 spin_lock(&trans->releasing_ebs_lock);
1589 list_add_tail(&eb->release_list, &trans->releasing_ebs);
1590 spin_unlock(&trans->releasing_ebs_lock);
1591 atomic_inc(&eb->refs);
1592 }
1593
1594 void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1595 {
1596 spin_lock(&trans->releasing_ebs_lock);
1597 while (!list_empty(&trans->releasing_ebs)) {
1598 struct extent_buffer *eb;
1599
1600 eb = list_first_entry(&trans->releasing_ebs,
1601 struct extent_buffer, release_list);
1602 list_del_init(&eb->release_list);
1603 free_extent_buffer(eb);
1604 }
1605 spin_unlock(&trans->releasing_ebs_lock);
1606 }
1607
1608 bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
1609 {
1610 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1611 struct btrfs_block_group *cache;
1612 bool ret = false;
1613
1614 if (!btrfs_is_zoned(fs_info))
1615 return false;
1616
1617 if (!is_data_inode(&inode->vfs_inode))
1618 return false;
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628 if (btrfs_is_data_reloc_root(inode->root))
1629 return false;
1630
1631 cache = btrfs_lookup_block_group(fs_info, start);
1632 ASSERT(cache);
1633 if (!cache)
1634 return false;
1635
1636 ret = cache->seq_zone;
1637 btrfs_put_block_group(cache);
1638
1639 return ret;
1640 }
1641
1642 void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
1643 struct bio *bio)
1644 {
1645 struct btrfs_ordered_extent *ordered;
1646 const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
1647
1648 if (bio_op(bio) != REQ_OP_ZONE_APPEND)
1649 return;
1650
1651 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
1652 if (WARN_ON(!ordered))
1653 return;
1654
1655 ordered->physical = physical;
1656 ordered->bdev = bio->bi_bdev;
1657
1658 btrfs_put_ordered_extent(ordered);
1659 }
1660
1661 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1662 {
1663 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1664 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1665 struct extent_map_tree *em_tree;
1666 struct extent_map *em;
1667 struct btrfs_ordered_sum *sum;
1668 u64 orig_logical = ordered->disk_bytenr;
1669 u64 *logical = NULL;
1670 int nr, stripe_len;
1671
1672
1673 ASSERT(!bdev_is_partition(ordered->bdev));
1674 if (WARN_ON(!ordered->bdev))
1675 return;
1676
1677 if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
1678 ordered->physical, &logical, &nr,
1679 &stripe_len)))
1680 goto out;
1681
1682 WARN_ON(nr != 1);
1683
1684 if (orig_logical == *logical)
1685 goto out;
1686
1687 ordered->disk_bytenr = *logical;
1688
1689 em_tree = &inode->extent_tree;
1690 write_lock(&em_tree->lock);
1691 em = search_extent_mapping(em_tree, ordered->file_offset,
1692 ordered->num_bytes);
1693 em->block_start = *logical;
1694 free_extent_map(em);
1695 write_unlock(&em_tree->lock);
1696
1697 list_for_each_entry(sum, &ordered->list, list) {
1698 if (*logical < orig_logical)
1699 sum->bytenr -= orig_logical - *logical;
1700 else
1701 sum->bytenr += *logical - orig_logical;
1702 }
1703
1704 out:
1705 kfree(logical);
1706 }
1707
1708 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1709 struct extent_buffer *eb,
1710 struct btrfs_block_group **cache_ret)
1711 {
1712 struct btrfs_block_group *cache;
1713 bool ret = true;
1714
1715 if (!btrfs_is_zoned(fs_info))
1716 return true;
1717
1718 cache = btrfs_lookup_block_group(fs_info, eb->start);
1719 if (!cache)
1720 return true;
1721
1722 if (cache->meta_write_pointer != eb->start) {
1723 btrfs_put_block_group(cache);
1724 cache = NULL;
1725 ret = false;
1726 } else {
1727 cache->meta_write_pointer = eb->start + eb->len;
1728 }
1729
1730 *cache_ret = cache;
1731
1732 return ret;
1733 }
1734
1735 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1736 struct extent_buffer *eb)
