Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Copyright (C) 2007 Oracle.  All rights reserved.
0004  */
0005 
0006 #include <linux/sched.h>
0007 #include <linux/sched/mm.h>
0008 #include <linux/bio.h>
0009 #include <linux/slab.h>
0010 #include <linux/blkdev.h>
0011 #include <linux/ratelimit.h>
0012 #include <linux/kthread.h>
0013 #include <linux/raid/pq.h>
0014 #include <linux/semaphore.h>
0015 #include <linux/uuid.h>
0016 #include <linux/list_sort.h>
0017 #include <linux/namei.h>
0018 #include "misc.h"
0019 #include "ctree.h"
0020 #include "extent_map.h"
0021 #include "disk-io.h"
0022 #include "transaction.h"
0023 #include "print-tree.h"
0024 #include "volumes.h"
0025 #include "raid56.h"
0026 #include "async-thread.h"
0027 #include "check-integrity.h"
0028 #include "rcu-string.h"
0029 #include "dev-replace.h"
0030 #include "sysfs.h"
0031 #include "tree-checker.h"
0032 #include "space-info.h"
0033 #include "block-group.h"
0034 #include "discard.h"
0035 #include "zoned.h"
0036 
0037 #define BTRFS_BLOCK_GROUP_STRIPE_MASK   (BTRFS_BLOCK_GROUP_RAID0 | \
0038                      BTRFS_BLOCK_GROUP_RAID10 | \
0039                      BTRFS_BLOCK_GROUP_RAID56_MASK)
0040 
0041 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
0042     [BTRFS_RAID_RAID10] = {
0043         .sub_stripes    = 2,
0044         .dev_stripes    = 1,
0045         .devs_max   = 0,    /* 0 == as many as possible */
0046         .devs_min   = 2,
0047         .tolerated_failures = 1,
0048         .devs_increment = 2,
0049         .ncopies    = 2,
0050         .nparity        = 0,
0051         .raid_name  = "raid10",
0052         .bg_flag    = BTRFS_BLOCK_GROUP_RAID10,
0053         .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
0054     },
0055     [BTRFS_RAID_RAID1] = {
0056         .sub_stripes    = 1,
0057         .dev_stripes    = 1,
0058         .devs_max   = 2,
0059         .devs_min   = 2,
0060         .tolerated_failures = 1,
0061         .devs_increment = 2,
0062         .ncopies    = 2,
0063         .nparity        = 0,
0064         .raid_name  = "raid1",
0065         .bg_flag    = BTRFS_BLOCK_GROUP_RAID1,
0066         .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
0067     },
0068     [BTRFS_RAID_RAID1C3] = {
0069         .sub_stripes    = 1,
0070         .dev_stripes    = 1,
0071         .devs_max   = 3,
0072         .devs_min   = 3,
0073         .tolerated_failures = 2,
0074         .devs_increment = 3,
0075         .ncopies    = 3,
0076         .nparity        = 0,
0077         .raid_name  = "raid1c3",
0078         .bg_flag    = BTRFS_BLOCK_GROUP_RAID1C3,
0079         .mindev_error   = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
0080     },
0081     [BTRFS_RAID_RAID1C4] = {
0082         .sub_stripes    = 1,
0083         .dev_stripes    = 1,
0084         .devs_max   = 4,
0085         .devs_min   = 4,
0086         .tolerated_failures = 3,
0087         .devs_increment = 4,
0088         .ncopies    = 4,
0089         .nparity        = 0,
0090         .raid_name  = "raid1c4",
0091         .bg_flag    = BTRFS_BLOCK_GROUP_RAID1C4,
0092         .mindev_error   = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
0093     },
0094     [BTRFS_RAID_DUP] = {
0095         .sub_stripes    = 1,
0096         .dev_stripes    = 2,
0097         .devs_max   = 1,
0098         .devs_min   = 1,
0099         .tolerated_failures = 0,
0100         .devs_increment = 1,
0101         .ncopies    = 2,
0102         .nparity        = 0,
0103         .raid_name  = "dup",
0104         .bg_flag    = BTRFS_BLOCK_GROUP_DUP,
0105         .mindev_error   = 0,
0106     },
0107     [BTRFS_RAID_RAID0] = {
0108         .sub_stripes    = 1,
0109         .dev_stripes    = 1,
0110         .devs_max   = 0,
0111         .devs_min   = 1,
0112         .tolerated_failures = 0,
0113         .devs_increment = 1,
0114         .ncopies    = 1,
0115         .nparity        = 0,
0116         .raid_name  = "raid0",
0117         .bg_flag    = BTRFS_BLOCK_GROUP_RAID0,
0118         .mindev_error   = 0,
0119     },
0120     [BTRFS_RAID_SINGLE] = {
0121         .sub_stripes    = 1,
0122         .dev_stripes    = 1,
0123         .devs_max   = 1,
0124         .devs_min   = 1,
0125         .tolerated_failures = 0,
0126         .devs_increment = 1,
0127         .ncopies    = 1,
0128         .nparity        = 0,
0129         .raid_name  = "single",
0130         .bg_flag    = 0,
0131         .mindev_error   = 0,
0132     },
0133     [BTRFS_RAID_RAID5] = {
0134         .sub_stripes    = 1,
0135         .dev_stripes    = 1,
0136         .devs_max   = 0,
0137         .devs_min   = 2,
0138         .tolerated_failures = 1,
0139         .devs_increment = 1,
0140         .ncopies    = 1,
0141         .nparity        = 1,
0142         .raid_name  = "raid5",
0143         .bg_flag    = BTRFS_BLOCK_GROUP_RAID5,
0144         .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
0145     },
0146     [BTRFS_RAID_RAID6] = {
0147         .sub_stripes    = 1,
0148         .dev_stripes    = 1,
0149         .devs_max   = 0,
0150         .devs_min   = 3,
0151         .tolerated_failures = 2,
0152         .devs_increment = 1,
0153         .ncopies    = 1,
0154         .nparity        = 2,
0155         .raid_name  = "raid6",
0156         .bg_flag    = BTRFS_BLOCK_GROUP_RAID6,
0157         .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
0158     },
0159 };
0160 
0161 /*
0162  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
0163  * can be used as index to access btrfs_raid_array[].
0164  */
0165 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
0166 {
0167     const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
0168 
0169     if (!profile)
0170         return BTRFS_RAID_SINGLE;
0171 
0172     return BTRFS_BG_FLAG_TO_INDEX(profile);
0173 }
0174 
0175 const char *btrfs_bg_type_to_raid_name(u64 flags)
0176 {
0177     const int index = btrfs_bg_flags_to_raid_index(flags);
0178 
0179     if (index >= BTRFS_NR_RAID_TYPES)
0180         return NULL;
0181 
0182     return btrfs_raid_array[index].raid_name;
0183 }
0184 
0185 int btrfs_nr_parity_stripes(u64 type)
0186 {
0187     enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
0188 
0189     return btrfs_raid_array[index].nparity;
0190 }
0191 
0192 /*
0193  * Fill @buf with textual description of @bg_flags, no more than @size_buf
0194  * bytes including terminating null byte.
0195  */
0196 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
0197 {
0198     int i;
0199     int ret;
0200     char *bp = buf;
0201     u64 flags = bg_flags;
0202     u32 size_bp = size_buf;
0203 
0204     if (!flags) {
0205         strcpy(bp, "NONE");
0206         return;
0207     }
0208 
0209 #define DESCRIBE_FLAG(flag, desc)                       \
0210     do {                                \
0211         if (flags & (flag)) {                   \
0212             ret = snprintf(bp, size_bp, "%s|", (desc)); \
0213             if (ret < 0 || ret >= size_bp)          \
0214                 goto out_overflow;          \
0215             size_bp -= ret;                 \
0216             bp += ret;                  \
0217             flags &= ~(flag);               \
0218         }                           \
0219     } while (0)
0220 
0221     DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
0222     DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
0223     DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
0224 
0225     DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
0226     for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
0227         DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
0228                   btrfs_raid_array[i].raid_name);
0229 #undef DESCRIBE_FLAG
0230 
0231     if (flags) {
0232         ret = snprintf(bp, size_bp, "0x%llx|", flags);
0233         size_bp -= ret;
0234     }
0235 
0236     if (size_bp < size_buf)
0237         buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
0238 
0239     /*
0240      * The text is trimmed, it's up to the caller to provide sufficiently
0241      * large buffer
0242      */
0243 out_overflow:;
0244 }
0245 
0246 static int init_first_rw_device(struct btrfs_trans_handle *trans);
0247 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
0248 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
0249 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
0250                  enum btrfs_map_op op,
0251                  u64 logical, u64 *length,
0252                  struct btrfs_io_context **bioc_ret,
0253                  int mirror_num, int need_raid_map);
0254 
0255 /*
0256  * Device locking
0257  * ==============
0258  *
0259  * There are several mutexes that protect manipulation of devices and low-level
0260  * structures like chunks but not block groups, extents or files
0261  *
0262  * uuid_mutex (global lock)
0263  * ------------------------
0264  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
0265  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
0266  * device) or requested by the device= mount option
0267  *
0268  * the mutex can be very coarse and can cover long-running operations
0269  *
0270  * protects: updates to fs_devices counters like missing devices, rw devices,
0271  * seeding, structure cloning, opening/closing devices at mount/umount time
0272  *
0273  * global::fs_devs - add, remove, updates to the global list
0274  *
0275  * does not protect: manipulation of the fs_devices::devices list in general
0276  * but in mount context it could be used to exclude list modifications by eg.
0277  * scan ioctl
0278  *
0279  * btrfs_device::name - renames (write side), read is RCU
0280  *
0281  * fs_devices::device_list_mutex (per-fs, with RCU)
0282  * ------------------------------------------------
0283  * protects updates to fs_devices::devices, ie. adding and deleting
0284  *
0285  * simple list traversal with read-only actions can be done with RCU protection
0286  *
0287  * may be used to exclude some operations from running concurrently without any
0288  * modifications to the list (see write_all_supers)
0289  *
0290  * Is not required at mount and close times, because our device list is
0291  * protected by the uuid_mutex at that point.
0292  *
0293  * balance_mutex
0294  * -------------
0295  * protects balance structures (status, state) and context accessed from
0296  * several places (internally, ioctl)
0297  *
0298  * chunk_mutex
0299  * -----------
0300  * protects chunks, adding or removing during allocation, trim or when a new
0301  * device is added/removed. Additionally it also protects post_commit_list of
0302  * individual devices, since they can be added to the transaction's
0303  * post_commit_list only with chunk_mutex held.
0304  *
0305  * cleaner_mutex
0306  * -------------
0307  * a big lock that is held by the cleaner thread and prevents running subvolume
0308  * cleaning together with relocation or delayed iputs
0309  *
0310  *
0311  * Lock nesting
0312  * ============
0313  *
0314  * uuid_mutex
0315  *   device_list_mutex
0316  *     chunk_mutex
0317  *   balance_mutex
0318  *
0319  *
0320  * Exclusive operations
0321  * ====================
0322  *
0323  * Maintains the exclusivity of the following operations that apply to the
0324  * whole filesystem and cannot run in parallel.
0325  *
0326  * - Balance (*)
0327  * - Device add
0328  * - Device remove
0329  * - Device replace (*)
0330  * - Resize
0331  *
0332  * The device operations (as above) can be in one of the following states:
0333  *
0334  * - Running state
0335  * - Paused state
0336  * - Completed state
0337  *
0338  * Only device operations marked with (*) can go into the Paused state for the
0339  * following reasons:
0340  *
0341  * - ioctl (only Balance can be Paused through ioctl)
0342  * - filesystem remounted as read-only
0343  * - filesystem unmounted and mounted as read-only
0344  * - system power-cycle and filesystem mounted as read-only
0345  * - filesystem or device errors leading to forced read-only
0346  *
0347  * The status of exclusive operation is set and cleared atomically.
0348  * During the course of Paused state, fs_info::exclusive_operation remains set.
0349  * A device operation in Paused or Running state can be canceled or resumed
0350  * either by ioctl (Balance only) or when remounted as read-write.
0351  * The exclusive status is cleared when the device operation is canceled or
0352  * completed.
0353  */
0354 
0355 DEFINE_MUTEX(uuid_mutex);
0356 static LIST_HEAD(fs_uuids);
0357 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
0358 {
0359     return &fs_uuids;
0360 }
0361 
0362 /*
0363  * alloc_fs_devices - allocate struct btrfs_fs_devices
0364  * @fsid:       if not NULL, copy the UUID to fs_devices::fsid
0365  * @metadata_fsid:  if not NULL, copy the UUID to fs_devices::metadata_fsid
0366  *
0367  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
0368  * The returned struct is not linked onto any lists and can be destroyed with
0369  * kfree() right away.
0370  */
0371 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
0372                          const u8 *metadata_fsid)
0373 {
0374     struct btrfs_fs_devices *fs_devs;
0375 
0376     fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
0377     if (!fs_devs)
0378         return ERR_PTR(-ENOMEM);
0379 
0380     mutex_init(&fs_devs->device_list_mutex);
0381 
0382     INIT_LIST_HEAD(&fs_devs->devices);
0383     INIT_LIST_HEAD(&fs_devs->alloc_list);
0384     INIT_LIST_HEAD(&fs_devs->fs_list);
0385     INIT_LIST_HEAD(&fs_devs->seed_list);
0386     if (fsid)
0387         memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
0388 
0389     if (metadata_fsid)
0390         memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
0391     else if (fsid)
0392         memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
0393 
0394     return fs_devs;
0395 }
0396 
0397 void btrfs_free_device(struct btrfs_device *device)
0398 {
0399     WARN_ON(!list_empty(&device->post_commit_list));
0400     rcu_string_free(device->name);
0401     extent_io_tree_release(&device->alloc_state);
0402     btrfs_destroy_dev_zone_info(device);
0403     kfree(device);
0404 }
0405 
0406 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
0407 {
0408     struct btrfs_device *device;
0409     WARN_ON(fs_devices->opened);
0410     while (!list_empty(&fs_devices->devices)) {
0411         device = list_entry(fs_devices->devices.next,
0412                     struct btrfs_device, dev_list);
0413         list_del(&device->dev_list);
0414         btrfs_free_device(device);
0415     }
0416     kfree(fs_devices);
0417 }
0418 
0419 void __exit btrfs_cleanup_fs_uuids(void)
0420 {
0421     struct btrfs_fs_devices *fs_devices;
0422 
0423     while (!list_empty(&fs_uuids)) {
0424         fs_devices = list_entry(fs_uuids.next,
0425                     struct btrfs_fs_devices, fs_list);
0426         list_del(&fs_devices->fs_list);
0427         free_fs_devices(fs_devices);
0428     }
0429 }
0430 
0431 static noinline struct btrfs_fs_devices *find_fsid(
0432         const u8 *fsid, const u8 *metadata_fsid)
0433 {
0434     struct btrfs_fs_devices *fs_devices;
0435 
0436     ASSERT(fsid);
0437 
0438     /* Handle non-split brain cases */
0439     list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
0440         if (metadata_fsid) {
0441             if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
0442                 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
0443                       BTRFS_FSID_SIZE) == 0)
0444                 return fs_devices;
0445         } else {
0446             if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
0447                 return fs_devices;
0448         }
0449     }
0450     return NULL;
0451 }
0452 
0453 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
0454                 struct btrfs_super_block *disk_super)
0455 {
0456 
0457     struct btrfs_fs_devices *fs_devices;
0458 
0459     /*
0460      * Handle scanned device having completed its fsid change but
0461      * belonging to a fs_devices that was created by first scanning
0462      * a device which didn't have its fsid/metadata_uuid changed
0463      * at all and the CHANGING_FSID_V2 flag set.
0464      */
0465     list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
0466         if (fs_devices->fsid_change &&
0467             memcmp(disk_super->metadata_uuid, fs_devices->fsid,
0468                BTRFS_FSID_SIZE) == 0 &&
0469             memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
0470                BTRFS_FSID_SIZE) == 0) {
0471             return fs_devices;
0472         }
0473     }
0474     /*
0475      * Handle scanned device having completed its fsid change but
0476      * belonging to a fs_devices that was created by a device that
0477      * has an outdated pair of fsid/metadata_uuid and
0478      * CHANGING_FSID_V2 flag set.
0479      */
0480     list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
0481         if (fs_devices->fsid_change &&
0482             memcmp(fs_devices->metadata_uuid,
0483                fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
0484             memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
0485                BTRFS_FSID_SIZE) == 0) {
0486             return fs_devices;
0487         }
0488     }
0489 
0490     return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
0491 }
0492 
0493 
0494 static int
0495 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
0496               int flush, struct block_device **bdev,
0497               struct btrfs_super_block **disk_super)
0498 {
0499     int ret;
0500 
0501     *bdev = blkdev_get_by_path(device_path, flags, holder);
0502 
0503     if (IS_ERR(*bdev)) {
0504         ret = PTR_ERR(*bdev);
0505         goto error;
0506     }
0507 
0508     if (flush)
0509         sync_blockdev(*bdev);
0510     ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
0511     if (ret) {
0512         blkdev_put(*bdev, flags);
0513         goto error;
0514     }
0515     invalidate_bdev(*bdev);
0516     *disk_super = btrfs_read_dev_super(*bdev);
0517     if (IS_ERR(*disk_super)) {
0518         ret = PTR_ERR(*disk_super);
0519         blkdev_put(*bdev, flags);
0520         goto error;
0521     }
0522 
0523     return 0;
0524 
0525 error:
0526     *bdev = NULL;
0527     return ret;
0528 }
0529 
0530 /**
0531  *  Search and remove all stale devices (which are not mounted).
0532  *  When both inputs are NULL, it will search and release all stale devices.
0533  *
0534  *  @devt:  Optional. When provided will it release all unmounted devices
0535  *      matching this devt only.
0536  *  @skip_device:  Optional. Will skip this device when searching for the stale
0537  *      devices.
0538  *
0539  *  Return: 0 for success or if @devt is 0.
0540  *      -EBUSY if @devt is a mounted device.
0541  *      -ENOENT if @devt does not match any device in the list.
0542  */
0543 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
0544 {
0545     struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
0546     struct btrfs_device *device, *tmp_device;
0547     int ret = 0;
0548 
0549     lockdep_assert_held(&uuid_mutex);
0550 
0551     if (devt)
0552         ret = -ENOENT;
0553 
0554     list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
0555 
0556         mutex_lock(&fs_devices->device_list_mutex);
0557         list_for_each_entry_safe(device, tmp_device,
0558                      &fs_devices->devices, dev_list) {
0559             if (skip_device && skip_device == device)
0560                 continue;
0561             if (devt && devt != device->devt)
0562                 continue;
0563             if (fs_devices->opened) {
0564                 /* for an already deleted device return 0 */
0565                 if (devt && ret != 0)
0566                     ret = -EBUSY;
0567                 break;
0568             }
0569 
0570             /* delete the stale device */
0571             fs_devices->num_devices--;
0572             list_del(&device->dev_list);
0573             btrfs_free_device(device);
0574 
0575             ret = 0;
0576         }
0577         mutex_unlock(&fs_devices->device_list_mutex);
0578 
0579         if (fs_devices->num_devices == 0) {
0580             btrfs_sysfs_remove_fsid(fs_devices);
0581             list_del(&fs_devices->fs_list);
0582             free_fs_devices(fs_devices);
0583         }
0584     }
0585 
0586     return ret;
0587 }
0588 
0589 /*
0590  * This is only used on mount, and we are protected from competing things
0591  * messing with our fs_devices by the uuid_mutex, thus we do not need the
0592  * fs_devices->device_list_mutex here.
0593  */
0594 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
0595             struct btrfs_device *device, fmode_t flags,
0596             void *holder)
0597 {
0598     struct block_device *bdev;
0599     struct btrfs_super_block *disk_super;
0600     u64 devid;
0601     int ret;
0602 
0603     if (device->bdev)
0604         return -EINVAL;
0605     if (!device->name)
0606         return -EINVAL;
0607 
0608     ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
0609                     &bdev, &disk_super);
0610     if (ret)
0611         return ret;
0612 
0613     devid = btrfs_stack_device_id(&disk_super->dev_item);
0614     if (devid != device->devid)
0615         goto error_free_page;
0616 
0617     if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
0618         goto error_free_page;
0619 
0620     device->generation = btrfs_super_generation(disk_super);
0621 
0622     if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
0623         if (btrfs_super_incompat_flags(disk_super) &
0624             BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
0625             pr_err(
0626         "BTRFS: Invalid seeding and uuid-changed device detected\n");
0627             goto error_free_page;
0628         }
0629 
0630         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0631         fs_devices->seeding = true;
0632     } else {
0633         if (bdev_read_only(bdev))
0634             clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0635         else
0636             set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0637     }
0638 
0639     if (!bdev_nonrot(bdev))
0640         fs_devices->rotating = true;
0641 
0642     device->bdev = bdev;
0643     clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
0644     device->mode = flags;
0645 
0646     fs_devices->open_devices++;
0647     if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
0648         device->devid != BTRFS_DEV_REPLACE_DEVID) {
0649         fs_devices->rw_devices++;
0650         list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
0651     }
0652     btrfs_release_disk_super(disk_super);
0653 
0654     return 0;
0655 
0656 error_free_page:
0657     btrfs_release_disk_super(disk_super);
0658     blkdev_put(bdev, flags);
0659 
0660     return -EINVAL;
0661 }
0662 
0663 /*
0664  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
0665  * being created with a disk that has already completed its fsid change. Such
0666  * disk can belong to an fs which has its FSID changed or to one which doesn't.
0667  * Handle both cases here.
0668  */
0669 static struct btrfs_fs_devices *find_fsid_inprogress(
0670                     struct btrfs_super_block *disk_super)
0671 {
0672     struct btrfs_fs_devices *fs_devices;
0673 
0674     list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
0675         if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
0676                BTRFS_FSID_SIZE) != 0 &&
0677             memcmp(fs_devices->metadata_uuid, disk_super->fsid,
0678                BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
0679             return fs_devices;
0680         }
0681     }
0682 
0683     return find_fsid(disk_super->fsid, NULL);
0684 }
0685 
0686 
0687 static struct btrfs_fs_devices *find_fsid_changed(
0688                     struct btrfs_super_block *disk_super)
0689 {
0690     struct btrfs_fs_devices *fs_devices;
0691 
0692     /*
0693      * Handles the case where scanned device is part of an fs that had
0694      * multiple successful changes of FSID but currently device didn't
0695      * observe it. Meaning our fsid will be different than theirs. We need
0696      * to handle two subcases :
0697      *  1 - The fs still continues to have different METADATA/FSID uuids.
0698      *  2 - The fs is switched back to its original FSID (METADATA/FSID
0699      *  are equal).
0700      */
0701     list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
0702         /* Changed UUIDs */
0703         if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
0704                BTRFS_FSID_SIZE) != 0 &&
0705             memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
0706                BTRFS_FSID_SIZE) == 0 &&
0707             memcmp(fs_devices->fsid, disk_super->fsid,
0708                BTRFS_FSID_SIZE) != 0)
0709             return fs_devices;
0710 
0711         /* Unchanged UUIDs */
0712         if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
0713                BTRFS_FSID_SIZE) == 0 &&
0714             memcmp(fs_devices->fsid, disk_super->metadata_uuid,
0715                BTRFS_FSID_SIZE) == 0)
0716             return fs_devices;
0717     }
0718 
0719     return NULL;
0720 }
0721 
0722 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
0723                 struct btrfs_super_block *disk_super)
0724 {
0725     struct btrfs_fs_devices *fs_devices;
0726 
0727     /*
0728      * Handle the case where the scanned device is part of an fs whose last
0729      * metadata UUID change reverted it to the original FSID. At the same
0730      * time * fs_devices was first created by another constitutent device
0731      * which didn't fully observe the operation. This results in an
0732      * btrfs_fs_devices created with metadata/fsid different AND
0733      * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
0734      * fs_devices equal to the FSID of the disk.
0735      */
0736     list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
0737         if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
0738                BTRFS_FSID_SIZE) != 0 &&
0739             memcmp(fs_devices->metadata_uuid, disk_super->fsid,
0740                BTRFS_FSID_SIZE) == 0 &&
0741             fs_devices->fsid_change)
0742             return fs_devices;
0743     }
0744 
0745     return NULL;
0746 }
0747 /*
0748  * Add new device to list of registered devices
0749  *
0750  * Returns:
0751  * device pointer which was just added or updated when successful
0752  * error pointer when failed
0753  */
0754 static noinline struct btrfs_device *device_list_add(const char *path,
0755                struct btrfs_super_block *disk_super,
0756                bool *new_device_added)
0757 {
0758     struct btrfs_device *device;
0759     struct btrfs_fs_devices *fs_devices = NULL;
0760     struct rcu_string *name;
0761     u64 found_transid = btrfs_super_generation(disk_super);
0762     u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
0763     dev_t path_devt;
0764     int error;
0765     bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
0766         BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
0767     bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
0768                     BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
0769 
0770     error = lookup_bdev(path, &path_devt);
0771     if (error)
0772         return ERR_PTR(error);
0773 
0774     if (fsid_change_in_progress) {
0775         if (!has_metadata_uuid)
0776             fs_devices = find_fsid_inprogress(disk_super);
0777         else
0778             fs_devices = find_fsid_changed(disk_super);
0779     } else if (has_metadata_uuid) {
0780         fs_devices = find_fsid_with_metadata_uuid(disk_super);
0781     } else {
0782         fs_devices = find_fsid_reverted_metadata(disk_super);
0783         if (!fs_devices)
0784             fs_devices = find_fsid(disk_super->fsid, NULL);
0785     }
0786 
0787 
0788     if (!fs_devices) {
0789         if (has_metadata_uuid)
0790             fs_devices = alloc_fs_devices(disk_super->fsid,
0791                               disk_super->metadata_uuid);
0792         else
0793             fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
0794 
0795         if (IS_ERR(fs_devices))
0796             return ERR_CAST(fs_devices);
0797 
0798         fs_devices->fsid_change = fsid_change_in_progress;
0799 
0800         mutex_lock(&fs_devices->device_list_mutex);
0801         list_add(&fs_devices->fs_list, &fs_uuids);
0802 
0803         device = NULL;
0804     } else {
0805         struct btrfs_dev_lookup_args args = {
0806             .devid = devid,
0807             .uuid = disk_super->dev_item.uuid,
0808         };
0809 
0810         mutex_lock(&fs_devices->device_list_mutex);
0811         device = btrfs_find_device(fs_devices, &args);
0812 
0813         /*
0814          * If this disk has been pulled into an fs devices created by
0815          * a device which had the CHANGING_FSID_V2 flag then replace the
0816          * metadata_uuid/fsid values of the fs_devices.
0817          */
0818         if (fs_devices->fsid_change &&
0819             found_transid > fs_devices->latest_generation) {
0820             memcpy(fs_devices->fsid, disk_super->fsid,
0821                     BTRFS_FSID_SIZE);
0822 
0823             if (has_metadata_uuid)
0824                 memcpy(fs_devices->metadata_uuid,
0825                        disk_super->metadata_uuid,
0826                        BTRFS_FSID_SIZE);
0827             else
0828                 memcpy(fs_devices->metadata_uuid,
0829                        disk_super->fsid, BTRFS_FSID_SIZE);
0830 
0831             fs_devices->fsid_change = false;
0832         }
0833     }
0834 
0835     if (!device) {
0836         if (fs_devices->opened) {
0837             mutex_unlock(&fs_devices->device_list_mutex);
0838             return ERR_PTR(-EBUSY);
0839         }
0840 
0841         device = btrfs_alloc_device(NULL, &devid,
0842                         disk_super->dev_item.uuid);
0843         if (IS_ERR(device)) {
0844             mutex_unlock(&fs_devices->device_list_mutex);
0845             /* we can safely leave the fs_devices entry around */
0846             return device;
0847         }
0848 
0849         name = rcu_string_strdup(path, GFP_NOFS);
0850         if (!name) {
0851             btrfs_free_device(device);
0852             mutex_unlock(&fs_devices->device_list_mutex);
0853             return ERR_PTR(-ENOMEM);
0854         }
0855         rcu_assign_pointer(device->name, name);
0856         device->devt = path_devt;
0857 
0858         list_add_rcu(&device->dev_list, &fs_devices->devices);
0859         fs_devices->num_devices++;
0860 
0861         device->fs_devices = fs_devices;
0862         *new_device_added = true;
0863 
0864         if (disk_super->label[0])
0865             pr_info(
0866     "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
0867                 disk_super->label, devid, found_transid, path,
0868                 current->comm, task_pid_nr(current));
0869         else
0870             pr_info(
0871     "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
0872                 disk_super->fsid, devid, found_transid, path,
0873                 current->comm, task_pid_nr(current));
0874 
0875     } else if (!device->name || strcmp(device->name->str, path)) {
0876         /*
0877          * When FS is already mounted.
0878          * 1. If you are here and if the device->name is NULL that
0879          *    means this device was missing at time of FS mount.
0880          * 2. If you are here and if the device->name is different
0881          *    from 'path' that means either
0882          *      a. The same device disappeared and reappeared with
0883          *         different name. or
0884          *      b. The missing-disk-which-was-replaced, has
0885          *         reappeared now.
0886          *
0887          * We must allow 1 and 2a above. But 2b would be a spurious
0888          * and unintentional.
0889          *
0890          * Further in case of 1 and 2a above, the disk at 'path'
0891          * would have missed some transaction when it was away and
0892          * in case of 2a the stale bdev has to be updated as well.
0893          * 2b must not be allowed at all time.
0894          */
0895 
0896         /*
0897          * For now, we do allow update to btrfs_fs_device through the
0898          * btrfs dev scan cli after FS has been mounted.  We're still
0899          * tracking a problem where systems fail mount by subvolume id
0900          * when we reject replacement on a mounted FS.
0901          */
0902         if (!fs_devices->opened && found_transid < device->generation) {
0903             /*
0904              * That is if the FS is _not_ mounted and if you
0905              * are here, that means there is more than one
0906              * disk with same uuid and devid.We keep the one
0907              * with larger generation number or the last-in if
0908              * generation are equal.
0909              */
0910             mutex_unlock(&fs_devices->device_list_mutex);
0911             return ERR_PTR(-EEXIST);
0912         }
0913 
0914         /*
0915          * We are going to replace the device path for a given devid,
0916          * make sure it's the same device if the device is mounted
0917          *
0918          * NOTE: the device->fs_info may not be reliable here so pass
0919          * in a NULL to message helpers instead. This avoids a possible
0920          * use-after-free when the fs_info and fs_info->sb are already
0921          * torn down.
0922          */
0923         if (device->bdev) {
0924             if (device->devt != path_devt) {
0925                 mutex_unlock(&fs_devices->device_list_mutex);
0926                 btrfs_warn_in_rcu(NULL,
0927     "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
0928                           path, devid, found_transid,
0929                           current->comm,
0930                           task_pid_nr(current));
0931                 return ERR_PTR(-EEXIST);
0932             }
0933             btrfs_info_in_rcu(NULL,
0934     "devid %llu device path %s changed to %s scanned by %s (%d)",
0935                       devid, rcu_str_deref(device->name),
0936                       path, current->comm,
0937                       task_pid_nr(current));
0938         }
0939 
0940         name = rcu_string_strdup(path, GFP_NOFS);
0941         if (!name) {
0942             mutex_unlock(&fs_devices->device_list_mutex);
0943             return ERR_PTR(-ENOMEM);
0944         }
0945         rcu_string_free(device->name);
0946         rcu_assign_pointer(device->name, name);
0947         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
0948             fs_devices->missing_devices--;
0949             clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
0950         }
0951         device->devt = path_devt;
0952     }
0953 
0954     /*
0955      * Unmount does not free the btrfs_device struct but would zero
0956      * generation along with most of the other members. So just update
0957      * it back. We need it to pick the disk with largest generation
0958      * (as above).
0959      */
0960     if (!fs_devices->opened) {
0961         device->generation = found_transid;
0962         fs_devices->latest_generation = max_t(u64, found_transid,
0963                         fs_devices->latest_generation);
0964     }
0965 
0966     fs_devices->total_devices = btrfs_super_num_devices(disk_super);
0967 
0968     mutex_unlock(&fs_devices->device_list_mutex);
0969     return device;
0970 }
0971 
0972 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
0973 {
0974     struct btrfs_fs_devices *fs_devices;
0975     struct btrfs_device *device;
0976     struct btrfs_device *orig_dev;
0977     int ret = 0;
0978 
0979     lockdep_assert_held(&uuid_mutex);
0980 
0981     fs_devices = alloc_fs_devices(orig->fsid, NULL);
0982     if (IS_ERR(fs_devices))
0983         return fs_devices;
0984 
0985     fs_devices->total_devices = orig->total_devices;
0986 
0987     list_for_each_entry(orig_dev, &orig->devices, dev_list) {
0988         struct rcu_string *name;
0989 
0990         device = btrfs_alloc_device(NULL, &orig_dev->devid,
0991                         orig_dev->uuid);
0992         if (IS_ERR(device)) {
0993             ret = PTR_ERR(device);
0994             goto error;
0995         }
0996 
0997         /*
0998          * This is ok to do without rcu read locked because we hold the
0999          * uuid mutex so nothing we touch in here is going to disappear.
