Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Copyright (C) 2009 Oracle.  All rights reserved.
0004  */
0005 
0006 #include <linux/sched.h>
0007 #include <linux/pagemap.h>
0008 #include <linux/writeback.h>
0009 #include <linux/blkdev.h>
0010 #include <linux/rbtree.h>
0011 #include <linux/slab.h>
0012 #include <linux/error-injection.h>
0013 #include "ctree.h"
0014 #include "disk-io.h"
0015 #include "transaction.h"
0016 #include "volumes.h"
0017 #include "locking.h"
0018 #include "btrfs_inode.h"
0019 #include "async-thread.h"
0020 #include "free-space-cache.h"
0021 #include "qgroup.h"
0022 #include "print-tree.h"
0023 #include "delalloc-space.h"
0024 #include "block-group.h"
0025 #include "backref.h"
0026 #include "misc.h"
0027 #include "subpage.h"
0028 #include "zoned.h"
0029 #include "inode-item.h"
0030 
0031 /*
0032  * Relocation overview
0033  *
0034  * [What does relocation do]
0035  *
0036  * The objective of relocation is to relocate all extents of the target block
0037  * group to other block groups.
0038  * This is utilized by resize (shrink only), profile converting, compacting
0039  * space, or balance routine to spread chunks over devices.
0040  *
0041  *      Before      |       After
0042  * ------------------------------------------------------------------
0043  *  BG A: 10 data extents   | BG A: deleted
0044  *  BG B:  2 data extents   | BG B: 10 data extents (2 old + 8 relocated)
0045  *  BG C:  1 extents        | BG C:  3 data extents (1 old + 2 relocated)
0046  *
0047  * [How does relocation work]
0048  *
0049  * 1.   Mark the target block group read-only
0050  *      New extents won't be allocated from the target block group.
0051  *
0052  * 2.1  Record each extent in the target block group
0053  *      To build a proper map of extents to be relocated.
0054  *
0055  * 2.2  Build data reloc tree and reloc trees
0056  *      Data reloc tree will contain an inode, recording all newly relocated
0057  *      data extents.
0058  *      There will be only one data reloc tree for one data block group.
0059  *
0060  *      Reloc tree will be a special snapshot of its source tree, containing
0061  *      relocated tree blocks.
0062  *      Each tree referring to a tree block in target block group will get its
0063  *      reloc tree built.
0064  *
0065  * 2.3  Swap source tree with its corresponding reloc tree
0066  *      Each involved tree only refers to new extents after swap.
0067  *
0068  * 3.   Cleanup reloc trees and data reloc tree.
0069  *      As old extents in the target block group are still referenced by reloc
0070  *      trees, we need to clean them up before really freeing the target block
0071  *      group.
0072  *
0073  * The main complexity is in steps 2.2 and 2.3.
0074  *
0075  * The entry point of relocation is relocate_block_group() function.
0076  */
0077 
0078 #define RELOCATION_RESERVED_NODES   256
0079 /*
0080  * map address of tree root to tree
0081  */
0082 struct mapping_node {
0083     struct {
0084         struct rb_node rb_node;
0085         u64 bytenr;
0086     }; /* Use rb_simle_node for search/insert */
0087     void *data;
0088 };
0089 
0090 struct mapping_tree {
0091     struct rb_root rb_root;
0092     spinlock_t lock;
0093 };
0094 
0095 /*
0096  * present a tree block to process
0097  */
0098 struct tree_block {
0099     struct {
0100         struct rb_node rb_node;
0101         u64 bytenr;
0102     }; /* Use rb_simple_node for search/insert */
0103     u64 owner;
0104     struct btrfs_key key;
0105     unsigned int level:8;
0106     unsigned int key_ready:1;
0107 };
0108 
0109 #define MAX_EXTENTS 128
0110 
0111 struct file_extent_cluster {
0112     u64 start;
0113     u64 end;
0114     u64 boundary[MAX_EXTENTS];
0115     unsigned int nr;
0116 };
0117 
0118 struct reloc_control {
0119     /* block group to relocate */
0120     struct btrfs_block_group *block_group;
0121     /* extent tree */
0122     struct btrfs_root *extent_root;
0123     /* inode for moving data */
0124     struct inode *data_inode;
0125 
0126     struct btrfs_block_rsv *block_rsv;
0127 
0128     struct btrfs_backref_cache backref_cache;
0129 
0130     struct file_extent_cluster cluster;
0131     /* tree blocks have been processed */
0132     struct extent_io_tree processed_blocks;
0133     /* map start of tree root to corresponding reloc tree */
0134     struct mapping_tree reloc_root_tree;
0135     /* list of reloc trees */
0136     struct list_head reloc_roots;
0137     /* list of subvolume trees that get relocated */
0138     struct list_head dirty_subvol_roots;
0139     /* size of metadata reservation for merging reloc trees */
0140     u64 merging_rsv_size;
0141     /* size of relocated tree nodes */
0142     u64 nodes_relocated;
0143     /* reserved size for block group relocation*/
0144     u64 reserved_bytes;
0145 
0146     u64 search_start;
0147     u64 extents_found;
0148 
0149     unsigned int stage:8;
0150     unsigned int create_reloc_tree:1;
0151     unsigned int merge_reloc_tree:1;
0152     unsigned int found_file_extent:1;
0153 };
0154 
0155 /* stages of data relocation */
0156 #define MOVE_DATA_EXTENTS   0
0157 #define UPDATE_DATA_PTRS    1
0158 
0159 static void mark_block_processed(struct reloc_control *rc,
0160                  struct btrfs_backref_node *node)
0161 {
0162     u32 blocksize;
0163 
0164     if (node->level == 0 ||
0165         in_range(node->bytenr, rc->block_group->start,
0166              rc->block_group->length)) {
0167         blocksize = rc->extent_root->fs_info->nodesize;
0168         set_extent_bits(&rc->processed_blocks, node->bytenr,
0169                 node->bytenr + blocksize - 1, EXTENT_DIRTY);
0170     }
0171     node->processed = 1;
0172 }
0173 
0174 
0175 static void mapping_tree_init(struct mapping_tree *tree)
0176 {
0177     tree->rb_root = RB_ROOT;
0178     spin_lock_init(&tree->lock);
0179 }
0180 
0181 /*
0182  * walk up backref nodes until reach node presents tree root
0183  */
0184 static struct btrfs_backref_node *walk_up_backref(
0185         struct btrfs_backref_node *node,
0186         struct btrfs_backref_edge *edges[], int *index)
0187 {
0188     struct btrfs_backref_edge *edge;
0189     int idx = *index;
0190 
0191     while (!list_empty(&node->upper)) {
0192         edge = list_entry(node->upper.next,
0193                   struct btrfs_backref_edge, list[LOWER]);
0194         edges[idx++] = edge;
0195         node = edge->node[UPPER];
0196     }
0197     BUG_ON(node->detached);
0198     *index = idx;
0199     return node;
0200 }
0201 
0202 /*
0203  * walk down backref nodes to find start of next reference path
0204  */
0205 static struct btrfs_backref_node *walk_down_backref(
0206         struct btrfs_backref_edge *edges[], int *index)
0207 {
0208     struct btrfs_backref_edge *edge;
0209     struct btrfs_backref_node *lower;
0210     int idx = *index;
0211 
0212     while (idx > 0) {
0213         edge = edges[idx - 1];
0214         lower = edge->node[LOWER];
0215         if (list_is_last(&edge->list[LOWER], &lower->upper)) {
0216             idx--;
0217             continue;
0218         }
0219         edge = list_entry(edge->list[LOWER].next,
0220                   struct btrfs_backref_edge, list[LOWER]);
0221         edges[idx - 1] = edge;
0222         *index = idx;
0223         return edge->node[UPPER];
0224     }
0225     *index = 0;
0226     return NULL;
0227 }
0228 
0229 static void update_backref_node(struct btrfs_backref_cache *cache,
0230                 struct btrfs_backref_node *node, u64 bytenr)
0231 {
0232     struct rb_node *rb_node;
0233     rb_erase(&node->rb_node, &cache->rb_root);
0234     node->bytenr = bytenr;
0235     rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
0236     if (rb_node)
0237         btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
0238 }
0239 
0240 /*
0241  * update backref cache after a transaction commit
0242  */
0243 static int update_backref_cache(struct btrfs_trans_handle *trans,
0244                 struct btrfs_backref_cache *cache)
0245 {
0246     struct btrfs_backref_node *node;
0247     int level = 0;
0248 
0249     if (cache->last_trans == 0) {
0250         cache->last_trans = trans->transid;
0251         return 0;
0252     }
0253 
0254     if (cache->last_trans == trans->transid)
0255         return 0;
0256 
0257     /*
0258      * detached nodes are used to avoid unnecessary backref
0259      * lookup. transaction commit changes the extent tree.
0260      * so the detached nodes are no longer useful.
0261      */
0262     while (!list_empty(&cache->detached)) {
0263         node = list_entry(cache->detached.next,
0264                   struct btrfs_backref_node, list);
0265         btrfs_backref_cleanup_node(cache, node);
0266     }
0267 
0268     while (!list_empty(&cache->changed)) {
0269         node = list_entry(cache->changed.next,
0270                   struct btrfs_backref_node, list);
0271         list_del_init(&node->list);
0272         BUG_ON(node->pending);
0273         update_backref_node(cache, node, node->new_bytenr);
0274     }
0275 
0276     /*
0277      * some nodes can be left in the pending list if there were
0278      * errors during processing the pending nodes.
0279      */
0280     for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
0281         list_for_each_entry(node, &cache->pending[level], list) {
0282             BUG_ON(!node->pending);
0283             if (node->bytenr == node->new_bytenr)
0284                 continue;
0285             update_backref_node(cache, node, node->new_bytenr);
0286         }
0287     }
0288 
0289     cache->last_trans = 0;
0290     return 1;
0291 }
0292 
0293 static bool reloc_root_is_dead(struct btrfs_root *root)
0294 {
0295     /*
0296      * Pair with set_bit/clear_bit in clean_dirty_subvols and
0297      * btrfs_update_reloc_root. We need to see the updated bit before
0298      * trying to access reloc_root
0299      */
0300     smp_rmb();
0301     if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
0302         return true;
0303     return false;
0304 }
0305 
0306 /*
0307  * Check if this subvolume tree has valid reloc tree.
0308  *
0309  * Reloc tree after swap is considered dead, thus not considered as valid.
0310  * This is enough for most callers, as they don't distinguish dead reloc root
0311  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
0312  * special case.
0313  */
0314 static bool have_reloc_root(struct btrfs_root *root)
0315 {
0316     if (reloc_root_is_dead(root))
0317         return false;
0318     if (!root->reloc_root)
0319         return false;
0320     return true;
0321 }
0322 
0323 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
0324 {
0325     struct btrfs_root *reloc_root;
0326 
0327     if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
0328         return 0;
0329 
0330     /* This root has been merged with its reloc tree, we can ignore it */
0331     if (reloc_root_is_dead(root))
0332         return 1;
0333 
0334     reloc_root = root->reloc_root;
0335     if (!reloc_root)
0336         return 0;
0337 
0338     if (btrfs_header_generation(reloc_root->commit_root) ==
0339         root->fs_info->running_transaction->transid)
0340         return 0;
0341     /*
0342      * if there is reloc tree and it was created in previous
0343      * transaction backref lookup can find the reloc tree,
0344      * so backref node for the fs tree root is useless for
0345      * relocation.
0346      */
0347     return 1;
0348 }
0349 
0350 /*
0351  * find reloc tree by address of tree root
0352  */
0353 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
0354 {
0355     struct reloc_control *rc = fs_info->reloc_ctl;
0356     struct rb_node *rb_node;
0357     struct mapping_node *node;
0358     struct btrfs_root *root = NULL;
0359 
0360     ASSERT(rc);
0361     spin_lock(&rc->reloc_root_tree.lock);
0362     rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
0363     if (rb_node) {
0364         node = rb_entry(rb_node, struct mapping_node, rb_node);
0365         root = node->data;
0366     }
0367     spin_unlock(&rc->reloc_root_tree.lock);
0368     return btrfs_grab_root(root);
0369 }
0370 
0371 /*
0372  * For useless nodes, do two major clean ups:
0373  *
0374  * - Cleanup the children edges and nodes
0375  *   If child node is also orphan (no parent) during cleanup, then the child
0376  *   node will also be cleaned up.
0377  *
0378  * - Freeing up leaves (level 0), keeps nodes detached
0379  *   For nodes, the node is still cached as "detached"
0380  *
0381  * Return false if @node is not in the @useless_nodes list.
0382  * Return true if @node is in the @useless_nodes list.
0383  */
0384 static bool handle_useless_nodes(struct reloc_control *rc,
0385                  struct btrfs_backref_node *node)
0386 {
0387     struct btrfs_backref_cache *cache = &rc->backref_cache;
0388     struct list_head *useless_node = &cache->useless_node;
0389     bool ret = false;
0390 
0391     while (!list_empty(useless_node)) {
0392         struct btrfs_backref_node *cur;
0393 
0394         cur = list_first_entry(useless_node, struct btrfs_backref_node,
0395                  list);
0396         list_del_init(&cur->list);
0397 
0398         /* Only tree root nodes can be added to @useless_nodes */
0399         ASSERT(list_empty(&cur->upper));
0400 
0401         if (cur == node)
0402             ret = true;
0403 
0404         /* The node is the lowest node */
0405         if (cur->lowest) {
0406             list_del_init(&cur->lower);
0407             cur->lowest = 0;
0408         }
0409 
0410         /* Cleanup the lower edges */
0411         while (!list_empty(&cur->lower)) {
0412             struct btrfs_backref_edge *edge;
0413             struct btrfs_backref_node *lower;
0414 
0415             edge = list_entry(cur->lower.next,
0416                     struct btrfs_backref_edge, list[UPPER]);
0417             list_del(&edge->list[UPPER]);
0418             list_del(&edge->list[LOWER]);
0419             lower = edge->node[LOWER];
0420             btrfs_backref_free_edge(cache, edge);
0421 
0422             /* Child node is also orphan, queue for cleanup */
0423             if (list_empty(&lower->upper))
0424                 list_add(&lower->list, useless_node);
0425         }
0426         /* Mark this block processed for relocation */
0427         mark_block_processed(rc, cur);
0428 
0429         /*
0430          * Backref nodes for tree leaves are deleted from the cache.
0431          * Backref nodes for upper level tree blocks are left in the
0432          * cache to avoid unnecessary backref lookup.
0433          */
0434         if (cur->level > 0) {
0435             list_add(&cur->list, &cache->detached);
0436             cur->detached = 1;
0437         } else {
0438             rb_erase(&cur->rb_node, &cache->rb_root);
0439             btrfs_backref_free_node(cache, cur);
0440         }
0441     }
0442     return ret;
0443 }
0444 
0445 /*
0446  * Build backref tree for a given tree block. Root of the backref tree
0447  * corresponds the tree block, leaves of the backref tree correspond roots of
0448  * b-trees that reference the tree block.
0449  *
0450  * The basic idea of this function is check backrefs of a given block to find
0451  * upper level blocks that reference the block, and then check backrefs of
0452  * these upper level blocks recursively. The recursion stops when tree root is
0453  * reached or backrefs for the block is cached.
0454  *
0455  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
0456  * all upper level blocks that directly/indirectly reference the block are also
0457  * cached.
0458  */
0459 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
0460             struct reloc_control *rc, struct btrfs_key *node_key,
0461             int level, u64 bytenr)
0462 {
0463     struct btrfs_backref_iter *iter;
0464     struct btrfs_backref_cache *cache = &rc->backref_cache;
0465     /* For searching parent of TREE_BLOCK_REF */
0466     struct btrfs_path *path;
0467     struct btrfs_backref_node *cur;
0468     struct btrfs_backref_node *node = NULL;
0469     struct btrfs_backref_edge *edge;
0470     int ret;
0471     int err = 0;
0472 
0473     iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
0474     if (!iter)
0475         return ERR_PTR(-ENOMEM);
0476     path = btrfs_alloc_path();
0477     if (!path) {
0478         err = -ENOMEM;
0479         goto out;
0480     }
0481 
0482     node = btrfs_backref_alloc_node(cache, bytenr, level);
0483     if (!node) {
0484         err = -ENOMEM;
0485         goto out;
0486     }
0487 
0488     node->lowest = 1;
0489     cur = node;
0490 
0491     /* Breadth-first search to build backref cache */
0492     do {
0493         ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
0494                           cur);
0495         if (ret < 0) {
0496             err = ret;
0497             goto out;
0498         }
0499         edge = list_first_entry_or_null(&cache->pending_edge,
0500                 struct btrfs_backref_edge, list[UPPER]);
0501         /*
0502          * The pending list isn't empty, take the first block to
0503          * process
0504          */
0505         if (edge) {
0506             list_del_init(&edge->list[UPPER]);
0507             cur = edge->node[UPPER];
0508         }
0509     } while (edge);
0510 
0511     /* Finish the upper linkage of newly added edges/nodes */
0512     ret = btrfs_backref_finish_upper_links(cache, node);
0513     if (ret < 0) {
0514         err = ret;
0515         goto out;
0516     }
0517 
0518     if (handle_useless_nodes(rc, node))
0519         node = NULL;
0520 out:
0521     btrfs_backref_iter_free(iter);
0522     btrfs_free_path(path);
0523     if (err) {
0524         btrfs_backref_error_cleanup(cache, node);
0525         return ERR_PTR(err);
0526     }
0527     ASSERT(!node || !node->detached);
0528     ASSERT(list_empty(&cache->useless_node) &&
0529            list_empty(&cache->pending_edge));
0530     return node;
0531 }
0532 
0533 /*
0534  * helper to add backref node for the newly created snapshot.