1737 {
1738 if (!btrfs_is_zoned(eb->fs_info) || !cache)
1739 return;
1740
1741 ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1742 cache->meta_write_pointer = eb->start;
1743 }
1744
1745 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1746 {
1747 if (!btrfs_dev_is_sequential(device, physical))
1748 return -EOPNOTSUPP;
1749
1750 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1751 length >> SECTOR_SHIFT, GFP_NOFS, 0);
1752 }
1753
1754 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1755 struct blk_zone *zone)
1756 {
1757 struct btrfs_io_context *bioc = NULL;
1758 u64 mapped_length = PAGE_SIZE;
1759 unsigned int nofs_flag;
1760 int nmirrors;
1761 int i, ret;
1762
1763 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1764 &mapped_length, &bioc);
1765 if (ret || !bioc || mapped_length < PAGE_SIZE) {
1766 ret = -EIO;
1767 goto out_put_bioc;
1768 }
1769
1770 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1771 ret = -EINVAL;
1772 goto out_put_bioc;
1773 }
1774
1775 nofs_flag = memalloc_nofs_save();
1776 nmirrors = (int)bioc->num_stripes;
1777 for (i = 0; i < nmirrors; i++) {
1778 u64 physical = bioc->stripes[i].physical;
1779 struct btrfs_device *dev = bioc->stripes[i].dev;
1780
1781
1782 if (!dev->bdev)
1783 continue;
1784
1785 ret = btrfs_get_dev_zone(dev, physical, zone);
1786
1787 if (ret == -EIO || ret == -EOPNOTSUPP)
1788 continue;
1789 break;
1790 }
1791 memalloc_nofs_restore(nofs_flag);
1792 out_put_bioc:
1793 btrfs_put_bioc(bioc);
1794 return ret;
1795 }
1796
1797
1798
1799
1800
1801
1802 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1803 u64 physical_start, u64 physical_pos)
1804 {
1805 struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1806 struct blk_zone zone;
1807 u64 length;
1808 u64 wp;
1809 int ret;
1810
1811 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1812 return 0;
1813
1814 ret = read_zone_info(fs_info, logical, &zone);
1815 if (ret)
1816 return ret;
1817
1818 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1819
1820 if (physical_pos == wp)
1821 return 0;
1822
1823 if (physical_pos > wp)
1824 return -EUCLEAN;
1825
1826 length = wp - physical_pos;
1827 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1828 }
1829
1830 struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
1831 u64 logical, u64 length)
1832 {
1833 struct btrfs_device *device;
1834 struct extent_map *em;
1835 struct map_lookup *map;
1836
1837 em = btrfs_get_chunk_map(fs_info, logical, length);
1838 if (IS_ERR(em))
1839 return ERR_CAST(em);
1840
1841 map = em->map_lookup;
1842
1843 device = map->stripes[0].dev;
1844
1845 free_extent_map(em);
1846
1847 return device;
1848 }
1849
1850
1851
1852
1853
1854
1855
1856
1857 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1858 {
1859 struct btrfs_fs_info *fs_info = block_group->fs_info;
1860 struct btrfs_space_info *space_info = block_group->space_info;
1861 struct map_lookup *map;
1862 struct btrfs_device *device;
1863 u64 physical;
1864 bool ret;
1865 int i;
1866
1867 if (!btrfs_is_zoned(block_group->fs_info))
1868 return true;
1869
1870 map = block_group->physical_map;
1871
1872 spin_lock(&space_info->lock);
1873 spin_lock(&block_group->lock);
1874 if (block_group->zone_is_active) {
1875 ret = true;
1876 goto out_unlock;
1877 }
1878
1879
1880 if (btrfs_zoned_bg_is_full(block_group)) {
1881 ret = false;
1882 goto out_unlock;
1883 }
1884
1885 for (i = 0; i < map->num_stripes; i++) {
1886 device = map->stripes[i].dev;
1887 physical = map->stripes[i].physical;
1888
1889 if (device->zone_info->max_active_zones == 0)
1890 continue;
1891
1892 if (!btrfs_dev_set_active_zone(device, physical)) {
1893
1894 ret = false;
1895 goto out_unlock;