1000          */
1001         if (orig_dev->name) {
1002             name = rcu_string_strdup(orig_dev->name->str,
1003                     GFP_KERNEL);
1004             if (!name) {
1005                 btrfs_free_device(device);
1006                 ret = -ENOMEM;
1007                 goto error;
1008             }
1009             rcu_assign_pointer(device->name, name);
1010         }
1011 
1012         list_add(&device->dev_list, &fs_devices->devices);
1013         device->fs_devices = fs_devices;
1014         fs_devices->num_devices++;
1015     }
1016     return fs_devices;
1017 error:
1018     free_fs_devices(fs_devices);
1019     return ERR_PTR(ret);
1020 }
1021 
1022 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1023                       struct btrfs_device **latest_dev)
1024 {
1025     struct btrfs_device *device, *next;
1026 
1027     /* This is the initialized path, it is safe to release the devices. */
1028     list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1029         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1030             if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1031                       &device->dev_state) &&
1032                 !test_bit(BTRFS_DEV_STATE_MISSING,
1033                       &device->dev_state) &&
1034                 (!*latest_dev ||
1035                  device->generation > (*latest_dev)->generation)) {
1036                 *latest_dev = device;
1037             }
1038             continue;
1039         }
1040 
1041         /*
1042          * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1043          * in btrfs_init_dev_replace() so just continue.
1044          */
1045         if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1046             continue;
1047 
1048         if (device->bdev) {
1049             blkdev_put(device->bdev, device->mode);
1050             device->bdev = NULL;
1051             fs_devices->open_devices--;
1052         }
1053         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1054             list_del_init(&device->dev_alloc_list);
1055             clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1056             fs_devices->rw_devices--;
1057         }
1058         list_del_init(&device->dev_list);
1059         fs_devices->num_devices--;
1060         btrfs_free_device(device);
1061     }
1062 
1063 }
1064 
1065 /*
1066  * After we have read the system tree and know devids belonging to this
1067  * filesystem, remove the device which does not belong there.
1068  */
1069 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1070 {
1071     struct btrfs_device *latest_dev = NULL;
1072     struct btrfs_fs_devices *seed_dev;
1073 
1074     mutex_lock(&uuid_mutex);
1075     __btrfs_free_extra_devids(fs_devices, &latest_dev);
1076 
1077     list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1078         __btrfs_free_extra_devids(seed_dev, &latest_dev);
1079 
1080     fs_devices->latest_dev = latest_dev;
1081 
1082     mutex_unlock(&uuid_mutex);
1083 }
1084 
1085 static void btrfs_close_bdev(struct btrfs_device *device)
1086 {
1087     if (!device->bdev)
1088         return;
1089 
1090     if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1091         sync_blockdev(device->bdev);
1092         invalidate_bdev(device->bdev);
1093     }
1094 
1095     blkdev_put(device->bdev, device->mode);
1096 }
1097 
1098 static void btrfs_close_one_device(struct btrfs_device *device)
1099 {
1100     struct btrfs_fs_devices *fs_devices = device->fs_devices;
1101 
1102     if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1103         device->devid != BTRFS_DEV_REPLACE_DEVID) {
1104         list_del_init(&device->dev_alloc_list);
1105         fs_devices->rw_devices--;
1106     }
1107 
1108     if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1109         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1110 
1111     if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1112         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1113         fs_devices->missing_devices--;
1114     }
1115 
1116     btrfs_close_bdev(device);
1117     if (device->bdev) {
1118         fs_devices->open_devices--;
1119         device->bdev = NULL;
1120     }
1121     clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1122     btrfs_destroy_dev_zone_info(device);
1123 
1124     device->fs_info = NULL;
1125     atomic_set(&device->dev_stats_ccnt, 0);
1126     extent_io_tree_release(&device->alloc_state);
1127 
1128     /*
1129      * Reset the flush error record. We might have a transient flush error
1130      * in this mount, and if so we aborted the current transaction and set
1131      * the fs to an error state, guaranteeing no super blocks can be further
1132      * committed. However that error might be transient and if we unmount the
1133      * filesystem and mount it again, we should allow the mount to succeed
1134      * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1135      * filesystem again we still get flush errors, then we will again abort
1136      * any transaction and set the error state, guaranteeing no commits of
1137      * unsafe super blocks.
1138      */
1139     device->last_flush_error = 0;
1140 
1141     /* Verify the device is back in a pristine state  */
1142     ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1143     ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1144     ASSERT(list_empty(&device->dev_alloc_list));
1145     ASSERT(list_empty(&device->post_commit_list));
1146 }
1147 
1148 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1149 {
1150     struct btrfs_device *device, *tmp;
1151 
1152     lockdep_assert_held(&uuid_mutex);
1153 
1154     if (--fs_devices->opened > 0)
1155         return;
1156 
1157     list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1158         btrfs_close_one_device(device);
1159 
1160     WARN_ON(fs_devices->open_devices);
1161     WARN_ON(fs_devices->rw_devices);
1162     fs_devices->opened = 0;
1163     fs_devices->seeding = false;
1164     fs_devices->fs_info = NULL;
1165 }
1166 
1167 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1168 {
1169     LIST_HEAD(list);
1170     struct btrfs_fs_devices *tmp;
1171 
1172     mutex_lock(&uuid_mutex);
1173     close_fs_devices(fs_devices);
1174     if (!fs_devices->opened)
1175         list_splice_init(&fs_devices->seed_list, &list);
1176 
1177     list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1178         close_fs_devices(fs_devices);
1179         list_del(&fs_devices->seed_list);
1180         free_fs_devices(fs_devices);
1181     }
1182     mutex_unlock(&uuid_mutex);
1183 }
1184 
1185 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1186                 fmode_t flags, void *holder)
1187 {
1188     struct btrfs_device *device;
1189     struct btrfs_device *latest_dev = NULL;
1190     struct btrfs_device *tmp_device;
1191 
1192     flags |= FMODE_EXCL;
1193 
1194     list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1195                  dev_list) {
1196         int ret;
1197 
1198         ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1199         if (ret == 0 &&
1200             (!latest_dev || device->generation > latest_dev->generation)) {
1201             latest_dev = device;
1202         } else if (ret == -ENODATA) {
1203             fs_devices->num_devices--;
1204             list_del(&device->dev_list);
1205             btrfs_free_device(device);
1206         }
1207     }
1208     if (fs_devices->open_devices == 0)
1209         return -EINVAL;
1210 
1211     fs_devices->opened = 1;
1212     fs_devices->latest_dev = latest_dev;
1213     fs_devices->total_rw_bytes = 0;
1214     fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1215     fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1216 
1217     return 0;
1218 }
1219 
1220 static int devid_cmp(void *priv, const struct list_head *a,
1221              const struct list_head *b)
1222 {
1223     const struct btrfs_device *dev1, *dev2;
1224 
1225     dev1 = list_entry(a, struct btrfs_device, dev_list);
1226     dev2 = list_entry(b, struct btrfs_device, dev_list);
1227 
1228     if (dev1->devid < dev2->devid)
1229         return -1;
1230     else if (dev1->devid > dev2->devid)
1231         return 1;
1232     return 0;
1233 }
1234 
1235 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1236                fmode_t flags, void *holder)
1237 {
1238     int ret;
1239 
1240     lockdep_assert_held(&uuid_mutex);
1241     /*
1242      * The device_list_mutex cannot be taken here in case opening the
1243      * underlying device takes further locks like open_mutex.
1244      *
1245      * We also don't need the lock here as this is called during mount and
1246      * exclusion is provided by uuid_mutex
1247      */
1248 
1249     if (fs_devices->opened) {
1250         fs_devices->opened++;
1251         ret = 0;
1252     } else {
1253         list_sort(NULL, &fs_devices->devices, devid_cmp);
1254         ret = open_fs_devices(fs_devices, flags, holder);
1255     }
1256 
1257     return ret;
1258 }
1259 
1260 void btrfs_release_disk_super(struct btrfs_super_block *super)
1261 {
1262     struct page *page = virt_to_page(super);
1263 
1264     put_page(page);
1265 }
1266 
1267 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1268                                u64 bytenr, u64 bytenr_orig)
1269 {
1270     struct btrfs_super_block *disk_super;
1271     struct page *page;
1272     void *p;
1273     pgoff_t index;
1274 
1275     /* make sure our super fits in the device */
1276     if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1277         return ERR_PTR(-EINVAL);
1278 
1279     /* make sure our super fits in the page */
1280     if (sizeof(*disk_super) > PAGE_SIZE)
1281         return ERR_PTR(-EINVAL);
1282 
1283     /* make sure our super doesn't straddle pages on disk */
1284     index = bytenr >> PAGE_SHIFT;
1285     if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1286         return ERR_PTR(-EINVAL);
1287 
1288     /* pull in the page with our super */
1289     page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1290 
1291     if (IS_ERR(page))
1292         return ERR_CAST(page);
1293 
1294     p = page_address(page);
1295 
1296     /* align our pointer to the offset of the super block */
1297     disk_super = p + offset_in_page(bytenr);
1298 
1299     if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1300         btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1301         btrfs_release_disk_super(p);
1302         return ERR_PTR(-EINVAL);
1303     }
1304 
1305     if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1306         disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1307 
1308     return disk_super;
1309 }
1310 
1311 int btrfs_forget_devices(dev_t devt)
1312 {
1313     int ret;
1314 
1315     mutex_lock(&uuid_mutex);
1316     ret = btrfs_free_stale_devices(devt, NULL);
1317     mutex_unlock(&uuid_mutex);
1318 
1319     return ret;
1320 }
1321 
1322 /*
1323  * Look for a btrfs signature on a device. This may be called out of the mount path
1324  * and we are not allowed to call set_blocksize during the scan. The superblock
1325  * is read via pagecache
1326  */
1327 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1328                        void *holder)
1329 {
1330     struct btrfs_super_block *disk_super;
1331     bool new_device_added = false;
1332     struct btrfs_device *device = NULL;
1333     struct block_device *bdev;
1334     u64 bytenr, bytenr_orig;
1335     int ret;
1336 
1337     lockdep_assert_held(&uuid_mutex);
1338 
1339     /*
1340      * we would like to check all the supers, but that would make
1341      * a btrfs mount succeed after a mkfs from a different FS.
1342      * So, we need to add a special mount option to scan for
1343      * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1344      */
1345     flags |= FMODE_EXCL;
1346 
1347     bdev = blkdev_get_by_path(path, flags, holder);
1348     if (IS_ERR(bdev))
1349         return ERR_CAST(bdev);
1350 
1351     bytenr_orig = btrfs_sb_offset(0);
1352     ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1353     if (ret) {
1354         device = ERR_PTR(ret);
1355         goto error_bdev_put;
1356     }
1357 
1358     disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1359     if (IS_ERR(disk_super)) {
1360         device = ERR_CAST(disk_super);
1361         goto error_bdev_put;
1362     }
1363 
1364     device = device_list_add(path, disk_super, &new_device_added);
1365     if (!IS_ERR(device) && new_device_added)
1366         btrfs_free_stale_devices(device->devt, device);
1367 
1368     btrfs_release_disk_super(disk_super);
1369 
1370 error_bdev_put:
1371     blkdev_put(bdev, flags);
1372 
1373     return device;
1374 }
1375 
1376 /*
1377  * Try to find a chunk that intersects [start, start + len] range and when one
1378  * such is found, record the end of it in *start
1379  */
1380 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1381                     u64 len)
1382 {
1383     u64 physical_start, physical_end;
1384 
1385     lockdep_assert_held(&device->fs_info->chunk_mutex);
1386 
1387     if (!find_first_extent_bit(&device->alloc_state, *start,
1388                    &physical_start, &physical_end,
1389                    CHUNK_ALLOCATED, NULL)) {
1390 
1391         if (in_range(physical_start, *start, len) ||
1392             in_range(*start, physical_start,
1393                  physical_end - physical_start)) {
1394             *start = physical_end + 1;
1395             return true;
1396         }
1397     }
1398     return false;
1399 }
1400 
1401 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1402 {
1403     switch (device->fs_devices->chunk_alloc_policy) {
1404     case BTRFS_CHUNK_ALLOC_REGULAR:
1405         return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
1406     case BTRFS_CHUNK_ALLOC_ZONED:
1407         /*
1408          * We don't care about the starting region like regular
1409          * allocator, because we anyway use/reserve the first two zones
1410          * for superblock logging.
1411          */
1412         return ALIGN(start, device->zone_info->zone_size);
1413     default:
1414         BUG();
1415     }
1416 }
1417 
1418 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1419                     u64 *hole_start, u64 *hole_size,
1420                     u64 num_bytes)
1421 {
1422     u64 zone_size = device->zone_info->zone_size;
1423     u64 pos;
1424     int ret;
1425     bool changed = false;
1426 
1427     ASSERT(IS_ALIGNED(*hole_start, zone_size));
1428 
1429     while (*hole_size > 0) {
1430         pos = btrfs_find_allocatable_zones(device, *hole_start,
1431                            *hole_start + *hole_size,
1432                            num_bytes);
1433         if (pos != *hole_start) {
1434             *hole_size = *hole_start + *hole_size - pos;
1435             *hole_start = pos;
1436             changed = true;
1437             if (*hole_size < num_bytes)
1438                 break;
1439         }
1440 
1441         ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1442 
1443         /* Range is ensured to be empty */
1444         if (!ret)
1445             return changed;
1446 
1447         /* Given hole range was invalid (outside of device) */
1448         if (ret == -ERANGE) {
1449             *hole_start += *hole_size;
1450             *hole_size = 0;
1451             return true;
1452         }
1453 
1454         *hole_start += zone_size;
1455         *hole_size -= zone_size;
1456         changed = true;
1457     }
1458 
1459     return changed;
1460 }
1461 
1462 /**
1463  * dev_extent_hole_check - check if specified hole is suitable for allocation
1464  * @device: the device which we have the hole
1465  * @hole_start: starting position of the hole
1466  * @hole_size:  the size of the hole
1467  * @num_bytes:  the size of the free space that we need
1468  *
1469  * This function may modify @hole_start and @hole_size to reflect the suitable
1470  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1471  */
1472 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1473                   u64 *hole_size, u64 num_bytes)
1474 {
1475     bool changed = false;
1476     u64 hole_end = *hole_start + *hole_size;
1477 
1478     for (;;) {
1479         /*
1480          * Check before we set max_hole_start, otherwise we could end up
1481          * sending back this offset anyway.
1482          */
1483         if (contains_pending_extent(device, hole_start, *hole_size)) {
1484             if (hole_end >= *hole_start)
1485                 *hole_size = hole_end - *hole_start;
1486             else
1487                 *hole_size = 0;
1488             changed = true;
1489         }
1490 
1491         switch (device->fs_devices->chunk_alloc_policy) {
1492         case BTRFS_CHUNK_ALLOC_REGULAR:
1493             /* No extra check */
1494             break;
1495         case BTRFS_CHUNK_ALLOC_ZONED:
1496             if (dev_extent_hole_check_zoned(device, hole_start,
1497                             hole_size, num_bytes)) {
1498                 changed = true;
1499                 /*
1500                  * The changed hole can contain pending extent.
1501                  * Loop again to check that.
1502                  */
1503                 continue;
1504             }
1505             break;
1506         default:
1507             BUG();
1508         }
1509 
1510         break;
1511     }
1512 
1513     return changed;
1514 }
1515 
1516 /*
1517  * find_free_dev_extent_start - find free space in the specified device
1518  * @device:   the device which we search the free space in
1519  * @num_bytes:    the size of the free space that we need
1520  * @search_start: the position from which to begin the search
1521  * @start:    store the start of the free space.
1522  * @len:      the size of the free space. that we find, or the size
1523  *        of the max free space if we don't find suitable free space
1524  *
1525  * this uses a pretty simple search, the expectation is that it is
1526  * called very infrequently and that a given device has a small number
1527  * of extents
1528  *
1529  * @start is used to store the start of the free space if we find. But if we
1530  * don't find suitable free space, it will be used to store the start position
1531  * of the max free space.
1532  *
1533  * @len is used to store the size of the free space that we find.
1534  * But if we don't find suitable free space, it is used to store the size of
1535  * the max free space.
1536  *
1537  * NOTE: This function will search *commit* root of device tree, and does extra
1538  * check to ensure dev extents are not double allocated.
1539  * This makes the function safe to allocate dev extents but may not report
1540  * correct usable device space, as device extent freed in current transaction
1541  * is not reported as available.
1542  */
1543 static int find_free_dev_extent_start(struct btrfs_device *device,
1544                 u64 num_bytes, u64 search_start, u64 *start,
1545                 u64 *len)
1546 {
1547     struct btrfs_fs_info *fs_info = device->fs_info;
1548     struct btrfs_root *root = fs_info->dev_root;
1549     struct btrfs_key key;
1550     struct btrfs_dev_extent *dev_extent;
1551     struct btrfs_path *path;
1552     u64 hole_size;
1553     u64 max_hole_start;
1554     u64 max_hole_size;
1555     u64 extent_end;
1556     u64 search_end = device->total_bytes;
1557     int ret;
1558     int slot;
1559     struct extent_buffer *l;
1560 
1561     search_start = dev_extent_search_start(device, search_start);
1562 
1563     WARN_ON(device->zone_info &&
1564         !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1565 
1566     path = btrfs_alloc_path();
1567     if (!path)
1568         return -ENOMEM;
1569 
1570     max_hole_start = search_start;
1571     max_hole_size = 0;
1572 
1573 again:
1574     if (search_start >= search_end ||
1575         test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1576         ret = -ENOSPC;
1577         goto out;
1578     }
1579 
1580     path->reada = READA_FORWARD;
1581     path->search_commit_root = 1;
1582     path->skip_locking = 1;
1583 
1584     key.objectid = device->devid;
1585     key.offset = search_start;
1586     key.type = BTRFS_DEV_EXTENT_KEY;
1587 
1588     ret = btrfs_search_backwards(root, &key, path);
1589     if (ret < 0)
1590         goto out;
1591 
1592     while (1) {
1593         l = path->nodes[0];
1594         slot = path->slots[0];
1595         if (slot >= btrfs_header_nritems(l)) {
1596             ret = btrfs_next_leaf(root, path);
1597             if (ret == 0)
1598                 continue;
1599             if (ret < 0)
1600                 goto out;
1601 
1602             break;
1603         }
1604         btrfs_item_key_to_cpu(l, &key, slot);
1605 
1606         if (key.objectid < device->devid)
1607             goto next;
1608 
1609         if (key.objectid > device->devid)
1610             break;
1611 
1612         if (key.type != BTRFS_DEV_EXTENT_KEY)
1613             goto next;
1614 
1615         if (key.offset > search_start) {
1616             hole_size = key.offset - search_start;
1617             dev_extent_hole_check(device, &search_start, &hole_size,
1618                           num_bytes);
1619 
1620             if (hole_size > max_hole_size) {
1621                 max_hole_start = search_start;
1622                 max_hole_size = hole_size;
1623             }
1624 
1625             /*
1626              * If this free space is greater than which we need,
1627              * it must be the max free space that we have found
1628              * until now, so max_hole_start must point to the start
1629              * of this free space and the length of this free space
1630              * is stored in max_hole_size. Thus, we return
1631              * max_hole_start and max_hole_size and go back to the
1632              * caller.
1633              */
1634             if (hole_size >= num_bytes) {
1635                 ret = 0;
1636                 goto out;
1637             }
1638         }
1639 
1640         dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1641         extent_end = key.offset + btrfs_dev_extent_length(l,
1642                                   dev_extent);
1643         if (extent_end > search_start)
1644             search_start = extent_end;
1645 next:
1646         path->slots[0]++;
1647         cond_resched();
1648     }
1649 
1650     /*
1651      * At this point, search_start should be the end of
1652      * allocated dev extents, and when shrinking the device,
1653      * search_end may be smaller than search_start.
1654      */
1655     if (search_end > search_start) {
1656         hole_size = search_end - search_start;
1657         if (dev_extent_hole_check(device, &search_start, &hole_size,
1658                       num_bytes)) {
1659             btrfs_release_path(path);
1660             goto again;
1661         }
1662 
1663         if (hole_size > max_hole_size) {
1664             max_hole_start = search_start;
1665             max_hole_size = hole_size;
1666         }
1667     }
1668 
1669     /* See above. */
1670     if (max_hole_size < num_bytes)
1671         ret = -ENOSPC;
1672     else
1673         ret = 0;
1674 
1675 out:
1676     btrfs_free_path(path);
1677     *start = max_hole_start;
1678     if (len)
1679         *len = max_hole_size;
1680     return ret;
1681 }
1682 
1683 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1684              u64 *start, u64 *len)
1685 {
1686     /* FIXME use last free of some kind */
1687     return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1688 }
1689 
1690 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1691               struct btrfs_device *device,
1692               u64 start, u64 *dev_extent_len)
1693 {
1694     struct btrfs_fs_info *fs_info = device->fs_info;
1695     struct btrfs_root *root = fs_info->dev_root;
1696     int ret;
1697     struct btrfs_path *path;
1698     struct btrfs_key key;
1699     struct btrfs_key found_key;
1700     struct extent_buffer *leaf = NULL;
1701     struct btrfs_dev_extent *extent = NULL;
1702 
1703     path = btrfs_alloc_path();
1704     if (!path)
1705         return -ENOMEM;
1706 
1707     key.objectid = device->devid;
1708     key.offset = start;
1709     key.type = BTRFS_DEV_EXTENT_KEY;
1710 again:
1711     ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1712     if (ret > 0) {
1713         ret = btrfs_previous_item(root, path, key.objectid,
1714                       BTRFS_DEV_EXTENT_KEY);
1715         if (ret)
1716             goto out;
1717         leaf = path->nodes[0];
1718         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1719         extent = btrfs_item_ptr(leaf, path->slots[0],
1720                     struct btrfs_dev_extent);
1721         BUG_ON(found_key.offset > start || found_key.offset +
1722                btrfs_dev_extent_length(leaf, extent) < start);
1723         key = found_key;
1724         btrfs_release_path(path);
1725         goto again;
1726     } else if (ret == 0) {
1727         leaf = path->nodes[0];
1728         extent = btrfs_item_ptr(leaf, path->slots[0],
1729                     struct btrfs_dev_extent);
1730     } else {
1731         goto out;
1732     }
1733 
1734     *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1735 
1736     ret = btrfs_del_item(trans, root, path);
1737     if (ret == 0)
1738         set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1739 out:
1740     btrfs_free_path(path);
1741     return ret;
1742 }
1743 
1744 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1745 {
1746     struct extent_map_tree *em_tree;
1747     struct extent_map *em;
1748     struct rb_node *n;
1749     u64 ret = 0;
1750 
1751     em_tree = &fs_info->mapping_tree;
1752     read_lock(&em_tree->lock);
1753     n = rb_last(&em_tree->map.rb_root);
1754     if (n) {
1755         em = rb_entry(n, struct extent_map, rb_node);
1756         ret = em->start + em->len;
1757     }
1758     read_unlock(&em_tree->lock);
1759 
1760     return ret;
1761 }
1762 
1763 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1764                     u64 *devid_ret)
1765 {
1766     int ret;
1767     struct btrfs_key key;
1768     struct btrfs_key found_key;
1769     struct btrfs_path *path;
1770 
1771     path = btrfs_alloc_path();
1772     if (!path)
1773         return -ENOMEM;
1774 
1775     key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1776     key.type = BTRFS_DEV_ITEM_KEY;
1777     key.offset = (u64)-1;
1778 
1779     ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1780     if (ret < 0)
1781         goto error;
1782 
1783     if (ret == 0) {
1784         /* Corruption */
1785         btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1786         ret = -EUCLEAN;
1787         goto error;
1788     }
1789 
1790     ret = btrfs_previous_item(fs_info->chunk_root, path,
1791                   BTRFS_DEV_ITEMS_OBJECTID,
1792                   BTRFS_DEV_ITEM_KEY);
1793     if (ret) {
1794         *devid_ret = 1;
1795     } else {
1796         btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1797                       path->slots[0]);
1798         *devid_ret = found_key.offset + 1;
1799     }
1800     ret = 0;
1801 error:
1802     btrfs_free_path(path);
1803     return ret;
1804 }
1805 
1806 /*
1807  * the device information is stored in the chunk root
1808  * the btrfs_device struct should be fully filled in
1809  */
1810 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1811                 struct btrfs_device *device)
1812 {
1813     int ret;
1814     struct btrfs_path *path;
1815     struct btrfs_dev_item *dev_item;
1816     struct extent_buffer *leaf;
1817     struct btrfs_key key;
1818     unsigned long ptr;
1819 
1820     path = btrfs_alloc_path();
1821     if (!path)
1822         return -ENOMEM;
1823 
1824     key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1825     key.type = BTRFS_DEV_ITEM_KEY;
1826     key.offset = device->devid;
1827 
1828     btrfs_reserve_chunk_metadata(trans, true);
1829     ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1830                       &key, sizeof(*dev_item));
1831     btrfs_trans_release_chunk_metadata(trans);
1832     if (ret)
1833         goto out;
1834 
1835     leaf = path->nodes[0];
1836     dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1837 
1838     btrfs_set_device_id(leaf, dev_item, device->devid);
1839     btrfs_set_device_generation(leaf, dev_item, 0);
1840     btrfs_set_device_type(leaf, dev_item, device->type);
1841     btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1842     btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1843     btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1844     btrfs_set_device_total_bytes(leaf, dev_item,
1845                      btrfs_device_get_disk_total_bytes(device));
1846     btrfs_set_device_bytes_used(leaf, dev_item,
1847                     btrfs_device_get_bytes_used(device));
1848     btrfs_set_device_group(leaf, dev_item, 0);
1849     btrfs_set_device_seek_speed(leaf, dev_item, 0);
1850     btrfs_set_device_bandwidth(leaf, dev_item, 0);
1851     btrfs_set_device_start_offset(leaf, dev_item, 0);
1852 
1853     ptr = btrfs_device_uuid(dev_item);
1854     write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1855     ptr = btrfs_device_fsid(dev_item);
1856     write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1857                 ptr, BTRFS_FSID_SIZE);
1858     btrfs_mark_buffer_dirty(leaf);
1859 
1860     ret = 0;
1861 out:
1862     btrfs_free_path(path);
1863     return ret;
1864 }
1865 
1866 /*
1867  * Function to update ctime/mtime for a given device path.
1868  * Mainly used for ctime/mtime based probe like libblkid.
1869  *
1870  * We don't care about errors here, this is just to be kind to userspace.
1871  */
1872 static void update_dev_time(const char *device_path)
1873 {
1874     struct path path;
1875     struct timespec64 now;
1876     int ret;
1877 
1878     ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1879     if (ret)
1880         return;
1881 
1882     now = current_time(d_inode(path.dentry));
1883     inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1884     path_put(&path);
1885 }
1886 
1887 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1888                  struct btrfs_device *device)
1889 {
1890     struct btrfs_root *root = device->fs_info->chunk_root;
1891     int ret;
1892     struct btrfs_path *path;
1893     struct btrfs_key key;
1894 
1895     path = btrfs_alloc_path();
1896     if (!path)
1897         return -ENOMEM;
1898 
1899     key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1900     key.type = BTRFS_DEV_ITEM_KEY;
1901     key.offset = device->devid;
1902 
1903     btrfs_reserve_chunk_metadata(trans, false);
1904     ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1905     btrfs_trans_release_chunk_metadata(trans);
1906     if (ret) {
1907         if (ret > 0)
1908             ret = -ENOENT;
1909         goto out;
1910     }
1911 
1912     ret = btrfs_del_item(trans, root, path);
1913 out:
1914     btrfs_free_path(path);
1915     return ret;
1916 }
1917 
1918 /*
1919  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1920  * filesystem. It's up to the caller to adjust that number regarding eg. device
1921  * replace.
1922  */
1923 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1924         u64 num_devices)
1925 {
1926     u64 all_avail;
1927     unsigned seq;
1928     int i;
1929 
1930     do {
1931         seq = read_seqbegin(&fs_info->profiles_lock);
1932 
1933         all_avail = fs_info->avail_data_alloc_bits |
1934                 fs_info->avail_system_alloc_bits |
1935                 fs_info->avail_metadata_alloc_bits;
1936     } while (read_seqretry(&fs_info->profiles_lock, seq));
1937 
1938     for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1939         if (!(all_avail & btrfs_raid_array[i].bg_flag))
1940             continue;
1941 
1942         if (num_devices < btrfs_raid_array[i].devs_min)
1943             return btrfs_raid_array[i].mindev_error;
1944     }
1945 
1946     return 0;
1947 }
1948 
1949 static struct btrfs_device * btrfs_find_next_active_device(
1950         struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1951 {
1952     struct btrfs_device *next_device;
1953 
1954     list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1955         if (next_device != device &&
1956             !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1957             && next_device->bdev)
1958             return next_device;
1959     }
1960 
1961     return NULL;
1962 }
1963 
1964 /*
1965  * Helper function to check if the given device is part of s_bdev / latest_dev
1966  * and replace it with the provided or the next active device, in the context
1967  * where this function called, there should be always be another device (or
1968  * this_dev) which is active.
1969  */
1970 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1971                         struct btrfs_device *next_device)
1972 {
1973     struct btrfs_fs_info *fs_info = device->fs_info;
1974 
1975     if (!next_device)
1976         next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1977                                 device);
1978     ASSERT(next_device);
1979 
1980     if (fs_info->sb->s_bdev &&
1981             (fs_info->sb->s_bdev == device->bdev))
1982         fs_info->sb->s_bdev = next_device->bdev;
1983 
1984     if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
1985         fs_info->fs_devices->latest_dev = next_device;
1986 }
1987 
1988 /*
1989  * Return btrfs_fs_devices::num_devices excluding the device that's being
1990  * currently replaced.
1991  */
1992 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1993 {
1994     u64 num_devices = fs_info->fs_devices->num_devices;
1995 
1996     down_read(&fs_info->dev_replace.rwsem);
1997     if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1998         ASSERT(num_devices > 1);
1999         num_devices--;
2000     }
2001     up_read(&fs_info->dev_replace.rwsem);
2002 
2003     return num_devices;
2004 }
2005 
2006 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2007                    struct block_device *bdev,
2008                    const char *device_path)
2009 {
2010     struct btrfs_super_block *disk_super;
2011     int copy_num;
2012 
2013     if (!bdev)
2014         return;
2015 
2016     for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2017         struct page *page;
2018         int ret;
2019 
2020         disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2021         if (IS_ERR(disk_super))
2022             continue;
2023 
2024         if (bdev_is_zoned(bdev)) {
2025             btrfs_reset_sb_log_zones(bdev, copy_num);
2026             continue;
2027         }
2028 
2029         memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2030 
2031         page = virt_to_page(disk_super);
2032         set_page_dirty(page);
2033         lock_page(page);
2034         /* write_on_page() unlocks the page */
2035         ret = write_one_page(page);
2036         if (ret)
2037             btrfs_warn(fs_info,
2038                 "error clearing superblock number %d (%d)",
2039                 copy_num, ret);
2040         btrfs_release_disk_super(disk_super);
2041 
2042     }
2043 
2044     /* Notify udev that device has changed */
2045     btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2046 
2047     /* Update ctime/mtime for device path for libblkid */
2048     update_dev_time(device_path);
2049 }
2050 
2051 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2052             struct btrfs_dev_lookup_args *args,
2053             struct block_device **bdev, fmode_t *mode)
2054 {
2055     struct btrfs_trans_handle *trans;
2056     struct btrfs_device *device;
2057     struct btrfs_fs_devices *cur_devices;
2058     struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2059     u64 num_devices;
2060     int ret = 0;
2061 
2062     if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2063         btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2064         return -EINVAL;
2065     }
2066 
2067     /*
2068      * The device list in fs_devices is accessed without locks (neither
2069      * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2070      * filesystem and another device rm cannot run.