0535  * the backref node is created by cloning backref node that
0536  * corresponds to root of source tree
0537  */
0538 static int clone_backref_node(struct btrfs_trans_handle *trans,
0539                   struct reloc_control *rc,
0540                   struct btrfs_root *src,
0541                   struct btrfs_root *dest)
0542 {
0543     struct btrfs_root *reloc_root = src->reloc_root;
0544     struct btrfs_backref_cache *cache = &rc->backref_cache;
0545     struct btrfs_backref_node *node = NULL;
0546     struct btrfs_backref_node *new_node;
0547     struct btrfs_backref_edge *edge;
0548     struct btrfs_backref_edge *new_edge;
0549     struct rb_node *rb_node;
0550 
0551     if (cache->last_trans > 0)
0552         update_backref_cache(trans, cache);
0553 
0554     rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
0555     if (rb_node) {
0556         node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
0557         if (node->detached)
0558             node = NULL;
0559         else
0560             BUG_ON(node->new_bytenr != reloc_root->node->start);
0561     }
0562 
0563     if (!node) {
0564         rb_node = rb_simple_search(&cache->rb_root,
0565                        reloc_root->commit_root->start);
0566         if (rb_node) {
0567             node = rb_entry(rb_node, struct btrfs_backref_node,
0568                     rb_node);
0569             BUG_ON(node->detached);
0570         }
0571     }
0572 
0573     if (!node)
0574         return 0;
0575 
0576     new_node = btrfs_backref_alloc_node(cache, dest->node->start,
0577                         node->level);
0578     if (!new_node)
0579         return -ENOMEM;
0580 
0581     new_node->lowest = node->lowest;
0582     new_node->checked = 1;
0583     new_node->root = btrfs_grab_root(dest);
0584     ASSERT(new_node->root);
0585 
0586     if (!node->lowest) {
0587         list_for_each_entry(edge, &node->lower, list[UPPER]) {
0588             new_edge = btrfs_backref_alloc_edge(cache);
0589             if (!new_edge)
0590                 goto fail;
0591 
0592             btrfs_backref_link_edge(new_edge, edge->node[LOWER],
0593                         new_node, LINK_UPPER);
0594         }
0595     } else {
0596         list_add_tail(&new_node->lower, &cache->leaves);
0597     }
0598 
0599     rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
0600                    &new_node->rb_node);
0601     if (rb_node)
0602         btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
0603 
0604     if (!new_node->lowest) {
0605         list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
0606             list_add_tail(&new_edge->list[LOWER],
0607                       &new_edge->node[LOWER]->upper);
0608         }
0609     }
0610     return 0;
0611 fail:
0612     while (!list_empty(&new_node->lower)) {
0613         new_edge = list_entry(new_node->lower.next,
0614                       struct btrfs_backref_edge, list[UPPER]);
0615         list_del(&new_edge->list[UPPER]);
0616         btrfs_backref_free_edge(cache, new_edge);
0617     }
0618     btrfs_backref_free_node(cache, new_node);
0619     return -ENOMEM;
0620 }
0621 
0622 /*
0623  * helper to add 'address of tree root -> reloc tree' mapping
0624  */
0625 static int __must_check __add_reloc_root(struct btrfs_root *root)
0626 {
0627     struct btrfs_fs_info *fs_info = root->fs_info;
0628     struct rb_node *rb_node;
0629     struct mapping_node *node;
0630     struct reloc_control *rc = fs_info->reloc_ctl;
0631 
0632     node = kmalloc(sizeof(*node), GFP_NOFS);
0633     if (!node)
0634         return -ENOMEM;
0635 
0636     node->bytenr = root->commit_root->start;
0637     node->data = root;
0638 
0639     spin_lock(&rc->reloc_root_tree.lock);
0640     rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
0641                    node->bytenr, &node->rb_node);
0642     spin_unlock(&rc->reloc_root_tree.lock);
0643     if (rb_node) {
0644         btrfs_err(fs_info,
0645                 "Duplicate root found for start=%llu while inserting into relocation tree",
0646                 node->bytenr);
0647         return -EEXIST;
0648     }
0649 
0650     list_add_tail(&root->root_list, &rc->reloc_roots);
0651     return 0;
0652 }
0653 
0654 /*
0655  * helper to delete the 'address of tree root -> reloc tree'
0656  * mapping
0657  */
0658 static void __del_reloc_root(struct btrfs_root *root)
0659 {
0660     struct btrfs_fs_info *fs_info = root->fs_info;
0661     struct rb_node *rb_node;
0662     struct mapping_node *node = NULL;
0663     struct reloc_control *rc = fs_info->reloc_ctl;
0664     bool put_ref = false;
0665 
0666     if (rc && root->node) {
0667         spin_lock(&rc->reloc_root_tree.lock);
0668         rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
0669                        root->commit_root->start);
0670         if (rb_node) {
0671             node = rb_entry(rb_node, struct mapping_node, rb_node);
0672             rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
0673             RB_CLEAR_NODE(&node->rb_node);
0674         }
0675         spin_unlock(&rc->reloc_root_tree.lock);
0676         ASSERT(!node || (struct btrfs_root *)node->data == root);
0677     }
0678 
0679     /*
0680      * We only put the reloc root here if it's on the list.  There's a lot
0681      * of places where the pattern is to splice the rc->reloc_roots, process
0682      * the reloc roots, and then add the reloc root back onto
0683      * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
0684      * list we don't want the reference being dropped, because the guy
0685      * messing with the list is in charge of the reference.
0686      */
0687     spin_lock(&fs_info->trans_lock);
0688     if (!list_empty(&root->root_list)) {
0689         put_ref = true;
0690         list_del_init(&root->root_list);
0691     }
0692     spin_unlock(&fs_info->trans_lock);
0693     if (put_ref)
0694         btrfs_put_root(root);
0695     kfree(node);
0696 }
0697 
0698 /*
0699  * helper to update the 'address of tree root -> reloc tree'
0700  * mapping
0701  */
0702 static int __update_reloc_root(struct btrfs_root *root)
0703 {
0704     struct btrfs_fs_info *fs_info = root->fs_info;
0705     struct rb_node *rb_node;
0706     struct mapping_node *node = NULL;
0707     struct reloc_control *rc = fs_info->reloc_ctl;
0708 
0709     spin_lock(&rc->reloc_root_tree.lock);
0710     rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
0711                    root->commit_root->start);
0712     if (rb_node) {
0713         node = rb_entry(rb_node, struct mapping_node, rb_node);
0714         rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
0715     }
0716     spin_unlock(&rc->reloc_root_tree.lock);
0717 
0718     if (!node)
0719         return 0;
0720     BUG_ON((struct btrfs_root *)node->data != root);
0721 
0722     spin_lock(&rc->reloc_root_tree.lock);
0723     node->bytenr = root->node->start;
0724     rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
0725                    node->bytenr, &node->rb_node);
0726     spin_unlock(&rc->reloc_root_tree.lock);
0727     if (rb_node)
0728         btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
0729     return 0;
0730 }
0731 
0732 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
0733                     struct btrfs_root *root, u64 objectid)
0734 {
0735     struct btrfs_fs_info *fs_info = root->fs_info;
0736     struct btrfs_root *reloc_root;
0737     struct extent_buffer *eb;
0738     struct btrfs_root_item *root_item;
0739     struct btrfs_key root_key;
0740     int ret = 0;
0741     bool must_abort = false;
0742 
0743     root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
0744     if (!root_item)
0745         return ERR_PTR(-ENOMEM);
0746 
0747     root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
0748     root_key.type = BTRFS_ROOT_ITEM_KEY;
0749     root_key.offset = objectid;
0750 
0751     if (root->root_key.objectid == objectid) {
0752         u64 commit_root_gen;
0753 
0754         /* called by btrfs_init_reloc_root */
0755         ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
0756                       BTRFS_TREE_RELOC_OBJECTID);
0757         if (ret)
0758             goto fail;
0759 
0760         /*
0761          * Set the last_snapshot field to the generation of the commit
0762          * root - like this ctree.c:btrfs_block_can_be_shared() behaves
0763          * correctly (returns true) when the relocation root is created
0764          * either inside the critical section of a transaction commit
0765          * (through transaction.c:qgroup_account_snapshot()) and when
0766          * it's created before the transaction commit is started.
0767          */
0768         commit_root_gen = btrfs_header_generation(root->commit_root);
0769         btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
0770     } else {
0771         /*
0772          * called by btrfs_reloc_post_snapshot_hook.
0773          * the source tree is a reloc tree, all tree blocks
0774          * modified after it was created have RELOC flag
0775          * set in their headers. so it's OK to not update
0776          * the 'last_snapshot'.
0777          */
0778         ret = btrfs_copy_root(trans, root, root->node, &eb,
0779                       BTRFS_TREE_RELOC_OBJECTID);
0780         if (ret)
0781             goto fail;
0782     }
0783 
0784     /*
0785      * We have changed references at this point, we must abort the
0786      * transaction if anything fails.
0787      */
0788     must_abort = true;
0789 
0790     memcpy(root_item, &root->root_item, sizeof(*root_item));
0791     btrfs_set_root_bytenr(root_item, eb->start);
0792     btrfs_set_root_level(root_item, btrfs_header_level(eb));
0793     btrfs_set_root_generation(root_item, trans->transid);
0794 
0795     if (root->root_key.objectid == objectid) {
0796         btrfs_set_root_refs(root_item, 0);
0797         memset(&root_item->drop_progress, 0,
0798                sizeof(struct btrfs_disk_key));
0799         btrfs_set_root_drop_level(root_item, 0);
0800     }
0801 
0802     btrfs_tree_unlock(eb);
0803     free_extent_buffer(eb);
0804 
0805     ret = btrfs_insert_root(trans, fs_info->tree_root,
0806                 &root_key, root_item);
0807     if (ret)
0808         goto fail;
0809 
0810     kfree(root_item);
0811 
0812     reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
0813     if (IS_ERR(reloc_root)) {
0814         ret = PTR_ERR(reloc_root);
0815         goto abort;
0816     }
0817     set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
0818     reloc_root->last_trans = trans->transid;
0819     return reloc_root;
0820 fail:
0821     kfree(root_item);
0822 abort:
0823     if (must_abort)
0824         btrfs_abort_transaction(trans, ret);
0825     return ERR_PTR(ret);
0826 }
0827 
0828 /*
0829  * create reloc tree for a given fs tree. reloc tree is just a
0830  * snapshot of the fs tree with special root objectid.
0831  *
0832  * The reloc_root comes out of here with two references, one for
0833  * root->reloc_root, and another for being on the rc->reloc_roots list.
0834  */
0835 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
0836               struct btrfs_root *root)
0837 {
0838     struct btrfs_fs_info *fs_info = root->fs_info;
0839     struct btrfs_root *reloc_root;
0840     struct reloc_control *rc = fs_info->reloc_ctl;
0841     struct btrfs_block_rsv *rsv;
0842     int clear_rsv = 0;
0843     int ret;
0844 
0845     if (!rc)
0846         return 0;
0847 
0848     /*
0849      * The subvolume has reloc tree but the swap is finished, no need to
0850      * create/update the dead reloc tree
0851      */
0852     if (reloc_root_is_dead(root))
0853         return 0;
0854 
0855     /*
0856      * This is subtle but important.  We do not do
0857      * record_root_in_transaction for reloc roots, instead we record their
0858      * corresponding fs root, and then here we update the last trans for the
0859      * reloc root.  This means that we have to do this for the entire life
0860      * of the reloc root, regardless of which stage of the relocation we are
0861      * in.
0862      */
0863     if (root->reloc_root) {
0864         reloc_root = root->reloc_root;
0865         reloc_root->last_trans = trans->transid;
0866         return 0;
0867     }
0868 
0869     /*
0870      * We are merging reloc roots, we do not need new reloc trees.  Also
0871      * reloc trees never need their own reloc tree.
0872      */
0873     if (!rc->create_reloc_tree ||
0874         root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
0875         return 0;
0876 
0877     if (!trans->reloc_reserved) {
0878         rsv = trans->block_rsv;
0879         trans->block_rsv = rc->block_rsv;
0880         clear_rsv = 1;
0881     }
0882     reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
0883     if (clear_rsv)
0884         trans->block_rsv = rsv;
0885     if (IS_ERR(reloc_root))
0886         return PTR_ERR(reloc_root);
0887 
0888     ret = __add_reloc_root(reloc_root);
0889     ASSERT(ret != -EEXIST);
0890     if (ret) {
0891         /* Pairs with create_reloc_root */
0892         btrfs_put_root(reloc_root);
0893         return ret;
0894     }
0895     root->reloc_root = btrfs_grab_root(reloc_root);
0896     return 0;
0897 }
0898 
0899 /*
0900  * update root item of reloc tree
0901  */
0902 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
0903                 struct btrfs_root *root)
0904 {
0905     struct btrfs_fs_info *fs_info = root->fs_info;
0906     struct btrfs_root *reloc_root;
0907     struct btrfs_root_item *root_item;
0908     int ret;
0909 
0910     if (!have_reloc_root(root))
0911         return 0;
0912 
0913     reloc_root = root->reloc_root;
0914     root_item = &reloc_root->root_item;
0915 
0916     /*
0917      * We are probably ok here, but __del_reloc_root() will drop its ref of
0918      * the root.  We have the ref for root->reloc_root, but just in case
0919      * hold it while we update the reloc root.
0920      */
0921     btrfs_grab_root(reloc_root);
0922 
0923     /* root->reloc_root will stay until current relocation finished */
0924     if (fs_info->reloc_ctl->merge_reloc_tree &&
0925         btrfs_root_refs(root_item) == 0) {
0926         set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
0927         /*
0928          * Mark the tree as dead before we change reloc_root so
0929          * have_reloc_root will not touch it from now on.
0930          */
0931         smp_wmb();
0932         __del_reloc_root(reloc_root);
0933     }
0934 
0935     if (reloc_root->commit_root != reloc_root->node) {
0936         __update_reloc_root(reloc_root);
0937         btrfs_set_root_node(root_item, reloc_root->node);
0938         free_extent_buffer(reloc_root->commit_root);
0939         reloc_root->commit_root = btrfs_root_node(reloc_root);
0940     }
0941 
0942     ret = btrfs_update_root(trans, fs_info->tree_root,
0943                 &reloc_root->root_key, root_item);
0944     btrfs_put_root(reloc_root);
0945     return ret;
0946 }
0947 
0948 /*
0949  * helper to find first cached inode with inode number >= objectid
0950  * in a subvolume
0951  */
0952 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
0953 {
0954     struct rb_node *node;
0955     struct rb_node *prev;
0956     struct btrfs_inode *entry;
0957     struct inode *inode;
0958 
0959     spin_lock(&root->inode_lock);
0960 again:
0961     node = root->inode_tree.rb_node;
0962     prev = NULL;
0963     while (node) {
0964         prev = node;
0965         entry = rb_entry(node, struct btrfs_inode, rb_node);
0966 
0967         if (objectid < btrfs_ino(entry))
0968             node = node->rb_left;
0969         else if (objectid > btrfs_ino(entry))
0970             node = node->rb_right;
0971         else
0972             break;
0973     }
0974     if (!node) {
0975         while (prev) {
0976             entry = rb_entry(prev, struct btrfs_inode, rb_node);
0977             if (objectid <= btrfs_ino(entry)) {
0978                 node = prev;
0979                 break;
0980             }
0981             prev = rb_next(prev);
0982         }
0983     }
0984     while (node) {
0985         entry = rb_entry(node, struct btrfs_inode, rb_node);
0986         inode = igrab(&entry->vfs_inode);
0987         if (inode) {
0988             spin_unlock(&root->inode_lock);
0989             return inode;
0990         }
0991 
0992         objectid = btrfs_ino(entry) + 1;
0993         if (cond_resched_lock(&root->inode_lock))
0994             goto again;
0995 
0996         node = rb_next(node);
0997     }
0998     spin_unlock(&root->inode_lock);
0999     return NULL;
1000 }
1001 
1002 /*
1003  * get new location of data
1004  */
1005 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1006                 u64 bytenr, u64 num_bytes)
1007 {
1008     struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1009     struct btrfs_path *path;
1010     struct btrfs_file_extent_item *fi;
1011     struct extent_buffer *leaf;
1012     int ret;
1013 
1014     path = btrfs_alloc_path();
1015     if (!path)
1016         return -ENOMEM;
1017 
1018     bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1019     ret = btrfs_lookup_file_extent(NULL, root, path,
1020             btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1021     if (ret < 0)
1022         goto out;
1023     if (ret > 0) {
1024         ret = -ENOENT;
1025         goto out;
1026     }
1027 
1028     leaf = path->nodes[0];
1029     fi = btrfs_item_ptr(leaf, path->slots[0],
1030                 struct btrfs_file_extent_item);
1031 
1032     BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1033            btrfs_file_extent_compression(leaf, fi) ||
1034            btrfs_file_extent_encryption(leaf, fi) ||
1035            btrfs_file_extent_other_encoding(leaf, fi));
1036 
1037     if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1038         ret = -EINVAL;
1039         goto out;
1040     }
1041 
1042     *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1043     ret = 0;
1044 out:
1045     btrfs_free_path(path);
1046     return ret;
1047 }
1048 
1049 /*
1050  * update file extent items in the tree leaf to point to
1051  * the new locations.