1896 }
1897 }
1898
1899
1900 block_group->zone_is_active = 1;
1901 space_info->active_total_bytes += block_group->length;
1902 spin_unlock(&block_group->lock);
1903 btrfs_try_granting_tickets(fs_info, space_info);
1904 spin_unlock(&space_info->lock);
1905
1906
1907 btrfs_get_block_group(block_group);
1908
1909 spin_lock(&fs_info->zone_active_bgs_lock);
1910 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1911 spin_unlock(&fs_info->zone_active_bgs_lock);
1912
1913 return true;
1914
1915 out_unlock:
1916 spin_unlock(&block_group->lock);
1917 spin_unlock(&space_info->lock);
1918 return ret;
1919 }
1920
1921 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
1922 {
1923 struct btrfs_fs_info *fs_info = block_group->fs_info;
1924 const u64 end = block_group->start + block_group->length;
1925 struct radix_tree_iter iter;
1926 struct extent_buffer *eb;
1927 void __rcu **slot;
1928
1929 rcu_read_lock();
1930 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
1931 block_group->start >> fs_info->sectorsize_bits) {
1932 eb = radix_tree_deref_slot(slot);
1933 if (!eb)
1934 continue;
1935 if (radix_tree_deref_retry(eb)) {
1936 slot = radix_tree_iter_retry(&iter);
1937 continue;
1938 }
1939
1940 if (eb->start < block_group->start)
1941 continue;
1942 if (eb->start >= end)
1943 break;
1944
1945 slot = radix_tree_iter_resume(slot, &iter);
1946 rcu_read_unlock();
1947 wait_on_extent_buffer_writeback(eb);
1948 rcu_read_lock();
1949 }
1950 rcu_read_unlock();
1951 }
1952
1953 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
1954 {
1955 struct btrfs_fs_info *fs_info = block_group->fs_info;
1956 struct map_lookup *map;
1957 const bool is_metadata = (block_group->flags &
1958 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
1959 int ret = 0;
1960 int i;
1961
1962 spin_lock(&block_group->lock);
1963 if (!block_group->zone_is_active) {
1964 spin_unlock(&block_group->lock);
1965 return 0;
1966 }
1967
1968
1969 if (is_metadata &&
1970 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
1971 spin_unlock(&block_group->lock);
1972 return -EAGAIN;
1973 }
1974
1975
1976
1977
1978
1979
1980
1981
1982 if (!fully_written) {
1983 spin_unlock(&block_group->lock);
1984
1985 ret = btrfs_inc_block_group_ro(block_group, false);
1986 if (ret)
1987 return ret;
1988
1989
1990 btrfs_wait_block_group_reservations(block_group);
1991
1992 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
1993 block_group->length);
1994
1995 if (is_metadata)
1996 wait_eb_writebacks(block_group);
1997
1998 spin_lock(&block_group->lock);
1999
2000
2001
2002
2003
2004 if (!block_group->zone_is_active) {
2005 spin_unlock(&block_group->lock);
2006 btrfs_dec_block_group_ro(block_group);
2007 return 0;
2008 }
2009
2010 if (block_group->reserved) {
2011 spin_unlock(&block_group->lock);
2012 btrfs_dec_block_group_ro(block_group);
2013 return -EAGAIN;
2014 }
2015 }
2016
2017 block_group->zone_is_active = 0;
2018 block_group->alloc_offset = block_group->zone_capacity;
2019 block_group->free_space_ctl->free_space = 0;
2020 btrfs_clear_treelog_bg(block_group);
2021 btrfs_clear_data_reloc_bg(block_group);
2022 spin_unlock(&block_group->lock);
2023
2024 map = block_group->physical_map;
2025 for (i = 0; i < map->num_stripes; i++) {
2026 struct btrfs_device *device = map->stripes[i].dev;
2027 const u64 physical = map->stripes[i].physical;
2028
2029 if (device->zone_info->max_active_zones == 0)
2030 continue;
2031
2032 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2033 physical >> SECTOR_SHIFT,
2034 device->zone_info->zone_size >> SECTOR_SHIFT,
2035 GFP_NOFS);
2036
2037 if (ret)
2038 return ret;
2039
2040 btrfs_dev_clear_active_zone(device, physical);
2041 }
2042
2043 if (!fully_written)