2071      */
2072     num_devices = btrfs_num_devices(fs_info);
2073 
2074     ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2075     if (ret)
2076         return ret;
2077 
2078     device = btrfs_find_device(fs_info->fs_devices, args);
2079     if (!device) {
2080         if (args->missing)
2081             ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2082         else
2083             ret = -ENOENT;
2084         return ret;
2085     }
2086 
2087     if (btrfs_pinned_by_swapfile(fs_info, device)) {
2088         btrfs_warn_in_rcu(fs_info,
2089           "cannot remove device %s (devid %llu) due to active swapfile",
2090                   rcu_str_deref(device->name), device->devid);
2091         return -ETXTBSY;
2092     }
2093 
2094     if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2095         return BTRFS_ERROR_DEV_TGT_REPLACE;
2096 
2097     if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2098         fs_info->fs_devices->rw_devices == 1)
2099         return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2100 
2101     if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2102         mutex_lock(&fs_info->chunk_mutex);
2103         list_del_init(&device->dev_alloc_list);
2104         device->fs_devices->rw_devices--;
2105         mutex_unlock(&fs_info->chunk_mutex);
2106     }
2107 
2108     ret = btrfs_shrink_device(device, 0);
2109     if (ret)
2110         goto error_undo;
2111 
2112     trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2113     if (IS_ERR(trans)) {
2114         ret = PTR_ERR(trans);
2115         goto error_undo;
2116     }
2117 
2118     ret = btrfs_rm_dev_item(trans, device);
2119     if (ret) {
2120         /* Any error in dev item removal is critical */
2121         btrfs_crit(fs_info,
2122                "failed to remove device item for devid %llu: %d",
2123                device->devid, ret);
2124         btrfs_abort_transaction(trans, ret);
2125         btrfs_end_transaction(trans);
2126         return ret;
2127     }
2128 
2129     clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2130     btrfs_scrub_cancel_dev(device);
2131 
2132     /*
2133      * the device list mutex makes sure that we don't change
2134      * the device list while someone else is writing out all
2135      * the device supers. Whoever is writing all supers, should
2136      * lock the device list mutex before getting the number of
2137      * devices in the super block (super_copy). Conversely,
2138      * whoever updates the number of devices in the super block
2139      * (super_copy) should hold the device list mutex.
2140      */
2141 
2142     /*
2143      * In normal cases the cur_devices == fs_devices. But in case
2144      * of deleting a seed device, the cur_devices should point to
2145      * its own fs_devices listed under the fs_devices->seed_list.
2146      */
2147     cur_devices = device->fs_devices;
2148     mutex_lock(&fs_devices->device_list_mutex);
2149     list_del_rcu(&device->dev_list);
2150 
2151     cur_devices->num_devices--;
2152     cur_devices->total_devices--;
2153     /* Update total_devices of the parent fs_devices if it's seed */
2154     if (cur_devices != fs_devices)
2155         fs_devices->total_devices--;
2156 
2157     if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2158         cur_devices->missing_devices--;
2159 
2160     btrfs_assign_next_active_device(device, NULL);
2161 
2162     if (device->bdev) {
2163         cur_devices->open_devices--;
2164         /* remove sysfs entry */
2165         btrfs_sysfs_remove_device(device);
2166     }
2167 
2168     num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2169     btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2170     mutex_unlock(&fs_devices->device_list_mutex);
2171 
2172     /*
2173      * At this point, the device is zero sized and detached from the
2174      * devices list.  All that's left is to zero out the old supers and
2175      * free the device.
2176      *
2177      * We cannot call btrfs_close_bdev() here because we're holding the sb
2178      * write lock, and blkdev_put() will pull in the ->open_mutex on the
2179      * block device and it's dependencies.  Instead just flush the device
2180      * and let the caller do the final blkdev_put.
2181      */
2182     if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2183         btrfs_scratch_superblocks(fs_info, device->bdev,
2184                       device->name->str);
2185         if (device->bdev) {
2186             sync_blockdev(device->bdev);
2187             invalidate_bdev(device->bdev);
2188         }
2189     }
2190 
2191     *bdev = device->bdev;
2192     *mode = device->mode;
2193     synchronize_rcu();
2194     btrfs_free_device(device);
2195 
2196     /*
2197      * This can happen if cur_devices is the private seed devices list.  We
2198      * cannot call close_fs_devices() here because it expects the uuid_mutex
2199      * to be held, but in fact we don't need that for the private
2200      * seed_devices, we can simply decrement cur_devices->opened and then
2201      * remove it from our list and free the fs_devices.
2202      */
2203     if (cur_devices->num_devices == 0) {
2204         list_del_init(&cur_devices->seed_list);
2205         ASSERT(cur_devices->opened == 1);
2206         cur_devices->opened--;
2207         free_fs_devices(cur_devices);
2208     }
2209 
2210     ret = btrfs_commit_transaction(trans);
2211 
2212     return ret;
2213 
2214 error_undo:
2215     if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2216         mutex_lock(&fs_info->chunk_mutex);
2217         list_add(&device->dev_alloc_list,
2218              &fs_devices->alloc_list);
2219         device->fs_devices->rw_devices++;
2220         mutex_unlock(&fs_info->chunk_mutex);
2221     }
2222     return ret;
2223 }
2224 
2225 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2226 {
2227     struct btrfs_fs_devices *fs_devices;
2228 
2229     lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2230 
2231     /*
2232      * in case of fs with no seed, srcdev->fs_devices will point
2233      * to fs_devices of fs_info. However when the dev being replaced is
2234      * a seed dev it will point to the seed's local fs_devices. In short
2235      * srcdev will have its correct fs_devices in both the cases.
2236      */
2237     fs_devices = srcdev->fs_devices;
2238 
2239     list_del_rcu(&srcdev->dev_list);
2240     list_del(&srcdev->dev_alloc_list);
2241     fs_devices->num_devices--;
2242     if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2243         fs_devices->missing_devices--;
2244 
2245     if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2246         fs_devices->rw_devices--;
2247 
2248     if (srcdev->bdev)
2249         fs_devices->open_devices--;
2250 }
2251 
2252 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2253 {
2254     struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2255 
2256     mutex_lock(&uuid_mutex);
2257 
2258     btrfs_close_bdev(srcdev);
2259     synchronize_rcu();
2260     btrfs_free_device(srcdev);
2261 
2262     /* if this is no devs we rather delete the fs_devices */
2263     if (!fs_devices->num_devices) {
2264         /*
2265          * On a mounted FS, num_devices can't be zero unless it's a
2266          * seed. In case of a seed device being replaced, the replace
2267          * target added to the sprout FS, so there will be no more
2268          * device left under the seed FS.
2269          */
2270         ASSERT(fs_devices->seeding);
2271 
2272         list_del_init(&fs_devices->seed_list);
2273         close_fs_devices(fs_devices);
2274         free_fs_devices(fs_devices);
2275     }
2276     mutex_unlock(&uuid_mutex);
2277 }
2278 
2279 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2280 {
2281     struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2282 
2283     mutex_lock(&fs_devices->device_list_mutex);
2284 
2285     btrfs_sysfs_remove_device(tgtdev);
2286 
2287     if (tgtdev->bdev)
2288         fs_devices->open_devices--;
2289 
2290     fs_devices->num_devices--;
2291 
2292     btrfs_assign_next_active_device(tgtdev, NULL);
2293 
2294     list_del_rcu(&tgtdev->dev_list);
2295 
2296     mutex_unlock(&fs_devices->device_list_mutex);
2297 
2298     btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2299                   tgtdev->name->str);
2300 
2301     btrfs_close_bdev(tgtdev);
2302     synchronize_rcu();
2303     btrfs_free_device(tgtdev);
2304 }
2305 
2306 /**
2307  * Populate args from device at path
2308  *
2309  * @fs_info:    the filesystem
2310  * @args:   the args to populate
2311  * @path:   the path to the device
2312  *
2313  * This will read the super block of the device at @path and populate @args with
2314  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2315  * lookup a device to operate on, but need to do it before we take any locks.
2316  * This properly handles the special case of "missing" that a user may pass in,
2317  * and does some basic sanity checks.  The caller must make sure that @path is
2318  * properly NUL terminated before calling in, and must call
2319  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2320  * uuid buffers.
2321  *
2322  * Return: 0 for success, -errno for failure
2323  */
2324 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2325                  struct btrfs_dev_lookup_args *args,
2326                  const char *path)
2327 {
2328     struct btrfs_super_block *disk_super;
2329     struct block_device *bdev;
2330     int ret;
2331 
2332     if (!path || !path[0])
2333         return -EINVAL;
2334     if (!strcmp(path, "missing")) {
2335         args->missing = true;
2336         return 0;
2337     }
2338 
2339     args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2340     args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2341     if (!args->uuid || !args->fsid) {
2342         btrfs_put_dev_args_from_path(args);
2343         return -ENOMEM;
2344     }
2345 
2346     ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2347                     &bdev, &disk_super);
2348     if (ret) {
2349         btrfs_put_dev_args_from_path(args);
2350         return ret;
2351     }
2352 
2353     args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2354     memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2355     if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2356         memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2357     else
2358         memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2359     btrfs_release_disk_super(disk_super);
2360     blkdev_put(bdev, FMODE_READ);
2361     return 0;
2362 }
2363 
2364 /*
2365  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2366  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2367  * that don't need to be freed.
2368  */
2369 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2370 {
2371     kfree(args->uuid);
2372     kfree(args->fsid);
2373     args->uuid = NULL;
2374     args->fsid = NULL;
2375 }
2376 
2377 struct btrfs_device *btrfs_find_device_by_devspec(
2378         struct btrfs_fs_info *fs_info, u64 devid,
2379         const char *device_path)
2380 {
2381     BTRFS_DEV_LOOKUP_ARGS(args);
2382     struct btrfs_device *device;
2383     int ret;
2384 
2385     if (devid) {
2386         args.devid = devid;
2387         device = btrfs_find_device(fs_info->fs_devices, &args);
2388         if (!device)
2389             return ERR_PTR(-ENOENT);
2390         return device;
2391     }
2392 
2393     ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2394     if (ret)
2395         return ERR_PTR(ret);
2396     device = btrfs_find_device(fs_info->fs_devices, &args);
2397     btrfs_put_dev_args_from_path(&args);
2398     if (!device)
2399         return ERR_PTR(-ENOENT);
2400     return device;
2401 }
2402 
2403 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2404 {
2405     struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2406     struct btrfs_fs_devices *old_devices;
2407     struct btrfs_fs_devices *seed_devices;
2408 
2409     lockdep_assert_held(&uuid_mutex);
2410     if (!fs_devices->seeding)
2411         return ERR_PTR(-EINVAL);
2412 
2413     /*
2414      * Private copy of the seed devices, anchored at
2415      * fs_info->fs_devices->seed_list
2416      */
2417     seed_devices = alloc_fs_devices(NULL, NULL);
2418     if (IS_ERR(seed_devices))
2419         return seed_devices;
2420 
2421     /*
2422      * It's necessary to retain a copy of the original seed fs_devices in
2423      * fs_uuids so that filesystems which have been seeded can successfully
2424      * reference the seed device from open_seed_devices. This also supports
2425      * multiple fs seed.
2426      */
2427     old_devices = clone_fs_devices(fs_devices);
2428     if (IS_ERR(old_devices)) {
2429         kfree(seed_devices);
2430         return old_devices;
2431     }
2432 
2433     list_add(&old_devices->fs_list, &fs_uuids);
2434 
2435     memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2436     seed_devices->opened = 1;
2437     INIT_LIST_HEAD(&seed_devices->devices);
2438     INIT_LIST_HEAD(&seed_devices->alloc_list);
2439     mutex_init(&seed_devices->device_list_mutex);
2440 
2441     return seed_devices;
2442 }
2443 
2444 /*
2445  * Splice seed devices into the sprout fs_devices.
2446  * Generate a new fsid for the sprouted read-write filesystem.
2447  */
2448 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2449                    struct btrfs_fs_devices *seed_devices)
2450 {
2451     struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2452     struct btrfs_super_block *disk_super = fs_info->super_copy;
2453     struct btrfs_device *device;
2454     u64 super_flags;
2455 
2456     /*
2457      * We are updating the fsid, the thread leading to device_list_add()
2458      * could race, so uuid_mutex is needed.
2459      */
2460     lockdep_assert_held(&uuid_mutex);
2461 
2462     /*
2463      * The threads listed below may traverse dev_list but can do that without
2464      * device_list_mutex:
2465      * - All device ops and balance - as we are in btrfs_exclop_start.
2466      * - Various dev_list readers - are using RCU.
2467      * - btrfs_ioctl_fitrim() - is using RCU.
2468      *
2469      * For-read threads as below are using device_list_mutex:
2470      * - Readonly scrub btrfs_scrub_dev()
2471      * - Readonly scrub btrfs_scrub_progress()
2472      * - btrfs_get_dev_stats()
2473      */
2474     lockdep_assert_held(&fs_devices->device_list_mutex);
2475 
2476     list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2477                   synchronize_rcu);
2478     list_for_each_entry(device, &seed_devices->devices, dev_list)
2479         device->fs_devices = seed_devices;
2480 
2481     fs_devices->seeding = false;
2482     fs_devices->num_devices = 0;
2483     fs_devices->open_devices = 0;
2484     fs_devices->missing_devices = 0;
2485     fs_devices->rotating = false;
2486     list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2487 
2488     generate_random_uuid(fs_devices->fsid);
2489     memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2490     memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2491 
2492     super_flags = btrfs_super_flags(disk_super) &
2493               ~BTRFS_SUPER_FLAG_SEEDING;
2494     btrfs_set_super_flags(disk_super, super_flags);
2495 }
2496 
2497 /*
2498  * Store the expected generation for seed devices in device items.
2499  */
2500 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2501 {
2502     BTRFS_DEV_LOOKUP_ARGS(args);
2503     struct btrfs_fs_info *fs_info = trans->fs_info;
2504     struct btrfs_root *root = fs_info->chunk_root;
2505     struct btrfs_path *path;
2506     struct extent_buffer *leaf;
2507     struct btrfs_dev_item *dev_item;
2508     struct btrfs_device *device;
2509     struct btrfs_key key;
2510     u8 fs_uuid[BTRFS_FSID_SIZE];
2511     u8 dev_uuid[BTRFS_UUID_SIZE];
2512     int ret;
2513 
2514     path = btrfs_alloc_path();
2515     if (!path)
2516         return -ENOMEM;
2517 
2518     key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2519     key.offset = 0;
2520     key.type = BTRFS_DEV_ITEM_KEY;
2521 
2522     while (1) {
2523         btrfs_reserve_chunk_metadata(trans, false);
2524         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2525         btrfs_trans_release_chunk_metadata(trans);
2526         if (ret < 0)
2527             goto error;
2528 
2529         leaf = path->nodes[0];
2530 next_slot:
2531         if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2532             ret = btrfs_next_leaf(root, path);
2533             if (ret > 0)
2534                 break;
2535             if (ret < 0)
2536                 goto error;
2537             leaf = path->nodes[0];
2538             btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2539             btrfs_release_path(path);
2540             continue;
2541         }
2542 
2543         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2544         if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2545             key.type != BTRFS_DEV_ITEM_KEY)
2546             break;
2547 
2548         dev_item = btrfs_item_ptr(leaf, path->slots[0],
2549                       struct btrfs_dev_item);
2550         args.devid = btrfs_device_id(leaf, dev_item);
2551         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2552                    BTRFS_UUID_SIZE);
2553         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2554                    BTRFS_FSID_SIZE);
2555         args.uuid = dev_uuid;
2556         args.fsid = fs_uuid;
2557         device = btrfs_find_device(fs_info->fs_devices, &args);
2558         BUG_ON(!device); /* Logic error */
2559 
2560         if (device->fs_devices->seeding) {
2561             btrfs_set_device_generation(leaf, dev_item,
2562                             device->generation);
2563             btrfs_mark_buffer_dirty(leaf);
2564         }
2565 
2566         path->slots[0]++;
2567         goto next_slot;
2568     }
2569     ret = 0;
2570 error:
2571     btrfs_free_path(path);
2572     return ret;
2573 }
2574 
2575 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2576 {
2577     struct btrfs_root *root = fs_info->dev_root;
2578     struct btrfs_trans_handle *trans;
2579     struct btrfs_device *device;
2580     struct block_device *bdev;
2581     struct super_block *sb = fs_info->sb;
2582     struct rcu_string *name;
2583     struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2584     struct btrfs_fs_devices *seed_devices;
2585     u64 orig_super_total_bytes;
2586     u64 orig_super_num_devices;
2587     int ret = 0;
2588     bool seeding_dev = false;
2589     bool locked = false;
2590 
2591     if (sb_rdonly(sb) && !fs_devices->seeding)
2592         return -EROFS;
2593 
2594     bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2595                   fs_info->bdev_holder);
2596     if (IS_ERR(bdev))
2597         return PTR_ERR(bdev);
2598 
2599     if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2600         ret = -EINVAL;
2601         goto error;
2602     }
2603 
2604     if (fs_devices->seeding) {
2605         seeding_dev = true;
2606         down_write(&sb->s_umount);
2607         mutex_lock(&uuid_mutex);
2608         locked = true;
2609     }
2610 
2611     sync_blockdev(bdev);
2612 
2613     rcu_read_lock();
2614     list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2615         if (device->bdev == bdev) {
2616             ret = -EEXIST;
2617             rcu_read_unlock();
2618             goto error;
2619         }
2620     }
2621     rcu_read_unlock();
2622 
2623     device = btrfs_alloc_device(fs_info, NULL, NULL);
2624     if (IS_ERR(device)) {
2625         /* we can safely leave the fs_devices entry around */
2626         ret = PTR_ERR(device);
2627         goto error;
2628     }
2629 
2630     name = rcu_string_strdup(device_path, GFP_KERNEL);
2631     if (!name) {
2632         ret = -ENOMEM;
2633         goto error_free_device;
2634     }
2635     rcu_assign_pointer(device->name, name);
2636 
2637     device->fs_info = fs_info;
2638     device->bdev = bdev;
2639     ret = lookup_bdev(device_path, &device->devt);
2640     if (ret)
2641         goto error_free_device;
2642 
2643     ret = btrfs_get_dev_zone_info(device, false);
2644     if (ret)
2645         goto error_free_device;
2646 
2647     trans = btrfs_start_transaction(root, 0);
2648     if (IS_ERR(trans)) {
2649         ret = PTR_ERR(trans);
2650         goto error_free_zone;
2651     }
2652 
2653     set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2654     device->generation = trans->transid;
2655     device->io_width = fs_info->sectorsize;
2656     device->io_align = fs_info->sectorsize;
2657     device->sector_size = fs_info->sectorsize;
2658     device->total_bytes =
2659         round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2660     device->disk_total_bytes = device->total_bytes;
2661     device->commit_total_bytes = device->total_bytes;
2662     set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2663     clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2664     device->mode = FMODE_EXCL;
2665     device->dev_stats_valid = 1;
2666     set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2667 
2668     if (seeding_dev) {
2669         btrfs_clear_sb_rdonly(sb);
2670 
2671         /* GFP_KERNEL allocation must not be under device_list_mutex */
2672         seed_devices = btrfs_init_sprout(fs_info);
2673         if (IS_ERR(seed_devices)) {
2674             ret = PTR_ERR(seed_devices);
2675             btrfs_abort_transaction(trans, ret);
2676             goto error_trans;
2677         }
2678     }
2679 
2680     mutex_lock(&fs_devices->device_list_mutex);
2681     if (seeding_dev) {
2682         btrfs_setup_sprout(fs_info, seed_devices);
2683         btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2684                         device);
2685     }
2686 
2687     device->fs_devices = fs_devices;
2688 
2689     mutex_lock(&fs_info->chunk_mutex);
2690     list_add_rcu(&device->dev_list, &fs_devices->devices);
2691     list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2692     fs_devices->num_devices++;
2693     fs_devices->open_devices++;
2694     fs_devices->rw_devices++;
2695     fs_devices->total_devices++;
2696     fs_devices->total_rw_bytes += device->total_bytes;
2697 
2698     atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2699 
2700     if (!bdev_nonrot(bdev))
2701         fs_devices->rotating = true;
2702 
2703     orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2704     btrfs_set_super_total_bytes(fs_info->super_copy,
2705         round_down(orig_super_total_bytes + device->total_bytes,
2706                fs_info->sectorsize));
2707 
2708     orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2709     btrfs_set_super_num_devices(fs_info->super_copy,
2710                     orig_super_num_devices + 1);
2711 
2712     /*
2713      * we've got more storage, clear any full flags on the space
2714      * infos
2715      */
2716     btrfs_clear_space_info_full(fs_info);
2717 
2718     mutex_unlock(&fs_info->chunk_mutex);
2719 
2720     /* Add sysfs device entry */
2721     btrfs_sysfs_add_device(device);
2722 
2723     mutex_unlock(&fs_devices->device_list_mutex);
2724 
2725     if (seeding_dev) {
2726         mutex_lock(&fs_info->chunk_mutex);
2727         ret = init_first_rw_device(trans);
2728         mutex_unlock(&fs_info->chunk_mutex);
2729         if (ret) {
2730             btrfs_abort_transaction(trans, ret);
2731             goto error_sysfs;
2732         }
2733     }
2734 
2735     ret = btrfs_add_dev_item(trans, device);
2736     if (ret) {
2737         btrfs_abort_transaction(trans, ret);
2738         goto error_sysfs;
2739     }
2740 
2741     if (seeding_dev) {
2742         ret = btrfs_finish_sprout(trans);
2743         if (ret) {
2744             btrfs_abort_transaction(trans, ret);
2745             goto error_sysfs;
2746         }
2747 
2748         /*
2749          * fs_devices now represents the newly sprouted filesystem and
2750          * its fsid has been changed by btrfs_sprout_splice().
2751          */
2752         btrfs_sysfs_update_sprout_fsid(fs_devices);
2753     }
2754 
2755     ret = btrfs_commit_transaction(trans);
2756 
2757     if (seeding_dev) {
2758         mutex_unlock(&uuid_mutex);
2759         up_write(&sb->s_umount);
2760         locked = false;
2761 
2762         if (ret) /* transaction commit */
2763             return ret;
2764 
2765         ret = btrfs_relocate_sys_chunks(fs_info);
2766         if (ret < 0)
2767             btrfs_handle_fs_error(fs_info, ret,
2768                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2769         trans = btrfs_attach_transaction(root);
2770         if (IS_ERR(trans)) {
2771             if (PTR_ERR(trans) == -ENOENT)
2772                 return 0;
2773             ret = PTR_ERR(trans);
2774             trans = NULL;
2775             goto error_sysfs;
2776         }
2777         ret = btrfs_commit_transaction(trans);
2778     }
2779 
2780     /*
2781      * Now that we have written a new super block to this device, check all
2782      * other fs_devices list if device_path alienates any other scanned
2783      * device.
2784      * We can ignore the return value as it typically returns -EINVAL and
2785      * only succeeds if the device was an alien.
2786      */
2787     btrfs_forget_devices(device->devt);
2788 
2789     /* Update ctime/mtime for blkid or udev */
2790     update_dev_time(device_path);
2791 
2792     return ret;
2793 
2794 error_sysfs:
2795     btrfs_sysfs_remove_device(device);
2796     mutex_lock(&fs_info->fs_devices->device_list_mutex);
2797     mutex_lock(&fs_info->chunk_mutex);
2798     list_del_rcu(&device->dev_list);
2799     list_del(&device->dev_alloc_list);
2800     fs_info->fs_devices->num_devices--;
2801     fs_info->fs_devices->open_devices--;
2802     fs_info->fs_devices->rw_devices--;
2803     fs_info->fs_devices->total_devices--;
2804     fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2805     atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2806     btrfs_set_super_total_bytes(fs_info->super_copy,
2807                     orig_super_total_bytes);
2808     btrfs_set_super_num_devices(fs_info->super_copy,
2809                     orig_super_num_devices);
2810     mutex_unlock(&fs_info->chunk_mutex);
2811     mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2812 error_trans:
2813     if (seeding_dev)
2814         btrfs_set_sb_rdonly(sb);
2815     if (trans)
2816         btrfs_end_transaction(trans);
2817 error_free_zone:
2818     btrfs_destroy_dev_zone_info(device);
2819 error_free_device:
2820     btrfs_free_device(device);
2821 error:
2822     blkdev_put(bdev, FMODE_EXCL);
2823     if (locked) {
2824         mutex_unlock(&uuid_mutex);
2825         up_write(&sb->s_umount);
2826     }
2827     return ret;
2828 }
2829 
2830 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2831                     struct btrfs_device *device)
2832 {
2833     int ret;
2834     struct btrfs_path *path;
2835     struct btrfs_root *root = device->fs_info->chunk_root;
2836     struct btrfs_dev_item *dev_item;
2837     struct extent_buffer *leaf;
2838     struct btrfs_key key;
2839 
2840     path = btrfs_alloc_path();
2841     if (!path)
2842         return -ENOMEM;
2843 
2844     key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2845     key.type = BTRFS_DEV_ITEM_KEY;
2846     key.offset = device->devid;
2847 
2848     ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2849     if (ret < 0)
2850         goto out;
2851 
2852     if (ret > 0) {
2853         ret = -ENOENT;
2854         goto out;
2855     }
2856 
2857     leaf = path->nodes[0];
2858     dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2859 
2860     btrfs_set_device_id(leaf, dev_item, device->devid);
2861     btrfs_set_device_type(leaf, dev_item, device->type);
2862     btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2863     btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2864     btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2865     btrfs_set_device_total_bytes(leaf, dev_item,
2866                      btrfs_device_get_disk_total_bytes(device));
2867     btrfs_set_device_bytes_used(leaf, dev_item,
2868                     btrfs_device_get_bytes_used(device));
2869     btrfs_mark_buffer_dirty(leaf);
2870 
2871 out:
2872     btrfs_free_path(path);
2873     return ret;
2874 }
2875 
2876 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2877               struct btrfs_device *device, u64 new_size)
2878 {
2879     struct btrfs_fs_info *fs_info = device->fs_info;
2880     struct btrfs_super_block *super_copy = fs_info->super_copy;
2881     u64 old_total;
2882     u64 diff;
2883     int ret;
2884 
2885     if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2886         return -EACCES;
2887 
2888     new_size = round_down(new_size, fs_info->sectorsize);
2889 
2890     mutex_lock(&fs_info->chunk_mutex);
2891     old_total = btrfs_super_total_bytes(super_copy);
2892     diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2893 
2894     if (new_size <= device->total_bytes ||
2895         test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2896         mutex_unlock(&fs_info->chunk_mutex);
2897         return -EINVAL;
2898     }
2899 
2900     btrfs_set_super_total_bytes(super_copy,
2901             round_down(old_total + diff, fs_info->sectorsize));
2902     device->fs_devices->total_rw_bytes += diff;
2903 
2904     btrfs_device_set_total_bytes(device, new_size);
2905     btrfs_device_set_disk_total_bytes(device, new_size);
2906     btrfs_clear_space_info_full(device->fs_info);
2907     if (list_empty(&device->post_commit_list))
2908         list_add_tail(&device->post_commit_list,
2909                   &trans->transaction->dev_update_list);
2910     mutex_unlock(&fs_info->chunk_mutex);
2911 
2912     btrfs_reserve_chunk_metadata(trans, false);
2913     ret = btrfs_update_device(trans, device);
2914     btrfs_trans_release_chunk_metadata(trans);
2915 
2916     return ret;
2917 }
2918 
2919 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2920 {
2921     struct btrfs_fs_info *fs_info = trans->fs_info;
2922     struct btrfs_root *root = fs_info->chunk_root;
2923     int ret;
2924     struct btrfs_path *path;
2925     struct btrfs_key key;
2926 
2927     path = btrfs_alloc_path();
2928     if (!path)
2929         return -ENOMEM;
2930 
2931     key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2932     key.offset = chunk_offset;
2933     key.type = BTRFS_CHUNK_ITEM_KEY;
2934 
2935     ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2936     if (ret < 0)
2937         goto out;
2938     else if (ret > 0) { /* Logic error or corruption */
2939         btrfs_handle_fs_error(fs_info, -ENOENT,
2940                       "Failed lookup while freeing chunk.");
2941         ret = -ENOENT;
2942         goto out;
2943     }
2944 
2945     ret = btrfs_del_item(trans, root, path);
2946     if (ret < 0)
2947         btrfs_handle_fs_error(fs_info, ret,
2948                       "Failed to delete chunk item.");
2949 out:
2950     btrfs_free_path(path);
2951     return ret;
2952 }
2953 
2954 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2955 {
2956     struct btrfs_super_block *super_copy = fs_info->super_copy;
2957     struct btrfs_disk_key *disk_key;
2958     struct btrfs_chunk *chunk;
2959     u8 *ptr;
2960     int ret = 0;
2961     u32 num_stripes;
2962     u32 array_size;
2963     u32 len = 0;
2964     u32 cur;
2965     struct btrfs_key key;
2966 
2967     lockdep_assert_held(&fs_info->chunk_mutex);
2968     array_size = btrfs_super_sys_array_size(super_copy);
2969 
2970     ptr = super_copy->sys_chunk_array;
2971     cur = 0;
2972 
2973     while (cur < array_size) {
2974         disk_key = (struct btrfs_disk_key *)ptr;
2975         btrfs_disk_key_to_cpu(&key, disk_key);
2976 
2977         len = sizeof(*disk_key);
2978 
2979         if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2980             chunk = (struct btrfs_chunk *)(ptr + len);
2981             num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2982             len += btrfs_chunk_item_size(num_stripes);
2983         } else {
2984             ret = -EIO;
2985             break;
2986         }
2987         if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2988             key.offset == chunk_offset) {
2989             memmove(ptr, ptr + len, array_size - (cur + len));
2990             array_size -= len;
2991             btrfs_set_super_sys_array_size(super_copy, array_size);
2992         } else {
2993             ptr += len;
2994             cur += len;
2995         }
2996     }
2997     return ret;
2998 }
2999 
3000 /*
3001  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3002  * @logical: Logical block offset in bytes.
3003  * @length: Length of extent in bytes.
3004  *
3005  * Return: Chunk mapping or ERR_PTR.
3006  */
3007 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3008                        u64 logical, u64 length)
3009 {
3010     struct extent_map_tree *em_tree;
3011     struct extent_map *em;
3012 
3013     em_tree = &fs_info->mapping_tree;
3014     read_lock(&em_tree->lock);
3015     em = lookup_extent_mapping(em_tree, logical, length);
3016     read_unlock(&em_tree->lock);
3017 
3018     if (!em) {
3019         btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3020                logical, length);
3021         return ERR_PTR(-EINVAL);
3022     }
3023 
3024     if (em->start > logical || em->start + em->len < logical) {
3025         btrfs_crit(fs_info,
3026                "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3027                logical, length, em->start, em->start + em->len);
3028         free_extent_map(em);
3029         return ERR_PTR(-EINVAL);
3030     }
3031 
3032     /* callers are responsible for dropping em's ref. */
3033     return em;
3034 }
3035 
3036 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3037                  struct map_lookup *map, u64 chunk_offset)
3038 {
3039     int i;
3040 
3041     /*
3042      * Removing chunk items and updating the device items in the chunks btree
3043      * requires holding the chunk_mutex.
3044      * See the comment at btrfs_chunk_alloc() for the details.
3045      */
3046     lockdep_assert_held(&trans->fs_info->chunk_mutex);
3047 
3048     for (i = 0; i < map->num_stripes; i++) {
3049         int ret;
3050 
3051         ret = btrfs_update_device(trans, map->stripes[i].dev);
3052         if (ret)
3053             return ret;
3054     }
3055 
3056     return btrfs_free_chunk(trans, chunk_offset);
3057 }
3058 
3059 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3060 {
3061     struct btrfs_fs_info *fs_info = trans->fs_info;
3062     struct extent_map *em;
3063     struct map_lookup *map;
3064     u64 dev_extent_len = 0;
3065     int i, ret = 0;
3066     struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3067 
3068     em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3069     if (IS_ERR(em)) {
3070         /*
3071          * This is a logic error, but we don't want to just rely on the
3072          * user having built with ASSERT enabled, so if ASSERT doesn't
3073          * do anything we still error out.
3074          */
3075         ASSERT(0);
3076         return PTR_ERR(em);
3077     }
3078     map = em->map_lookup;
3079 
3080     /*
3081      * First delete the device extent items from the devices btree.
3082      * We take the device_list_mutex to avoid racing with the finishing phase
3083      * of a device replace operation. See the comment below before acquiring
3084      * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3085      * because that can result in a deadlock when deleting the device extent
3086      * items from the devices btree - COWing an extent buffer from the btree
3087      * may result in allocating a new metadata chunk, which would attempt to
3088      * lock again fs_info->chunk_mutex.