1052  */
1053 static noinline_for_stack
1054 int replace_file_extents(struct btrfs_trans_handle *trans,
1055              struct reloc_control *rc,
1056              struct btrfs_root *root,
1057              struct extent_buffer *leaf)
1058 {
1059     struct btrfs_fs_info *fs_info = root->fs_info;
1060     struct btrfs_key key;
1061     struct btrfs_file_extent_item *fi;
1062     struct inode *inode = NULL;
1063     u64 parent;
1064     u64 bytenr;
1065     u64 new_bytenr = 0;
1066     u64 num_bytes;
1067     u64 end;
1068     u32 nritems;
1069     u32 i;
1070     int ret = 0;
1071     int first = 1;
1072     int dirty = 0;
1073 
1074     if (rc->stage != UPDATE_DATA_PTRS)
1075         return 0;
1076 
1077     /* reloc trees always use full backref */
1078     if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1079         parent = leaf->start;
1080     else
1081         parent = 0;
1082 
1083     nritems = btrfs_header_nritems(leaf);
1084     for (i = 0; i < nritems; i++) {
1085         struct btrfs_ref ref = { 0 };
1086 
1087         cond_resched();
1088         btrfs_item_key_to_cpu(leaf, &key, i);
1089         if (key.type != BTRFS_EXTENT_DATA_KEY)
1090             continue;
1091         fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1092         if (btrfs_file_extent_type(leaf, fi) ==
1093             BTRFS_FILE_EXTENT_INLINE)
1094             continue;
1095         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1096         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1097         if (bytenr == 0)
1098             continue;
1099         if (!in_range(bytenr, rc->block_group->start,
1100                   rc->block_group->length))
1101             continue;
1102 
1103         /*
1104          * if we are modifying block in fs tree, wait for read_folio
1105          * to complete and drop the extent cache
1106          */
1107         if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1108             if (first) {
1109                 inode = find_next_inode(root, key.objectid);
1110                 first = 0;
1111             } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1112                 btrfs_add_delayed_iput(inode);
1113                 inode = find_next_inode(root, key.objectid);
1114             }
1115             if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1116                 end = key.offset +
1117                       btrfs_file_extent_num_bytes(leaf, fi);
1118                 WARN_ON(!IS_ALIGNED(key.offset,
1119                             fs_info->sectorsize));
1120                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1121                 end--;
1122                 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1123                               key.offset, end);
1124                 if (!ret)
1125                     continue;
1126 
1127                 btrfs_drop_extent_cache(BTRFS_I(inode),
1128                         key.offset, end, 1);
1129                 unlock_extent(&BTRFS_I(inode)->io_tree,
1130                           key.offset, end);
1131             }
1132         }
1133 
1134         ret = get_new_location(rc->data_inode, &new_bytenr,
1135                        bytenr, num_bytes);
1136         if (ret) {
1137             /*
1138              * Don't have to abort since we've not changed anything
1139              * in the file extent yet.
1140              */
1141             break;
1142         }
1143 
1144         btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1145         dirty = 1;
1146 
1147         key.offset -= btrfs_file_extent_offset(leaf, fi);
1148         btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1149                        num_bytes, parent);
1150         btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1151                     key.objectid, key.offset,
1152                     root->root_key.objectid, false);
1153         ret = btrfs_inc_extent_ref(trans, &ref);
1154         if (ret) {
1155             btrfs_abort_transaction(trans, ret);
1156             break;
1157         }
1158 
1159         btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1160                        num_bytes, parent);
1161         btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1162                     key.objectid, key.offset,
1163                     root->root_key.objectid, false);
1164         ret = btrfs_free_extent(trans, &ref);
1165         if (ret) {
1166             btrfs_abort_transaction(trans, ret);
1167             break;
1168         }
1169     }
1170     if (dirty)
1171         btrfs_mark_buffer_dirty(leaf);
1172     if (inode)
1173         btrfs_add_delayed_iput(inode);
1174     return ret;
1175 }
1176 
1177 static noinline_for_stack
1178 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1179              struct btrfs_path *path, int level)
1180 {
1181     struct btrfs_disk_key key1;
1182     struct btrfs_disk_key key2;
1183     btrfs_node_key(eb, &key1, slot);
1184     btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1185     return memcmp(&key1, &key2, sizeof(key1));
1186 }
1187 
1188 /*
1189  * try to replace tree blocks in fs tree with the new blocks
1190  * in reloc tree. tree blocks haven't been modified since the
1191  * reloc tree was create can be replaced.
1192  *
1193  * if a block was replaced, level of the block + 1 is returned.
1194  * if no block got replaced, 0 is returned. if there are other
1195  * errors, a negative error number is returned.
1196  */
1197 static noinline_for_stack
1198 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1199          struct btrfs_root *dest, struct btrfs_root *src,
1200          struct btrfs_path *path, struct btrfs_key *next_key,
1201          int lowest_level, int max_level)
1202 {
1203     struct btrfs_fs_info *fs_info = dest->fs_info;
1204     struct extent_buffer *eb;
1205     struct extent_buffer *parent;
1206     struct btrfs_ref ref = { 0 };
1207     struct btrfs_key key;
1208     u64 old_bytenr;
1209     u64 new_bytenr;
1210     u64 old_ptr_gen;
1211     u64 new_ptr_gen;
1212     u64 last_snapshot;
1213     u32 blocksize;
1214     int cow = 0;
1215     int level;
1216     int ret;
1217     int slot;
1218 
1219     ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1220     ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1221 
1222     last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1223 again:
1224     slot = path->slots[lowest_level];
1225     btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1226 
1227     eb = btrfs_lock_root_node(dest);
1228     level = btrfs_header_level(eb);
1229 
1230     if (level < lowest_level) {
1231         btrfs_tree_unlock(eb);
1232         free_extent_buffer(eb);
1233         return 0;
1234     }
1235 
1236     if (cow) {
1237         ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1238                       BTRFS_NESTING_COW);
1239         if (ret) {
1240             btrfs_tree_unlock(eb);
1241             free_extent_buffer(eb);
1242             return ret;
1243         }
1244     }
1245 
1246     if (next_key) {
1247         next_key->objectid = (u64)-1;
1248         next_key->type = (u8)-1;
1249         next_key->offset = (u64)-1;
1250     }
1251 
1252     parent = eb;
1253     while (1) {
1254         level = btrfs_header_level(parent);
1255         ASSERT(level >= lowest_level);
1256 
1257         ret = btrfs_bin_search(parent, &key, &slot);
1258         if (ret < 0)
1259             break;
1260         if (ret && slot > 0)
1261             slot--;
1262 
1263         if (next_key && slot + 1 < btrfs_header_nritems(parent))
1264             btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1265 
1266         old_bytenr = btrfs_node_blockptr(parent, slot);
1267         blocksize = fs_info->nodesize;
1268         old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1269 
1270         if (level <= max_level) {
1271             eb = path->nodes[level];
1272             new_bytenr = btrfs_node_blockptr(eb,
1273                             path->slots[level]);
1274             new_ptr_gen = btrfs_node_ptr_generation(eb,
1275                             path->slots[level]);
1276         } else {
1277             new_bytenr = 0;
1278             new_ptr_gen = 0;
1279         }
1280 
1281         if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1282             ret = level;
1283             break;
1284         }
1285 
1286         if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1287             memcmp_node_keys(parent, slot, path, level)) {
1288             if (level <= lowest_level) {
1289                 ret = 0;
1290                 break;
1291             }
1292 
1293             eb = btrfs_read_node_slot(parent, slot);
1294             if (IS_ERR(eb)) {
1295                 ret = PTR_ERR(eb);
1296                 break;
1297             }
1298             btrfs_tree_lock(eb);
1299             if (cow) {
1300                 ret = btrfs_cow_block(trans, dest, eb, parent,
1301                               slot, &eb,
1302                               BTRFS_NESTING_COW);
1303                 if (ret) {
1304                     btrfs_tree_unlock(eb);
1305                     free_extent_buffer(eb);
1306                     break;
1307                 }
1308             }
1309 
1310             btrfs_tree_unlock(parent);
1311             free_extent_buffer(parent);
1312 
1313             parent = eb;
1314             continue;
1315         }
1316 
1317         if (!cow) {
1318             btrfs_tree_unlock(parent);
1319             free_extent_buffer(parent);
1320             cow = 1;
1321             goto again;
1322         }
1323 
1324         btrfs_node_key_to_cpu(path->nodes[level], &key,
1325                       path->slots[level]);
1326         btrfs_release_path(path);
1327 
1328         path->lowest_level = level;
1329         set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1330         ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1331         clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1332         path->lowest_level = 0;
1333         if (ret) {
1334             if (ret > 0)
1335                 ret = -ENOENT;
1336             break;
1337         }
1338 
1339         /*
1340          * Info qgroup to trace both subtrees.
1341          *
1342          * We must trace both trees.
1343          * 1) Tree reloc subtree
1344          *    If not traced, we will leak data numbers
1345          * 2) Fs subtree
1346          *    If not traced, we will double count old data
1347          *
1348          * We don't scan the subtree right now, but only record
1349          * the swapped tree blocks.
1350          * The real subtree rescan is delayed until we have new
1351          * CoW on the subtree root node before transaction commit.
1352          */
1353         ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1354                 rc->block_group, parent, slot,
1355                 path->nodes[level], path->slots[level],
1356                 last_snapshot);
1357         if (ret < 0)
1358             break;
1359         /*
1360          * swap blocks in fs tree and reloc tree.
1361          */
1362         btrfs_set_node_blockptr(parent, slot, new_bytenr);
1363         btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1364         btrfs_mark_buffer_dirty(parent);
1365 
1366         btrfs_set_node_blockptr(path->nodes[level],
1367                     path->slots[level], old_bytenr);
1368         btrfs_set_node_ptr_generation(path->nodes[level],
1369                           path->slots[level], old_ptr_gen);
1370         btrfs_mark_buffer_dirty(path->nodes[level]);
1371 
1372         btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1373                        blocksize, path->nodes[level]->start);
1374         btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1375                     0, true);
1376         ret = btrfs_inc_extent_ref(trans, &ref);
1377         if (ret) {
1378             btrfs_abort_transaction(trans, ret);
1379             break;
1380         }
1381         btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1382                        blocksize, 0);
1383         btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1384                     true);
1385         ret = btrfs_inc_extent_ref(trans, &ref);
1386         if (ret) {
1387             btrfs_abort_transaction(trans, ret);
1388             break;
1389         }
1390 
1391         btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1392                        blocksize, path->nodes[level]->start);
1393         btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1394                     0, true);
1395         ret = btrfs_free_extent(trans, &ref);
1396         if (ret) {
1397             btrfs_abort_transaction(trans, ret);
1398             break;
1399         }
1400 
1401         btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1402                        blocksize, 0);
1403         btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1404                     0, true);
1405         ret = btrfs_free_extent(trans, &ref);
1406         if (ret) {
1407             btrfs_abort_transaction(trans, ret);
1408             break;
1409         }
1410 
1411         btrfs_unlock_up_safe(path, 0);
1412 
1413         ret = level;
1414         break;
1415     }
1416     btrfs_tree_unlock(parent);
1417     free_extent_buffer(parent);
1418     return ret;
1419 }
1420 
1421 /*
1422  * helper to find next relocated block in reloc tree
1423  */
1424 static noinline_for_stack
1425 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1426                int *level)
1427 {
1428     struct extent_buffer *eb;
1429     int i;
1430     u64 last_snapshot;
1431     u32 nritems;
1432 
1433     last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1434 
1435     for (i = 0; i < *level; i++) {
1436         free_extent_buffer(path->nodes[i]);
1437         path->nodes[i] = NULL;
1438     }
1439 
1440     for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1441         eb = path->nodes[i];
1442         nritems = btrfs_header_nritems(eb);
1443         while (path->slots[i] + 1 < nritems) {
1444             path->slots[i]++;
1445             if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1446                 last_snapshot)
1447                 continue;
1448 
1449             *level = i;
1450             return 0;
1451         }
1452         free_extent_buffer(path->nodes[i]);
1453         path->nodes[i] = NULL;
1454     }
1455     return 1;
1456 }
1457 
1458 /*
1459  * walk down reloc tree to find relocated block of lowest level
1460  */
1461 static noinline_for_stack
1462 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1463              int *level)
1464 {
1465     struct extent_buffer *eb = NULL;
1466     int i;
1467     u64 ptr_gen = 0;
1468     u64 last_snapshot;
1469     u32 nritems;
1470 
1471     last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1472 
1473     for (i = *level; i > 0; i--) {
1474         eb = path->nodes[i];
1475         nritems = btrfs_header_nritems(eb);
1476         while (path->slots[i] < nritems) {
1477             ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1478             if (ptr_gen > last_snapshot)
1479                 break;
1480             path->slots[i]++;
1481         }
1482         if (path->slots[i] >= nritems) {
1483             if (i == *level)
1484                 break;
1485             *level = i + 1;
1486             return 0;
1487         }
1488         if (i == 1) {
1489             *level = i;
1490             return 0;
1491         }
1492 
1493         eb = btrfs_read_node_slot(eb, path->slots[i]);
1494         if (IS_ERR(eb))
1495             return PTR_ERR(eb);
1496         BUG_ON(btrfs_header_level(eb) != i - 1);
1497         path->nodes[i - 1] = eb;
1498         path->slots[i - 1] = 0;
1499     }
1500     return 1;
1501 }
1502 
1503 /*
1504  * invalidate extent cache for file extents whose key in range of
1505  * [min_key, max_key)
1506  */
1507 static int invalidate_extent_cache(struct btrfs_root *root,
1508                    struct btrfs_key *min_key,
1509                    struct btrfs_key *max_key)
1510 {
1511     struct btrfs_fs_info *fs_info = root->fs_info;
1512     struct inode *inode = NULL;
1513     u64 objectid;
1514     u64 start, end;
1515     u64 ino;
1516 
1517     objectid = min_key->objectid;
1518     while (1) {
1519         cond_resched();
1520         iput(inode);
1521 
1522         if (objectid > max_key->objectid)
1523             break;
1524 
1525         inode = find_next_inode(root, objectid);
1526         if (!inode)
1527             break;
1528         ino = btrfs_ino(BTRFS_I(inode));
1529 
1530         if (ino > max_key->objectid) {
1531             iput(inode);
1532             break;
1533         }
1534 
1535         objectid = ino + 1;
1536         if (!S_ISREG(inode->i_mode))
1537             continue;
1538 
1539         if (unlikely(min_key->objectid == ino)) {
1540             if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1541                 continue;
1542             if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1543                 start = 0;
1544             else {
1545                 start = min_key->offset;
1546                 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1547             }
1548         } else {
1549             start = 0;
1550         }
1551 
1552         if (unlikely(max_key->objectid == ino)) {
1553             if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1554                 continue;
1555             if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1556                 end = (u64)-1;
1557             } else {
1558                 if (max_key->offset == 0)
1559                     continue;
1560                 end = max_key->offset;
1561                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1562                 end--;
1563             }
1564         } else {
1565             end = (u64)-1;
1566         }
1567 
1568         /* the lock_extent waits for read_folio to complete */
1569         lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1570         btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1571         unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1572     }
1573     return 0;
1574 }
1575 
1576 static int find_next_key(struct btrfs_path *path, int level,
1577              struct btrfs_key *key)
1578 
1579 {
1580     while (level < BTRFS_MAX_LEVEL) {
1581         if (!path->nodes[level])
1582             break;
1583         if (path->slots[level] + 1 <
1584             btrfs_header_nritems(path->nodes[level])) {
1585             btrfs_node_key_to_cpu(path->nodes[level], key,
1586                           path->slots[level] + 1);
1587             return 0;
1588         }
1589         level++;
1590     }
1591     return 1;
1592 }
1593 
1594 /*
1595  * Insert current subvolume into reloc_control::dirty_subvol_roots
1596  */
1597 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1598                    struct reloc_control *rc,
1599                    struct btrfs_root *root)
1600 {
1601     struct btrfs_root *reloc_root = root->reloc_root;
1602     struct btrfs_root_item *reloc_root_item;
1603     int ret;
1604 
1605     /* @root must be a subvolume tree root with a valid reloc tree */
1606     ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1607     ASSERT(reloc_root);
1608 
1609     reloc_root_item = &reloc_root->root_item;
1610     memset(&reloc_root_item->drop_progress, 0,
1611         sizeof(reloc_root_item->drop_progress));
1612     btrfs_set_root_drop_level(reloc_root_item, 0);
1613     btrfs_set_root_refs(reloc_root_item, 0);
1614     ret = btrfs_update_reloc_root(trans, root);
1615     if (ret)
1616         return ret;
1617 
1618     if (list_empty(&root->reloc_dirty_list)) {
1619         btrfs_grab_root(root);
1620         list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1621     }
1622 
1623     return 0;
1624 }
1625 
1626 static int clean_dirty_subvols(struct reloc_control *rc)
1627 {
1628     struct btrfs_root *root;
1629     struct btrfs_root *next;
1630     int ret = 0;
1631     int ret2;
1632 
1633     list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1634                  reloc_dirty_list) {
1635         if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1636             /* Merged subvolume, cleanup its reloc root */
1637             struct btrfs_root *reloc_root = root->reloc_root;
1638 
1639             list_del_init(&root->reloc_dirty_list);
1640             root->reloc_root = NULL;
1641             /*
1642              * Need barrier to ensure clear_bit() only happens after
1643              * root->reloc_root = NULL. Pairs with have_reloc_root.
1644              */
1645             smp_wmb();
1646             clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1647             if (reloc_root) {
1648                 /*
1649                  * btrfs_drop_snapshot drops our ref we hold for
1650                  * ->reloc_root.  If it fails however we must
1651                  * drop the ref ourselves.
1652                  */
1653                 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1654                 if (ret2 < 0) {
1655                     btrfs_put_root(reloc_root);
1656                     if (!ret)
1657                         ret = ret2;
1658                 }
1659             }
1660             btrfs_put_root(root);
1661         } else {
1662             /* Orphan reloc tree, just clean it up */
1663             ret2 = btrfs_drop_snapshot(root, 0, 1);
1664             if (ret2 < 0) {
1665                 btrfs_put_root(root);
1666                 if (!ret)
1667                     ret = ret2;
1668             }
1669         }
1670     }
1671     return ret;
1672 }
1673 
1674 /*
1675  * merge the relocated tree blocks in reloc tree with corresponding
1676  * fs tree.