2044 btrfs_dec_block_group_ro(block_group);
2045
2046 spin_lock(&fs_info->zone_active_bgs_lock);
2047 ASSERT(!list_empty(&block_group->active_bg_list));
2048 list_del_init(&block_group->active_bg_list);
2049 spin_unlock(&fs_info->zone_active_bgs_lock);
2050
2051
2052 btrfs_put_block_group(block_group);
2053
2054 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2055
2056 return 0;
2057 }
2058
2059 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2060 {
2061 if (!btrfs_is_zoned(block_group->fs_info))
2062 return 0;
2063
2064 return do_zone_finish(block_group, false);
2065 }
2066
2067 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2068 {
2069 struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2070 struct btrfs_device *device;
2071 bool ret = false;
2072
2073 if (!btrfs_is_zoned(fs_info))
2074 return true;
2075
2076
2077 mutex_lock(&fs_info->chunk_mutex);
2078 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2079 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2080
2081 if (!device->bdev)
2082 continue;
2083
2084 if (!zinfo->max_active_zones ||
2085 atomic_read(&zinfo->active_zones_left)) {
2086 ret = true;
2087 break;
2088 }
2089 }
2090 mutex_unlock(&fs_info->chunk_mutex);
2091
2092 if (!ret)
2093 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2094
2095 return ret;
2096 }
2097
2098 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2099 {
2100 struct btrfs_block_group *block_group;
2101 u64 min_alloc_bytes;
2102
2103 if (!btrfs_is_zoned(fs_info))
2104 return;
2105
2106 block_group = btrfs_lookup_block_group(fs_info, logical);
2107 ASSERT(block_group);
2108
2109
2110 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2111 min_alloc_bytes = fs_info->sectorsize;
2112 else
2113 min_alloc_bytes = fs_info->nodesize;
2114
2115
2116 if (logical + length + min_alloc_bytes <=
2117 block_group->start + block_group->zone_capacity)
2118 goto out;
2119
2120 do_zone_finish(block_group, true);
2121
2122 out:
2123 btrfs_put_block_group(block_group);
2124 }
2125
2126 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2127 {
2128 struct btrfs_block_group *bg =
2129 container_of(work, struct btrfs_block_group, zone_finish_work);
2130
2131 wait_on_extent_buffer_writeback(bg->last_eb);
2132 free_extent_buffer(bg->last_eb);
2133 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2134 btrfs_put_block_group(bg);
2135 }
2136
2137 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2138 struct extent_buffer *eb)
2139 {
2140 if (!bg->seq_zone || eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2141 return;
2142
2143 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2144 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2145 bg->start);
2146 return;
2147 }
2148
2149
2150 btrfs_get_block_group(bg);
2151 atomic_inc(&eb->refs);
2152 bg->last_eb = eb;
2153 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2154 queue_work(system_unbound_wq, &bg->zone_finish_work);
2155 }
2156
2157 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2158 {
2159 struct btrfs_fs_info *fs_info = bg->fs_info;
2160
2161 spin_lock(&fs_info->relocation_bg_lock);
2162 if (fs_info->data_reloc_bg == bg->start)
2163 fs_info->data_reloc_bg = 0;
2164 spin_unlock(&fs_info->relocation_bg_lock);
2165 }
2166
2167 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2168 {
2169 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2170 struct btrfs_device *device;
2171
2172 if (!btrfs_is_zoned(fs_info))
2173 return;
2174
2175 mutex_lock(&fs_devices->device_list_mutex);
2176 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2177 if (device->zone_info) {
2178 vfree(device->zone_info->zone_cache);
2179 device->zone_info->zone_cache = NULL;
2180 }