3089      */
3090     mutex_lock(&fs_devices->device_list_mutex);
3091     for (i = 0; i < map->num_stripes; i++) {
3092         struct btrfs_device *device = map->stripes[i].dev;
3093         ret = btrfs_free_dev_extent(trans, device,
3094                         map->stripes[i].physical,
3095                         &dev_extent_len);
3096         if (ret) {
3097             mutex_unlock(&fs_devices->device_list_mutex);
3098             btrfs_abort_transaction(trans, ret);
3099             goto out;
3100         }
3101 
3102         if (device->bytes_used > 0) {
3103             mutex_lock(&fs_info->chunk_mutex);
3104             btrfs_device_set_bytes_used(device,
3105                     device->bytes_used - dev_extent_len);
3106             atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3107             btrfs_clear_space_info_full(fs_info);
3108             mutex_unlock(&fs_info->chunk_mutex);
3109         }
3110     }
3111     mutex_unlock(&fs_devices->device_list_mutex);
3112 
3113     /*
3114      * We acquire fs_info->chunk_mutex for 2 reasons:
3115      *
3116      * 1) Just like with the first phase of the chunk allocation, we must
3117      *    reserve system space, do all chunk btree updates and deletions, and
3118      *    update the system chunk array in the superblock while holding this
3119      *    mutex. This is for similar reasons as explained on the comment at
3120      *    the top of btrfs_chunk_alloc();
3121      *
3122      * 2) Prevent races with the final phase of a device replace operation
3123      *    that replaces the device object associated with the map's stripes,
3124      *    because the device object's id can change at any time during that
3125      *    final phase of the device replace operation
3126      *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3127      *    replaced device and then see it with an ID of
3128      *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3129      *    the device item, which does not exists on the chunk btree.
3130      *    The finishing phase of device replace acquires both the
3131      *    device_list_mutex and the chunk_mutex, in that order, so we are
3132      *    safe by just acquiring the chunk_mutex.
3133      */
3134     trans->removing_chunk = true;
3135     mutex_lock(&fs_info->chunk_mutex);
3136 
3137     check_system_chunk(trans, map->type);
3138 
3139     ret = remove_chunk_item(trans, map, chunk_offset);
3140     /*
3141      * Normally we should not get -ENOSPC since we reserved space before
3142      * through the call to check_system_chunk().
3143      *
3144      * Despite our system space_info having enough free space, we may not
3145      * be able to allocate extents from its block groups, because all have
3146      * an incompatible profile, which will force us to allocate a new system
3147      * block group with the right profile, or right after we called
3148      * check_system_space() above, a scrub turned the only system block group
3149      * with enough free space into RO mode.
3150      * This is explained with more detail at do_chunk_alloc().
3151      *
3152      * So if we get -ENOSPC, allocate a new system chunk and retry once.
3153      */
3154     if (ret == -ENOSPC) {
3155         const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3156         struct btrfs_block_group *sys_bg;
3157 
3158         sys_bg = btrfs_create_chunk(trans, sys_flags);
3159         if (IS_ERR(sys_bg)) {
3160             ret = PTR_ERR(sys_bg);
3161             btrfs_abort_transaction(trans, ret);
3162             goto out;
3163         }
3164 
3165         ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3166         if (ret) {
3167             btrfs_abort_transaction(trans, ret);
3168             goto out;
3169         }
3170 
3171         ret = remove_chunk_item(trans, map, chunk_offset);
3172         if (ret) {
3173             btrfs_abort_transaction(trans, ret);
3174             goto out;
3175         }
3176     } else if (ret) {
3177         btrfs_abort_transaction(trans, ret);
3178         goto out;
3179     }
3180 
3181     trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3182 
3183     if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3184         ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3185         if (ret) {
3186             btrfs_abort_transaction(trans, ret);
3187             goto out;
3188         }
3189     }
3190 
3191     mutex_unlock(&fs_info->chunk_mutex);
3192     trans->removing_chunk = false;
3193 
3194     /*
3195      * We are done with chunk btree updates and deletions, so release the
3196      * system space we previously reserved (with check_system_chunk()).
3197      */
3198     btrfs_trans_release_chunk_metadata(trans);
3199 
3200     ret = btrfs_remove_block_group(trans, chunk_offset, em);
3201     if (ret) {
3202         btrfs_abort_transaction(trans, ret);
3203         goto out;
3204     }
3205 
3206 out:
3207     if (trans->removing_chunk) {
3208         mutex_unlock(&fs_info->chunk_mutex);
3209         trans->removing_chunk = false;
3210     }
3211     /* once for us */
3212     free_extent_map(em);
3213     return ret;
3214 }
3215 
3216 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3217 {
3218     struct btrfs_root *root = fs_info->chunk_root;
3219     struct btrfs_trans_handle *trans;
3220     struct btrfs_block_group *block_group;
3221     u64 length;
3222     int ret;
3223 
3224     if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3225         btrfs_err(fs_info,
3226               "relocate: not supported on extent tree v2 yet");
3227         return -EINVAL;
3228     }
3229 
3230     /*
3231      * Prevent races with automatic removal of unused block groups.
3232      * After we relocate and before we remove the chunk with offset
3233      * chunk_offset, automatic removal of the block group can kick in,
3234      * resulting in a failure when calling btrfs_remove_chunk() below.
3235      *
3236      * Make sure to acquire this mutex before doing a tree search (dev
3237      * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3238      * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3239      * we release the path used to search the chunk/dev tree and before
3240      * the current task acquires this mutex and calls us.
3241      */
3242     lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3243 
3244     /* step one, relocate all the extents inside this chunk */
3245     btrfs_scrub_pause(fs_info);
3246     ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3247     btrfs_scrub_continue(fs_info);
3248     if (ret)
3249         return ret;
3250 
3251     block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3252     if (!block_group)
3253         return -ENOENT;
3254     btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3255     length = block_group->length;
3256     btrfs_put_block_group(block_group);
3257 
3258     /*
3259      * On a zoned file system, discard the whole block group, this will
3260      * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3261      * resetting the zone fails, don't treat it as a fatal problem from the
3262      * filesystem's point of view.
3263      */
3264     if (btrfs_is_zoned(fs_info)) {
3265         ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3266         if (ret)
3267             btrfs_info(fs_info,
3268                 "failed to reset zone %llu after relocation",
3269                 chunk_offset);
3270     }
3271 
3272     trans = btrfs_start_trans_remove_block_group(root->fs_info,
3273                              chunk_offset);
3274     if (IS_ERR(trans)) {
3275         ret = PTR_ERR(trans);
3276         btrfs_handle_fs_error(root->fs_info, ret, NULL);
3277         return ret;
3278     }
3279 
3280     /*
3281      * step two, delete the device extents and the
3282      * chunk tree entries
3283      */
3284     ret = btrfs_remove_chunk(trans, chunk_offset);
3285     btrfs_end_transaction(trans);
3286     return ret;
3287 }
3288 
3289 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3290 {
3291     struct btrfs_root *chunk_root = fs_info->chunk_root;
3292     struct btrfs_path *path;
3293     struct extent_buffer *leaf;
3294     struct btrfs_chunk *chunk;
3295     struct btrfs_key key;
3296     struct btrfs_key found_key;
3297     u64 chunk_type;
3298     bool retried = false;
3299     int failed = 0;
3300     int ret;
3301 
3302     path = btrfs_alloc_path();
3303     if (!path)
3304         return -ENOMEM;
3305 
3306 again:
3307     key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3308     key.offset = (u64)-1;
3309     key.type = BTRFS_CHUNK_ITEM_KEY;
3310 
3311     while (1) {
3312         mutex_lock(&fs_info->reclaim_bgs_lock);
3313         ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3314         if (ret < 0) {
3315             mutex_unlock(&fs_info->reclaim_bgs_lock);
3316             goto error;
3317         }
3318         BUG_ON(ret == 0); /* Corruption */
3319 
3320         ret = btrfs_previous_item(chunk_root, path, key.objectid,
3321                       key.type);
3322         if (ret)
3323             mutex_unlock(&fs_info->reclaim_bgs_lock);
3324         if (ret < 0)
3325             goto error;
3326         if (ret > 0)
3327             break;
3328 
3329         leaf = path->nodes[0];
3330         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3331 
3332         chunk = btrfs_item_ptr(leaf, path->slots[0],
3333                        struct btrfs_chunk);
3334         chunk_type = btrfs_chunk_type(leaf, chunk);
3335         btrfs_release_path(path);
3336 
3337         if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3338             ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3339             if (ret == -ENOSPC)
3340                 failed++;
3341             else
3342                 BUG_ON(ret);
3343         }
3344         mutex_unlock(&fs_info->reclaim_bgs_lock);
3345 
3346         if (found_key.offset == 0)
3347             break;
3348         key.offset = found_key.offset - 1;
3349     }
3350     ret = 0;
3351     if (failed && !retried) {
3352         failed = 0;
3353         retried = true;
3354         goto again;
3355     } else if (WARN_ON(failed && retried)) {
3356         ret = -ENOSPC;
3357     }
3358 error:
3359     btrfs_free_path(path);
3360     return ret;
3361 }
3362 
3363 /*
3364  * return 1 : allocate a data chunk successfully,
3365  * return <0: errors during allocating a data chunk,
3366  * return 0 : no need to allocate a data chunk.
3367  */
3368 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3369                       u64 chunk_offset)
3370 {
3371     struct btrfs_block_group *cache;
3372     u64 bytes_used;
3373     u64 chunk_type;
3374 
3375     cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3376     ASSERT(cache);
3377     chunk_type = cache->flags;
3378     btrfs_put_block_group(cache);
3379 
3380     if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3381         return 0;
3382 
3383     spin_lock(&fs_info->data_sinfo->lock);
3384     bytes_used = fs_info->data_sinfo->bytes_used;
3385     spin_unlock(&fs_info->data_sinfo->lock);
3386 
3387     if (!bytes_used) {
3388         struct btrfs_trans_handle *trans;
3389         int ret;
3390 
3391         trans = btrfs_join_transaction(fs_info->tree_root);
3392         if (IS_ERR(trans))
3393             return PTR_ERR(trans);
3394 
3395         ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3396         btrfs_end_transaction(trans);
3397         if (ret < 0)
3398             return ret;
3399         return 1;
3400     }
3401 
3402     return 0;
3403 }
3404 
3405 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3406                    struct btrfs_balance_control *bctl)
3407 {
3408     struct btrfs_root *root = fs_info->tree_root;
3409     struct btrfs_trans_handle *trans;
3410     struct btrfs_balance_item *item;
3411     struct btrfs_disk_balance_args disk_bargs;
3412     struct btrfs_path *path;
3413     struct extent_buffer *leaf;
3414     struct btrfs_key key;
3415     int ret, err;
3416 
3417     path = btrfs_alloc_path();
3418     if (!path)
3419         return -ENOMEM;
3420 
3421     trans = btrfs_start_transaction(root, 0);
3422     if (IS_ERR(trans)) {
3423         btrfs_free_path(path);
3424         return PTR_ERR(trans);
3425     }
3426 
3427     key.objectid = BTRFS_BALANCE_OBJECTID;
3428     key.type = BTRFS_TEMPORARY_ITEM_KEY;
3429     key.offset = 0;
3430 
3431     ret = btrfs_insert_empty_item(trans, root, path, &key,
3432                       sizeof(*item));
3433     if (ret)
3434         goto out;
3435 
3436     leaf = path->nodes[0];
3437     item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3438 
3439     memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3440 
3441     btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3442     btrfs_set_balance_data(leaf, item, &disk_bargs);
3443     btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3444     btrfs_set_balance_meta(leaf, item, &disk_bargs);
3445     btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3446     btrfs_set_balance_sys(leaf, item, &disk_bargs);
3447 
3448     btrfs_set_balance_flags(leaf, item, bctl->flags);
3449 
3450     btrfs_mark_buffer_dirty(leaf);
3451 out:
3452     btrfs_free_path(path);
3453     err = btrfs_commit_transaction(trans);
3454     if (err && !ret)
3455         ret = err;
3456     return ret;
3457 }
3458 
3459 static int del_balance_item(struct btrfs_fs_info *fs_info)
3460 {
3461     struct btrfs_root *root = fs_info->tree_root;
3462     struct btrfs_trans_handle *trans;
3463     struct btrfs_path *path;
3464     struct btrfs_key key;
3465     int ret, err;
3466 
3467     path = btrfs_alloc_path();
3468     if (!path)
3469         return -ENOMEM;
3470 
3471     trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3472     if (IS_ERR(trans)) {
3473         btrfs_free_path(path);
3474         return PTR_ERR(trans);
3475     }
3476 
3477     key.objectid = BTRFS_BALANCE_OBJECTID;
3478     key.type = BTRFS_TEMPORARY_ITEM_KEY;
3479     key.offset = 0;
3480 
3481     ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3482     if (ret < 0)
3483         goto out;
3484     if (ret > 0) {
3485         ret = -ENOENT;
3486         goto out;
3487     }
3488 
3489     ret = btrfs_del_item(trans, root, path);
3490 out:
3491     btrfs_free_path(path);
3492     err = btrfs_commit_transaction(trans);
3493     if (err && !ret)
3494         ret = err;
3495     return ret;
3496 }
3497 
3498 /*
3499  * This is a heuristic used to reduce the number of chunks balanced on
3500  * resume after balance was interrupted.
3501  */
3502 static void update_balance_args(struct btrfs_balance_control *bctl)
3503 {
3504     /*
3505      * Turn on soft mode for chunk types that were being converted.
3506      */
3507     if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3508         bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3509     if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3510         bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3511     if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3512         bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3513 
3514     /*
3515      * Turn on usage filter if is not already used.  The idea is
3516      * that chunks that we have already balanced should be
3517      * reasonably full.  Don't do it for chunks that are being
3518      * converted - that will keep us from relocating unconverted
3519      * (albeit full) chunks.
3520      */
3521     if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3522         !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3523         !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3524         bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3525         bctl->data.usage = 90;
3526     }
3527     if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3528         !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3529         !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3530         bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3531         bctl->sys.usage = 90;
3532     }
3533     if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3534         !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3535         !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3536         bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3537         bctl->meta.usage = 90;
3538     }
3539 }
3540 
3541 /*
3542  * Clear the balance status in fs_info and delete the balance item from disk.
3543  */
3544 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3545 {
3546     struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3547     int ret;
3548 
3549     BUG_ON(!fs_info->balance_ctl);
3550 
3551     spin_lock(&fs_info->balance_lock);
3552     fs_info->balance_ctl = NULL;
3553     spin_unlock(&fs_info->balance_lock);
3554 
3555     kfree(bctl);
3556     ret = del_balance_item(fs_info);
3557     if (ret)
3558         btrfs_handle_fs_error(fs_info, ret, NULL);
3559 }
3560 
3561 /*
3562  * Balance filters.  Return 1 if chunk should be filtered out
3563  * (should not be balanced).
3564  */
3565 static int chunk_profiles_filter(u64 chunk_type,
3566                  struct btrfs_balance_args *bargs)
3567 {
3568     chunk_type = chunk_to_extended(chunk_type) &
3569                 BTRFS_EXTENDED_PROFILE_MASK;
3570 
3571     if (bargs->profiles & chunk_type)
3572         return 0;
3573 
3574     return 1;
3575 }
3576 
3577 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3578                   struct btrfs_balance_args *bargs)
3579 {
3580     struct btrfs_block_group *cache;
3581     u64 chunk_used;
3582     u64 user_thresh_min;
3583     u64 user_thresh_max;
3584     int ret = 1;
3585 
3586     cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3587     chunk_used = cache->used;
3588 
3589     if (bargs->usage_min == 0)
3590         user_thresh_min = 0;
3591     else
3592         user_thresh_min = div_factor_fine(cache->length,
3593                           bargs->usage_min);
3594 
3595     if (bargs->usage_max == 0)
3596         user_thresh_max = 1;
3597     else if (bargs->usage_max > 100)
3598         user_thresh_max = cache->length;
3599     else
3600         user_thresh_max = div_factor_fine(cache->length,
3601                           bargs->usage_max);
3602 
3603     if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3604         ret = 0;
3605 
3606     btrfs_put_block_group(cache);
3607     return ret;
3608 }
3609 
3610 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3611         u64 chunk_offset, struct btrfs_balance_args *bargs)
3612 {
3613     struct btrfs_block_group *cache;
3614     u64 chunk_used, user_thresh;
3615     int ret = 1;
3616 
3617     cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3618     chunk_used = cache->used;
3619 
3620     if (bargs->usage_min == 0)
3621         user_thresh = 1;
3622     else if (bargs->usage > 100)
3623         user_thresh = cache->length;
3624     else
3625         user_thresh = div_factor_fine(cache->length, bargs->usage);
3626 
3627     if (chunk_used < user_thresh)
3628         ret = 0;
3629 
3630     btrfs_put_block_group(cache);
3631     return ret;
3632 }
3633 
3634 static int chunk_devid_filter(struct extent_buffer *leaf,
3635                   struct btrfs_chunk *chunk,
3636                   struct btrfs_balance_args *bargs)
3637 {
3638     struct btrfs_stripe *stripe;
3639     int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3640     int i;
3641 
3642     for (i = 0; i < num_stripes; i++) {
3643         stripe = btrfs_stripe_nr(chunk, i);
3644         if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3645             return 0;
3646     }
3647 
3648     return 1;
3649 }
3650 
3651 static u64 calc_data_stripes(u64 type, int num_stripes)
3652 {
3653     const int index = btrfs_bg_flags_to_raid_index(type);
3654     const int ncopies = btrfs_raid_array[index].ncopies;
3655     const int nparity = btrfs_raid_array[index].nparity;
3656 
3657     return (num_stripes - nparity) / ncopies;
3658 }
3659 
3660 /* [pstart, pend) */
3661 static int chunk_drange_filter(struct extent_buffer *leaf,
3662                    struct btrfs_chunk *chunk,
3663                    struct btrfs_balance_args *bargs)
3664 {
3665     struct btrfs_stripe *stripe;
3666     int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3667     u64 stripe_offset;
3668     u64 stripe_length;
3669     u64 type;
3670     int factor;
3671     int i;
3672 
3673     if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3674         return 0;
3675 
3676     type = btrfs_chunk_type(leaf, chunk);
3677     factor = calc_data_stripes(type, num_stripes);
3678 
3679     for (i = 0; i < num_stripes; i++) {
3680         stripe = btrfs_stripe_nr(chunk, i);
3681         if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3682             continue;
3683 
3684         stripe_offset = btrfs_stripe_offset(leaf, stripe);
3685         stripe_length = btrfs_chunk_length(leaf, chunk);
3686         stripe_length = div_u64(stripe_length, factor);
3687 
3688         if (stripe_offset < bargs->pend &&
3689             stripe_offset + stripe_length > bargs->pstart)
3690             return 0;
3691     }
3692 
3693     return 1;
3694 }
3695 
3696 /* [vstart, vend) */
3697 static int chunk_vrange_filter(struct extent_buffer *leaf,
3698                    struct btrfs_chunk *chunk,
3699                    u64 chunk_offset,
3700                    struct btrfs_balance_args *bargs)
3701 {
3702     if (chunk_offset < bargs->vend &&
3703         chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3704         /* at least part of the chunk is inside this vrange */
3705         return 0;
3706 
3707     return 1;
3708 }
3709 
3710 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3711                    struct btrfs_chunk *chunk,
3712                    struct btrfs_balance_args *bargs)
3713 {
3714     int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3715 
3716     if (bargs->stripes_min <= num_stripes
3717             && num_stripes <= bargs->stripes_max)
3718         return 0;
3719 
3720     return 1;
3721 }
3722 
3723 static int chunk_soft_convert_filter(u64 chunk_type,
3724                      struct btrfs_balance_args *bargs)
3725 {
3726     if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3727         return 0;
3728 
3729     chunk_type = chunk_to_extended(chunk_type) &
3730                 BTRFS_EXTENDED_PROFILE_MASK;
3731 
3732     if (bargs->target == chunk_type)
3733         return 1;
3734 
3735     return 0;
3736 }
3737 
3738 static int should_balance_chunk(struct extent_buffer *leaf,
3739                 struct btrfs_chunk *chunk, u64 chunk_offset)
3740 {
3741     struct btrfs_fs_info *fs_info = leaf->fs_info;
3742     struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3743     struct btrfs_balance_args *bargs = NULL;
3744     u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3745 
3746     /* type filter */
3747     if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3748           (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3749         return 0;
3750     }
3751 
3752     if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3753         bargs = &bctl->data;
3754     else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3755         bargs = &bctl->sys;
3756     else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3757         bargs = &bctl->meta;
3758 
3759     /* profiles filter */
3760     if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3761         chunk_profiles_filter(chunk_type, bargs)) {
3762         return 0;
3763     }
3764 
3765     /* usage filter */
3766     if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3767         chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3768         return 0;
3769     } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3770         chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3771         return 0;
3772     }
3773 
3774     /* devid filter */
3775     if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3776         chunk_devid_filter(leaf, chunk, bargs)) {
3777         return 0;
3778     }
3779 
3780     /* drange filter, makes sense only with devid filter */
3781     if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3782         chunk_drange_filter(leaf, chunk, bargs)) {
3783         return 0;
3784     }
3785 
3786     /* vrange filter */
3787     if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3788         chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3789         return 0;
3790     }
3791 
3792     /* stripes filter */
3793     if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3794         chunk_stripes_range_filter(leaf, chunk, bargs)) {
3795         return 0;
3796     }
3797 
3798     /* soft profile changing mode */
3799     if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3800         chunk_soft_convert_filter(chunk_type, bargs)) {
3801         return 0;
3802     }
3803 
3804     /*
3805      * limited by count, must be the last filter
3806      */
3807     if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3808         if (bargs->limit == 0)
3809             return 0;
3810         else
3811             bargs->limit--;
3812     } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3813         /*
3814          * Same logic as the 'limit' filter; the minimum cannot be
3815          * determined here because we do not have the global information
3816          * about the count of all chunks that satisfy the filters.
3817          */
3818         if (bargs->limit_max == 0)
3819             return 0;
3820         else
3821             bargs->limit_max--;
3822     }
3823 
3824     return 1;
3825 }
3826 
3827 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3828 {
3829     struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3830     struct btrfs_root *chunk_root = fs_info->chunk_root;
3831     u64 chunk_type;
3832     struct btrfs_chunk *chunk;
3833     struct btrfs_path *path = NULL;
3834     struct btrfs_key key;
3835     struct btrfs_key found_key;
3836     struct extent_buffer *leaf;
3837     int slot;
3838     int ret;
3839     int enospc_errors = 0;
3840     bool counting = true;
3841     /* The single value limit and min/max limits use the same bytes in the */
3842     u64 limit_data = bctl->data.limit;
3843     u64 limit_meta = bctl->meta.limit;
3844     u64 limit_sys = bctl->sys.limit;
3845     u32 count_data = 0;
3846     u32 count_meta = 0;
3847     u32 count_sys = 0;
3848     int chunk_reserved = 0;
3849 
3850     path = btrfs_alloc_path();
3851     if (!path) {
3852         ret = -ENOMEM;
3853         goto error;
3854     }
3855 
3856     /* zero out stat counters */
3857     spin_lock(&fs_info->balance_lock);
3858     memset(&bctl->stat, 0, sizeof(bctl->stat));
3859     spin_unlock(&fs_info->balance_lock);
3860 again:
3861     if (!counting) {
3862         /*
3863          * The single value limit and min/max limits use the same bytes
3864          * in the
3865          */
3866         bctl->data.limit = limit_data;
3867         bctl->meta.limit = limit_meta;
3868         bctl->sys.limit = limit_sys;
3869     }
3870     key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3871     key.offset = (u64)-1;
3872     key.type = BTRFS_CHUNK_ITEM_KEY;
3873 
3874     while (1) {
3875         if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3876             atomic_read(&fs_info->balance_cancel_req)) {
3877             ret = -ECANCELED;
3878             goto error;
3879         }
3880 
3881         mutex_lock(&fs_info->reclaim_bgs_lock);
3882         ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3883         if (ret < 0) {
3884             mutex_unlock(&fs_info->reclaim_bgs_lock);
3885             goto error;
3886         }
3887 
3888         /*
3889          * this shouldn't happen, it means the last relocate
3890          * failed
3891          */
3892         if (ret == 0)
3893             BUG(); /* FIXME break ? */
3894 
3895         ret = btrfs_previous_item(chunk_root, path, 0,
3896                       BTRFS_CHUNK_ITEM_KEY);
3897         if (ret) {
3898             mutex_unlock(&fs_info->reclaim_bgs_lock);
3899             ret = 0;
3900             break;
3901         }
3902 
3903         leaf = path->nodes[0];
3904         slot = path->slots[0];
3905         btrfs_item_key_to_cpu(leaf, &found_key, slot);
3906 
3907         if (found_key.objectid != key.objectid) {
3908             mutex_unlock(&fs_info->reclaim_bgs_lock);
3909             break;
3910         }
3911 
3912         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3913         chunk_type = btrfs_chunk_type(leaf, chunk);
3914 
3915         if (!counting) {
3916             spin_lock(&fs_info->balance_lock);
3917             bctl->stat.considered++;
3918             spin_unlock(&fs_info->balance_lock);
3919         }
3920 
3921         ret = should_balance_chunk(leaf, chunk, found_key.offset);
3922 
3923         btrfs_release_path(path);
3924         if (!ret) {
3925             mutex_unlock(&fs_info->reclaim_bgs_lock);
3926             goto loop;
3927         }
3928 
3929         if (counting) {
3930             mutex_unlock(&fs_info->reclaim_bgs_lock);
3931             spin_lock(&fs_info->balance_lock);
3932             bctl->stat.expected++;
3933             spin_unlock(&fs_info->balance_lock);
3934 
3935             if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3936                 count_data++;
3937             else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3938                 count_sys++;
3939             else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3940                 count_meta++;
3941 
3942             goto loop;
3943         }
3944 
3945         /*
3946          * Apply limit_min filter, no need to check if the LIMITS
3947          * filter is used, limit_min is 0 by default
3948          */
3949         if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3950                     count_data < bctl->data.limit_min)
3951                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3952                     count_meta < bctl->meta.limit_min)
3953                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3954                     count_sys < bctl->sys.limit_min)) {
3955             mutex_unlock(&fs_info->reclaim_bgs_lock);
3956             goto loop;
3957         }
3958 
3959         if (!chunk_reserved) {
3960             /*
3961              * We may be relocating the only data chunk we have,
3962              * which could potentially end up with losing data's
3963              * raid profile, so lets allocate an empty one in
3964              * advance.
3965              */
3966             ret = btrfs_may_alloc_data_chunk(fs_info,
3967                              found_key.offset);
3968             if (ret < 0) {
3969                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3970                 goto error;
3971             } else if (ret == 1) {
3972                 chunk_reserved = 1;
3973             }
3974         }
3975 
3976         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3977         mutex_unlock(&fs_info->reclaim_bgs_lock);
3978         if (ret == -ENOSPC) {
3979             enospc_errors++;
3980         } else if (ret == -ETXTBSY) {
3981             btrfs_info(fs_info,
3982        "skipping relocation of block group %llu due to active swapfile",
3983                    found_key.offset);
3984             ret = 0;
3985         } else if (ret) {
3986             goto error;
3987         } else {
3988             spin_lock(&fs_info->balance_lock);
3989             bctl->stat.completed++;
3990             spin_unlock(&fs_info->balance_lock);
3991         }
3992 loop:
3993         if (found_key.offset == 0)
3994             break;
3995         key.offset = found_key.offset - 1;
3996     }
3997 
3998     if (counting) {
3999         btrfs_release_path(path);
4000         counting = false;
4001         goto again;
4002     }
4003 error:
4004     btrfs_free_path(path);
4005     if (enospc_errors) {
4006         btrfs_info(fs_info, "%d enospc errors during balance",
4007                enospc_errors);
4008         if (!ret)
4009             ret = -ENOSPC;
4010     }
4011 
4012     return ret;
4013 }
4014 
4015 /**
4016  * alloc_profile_is_valid - see if a given profile is valid and reduced
4017  * @flags: profile to validate
4018  * @extended: if true @flags is treated as an extended profile
4019  */
4020 static int alloc_profile_is_valid(u64 flags, int extended)
4021 {
4022     u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4023                    BTRFS_BLOCK_GROUP_PROFILE_MASK);
4024 
4025     flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4026 
4027     /* 1) check that all other bits are zeroed */
4028     if (flags & ~mask)
4029         return 0;
4030 
4031     /* 2) see if profile is reduced */
4032     if (flags == 0)
4033         return !extended; /* "0" is valid for usual profiles */
4034 
4035     return has_single_bit_set(flags);
4036 }
4037 
4038 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4039 {
4040     /* cancel requested || normal exit path */
4041     return atomic_read(&fs_info->balance_cancel_req) ||
4042         (atomic_read(&fs_info->balance_pause_req) == 0 &&
4043          atomic_read(&fs_info->balance_cancel_req) == 0);
4044 }
4045 
4046 /*
4047  * Validate target profile against allowed profiles and return true if it's OK.
4048  * Otherwise print the error message and return false.
4049  */
4050 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4051         const struct btrfs_balance_args *bargs,
4052         u64 allowed, const char *type)
4053 {
4054     if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4055         return true;
4056 
4057     /* Profile is valid and does not have bits outside of the allowed set */
4058     if (alloc_profile_is_valid(bargs->target, 1) &&
4059         (bargs->target & ~allowed) == 0)
4060         return true;
4061 
4062     btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4063             type, btrfs_bg_type_to_raid_name(bargs->target));
4064     return false;
4065 }
4066 
4067 /*
4068  * Fill @buf with textual description of balance filter flags @bargs, up to
4069  * @size_buf including the terminating null. The output may be trimmed if it
4070  * does not fit into the provided buffer.
4071  */
4072 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4073                  u32 size_buf)
4074 {
4075     int ret;
4076     u32 size_bp = size_buf;
4077     char *bp = buf;
4078     u64 flags = bargs->flags;
4079     char tmp_buf[128] = {'\0'};
4080 
4081     if (!flags)
4082         return;
4083 
4084 #define CHECK_APPEND_NOARG(a)                       \
4085     do {                                \
4086         ret = snprintf(bp, size_bp, (a));           \
4087         if (ret < 0 || ret >= size_bp)              \
4088             goto out_overflow;              \
4089         size_bp -= ret;                     \
4090         bp += ret;                      \
4091     } while (0)
4092 
4093 #define CHECK_APPEND_1ARG(a, v1)                    \
4094     do {                                \
4095         ret = snprintf(bp, size_bp, (a), (v1));         \
4096         if (ret < 0 || ret >= size_bp)              \
4097             goto out_overflow;              \
4098         size_bp -= ret;                     \
4099         bp += ret;                      \
4100     } while (0)
4101 
4102 #define CHECK_APPEND_2ARG(a, v1, v2)                    \
4103     do {                                \
4104         ret = snprintf(bp, size_bp, (a), (v1), (v2));       \
4105         if (ret < 0 || ret >= size_bp)              \
4106             goto out_overflow;              \
4107         size_bp -= ret;                     \
4108         bp += ret;                      \
4109     } while (0)
4110 
4111     if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4112         CHECK_APPEND_1ARG("convert=%s,",
4113                   btrfs_bg_type_to_raid_name(bargs->target));
4114 
4115     if (flags & BTRFS_BALANCE_ARGS_SOFT)
4116         CHECK_APPEND_NOARG("soft,");
4117 
4118     if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4119         btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4120                         sizeof(tmp_buf));
4121         CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4122     }
4123 
4124     if (flags & BTRFS_BALANCE_ARGS_USAGE)
4125         CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4126 
4127     if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4128         CHECK_APPEND_2ARG("usage=%u..%u,",
4129                   bargs->usage_min, bargs->usage_max);
4130 
4131     if (flags & BTRFS_BALANCE_ARGS_DEVID)
4132         CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4133 
4134     if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4135         CHECK_APPEND_2ARG("drange=%llu..%llu,",
4136                   bargs->pstart, bargs->pend);
4137 
4138     if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4139         CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4140                   bargs->vstart, bargs->vend);
4141 
4142     if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4143         CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4144 
4145     if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4146         CHECK_APPEND_2ARG("limit=%u..%u,",
4147                 bargs->limit_min, bargs->limit_max);
4148 
4149     if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4150         CHECK_APPEND_2ARG("stripes=%u..%u,",
4151                   bargs->stripes_min, bargs->stripes_max);
4152 
4153 #undef CHECK_APPEND_2ARG
4154 #undef CHECK_APPEND_1ARG
4155 #undef CHECK_APPEND_NOARG
4156 
4157 out_overflow:
4158 
4159     if (size_bp < size_buf)
4160         buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4161     else
4162         buf[0] = '\0';
4163 }
4164 
4165 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4166 {
4167     u32 size_buf = 1024;
4168     char tmp_buf[192] = {'\0'};
4169     char *buf;
4170     char *bp;
4171     u32 size_bp = size_buf;
4172     int ret;
4173     struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4174 
4175     buf = kzalloc(size_buf, GFP_KERNEL);
4176     if (!buf)
4177         return;
4178 
4179     bp = buf;
4180 
4181 #define CHECK_APPEND_1ARG(a, v1)                    \
4182     do {                                \
4183         ret = snprintf(bp, size_bp, (a), (v1));         \
4184         if (ret < 0 || ret >= size_bp)              \
4185             goto out_overflow;              \
4186         size_bp -= ret;                     \
4187         bp += ret;                      \
4188     } while (0)
4189 
4190     if (bctl->flags & BTRFS_BALANCE_FORCE)
4191         CHECK_APPEND_1ARG("%s", "-f ");
4192 
4193     if (bctl->flags & BTRFS_BALANCE_DATA) {
4194         describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4195         CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4196     }
4197 
4198     if (bctl->flags & BTRFS_BALANCE_METADATA) {
4199         describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4200         CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4201     }
4202 
4203     if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4204         describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4205         CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4206     }
4207 
4208 #undef CHECK_APPEND_1ARG
4209 
4210 out_overflow:
4211 
4212     if (size_bp < size_buf)
4213         buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4214     btrfs_info(fs_info, "balance: %s %s",
4215            (bctl->flags & BTRFS_BALANCE_RESUME) ?