1677  */
1678 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1679                            struct btrfs_root *root)
1680 {
1681     struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1682     struct btrfs_key key;
1683     struct btrfs_key next_key;
1684     struct btrfs_trans_handle *trans = NULL;
1685     struct btrfs_root *reloc_root;
1686     struct btrfs_root_item *root_item;
1687     struct btrfs_path *path;
1688     struct extent_buffer *leaf;
1689     int reserve_level;
1690     int level;
1691     int max_level;
1692     int replaced = 0;
1693     int ret = 0;
1694     u32 min_reserved;
1695 
1696     path = btrfs_alloc_path();
1697     if (!path)
1698         return -ENOMEM;
1699     path->reada = READA_FORWARD;
1700 
1701     reloc_root = root->reloc_root;
1702     root_item = &reloc_root->root_item;
1703 
1704     if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1705         level = btrfs_root_level(root_item);
1706         atomic_inc(&reloc_root->node->refs);
1707         path->nodes[level] = reloc_root->node;
1708         path->slots[level] = 0;
1709     } else {
1710         btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1711 
1712         level = btrfs_root_drop_level(root_item);
1713         BUG_ON(level == 0);
1714         path->lowest_level = level;
1715         ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1716         path->lowest_level = 0;
1717         if (ret < 0) {
1718             btrfs_free_path(path);
1719             return ret;
1720         }
1721 
1722         btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1723                       path->slots[level]);
1724         WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1725 
1726         btrfs_unlock_up_safe(path, 0);
1727     }
1728 
1729     /*
1730      * In merge_reloc_root(), we modify the upper level pointer to swap the
1731      * tree blocks between reloc tree and subvolume tree.  Thus for tree
1732      * block COW, we COW at most from level 1 to root level for each tree.
1733      *
1734      * Thus the needed metadata size is at most root_level * nodesize,
1735      * and * 2 since we have two trees to COW.
1736      */
1737     reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1738     min_reserved = fs_info->nodesize * reserve_level * 2;
1739     memset(&next_key, 0, sizeof(next_key));
1740 
1741     while (1) {
1742         ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1743                          min_reserved,
1744                          BTRFS_RESERVE_FLUSH_LIMIT);
1745         if (ret)
1746             goto out;
1747         trans = btrfs_start_transaction(root, 0);
1748         if (IS_ERR(trans)) {
1749             ret = PTR_ERR(trans);
1750             trans = NULL;
1751             goto out;
1752         }
1753 
1754         /*
1755          * At this point we no longer have a reloc_control, so we can't
1756          * depend on btrfs_init_reloc_root to update our last_trans.
1757          *
1758          * But that's ok, we started the trans handle on our
1759          * corresponding fs_root, which means it's been added to the
1760          * dirty list.  At commit time we'll still call
1761          * btrfs_update_reloc_root() and update our root item
1762          * appropriately.
1763          */
1764         reloc_root->last_trans = trans->transid;
1765         trans->block_rsv = rc->block_rsv;
1766 
1767         replaced = 0;
1768         max_level = level;
1769 
1770         ret = walk_down_reloc_tree(reloc_root, path, &level);
1771         if (ret < 0)
1772             goto out;
1773         if (ret > 0)
1774             break;
1775 
1776         if (!find_next_key(path, level, &key) &&
1777             btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1778             ret = 0;
1779         } else {
1780             ret = replace_path(trans, rc, root, reloc_root, path,
1781                        &next_key, level, max_level);
1782         }
1783         if (ret < 0)
1784             goto out;
1785         if (ret > 0) {
1786             level = ret;
1787             btrfs_node_key_to_cpu(path->nodes[level], &key,
1788                           path->slots[level]);
1789             replaced = 1;
1790         }
1791 
1792         ret = walk_up_reloc_tree(reloc_root, path, &level);
1793         if (ret > 0)
1794             break;
1795 
1796         BUG_ON(level == 0);
1797         /*
1798          * save the merging progress in the drop_progress.
1799          * this is OK since root refs == 1 in this case.
1800          */
1801         btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1802                    path->slots[level]);
1803         btrfs_set_root_drop_level(root_item, level);
1804 
1805         btrfs_end_transaction_throttle(trans);
1806         trans = NULL;
1807 
1808         btrfs_btree_balance_dirty(fs_info);
1809 
1810         if (replaced && rc->stage == UPDATE_DATA_PTRS)
1811             invalidate_extent_cache(root, &key, &next_key);
1812     }
1813 
1814     /*
1815      * handle the case only one block in the fs tree need to be
1816      * relocated and the block is tree root.
1817      */
1818     leaf = btrfs_lock_root_node(root);
1819     ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1820                   BTRFS_NESTING_COW);
1821     btrfs_tree_unlock(leaf);
1822     free_extent_buffer(leaf);
1823 out:
1824     btrfs_free_path(path);
1825 
1826     if (ret == 0) {
1827         ret = insert_dirty_subvol(trans, rc, root);
1828         if (ret)
1829             btrfs_abort_transaction(trans, ret);
1830     }
1831 
1832     if (trans)
1833         btrfs_end_transaction_throttle(trans);
1834 
1835     btrfs_btree_balance_dirty(fs_info);
1836 
1837     if (replaced && rc->stage == UPDATE_DATA_PTRS)
1838         invalidate_extent_cache(root, &key, &next_key);
1839 
1840     return ret;
1841 }
1842 
1843 static noinline_for_stack
1844 int prepare_to_merge(struct reloc_control *rc, int err)
1845 {
1846     struct btrfs_root *root = rc->extent_root;
1847     struct btrfs_fs_info *fs_info = root->fs_info;
1848     struct btrfs_root *reloc_root;
1849     struct btrfs_trans_handle *trans;
1850     LIST_HEAD(reloc_roots);
1851     u64 num_bytes = 0;
1852     int ret;
1853 
1854     mutex_lock(&fs_info->reloc_mutex);
1855     rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1856     rc->merging_rsv_size += rc->nodes_relocated * 2;
1857     mutex_unlock(&fs_info->reloc_mutex);
1858 
1859 again:
1860     if (!err) {
1861         num_bytes = rc->merging_rsv_size;
1862         ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1863                       BTRFS_RESERVE_FLUSH_ALL);
1864         if (ret)
1865             err = ret;
1866     }
1867 
1868     trans = btrfs_join_transaction(rc->extent_root);
1869     if (IS_ERR(trans)) {
1870         if (!err)
1871             btrfs_block_rsv_release(fs_info, rc->block_rsv,
1872                         num_bytes, NULL);
1873         return PTR_ERR(trans);
1874     }
1875 
1876     if (!err) {
1877         if (num_bytes != rc->merging_rsv_size) {
1878             btrfs_end_transaction(trans);
1879             btrfs_block_rsv_release(fs_info, rc->block_rsv,
1880                         num_bytes, NULL);
1881             goto again;
1882         }
1883     }
1884 
1885     rc->merge_reloc_tree = 1;
1886 
1887     while (!list_empty(&rc->reloc_roots)) {
1888         reloc_root = list_entry(rc->reloc_roots.next,
1889                     struct btrfs_root, root_list);
1890         list_del_init(&reloc_root->root_list);
1891 
1892         root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1893                 false);
1894         if (IS_ERR(root)) {
1895             /*
1896              * Even if we have an error we need this reloc root
1897              * back on our list so we can clean up properly.
1898              */
1899             list_add(&reloc_root->root_list, &reloc_roots);
1900             btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1901             if (!err)
1902                 err = PTR_ERR(root);
1903             break;
1904         }
1905         ASSERT(root->reloc_root == reloc_root);
1906 
1907         /*
1908          * set reference count to 1, so btrfs_recover_relocation
1909          * knows it should resumes merging
1910          */
1911         if (!err)
1912             btrfs_set_root_refs(&reloc_root->root_item, 1);
1913         ret = btrfs_update_reloc_root(trans, root);
1914 
1915         /*
1916          * Even if we have an error we need this reloc root back on our
1917          * list so we can clean up properly.
1918          */
1919         list_add(&reloc_root->root_list, &reloc_roots);
1920         btrfs_put_root(root);
1921 
1922         if (ret) {
1923             btrfs_abort_transaction(trans, ret);
1924             if (!err)
1925                 err = ret;
1926             break;
1927         }
1928     }
1929 
1930     list_splice(&reloc_roots, &rc->reloc_roots);
1931 
1932     if (!err)
1933         err = btrfs_commit_transaction(trans);
1934     else
1935         btrfs_end_transaction(trans);
1936     return err;
1937 }
1938 
1939 static noinline_for_stack
1940 void free_reloc_roots(struct list_head *list)
1941 {
1942     struct btrfs_root *reloc_root, *tmp;
1943 
1944     list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1945         __del_reloc_root(reloc_root);
1946 }
1947 
1948 static noinline_for_stack
1949 void merge_reloc_roots(struct reloc_control *rc)
1950 {
1951     struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1952     struct btrfs_root *root;
1953     struct btrfs_root *reloc_root;
1954     LIST_HEAD(reloc_roots);
1955     int found = 0;
1956     int ret = 0;
1957 again:
1958     root = rc->extent_root;
1959 
1960     /*
1961      * this serializes us with btrfs_record_root_in_transaction,
1962      * we have to make sure nobody is in the middle of
1963      * adding their roots to the list while we are
1964      * doing this splice
1965      */
1966     mutex_lock(&fs_info->reloc_mutex);
1967     list_splice_init(&rc->reloc_roots, &reloc_roots);
1968     mutex_unlock(&fs_info->reloc_mutex);
1969 
1970     while (!list_empty(&reloc_roots)) {
1971         found = 1;
1972         reloc_root = list_entry(reloc_roots.next,
1973                     struct btrfs_root, root_list);
1974 
1975         root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1976                      false);
1977         if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1978             if (IS_ERR(root)) {
1979                 /*
1980                  * For recovery we read the fs roots on mount,
1981                  * and if we didn't find the root then we marked
1982                  * the reloc root as a garbage root.  For normal
1983                  * relocation obviously the root should exist in
1984                  * memory.  However there's no reason we can't
1985                  * handle the error properly here just in case.
1986                  */
1987                 ASSERT(0);
1988                 ret = PTR_ERR(root);
1989                 goto out;
1990             }
1991             if (root->reloc_root != reloc_root) {
1992                 /*
1993                  * This is actually impossible without something
1994                  * going really wrong (like weird race condition
1995                  * or cosmic rays).
1996                  */
1997                 ASSERT(0);
1998                 ret = -EINVAL;
1999                 goto out;
2000             }
2001             ret = merge_reloc_root(rc, root);
2002             btrfs_put_root(root);
2003             if (ret) {
2004                 if (list_empty(&reloc_root->root_list))
2005                     list_add_tail(&reloc_root->root_list,
2006                               &reloc_roots);
2007                 goto out;
2008             }
2009         } else {
2010             if (!IS_ERR(root)) {
2011                 if (root->reloc_root == reloc_root) {
2012                     root->reloc_root = NULL;
2013                     btrfs_put_root(reloc_root);
2014                 }
2015                 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2016                       &root->state);
2017                 btrfs_put_root(root);
2018             }
2019 
2020             list_del_init(&reloc_root->root_list);
2021             /* Don't forget to queue this reloc root for cleanup */
2022             list_add_tail(&reloc_root->reloc_dirty_list,
2023                       &rc->dirty_subvol_roots);
2024         }
2025     }
2026 
2027     if (found) {
2028         found = 0;
2029         goto again;
2030     }
2031 out:
2032     if (ret) {
2033         btrfs_handle_fs_error(fs_info, ret, NULL);
2034         free_reloc_roots(&reloc_roots);
2035 
2036         /* new reloc root may be added */
2037         mutex_lock(&fs_info->reloc_mutex);
2038         list_splice_init(&rc->reloc_roots, &reloc_roots);
2039         mutex_unlock(&fs_info->reloc_mutex);
2040         free_reloc_roots(&reloc_roots);
2041     }
2042 
2043     /*
2044      * We used to have
2045      *
2046      * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2047      *
2048      * here, but it's wrong.  If we fail to start the transaction in
2049      * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2050      * have actually been removed from the reloc_root_tree rb tree.  This is
2051      * fine because we're bailing here, and we hold a reference on the root
2052      * for the list that holds it, so these roots will be cleaned up when we
2053      * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2054      * will be cleaned up on unmount.
2055      *
2056      * The remaining nodes will be cleaned up by free_reloc_control.
2057      */
2058 }
2059 
2060 static void free_block_list(struct rb_root *blocks)
2061 {
2062     struct tree_block *block;
2063     struct rb_node *rb_node;
2064     while ((rb_node = rb_first(blocks))) {
2065         block = rb_entry(rb_node, struct tree_block, rb_node);
2066         rb_erase(rb_node, blocks);
2067         kfree(block);
2068     }
2069 }
2070 
2071 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2072                       struct btrfs_root *reloc_root)
2073 {
2074     struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2075     struct btrfs_root *root;
2076     int ret;
2077 
2078     if (reloc_root->last_trans == trans->transid)
2079         return 0;
2080 
2081     root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2082 
2083     /*
2084      * This should succeed, since we can't have a reloc root without having
2085      * already looked up the actual root and created the reloc root for this
2086      * root.
2087      *
2088      * However if there's some sort of corruption where we have a ref to a
2089      * reloc root without a corresponding root this could return ENOENT.
2090      */
2091     if (IS_ERR(root)) {
2092         ASSERT(0);
2093         return PTR_ERR(root);
2094     }
2095     if (root->reloc_root != reloc_root) {
2096         ASSERT(0);
2097         btrfs_err(fs_info,
2098               "root %llu has two reloc roots associated with it",
2099               reloc_root->root_key.offset);
2100         btrfs_put_root(root);
2101         return -EUCLEAN;
2102     }
2103     ret = btrfs_record_root_in_trans(trans, root);
2104     btrfs_put_root(root);
2105 
2106     return ret;
2107 }
2108 
2109 static noinline_for_stack
2110 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2111                      struct reloc_control *rc,
2112                      struct btrfs_backref_node *node,
2113                      struct btrfs_backref_edge *edges[])
2114 {
2115     struct btrfs_backref_node *next;
2116     struct btrfs_root *root;
2117     int index = 0;
2118     int ret;
2119 
2120     next = node;
2121     while (1) {
2122         cond_resched();
2123         next = walk_up_backref(next, edges, &index);
2124         root = next->root;
2125 
2126         /*
2127          * If there is no root, then our references for this block are
2128          * incomplete, as we should be able to walk all the way up to a
2129          * block that is owned by a root.
2130          *
2131          * This path is only for SHAREABLE roots, so if we come upon a
2132          * non-SHAREABLE root then we have backrefs that resolve
2133          * improperly.
2134          *
2135          * Both of these cases indicate file system corruption, or a bug
2136          * in the backref walking code.
2137          */
2138         if (!root) {
2139             ASSERT(0);
2140             btrfs_err(trans->fs_info,
2141         "bytenr %llu doesn't have a backref path ending in a root",
2142                   node->bytenr);
2143             return ERR_PTR(-EUCLEAN);
2144         }
2145         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2146             ASSERT(0);
2147             btrfs_err(trans->fs_info,
2148     "bytenr %llu has multiple refs with one ending in a non-shareable root",
2149                   node->bytenr);
2150             return ERR_PTR(-EUCLEAN);
2151         }
2152 
2153         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2154             ret = record_reloc_root_in_trans(trans, root);
2155             if (ret)
2156                 return ERR_PTR(ret);
2157             break;
2158         }
2159 
2160         ret = btrfs_record_root_in_trans(trans, root);
2161         if (ret)
2162             return ERR_PTR(ret);
2163         root = root->reloc_root;
2164 
2165         /*
2166          * We could have raced with another thread which failed, so
2167          * root->reloc_root may not be set, return ENOENT in this case.
2168          */
2169         if (!root)
2170             return ERR_PTR(-ENOENT);
2171 
2172         if (next->new_bytenr != root->node->start) {
2173             /*
2174              * We just created the reloc root, so we shouldn't have
2175              * ->new_bytenr set and this shouldn't be in the changed
2176              *  list.  If it is then we have multiple roots pointing
2177              *  at the same bytenr which indicates corruption, or
2178              *  we've made a mistake in the backref walking code.
2179              */
2180             ASSERT(next->new_bytenr == 0);
2181             ASSERT(list_empty(&next->list));
2182             if (next->new_bytenr || !list_empty(&next->list)) {
2183                 btrfs_err(trans->fs_info,
2184     "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2185                       node->bytenr, next->bytenr);
2186                 return ERR_PTR(-EUCLEAN);
2187             }
2188 
2189             next->new_bytenr = root->node->start;
2190             btrfs_put_root(next->root);
2191             next->root = btrfs_grab_root(root);
2192             ASSERT(next->root);
2193             list_add_tail(&next->list,
2194                       &rc->backref_cache.changed);
2195             mark_block_processed(rc, next);
2196             break;
2197         }
2198 
2199         WARN_ON(1);
2200         root = NULL;
2201         next = walk_down_backref(edges, &index);
2202         if (!next || next->level <= node->level)
2203             break;
2204     }
2205     if (!root) {
2206         /*
2207          * This can happen if there's fs corruption or if there's a bug
2208          * in the backref lookup code.
2209          */
2210         ASSERT(0);
2211         return ERR_PTR(-ENOENT);
2212     }
2213 
2214     next = node;
2215     /* setup backref node path for btrfs_reloc_cow_block */
2216     while (1) {
2217         rc->backref_cache.path[next->level] = next;
2218         if (--index < 0)
2219             break;
2220         next = edges[index]->node[UPPER];
2221     }
2222     return root;
2223 }
2224 
2225 /*
2226  * Select a tree root for relocation.
2227  *
2228  * Return NULL if the block is not shareable. We should use do_relocation() in
2229  * this case.
2230  *
2231  * Return a tree root pointer if the block is shareable.
2232  * Return -ENOENT if the block is root of reloc tree.