2181 }
2182 mutex_unlock(&fs_devices->device_list_mutex);
2183 }
2184
2185 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2186 {
2187 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2188 struct btrfs_device *device;
2189 u64 used = 0;
2190 u64 total = 0;
2191 u64 factor;
2192
2193 ASSERT(btrfs_is_zoned(fs_info));
2194
2195 if (fs_info->bg_reclaim_threshold == 0)
2196 return false;
2197
2198 mutex_lock(&fs_devices->device_list_mutex);
2199 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2200 if (!device->bdev)
2201 continue;
2202
2203 total += device->disk_total_bytes;
2204 used += device->bytes_used;
2205 }
2206 mutex_unlock(&fs_devices->device_list_mutex);
2207
2208 factor = div64_u64(used * 100, total);
2209 return factor >= fs_info->bg_reclaim_threshold;
2210 }
2211
2212 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2213 u64 length)
2214 {
2215 struct btrfs_block_group *block_group;
2216
2217 if (!btrfs_is_zoned(fs_info))
2218 return;
2219
2220 block_group = btrfs_lookup_block_group(fs_info, logical);
2221
2222 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2223
2224 spin_lock(&block_group->lock);
2225 if (!block_group->zoned_data_reloc_ongoing)
2226 goto out;
2227
2228
2229 if (block_group->start + block_group->alloc_offset == logical + length) {
2230
2231 block_group->zoned_data_reloc_ongoing = 0;
2232 }
2233
2234 out:
2235 spin_unlock(&block_group->lock);
2236 btrfs_put_block_group(block_group);
2237 }
2238
2239 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2240 {
2241 struct btrfs_block_group *block_group;
2242 struct btrfs_block_group *min_bg = NULL;
2243 u64 min_avail = U64_MAX;
2244 int ret;
2245
2246 spin_lock(&fs_info->zone_active_bgs_lock);
2247 list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2248 active_bg_list) {
2249 u64 avail;
2250
2251 spin_lock(&block_group->lock);
2252 if (block_group->reserved ||
2253 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) {
2254 spin_unlock(&block_group->lock);
2255 continue;
2256 }
2257
2258 avail = block_group->zone_capacity - block_group->alloc_offset;
2259 if (min_avail > avail) {
2260 if (min_bg)
2261 btrfs_put_block_group(min_bg);
2262 min_bg = block_group;
2263 min_avail = avail;
2264 btrfs_get_block_group(min_bg);
2265 }
2266 spin_unlock(&block_group->lock);
2267 }
2268 spin_unlock(&fs_info->zone_active_bgs_lock);
2269
2270 if (!min_bg)
2271 return 0;
2272
2273 ret = btrfs_zone_finish(min_bg);
2274 btrfs_put_block_group(min_bg);
2275
2276 return ret < 0 ? ret : 1;
2277 }
2278
2279 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2280 struct btrfs_space_info *space_info,
2281 bool do_finish)
2282 {
2283 struct btrfs_block_group *bg;
2284 int index;
2285
2286 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2287 return 0;
2288
2289
2290 if (space_info->active_total_bytes == space_info->total_bytes)
2291 return 0;
2292
2293 for (;;) {
2294 int ret;
2295 bool need_finish = false;
2296
2297 down_read(&space_info->groups_sem);
2298 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2299 list_for_each_entry(bg, &space_info->block_groups[index],
2300 list) {
2301 if (!spin_trylock(&bg->lock))
2302 continue;
2303 if (btrfs_zoned_bg_is_full(bg) || bg->zone_is_active) {
2304 spin_unlock(&bg->lock);
2305 continue;
2306 }
2307 spin_unlock(&bg->lock);
2308
2309 if (btrfs_zone_activate(bg)) {
2310 up_read(&space_info->groups_sem);
2311 return 1;
2312 }
2313
2314 need_finish = true;
2315 }
2316 }
2317 up_read(&space_info->groups_sem);
2318
2319 if (!do_finish || !need_finish)
2320 break;
2321
2322 ret = btrfs_zone_finish_one_bg(fs_info);
2323 if (ret == 0)
2324 break;
2325 if (ret < 0)
2326 return ret;
2327 }
2328
2329 return 0;
2330 }