4216            "resume" : "start", buf);
4217 
4218     kfree(buf);
4219 }
4220 
4221 /*
4222  * Should be called with balance mutexe held
4223  */
4224 int btrfs_balance(struct btrfs_fs_info *fs_info,
4225           struct btrfs_balance_control *bctl,
4226           struct btrfs_ioctl_balance_args *bargs)
4227 {
4228     u64 meta_target, data_target;
4229     u64 allowed;
4230     int mixed = 0;
4231     int ret;
4232     u64 num_devices;
4233     unsigned seq;
4234     bool reducing_redundancy;
4235     int i;
4236 
4237     if (btrfs_fs_closing(fs_info) ||
4238         atomic_read(&fs_info->balance_pause_req) ||
4239         btrfs_should_cancel_balance(fs_info)) {
4240         ret = -EINVAL;
4241         goto out;
4242     }
4243 
4244     allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4245     if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4246         mixed = 1;
4247 
4248     /*
4249      * In case of mixed groups both data and meta should be picked,
4250      * and identical options should be given for both of them.
4251      */
4252     allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4253     if (mixed && (bctl->flags & allowed)) {
4254         if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4255             !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4256             memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4257             btrfs_err(fs_info,
4258       "balance: mixed groups data and metadata options must be the same");
4259             ret = -EINVAL;
4260             goto out;
4261         }
4262     }
4263 
4264     /*
4265      * rw_devices will not change at the moment, device add/delete/replace
4266      * are exclusive
4267      */
4268     num_devices = fs_info->fs_devices->rw_devices;
4269 
4270     /*
4271      * SINGLE profile on-disk has no profile bit, but in-memory we have a
4272      * special bit for it, to make it easier to distinguish.  Thus we need
4273      * to set it manually, or balance would refuse the profile.
4274      */
4275     allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4276     for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4277         if (num_devices >= btrfs_raid_array[i].devs_min)
4278             allowed |= btrfs_raid_array[i].bg_flag;
4279 
4280     if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4281         !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4282         !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4283         ret = -EINVAL;
4284         goto out;
4285     }
4286 
4287     /*
4288      * Allow to reduce metadata or system integrity only if force set for
4289      * profiles with redundancy (copies, parity)
4290      */
4291     allowed = 0;
4292     for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4293         if (btrfs_raid_array[i].ncopies >= 2 ||
4294             btrfs_raid_array[i].tolerated_failures >= 1)
4295             allowed |= btrfs_raid_array[i].bg_flag;
4296     }
4297     do {
4298         seq = read_seqbegin(&fs_info->profiles_lock);
4299 
4300         if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4301              (fs_info->avail_system_alloc_bits & allowed) &&
4302              !(bctl->sys.target & allowed)) ||
4303             ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4304              (fs_info->avail_metadata_alloc_bits & allowed) &&
4305              !(bctl->meta.target & allowed)))
4306             reducing_redundancy = true;
4307         else
4308             reducing_redundancy = false;
4309 
4310         /* if we're not converting, the target field is uninitialized */
4311         meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4312             bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4313         data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4314             bctl->data.target : fs_info->avail_data_alloc_bits;
4315     } while (read_seqretry(&fs_info->profiles_lock, seq));
4316 
4317     if (reducing_redundancy) {
4318         if (bctl->flags & BTRFS_BALANCE_FORCE) {
4319             btrfs_info(fs_info,
4320                "balance: force reducing metadata redundancy");
4321         } else {
4322             btrfs_err(fs_info,
4323     "balance: reduces metadata redundancy, use --force if you want this");
4324             ret = -EINVAL;
4325             goto out;
4326         }
4327     }
4328 
4329     if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4330         btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4331         btrfs_warn(fs_info,
4332     "balance: metadata profile %s has lower redundancy than data profile %s",
4333                 btrfs_bg_type_to_raid_name(meta_target),
4334                 btrfs_bg_type_to_raid_name(data_target));
4335     }
4336 
4337     ret = insert_balance_item(fs_info, bctl);
4338     if (ret && ret != -EEXIST)
4339         goto out;
4340 
4341     if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4342         BUG_ON(ret == -EEXIST);
4343         BUG_ON(fs_info->balance_ctl);
4344         spin_lock(&fs_info->balance_lock);
4345         fs_info->balance_ctl = bctl;
4346         spin_unlock(&fs_info->balance_lock);
4347     } else {
4348         BUG_ON(ret != -EEXIST);
4349         spin_lock(&fs_info->balance_lock);
4350         update_balance_args(bctl);
4351         spin_unlock(&fs_info->balance_lock);
4352     }
4353 
4354     ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4355     set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4356     describe_balance_start_or_resume(fs_info);
4357     mutex_unlock(&fs_info->balance_mutex);
4358 
4359     ret = __btrfs_balance(fs_info);
4360 
4361     mutex_lock(&fs_info->balance_mutex);
4362     if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4363         btrfs_info(fs_info, "balance: paused");
4364         btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4365     }
4366     /*
4367      * Balance can be canceled by:
4368      *
4369      * - Regular cancel request
4370      *   Then ret == -ECANCELED and balance_cancel_req > 0
4371      *
4372      * - Fatal signal to "btrfs" process
4373      *   Either the signal caught by wait_reserve_ticket() and callers
4374      *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4375      *   got -ECANCELED.
4376      *   Either way, in this case balance_cancel_req = 0, and
4377      *   ret == -EINTR or ret == -ECANCELED.
4378      *
4379      * So here we only check the return value to catch canceled balance.
4380      */
4381     else if (ret == -ECANCELED || ret == -EINTR)
4382         btrfs_info(fs_info, "balance: canceled");
4383     else
4384         btrfs_info(fs_info, "balance: ended with status: %d", ret);
4385 
4386     clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4387 
4388     if (bargs) {
4389         memset(bargs, 0, sizeof(*bargs));
4390         btrfs_update_ioctl_balance_args(fs_info, bargs);
4391     }
4392 
4393     if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4394         balance_need_close(fs_info)) {
4395         reset_balance_state(fs_info);
4396         btrfs_exclop_finish(fs_info);
4397     }
4398 
4399     wake_up(&fs_info->balance_wait_q);
4400 
4401     return ret;
4402 out:
4403     if (bctl->flags & BTRFS_BALANCE_RESUME)
4404         reset_balance_state(fs_info);
4405     else
4406         kfree(bctl);
4407     btrfs_exclop_finish(fs_info);
4408 
4409     return ret;
4410 }
4411 
4412 static int balance_kthread(void *data)
4413 {
4414     struct btrfs_fs_info *fs_info = data;
4415     int ret = 0;
4416 
4417     sb_start_write(fs_info->sb);
4418     mutex_lock(&fs_info->balance_mutex);
4419     if (fs_info->balance_ctl)
4420         ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4421     mutex_unlock(&fs_info->balance_mutex);
4422     sb_end_write(fs_info->sb);
4423 
4424     return ret;
4425 }
4426 
4427 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4428 {
4429     struct task_struct *tsk;
4430 
4431     mutex_lock(&fs_info->balance_mutex);
4432     if (!fs_info->balance_ctl) {
4433         mutex_unlock(&fs_info->balance_mutex);
4434         return 0;
4435     }
4436     mutex_unlock(&fs_info->balance_mutex);
4437 
4438     if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4439         btrfs_info(fs_info, "balance: resume skipped");
4440         return 0;
4441     }
4442 
4443     spin_lock(&fs_info->super_lock);
4444     ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4445     fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4446     spin_unlock(&fs_info->super_lock);
4447     /*
4448      * A ro->rw remount sequence should continue with the paused balance
4449      * regardless of who pauses it, system or the user as of now, so set
4450      * the resume flag.
4451      */
4452     spin_lock(&fs_info->balance_lock);
4453     fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4454     spin_unlock(&fs_info->balance_lock);
4455 
4456     tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4457     return PTR_ERR_OR_ZERO(tsk);
4458 }
4459 
4460 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4461 {
4462     struct btrfs_balance_control *bctl;
4463     struct btrfs_balance_item *item;
4464     struct btrfs_disk_balance_args disk_bargs;
4465     struct btrfs_path *path;
4466     struct extent_buffer *leaf;
4467     struct btrfs_key key;
4468     int ret;
4469 
4470     path = btrfs_alloc_path();
4471     if (!path)
4472         return -ENOMEM;
4473 
4474     key.objectid = BTRFS_BALANCE_OBJECTID;
4475     key.type = BTRFS_TEMPORARY_ITEM_KEY;
4476     key.offset = 0;
4477 
4478     ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4479     if (ret < 0)
4480         goto out;
4481     if (ret > 0) { /* ret = -ENOENT; */
4482         ret = 0;
4483         goto out;
4484     }
4485 
4486     bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4487     if (!bctl) {
4488         ret = -ENOMEM;
4489         goto out;
4490     }
4491 
4492     leaf = path->nodes[0];
4493     item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4494 
4495     bctl->flags = btrfs_balance_flags(leaf, item);
4496     bctl->flags |= BTRFS_BALANCE_RESUME;
4497 
4498     btrfs_balance_data(leaf, item, &disk_bargs);
4499     btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4500     btrfs_balance_meta(leaf, item, &disk_bargs);
4501     btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4502     btrfs_balance_sys(leaf, item, &disk_bargs);
4503     btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4504 
4505     /*
4506      * This should never happen, as the paused balance state is recovered
4507      * during mount without any chance of other exclusive ops to collide.
4508      *
4509      * This gives the exclusive op status to balance and keeps in paused
4510      * state until user intervention (cancel or umount). If the ownership
4511      * cannot be assigned, show a message but do not fail. The balance
4512      * is in a paused state and must have fs_info::balance_ctl properly
4513      * set up.
4514      */
4515     if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4516         btrfs_warn(fs_info,
4517     "balance: cannot set exclusive op status, resume manually");
4518 
4519     btrfs_release_path(path);
4520 
4521     mutex_lock(&fs_info->balance_mutex);
4522     BUG_ON(fs_info->balance_ctl);
4523     spin_lock(&fs_info->balance_lock);
4524     fs_info->balance_ctl = bctl;
4525     spin_unlock(&fs_info->balance_lock);
4526     mutex_unlock(&fs_info->balance_mutex);
4527 out:
4528     btrfs_free_path(path);
4529     return ret;
4530 }
4531 
4532 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4533 {
4534     int ret = 0;
4535 
4536     mutex_lock(&fs_info->balance_mutex);
4537     if (!fs_info->balance_ctl) {
4538         mutex_unlock(&fs_info->balance_mutex);
4539         return -ENOTCONN;
4540     }
4541 
4542     if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4543         atomic_inc(&fs_info->balance_pause_req);
4544         mutex_unlock(&fs_info->balance_mutex);
4545 
4546         wait_event(fs_info->balance_wait_q,
4547                !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4548 
4549         mutex_lock(&fs_info->balance_mutex);
4550         /* we are good with balance_ctl ripped off from under us */
4551         BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4552         atomic_dec(&fs_info->balance_pause_req);
4553     } else {
4554         ret = -ENOTCONN;
4555     }
4556 
4557     mutex_unlock(&fs_info->balance_mutex);
4558     return ret;
4559 }
4560 
4561 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4562 {
4563     mutex_lock(&fs_info->balance_mutex);
4564     if (!fs_info->balance_ctl) {
4565         mutex_unlock(&fs_info->balance_mutex);
4566         return -ENOTCONN;
4567     }
4568 
4569     /*
4570      * A paused balance with the item stored on disk can be resumed at
4571      * mount time if the mount is read-write. Otherwise it's still paused
4572      * and we must not allow cancelling as it deletes the item.
4573      */
4574     if (sb_rdonly(fs_info->sb)) {
4575         mutex_unlock(&fs_info->balance_mutex);
4576         return -EROFS;
4577     }
4578 
4579     atomic_inc(&fs_info->balance_cancel_req);
4580     /*
4581      * if we are running just wait and return, balance item is
4582      * deleted in btrfs_balance in this case
4583      */
4584     if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4585         mutex_unlock(&fs_info->balance_mutex);
4586         wait_event(fs_info->balance_wait_q,
4587                !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4588         mutex_lock(&fs_info->balance_mutex);
4589     } else {
4590         mutex_unlock(&fs_info->balance_mutex);
4591         /*
4592          * Lock released to allow other waiters to continue, we'll
4593          * reexamine the status again.
4594          */
4595         mutex_lock(&fs_info->balance_mutex);
4596 
4597         if (fs_info->balance_ctl) {
4598             reset_balance_state(fs_info);
4599             btrfs_exclop_finish(fs_info);
4600             btrfs_info(fs_info, "balance: canceled");
4601         }
4602     }
4603 
4604     BUG_ON(fs_info->balance_ctl ||
4605         test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4606     atomic_dec(&fs_info->balance_cancel_req);
4607     mutex_unlock(&fs_info->balance_mutex);
4608     return 0;
4609 }
4610 
4611 int btrfs_uuid_scan_kthread(void *data)
4612 {
4613     struct btrfs_fs_info *fs_info = data;
4614     struct btrfs_root *root = fs_info->tree_root;
4615     struct btrfs_key key;
4616     struct btrfs_path *path = NULL;
4617     int ret = 0;
4618     struct extent_buffer *eb;
4619     int slot;
4620     struct btrfs_root_item root_item;
4621     u32 item_size;
4622     struct btrfs_trans_handle *trans = NULL;
4623     bool closing = false;
4624 
4625     path = btrfs_alloc_path();
4626     if (!path) {
4627         ret = -ENOMEM;
4628         goto out;
4629     }
4630 
4631     key.objectid = 0;
4632     key.type = BTRFS_ROOT_ITEM_KEY;
4633     key.offset = 0;
4634 
4635     while (1) {
4636         if (btrfs_fs_closing(fs_info)) {
4637             closing = true;
4638             break;
4639         }
4640         ret = btrfs_search_forward(root, &key, path,
4641                 BTRFS_OLDEST_GENERATION);
4642         if (ret) {
4643             if (ret > 0)
4644                 ret = 0;
4645             break;
4646         }
4647 
4648         if (key.type != BTRFS_ROOT_ITEM_KEY ||
4649             (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4650              key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4651             key.objectid > BTRFS_LAST_FREE_OBJECTID)
4652             goto skip;
4653 
4654         eb = path->nodes[0];
4655         slot = path->slots[0];
4656         item_size = btrfs_item_size(eb, slot);
4657         if (item_size < sizeof(root_item))
4658             goto skip;
4659 
4660         read_extent_buffer(eb, &root_item,
4661                    btrfs_item_ptr_offset(eb, slot),
4662                    (int)sizeof(root_item));
4663         if (btrfs_root_refs(&root_item) == 0)
4664             goto skip;
4665 
4666         if (!btrfs_is_empty_uuid(root_item.uuid) ||
4667             !btrfs_is_empty_uuid(root_item.received_uuid)) {
4668             if (trans)
4669                 goto update_tree;
4670 
4671             btrfs_release_path(path);
4672             /*
4673              * 1 - subvol uuid item
4674              * 1 - received_subvol uuid item
4675              */
4676             trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4677             if (IS_ERR(trans)) {
4678                 ret = PTR_ERR(trans);
4679                 break;
4680             }
4681             continue;
4682         } else {
4683             goto skip;
4684         }
4685 update_tree:
4686         btrfs_release_path(path);
4687         if (!btrfs_is_empty_uuid(root_item.uuid)) {
4688             ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4689                           BTRFS_UUID_KEY_SUBVOL,
4690                           key.objectid);
4691             if (ret < 0) {
4692                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4693                     ret);
4694                 break;
4695             }
4696         }
4697 
4698         if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4699             ret = btrfs_uuid_tree_add(trans,
4700                           root_item.received_uuid,
4701                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4702                           key.objectid);
4703             if (ret < 0) {
4704                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4705                     ret);
4706                 break;
4707             }
4708         }
4709 
4710 skip:
4711         btrfs_release_path(path);
4712         if (trans) {
4713             ret = btrfs_end_transaction(trans);
4714             trans = NULL;
4715             if (ret)
4716                 break;
4717         }
4718 
4719         if (key.offset < (u64)-1) {
4720             key.offset++;
4721         } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4722             key.offset = 0;
4723             key.type = BTRFS_ROOT_ITEM_KEY;
4724         } else if (key.objectid < (u64)-1) {
4725             key.offset = 0;
4726             key.type = BTRFS_ROOT_ITEM_KEY;
4727             key.objectid++;
4728         } else {
4729             break;
4730         }
4731         cond_resched();
4732     }
4733 
4734 out:
4735     btrfs_free_path(path);
4736     if (trans && !IS_ERR(trans))
4737         btrfs_end_transaction(trans);
4738     if (ret)
4739         btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4740     else if (!closing)
4741         set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4742     up(&fs_info->uuid_tree_rescan_sem);
4743     return 0;
4744 }
4745 
4746 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4747 {
4748     struct btrfs_trans_handle *trans;
4749     struct btrfs_root *tree_root = fs_info->tree_root;
4750     struct btrfs_root *uuid_root;
4751     struct task_struct *task;
4752     int ret;
4753 
4754     /*
4755      * 1 - root node
4756      * 1 - root item
4757      */
4758     trans = btrfs_start_transaction(tree_root, 2);
4759     if (IS_ERR(trans))
4760         return PTR_ERR(trans);
4761 
4762     uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4763     if (IS_ERR(uuid_root)) {
4764         ret = PTR_ERR(uuid_root);
4765         btrfs_abort_transaction(trans, ret);
4766         btrfs_end_transaction(trans);
4767         return ret;
4768     }
4769 
4770     fs_info->uuid_root = uuid_root;
4771 
4772     ret = btrfs_commit_transaction(trans);
4773     if (ret)
4774         return ret;
4775 
4776     down(&fs_info->uuid_tree_rescan_sem);
4777     task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4778     if (IS_ERR(task)) {
4779         /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4780         btrfs_warn(fs_info, "failed to start uuid_scan task");
4781         up(&fs_info->uuid_tree_rescan_sem);
4782         return PTR_ERR(task);
4783     }
4784 
4785     return 0;
4786 }
4787 
4788 /*
4789  * shrinking a device means finding all of the device extents past
4790  * the new size, and then following the back refs to the chunks.
4791  * The chunk relocation code actually frees the device extent
4792  */
4793 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4794 {
4795     struct btrfs_fs_info *fs_info = device->fs_info;
4796     struct btrfs_root *root = fs_info->dev_root;
4797     struct btrfs_trans_handle *trans;
4798     struct btrfs_dev_extent *dev_extent = NULL;
4799     struct btrfs_path *path;
4800     u64 length;
4801     u64 chunk_offset;
4802     int ret;
4803     int slot;
4804     int failed = 0;
4805     bool retried = false;
4806     struct extent_buffer *l;
4807     struct btrfs_key key;
4808     struct btrfs_super_block *super_copy = fs_info->super_copy;
4809     u64 old_total = btrfs_super_total_bytes(super_copy);
4810     u64 old_size = btrfs_device_get_total_bytes(device);
4811     u64 diff;
4812     u64 start;
4813 
4814     new_size = round_down(new_size, fs_info->sectorsize);
4815     start = new_size;
4816     diff = round_down(old_size - new_size, fs_info->sectorsize);
4817 
4818     if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4819         return -EINVAL;
4820 
4821     path = btrfs_alloc_path();
4822     if (!path)
4823         return -ENOMEM;
4824 
4825     path->reada = READA_BACK;
4826 
4827     trans = btrfs_start_transaction(root, 0);
4828     if (IS_ERR(trans)) {
4829         btrfs_free_path(path);
4830         return PTR_ERR(trans);
4831     }
4832 
4833     mutex_lock(&fs_info->chunk_mutex);
4834 
4835     btrfs_device_set_total_bytes(device, new_size);
4836     if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4837         device->fs_devices->total_rw_bytes -= diff;
4838         atomic64_sub(diff, &fs_info->free_chunk_space);
4839     }
4840 
4841     /*
4842      * Once the device's size has been set to the new size, ensure all
4843      * in-memory chunks are synced to disk so that the loop below sees them
4844      * and relocates them accordingly.
4845      */
4846     if (contains_pending_extent(device, &start, diff)) {
4847         mutex_unlock(&fs_info->chunk_mutex);
4848         ret = btrfs_commit_transaction(trans);
4849         if (ret)
4850             goto done;
4851     } else {
4852         mutex_unlock(&fs_info->chunk_mutex);
4853         btrfs_end_transaction(trans);
4854     }
4855 
4856 again:
4857     key.objectid = device->devid;
4858     key.offset = (u64)-1;
4859     key.type = BTRFS_DEV_EXTENT_KEY;
4860 
4861     do {
4862         mutex_lock(&fs_info->reclaim_bgs_lock);
4863         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4864         if (ret < 0) {
4865             mutex_unlock(&fs_info->reclaim_bgs_lock);
4866             goto done;
4867         }
4868 
4869         ret = btrfs_previous_item(root, path, 0, key.type);
4870         if (ret) {
4871             mutex_unlock(&fs_info->reclaim_bgs_lock);
4872             if (ret < 0)
4873                 goto done;
4874             ret = 0;
4875             btrfs_release_path(path);
4876             break;
4877         }
4878 
4879         l = path->nodes[0];
4880         slot = path->slots[0];
4881         btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4882 
4883         if (key.objectid != device->devid) {
4884             mutex_unlock(&fs_info->reclaim_bgs_lock);
4885             btrfs_release_path(path);
4886             break;
4887         }
4888 
4889         dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4890         length = btrfs_dev_extent_length(l, dev_extent);
4891 
4892         if (key.offset + length <= new_size) {
4893             mutex_unlock(&fs_info->reclaim_bgs_lock);
4894             btrfs_release_path(path);
4895             break;
4896         }
4897 
4898         chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4899         btrfs_release_path(path);
4900 
4901         /*
4902          * We may be relocating the only data chunk we have,
4903          * which could potentially end up with losing data's
4904          * raid profile, so lets allocate an empty one in
4905          * advance.
4906          */
4907         ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4908         if (ret < 0) {
4909             mutex_unlock(&fs_info->reclaim_bgs_lock);
4910             goto done;
4911         }
4912 
4913         ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4914         mutex_unlock(&fs_info->reclaim_bgs_lock);
4915         if (ret == -ENOSPC) {
4916             failed++;
4917         } else if (ret) {
4918             if (ret == -ETXTBSY) {
4919                 btrfs_warn(fs_info,
4920            "could not shrink block group %llu due to active swapfile",
4921                        chunk_offset);
4922             }
4923             goto done;
4924         }
4925     } while (key.offset-- > 0);
4926 
4927     if (failed && !retried) {
4928         failed = 0;
4929         retried = true;
4930         goto again;
4931     } else if (failed && retried) {
4932         ret = -ENOSPC;
4933         goto done;
4934     }
4935 
4936     /* Shrinking succeeded, else we would be at "done". */
4937     trans = btrfs_start_transaction(root, 0);
4938     if (IS_ERR(trans)) {
4939         ret = PTR_ERR(trans);
4940         goto done;
4941     }
4942 
4943     mutex_lock(&fs_info->chunk_mutex);
4944     /* Clear all state bits beyond the shrunk device size */
4945     clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4946               CHUNK_STATE_MASK);
4947 
4948     btrfs_device_set_disk_total_bytes(device, new_size);
4949     if (list_empty(&device->post_commit_list))
4950         list_add_tail(&device->post_commit_list,
4951                   &trans->transaction->dev_update_list);
4952 
4953     WARN_ON(diff > old_total);
4954     btrfs_set_super_total_bytes(super_copy,
4955             round_down(old_total - diff, fs_info->sectorsize));
4956     mutex_unlock(&fs_info->chunk_mutex);
4957 
4958     btrfs_reserve_chunk_metadata(trans, false);
4959     /* Now btrfs_update_device() will change the on-disk size. */
4960     ret = btrfs_update_device(trans, device);
4961     btrfs_trans_release_chunk_metadata(trans);
4962     if (ret < 0) {
4963         btrfs_abort_transaction(trans, ret);
4964         btrfs_end_transaction(trans);
4965     } else {
4966         ret = btrfs_commit_transaction(trans);
4967     }
4968 done:
4969     btrfs_free_path(path);
4970     if (ret) {
4971         mutex_lock(&fs_info->chunk_mutex);
4972         btrfs_device_set_total_bytes(device, old_size);
4973         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4974             device->fs_devices->total_rw_bytes += diff;
4975         atomic64_add(diff, &fs_info->free_chunk_space);
4976         mutex_unlock(&fs_info->chunk_mutex);
4977     }
4978     return ret;
4979 }
4980 
4981 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4982                struct btrfs_key *key,
4983                struct btrfs_chunk *chunk, int item_size)
4984 {
4985     struct btrfs_super_block *super_copy = fs_info->super_copy;
4986     struct btrfs_disk_key disk_key;
4987     u32 array_size;
4988     u8 *ptr;
4989 
4990     lockdep_assert_held(&fs_info->chunk_mutex);
4991 
4992     array_size = btrfs_super_sys_array_size(super_copy);
4993     if (array_size + item_size + sizeof(disk_key)
4994             > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4995         return -EFBIG;
4996 
4997     ptr = super_copy->sys_chunk_array + array_size;
4998     btrfs_cpu_key_to_disk(&disk_key, key);
4999     memcpy(ptr, &disk_key, sizeof(disk_key));
5000     ptr += sizeof(disk_key);
5001     memcpy(ptr, chunk, item_size);
5002     item_size += sizeof(disk_key);
5003     btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5004 
5005     return 0;
5006 }
5007 
5008 /*
5009  * sort the devices in descending order by max_avail, total_avail
5010  */
5011 static int btrfs_cmp_device_info(const void *a, const void *b)
5012 {
5013     const struct btrfs_device_info *di_a = a;
5014     const struct btrfs_device_info *di_b = b;
5015 
5016     if (di_a->max_avail > di_b->max_avail)
5017         return -1;
5018     if (di_a->max_avail < di_b->max_avail)
5019         return 1;
5020     if (di_a->total_avail > di_b->total_avail)
5021         return -1;
5022     if (di_a->total_avail < di_b->total_avail)
5023         return 1;
5024     return 0;
5025 }
5026 
5027 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5028 {
5029     if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5030         return;
5031 
5032     btrfs_set_fs_incompat(info, RAID56);
5033 }
5034 
5035 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5036 {
5037     if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5038         return;
5039 
5040     btrfs_set_fs_incompat(info, RAID1C34);
5041 }
5042 
5043 /*
5044  * Structure used internally for btrfs_create_chunk() function.
5045  * Wraps needed parameters.
5046  */
5047 struct alloc_chunk_ctl {
5048     u64 start;
5049     u64 type;
5050     /* Total number of stripes to allocate */
5051     int num_stripes;
5052     /* sub_stripes info for map */
5053     int sub_stripes;
5054     /* Stripes per device */
5055     int dev_stripes;
5056     /* Maximum number of devices to use */
5057     int devs_max;
5058     /* Minimum number of devices to use */
5059     int devs_min;
5060     /* ndevs has to be a multiple of this */
5061     int devs_increment;
5062     /* Number of copies */
5063     int ncopies;
5064     /* Number of stripes worth of bytes to store parity information */
5065     int nparity;
5066     u64 max_stripe_size;
5067     u64 max_chunk_size;
5068     u64 dev_extent_min;
5069     u64 stripe_size;
5070     u64 chunk_size;
5071     int ndevs;
5072 };
5073 
5074 static void init_alloc_chunk_ctl_policy_regular(
5075                 struct btrfs_fs_devices *fs_devices,
5076                 struct alloc_chunk_ctl *ctl)
5077 {
5078     struct btrfs_space_info *space_info;
5079 
5080     space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5081     ASSERT(space_info);
5082 
5083     ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5084     ctl->max_stripe_size = ctl->max_chunk_size;
5085 
5086     if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5087         ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5088 
5089     /* We don't want a chunk larger than 10% of writable space */
5090     ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5091                   ctl->max_chunk_size);
5092     ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5093 }
5094 
5095 static void init_alloc_chunk_ctl_policy_zoned(
5096                       struct btrfs_fs_devices *fs_devices,
5097                       struct alloc_chunk_ctl *ctl)
5098 {
5099     u64 zone_size = fs_devices->fs_info->zone_size;
5100     u64 limit;
5101     int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5102     int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5103     u64 min_chunk_size = min_data_stripes * zone_size;
5104     u64 type = ctl->type;
5105 
5106     ctl->max_stripe_size = zone_size;
5107     if (type & BTRFS_BLOCK_GROUP_DATA) {
5108         ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5109                          zone_size);
5110     } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5111         ctl->max_chunk_size = ctl->max_stripe_size;
5112     } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5113         ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5114         ctl->devs_max = min_t(int, ctl->devs_max,
5115                       BTRFS_MAX_DEVS_SYS_CHUNK);
5116     } else {
5117         BUG();
5118     }
5119 
5120     /* We don't want a chunk larger than 10% of writable space */
5121     limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5122                    zone_size),
5123             min_chunk_size);
5124     ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5125     ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5126 }
5127 
5128 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5129                  struct alloc_chunk_ctl *ctl)
5130 {
5131     int index = btrfs_bg_flags_to_raid_index(ctl->type);
5132 
5133     ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5134     ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5135     ctl->devs_max = btrfs_raid_array[index].devs_max;
5136     if (!ctl->devs_max)
5137         ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5138     ctl->devs_min = btrfs_raid_array[index].devs_min;
5139     ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5140     ctl->ncopies = btrfs_raid_array[index].ncopies;
5141     ctl->nparity = btrfs_raid_array[index].nparity;
5142     ctl->ndevs = 0;
5143 
5144     switch (fs_devices->chunk_alloc_policy) {
5145     case BTRFS_CHUNK_ALLOC_REGULAR:
5146         init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5147         break;
5148     case BTRFS_CHUNK_ALLOC_ZONED:
5149         init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5150         break;
5151     default:
5152         BUG();
5153     }
5154 }
5155 
5156 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5157                   struct alloc_chunk_ctl *ctl,
5158                   struct btrfs_device_info *devices_info)
5159 {
5160     struct btrfs_fs_info *info = fs_devices->fs_info;
5161     struct btrfs_device *device;
5162     u64 total_avail;
5163     u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5164     int ret;
5165     int ndevs = 0;
5166     u64 max_avail;
5167     u64 dev_offset;
5168 
5169     /*
5170      * in the first pass through the devices list, we gather information
5171      * about the available holes on each device.