2233  */
2234 static noinline_for_stack
2235 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2236 {
2237     struct btrfs_backref_node *next;
2238     struct btrfs_root *root;
2239     struct btrfs_root *fs_root = NULL;
2240     struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2241     int index = 0;
2242 
2243     next = node;
2244     while (1) {
2245         cond_resched();
2246         next = walk_up_backref(next, edges, &index);
2247         root = next->root;
2248 
2249         /*
2250          * This can occur if we have incomplete extent refs leading all
2251          * the way up a particular path, in this case return -EUCLEAN.
2252          */
2253         if (!root)
2254             return ERR_PTR(-EUCLEAN);
2255 
2256         /* No other choice for non-shareable tree */
2257         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2258             return root;
2259 
2260         if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2261             fs_root = root;
2262 
2263         if (next != node)
2264             return NULL;
2265 
2266         next = walk_down_backref(edges, &index);
2267         if (!next || next->level <= node->level)
2268             break;
2269     }
2270 
2271     if (!fs_root)
2272         return ERR_PTR(-ENOENT);
2273     return fs_root;
2274 }
2275 
2276 static noinline_for_stack
2277 u64 calcu_metadata_size(struct reloc_control *rc,
2278             struct btrfs_backref_node *node, int reserve)
2279 {
2280     struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2281     struct btrfs_backref_node *next = node;
2282     struct btrfs_backref_edge *edge;
2283     struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2284     u64 num_bytes = 0;
2285     int index = 0;
2286 
2287     BUG_ON(reserve && node->processed);
2288 
2289     while (next) {
2290         cond_resched();
2291         while (1) {
2292             if (next->processed && (reserve || next != node))
2293                 break;
2294 
2295             num_bytes += fs_info->nodesize;
2296 
2297             if (list_empty(&next->upper))
2298                 break;
2299 
2300             edge = list_entry(next->upper.next,
2301                     struct btrfs_backref_edge, list[LOWER]);
2302             edges[index++] = edge;
2303             next = edge->node[UPPER];
2304         }
2305         next = walk_down_backref(edges, &index);
2306     }
2307     return num_bytes;
2308 }
2309 
2310 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2311                   struct reloc_control *rc,
2312                   struct btrfs_backref_node *node)
2313 {
2314     struct btrfs_root *root = rc->extent_root;
2315     struct btrfs_fs_info *fs_info = root->fs_info;
2316     u64 num_bytes;
2317     int ret;
2318     u64 tmp;
2319 
2320     num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2321 
2322     trans->block_rsv = rc->block_rsv;
2323     rc->reserved_bytes += num_bytes;
2324 
2325     /*
2326      * We are under a transaction here so we can only do limited flushing.
2327      * If we get an enospc just kick back -EAGAIN so we know to drop the
2328      * transaction and try to refill when we can flush all the things.
2329      */
2330     ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2331                      BTRFS_RESERVE_FLUSH_LIMIT);
2332     if (ret) {
2333         tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2334         while (tmp <= rc->reserved_bytes)
2335             tmp <<= 1;
2336         /*
2337          * only one thread can access block_rsv at this point,
2338          * so we don't need hold lock to protect block_rsv.
2339          * we expand more reservation size here to allow enough
2340          * space for relocation and we will return earlier in
2341          * enospc case.
2342          */
2343         rc->block_rsv->size = tmp + fs_info->nodesize *
2344                       RELOCATION_RESERVED_NODES;
2345         return -EAGAIN;
2346     }
2347 
2348     return 0;
2349 }
2350 
2351 /*
2352  * relocate a block tree, and then update pointers in upper level
2353  * blocks that reference the block to point to the new location.
2354  *
2355  * if called by link_to_upper, the block has already been relocated.
2356  * in that case this function just updates pointers.
2357  */
2358 static int do_relocation(struct btrfs_trans_handle *trans,
2359              struct reloc_control *rc,
2360              struct btrfs_backref_node *node,
2361              struct btrfs_key *key,
2362              struct btrfs_path *path, int lowest)
2363 {
2364     struct btrfs_backref_node *upper;
2365     struct btrfs_backref_edge *edge;
2366     struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2367     struct btrfs_root *root;
2368     struct extent_buffer *eb;
2369     u32 blocksize;
2370     u64 bytenr;
2371     int slot;
2372     int ret = 0;
2373 
2374     /*
2375      * If we are lowest then this is the first time we're processing this
2376      * block, and thus shouldn't have an eb associated with it yet.
2377      */
2378     ASSERT(!lowest || !node->eb);
2379 
2380     path->lowest_level = node->level + 1;
2381     rc->backref_cache.path[node->level] = node;
2382     list_for_each_entry(edge, &node->upper, list[LOWER]) {
2383         struct btrfs_ref ref = { 0 };
2384 
2385         cond_resched();
2386 
2387         upper = edge->node[UPPER];
2388         root = select_reloc_root(trans, rc, upper, edges);
2389         if (IS_ERR(root)) {
2390             ret = PTR_ERR(root);
2391             goto next;
2392         }
2393 
2394         if (upper->eb && !upper->locked) {
2395             if (!lowest) {
2396                 ret = btrfs_bin_search(upper->eb, key, &slot);
2397                 if (ret < 0)
2398                     goto next;
2399                 BUG_ON(ret);
2400                 bytenr = btrfs_node_blockptr(upper->eb, slot);
2401                 if (node->eb->start == bytenr)
2402                     goto next;
2403             }
2404             btrfs_backref_drop_node_buffer(upper);
2405         }
2406 
2407         if (!upper->eb) {
2408             ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2409             if (ret) {
2410                 if (ret > 0)
2411                     ret = -ENOENT;
2412 
2413                 btrfs_release_path(path);
2414                 break;
2415             }
2416 
2417             if (!upper->eb) {
2418                 upper->eb = path->nodes[upper->level];
2419                 path->nodes[upper->level] = NULL;
2420             } else {
2421                 BUG_ON(upper->eb != path->nodes[upper->level]);
2422             }
2423 
2424             upper->locked = 1;
2425             path->locks[upper->level] = 0;
2426 
2427             slot = path->slots[upper->level];
2428             btrfs_release_path(path);
2429         } else {
2430             ret = btrfs_bin_search(upper->eb, key, &slot);
2431             if (ret < 0)
2432                 goto next;
2433             BUG_ON(ret);
2434         }
2435 
2436         bytenr = btrfs_node_blockptr(upper->eb, slot);
2437         if (lowest) {
2438             if (bytenr != node->bytenr) {
2439                 btrfs_err(root->fs_info,
2440         "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2441                       bytenr, node->bytenr, slot,
2442                       upper->eb->start);
2443                 ret = -EIO;
2444                 goto next;
2445             }
2446         } else {
2447             if (node->eb->start == bytenr)
2448                 goto next;
2449         }
2450 
2451         blocksize = root->fs_info->nodesize;
2452         eb = btrfs_read_node_slot(upper->eb, slot);
2453         if (IS_ERR(eb)) {
2454             ret = PTR_ERR(eb);
2455             goto next;
2456         }
2457         btrfs_tree_lock(eb);
2458 
2459         if (!node->eb) {
2460             ret = btrfs_cow_block(trans, root, eb, upper->eb,
2461                           slot, &eb, BTRFS_NESTING_COW);
2462             btrfs_tree_unlock(eb);
2463             free_extent_buffer(eb);
2464             if (ret < 0)
2465                 goto next;
2466             /*
2467              * We've just COWed this block, it should have updated
2468              * the correct backref node entry.
2469              */
2470             ASSERT(node->eb == eb);
2471         } else {
2472             btrfs_set_node_blockptr(upper->eb, slot,
2473                         node->eb->start);
2474             btrfs_set_node_ptr_generation(upper->eb, slot,
2475                               trans->transid);
2476             btrfs_mark_buffer_dirty(upper->eb);
2477 
2478             btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2479                            node->eb->start, blocksize,
2480                            upper->eb->start);
2481             btrfs_init_tree_ref(&ref, node->level,
2482                         btrfs_header_owner(upper->eb),
2483                         root->root_key.objectid, false);
2484             ret = btrfs_inc_extent_ref(trans, &ref);
2485             if (!ret)
2486                 ret = btrfs_drop_subtree(trans, root, eb,
2487                              upper->eb);
2488             if (ret)
2489                 btrfs_abort_transaction(trans, ret);
2490         }
2491 next:
2492         if (!upper->pending)
2493             btrfs_backref_drop_node_buffer(upper);
2494         else
2495             btrfs_backref_unlock_node_buffer(upper);
2496         if (ret)
2497             break;
2498     }
2499 
2500     if (!ret && node->pending) {
2501         btrfs_backref_drop_node_buffer(node);
2502         list_move_tail(&node->list, &rc->backref_cache.changed);
2503         node->pending = 0;
2504     }
2505 
2506     path->lowest_level = 0;
2507 
2508     /*
2509      * We should have allocated all of our space in the block rsv and thus
2510      * shouldn't ENOSPC.
2511      */
2512     ASSERT(ret != -ENOSPC);
2513     return ret;
2514 }
2515 
2516 static int link_to_upper(struct btrfs_trans_handle *trans,
2517              struct reloc_control *rc,
2518              struct btrfs_backref_node *node,
2519              struct btrfs_path *path)
2520 {
2521     struct btrfs_key key;
2522 
2523     btrfs_node_key_to_cpu(node->eb, &key, 0);
2524     return do_relocation(trans, rc, node, &key, path, 0);
2525 }
2526 
2527 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2528                 struct reloc_control *rc,
2529                 struct btrfs_path *path, int err)
2530 {
2531     LIST_HEAD(list);
2532     struct btrfs_backref_cache *cache = &rc->backref_cache;
2533     struct btrfs_backref_node *node;
2534     int level;
2535     int ret;
2536 
2537     for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2538         while (!list_empty(&cache->pending[level])) {
2539             node = list_entry(cache->pending[level].next,
2540                       struct btrfs_backref_node, list);
2541             list_move_tail(&node->list, &list);
2542             BUG_ON(!node->pending);
2543 
2544             if (!err) {
2545                 ret = link_to_upper(trans, rc, node, path);
2546                 if (ret < 0)
2547                     err = ret;
2548             }
2549         }
2550         list_splice_init(&list, &cache->pending[level]);
2551     }
2552     return err;
2553 }
2554 
2555 /*
2556  * mark a block and all blocks directly/indirectly reference the block
2557  * as processed.
2558  */
2559 static void update_processed_blocks(struct reloc_control *rc,
2560                     struct btrfs_backref_node *node)
2561 {
2562     struct btrfs_backref_node *next = node;
2563     struct btrfs_backref_edge *edge;
2564     struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2565     int index = 0;
2566 
2567     while (next) {
2568         cond_resched();
2569         while (1) {
2570             if (next->processed)
2571                 break;
2572 
2573             mark_block_processed(rc, next);
2574 
2575             if (list_empty(&next->upper))
2576                 break;
2577 
2578             edge = list_entry(next->upper.next,
2579                     struct btrfs_backref_edge, list[LOWER]);
2580             edges[index++] = edge;
2581             next = edge->node[UPPER];
2582         }
2583         next = walk_down_backref(edges, &index);
2584     }
2585 }
2586 
2587 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2588 {
2589     u32 blocksize = rc->extent_root->fs_info->nodesize;
2590 
2591     if (test_range_bit(&rc->processed_blocks, bytenr,
2592                bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2593         return 1;
2594     return 0;
2595 }
2596 
2597 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2598                   struct tree_block *block)
2599 {
2600     struct extent_buffer *eb;
2601 
2602     eb = read_tree_block(fs_info, block->bytenr, block->owner,
2603                  block->key.offset, block->level, NULL);
2604     if (IS_ERR(eb))
2605         return PTR_ERR(eb);
2606     if (!extent_buffer_uptodate(eb)) {
2607         free_extent_buffer(eb);
2608         return -EIO;
2609     }
2610     if (block->level == 0)
2611         btrfs_item_key_to_cpu(eb, &block->key, 0);
2612     else
2613         btrfs_node_key_to_cpu(eb, &block->key, 0);
2614     free_extent_buffer(eb);
2615     block->key_ready = 1;
2616     return 0;
2617 }
2618 
2619 /*
2620  * helper function to relocate a tree block
2621  */
2622 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2623                 struct reloc_control *rc,
2624                 struct btrfs_backref_node *node,
2625                 struct btrfs_key *key,
2626                 struct btrfs_path *path)
2627 {
2628     struct btrfs_root *root;
2629     int ret = 0;
2630 
2631     if (!node)
2632         return 0;
2633 
2634     /*
2635      * If we fail here we want to drop our backref_node because we are going
2636      * to start over and regenerate the tree for it.
2637      */
2638     ret = reserve_metadata_space(trans, rc, node);
2639     if (ret)
2640         goto out;
2641 
2642     BUG_ON(node->processed);
2643     root = select_one_root(node);
2644     if (IS_ERR(root)) {
2645         ret = PTR_ERR(root);
2646 
2647         /* See explanation in select_one_root for the -EUCLEAN case. */
2648         ASSERT(ret == -ENOENT);
2649         if (ret == -ENOENT) {
2650             ret = 0;
2651             update_processed_blocks(rc, node);
2652         }
2653         goto out;
2654     }
2655 
2656     if (root) {
2657         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2658             /*
2659              * This block was the root block of a root, and this is
2660              * the first time we're processing the block and thus it
2661              * should not have had the ->new_bytenr modified and
2662              * should have not been included on the changed list.
2663              *
2664              * However in the case of corruption we could have
2665              * multiple refs pointing to the same block improperly,
2666              * and thus we would trip over these checks.  ASSERT()
2667              * for the developer case, because it could indicate a
2668              * bug in the backref code, however error out for a
2669              * normal user in the case of corruption.
2670              */
2671             ASSERT(node->new_bytenr == 0);
2672             ASSERT(list_empty(&node->list));
2673             if (node->new_bytenr || !list_empty(&node->list)) {
2674                 btrfs_err(root->fs_info,
2675                   "bytenr %llu has improper references to it",
2676                       node->bytenr);
2677                 ret = -EUCLEAN;
2678                 goto out;
2679             }
2680             ret = btrfs_record_root_in_trans(trans, root);
2681             if (ret)
2682                 goto out;
2683             /*
2684              * Another thread could have failed, need to check if we
2685              * have reloc_root actually set.
2686              */
2687             if (!root->reloc_root) {
2688                 ret = -ENOENT;
2689                 goto out;
2690             }
2691             root = root->reloc_root;
2692             node->new_bytenr = root->node->start;
2693             btrfs_put_root(node->root);
2694             node->root = btrfs_grab_root(root);
2695             ASSERT(node->root);
2696             list_add_tail(&node->list, &rc->backref_cache.changed);
2697         } else {
2698             path->lowest_level = node->level;
2699             if (root == root->fs_info->chunk_root)
2700                 btrfs_reserve_chunk_metadata(trans, false);
2701             ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2702             btrfs_release_path(path);
2703             if (root == root->fs_info->chunk_root)
2704                 btrfs_trans_release_chunk_metadata(trans);
2705             if (ret > 0)
2706                 ret = 0;
2707         }
2708         if (!ret)
2709             update_processed_blocks(rc, node);
2710     } else {
2711         ret = do_relocation(trans, rc, node, key, path, 1);
2712     }
2713 out:
2714     if (ret || node->level == 0 || node->cowonly)
2715         btrfs_backref_cleanup_node(&rc->backref_cache, node);
2716     return ret;
2717 }
2718 
2719 /*
2720  * relocate a list of blocks
2721  */
2722 static noinline_for_stack
2723 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2724              struct reloc_control *rc, struct rb_root *blocks)
2725 {
2726     struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2727     struct btrfs_backref_node *node;
2728     struct btrfs_path *path;
2729     struct tree_block *block;
2730     struct tree_block *next;
2731     int ret;
2732     int err = 0;
2733 
2734     path = btrfs_alloc_path();
2735     if (!path) {
2736         err = -ENOMEM;
2737         goto out_free_blocks;
2738     }
2739 
2740     /* Kick in readahead for tree blocks with missing keys */
2741     rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2742         if (!block->key_ready)
2743             btrfs_readahead_tree_block(fs_info, block->bytenr,
2744                            block->owner, 0,
2745                            block->level);
2746     }
2747 
2748     /* Get first keys */
2749     rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2750         if (!block->key_ready) {
2751             err = get_tree_block_key(fs_info, block);
2752             if (err)
2753                 goto out_free_path;
2754         }
2755     }
2756 
2757     /* Do tree relocation */
2758     rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2759         node = build_backref_tree(rc, &block->key,
2760                       block->level, block->bytenr);
2761         if (IS_ERR(node)) {
2762             err = PTR_ERR(node);
2763             goto out;
2764         }
2765 
2766         ret = relocate_tree_block(trans, rc, node, &block->key,
2767                       path);
2768         if (ret < 0) {
2769             err = ret;
2770             break;
2771         }
2772     }
2773 out:
2774     err = finish_pending_nodes(trans, rc, path, err);
2775 
2776 out_free_path:
2777     btrfs_free_path(path);
2778 out_free_blocks:
2779     free_block_list(blocks);
2780     return err;
2781 }
2782 
2783 static noinline_for_stack int prealloc_file_extent_cluster(
2784                 struct btrfs_inode *inode,
2785                 struct file_extent_cluster *cluster)
2786 {
2787     u64 alloc_hint = 0;
2788     u64 start;
2789     u64 end;
2790     u64 offset = inode->index_cnt;
2791     u64 num_bytes;
2792     int nr;
2793     int ret = 0;
2794     u64 i_size = i_size_read(&inode->vfs_inode);
2795     u64 prealloc_start = cluster->start - offset;
2796     u64 prealloc_end = cluster->end - offset;
2797     u64 cur_offset = prealloc_start;
2798 
2799     /*
2800      * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2801      * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2802      * btrfs_do_readpage() call of previously relocated file cluster.