5172      */
5173     list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5174         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5175             WARN(1, KERN_ERR
5176                    "BTRFS: read-only device in alloc_list\n");
5177             continue;
5178         }
5179 
5180         if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5181                     &device->dev_state) ||
5182             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5183             continue;
5184 
5185         if (device->total_bytes > device->bytes_used)
5186             total_avail = device->total_bytes - device->bytes_used;
5187         else
5188             total_avail = 0;
5189 
5190         /* If there is no space on this device, skip it. */
5191         if (total_avail < ctl->dev_extent_min)
5192             continue;
5193 
5194         ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5195                        &max_avail);
5196         if (ret && ret != -ENOSPC)
5197             return ret;
5198 
5199         if (ret == 0)
5200             max_avail = dev_extent_want;
5201 
5202         if (max_avail < ctl->dev_extent_min) {
5203             if (btrfs_test_opt(info, ENOSPC_DEBUG))
5204                 btrfs_debug(info,
5205             "%s: devid %llu has no free space, have=%llu want=%llu",
5206                         __func__, device->devid, max_avail,
5207                         ctl->dev_extent_min);
5208             continue;
5209         }
5210 
5211         if (ndevs == fs_devices->rw_devices) {
5212             WARN(1, "%s: found more than %llu devices\n",
5213                  __func__, fs_devices->rw_devices);
5214             break;
5215         }
5216         devices_info[ndevs].dev_offset = dev_offset;
5217         devices_info[ndevs].max_avail = max_avail;
5218         devices_info[ndevs].total_avail = total_avail;
5219         devices_info[ndevs].dev = device;
5220         ++ndevs;
5221     }
5222     ctl->ndevs = ndevs;
5223 
5224     /*
5225      * now sort the devices by hole size / available space
5226      */
5227     sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5228          btrfs_cmp_device_info, NULL);
5229 
5230     return 0;
5231 }
5232 
5233 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5234                       struct btrfs_device_info *devices_info)
5235 {
5236     /* Number of stripes that count for block group size */
5237     int data_stripes;
5238 
5239     /*
5240      * The primary goal is to maximize the number of stripes, so use as
5241      * many devices as possible, even if the stripes are not maximum sized.
5242      *
5243      * The DUP profile stores more than one stripe per device, the
5244      * max_avail is the total size so we have to adjust.
5245      */
5246     ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5247                    ctl->dev_stripes);
5248     ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5249 
5250     /* This will have to be fixed for RAID1 and RAID10 over more drives */
5251     data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5252 
5253     /*
5254      * Use the number of data stripes to figure out how big this chunk is
5255      * really going to be in terms of logical address space, and compare
5256      * that answer with the max chunk size. If it's higher, we try to
5257      * reduce stripe_size.
5258      */
5259     if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5260         /*
5261          * Reduce stripe_size, round it up to a 16MB boundary again and
5262          * then use it, unless it ends up being even bigger than the
5263          * previous value we had already.
5264          */
5265         ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5266                             data_stripes), SZ_16M),
5267                        ctl->stripe_size);
5268     }
5269 
5270     /* Stripe size should not go beyond 1G. */
5271     ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5272 
5273     /* Align to BTRFS_STRIPE_LEN */
5274     ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5275     ctl->chunk_size = ctl->stripe_size * data_stripes;
5276 
5277     return 0;
5278 }
5279 
5280 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5281                     struct btrfs_device_info *devices_info)
5282 {
5283     u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5284     /* Number of stripes that count for block group size */
5285     int data_stripes;
5286 
5287     /*
5288      * It should hold because:
5289      *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5290      */
5291     ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5292 
5293     ctl->stripe_size = zone_size;
5294     ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5295     data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5296 
5297     /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5298     if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5299         ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5300                          ctl->stripe_size) + ctl->nparity,
5301                      ctl->dev_stripes);
5302         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5303         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5304         ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5305     }
5306 
5307     ctl->chunk_size = ctl->stripe_size * data_stripes;
5308 
5309     return 0;
5310 }
5311 
5312 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5313                   struct alloc_chunk_ctl *ctl,
5314                   struct btrfs_device_info *devices_info)
5315 {
5316     struct btrfs_fs_info *info = fs_devices->fs_info;
5317 
5318     /*
5319      * Round down to number of usable stripes, devs_increment can be any
5320      * number so we can't use round_down() that requires power of 2, while
5321      * rounddown is safe.
5322      */
5323     ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5324 
5325     if (ctl->ndevs < ctl->devs_min) {
5326         if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5327             btrfs_debug(info,
5328     "%s: not enough devices with free space: have=%d minimum required=%d",
5329                     __func__, ctl->ndevs, ctl->devs_min);
5330         }
5331         return -ENOSPC;
5332     }
5333 
5334     ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5335 
5336     switch (fs_devices->chunk_alloc_policy) {
5337     case BTRFS_CHUNK_ALLOC_REGULAR:
5338         return decide_stripe_size_regular(ctl, devices_info);
5339     case BTRFS_CHUNK_ALLOC_ZONED:
5340         return decide_stripe_size_zoned(ctl, devices_info);
5341     default:
5342         BUG();
5343     }
5344 }
5345 
5346 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5347             struct alloc_chunk_ctl *ctl,
5348             struct btrfs_device_info *devices_info)
5349 {
5350     struct btrfs_fs_info *info = trans->fs_info;
5351     struct map_lookup *map = NULL;
5352     struct extent_map_tree *em_tree;
5353     struct btrfs_block_group *block_group;
5354     struct extent_map *em;
5355     u64 start = ctl->start;
5356     u64 type = ctl->type;
5357     int ret;
5358     int i;
5359     int j;
5360 
5361     map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5362     if (!map)
5363         return ERR_PTR(-ENOMEM);
5364     map->num_stripes = ctl->num_stripes;
5365 
5366     for (i = 0; i < ctl->ndevs; ++i) {
5367         for (j = 0; j < ctl->dev_stripes; ++j) {
5368             int s = i * ctl->dev_stripes + j;
5369             map->stripes[s].dev = devices_info[i].dev;
5370             map->stripes[s].physical = devices_info[i].dev_offset +
5371                            j * ctl->stripe_size;
5372         }
5373     }
5374     map->stripe_len = BTRFS_STRIPE_LEN;
5375     map->io_align = BTRFS_STRIPE_LEN;
5376     map->io_width = BTRFS_STRIPE_LEN;
5377     map->type = type;
5378     map->sub_stripes = ctl->sub_stripes;
5379 
5380     trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5381 
5382     em = alloc_extent_map();
5383     if (!em) {
5384         kfree(map);
5385         return ERR_PTR(-ENOMEM);
5386     }
5387     set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5388     em->map_lookup = map;
5389     em->start = start;
5390     em->len = ctl->chunk_size;
5391     em->block_start = 0;
5392     em->block_len = em->len;
5393     em->orig_block_len = ctl->stripe_size;
5394 
5395     em_tree = &info->mapping_tree;
5396     write_lock(&em_tree->lock);
5397     ret = add_extent_mapping(em_tree, em, 0);
5398     if (ret) {
5399         write_unlock(&em_tree->lock);
5400         free_extent_map(em);
5401         return ERR_PTR(ret);
5402     }
5403     write_unlock(&em_tree->lock);
5404 
5405     block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5406     if (IS_ERR(block_group))
5407         goto error_del_extent;
5408 
5409     for (i = 0; i < map->num_stripes; i++) {
5410         struct btrfs_device *dev = map->stripes[i].dev;
5411 
5412         btrfs_device_set_bytes_used(dev,
5413                         dev->bytes_used + ctl->stripe_size);
5414         if (list_empty(&dev->post_commit_list))
5415             list_add_tail(&dev->post_commit_list,
5416                       &trans->transaction->dev_update_list);
5417     }
5418 
5419     atomic64_sub(ctl->stripe_size * map->num_stripes,
5420              &info->free_chunk_space);
5421 
5422     free_extent_map(em);
5423     check_raid56_incompat_flag(info, type);
5424     check_raid1c34_incompat_flag(info, type);
5425 
5426     return block_group;
5427 
5428 error_del_extent:
5429     write_lock(&em_tree->lock);
5430     remove_extent_mapping(em_tree, em);
5431     write_unlock(&em_tree->lock);
5432 
5433     /* One for our allocation */
5434     free_extent_map(em);
5435     /* One for the tree reference */
5436     free_extent_map(em);
5437 
5438     return block_group;
5439 }
5440 
5441 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5442                         u64 type)
5443 {
5444     struct btrfs_fs_info *info = trans->fs_info;
5445     struct btrfs_fs_devices *fs_devices = info->fs_devices;
5446     struct btrfs_device_info *devices_info = NULL;
5447     struct alloc_chunk_ctl ctl;
5448     struct btrfs_block_group *block_group;
5449     int ret;
5450 
5451     lockdep_assert_held(&info->chunk_mutex);
5452 
5453     if (!alloc_profile_is_valid(type, 0)) {
5454         ASSERT(0);
5455         return ERR_PTR(-EINVAL);
5456     }
5457 
5458     if (list_empty(&fs_devices->alloc_list)) {
5459         if (btrfs_test_opt(info, ENOSPC_DEBUG))
5460             btrfs_debug(info, "%s: no writable device", __func__);
5461         return ERR_PTR(-ENOSPC);
5462     }
5463 
5464     if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5465         btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5466         ASSERT(0);
5467         return ERR_PTR(-EINVAL);
5468     }
5469 
5470     ctl.start = find_next_chunk(info);
5471     ctl.type = type;
5472     init_alloc_chunk_ctl(fs_devices, &ctl);
5473 
5474     devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5475                    GFP_NOFS);
5476     if (!devices_info)
5477         return ERR_PTR(-ENOMEM);
5478 
5479     ret = gather_device_info(fs_devices, &ctl, devices_info);
5480     if (ret < 0) {
5481         block_group = ERR_PTR(ret);
5482         goto out;
5483     }
5484 
5485     ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5486     if (ret < 0) {
5487         block_group = ERR_PTR(ret);
5488         goto out;
5489     }
5490 
5491     block_group = create_chunk(trans, &ctl, devices_info);
5492 
5493 out:
5494     kfree(devices_info);
5495     return block_group;
5496 }
5497 
5498 /*
5499  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5500  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5501  * chunks.
5502  *
5503  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5504  * phases.
5505  */
5506 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5507                      struct btrfs_block_group *bg)
5508 {
5509     struct btrfs_fs_info *fs_info = trans->fs_info;
5510     struct btrfs_root *chunk_root = fs_info->chunk_root;
5511     struct btrfs_key key;
5512     struct btrfs_chunk *chunk;
5513     struct btrfs_stripe *stripe;
5514     struct extent_map *em;
5515     struct map_lookup *map;
5516     size_t item_size;
5517     int i;
5518     int ret;
5519 
5520     /*
5521      * We take the chunk_mutex for 2 reasons:
5522      *
5523      * 1) Updates and insertions in the chunk btree must be done while holding
5524      *    the chunk_mutex, as well as updating the system chunk array in the
5525      *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5526      *    details;
5527      *
5528      * 2) To prevent races with the final phase of a device replace operation
5529      *    that replaces the device object associated with the map's stripes,
5530      *    because the device object's id can change at any time during that
5531      *    final phase of the device replace operation
5532      *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5533      *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5534      *    which would cause a failure when updating the device item, which does
5535      *    not exists, or persisting a stripe of the chunk item with such ID.
5536      *    Here we can't use the device_list_mutex because our caller already
5537      *    has locked the chunk_mutex, and the final phase of device replace
5538      *    acquires both mutexes - first the device_list_mutex and then the
5539      *    chunk_mutex. Using any of those two mutexes protects us from a
5540      *    concurrent device replace.
5541      */
5542     lockdep_assert_held(&fs_info->chunk_mutex);
5543 
5544     em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5545     if (IS_ERR(em)) {
5546         ret = PTR_ERR(em);
5547         btrfs_abort_transaction(trans, ret);
5548         return ret;
5549     }
5550 
5551     map = em->map_lookup;
5552     item_size = btrfs_chunk_item_size(map->num_stripes);
5553 
5554     chunk = kzalloc(item_size, GFP_NOFS);
5555     if (!chunk) {
5556         ret = -ENOMEM;
5557         btrfs_abort_transaction(trans, ret);
5558         goto out;
5559     }
5560 
5561     for (i = 0; i < map->num_stripes; i++) {
5562         struct btrfs_device *device = map->stripes[i].dev;
5563 
5564         ret = btrfs_update_device(trans, device);
5565         if (ret)
5566             goto out;
5567     }
5568 
5569     stripe = &chunk->stripe;
5570     for (i = 0; i < map->num_stripes; i++) {
5571         struct btrfs_device *device = map->stripes[i].dev;
5572         const u64 dev_offset = map->stripes[i].physical;
5573 
5574         btrfs_set_stack_stripe_devid(stripe, device->devid);
5575         btrfs_set_stack_stripe_offset(stripe, dev_offset);
5576         memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5577         stripe++;
5578     }
5579 
5580     btrfs_set_stack_chunk_length(chunk, bg->length);
5581     btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5582     btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5583     btrfs_set_stack_chunk_type(chunk, map->type);
5584     btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5585     btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5586     btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5587     btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5588     btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5589 
5590     key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5591     key.type = BTRFS_CHUNK_ITEM_KEY;
5592     key.offset = bg->start;
5593 
5594     ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5595     if (ret)
5596         goto out;
5597 
5598     bg->chunk_item_inserted = 1;
5599 
5600     if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5601         ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5602         if (ret)
5603             goto out;
5604     }
5605 
5606 out:
5607     kfree(chunk);
5608     free_extent_map(em);
5609     return ret;
5610 }
5611 
5612 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5613 {
5614     struct btrfs_fs_info *fs_info = trans->fs_info;
5615     u64 alloc_profile;
5616     struct btrfs_block_group *meta_bg;
5617     struct btrfs_block_group *sys_bg;
5618 
5619     /*
5620      * When adding a new device for sprouting, the seed device is read-only
5621      * so we must first allocate a metadata and a system chunk. But before
5622      * adding the block group items to the extent, device and chunk btrees,
5623      * we must first:
5624      *
5625      * 1) Create both chunks without doing any changes to the btrees, as
5626      *    otherwise we would get -ENOSPC since the block groups from the
5627      *    seed device are read-only;
5628      *
5629      * 2) Add the device item for the new sprout device - finishing the setup
5630      *    of a new block group requires updating the device item in the chunk
5631      *    btree, so it must exist when we attempt to do it. The previous step
5632      *    ensures this does not fail with -ENOSPC.
5633      *
5634      * After that we can add the block group items to their btrees:
5635      * update existing device item in the chunk btree, add a new block group
5636      * item to the extent btree, add a new chunk item to the chunk btree and
5637      * finally add the new device extent items to the devices btree.
5638      */
5639 
5640     alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5641     meta_bg = btrfs_create_chunk(trans, alloc_profile);
5642     if (IS_ERR(meta_bg))
5643         return PTR_ERR(meta_bg);
5644 
5645     alloc_profile = btrfs_system_alloc_profile(fs_info);
5646     sys_bg = btrfs_create_chunk(trans, alloc_profile);
5647     if (IS_ERR(sys_bg))
5648         return PTR_ERR(sys_bg);
5649 
5650     return 0;
5651 }
5652 
5653 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5654 {
5655     const int index = btrfs_bg_flags_to_raid_index(map->type);
5656 
5657     return btrfs_raid_array[index].tolerated_failures;
5658 }
5659 
5660 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5661 {
5662     struct extent_map *em;
5663     struct map_lookup *map;
5664     int miss_ndevs = 0;
5665     int i;
5666     bool ret = true;
5667 
5668     em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5669     if (IS_ERR(em))
5670         return false;
5671 
5672     map = em->map_lookup;
5673     for (i = 0; i < map->num_stripes; i++) {
5674         if (test_bit(BTRFS_DEV_STATE_MISSING,
5675                     &map->stripes[i].dev->dev_state)) {
5676             miss_ndevs++;
5677             continue;
5678         }
5679         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5680                     &map->stripes[i].dev->dev_state)) {
5681             ret = false;
5682             goto end;
5683         }
5684     }
5685 
5686     /*
5687      * If the number of missing devices is larger than max errors, we can
5688      * not write the data into that chunk successfully.
5689      */
5690     if (miss_ndevs > btrfs_chunk_max_errors(map))
5691         ret = false;
5692 end:
5693     free_extent_map(em);
5694     return ret;
5695 }
5696 
5697 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5698 {
5699     struct extent_map *em;
5700 
5701     while (1) {
5702         write_lock(&tree->lock);
5703         em = lookup_extent_mapping(tree, 0, (u64)-1);
5704         if (em)
5705             remove_extent_mapping(tree, em);
5706         write_unlock(&tree->lock);
5707         if (!em)
5708             break;
5709         /* once for us */
5710         free_extent_map(em);
5711         /* once for the tree */
5712         free_extent_map(em);
5713     }
5714 }
5715 
5716 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5717 {
5718     struct extent_map *em;
5719     struct map_lookup *map;
5720     enum btrfs_raid_types index;
5721     int ret = 1;
5722 
5723     em = btrfs_get_chunk_map(fs_info, logical, len);
5724     if (IS_ERR(em))
5725         /*
5726          * We could return errors for these cases, but that could get
5727          * ugly and we'd probably do the same thing which is just not do
5728          * anything else and exit, so return 1 so the callers don't try
5729          * to use other copies.
5730          */
5731         return 1;
5732 
5733     map = em->map_lookup;
5734     index = btrfs_bg_flags_to_raid_index(map->type);
5735 
5736     /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5737     if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5738         ret = btrfs_raid_array[index].ncopies;
5739     else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5740         ret = 2;
5741     else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5742         /*
5743          * There could be two corrupted data stripes, we need
5744          * to loop retry in order to rebuild the correct data.
5745          *
5746          * Fail a stripe at a time on every retry except the
5747          * stripe under reconstruction.
5748          */
5749         ret = map->num_stripes;
5750     free_extent_map(em);
5751 
5752     down_read(&fs_info->dev_replace.rwsem);
5753     if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5754         fs_info->dev_replace.tgtdev)
5755         ret++;
5756     up_read(&fs_info->dev_replace.rwsem);
5757 
5758     return ret;
5759 }
5760 
5761 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5762                     u64 logical)
5763 {
5764     struct extent_map *em;
5765     struct map_lookup *map;
5766     unsigned long len = fs_info->sectorsize;
5767 
5768     if (!btrfs_fs_incompat(fs_info, RAID56))
5769         return len;
5770 
5771     em = btrfs_get_chunk_map(fs_info, logical, len);
5772 
5773     if (!WARN_ON(IS_ERR(em))) {
5774         map = em->map_lookup;
5775         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5776             len = map->stripe_len * nr_data_stripes(map);
5777         free_extent_map(em);
5778     }
5779     return len;
5780 }
5781 
5782 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5783 {
5784     struct extent_map *em;
5785     struct map_lookup *map;
5786     int ret = 0;
5787 
5788     if (!btrfs_fs_incompat(fs_info, RAID56))
5789         return 0;
5790 
5791     em = btrfs_get_chunk_map(fs_info, logical, len);
5792 
5793     if(!WARN_ON(IS_ERR(em))) {
5794         map = em->map_lookup;
5795         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5796             ret = 1;
5797         free_extent_map(em);
5798     }
5799     return ret;
5800 }
5801 
5802 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5803                 struct map_lookup *map, int first,
5804                 int dev_replace_is_ongoing)
5805 {
5806     int i;
5807     int num_stripes;
5808     int preferred_mirror;
5809     int tolerance;
5810     struct btrfs_device *srcdev;
5811 
5812     ASSERT((map->type &
5813          (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5814 
5815     if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5816         num_stripes = map->sub_stripes;
5817     else
5818         num_stripes = map->num_stripes;
5819 
5820     switch (fs_info->fs_devices->read_policy) {
5821     default:
5822         /* Shouldn't happen, just warn and use pid instead of failing */
5823         btrfs_warn_rl(fs_info,
5824                   "unknown read_policy type %u, reset to pid",
5825                   fs_info->fs_devices->read_policy);
5826         fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5827         fallthrough;
5828     case BTRFS_READ_POLICY_PID:
5829         preferred_mirror = first + (current->pid % num_stripes);
5830         break;
5831     }
5832 
5833     if (dev_replace_is_ongoing &&
5834         fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5835          BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5836         srcdev = fs_info->dev_replace.srcdev;
5837     else
5838         srcdev = NULL;
5839 
5840     /*
5841      * try to avoid the drive that is the source drive for a
5842      * dev-replace procedure, only choose it if no other non-missing
5843      * mirror is available
5844      */
5845     for (tolerance = 0; tolerance < 2; tolerance++) {
5846         if (map->stripes[preferred_mirror].dev->bdev &&
5847             (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5848             return preferred_mirror;
5849         for (i = first; i < first + num_stripes; i++) {
5850             if (map->stripes[i].dev->bdev &&
5851                 (tolerance || map->stripes[i].dev != srcdev))
5852                 return i;
5853         }
5854     }
5855 
5856     /* we couldn't find one that doesn't fail.  Just return something
5857      * and the io error handling code will clean up eventually
5858      */
5859     return preferred_mirror;
5860 }
5861 
5862 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5863 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5864 {
5865     int i;
5866     int again = 1;
5867 
5868     while (again) {
5869         again = 0;
5870         for (i = 0; i < num_stripes - 1; i++) {
5871             /* Swap if parity is on a smaller index */
5872             if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5873                 swap(bioc->stripes[i], bioc->stripes[i + 1]);
5874                 swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5875                 again = 1;
5876             }
5877         }
5878     }
5879 }
5880 
5881 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5882                                int total_stripes,
5883                                int real_stripes)
5884 {
5885     struct btrfs_io_context *bioc = kzalloc(
5886          /* The size of btrfs_io_context */
5887         sizeof(struct btrfs_io_context) +
5888         /* Plus the variable array for the stripes */
5889         sizeof(struct btrfs_io_stripe) * (total_stripes) +
5890         /* Plus the variable array for the tgt dev */
5891         sizeof(int) * (real_stripes) +
5892         /*
5893          * Plus the raid_map, which includes both the tgt dev
5894          * and the stripes.
5895          */
5896         sizeof(u64) * (total_stripes),
5897         GFP_NOFS|__GFP_NOFAIL);
5898 
5899     atomic_set(&bioc->error, 0);
5900     refcount_set(&bioc->refs, 1);
5901 
5902     bioc->fs_info = fs_info;
5903     bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5904     bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5905 
5906     return bioc;
5907 }
5908 
5909 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5910 {
5911     WARN_ON(!refcount_read(&bioc->refs));
5912     refcount_inc(&bioc->refs);
5913 }
5914 
5915 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5916 {
5917     if (!bioc)
5918         return;
5919     if (refcount_dec_and_test(&bioc->refs))
5920         kfree(bioc);
5921 }
5922 
5923 /*
5924  * Please note that, discard won't be sent to target device of device
5925  * replace.
5926  */
5927 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5928                            u64 logical, u64 *length_ret,
5929                            u32 *num_stripes)
5930 {
5931     struct extent_map *em;
5932     struct map_lookup *map;
5933     struct btrfs_discard_stripe *stripes;
5934     u64 length = *length_ret;
5935     u64 offset;
5936     u64 stripe_nr;
5937     u64 stripe_nr_end;
5938     u64 stripe_end_offset;
5939     u64 stripe_cnt;
5940     u64 stripe_len;
5941     u64 stripe_offset;
5942     u32 stripe_index;
5943     u32 factor = 0;
5944     u32 sub_stripes = 0;
5945     u64 stripes_per_dev = 0;
5946     u32 remaining_stripes = 0;
5947     u32 last_stripe = 0;
5948     int ret;
5949     int i;
5950 
5951     em = btrfs_get_chunk_map(fs_info, logical, length);
5952     if (IS_ERR(em))
5953         return ERR_CAST(em);
5954 
5955     map = em->map_lookup;
5956 
5957     /* we don't discard raid56 yet */
5958     if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5959         ret = -EOPNOTSUPP;
5960         goto out_free_map;
5961 }
5962 
5963     offset = logical - em->start;
5964     length = min_t(u64, em->start + em->len - logical, length);
5965     *length_ret = length;
5966 
5967     stripe_len = map->stripe_len;
5968     /*
5969      * stripe_nr counts the total number of stripes we have to stride
5970      * to get to this block
5971      */
5972     stripe_nr = div64_u64(offset, stripe_len);
5973 
5974     /* stripe_offset is the offset of this block in its stripe */
5975     stripe_offset = offset - stripe_nr * stripe_len;
5976 
5977     stripe_nr_end = round_up(offset + length, map->stripe_len);
5978     stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5979     stripe_cnt = stripe_nr_end - stripe_nr;
5980     stripe_end_offset = stripe_nr_end * map->stripe_len -
5981                 (offset + length);
5982     /*
5983      * after this, stripe_nr is the number of stripes on this
5984      * device we have to walk to find the data, and stripe_index is
5985      * the number of our device in the stripe array
5986      */
5987     *num_stripes = 1;
5988     stripe_index = 0;
5989     if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5990              BTRFS_BLOCK_GROUP_RAID10)) {
5991         if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5992             sub_stripes = 1;
5993         else
5994             sub_stripes = map->sub_stripes;
5995 
5996         factor = map->num_stripes / sub_stripes;
5997         *num_stripes = min_t(u64, map->num_stripes,
5998                     sub_stripes * stripe_cnt);
5999         stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6000         stripe_index *= sub_stripes;
6001         stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6002                           &remaining_stripes);
6003         div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6004         last_stripe *= sub_stripes;
6005     } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6006                 BTRFS_BLOCK_GROUP_DUP)) {
6007         *num_stripes = map->num_stripes;
6008     } else {
6009         stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6010                     &stripe_index);
6011     }
6012 
6013     stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6014     if (!stripes) {
6015         ret = -ENOMEM;
6016         goto out_free_map;
6017     }
6018 
6019     for (i = 0; i < *num_stripes; i++) {
6020         stripes[i].physical =
6021             map->stripes[stripe_index].physical +
6022             stripe_offset + stripe_nr * map->stripe_len;
6023         stripes[i].dev = map->stripes[stripe_index].dev;
6024 
6025         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6026                  BTRFS_BLOCK_GROUP_RAID10)) {
6027             stripes[i].length = stripes_per_dev * map->stripe_len;
6028 
6029             if (i / sub_stripes < remaining_stripes)
6030                 stripes[i].length += map->stripe_len;
6031 
6032             /*
6033              * Special for the first stripe and
6034              * the last stripe:
6035              *
6036              * |-------|...|-------|
6037              *     |----------|
6038              *    off     end_off
6039              */
6040             if (i < sub_stripes)
6041                 stripes[i].length -= stripe_offset;
6042 
6043             if (stripe_index >= last_stripe &&
6044                 stripe_index <= (last_stripe +
6045                          sub_stripes - 1))
6046                 stripes[i].length -= stripe_end_offset;
6047 
6048             if (i == sub_stripes - 1)
6049                 stripe_offset = 0;
6050         } else {
6051             stripes[i].length = length;
6052         }
6053 
6054         stripe_index++;
6055         if (stripe_index == map->num_stripes) {
6056             stripe_index = 0;
6057             stripe_nr++;
6058         }
6059     }
6060 
6061     free_extent_map(em);
6062     return stripes;
6063 out_free_map:
6064     free_extent_map(em);
6065     return ERR_PTR(ret);
6066 }
6067 
6068 /*
6069  * In dev-replace case, for repair case (that's the only case where the mirror
6070  * is selected explicitly when calling btrfs_map_block), blocks left of the
6071  * left cursor can also be read from the target drive.
6072  *
6073  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6074  * array of stripes.
6075  * For READ, it also needs to be supported using the same mirror number.
6076  *
6077  * If the requested block is not left of the left cursor, EIO is returned. This
6078  * can happen because btrfs_num_copies() returns one more in the dev-replace
6079  * case.
6080  */
6081 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6082                      u64 logical, u64 length,
6083                      u64 srcdev_devid, int *mirror_num,
6084                      u64 *physical)
6085 {
6086     struct btrfs_io_context *bioc = NULL;
6087     int num_stripes;
6088     int index_srcdev = 0;
6089     int found = 0;
6090     u64 physical_of_found = 0;
6091     int i;
6092     int ret = 0;
6093 
6094     ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6095                 logical, &length, &bioc, 0, 0);
6096     if (ret) {
6097         ASSERT(bioc == NULL);
6098         return ret;
6099     }
6100 
6101     num_stripes = bioc->num_stripes;
6102     if (*mirror_num > num_stripes) {
6103         /*
6104          * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6105          * that means that the requested area is not left of the left
6106          * cursor
6107          */
6108         btrfs_put_bioc(bioc);
6109         return -EIO;
6110     }
6111 
6112     /*
6113      * process the rest of the function using the mirror_num of the source
6114      * drive. Therefore look it up first.  At the end, patch the device
6115      * pointer to the one of the target drive.
6116      */
6117     for (i = 0; i < num_stripes; i++) {
6118         if (bioc->stripes[i].dev->devid != srcdev_devid)
6119             continue;
6120 
6121         /*
6122          * In case of DUP, in order to keep it simple, only add the
6123          * mirror with the lowest physical address
6124          */
6125         if (found &&
6126             physical_of_found <= bioc->stripes[i].physical)
6127             continue;
6128 
6129         index_srcdev = i;
6130         found = 1;
6131         physical_of_found = bioc->stripes[i].physical;
6132     }
6133 
6134     btrfs_put_bioc(bioc);
6135 
6136     ASSERT(found);
6137     if (!found)
6138         return -EIO;
6139 
6140     *mirror_num = index_srcdev + 1;
6141     *physical = physical_of_found;
6142     return ret;
6143 }
6144 
6145 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6146 {
6147     struct btrfs_block_group *cache;
6148     bool ret;
6149 
6150     /* Non zoned filesystem does not use "to_copy" flag */
6151     if (!btrfs_is_zoned(fs_info))
6152         return false;
6153 
6154     cache = btrfs_lookup_block_group(fs_info, logical);
6155 
6156     spin_lock(&cache->lock);
6157     ret = cache->to_copy;
6158     spin_unlock(&cache->lock);
6159 
6160     btrfs_put_block_group(cache);
6161     return ret;
6162 }
6163 
6164 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6165                       struct btrfs_io_context **bioc_ret,
6166                       struct btrfs_dev_replace *dev_replace,
6167                       u64 logical,
6168                       int *num_stripes_ret, int *max_errors_ret)
6169 {
6170     struct btrfs_io_context *bioc = *bioc_ret;
6171     u64 srcdev_devid = dev_replace->srcdev->devid;
6172     int tgtdev_indexes = 0;
6173     int num_stripes = *num_stripes_ret;
6174     int max_errors = *max_errors_ret;
6175     int i;
6176 
6177     if (op == BTRFS_MAP_WRITE) {
6178         int index_where_to_add;
6179 
6180         /*
6181          * A block group which have "to_copy" set will eventually
6182          * copied by dev-replace process. We can avoid cloning IO here.
6183          */
6184         if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6185             return;
6186 
6187         /*
6188          * duplicate the write operations while the dev replace
6189          * procedure is running. Since the copying of the old disk to
6190          * the new disk takes place at run time while the filesystem is
6191          * mounted writable, the regular write operations to the old
6192          * disk have to be duplicated to go to the new disk as well.
6193          *
6194          * Note that device->missing is handled by the caller, and that
6195          * the write to the old disk is already set up in the stripes
6196          * array.
6197          */
6198         index_where_to_add = num_stripes;
6199         for (i = 0; i < num_stripes; i++) {
6200             if (bioc->stripes[i].dev->devid == srcdev_devid) {
6201                 /* write to new disk, too */
6202                 struct btrfs_io_stripe *new =
6203                     bioc->stripes + index_where_to_add;
6204                 struct btrfs_io_stripe *old =
6205                     bioc->stripes + i;
6206 
6207                 new->physical = old->physical;
6208                 new->dev = dev_replace->tgtdev;
6209                 bioc->tgtdev_map[i] = index_where_to_add;
6210                 index_where_to_add++;
6211                 max_errors++;
6212                 tgtdev_indexes++;
6213             }
6214         }
6215         num_stripes = index_where_to_add;
6216     } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6217         int index_srcdev = 0;
6218         int found = 0;
6219         u64 physical_of_found = 0;
6220 
6221         /*
6222          * During the dev-replace procedure, the target drive can also
6223          * be used to read data in case it is needed to repair a corrupt
6224          * block elsewhere. This is possible if the requested area is
6225          * left of the left cursor. In this area, the target drive is a
6226          * full copy of the source drive.