2803      *
2804      * If the current cluster starts in the above range, btrfs_do_readpage()
2805      * will skip the read, and relocate_one_page() will later writeback
2806      * the padding zeros as new data, causing data corruption.
2807      *
2808      * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2809      */
2810     if (!IS_ALIGNED(i_size, PAGE_SIZE)) {
2811         struct address_space *mapping = inode->vfs_inode.i_mapping;
2812         struct btrfs_fs_info *fs_info = inode->root->fs_info;
2813         const u32 sectorsize = fs_info->sectorsize;
2814         struct page *page;
2815 
2816         ASSERT(sectorsize < PAGE_SIZE);
2817         ASSERT(IS_ALIGNED(i_size, sectorsize));
2818 
2819         /*
2820          * Subpage can't handle page with DIRTY but without UPTODATE
2821          * bit as it can lead to the following deadlock:
2822          *
2823          * btrfs_read_folio()
2824          * | Page already *locked*
2825          * |- btrfs_lock_and_flush_ordered_range()
2826          *    |- btrfs_start_ordered_extent()
2827          *       |- extent_write_cache_pages()
2828          *          |- lock_page()
2829          *             We try to lock the page we already hold.
2830          *
2831          * Here we just writeback the whole data reloc inode, so that
2832          * we will be ensured to have no dirty range in the page, and
2833          * are safe to clear the uptodate bits.
2834          *
2835          * This shouldn't cause too much overhead, as we need to write
2836          * the data back anyway.
2837          */
2838         ret = filemap_write_and_wait(mapping);
2839         if (ret < 0)
2840             return ret;
2841 
2842         clear_extent_bits(&inode->io_tree, i_size,
2843                   round_up(i_size, PAGE_SIZE) - 1,
2844                   EXTENT_UPTODATE);
2845         page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2846         /*
2847          * If page is freed we don't need to do anything then, as we
2848          * will re-read the whole page anyway.
2849          */
2850         if (page) {
2851             btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2852                     round_up(i_size, PAGE_SIZE) - i_size);
2853             unlock_page(page);
2854             put_page(page);
2855         }
2856     }
2857 
2858     BUG_ON(cluster->start != cluster->boundary[0]);
2859     ret = btrfs_alloc_data_chunk_ondemand(inode,
2860                           prealloc_end + 1 - prealloc_start);
2861     if (ret)
2862         return ret;
2863 
2864     btrfs_inode_lock(&inode->vfs_inode, 0);
2865     for (nr = 0; nr < cluster->nr; nr++) {
2866         start = cluster->boundary[nr] - offset;
2867         if (nr + 1 < cluster->nr)
2868             end = cluster->boundary[nr + 1] - 1 - offset;
2869         else
2870             end = cluster->end - offset;
2871 
2872         lock_extent(&inode->io_tree, start, end);
2873         num_bytes = end + 1 - start;
2874         ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2875                         num_bytes, num_bytes,
2876                         end + 1, &alloc_hint);
2877         cur_offset = end + 1;
2878         unlock_extent(&inode->io_tree, start, end);
2879         if (ret)
2880             break;
2881     }
2882     btrfs_inode_unlock(&inode->vfs_inode, 0);
2883 
2884     if (cur_offset < prealloc_end)
2885         btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2886                            prealloc_end + 1 - cur_offset);
2887     return ret;
2888 }
2889 
2890 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2891                 u64 start, u64 end, u64 block_start)
2892 {
2893     struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2894     struct extent_map *em;
2895     int ret = 0;
2896 
2897     em = alloc_extent_map();
2898     if (!em)
2899         return -ENOMEM;
2900 
2901     em->start = start;
2902     em->len = end + 1 - start;
2903     em->block_len = em->len;
2904     em->block_start = block_start;
2905     set_bit(EXTENT_FLAG_PINNED, &em->flags);
2906 
2907     lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2908     while (1) {
2909         write_lock(&em_tree->lock);
2910         ret = add_extent_mapping(em_tree, em, 0);
2911         write_unlock(&em_tree->lock);
2912         if (ret != -EEXIST) {
2913             free_extent_map(em);
2914             break;
2915         }
2916         btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2917     }
2918     unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2919     return ret;
2920 }
2921 
2922 /*
2923  * Allow error injection to test balance/relocation cancellation
2924  */
2925 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2926 {
2927     return atomic_read(&fs_info->balance_cancel_req) ||
2928         atomic_read(&fs_info->reloc_cancel_req) ||
2929         fatal_signal_pending(current);
2930 }
2931 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2932 
2933 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2934                     int cluster_nr)
2935 {
2936     /* Last extent, use cluster end directly */
2937     if (cluster_nr >= cluster->nr - 1)
2938         return cluster->end;
2939 
2940     /* Use next boundary start*/
2941     return cluster->boundary[cluster_nr + 1] - 1;
2942 }
2943 
2944 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2945                  struct file_extent_cluster *cluster,
2946                  int *cluster_nr, unsigned long page_index)
2947 {
2948     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2949     u64 offset = BTRFS_I(inode)->index_cnt;
2950     const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2951     gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2952     struct page *page;
2953     u64 page_start;
2954     u64 page_end;
2955     u64 cur;
2956     int ret;
2957 
2958     ASSERT(page_index <= last_index);
2959     page = find_lock_page(inode->i_mapping, page_index);
2960     if (!page) {
2961         page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2962                 page_index, last_index + 1 - page_index);
2963         page = find_or_create_page(inode->i_mapping, page_index, mask);
2964         if (!page)
2965             return -ENOMEM;
2966     }
2967     ret = set_page_extent_mapped(page);
2968     if (ret < 0)
2969         goto release_page;
2970 
2971     if (PageReadahead(page))
2972         page_cache_async_readahead(inode->i_mapping, ra, NULL,
2973                 page_folio(page), page_index,
2974                 last_index + 1 - page_index);
2975 
2976     if (!PageUptodate(page)) {
2977         btrfs_read_folio(NULL, page_folio(page));
2978         lock_page(page);
2979         if (!PageUptodate(page)) {
2980             ret = -EIO;
2981             goto release_page;
2982         }
2983     }
2984 
2985     page_start = page_offset(page);
2986     page_end = page_start + PAGE_SIZE - 1;
2987 
2988     /*
2989      * Start from the cluster, as for subpage case, the cluster can start
2990      * inside the page.
2991      */
2992     cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
2993     while (cur <= page_end) {
2994         u64 extent_start = cluster->boundary[*cluster_nr] - offset;
2995         u64 extent_end = get_cluster_boundary_end(cluster,
2996                         *cluster_nr) - offset;
2997         u64 clamped_start = max(page_start, extent_start);
2998         u64 clamped_end = min(page_end, extent_end);
2999         u32 clamped_len = clamped_end + 1 - clamped_start;
3000 
3001         /* Reserve metadata for this range */
3002         ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3003                               clamped_len, clamped_len,
3004                               false);
3005         if (ret)
3006             goto release_page;
3007 
3008         /* Mark the range delalloc and dirty for later writeback */
3009         lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end);
3010         ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3011                         clamped_end, 0, NULL);
3012         if (ret) {
3013             clear_extent_bits(&BTRFS_I(inode)->io_tree,
3014                     clamped_start, clamped_end,
3015                     EXTENT_LOCKED | EXTENT_BOUNDARY);
3016             btrfs_delalloc_release_metadata(BTRFS_I(inode),
3017                             clamped_len, true);
3018             btrfs_delalloc_release_extents(BTRFS_I(inode),
3019                                clamped_len);
3020             goto release_page;
3021         }
3022         btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3023 
3024         /*
3025          * Set the boundary if it's inside the page.
3026          * Data relocation requires the destination extents to have the
3027          * same size as the source.
3028          * EXTENT_BOUNDARY bit prevents current extent from being merged
3029          * with previous extent.
3030          */
3031         if (in_range(cluster->boundary[*cluster_nr] - offset,
3032                  page_start, PAGE_SIZE)) {
3033             u64 boundary_start = cluster->boundary[*cluster_nr] -
3034                         offset;
3035             u64 boundary_end = boundary_start +
3036                        fs_info->sectorsize - 1;
3037 
3038             set_extent_bits(&BTRFS_I(inode)->io_tree,
3039                     boundary_start, boundary_end,
3040                     EXTENT_BOUNDARY);
3041         }
3042         unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end);
3043         btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3044         cur += clamped_len;
3045 
3046         /* Crossed extent end, go to next extent */
3047         if (cur >= extent_end) {
3048             (*cluster_nr)++;
3049             /* Just finished the last extent of the cluster, exit. */
3050             if (*cluster_nr >= cluster->nr)
3051                 break;
3052         }
3053     }
3054     unlock_page(page);
3055     put_page(page);
3056 
3057     balance_dirty_pages_ratelimited(inode->i_mapping);
3058     btrfs_throttle(fs_info);
3059     if (btrfs_should_cancel_balance(fs_info))
3060         ret = -ECANCELED;
3061     return ret;
3062 
3063 release_page:
3064     unlock_page(page);
3065     put_page(page);
3066     return ret;
3067 }
3068 
3069 static int relocate_file_extent_cluster(struct inode *inode,
3070                     struct file_extent_cluster *cluster)
3071 {
3072     u64 offset = BTRFS_I(inode)->index_cnt;
3073     unsigned long index;
3074     unsigned long last_index;
3075     struct file_ra_state *ra;
3076     int cluster_nr = 0;
3077     int ret = 0;
3078 
3079     if (!cluster->nr)
3080         return 0;
3081 
3082     ra = kzalloc(sizeof(*ra), GFP_NOFS);
3083     if (!ra)
3084         return -ENOMEM;
3085 
3086     ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3087     if (ret)
3088         goto out;
3089 
3090     file_ra_state_init(ra, inode->i_mapping);
3091 
3092     ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3093                    cluster->end - offset, cluster->start);
3094     if (ret)
3095         goto out;
3096 
3097     last_index = (cluster->end - offset) >> PAGE_SHIFT;
3098     for (index = (cluster->start - offset) >> PAGE_SHIFT;
3099          index <= last_index && !ret; index++)
3100         ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3101     if (ret == 0)
3102         WARN_ON(cluster_nr != cluster->nr);
3103 out:
3104     kfree(ra);
3105     return ret;
3106 }
3107 
3108 static noinline_for_stack
3109 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3110              struct file_extent_cluster *cluster)
3111 {
3112     int ret;
3113 
3114     if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3115         ret = relocate_file_extent_cluster(inode, cluster);
3116         if (ret)
3117             return ret;
3118         cluster->nr = 0;
3119     }
3120 
3121     if (!cluster->nr)
3122         cluster->start = extent_key->objectid;
3123     else
3124         BUG_ON(cluster->nr >= MAX_EXTENTS);
3125     cluster->end = extent_key->objectid + extent_key->offset - 1;
3126     cluster->boundary[cluster->nr] = extent_key->objectid;
3127     cluster->nr++;
3128 
3129     if (cluster->nr >= MAX_EXTENTS) {
3130         ret = relocate_file_extent_cluster(inode, cluster);
3131         if (ret)
3132             return ret;
3133         cluster->nr = 0;
3134     }
3135     return 0;
3136 }
3137 
3138 /*
3139  * helper to add a tree block to the list.
3140  * the major work is getting the generation and level of the block
3141  */
3142 static int add_tree_block(struct reloc_control *rc,
3143               struct btrfs_key *extent_key,
3144               struct btrfs_path *path,
3145               struct rb_root *blocks)
3146 {
3147     struct extent_buffer *eb;
3148     struct btrfs_extent_item *ei;
3149     struct btrfs_tree_block_info *bi;
3150     struct tree_block *block;
3151     struct rb_node *rb_node;
3152     u32 item_size;
3153     int level = -1;
3154     u64 generation;
3155     u64 owner = 0;
3156 
3157     eb =  path->nodes[0];
3158     item_size = btrfs_item_size(eb, path->slots[0]);
3159 
3160     if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3161         item_size >= sizeof(*ei) + sizeof(*bi)) {
3162         unsigned long ptr = 0, end;
3163 
3164         ei = btrfs_item_ptr(eb, path->slots[0],
3165                 struct btrfs_extent_item);
3166         end = (unsigned long)ei + item_size;
3167         if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3168             bi = (struct btrfs_tree_block_info *)(ei + 1);
3169             level = btrfs_tree_block_level(eb, bi);
3170             ptr = (unsigned long)(bi + 1);
3171         } else {
3172             level = (int)extent_key->offset;
3173             ptr = (unsigned long)(ei + 1);
3174         }
3175         generation = btrfs_extent_generation(eb, ei);
3176 
3177         /*
3178          * We're reading random blocks without knowing their owner ahead
3179          * of time.  This is ok most of the time, as all reloc roots and
3180          * fs roots have the same lock type.  However normal trees do
3181          * not, and the only way to know ahead of time is to read the
3182          * inline ref offset.  We know it's an fs root if
3183          *
3184          * 1. There's more than one ref.
3185          * 2. There's a SHARED_DATA_REF_KEY set.
3186          * 3. FULL_BACKREF is set on the flags.
3187          *
3188          * Otherwise it's safe to assume that the ref offset == the
3189          * owner of this block, so we can use that when calling
3190          * read_tree_block.
3191          */
3192         if (btrfs_extent_refs(eb, ei) == 1 &&
3193             !(btrfs_extent_flags(eb, ei) &
3194               BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3195             ptr < end) {
3196             struct btrfs_extent_inline_ref *iref;
3197             int type;
3198 
3199             iref = (struct btrfs_extent_inline_ref *)ptr;
3200             type = btrfs_get_extent_inline_ref_type(eb, iref,
3201                             BTRFS_REF_TYPE_BLOCK);
3202             if (type == BTRFS_REF_TYPE_INVALID)
3203                 return -EINVAL;
3204             if (type == BTRFS_TREE_BLOCK_REF_KEY)
3205                 owner = btrfs_extent_inline_ref_offset(eb, iref);
3206         }
3207     } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3208         btrfs_print_v0_err(eb->fs_info);
3209         btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3210         return -EINVAL;
3211     } else {
3212         BUG();
3213     }
3214 
3215     btrfs_release_path(path);
3216 
3217     BUG_ON(level == -1);
3218 
3219     block = kmalloc(sizeof(*block), GFP_NOFS);
3220     if (!block)
3221         return -ENOMEM;
3222 
3223     block->bytenr = extent_key->objectid;
3224     block->key.objectid = rc->extent_root->fs_info->nodesize;
3225     block->key.offset = generation;
3226     block->level = level;
3227     block->key_ready = 0;
3228     block->owner = owner;
3229 
3230     rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3231     if (rb_node)
3232         btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3233                     -EEXIST);
3234 
3235     return 0;
3236 }
3237 
3238 /*
3239  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3240  */
3241 static int __add_tree_block(struct reloc_control *rc,
3242                 u64 bytenr, u32 blocksize,
3243                 struct rb_root *blocks)
3244 {
3245     struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3246     struct btrfs_path *path;
3247     struct btrfs_key key;
3248     int ret;
3249     bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3250 
3251     if (tree_block_processed(bytenr, rc))
3252         return 0;
3253 
3254     if (rb_simple_search(blocks, bytenr))
3255         return 0;
3256 
3257     path = btrfs_alloc_path();
3258     if (!path)
3259         return -ENOMEM;
3260 again:
3261     key.objectid = bytenr;
3262     if (skinny) {
3263         key.type = BTRFS_METADATA_ITEM_KEY;
3264         key.offset = (u64)-1;
3265     } else {
3266         key.type = BTRFS_EXTENT_ITEM_KEY;
3267         key.offset = blocksize;
3268     }
3269 
3270     path->search_commit_root = 1;
3271     path->skip_locking = 1;
3272     ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3273     if (ret < 0)
3274         goto out;
3275 
3276     if (ret > 0 && skinny) {
3277         if (path->slots[0]) {
3278             path->slots[0]--;
3279             btrfs_item_key_to_cpu(path->nodes[0], &key,
3280                           path->slots[0]);
3281             if (key.objectid == bytenr &&
3282                 (key.type == BTRFS_METADATA_ITEM_KEY ||
3283                  (key.type == BTRFS_EXTENT_ITEM_KEY &&
3284                   key.offset == blocksize)))
3285                 ret = 0;
3286         }
3287 
3288         if (ret) {
3289             skinny = false;
3290             btrfs_release_path(path);
3291             goto again;
3292         }
3293     }
3294     if (ret) {
3295         ASSERT(ret == 1);
3296         btrfs_print_leaf(path->nodes[0]);
3297         btrfs_err(fs_info,
3298          "tree block extent item (%llu) is not found in extent tree",
3299              bytenr);
3300         WARN_ON(1);
3301         ret = -EINVAL;
3302         goto out;
3303     }
3304 
3305     ret = add_tree_block(rc, &key, path, blocks);
3306 out:
3307     btrfs_free_path(path);
3308     return ret;
3309 }
3310 
3311 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3312                     struct btrfs_block_group *block_group,
3313                     struct inode *inode,
3314                     u64 ino)
3315 {
3316     struct btrfs_root *root = fs_info->tree_root;
3317     struct btrfs_trans_handle *trans;
3318     int ret = 0;
3319 
3320     if (inode)
3321         goto truncate;
3322 
3323     inode = btrfs_iget(fs_info->sb, ino, root);
3324     if (IS_ERR(inode))
3325         return -ENOENT;
3326 
3327 truncate:
3328     ret = btrfs_check_trunc_cache_free_space(fs_info,
3329                          &fs_info->global_block_rsv);
3330     if (ret)
3331         goto out;
3332 
3333     trans = btrfs_join_transaction(root);
3334     if (IS_ERR(trans)) {
3335         ret = PTR_ERR(trans);
3336         goto out;
3337     }
3338 
3339     ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3340 
3341     btrfs_end_transaction(trans);
3342     btrfs_btree_balance_dirty(fs_info);
3343 out:
3344     iput(inode);
3345     return ret;
3346 }
3347 
3348 /*
3349  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3350  * cache inode, to avoid free space cache data extent blocking data relocation.