6227          */
6228         for (i = 0; i < num_stripes; i++) {
6229             if (bioc->stripes[i].dev->devid == srcdev_devid) {
6230                 /*
6231                  * In case of DUP, in order to keep it simple,
6232                  * only add the mirror with the lowest physical
6233                  * address
6234                  */
6235                 if (found &&
6236                     physical_of_found <= bioc->stripes[i].physical)
6237                     continue;
6238                 index_srcdev = i;
6239                 found = 1;
6240                 physical_of_found = bioc->stripes[i].physical;
6241             }
6242         }
6243         if (found) {
6244             struct btrfs_io_stripe *tgtdev_stripe =
6245                 bioc->stripes + num_stripes;
6246 
6247             tgtdev_stripe->physical = physical_of_found;
6248             tgtdev_stripe->dev = dev_replace->tgtdev;
6249             bioc->tgtdev_map[index_srcdev] = num_stripes;
6250 
6251             tgtdev_indexes++;
6252             num_stripes++;
6253         }
6254     }
6255 
6256     *num_stripes_ret = num_stripes;
6257     *max_errors_ret = max_errors;
6258     bioc->num_tgtdevs = tgtdev_indexes;
6259     *bioc_ret = bioc;
6260 }
6261 
6262 static bool need_full_stripe(enum btrfs_map_op op)
6263 {
6264     return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6265 }
6266 
6267 /*
6268  * Calculate the geometry of a particular (address, len) tuple. This
6269  * information is used to calculate how big a particular bio can get before it
6270  * straddles a stripe.
6271  *
6272  * @fs_info: the filesystem
6273  * @em:      mapping containing the logical extent
6274  * @op:      type of operation - write or read
6275  * @logical: address that we want to figure out the geometry of
6276  * @io_geom: pointer used to return values
6277  *
6278  * Returns < 0 in case a chunk for the given logical address cannot be found,
6279  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6280  */
6281 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6282               enum btrfs_map_op op, u64 logical,
6283               struct btrfs_io_geometry *io_geom)
6284 {
6285     struct map_lookup *map;
6286     u64 len;
6287     u64 offset;
6288     u64 stripe_offset;
6289     u64 stripe_nr;
6290     u32 stripe_len;
6291     u64 raid56_full_stripe_start = (u64)-1;
6292     int data_stripes;
6293 
6294     ASSERT(op != BTRFS_MAP_DISCARD);
6295 
6296     map = em->map_lookup;
6297     /* Offset of this logical address in the chunk */
6298     offset = logical - em->start;
6299     /* Len of a stripe in a chunk */
6300     stripe_len = map->stripe_len;
6301     /*
6302      * Stripe_nr is where this block falls in
6303      * stripe_offset is the offset of this block in its stripe.
6304      */
6305     stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset);
6306     ASSERT(stripe_offset < U32_MAX);
6307 
6308     data_stripes = nr_data_stripes(map);
6309 
6310     /* Only stripe based profiles needs to check against stripe length. */
6311     if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
6312         u64 max_len = stripe_len - stripe_offset;
6313 
6314         /*
6315          * In case of raid56, we need to know the stripe aligned start
6316          */
6317         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6318             unsigned long full_stripe_len = stripe_len * data_stripes;
6319             raid56_full_stripe_start = offset;
6320 
6321             /*
6322              * Allow a write of a full stripe, but make sure we
6323              * don't allow straddling of stripes
6324              */
6325             raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6326                     full_stripe_len);
6327             raid56_full_stripe_start *= full_stripe_len;
6328 
6329             /*
6330              * For writes to RAID[56], allow a full stripeset across
6331              * all disks. For other RAID types and for RAID[56]
6332              * reads, just allow a single stripe (on a single disk).
6333              */
6334             if (op == BTRFS_MAP_WRITE) {
6335                 max_len = stripe_len * data_stripes -
6336                       (offset - raid56_full_stripe_start);
6337             }
6338         }
6339         len = min_t(u64, em->len - offset, max_len);
6340     } else {
6341         len = em->len - offset;
6342     }
6343 
6344     io_geom->len = len;
6345     io_geom->offset = offset;
6346     io_geom->stripe_len = stripe_len;
6347     io_geom->stripe_nr = stripe_nr;
6348     io_geom->stripe_offset = stripe_offset;
6349     io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6350 
6351     return 0;
6352 }
6353 
6354 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6355                  enum btrfs_map_op op,
6356                  u64 logical, u64 *length,
6357                  struct btrfs_io_context **bioc_ret,
6358                  int mirror_num, int need_raid_map)
6359 {
6360     struct extent_map *em;
6361     struct map_lookup *map;
6362     u64 stripe_offset;
6363     u64 stripe_nr;
6364     u64 stripe_len;
6365     u32 stripe_index;
6366     int data_stripes;
6367     int i;
6368     int ret = 0;
6369     int num_stripes;
6370     int max_errors = 0;
6371     int tgtdev_indexes = 0;
6372     struct btrfs_io_context *bioc = NULL;
6373     struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6374     int dev_replace_is_ongoing = 0;
6375     int num_alloc_stripes;
6376     int patch_the_first_stripe_for_dev_replace = 0;
6377     u64 physical_to_patch_in_first_stripe = 0;
6378     u64 raid56_full_stripe_start = (u64)-1;
6379     struct btrfs_io_geometry geom;
6380 
6381     ASSERT(bioc_ret);
6382     ASSERT(op != BTRFS_MAP_DISCARD);
6383 
6384     em = btrfs_get_chunk_map(fs_info, logical, *length);
6385     ASSERT(!IS_ERR(em));
6386 
6387     ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6388     if (ret < 0)
6389         return ret;
6390 
6391     map = em->map_lookup;
6392 
6393     *length = geom.len;
6394     stripe_len = geom.stripe_len;
6395     stripe_nr = geom.stripe_nr;
6396     stripe_offset = geom.stripe_offset;
6397     raid56_full_stripe_start = geom.raid56_stripe_offset;
6398     data_stripes = nr_data_stripes(map);
6399 
6400     down_read(&dev_replace->rwsem);
6401     dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6402     /*
6403      * Hold the semaphore for read during the whole operation, write is
6404      * requested at commit time but must wait.
6405      */
6406     if (!dev_replace_is_ongoing)
6407         up_read(&dev_replace->rwsem);
6408 
6409     if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6410         !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6411         ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6412                             dev_replace->srcdev->devid,
6413                             &mirror_num,
6414                         &physical_to_patch_in_first_stripe);
6415         if (ret)
6416             goto out;
6417         else
6418             patch_the_first_stripe_for_dev_replace = 1;
6419     } else if (mirror_num > map->num_stripes) {
6420         mirror_num = 0;
6421     }
6422 
6423     num_stripes = 1;
6424     stripe_index = 0;
6425     if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6426         stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6427                 &stripe_index);
6428         if (!need_full_stripe(op))
6429             mirror_num = 1;
6430     } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6431         if (need_full_stripe(op))
6432             num_stripes = map->num_stripes;
6433         else if (mirror_num)
6434             stripe_index = mirror_num - 1;
6435         else {
6436             stripe_index = find_live_mirror(fs_info, map, 0,
6437                         dev_replace_is_ongoing);
6438             mirror_num = stripe_index + 1;
6439         }
6440 
6441     } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6442         if (need_full_stripe(op)) {
6443             num_stripes = map->num_stripes;
6444         } else if (mirror_num) {
6445             stripe_index = mirror_num - 1;
6446         } else {
6447             mirror_num = 1;
6448         }
6449 
6450     } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6451         u32 factor = map->num_stripes / map->sub_stripes;
6452 
6453         stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6454         stripe_index *= map->sub_stripes;
6455 
6456         if (need_full_stripe(op))
6457             num_stripes = map->sub_stripes;
6458         else if (mirror_num)
6459             stripe_index += mirror_num - 1;
6460         else {
6461             int old_stripe_index = stripe_index;
6462             stripe_index = find_live_mirror(fs_info, map,
6463                           stripe_index,
6464                           dev_replace_is_ongoing);
6465             mirror_num = stripe_index - old_stripe_index + 1;
6466         }
6467 
6468     } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6469         ASSERT(map->stripe_len == BTRFS_STRIPE_LEN);
6470         if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6471             /* push stripe_nr back to the start of the full stripe */
6472             stripe_nr = div64_u64(raid56_full_stripe_start,
6473                     stripe_len * data_stripes);
6474 
6475             /* RAID[56] write or recovery. Return all stripes */
6476             num_stripes = map->num_stripes;
6477             max_errors = btrfs_chunk_max_errors(map);
6478 
6479             /* Return the length to the full stripe end */
6480             *length = min(logical + *length,
6481                       raid56_full_stripe_start + em->start +
6482                       data_stripes * stripe_len) - logical;
6483             stripe_index = 0;
6484             stripe_offset = 0;
6485         } else {
6486             /*
6487              * Mirror #0 or #1 means the original data block.
6488              * Mirror #2 is RAID5 parity block.
6489              * Mirror #3 is RAID6 Q block.
6490              */
6491             stripe_nr = div_u64_rem(stripe_nr,
6492                     data_stripes, &stripe_index);
6493             if (mirror_num > 1)
6494                 stripe_index = data_stripes + mirror_num - 2;
6495 
6496             /* We distribute the parity blocks across stripes */
6497             div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6498                     &stripe_index);
6499             if (!need_full_stripe(op) && mirror_num <= 1)
6500                 mirror_num = 1;
6501         }
6502     } else {
6503         /*
6504          * after this, stripe_nr is the number of stripes on this
6505          * device we have to walk to find the data, and stripe_index is
6506          * the number of our device in the stripe array
6507          */
6508         stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6509                 &stripe_index);
6510         mirror_num = stripe_index + 1;
6511     }
6512     if (stripe_index >= map->num_stripes) {
6513         btrfs_crit(fs_info,
6514                "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6515                stripe_index, map->num_stripes);
6516         ret = -EINVAL;
6517         goto out;
6518     }
6519 
6520     num_alloc_stripes = num_stripes;
6521     if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6522         if (op == BTRFS_MAP_WRITE)
6523             num_alloc_stripes <<= 1;
6524         if (op == BTRFS_MAP_GET_READ_MIRRORS)
6525             num_alloc_stripes++;
6526         tgtdev_indexes = num_stripes;
6527     }
6528 
6529     bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6530     if (!bioc) {
6531         ret = -ENOMEM;
6532         goto out;
6533     }
6534 
6535     for (i = 0; i < num_stripes; i++) {
6536         bioc->stripes[i].physical = map->stripes[stripe_index].physical +
6537             stripe_offset + stripe_nr * map->stripe_len;
6538         bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6539         stripe_index++;
6540     }
6541 
6542     /* Build raid_map */
6543     if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6544         (need_full_stripe(op) || mirror_num > 1)) {
6545         u64 tmp;
6546         unsigned rot;
6547 
6548         /* Work out the disk rotation on this stripe-set */
6549         div_u64_rem(stripe_nr, num_stripes, &rot);
6550 
6551         /* Fill in the logical address of each stripe */
6552         tmp = stripe_nr * data_stripes;
6553         for (i = 0; i < data_stripes; i++)
6554             bioc->raid_map[(i + rot) % num_stripes] =
6555                 em->start + (tmp + i) * map->stripe_len;
6556 
6557         bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6558         if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6559             bioc->raid_map[(i + rot + 1) % num_stripes] =
6560                 RAID6_Q_STRIPE;
6561 
6562         sort_parity_stripes(bioc, num_stripes);
6563     }
6564 
6565     if (need_full_stripe(op))
6566         max_errors = btrfs_chunk_max_errors(map);
6567 
6568     if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6569         need_full_stripe(op)) {
6570         handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6571                       &num_stripes, &max_errors);
6572     }
6573 
6574     *bioc_ret = bioc;
6575     bioc->map_type = map->type;
6576     bioc->num_stripes = num_stripes;
6577     bioc->max_errors = max_errors;
6578     bioc->mirror_num = mirror_num;
6579 
6580     /*
6581      * this is the case that REQ_READ && dev_replace_is_ongoing &&
6582      * mirror_num == num_stripes + 1 && dev_replace target drive is
6583      * available as a mirror
6584      */
6585     if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6586         WARN_ON(num_stripes > 1);
6587         bioc->stripes[0].dev = dev_replace->tgtdev;
6588         bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6589         bioc->mirror_num = map->num_stripes + 1;
6590     }
6591 out:
6592     if (dev_replace_is_ongoing) {
6593         lockdep_assert_held(&dev_replace->rwsem);
6594         /* Unlock and let waiting writers proceed */
6595         up_read(&dev_replace->rwsem);
6596     }
6597     free_extent_map(em);
6598     return ret;
6599 }
6600 
6601 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6602               u64 logical, u64 *length,
6603               struct btrfs_io_context **bioc_ret, int mirror_num)
6604 {
6605     return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6606                  mirror_num, 0);
6607 }
6608 
6609 /* For Scrub/replace */
6610 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6611              u64 logical, u64 *length,
6612              struct btrfs_io_context **bioc_ret)
6613 {
6614     return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 0, 1);
6615 }
6616 
6617 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_io_context *bioc)
6618 {
6619     if (bioc->orig_bio->bi_opf & REQ_META)
6620         return bioc->fs_info->endio_meta_workers;
6621     return bioc->fs_info->endio_workers;
6622 }
6623 
6624 static void btrfs_end_bio_work(struct work_struct *work)
6625 {
6626     struct btrfs_bio *bbio =
6627         container_of(work, struct btrfs_bio, end_io_work);
6628 
6629     bio_endio(&bbio->bio);
6630 }
6631 
6632 static void btrfs_end_bioc(struct btrfs_io_context *bioc, bool async)
6633 {
6634     struct bio *orig_bio = bioc->orig_bio;
6635     struct btrfs_bio *bbio = btrfs_bio(orig_bio);
6636 
6637     bbio->mirror_num = bioc->mirror_num;
6638     orig_bio->bi_private = bioc->private;
6639     orig_bio->bi_end_io = bioc->end_io;
6640 
6641     /*
6642      * Only send an error to the higher layers if it is beyond the tolerance
6643      * threshold.
6644      */
6645     if (atomic_read(&bioc->error) > bioc->max_errors)
6646         orig_bio->bi_status = BLK_STS_IOERR;
6647     else
6648         orig_bio->bi_status = BLK_STS_OK;
6649 
6650     if (btrfs_op(orig_bio) == BTRFS_MAP_READ && async) {
6651         INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
6652         queue_work(btrfs_end_io_wq(bioc), &bbio->end_io_work);
6653     } else {
6654         bio_endio(orig_bio);
6655     }
6656 
6657     btrfs_put_bioc(bioc);
6658 }
6659 
6660 static void btrfs_end_bio(struct bio *bio)
6661 {
6662     struct btrfs_io_stripe *stripe = bio->bi_private;
6663     struct btrfs_io_context *bioc = stripe->bioc;
6664 
6665     if (bio->bi_status) {
6666         atomic_inc(&bioc->error);
6667         if (bio->bi_status == BLK_STS_IOERR ||
6668             bio->bi_status == BLK_STS_TARGET) {
6669             if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6670                 btrfs_dev_stat_inc_and_print(stripe->dev,
6671                         BTRFS_DEV_STAT_WRITE_ERRS);
6672             else if (!(bio->bi_opf & REQ_RAHEAD))
6673                 btrfs_dev_stat_inc_and_print(stripe->dev,
6674                         BTRFS_DEV_STAT_READ_ERRS);
6675             if (bio->bi_opf & REQ_PREFLUSH)
6676                 btrfs_dev_stat_inc_and_print(stripe->dev,
6677                         BTRFS_DEV_STAT_FLUSH_ERRS);
6678         }
6679     }
6680 
6681     if (bio != bioc->orig_bio)
6682         bio_put(bio);
6683 
6684     btrfs_bio_counter_dec(bioc->fs_info);
6685     if (atomic_dec_and_test(&bioc->stripes_pending))
6686         btrfs_end_bioc(bioc, true);
6687 }
6688 
6689 static void submit_stripe_bio(struct btrfs_io_context *bioc,
6690                   struct bio *orig_bio, int dev_nr, bool clone)
6691 {
6692     struct btrfs_fs_info *fs_info = bioc->fs_info;
6693     struct btrfs_device *dev = bioc->stripes[dev_nr].dev;
6694     u64 physical = bioc->stripes[dev_nr].physical;
6695     struct bio *bio;
6696 
6697     if (!dev || !dev->bdev ||
6698         test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6699         (btrfs_op(orig_bio) == BTRFS_MAP_WRITE &&
6700          !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6701         atomic_inc(&bioc->error);
6702         if (atomic_dec_and_test(&bioc->stripes_pending))
6703             btrfs_end_bioc(bioc, false);
6704         return;
6705     }
6706 
6707     if (clone) {
6708         bio = bio_alloc_clone(dev->bdev, orig_bio, GFP_NOFS, &fs_bio_set);
6709     } else {
6710         bio = orig_bio;
6711         bio_set_dev(bio, dev->bdev);
6712         btrfs_bio(bio)->device = dev;
6713     }
6714 
6715     bioc->stripes[dev_nr].bioc = bioc;
6716     bio->bi_private = &bioc->stripes[dev_nr];
6717     bio->bi_end_io = btrfs_end_bio;
6718     bio->bi_iter.bi_sector = physical >> 9;
6719     /*
6720      * For zone append writing, bi_sector must point the beginning of the
6721      * zone
6722      */
6723     if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6724         if (btrfs_dev_is_sequential(dev, physical)) {
6725             u64 zone_start = round_down(physical, fs_info->zone_size);
6726 
6727             bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6728         } else {
6729             bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6730             bio->bi_opf |= REQ_OP_WRITE;
6731         }
6732     }
6733     btrfs_debug_in_rcu(fs_info,
6734     "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6735         __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6736         (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6737         dev->devid, bio->bi_iter.bi_size);
6738 
6739     btrfs_bio_counter_inc_noblocked(fs_info);
6740 
6741     btrfsic_check_bio(bio);
6742     submit_bio(bio);
6743 }
6744 
6745 void btrfs_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, int mirror_num)
6746 {
6747     u64 logical = bio->bi_iter.bi_sector << 9;
6748     u64 length = bio->bi_iter.bi_size;
6749     u64 map_length = length;
6750     int ret;
6751     int dev_nr;
6752     int total_devs;
6753     struct btrfs_io_context *bioc = NULL;
6754 
6755     btrfs_bio_counter_inc_blocked(fs_info);
6756     ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6757                 &map_length, &bioc, mirror_num, 1);
6758     if (ret) {
6759         btrfs_bio_counter_dec(fs_info);
6760         bio->bi_status = errno_to_blk_status(ret);
6761         bio_endio(bio);
6762         return;
6763     }
6764 
6765     total_devs = bioc->num_stripes;
6766     bioc->orig_bio = bio;
6767     bioc->private = bio->bi_private;
6768     bioc->end_io = bio->bi_end_io;
6769     atomic_set(&bioc->stripes_pending, total_devs);
6770 
6771     if ((bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6772         ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6773         if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6774             raid56_parity_write(bio, bioc);
6775         else
6776             raid56_parity_recover(bio, bioc, mirror_num, true);
6777         return;
6778     }
6779 
6780     if (map_length < length) {
6781         btrfs_crit(fs_info,
6782                "mapping failed logical %llu bio len %llu len %llu",
6783                logical, length, map_length);
6784         BUG();
6785     }
6786 
6787     for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6788         const bool should_clone = (dev_nr < total_devs - 1);
6789 
6790         submit_stripe_bio(bioc, bio, dev_nr, should_clone);
6791     }
6792     btrfs_bio_counter_dec(fs_info);
6793 }
6794 
6795 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6796                       const struct btrfs_fs_devices *fs_devices)
6797 {
6798     if (args->fsid == NULL)
6799         return true;
6800     if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6801         return true;
6802     return false;
6803 }
6804 
6805 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6806                   const struct btrfs_device *device)
6807 {
6808     ASSERT((args->devid != (u64)-1) || args->missing);
6809 
6810     if ((args->devid != (u64)-1) && device->devid != args->devid)
6811         return false;
6812     if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6813         return false;
6814     if (!args->missing)
6815         return true;
6816     if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6817         !device->bdev)
6818         return true;
6819     return false;
6820 }
6821 
6822 /*
6823  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6824  * return NULL.
6825  *
6826  * If devid and uuid are both specified, the match must be exact, otherwise
6827  * only devid is used.
6828  */
6829 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6830                        const struct btrfs_dev_lookup_args *args)
6831 {
6832     struct btrfs_device *device;
6833     struct btrfs_fs_devices *seed_devs;
6834 
6835     if (dev_args_match_fs_devices(args, fs_devices)) {
6836         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6837             if (dev_args_match_device(args, device))
6838                 return device;
6839         }
6840     }
6841 
6842     list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6843         if (!dev_args_match_fs_devices(args, seed_devs))
6844             continue;
6845         list_for_each_entry(device, &seed_devs->devices, dev_list) {
6846             if (dev_args_match_device(args, device))
6847                 return device;
6848         }
6849     }
6850 
6851     return NULL;
6852 }
6853 
6854 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6855                         u64 devid, u8 *dev_uuid)
6856 {
6857     struct btrfs_device *device;
6858     unsigned int nofs_flag;
6859 
6860     /*
6861      * We call this under the chunk_mutex, so we want to use NOFS for this
6862      * allocation, however we don't want to change btrfs_alloc_device() to
6863      * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6864      * places.
6865      */
6866     nofs_flag = memalloc_nofs_save();
6867     device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6868     memalloc_nofs_restore(nofs_flag);
6869     if (IS_ERR(device))
6870         return device;
6871 
6872     list_add(&device->dev_list, &fs_devices->devices);
6873     device->fs_devices = fs_devices;
6874     fs_devices->num_devices++;
6875 
6876     set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6877     fs_devices->missing_devices++;
6878 
6879     return device;
6880 }
6881 
6882 /**
6883  * btrfs_alloc_device - allocate struct btrfs_device
6884  * @fs_info:    used only for generating a new devid, can be NULL if
6885  *      devid is provided (i.e. @devid != NULL).
6886  * @devid:  a pointer to devid for this device.  If NULL a new devid
6887  *      is generated.
6888  * @uuid:   a pointer to UUID for this device.  If NULL a new UUID
6889  *      is generated.
6890  *
6891  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6892  * on error.  Returned struct is not linked onto any lists and must be
6893  * destroyed with btrfs_free_device.
6894  */
6895 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6896                     const u64 *devid,
6897                     const u8 *uuid)
6898 {
6899     struct btrfs_device *dev;
6900     u64 tmp;
6901 
6902     if (WARN_ON(!devid && !fs_info))
6903         return ERR_PTR(-EINVAL);
6904 
6905     dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6906     if (!dev)
6907         return ERR_PTR(-ENOMEM);
6908 
6909     INIT_LIST_HEAD(&dev->dev_list);
6910     INIT_LIST_HEAD(&dev->dev_alloc_list);
6911     INIT_LIST_HEAD(&dev->post_commit_list);
6912 
6913     atomic_set(&dev->dev_stats_ccnt, 0);
6914     btrfs_device_data_ordered_init(dev);
6915     extent_io_tree_init(fs_info, &dev->alloc_state,
6916                 IO_TREE_DEVICE_ALLOC_STATE, NULL);
6917 
6918     if (devid)
6919         tmp = *devid;
6920     else {
6921         int ret;
6922 
6923         ret = find_next_devid(fs_info, &tmp);
6924         if (ret) {
6925             btrfs_free_device(dev);
6926             return ERR_PTR(ret);
6927         }
6928     }
6929     dev->devid = tmp;
6930 
6931     if (uuid)
6932         memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6933     else
6934         generate_random_uuid(dev->uuid);
6935 
6936     return dev;
6937 }
6938 
6939 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6940                     u64 devid, u8 *uuid, bool error)
6941 {
6942     if (error)
6943         btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6944                   devid, uuid);
6945     else
6946         btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6947                   devid, uuid);
6948 }
6949 
6950 u64 btrfs_calc_stripe_length(const struct extent_map *em)
6951 {
6952     const struct map_lookup *map = em->map_lookup;
6953     const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6954 
6955     return div_u64(em->len, data_stripes);
6956 }
6957 
6958 #if BITS_PER_LONG == 32
6959 /*
6960  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6961  * can't be accessed on 32bit systems.
6962  *
6963  * This function do mount time check to reject the fs if it already has
6964  * metadata chunk beyond that limit.
6965  */
6966 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6967                   u64 logical, u64 length, u64 type)
6968 {
6969     if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6970         return 0;
6971 
6972     if (logical + length < MAX_LFS_FILESIZE)
6973         return 0;
6974 
6975     btrfs_err_32bit_limit(fs_info);
6976     return -EOVERFLOW;
6977 }
6978 
6979 /*
6980  * This is to give early warning for any metadata chunk reaching
6981  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6982  * Although we can still access the metadata, it's not going to be possible
6983  * once the limit is reached.
6984  */
6985 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6986                   u64 logical, u64 length, u64 type)
6987 {
6988     if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6989         return;
6990 
6991     if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6992         return;
6993 
6994     btrfs_warn_32bit_limit(fs_info);
6995 }
6996 #endif
6997 
6998 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6999                           u64 devid, u8 *uuid)
7000 {
7001     struct btrfs_device *dev;
7002 
7003     if (!btrfs_test_opt(fs_info, DEGRADED)) {
7004         btrfs_report_missing_device(fs_info, devid, uuid, true);
7005         return ERR_PTR(-ENOENT);
7006     }
7007 
7008     dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7009     if (IS_ERR(dev)) {
7010         btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7011               devid, PTR_ERR(dev));
7012         return dev;
7013     }
7014     btrfs_report_missing_device(fs_info, devid, uuid, false);
7015 
7016     return dev;
7017 }
7018 
7019 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7020               struct btrfs_chunk *chunk)
7021 {
7022     BTRFS_DEV_LOOKUP_ARGS(args);
7023     struct btrfs_fs_info *fs_info = leaf->fs_info;
7024     struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7025     struct map_lookup *map;
7026     struct extent_map *em;
7027     u64 logical;
7028     u64 length;
7029     u64 devid;
7030     u64 type;
7031     u8 uuid[BTRFS_UUID_SIZE];
7032     int num_stripes;
7033     int ret;
7034     int i;
7035 
7036     logical = key->offset;
7037     length = btrfs_chunk_length(leaf, chunk);
7038     type = btrfs_chunk_type(leaf, chunk);
7039     num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7040 
7041 #if BITS_PER_LONG == 32
7042     ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7043     if (ret < 0)
7044         return ret;
7045     warn_32bit_meta_chunk(fs_info, logical, length, type);
7046 #endif
7047 
7048     /*
7049      * Only need to verify chunk item if we're reading from sys chunk array,
7050      * as chunk item in tree block is already verified by tree-checker.
7051      */
7052     if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7053         ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7054         if (ret)
7055             return ret;
7056     }
7057 
7058     read_lock(&map_tree->lock);
7059     em = lookup_extent_mapping(map_tree, logical, 1);
7060     read_unlock(&map_tree->lock);
7061 
7062     /* already mapped? */
7063     if (em && em->start <= logical && em->start + em->len > logical) {
7064         free_extent_map(em);
7065         return 0;
7066     } else if (em) {
7067         free_extent_map(em);
7068     }
7069 
7070     em = alloc_extent_map();
7071     if (!em)
7072         return -ENOMEM;
7073     map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7074     if (!map) {
7075         free_extent_map(em);
7076         return -ENOMEM;
7077     }
7078 
7079     set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7080     em->map_lookup = map;
7081     em->start = logical;
7082     em->len = length;
7083     em->orig_start = 0;
7084     em->block_start = 0;
7085     em->block_len = em->len;
7086 
7087     map->num_stripes = num_stripes;
7088     map->io_width = btrfs_chunk_io_width(leaf, chunk);
7089     map->io_align = btrfs_chunk_io_align(leaf, chunk);
7090     map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7091     map->type = type;
7092     map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7093     map->verified_stripes = 0;
7094     em->orig_block_len = btrfs_calc_stripe_length(em);
7095     for (i = 0; i < num_stripes; i++) {
7096         map->stripes[i].physical =
7097             btrfs_stripe_offset_nr(leaf, chunk, i);
7098         devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7099         args.devid = devid;
7100         read_extent_buffer(leaf, uuid, (unsigned long)
7101                    btrfs_stripe_dev_uuid_nr(chunk, i),
7102                    BTRFS_UUID_SIZE);
7103         args.uuid = uuid;
7104         map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7105         if (!map->stripes[i].dev) {
7106             map->stripes[i].dev = handle_missing_device(fs_info,
7107                                     devid, uuid);
7108             if (IS_ERR(map->stripes[i].dev)) {
7109                 free_extent_map(em);
7110                 return PTR_ERR(map->stripes[i].dev);
7111             }
7112         }
7113 
7114         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7115                 &(map->stripes[i].dev->dev_state));
7116     }
7117 
7118     write_lock(&map_tree->lock);
7119     ret = add_extent_mapping(map_tree, em, 0);
7120     write_unlock(&map_tree->lock);
7121     if (ret < 0) {
7122         btrfs_err(fs_info,
7123               "failed to add chunk map, start=%llu len=%llu: %d",
7124               em->start, em->len, ret);
7125     }
7126     free_extent_map(em);
7127 
7128     return ret;
7129 }
7130 
7131 static void fill_device_from_item(struct extent_buffer *leaf,
7132                  struct btrfs_dev_item *dev_item,
7133                  struct btrfs_device *device)
7134 {
7135     unsigned long ptr;
7136 
7137     device->devid = btrfs_device_id(leaf, dev_item);
7138     device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7139     device->total_bytes = device->disk_total_bytes;
7140     device->commit_total_bytes = device->disk_total_bytes;
7141     device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7142     device->commit_bytes_used = device->bytes_used;
7143     device->type = btrfs_device_type(leaf, dev_item);
7144     device->io_align = btrfs_device_io_align(leaf, dev_item);
7145     device->io_width = btrfs_device_io_width(leaf, dev_item);
7146     device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7147     WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7148     clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7149 
7150     ptr = btrfs_device_uuid(dev_item);
7151     read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7152 }
7153 
7154 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7155                           u8 *fsid)
7156 {
7157     struct btrfs_fs_devices *fs_devices;
7158     int ret;
7159 
7160     lockdep_assert_held(&uuid_mutex);
7161     ASSERT(fsid);
7162 
7163     /* This will match only for multi-device seed fs */
7164     list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7165         if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7166             return fs_devices;
7167 
7168 
7169     fs_devices = find_fsid(fsid, NULL);
7170     if (!fs_devices) {
7171         if (!btrfs_test_opt(fs_info, DEGRADED))
7172             return ERR_PTR(-ENOENT);
7173 
7174         fs_devices = alloc_fs_devices(fsid, NULL);
7175         if (IS_ERR(fs_devices))
7176             return fs_devices;
7177 
7178         fs_devices->seeding = true;
7179         fs_devices->opened = 1;
7180         return fs_devices;
7181     }
7182 
7183     /*
7184      * Upon first call for a seed fs fsid, just create a private copy of the
7185      * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7186      */
7187     fs_devices = clone_fs_devices(fs_devices);
7188     if (IS_ERR(fs_devices))
7189         return fs_devices;
7190 
7191     ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7192     if (ret) {
7193         free_fs_devices(fs_devices);
7194         return ERR_PTR(ret);
7195     }
7196 
7197     if (!fs_devices->seeding) {
7198         close_fs_devices(fs_devices);
7199         free_fs_devices(fs_devices);
7200         return ERR_PTR(-EINVAL);
7201     }
7202 
7203     list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7204 
7205     return fs_devices;
7206 }
7207 
7208 static int read_one_dev(struct extent_buffer *leaf,
7209             struct btrfs_dev_item *dev_item)
7210 {
7211     BTRFS_DEV_LOOKUP_ARGS(args);
7212     struct btrfs_fs_info *fs_info = leaf->fs_info;
7213     struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7214     struct btrfs_device *device;
7215     u64 devid;
7216     int ret;
7217     u8 fs_uuid[BTRFS_FSID_SIZE];
7218     u8 dev_uuid[BTRFS_UUID_SIZE];
7219 
7220     devid = btrfs_device_id(leaf, dev_item);
7221     args.devid = devid;
7222     read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7223                BTRFS_UUID_SIZE);
7224     read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7225                BTRFS_FSID_SIZE);
7226     args.uuid = dev_uuid;
7227     args.fsid = fs_uuid;
7228 
7229     if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7230         fs_devices = open_seed_devices(fs_info, fs_uuid);
7231         if (IS_ERR(fs_devices))
7232             return PTR_ERR(fs_devices);
7233     }
7234 
7235     device = btrfs_find_device(fs_info->fs_devices, &args);
7236     if (!device) {
7237         if (!btrfs_test_opt(fs_info, DEGRADED)) {
7238             btrfs_report_missing_device(fs_info, devid,
7239                             dev_uuid, true);
7240             return -ENOENT;
7241         }
7242 
7243         device = add_missing_dev(fs_devices, devid, dev_uuid);
7244         if (IS_ERR(device)) {
7245             btrfs_err(fs_info,
7246                 "failed to add missing dev %llu: %ld",
7247                 devid, PTR_ERR(device));
7248             return PTR_ERR(device);
7249         }
7250         btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7251     } else {
7252         if (!device->bdev) {
7253             if (!btrfs_test_opt(fs_info, DEGRADED)) {
7254                 btrfs_report_missing_device(fs_info,
7255                         devid, dev_uuid, true);
7256                 return -ENOENT;
7257             }
7258             btrfs_report_missing_device(fs_info, devid,
7259                             dev_uuid, false);
7260         }
7261 
7262         if (!device->bdev &&
7263             !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7264             /*
7265              * this happens when a device that was properly setup
7266              * in the device info lists suddenly goes bad.