3351  */
3352 static int delete_v1_space_cache(struct extent_buffer *leaf,
3353                  struct btrfs_block_group *block_group,
3354                  u64 data_bytenr)
3355 {
3356     u64 space_cache_ino;
3357     struct btrfs_file_extent_item *ei;
3358     struct btrfs_key key;
3359     bool found = false;
3360     int i;
3361     int ret;
3362 
3363     if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3364         return 0;
3365 
3366     for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3367         u8 type;
3368 
3369         btrfs_item_key_to_cpu(leaf, &key, i);
3370         if (key.type != BTRFS_EXTENT_DATA_KEY)
3371             continue;
3372         ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3373         type = btrfs_file_extent_type(leaf, ei);
3374 
3375         if ((type == BTRFS_FILE_EXTENT_REG ||
3376              type == BTRFS_FILE_EXTENT_PREALLOC) &&
3377             btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3378             found = true;
3379             space_cache_ino = key.objectid;
3380             break;
3381         }
3382     }
3383     if (!found)
3384         return -ENOENT;
3385     ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3386                     space_cache_ino);
3387     return ret;
3388 }
3389 
3390 /*
3391  * helper to find all tree blocks that reference a given data extent
3392  */
3393 static noinline_for_stack
3394 int add_data_references(struct reloc_control *rc,
3395             struct btrfs_key *extent_key,
3396             struct btrfs_path *path,
3397             struct rb_root *blocks)
3398 {
3399     struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3400     struct ulist *leaves = NULL;
3401     struct ulist_iterator leaf_uiter;
3402     struct ulist_node *ref_node = NULL;
3403     const u32 blocksize = fs_info->nodesize;
3404     int ret = 0;
3405 
3406     btrfs_release_path(path);
3407     ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3408                    0, &leaves, NULL, true);
3409     if (ret < 0)
3410         return ret;
3411 
3412     ULIST_ITER_INIT(&leaf_uiter);
3413     while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3414         struct extent_buffer *eb;
3415 
3416         eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL);
3417         if (IS_ERR(eb)) {
3418             ret = PTR_ERR(eb);
3419             break;
3420         }
3421         ret = delete_v1_space_cache(eb, rc->block_group,
3422                         extent_key->objectid);
3423         free_extent_buffer(eb);
3424         if (ret < 0)
3425             break;
3426         ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3427         if (ret < 0)
3428             break;
3429     }
3430     if (ret < 0)
3431         free_block_list(blocks);
3432     ulist_free(leaves);
3433     return ret;
3434 }
3435 
3436 /*
3437  * helper to find next unprocessed extent
3438  */
3439 static noinline_for_stack
3440 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3441              struct btrfs_key *extent_key)
3442 {
3443     struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3444     struct btrfs_key key;
3445     struct extent_buffer *leaf;
3446     u64 start, end, last;
3447     int ret;
3448 
3449     last = rc->block_group->start + rc->block_group->length;
3450     while (1) {
3451         cond_resched();
3452         if (rc->search_start >= last) {
3453             ret = 1;
3454             break;
3455         }
3456 
3457         key.objectid = rc->search_start;
3458         key.type = BTRFS_EXTENT_ITEM_KEY;
3459         key.offset = 0;
3460 
3461         path->search_commit_root = 1;
3462         path->skip_locking = 1;
3463         ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3464                     0, 0);
3465         if (ret < 0)
3466             break;
3467 next:
3468         leaf = path->nodes[0];
3469         if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3470             ret = btrfs_next_leaf(rc->extent_root, path);
3471             if (ret != 0)
3472                 break;
3473             leaf = path->nodes[0];
3474         }
3475 
3476         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3477         if (key.objectid >= last) {
3478             ret = 1;
3479             break;
3480         }
3481 
3482         if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3483             key.type != BTRFS_METADATA_ITEM_KEY) {
3484             path->slots[0]++;
3485             goto next;
3486         }
3487 
3488         if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3489             key.objectid + key.offset <= rc->search_start) {
3490             path->slots[0]++;
3491             goto next;
3492         }
3493 
3494         if (key.type == BTRFS_METADATA_ITEM_KEY &&
3495             key.objectid + fs_info->nodesize <=
3496             rc->search_start) {
3497             path->slots[0]++;
3498             goto next;
3499         }
3500 
3501         ret = find_first_extent_bit(&rc->processed_blocks,
3502                         key.objectid, &start, &end,
3503                         EXTENT_DIRTY, NULL);
3504 
3505         if (ret == 0 && start <= key.objectid) {
3506             btrfs_release_path(path);
3507             rc->search_start = end + 1;
3508         } else {
3509             if (key.type == BTRFS_EXTENT_ITEM_KEY)
3510                 rc->search_start = key.objectid + key.offset;
3511             else
3512                 rc->search_start = key.objectid +
3513                     fs_info->nodesize;
3514             memcpy(extent_key, &key, sizeof(key));
3515             return 0;
3516         }
3517     }
3518     btrfs_release_path(path);
3519     return ret;
3520 }
3521 
3522 static void set_reloc_control(struct reloc_control *rc)
3523 {
3524     struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3525 
3526     mutex_lock(&fs_info->reloc_mutex);
3527     fs_info->reloc_ctl = rc;
3528     mutex_unlock(&fs_info->reloc_mutex);
3529 }
3530 
3531 static void unset_reloc_control(struct reloc_control *rc)
3532 {
3533     struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3534 
3535     mutex_lock(&fs_info->reloc_mutex);
3536     fs_info->reloc_ctl = NULL;
3537     mutex_unlock(&fs_info->reloc_mutex);
3538 }
3539 
3540 static noinline_for_stack
3541 int prepare_to_relocate(struct reloc_control *rc)
3542 {
3543     struct btrfs_trans_handle *trans;
3544     int ret;
3545 
3546     rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3547                           BTRFS_BLOCK_RSV_TEMP);
3548     if (!rc->block_rsv)
3549         return -ENOMEM;
3550 
3551     memset(&rc->cluster, 0, sizeof(rc->cluster));
3552     rc->search_start = rc->block_group->start;
3553     rc->extents_found = 0;
3554     rc->nodes_relocated = 0;
3555     rc->merging_rsv_size = 0;
3556     rc->reserved_bytes = 0;
3557     rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3558                   RELOCATION_RESERVED_NODES;
3559     ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3560                      rc->block_rsv, rc->block_rsv->size,
3561                      BTRFS_RESERVE_FLUSH_ALL);
3562     if (ret)
3563         return ret;
3564 
3565     rc->create_reloc_tree = 1;
3566     set_reloc_control(rc);
3567 
3568     trans = btrfs_join_transaction(rc->extent_root);
3569     if (IS_ERR(trans)) {
3570         unset_reloc_control(rc);
3571         /*
3572          * extent tree is not a ref_cow tree and has no reloc_root to
3573          * cleanup.  And callers are responsible to free the above
3574          * block rsv.
3575          */
3576         return PTR_ERR(trans);
3577     }
3578 
3579     ret = btrfs_commit_transaction(trans);
3580     if (ret)
3581         unset_reloc_control(rc);
3582 
3583     return ret;
3584 }
3585 
3586 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3587 {
3588     struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3589     struct rb_root blocks = RB_ROOT;
3590     struct btrfs_key key;
3591     struct btrfs_trans_handle *trans = NULL;
3592     struct btrfs_path *path;
3593     struct btrfs_extent_item *ei;
3594     u64 flags;
3595     int ret;
3596     int err = 0;
3597     int progress = 0;
3598 
3599     path = btrfs_alloc_path();
3600     if (!path)
3601         return -ENOMEM;
3602     path->reada = READA_FORWARD;
3603 
3604     ret = prepare_to_relocate(rc);
3605     if (ret) {
3606         err = ret;
3607         goto out_free;
3608     }
3609 
3610     while (1) {
3611         rc->reserved_bytes = 0;
3612         ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3613                          rc->block_rsv->size,
3614                          BTRFS_RESERVE_FLUSH_ALL);
3615         if (ret) {
3616             err = ret;
3617             break;
3618         }
3619         progress++;
3620         trans = btrfs_start_transaction(rc->extent_root, 0);
3621         if (IS_ERR(trans)) {
3622             err = PTR_ERR(trans);
3623             trans = NULL;
3624             break;
3625         }
3626 restart:
3627         if (update_backref_cache(trans, &rc->backref_cache)) {
3628             btrfs_end_transaction(trans);
3629             trans = NULL;
3630             continue;
3631         }
3632 
3633         ret = find_next_extent(rc, path, &key);
3634         if (ret < 0)
3635             err = ret;
3636         if (ret != 0)
3637             break;
3638 
3639         rc->extents_found++;
3640 
3641         ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3642                     struct btrfs_extent_item);
3643         flags = btrfs_extent_flags(path->nodes[0], ei);
3644 
3645         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3646             ret = add_tree_block(rc, &key, path, &blocks);
3647         } else if (rc->stage == UPDATE_DATA_PTRS &&
3648                (flags & BTRFS_EXTENT_FLAG_DATA)) {
3649             ret = add_data_references(rc, &key, path, &blocks);
3650         } else {
3651             btrfs_release_path(path);
3652             ret = 0;
3653         }
3654         if (ret < 0) {
3655             err = ret;
3656             break;
3657         }
3658 
3659         if (!RB_EMPTY_ROOT(&blocks)) {
3660             ret = relocate_tree_blocks(trans, rc, &blocks);
3661             if (ret < 0) {
3662                 if (ret != -EAGAIN) {
3663                     err = ret;
3664                     break;
3665                 }
3666                 rc->extents_found--;
3667                 rc->search_start = key.objectid;
3668             }
3669         }
3670 
3671         btrfs_end_transaction_throttle(trans);
3672         btrfs_btree_balance_dirty(fs_info);
3673         trans = NULL;
3674 
3675         if (rc->stage == MOVE_DATA_EXTENTS &&
3676             (flags & BTRFS_EXTENT_FLAG_DATA)) {
3677             rc->found_file_extent = 1;
3678             ret = relocate_data_extent(rc->data_inode,
3679                            &key, &rc->cluster);
3680             if (ret < 0) {
3681                 err = ret;
3682                 break;
3683             }
3684         }
3685         if (btrfs_should_cancel_balance(fs_info)) {
3686             err = -ECANCELED;
3687             break;
3688         }
3689     }
3690     if (trans && progress && err == -ENOSPC) {
3691         ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3692         if (ret == 1) {
3693             err = 0;
3694             progress = 0;
3695             goto restart;
3696         }
3697     }
3698 
3699     btrfs_release_path(path);
3700     clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3701 
3702     if (trans) {
3703         btrfs_end_transaction_throttle(trans);
3704         btrfs_btree_balance_dirty(fs_info);
3705     }
3706 
3707     if (!err) {
3708         ret = relocate_file_extent_cluster(rc->data_inode,
3709                            &rc->cluster);
3710         if (ret < 0)
3711             err = ret;
3712     }
3713 
3714     rc->create_reloc_tree = 0;
3715     set_reloc_control(rc);
3716 
3717     btrfs_backref_release_cache(&rc->backref_cache);
3718     btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3719 
3720     /*
3721      * Even in the case when the relocation is cancelled, we should all go
3722      * through prepare_to_merge() and merge_reloc_roots().
3723      *
3724      * For error (including cancelled balance), prepare_to_merge() will
3725      * mark all reloc trees orphan, then queue them for cleanup in
3726      * merge_reloc_roots()
3727      */
3728     err = prepare_to_merge(rc, err);
3729 
3730     merge_reloc_roots(rc);
3731 
3732     rc->merge_reloc_tree = 0;
3733     unset_reloc_control(rc);
3734     btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3735 
3736     /* get rid of pinned extents */
3737     trans = btrfs_join_transaction(rc->extent_root);
3738     if (IS_ERR(trans)) {
3739         err = PTR_ERR(trans);
3740         goto out_free;
3741     }
3742     ret = btrfs_commit_transaction(trans);
3743     if (ret && !err)
3744         err = ret;
3745 out_free:
3746     ret = clean_dirty_subvols(rc);
3747     if (ret < 0 && !err)
3748         err = ret;
3749     btrfs_free_block_rsv(fs_info, rc->block_rsv);
3750     btrfs_free_path(path);
3751     return err;
3752 }
3753 
3754 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3755                  struct btrfs_root *root, u64 objectid)
3756 {
3757     struct btrfs_path *path;
3758     struct btrfs_inode_item *item;
3759     struct extent_buffer *leaf;
3760     int ret;
3761 
3762     path = btrfs_alloc_path();
3763     if (!path)
3764         return -ENOMEM;
3765 
3766     ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3767     if (ret)
3768         goto out;
3769 
3770     leaf = path->nodes[0];
3771     item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3772     memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3773     btrfs_set_inode_generation(leaf, item, 1);
3774     btrfs_set_inode_size(leaf, item, 0);
3775     btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3776     btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3777                       BTRFS_INODE_PREALLOC);
3778     btrfs_mark_buffer_dirty(leaf);
3779 out:
3780     btrfs_free_path(path);
3781     return ret;
3782 }
3783 
3784 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3785                 struct btrfs_root *root, u64 objectid)
3786 {
3787     struct btrfs_path *path;
3788     struct btrfs_key key;
3789     int ret = 0;
3790 
3791     path = btrfs_alloc_path();
3792     if (!path) {
3793         ret = -ENOMEM;
3794         goto out;
3795     }
3796 
3797     key.objectid = objectid;
3798     key.type = BTRFS_INODE_ITEM_KEY;
3799     key.offset = 0;
3800     ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3801     if (ret) {
3802         if (ret > 0)
3803             ret = -ENOENT;
3804         goto out;
3805     }
3806     ret = btrfs_del_item(trans, root, path);
3807 out:
3808     if (ret)
3809         btrfs_abort_transaction(trans, ret);
3810     btrfs_free_path(path);
3811 }
3812 
3813 /*
3814  * helper to create inode for data relocation.
3815  * the inode is in data relocation tree and its link count is 0
3816  */
3817 static noinline_for_stack
3818 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3819                  struct btrfs_block_group *group)
3820 {
3821     struct inode *inode = NULL;
3822     struct btrfs_trans_handle *trans;
3823     struct btrfs_root *root;
3824     u64 objectid;
3825     int err = 0;
3826 
3827     root = btrfs_grab_root(fs_info->data_reloc_root);
3828     trans = btrfs_start_transaction(root, 6);
3829     if (IS_ERR(trans)) {
3830         btrfs_put_root(root);
3831         return ERR_CAST(trans);
3832     }
3833 
3834     err = btrfs_get_free_objectid(root, &objectid);
3835     if (err)
3836         goto out;
3837 
3838     err = __insert_orphan_inode(trans, root, objectid);
3839     if (err)
3840         goto out;
3841 
3842     inode = btrfs_iget(fs_info->sb, objectid, root);
3843     if (IS_ERR(inode)) {
3844         delete_orphan_inode(trans, root, objectid);
3845         err = PTR_ERR(inode);
3846         inode = NULL;
3847         goto out;
3848     }
3849     BTRFS_I(inode)->index_cnt = group->start;
3850 
3851     err = btrfs_orphan_add(trans, BTRFS_I(inode));
3852 out:
3853     btrfs_put_root(root);
3854     btrfs_end_transaction(trans);
3855     btrfs_btree_balance_dirty(fs_info);
3856     if (err) {
3857         iput(inode);
3858         inode = ERR_PTR(err);
3859     }
3860     return inode;
3861 }
3862 
3863 /*
3864  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3865  * has been requested meanwhile and don't start in that case.
3866  *
3867  * Return:
3868  *   0             success
3869  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3870  *   -ECANCELED    cancellation request was set before the operation started
3871  */
3872 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3873 {
3874     if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3875         /* This should not happen */
3876         btrfs_err(fs_info, "reloc already running, cannot start");
3877         return -EINPROGRESS;
3878     }
3879 
3880     if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3881         btrfs_info(fs_info, "chunk relocation canceled on start");
3882         /*
3883          * On cancel, clear all requests but let the caller mark
3884          * the end after cleanup operations.
3885          */
3886         atomic_set(&fs_info->reloc_cancel_req, 0);
3887         return -ECANCELED;
3888     }
3889     return 0;
3890 }
3891 
3892 /*
3893  * Mark end of chunk relocation that is cancellable and wake any waiters.
3894  */
3895 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3896 {
3897     /* Requested after start, clear bit first so any waiters can continue */
3898     if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3899         btrfs_info(fs_info, "chunk relocation canceled during operation");
3900     clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3901     atomic_set(&fs_info->reloc_cancel_req, 0);
3902 }
3903 
3904 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3905 {
3906     struct reloc_control *rc;
3907 
3908     rc = kzalloc(sizeof(*rc), GFP_NOFS);
3909     if (!rc)
3910         return NULL;
3911 
3912     INIT_LIST_HEAD(&rc->reloc_roots);
3913     INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3914     btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3915     mapping_tree_init(&rc->reloc_root_tree);
3916     extent_io_tree_init(fs_info, &rc->processed_blocks,
3917                 IO_TREE_RELOC_BLOCKS, NULL);
3918     return rc;
3919 }
3920 
3921 static void free_reloc_control(struct reloc_control *rc)
3922 {
3923     struct mapping_node *node, *tmp;
3924 
3925     free_reloc_roots(&rc->reloc_roots);
3926     rbtree_postorder_for_each_entry_safe(node, tmp,
3927             &rc->reloc_root_tree.rb_root, rb_node)
3928         kfree(node);
3929 
3930     kfree(rc);
3931 }
3932 
3933 /*
3934  * Print the block group being relocated
3935  */
3936 static void describe_relocation(struct btrfs_fs_info *fs_info,
3937                 struct btrfs_block_group *block_group)
3938 {
3939     char buf[128] = {'\0'};
3940 
3941     btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3942 
3943     btrfs_info(fs_info,
3944            "relocating block group %llu flags %s",
3945            block_group->start, buf);
3946 }
3947 
3948 static const char *stage_to_string(int stage)
3949 {
3950     if (stage == MOVE_DATA_EXTENTS)
3951         return "move data extents";
3952     if (stage == UPDATE_DATA_PTRS)
3953         return "update data pointers";
3954     return "unknown";
3955 }
3956 
3957 /*
3958  * function to relocate all extents in a block group.
3959  */
3960 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3961 {
3962     struct btrfs_block_group *bg;
3963     struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3964     struct reloc_control *rc;
3965     struct inode *inode;
3966     struct btrfs_path *path;
3967     int ret;
3968     int rw = 0;
3969     int err = 0;
3970 
3971     /*
3972      * This only gets set if we had a half-deleted snapshot on mount.  We
3973      * cannot allow relocation to start while we're still trying to clean up
3974      * these pending deletions.
3975      */
3976     ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3977     if (ret)
3978         return ret;
3979 
3980     /* We may have been woken up by close_ctree, so bail if we're closing. */
3981     if (btrfs_fs_closing(fs_info))
3982         return -EINTR;
3983 
3984     bg = btrfs_lookup_block_group(fs_info, group_start);
3985     if (!bg)
3986         return -ENOENT;
3987 
3988     /*
3989      * Relocation of a data block group creates ordered extents.  Without
3990      * sb_start_write(), we can freeze the filesystem while unfinished
3991      * ordered extents are left. Such ordered extents can cause a deadlock
3992      * e.g. when syncfs() is waiting for their completion but they can't
3993      * finish because they block when joining a transaction, due to the
3994      * fact that the freeze locks are being held in write mode.
3995      */
3996     if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
3997         ASSERT(sb_write_started(fs_info->sb));
3998 
3999     if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4000         btrfs_put_block_group(bg);
4001         return -ETXTBSY;
4002     }
4003 
4004     rc = alloc_reloc_control(fs_info);
4005     if (!rc) {
4006         btrfs_put_block_group(bg);
4007         return -ENOMEM;
4008     }
4009 
4010     ret = reloc_chunk_start(fs_info);
4011     if (ret < 0) {
4012         err = ret;
4013         goto out_put_bg;
4014     }
4015 
4016     rc->extent_root = extent_root;
4017     rc->block_group = bg;
4018 
4019     ret = btrfs_inc_block_group_ro(rc->block_group, true);
4020     if (ret) {
4021         err = ret;
4022         goto out;
4023     }
4024     rw = 1;
4025 
4026     path = btrfs_alloc_path();
4027     if (!path) {
4028         err = -ENOMEM;
4029         goto out;
4030     }
4031 
4032     inode = lookup_free_space_inode(rc->block_group, path);
4033     btrfs_free_path(path);
4034 
4035     if (!IS_ERR(inode))
4036         ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4037     else
4038         ret = PTR_ERR(inode);
4039 
4040     if (ret && ret != -ENOENT) {
4041         err = ret;
4042         goto out;
4043     }
4044 
4045     rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4046     if (IS_ERR(rc->data_inode)) {
4047         err = PTR_ERR(rc->data_inode);
4048         rc->data_inode = NULL;
4049         goto out;
4050     }
4051 
4052     describe_relocation(fs_info, rc->block_group);
4053 
4054     btrfs_wait_block_group_reservations(rc->block_group);
4055     btrfs_wait_nocow_writers(rc->block_group);
4056     btrfs_wait_ordered_roots(fs_info, U64_MAX,
4057                  rc->block_group->start,
4058                  rc->block_group->length);
4059 
4060     ret = btrfs_zone_finish(rc->block_group);
4061     WARN_ON(ret && ret != -EAGAIN);
4062 
4063     while (1) {
4064         int finishes_stage;
4065 
4066         mutex_lock(&fs_info->cleaner_mutex);
4067         ret = relocate_block_group(rc);
4068         mutex_unlock(&fs_info->cleaner_mutex);
4069         if (ret < 0)
4070             err = ret;
4071 
4072         finishes_stage = rc->stage;
4073         /*
4074          * We may have gotten ENOSPC after we already dirtied some
4075          * extents.  If writeout happens while we're relocating a
4076          * different block group we could end up hitting the
4077          * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4078          * btrfs_reloc_cow_block.  Make sure we write everything out
4079          * properly so we don't trip over this problem, and then break
4080          * out of the loop if we hit an error.
4081          */
4082         if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4083             ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4084                                (u64)-1);
4085             if (ret)
4086                 err = ret;
4087             invalidate_mapping_pages(rc->data_inode->i_mapping,
4088                          0, -1);
4089             rc->stage = UPDATE_DATA_PTRS;
4090         }
4091 
4092         if (err < 0)
4093             goto out;
4094 
4095         if (rc->extents_found == 0)
4096             break;
4097 
4098         btrfs_info(fs_info, "found %llu extents, stage: %s",
4099                rc->extents_found, stage_to_string(finishes_stage));
4100     }
4101 
4102     WARN_ON(rc->block_group->pinned > 0);
4103     WARN_ON(rc->block_group->reserved > 0);
4104     WARN_ON(rc->block_group->used > 0);
4105 out:
4106     if (err && rw)
4107         btrfs_dec_block_group_ro(rc->block_group);
4108     iput(rc->data_inode);
4109 out_put_bg:
4110     btrfs_put_block_group(bg);
4111     reloc_chunk_end(fs_info);
4112     free_reloc_control(rc);
4113     return err;
4114 }
4115 
4116 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4117 {
4118     struct btrfs_fs_info *fs_info = root->fs_info;
4119     struct btrfs_trans_handle *trans;
4120     int ret, err;
4121 
4122     trans = btrfs_start_transaction(fs_info->tree_root, 0);
4123     if (IS_ERR(trans))
4124         return PTR_ERR(trans);
4125 
4126     memset(&root->root_item.drop_progress, 0,
4127         sizeof(root->root_item.drop_progress));
4128     btrfs_set_root_drop_level(&root->root_item, 0);
4129     btrfs_set_root_refs(&root->root_item, 0);
4130     ret = btrfs_update_root(trans, fs_info->tree_root,
4131                 &root->root_key, &root->root_item);
4132 
4133     err = btrfs_end_transaction(trans);
4134     if (err)
4135         return err;
4136     return ret;
4137 }
4138 
4139 /*
4140  * recover relocation interrupted by system crash.
4141  *
4142  * this function resumes merging reloc trees with corresponding fs trees.
4143  * this is important for keeping the sharing of tree blocks
4144  */
4145 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4146 {
4147     LIST_HEAD(reloc_roots);
4148     struct btrfs_key key;
4149     struct btrfs_root *fs_root;
4150     struct btrfs_root *reloc_root;
4151     struct btrfs_path *path;
4152     struct extent_buffer *leaf;
4153     struct reloc_control *rc = NULL;
4154     struct btrfs_trans_handle *trans;
4155     int ret;
4156     int err = 0;
4157 
4158     path = btrfs_alloc_path();
4159     if (!path)
4160         return -ENOMEM;
4161     path->reada = READA_BACK;
4162 
4163     key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4164     key.type = BTRFS_ROOT_ITEM_KEY;
4165     key.offset = (u64)-1;
4166 
4167     while (1) {
4168         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4169                     path, 0, 0);
4170         if (ret < 0) {
4171             err = ret;
4172             goto out;
4173         }
4174         if (ret > 0) {
4175             if (path->slots[0] == 0)
4176                 break;
4177             path->slots[0]--;
4178         }
4179         leaf = path->nodes[0];
4180         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4181         btrfs_release_path(path);
4182 
4183         if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4184             key.type != BTRFS_ROOT_ITEM_KEY)
4185             break;
4186 
4187         reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4188         if (IS_ERR(reloc_root)) {
4189             err = PTR_ERR(reloc_root);
4190             goto out;
4191         }
4192 
4193         set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4194         list_add(&reloc_root->root_list, &reloc_roots);
4195 
4196         if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4197             fs_root = btrfs_get_fs_root(fs_info,
4198                     reloc_root->root_key.offset, false);
4199             if (IS_ERR(fs_root)) {
4200                 ret = PTR_ERR(fs_root);
4201                 if (ret != -ENOENT) {
4202                     err = ret;
4203                     goto out;
4204                 }
4205                 ret = mark_garbage_root(reloc_root);
4206                 if (ret < 0) {
4207                     err = ret;
4208                     goto out;
4209                 }
4210             } else {
4211                 btrfs_put_root(fs_root);
4212             }
4213         }
4214 
4215         if (key.offset == 0)
4216             break;
4217 
4218         key.offset--;
4219     }
4220     btrfs_release_path(path);
4221 
4222     if (list_empty(&reloc_roots))
4223         goto out;
4224 
4225     rc = alloc_reloc_control(fs_info);
4226     if (!rc) {
4227         err = -ENOMEM;
4228         goto out;
4229     }
4230 
4231     ret = reloc_chunk_start(fs_info);
4232     if (ret < 0) {
4233         err = ret;
4234         goto out_end;
4235     }
4236 
4237     rc->extent_root = btrfs_extent_root(fs_info, 0);
4238 
4239     set_reloc_control(rc);
4240 
4241     trans = btrfs_join_transaction(rc->extent_root);
4242     if (IS_ERR(trans)) {
4243         err = PTR_ERR(trans);
4244         goto out_unset;
4245     }
4246 
4247     rc->merge_reloc_tree = 1;
4248 
4249     while (!list_empty(&reloc_roots)) {
4250         reloc_root = list_entry(reloc_roots.next,
4251                     struct btrfs_root, root_list);
4252         list_del(&reloc_root->root_list);
4253 
4254         if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4255             list_add_tail(&reloc_root->root_list,
4256                       &rc->reloc_roots);
4257             continue;
4258         }
4259 
4260         fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4261                         false);
4262         if (IS_ERR(fs_root)) {
4263             err = PTR_ERR(fs_root);
4264             list_add_tail(&reloc_root->root_list, &reloc_roots);
4265             btrfs_end_transaction(trans);
4266             goto out_unset;
4267         }
4268 
4269         err = __add_reloc_root(reloc_root);
4270         ASSERT(err != -EEXIST);
4271         if (err) {
4272             list_add_tail(&reloc_root->root_list, &reloc_roots);
4273             btrfs_put_root(fs_root);
4274             btrfs_end_transaction(trans);
4275             goto out_unset;
4276         }
4277         fs_root->reloc_root = btrfs_grab_root(reloc_root);
4278         btrfs_put_root(fs_root);
4279     }
4280 
4281     err = btrfs_commit_transaction(trans);
4282     if (err)
4283         goto out_unset;
4284 
4285     merge_reloc_roots(rc);
4286 
4287     unset_reloc_control(rc);
4288 
4289     trans = btrfs_join_transaction(rc->extent_root);
4290     if (IS_ERR(trans)) {
4291         err = PTR_ERR(trans);
4292         goto out_clean;
4293     }
4294     err = btrfs_commit_transaction(trans);
4295 out_clean:
4296     ret = clean_dirty_subvols(rc);
4297     if (ret < 0 && !err)
4298         err = ret;
4299 out_unset:
4300     unset_reloc_control(rc);
4301 out_end:
4302     reloc_chunk_end(fs_info);
4303     free_reloc_control(rc);
4304 out:
4305     free_reloc_roots(&reloc_roots);
4306 
4307     btrfs_free_path(path);
4308 
4309     if (err == 0) {
4310         /* cleanup orphan inode in data relocation tree */
4311         fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4312         ASSERT(fs_root);
4313         err = btrfs_orphan_cleanup(fs_root);
4314         btrfs_put_root(fs_root);
4315     }
4316     return err;
4317 }
4318 
4319 /*
4320  * helper to add ordered checksum for data relocation.
4321  *
4322  * cloning checksum properly handles the nodatasum extents.
4323  * it also saves CPU time to re-calculate the checksum.
4324  */
4325 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
4326 {
4327     struct btrfs_fs_info *fs_info = inode->root->fs_info;
4328     struct btrfs_root *csum_root;
4329     struct btrfs_ordered_sum *sums;
4330     struct btrfs_ordered_extent *ordered;
4331     int ret;
4332     u64 disk_bytenr;
4333     u64 new_bytenr;
4334     LIST_HEAD(list);
4335 
4336     ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4337     BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
4338 
4339     disk_bytenr = file_pos + inode->index_cnt;
4340     csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4341     ret = btrfs_lookup_csums_range(csum_root, disk_bytenr,
4342                        disk_bytenr + len - 1, &list, 0);
4343     if (ret)
4344         goto out;
4345 
4346     while (!list_empty(&list)) {
4347         sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4348         list_del_init(&sums->list);
4349 
4350         /*
4351          * We need to offset the new_bytenr based on where the csum is.
4352          * We need to do this because we will read in entire prealloc
4353          * extents but we may have written to say the middle of the
4354          * prealloc extent, so we need to make sure the csum goes with
4355          * the right disk offset.
4356          *
4357          * We can do this because the data reloc inode refers strictly
4358          * to the on disk bytes, so we don't have to worry about
4359          * disk_len vs real len like with real inodes since it's all
4360          * disk length.
4361          */
4362         new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
4363         sums->bytenr = new_bytenr;
4364 
4365         btrfs_add_ordered_sum(ordered, sums);
4366     }
4367 out:
4368     btrfs_put_ordered_extent(ordered);
4369     return ret;
4370 }
4371 
4372 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4373               struct btrfs_root *root, struct extent_buffer *buf,
4374               struct extent_buffer *cow)
4375 {
4376     struct btrfs_fs_info *fs_info = root->fs_info;
4377     struct reloc_control *rc;
4378     struct btrfs_backref_node *node;
4379     int first_cow = 0;
4380     int level;
4381     int ret = 0;
4382 
4383     rc = fs_info->reloc_ctl;
4384     if (!rc)
4385         return 0;
4386 
4387     BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4388 
4389     level = btrfs_header_level(buf);
4390     if (btrfs_header_generation(buf) <=
4391         btrfs_root_last_snapshot(&root->root_item))
4392         first_cow = 1;
4393 
4394     if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4395         rc->create_reloc_tree) {
4396         WARN_ON(!first_cow && level == 0);
4397 
4398         node = rc->backref_cache.path[level];
4399         BUG_ON(node->bytenr != buf->start &&
4400                node->new_bytenr != buf->start);
4401 
4402         btrfs_backref_drop_node_buffer(node);
4403         atomic_inc(&cow->refs);
4404         node->eb = cow;
4405         node->new_bytenr = cow->start;
4406 
4407         if (!node->pending) {
4408             list_move_tail(&node->list,
4409                        &rc->backref_cache.pending[level]);
4410             node->pending = 1;
4411         }
4412 
4413         if (first_cow)
4414             mark_block_processed(rc, node);
4415 
4416         if (first_cow && level > 0)
4417             rc->nodes_relocated += buf->len;
4418     }
4419 
4420     if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4421         ret = replace_file_extents(trans, rc, root, cow);
4422     return ret;
4423 }
4424 
4425 /*
4426  * called before creating snapshot. it calculates metadata reservation
4427  * required for relocating tree blocks in the snapshot
4428  */
4429 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4430                   u64 *bytes_to_reserve)
4431 {
4432     struct btrfs_root *root = pending->root;
4433     struct reloc_control *rc = root->fs_info->reloc_ctl;
4434 
4435     if (!rc || !have_reloc_root(root))
4436         return;
4437 
4438     if (!rc->merge_reloc_tree)
4439         return;
4440 
4441     root = root->reloc_root;
4442     BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4443     /*
4444      * relocation is in the stage of merging trees. the space
4445      * used by merging a reloc tree is twice the size of
4446      * relocated tree nodes in the worst case. half for cowing
4447      * the reloc tree, half for cowing the fs tree. the space
4448      * used by cowing the reloc tree will be freed after the
4449      * tree is dropped. if we create snapshot, cowing the fs
4450      * tree may use more space than it frees. so we need
4451      * reserve extra space.
4452      */
4453     *bytes_to_reserve += rc->nodes_relocated;
4454 }
4455 
4456 /*
4457  * called after snapshot is created. migrate block reservation
4458  * and create reloc root for the newly created snapshot
4459  *
4460  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4461  * references held on the reloc_root, one for root->reloc_root and one for
4462  * rc->reloc_roots.
4463  */
4464 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4465                    struct btrfs_pending_snapshot *pending)
4466 {
4467     struct btrfs_root *root = pending->root;
4468     struct btrfs_root *reloc_root;
4469     struct btrfs_root *new_root;
4470     struct reloc_control *rc = root->fs_info->reloc_ctl;
4471     int ret;
4472 
4473     if (!rc || !have_reloc_root(root))
4474         return 0;
4475 
4476     rc = root->fs_info->reloc_ctl;
4477     rc->merging_rsv_size += rc->nodes_relocated;
4478 
4479     if (rc->merge_reloc_tree) {
4480         ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4481                           rc->block_rsv,
4482                           rc->nodes_relocated, true);
4483         if (ret)
4484             return ret;
4485     }
4486 
4487     new_root = pending->snap;
4488     reloc_root = create_reloc_root(trans, root->reloc_root,
4489                        new_root->root_key.objectid);
4490     if (IS_ERR(reloc_root))
4491         return PTR_ERR(reloc_root);
4492 
4493     ret = __add_reloc_root(reloc_root);
4494     ASSERT(ret != -EEXIST);
4495     if (ret) {
4496         /* Pairs with create_reloc_root */
4497         btrfs_put_root(reloc_root);
4498         return ret;
4499     }
4500     new_root->reloc_root = btrfs_grab_root(reloc_root);
4501 
4502     if (rc->create_reloc_tree)
4503         ret = clone_backref_node(trans, rc, root, reloc_root);
4504     return ret;
4505 }