7267              * device->bdev is NULL, and so we have to set
7268              * device->missing to one here
7269              */
7270             device->fs_devices->missing_devices++;
7271             set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7272         }
7273 
7274         /* Move the device to its own fs_devices */
7275         if (device->fs_devices != fs_devices) {
7276             ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7277                             &device->dev_state));
7278 
7279             list_move(&device->dev_list, &fs_devices->devices);
7280             device->fs_devices->num_devices--;
7281             fs_devices->num_devices++;
7282 
7283             device->fs_devices->missing_devices--;
7284             fs_devices->missing_devices++;
7285 
7286             device->fs_devices = fs_devices;
7287         }
7288     }
7289 
7290     if (device->fs_devices != fs_info->fs_devices) {
7291         BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7292         if (device->generation !=
7293             btrfs_device_generation(leaf, dev_item))
7294             return -EINVAL;
7295     }
7296 
7297     fill_device_from_item(leaf, dev_item, device);
7298     if (device->bdev) {
7299         u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7300 
7301         if (device->total_bytes > max_total_bytes) {
7302             btrfs_err(fs_info,
7303             "device total_bytes should be at most %llu but found %llu",
7304                   max_total_bytes, device->total_bytes);
7305             return -EINVAL;
7306         }
7307     }
7308     set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7309     if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7310        !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7311         device->fs_devices->total_rw_bytes += device->total_bytes;
7312         atomic64_add(device->total_bytes - device->bytes_used,
7313                 &fs_info->free_chunk_space);
7314     }
7315     ret = 0;
7316     return ret;
7317 }
7318 
7319 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7320 {
7321     struct btrfs_super_block *super_copy = fs_info->super_copy;
7322     struct extent_buffer *sb;
7323     struct btrfs_disk_key *disk_key;
7324     struct btrfs_chunk *chunk;
7325     u8 *array_ptr;
7326     unsigned long sb_array_offset;
7327     int ret = 0;
7328     u32 num_stripes;
7329     u32 array_size;
7330     u32 len = 0;
7331     u32 cur_offset;
7332     u64 type;
7333     struct btrfs_key key;
7334 
7335     ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7336 
7337     /*
7338      * We allocated a dummy extent, just to use extent buffer accessors.
7339      * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7340      * that's fine, we will not go beyond system chunk array anyway.
7341      */
7342     sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7343     if (!sb)
7344         return -ENOMEM;
7345     set_extent_buffer_uptodate(sb);
7346 
7347     write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7348     array_size = btrfs_super_sys_array_size(super_copy);
7349 
7350     array_ptr = super_copy->sys_chunk_array;
7351     sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7352     cur_offset = 0;
7353 
7354     while (cur_offset < array_size) {
7355         disk_key = (struct btrfs_disk_key *)array_ptr;
7356         len = sizeof(*disk_key);
7357         if (cur_offset + len > array_size)
7358             goto out_short_read;
7359 
7360         btrfs_disk_key_to_cpu(&key, disk_key);
7361 
7362         array_ptr += len;
7363         sb_array_offset += len;
7364         cur_offset += len;
7365 
7366         if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7367             btrfs_err(fs_info,
7368                 "unexpected item type %u in sys_array at offset %u",
7369                   (u32)key.type, cur_offset);
7370             ret = -EIO;
7371             break;
7372         }
7373 
7374         chunk = (struct btrfs_chunk *)sb_array_offset;
7375         /*
7376          * At least one btrfs_chunk with one stripe must be present,
7377          * exact stripe count check comes afterwards
7378          */
7379         len = btrfs_chunk_item_size(1);
7380         if (cur_offset + len > array_size)
7381             goto out_short_read;
7382 
7383         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7384         if (!num_stripes) {
7385             btrfs_err(fs_info,
7386             "invalid number of stripes %u in sys_array at offset %u",
7387                   num_stripes, cur_offset);
7388             ret = -EIO;
7389             break;
7390         }
7391 
7392         type = btrfs_chunk_type(sb, chunk);
7393         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7394             btrfs_err(fs_info,
7395             "invalid chunk type %llu in sys_array at offset %u",
7396                   type, cur_offset);
7397             ret = -EIO;
7398             break;
7399         }
7400 
7401         len = btrfs_chunk_item_size(num_stripes);
7402         if (cur_offset + len > array_size)
7403             goto out_short_read;
7404 
7405         ret = read_one_chunk(&key, sb, chunk);
7406         if (ret)
7407             break;
7408 
7409         array_ptr += len;
7410         sb_array_offset += len;
7411         cur_offset += len;
7412     }
7413     clear_extent_buffer_uptodate(sb);
7414     free_extent_buffer_stale(sb);
7415     return ret;
7416 
7417 out_short_read:
7418     btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7419             len, cur_offset);
7420     clear_extent_buffer_uptodate(sb);
7421     free_extent_buffer_stale(sb);
7422     return -EIO;
7423 }
7424 
7425 /*
7426  * Check if all chunks in the fs are OK for read-write degraded mount
7427  *
7428  * If the @failing_dev is specified, it's accounted as missing.
7429  *
7430  * Return true if all chunks meet the minimal RW mount requirements.
7431  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7432  */
7433 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7434                     struct btrfs_device *failing_dev)
7435 {
7436     struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7437     struct extent_map *em;
7438     u64 next_start = 0;
7439     bool ret = true;
7440 
7441     read_lock(&map_tree->lock);
7442     em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7443     read_unlock(&map_tree->lock);
7444     /* No chunk at all? Return false anyway */
7445     if (!em) {
7446         ret = false;
7447         goto out;
7448     }
7449     while (em) {
7450         struct map_lookup *map;
7451         int missing = 0;
7452         int max_tolerated;
7453         int i;
7454 
7455         map = em->map_lookup;
7456         max_tolerated =
7457             btrfs_get_num_tolerated_disk_barrier_failures(
7458                     map->type);
7459         for (i = 0; i < map->num_stripes; i++) {
7460             struct btrfs_device *dev = map->stripes[i].dev;
7461 
7462             if (!dev || !dev->bdev ||
7463                 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7464                 dev->last_flush_error)
7465                 missing++;
7466             else if (failing_dev && failing_dev == dev)
7467                 missing++;
7468         }
7469         if (missing > max_tolerated) {
7470             if (!failing_dev)
7471                 btrfs_warn(fs_info,
7472     "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7473                    em->start, missing, max_tolerated);
7474             free_extent_map(em);
7475             ret = false;
7476             goto out;
7477         }
7478         next_start = extent_map_end(em);
7479         free_extent_map(em);
7480 
7481         read_lock(&map_tree->lock);
7482         em = lookup_extent_mapping(map_tree, next_start,
7483                        (u64)(-1) - next_start);
7484         read_unlock(&map_tree->lock);
7485     }
7486 out:
7487     return ret;
7488 }
7489 
7490 static void readahead_tree_node_children(struct extent_buffer *node)
7491 {
7492     int i;
7493     const int nr_items = btrfs_header_nritems(node);
7494 
7495     for (i = 0; i < nr_items; i++)
7496         btrfs_readahead_node_child(node, i);
7497 }
7498 
7499 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7500 {
7501     struct btrfs_root *root = fs_info->chunk_root;
7502     struct btrfs_path *path;
7503     struct extent_buffer *leaf;
7504     struct btrfs_key key;
7505     struct btrfs_key found_key;
7506     int ret;
7507     int slot;
7508     int iter_ret = 0;
7509     u64 total_dev = 0;
7510     u64 last_ra_node = 0;
7511 
7512     path = btrfs_alloc_path();
7513     if (!path)
7514         return -ENOMEM;
7515 
7516     /*
7517      * uuid_mutex is needed only if we are mounting a sprout FS
7518      * otherwise we don't need it.
7519      */
7520     mutex_lock(&uuid_mutex);
7521 
7522     /*
7523      * It is possible for mount and umount to race in such a way that
7524      * we execute this code path, but open_fs_devices failed to clear
7525      * total_rw_bytes. We certainly want it cleared before reading the
7526      * device items, so clear it here.
7527      */
7528     fs_info->fs_devices->total_rw_bytes = 0;
7529 
7530     /*
7531      * Lockdep complains about possible circular locking dependency between
7532      * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7533      * used for freeze procection of a fs (struct super_block.s_writers),
7534      * which we take when starting a transaction, and extent buffers of the
7535      * chunk tree if we call read_one_dev() while holding a lock on an
7536      * extent buffer of the chunk tree. Since we are mounting the filesystem
7537      * and at this point there can't be any concurrent task modifying the
7538      * chunk tree, to keep it simple, just skip locking on the chunk tree.
7539      */
7540     ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7541     path->skip_locking = 1;
7542 
7543     /*
7544      * Read all device items, and then all the chunk items. All
7545      * device items are found before any chunk item (their object id
7546      * is smaller than the lowest possible object id for a chunk
7547      * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7548      */
7549     key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7550     key.offset = 0;
7551     key.type = 0;
7552     btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7553         struct extent_buffer *node = path->nodes[1];
7554 
7555         leaf = path->nodes[0];
7556         slot = path->slots[0];
7557 
7558         if (node) {
7559             if (last_ra_node != node->start) {
7560                 readahead_tree_node_children(node);
7561                 last_ra_node = node->start;
7562             }
7563         }
7564         if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7565             struct btrfs_dev_item *dev_item;
7566             dev_item = btrfs_item_ptr(leaf, slot,
7567                           struct btrfs_dev_item);
7568             ret = read_one_dev(leaf, dev_item);
7569             if (ret)
7570                 goto error;
7571             total_dev++;
7572         } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7573             struct btrfs_chunk *chunk;
7574 
7575             /*
7576              * We are only called at mount time, so no need to take
7577              * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7578              * we always lock first fs_info->chunk_mutex before
7579              * acquiring any locks on the chunk tree. This is a
7580              * requirement for chunk allocation, see the comment on
7581              * top of btrfs_chunk_alloc() for details.
7582              */
7583             chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7584             ret = read_one_chunk(&found_key, leaf, chunk);
7585             if (ret)
7586                 goto error;
7587         }
7588     }
7589     /* Catch error found during iteration */
7590     if (iter_ret < 0) {
7591         ret = iter_ret;
7592         goto error;
7593     }
7594 
7595     /*
7596      * After loading chunk tree, we've got all device information,
7597      * do another round of validation checks.
7598      */
7599     if (total_dev != fs_info->fs_devices->total_devices) {
7600         btrfs_warn(fs_info,
7601 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7602               btrfs_super_num_devices(fs_info->super_copy),
7603               total_dev);
7604         fs_info->fs_devices->total_devices = total_dev;
7605         btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7606     }
7607     if (btrfs_super_total_bytes(fs_info->super_copy) <
7608         fs_info->fs_devices->total_rw_bytes) {
7609         btrfs_err(fs_info,
7610     "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7611               btrfs_super_total_bytes(fs_info->super_copy),
7612               fs_info->fs_devices->total_rw_bytes);
7613         ret = -EINVAL;
7614         goto error;
7615     }
7616     ret = 0;
7617 error:
7618     mutex_unlock(&uuid_mutex);
7619 
7620     btrfs_free_path(path);
7621     return ret;
7622 }
7623 
7624 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7625 {
7626     struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7627     struct btrfs_device *device;
7628 
7629     fs_devices->fs_info = fs_info;
7630 
7631     mutex_lock(&fs_devices->device_list_mutex);
7632     list_for_each_entry(device, &fs_devices->devices, dev_list)
7633         device->fs_info = fs_info;
7634 
7635     list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7636         list_for_each_entry(device, &seed_devs->devices, dev_list)
7637             device->fs_info = fs_info;
7638 
7639         seed_devs->fs_info = fs_info;
7640     }
7641     mutex_unlock(&fs_devices->device_list_mutex);
7642 }
7643 
7644 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7645                  const struct btrfs_dev_stats_item *ptr,
7646                  int index)
7647 {
7648     u64 val;
7649 
7650     read_extent_buffer(eb, &val,
7651                offsetof(struct btrfs_dev_stats_item, values) +
7652                 ((unsigned long)ptr) + (index * sizeof(u64)),
7653                sizeof(val));
7654     return val;
7655 }
7656 
7657 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7658                       struct btrfs_dev_stats_item *ptr,
7659                       int index, u64 val)
7660 {
7661     write_extent_buffer(eb, &val,
7662                 offsetof(struct btrfs_dev_stats_item, values) +
7663                  ((unsigned long)ptr) + (index * sizeof(u64)),
7664                 sizeof(val));
7665 }
7666 
7667 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7668                        struct btrfs_path *path)
7669 {
7670     struct btrfs_dev_stats_item *ptr;
7671     struct extent_buffer *eb;
7672     struct btrfs_key key;
7673     int item_size;
7674     int i, ret, slot;
7675 
7676     if (!device->fs_info->dev_root)
7677         return 0;
7678 
7679     key.objectid = BTRFS_DEV_STATS_OBJECTID;
7680     key.type = BTRFS_PERSISTENT_ITEM_KEY;
7681     key.offset = device->devid;
7682     ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7683     if (ret) {
7684         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7685             btrfs_dev_stat_set(device, i, 0);
7686         device->dev_stats_valid = 1;
7687         btrfs_release_path(path);
7688         return ret < 0 ? ret : 0;
7689     }
7690     slot = path->slots[0];
7691     eb = path->nodes[0];
7692     item_size = btrfs_item_size(eb, slot);
7693 
7694     ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7695 
7696     for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7697         if (item_size >= (1 + i) * sizeof(__le64))
7698             btrfs_dev_stat_set(device, i,
7699                        btrfs_dev_stats_value(eb, ptr, i));
7700         else
7701             btrfs_dev_stat_set(device, i, 0);
7702     }
7703 
7704     device->dev_stats_valid = 1;
7705     btrfs_dev_stat_print_on_load(device);
7706     btrfs_release_path(path);
7707 
7708     return 0;
7709 }
7710 
7711 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7712 {
7713     struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7714     struct btrfs_device *device;
7715     struct btrfs_path *path = NULL;
7716     int ret = 0;
7717 
7718     path = btrfs_alloc_path();
7719     if (!path)
7720         return -ENOMEM;
7721 
7722     mutex_lock(&fs_devices->device_list_mutex);
7723     list_for_each_entry(device, &fs_devices->devices, dev_list) {
7724         ret = btrfs_device_init_dev_stats(device, path);
7725         if (ret)
7726             goto out;
7727     }
7728     list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7729         list_for_each_entry(device, &seed_devs->devices, dev_list) {
7730             ret = btrfs_device_init_dev_stats(device, path);
7731             if (ret)
7732                 goto out;
7733         }
7734     }
7735 out:
7736     mutex_unlock(&fs_devices->device_list_mutex);
7737 
7738     btrfs_free_path(path);
7739     return ret;
7740 }
7741 
7742 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7743                 struct btrfs_device *device)
7744 {
7745     struct btrfs_fs_info *fs_info = trans->fs_info;
7746     struct btrfs_root *dev_root = fs_info->dev_root;
7747     struct btrfs_path *path;
7748     struct btrfs_key key;
7749     struct extent_buffer *eb;
7750     struct btrfs_dev_stats_item *ptr;
7751     int ret;
7752     int i;
7753 
7754     key.objectid = BTRFS_DEV_STATS_OBJECTID;
7755     key.type = BTRFS_PERSISTENT_ITEM_KEY;
7756     key.offset = device->devid;
7757 
7758     path = btrfs_alloc_path();
7759     if (!path)
7760         return -ENOMEM;
7761     ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7762     if (ret < 0) {
7763         btrfs_warn_in_rcu(fs_info,
7764             "error %d while searching for dev_stats item for device %s",
7765                   ret, rcu_str_deref(device->name));
7766         goto out;
7767     }
7768 
7769     if (ret == 0 &&
7770         btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7771         /* need to delete old one and insert a new one */
7772         ret = btrfs_del_item(trans, dev_root, path);
7773         if (ret != 0) {
7774             btrfs_warn_in_rcu(fs_info,
7775                 "delete too small dev_stats item for device %s failed %d",
7776                       rcu_str_deref(device->name), ret);
7777             goto out;
7778         }
7779         ret = 1;
7780     }
7781 
7782     if (ret == 1) {
7783         /* need to insert a new item */
7784         btrfs_release_path(path);
7785         ret = btrfs_insert_empty_item(trans, dev_root, path,
7786                           &key, sizeof(*ptr));
7787         if (ret < 0) {
7788             btrfs_warn_in_rcu(fs_info,
7789                 "insert dev_stats item for device %s failed %d",
7790                 rcu_str_deref(device->name), ret);
7791             goto out;
7792         }
7793     }
7794 
7795     eb = path->nodes[0];
7796     ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7797     for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7798         btrfs_set_dev_stats_value(eb, ptr, i,
7799                       btrfs_dev_stat_read(device, i));
7800     btrfs_mark_buffer_dirty(eb);
7801 
7802 out:
7803     btrfs_free_path(path);
7804     return ret;
7805 }
7806 
7807 /*
7808  * called from commit_transaction. Writes all changed device stats to disk.
7809  */
7810 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7811 {
7812     struct btrfs_fs_info *fs_info = trans->fs_info;
7813     struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7814     struct btrfs_device *device;
7815     int stats_cnt;
7816     int ret = 0;
7817 
7818     mutex_lock(&fs_devices->device_list_mutex);
7819     list_for_each_entry(device, &fs_devices->devices, dev_list) {
7820         stats_cnt = atomic_read(&device->dev_stats_ccnt);
7821         if (!device->dev_stats_valid || stats_cnt == 0)
7822             continue;
7823 
7824 
7825         /*
7826          * There is a LOAD-LOAD control dependency between the value of
7827          * dev_stats_ccnt and updating the on-disk values which requires
7828          * reading the in-memory counters. Such control dependencies
7829          * require explicit read memory barriers.
7830          *
7831          * This memory barriers pairs with smp_mb__before_atomic in
7832          * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7833          * barrier implied by atomic_xchg in
7834          * btrfs_dev_stats_read_and_reset
7835          */
7836         smp_rmb();
7837 
7838         ret = update_dev_stat_item(trans, device);
7839         if (!ret)
7840             atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7841     }
7842     mutex_unlock(&fs_devices->device_list_mutex);
7843 
7844     return ret;
7845 }
7846 
7847 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7848 {
7849     btrfs_dev_stat_inc(dev, index);
7850 
7851     if (!dev->dev_stats_valid)
7852         return;
7853     btrfs_err_rl_in_rcu(dev->fs_info,
7854         "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7855                rcu_str_deref(dev->name),
7856                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7857                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7858                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7859                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7860                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7861 }
7862 
7863 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7864 {
7865     int i;
7866 
7867     for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7868         if (btrfs_dev_stat_read(dev, i) != 0)
7869             break;
7870     if (i == BTRFS_DEV_STAT_VALUES_MAX)
7871         return; /* all values == 0, suppress message */
7872 
7873     btrfs_info_in_rcu(dev->fs_info,
7874         "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7875            rcu_str_deref(dev->name),
7876            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7877            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7878            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7879            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7880            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7881 }
7882 
7883 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7884             struct btrfs_ioctl_get_dev_stats *stats)
7885 {
7886     BTRFS_DEV_LOOKUP_ARGS(args);
7887     struct btrfs_device *dev;
7888     struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7889     int i;
7890 
7891     mutex_lock(&fs_devices->device_list_mutex);
7892     args.devid = stats->devid;
7893     dev = btrfs_find_device(fs_info->fs_devices, &args);
7894     mutex_unlock(&fs_devices->device_list_mutex);
7895 
7896     if (!dev) {
7897         btrfs_warn(fs_info, "get dev_stats failed, device not found");
7898         return -ENODEV;
7899     } else if (!dev->dev_stats_valid) {
7900         btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7901         return -ENODEV;
7902     } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7903         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7904             if (stats->nr_items > i)
7905                 stats->values[i] =
7906                     btrfs_dev_stat_read_and_reset(dev, i);
7907             else
7908                 btrfs_dev_stat_set(dev, i, 0);
7909         }
7910         btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7911                current->comm, task_pid_nr(current));
7912     } else {
7913         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7914             if (stats->nr_items > i)
7915                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7916     }
7917     if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7918         stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7919     return 0;
7920 }
7921 
7922 /*
7923  * Update the size and bytes used for each device where it changed.  This is
7924  * delayed since we would otherwise get errors while writing out the
7925  * superblocks.
7926  *
7927  * Must be invoked during transaction commit.
7928  */
7929 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7930 {
7931     struct btrfs_device *curr, *next;
7932 
7933     ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7934 
7935     if (list_empty(&trans->dev_update_list))
7936         return;
7937 
7938     /*
7939      * We don't need the device_list_mutex here.  This list is owned by the
7940      * transaction and the transaction must complete before the device is
7941      * released.
7942      */
7943     mutex_lock(&trans->fs_info->chunk_mutex);
7944     list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7945                  post_commit_list) {
7946         list_del_init(&curr->post_commit_list);
7947         curr->commit_total_bytes = curr->disk_total_bytes;
7948         curr->commit_bytes_used = curr->bytes_used;
7949     }
7950     mutex_unlock(&trans->fs_info->chunk_mutex);
7951 }
7952 
7953 /*
7954  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7955  */
7956 int btrfs_bg_type_to_factor(u64 flags)
7957 {
7958     const int index = btrfs_bg_flags_to_raid_index(flags);
7959 
7960     return btrfs_raid_array[index].ncopies;
7961 }
7962 
7963 
7964 
7965 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7966                  u64 chunk_offset, u64 devid,
7967                  u64 physical_offset, u64 physical_len)
7968 {
7969     struct btrfs_dev_lookup_args args = { .devid = devid };
7970     struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7971     struct extent_map *em;
7972     struct map_lookup *map;
7973     struct btrfs_device *dev;
7974     u64 stripe_len;
7975     bool found = false;
7976     int ret = 0;
7977     int i;
7978 
7979     read_lock(&em_tree->lock);
7980     em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7981     read_unlock(&em_tree->lock);
7982 
7983     if (!em) {
7984         btrfs_err(fs_info,
7985 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7986               physical_offset, devid);
7987         ret = -EUCLEAN;
7988         goto out;
7989     }
7990 
7991     map = em->map_lookup;
7992     stripe_len = btrfs_calc_stripe_length(em);
7993     if (physical_len != stripe_len) {
7994         btrfs_err(fs_info,
7995 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7996               physical_offset, devid, em->start, physical_len,
7997               stripe_len);
7998         ret = -EUCLEAN;
7999         goto out;
8000     }
8001 
8002     /*
8003      * Very old mkfs.btrfs (before v4.1) will not respect the reserved
8004      * space. Although kernel can handle it without problem, better to warn
8005      * the users.
8006      */
8007     if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
8008         btrfs_warn(fs_info,
8009         "devid %llu physical %llu len %llu inside the reserved space",
8010                devid, physical_offset, physical_len);
8011 
8012     for (i = 0; i < map->num_stripes; i++) {
8013         if (map->stripes[i].dev->devid == devid &&
8014             map->stripes[i].physical == physical_offset) {
8015             found = true;
8016             if (map->verified_stripes >= map->num_stripes) {
8017                 btrfs_err(fs_info,
8018                 "too many dev extents for chunk %llu found",
8019                       em->start);
8020                 ret = -EUCLEAN;
8021                 goto out;
8022             }
8023             map->verified_stripes++;
8024             break;
8025         }
8026     }
8027     if (!found) {
8028         btrfs_err(fs_info,
8029     "dev extent physical offset %llu devid %llu has no corresponding chunk",
8030             physical_offset, devid);
8031         ret = -EUCLEAN;
8032     }
8033 
8034     /* Make sure no dev extent is beyond device boundary */
8035     dev = btrfs_find_device(fs_info->fs_devices, &args);
8036     if (!dev) {
8037         btrfs_err(fs_info, "failed to find devid %llu", devid);
8038         ret = -EUCLEAN;
8039         goto out;
8040     }
8041 
8042     if (physical_offset + physical_len > dev->disk_total_bytes) {
8043         btrfs_err(fs_info,
8044 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8045               devid, physical_offset, physical_len,
8046               dev->disk_total_bytes);
8047         ret = -EUCLEAN;
8048         goto out;
8049     }
8050 
8051     if (dev->zone_info) {
8052         u64 zone_size = dev->zone_info->zone_size;
8053 
8054         if (!IS_ALIGNED(physical_offset, zone_size) ||
8055             !IS_ALIGNED(physical_len, zone_size)) {
8056             btrfs_err(fs_info,
8057 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8058                   devid, physical_offset, physical_len);
8059             ret = -EUCLEAN;
8060             goto out;
8061         }
8062     }
8063 
8064 out:
8065     free_extent_map(em);
8066     return ret;
8067 }
8068 
8069 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8070 {
8071     struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8072     struct extent_map *em;
8073     struct rb_node *node;
8074     int ret = 0;
8075 
8076     read_lock(&em_tree->lock);
8077     for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8078         em = rb_entry(node, struct extent_map, rb_node);
8079         if (em->map_lookup->num_stripes !=
8080             em->map_lookup->verified_stripes) {
8081             btrfs_err(fs_info,
8082             "chunk %llu has missing dev extent, have %d expect %d",
8083                   em->start, em->map_lookup->verified_stripes,
8084                   em->map_lookup->num_stripes);
8085             ret = -EUCLEAN;
8086             goto out;
8087         }
8088     }
8089 out:
8090     read_unlock(&em_tree->lock);
8091     return ret;
8092 }
8093 
8094 /*
8095  * Ensure that all dev extents are mapped to correct chunk, otherwise
8096  * later chunk allocation/free would cause unexpected behavior.
8097  *
8098  * NOTE: This will iterate through the whole device tree, which should be of
8099  * the same size level as the chunk tree.  This slightly increases mount time.
8100  */
8101 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8102 {
8103     struct btrfs_path *path;
8104     struct btrfs_root *root = fs_info->dev_root;
8105     struct btrfs_key key;
8106     u64 prev_devid = 0;
8107     u64 prev_dev_ext_end = 0;
8108     int ret = 0;
8109 
8110     /*
8111      * We don't have a dev_root because we mounted with ignorebadroots and
8112      * failed to load the root, so we want to skip the verification in this
8113      * case for sure.
8114      *
8115      * However if the dev root is fine, but the tree itself is corrupted
8116      * we'd still fail to mount.  This verification is only to make sure
8117      * writes can happen safely, so instead just bypass this check
8118      * completely in the case of IGNOREBADROOTS.
8119      */
8120     if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8121         return 0;
8122 
8123     key.objectid = 1;
8124     key.type = BTRFS_DEV_EXTENT_KEY;
8125     key.offset = 0;
8126 
8127     path = btrfs_alloc_path();
8128     if (!path)
8129         return -ENOMEM;
8130 
8131     path->reada = READA_FORWARD;
8132     ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8133     if (ret < 0)
8134         goto out;
8135 
8136     if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8137         ret = btrfs_next_leaf(root, path);
8138         if (ret < 0)
8139             goto out;
8140         /* No dev extents at all? Not good */
8141         if (ret > 0) {
8142             ret = -EUCLEAN;
8143             goto out;
8144         }
8145     }
8146     while (1) {
8147         struct extent_buffer *leaf = path->nodes[0];
8148         struct btrfs_dev_extent *dext;
8149         int slot = path->slots[0];
8150         u64 chunk_offset;
8151         u64 physical_offset;
8152         u64 physical_len;
8153         u64 devid;
8154 
8155         btrfs_item_key_to_cpu(leaf, &key, slot);
8156         if (key.type != BTRFS_DEV_EXTENT_KEY)
8157             break;
8158         devid = key.objectid;
8159         physical_offset = key.offset;
8160 
8161         dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8162         chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8163         physical_len = btrfs_dev_extent_length(leaf, dext);
8164 
8165         /* Check if this dev extent overlaps with the previous one */
8166         if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8167             btrfs_err(fs_info,
8168 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8169                   devid, physical_offset, prev_dev_ext_end);
8170             ret = -EUCLEAN;
8171             goto out;
8172         }
8173 
8174         ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8175                         physical_offset, physical_len);
8176         if (ret < 0)
8177             goto out;
8178         prev_devid = devid;
8179         prev_dev_ext_end = physical_offset + physical_len;
8180 
8181         ret = btrfs_next_item(root, path);
8182         if (ret < 0)
8183             goto out;
8184         if (ret > 0) {
8185             ret = 0;
8186             break;
8187         }
8188     }
8189 
8190     /* Ensure all chunks have corresponding dev extents */
8191     ret = verify_chunk_dev_extent_mapping(fs_info);
8192 out:
8193     btrfs_free_path(path);
8194     return ret;
8195 }
8196 
8197 /*
8198  * Check whether the given block group or device is pinned by any inode being
8199  * used as a swapfile.
8200  */
8201 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8202 {
8203     struct btrfs_swapfile_pin *sp;
8204     struct rb_node *node;
8205 
8206     spin_lock(&fs_info->swapfile_pins_lock);
8207     node = fs_info->swapfile_pins.rb_node;
8208     while (node) {
8209         sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8210         if (ptr < sp->ptr)
8211             node = node->rb_left;
8212         else if (ptr > sp->ptr)
8213             node = node->rb_right;
8214         else
8215             break;
8216     }
8217     spin_unlock(&fs_info->swapfile_pins_lock);
8218     return node != NULL;
8219 }
8220 
8221 static int relocating_repair_kthread(void *data)
8222 {
8223     struct btrfs_block_group *cache = data;
8224     struct btrfs_fs_info *fs_info = cache->fs_info;
8225     u64 target;
8226     int ret = 0;
8227 
8228     target = cache->start;
8229     btrfs_put_block_group(cache);
8230 
8231     sb_start_write(fs_info->sb);
8232     if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8233         btrfs_info(fs_info,
8234                "zoned: skip relocating block group %llu to repair: EBUSY",
8235                target);
8236         sb_end_write(fs_info->sb);
8237         return -EBUSY;
8238     }
8239 
8240     mutex_lock(&fs_info->reclaim_bgs_lock);
8241 
8242     /* Ensure block group still exists */
8243     cache = btrfs_lookup_block_group(fs_info, target);
8244     if (!cache)
8245         goto out;
8246 
8247     if (!cache->relocating_repair)
8248         goto out;
8249 
8250     ret = btrfs_may_alloc_data_chunk(fs_info, target);
8251     if (ret < 0)
8252         goto out;
8253 
8254     btrfs_info(fs_info,
8255            "zoned: relocating block group %llu to repair IO failure",
8256            target);
8257     ret = btrfs_relocate_chunk(fs_info, target);
8258 
8259 out:
8260     if (cache)
8261         btrfs_put_block_group(cache);
8262     mutex_unlock(&fs_info->reclaim_bgs_lock);
8263     btrfs_exclop_finish(fs_info);
8264     sb_end_write(fs_info->sb);
8265 
8266     return ret;
8267 }
8268 
8269 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8270 {
8271     struct btrfs_block_group *cache;
8272 
8273     if (!btrfs_is_zoned(fs_info))
8274         return false;
8275 
8276     /* Do not attempt to repair in degraded state */
8277     if (btrfs_test_opt(fs_info, DEGRADED))
8278         return true;
8279 
8280     cache = btrfs_lookup_block_group(fs_info, logical);
8281     if (!cache)
8282         return true;
8283 
8284     spin_lock(&cache->lock);
8285     if (cache->relocating_repair) {
8286         spin_unlock(&cache->lock);
8287         btrfs_put_block_group(cache);
8288         return true;
8289     }
8290     cache->relocating_repair = 1;
8291     spin_unlock(&cache->lock);
8292 
8293     kthread_run(relocating_repair_kthread, cache,
8294             "btrfs-relocating-repair");
8295 
8296     return true;
8297 }