Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Copyright (C) 2007 Oracle.  All rights reserved.
0004  */
0005 
0006 #include <linux/slab.h>
0007 #include <linux/blkdev.h>
0008 #include <linux/writeback.h>
0009 #include <linux/sched/mm.h>
0010 #include "misc.h"
0011 #include "ctree.h"
0012 #include "transaction.h"
0013 #include "btrfs_inode.h"
0014 #include "extent_io.h"
0015 #include "disk-io.h"
0016 #include "compression.h"
0017 #include "delalloc-space.h"
0018 #include "qgroup.h"
0019 #include "subpage.h"
0020 
0021 static struct kmem_cache *btrfs_ordered_extent_cache;
0022 
0023 static u64 entry_end(struct btrfs_ordered_extent *entry)
0024 {
0025     if (entry->file_offset + entry->num_bytes < entry->file_offset)
0026         return (u64)-1;
0027     return entry->file_offset + entry->num_bytes;
0028 }
0029 
0030 /* returns NULL if the insertion worked, or it returns the node it did find
0031  * in the tree
0032  */
0033 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
0034                    struct rb_node *node)
0035 {
0036     struct rb_node **p = &root->rb_node;
0037     struct rb_node *parent = NULL;
0038     struct btrfs_ordered_extent *entry;
0039 
0040     while (*p) {
0041         parent = *p;
0042         entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
0043 
0044         if (file_offset < entry->file_offset)
0045             p = &(*p)->rb_left;
0046         else if (file_offset >= entry_end(entry))
0047             p = &(*p)->rb_right;
0048         else
0049             return parent;
0050     }
0051 
0052     rb_link_node(node, parent, p);
0053     rb_insert_color(node, root);
0054     return NULL;
0055 }
0056 
0057 /*
0058  * look for a given offset in the tree, and if it can't be found return the
0059  * first lesser offset
0060  */
0061 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
0062                      struct rb_node **prev_ret)
0063 {
0064     struct rb_node *n = root->rb_node;
0065     struct rb_node *prev = NULL;
0066     struct rb_node *test;
0067     struct btrfs_ordered_extent *entry;
0068     struct btrfs_ordered_extent *prev_entry = NULL;
0069 
0070     while (n) {
0071         entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
0072         prev = n;
0073         prev_entry = entry;
0074 
0075         if (file_offset < entry->file_offset)
0076             n = n->rb_left;
0077         else if (file_offset >= entry_end(entry))
0078             n = n->rb_right;
0079         else
0080             return n;
0081     }
0082     if (!prev_ret)
0083         return NULL;
0084 
0085     while (prev && file_offset >= entry_end(prev_entry)) {
0086         test = rb_next(prev);
0087         if (!test)
0088             break;
0089         prev_entry = rb_entry(test, struct btrfs_ordered_extent,
0090                       rb_node);
0091         if (file_offset < entry_end(prev_entry))
0092             break;
0093 
0094         prev = test;
0095     }
0096     if (prev)
0097         prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
0098                       rb_node);
0099     while (prev && file_offset < entry_end(prev_entry)) {
0100         test = rb_prev(prev);
0101         if (!test)
0102             break;
0103         prev_entry = rb_entry(test, struct btrfs_ordered_extent,
0104                       rb_node);
0105         prev = test;
0106     }
0107     *prev_ret = prev;
0108     return NULL;
0109 }
0110 
0111 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
0112               u64 len)
0113 {
0114     if (file_offset + len <= entry->file_offset ||
0115         entry->file_offset + entry->num_bytes <= file_offset)
0116         return 0;
0117     return 1;
0118 }
0119 
0120 /*
0121  * look find the first ordered struct that has this offset, otherwise
0122  * the first one less than this offset
0123  */
0124 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
0125                       u64 file_offset)
0126 {
0127     struct rb_root *root = &tree->tree;
0128     struct rb_node *prev = NULL;
0129     struct rb_node *ret;
0130     struct btrfs_ordered_extent *entry;
0131 
0132     if (tree->last) {
0133         entry = rb_entry(tree->last, struct btrfs_ordered_extent,
0134                  rb_node);
0135         if (in_range(file_offset, entry->file_offset, entry->num_bytes))
0136             return tree->last;
0137     }
0138     ret = __tree_search(root, file_offset, &prev);
0139     if (!ret)
0140         ret = prev;
0141     if (ret)
0142         tree->last = ret;
0143     return ret;
0144 }
0145 
0146 /**
0147  * Add an ordered extent to the per-inode tree.
0148  *
0149  * @inode:           Inode that this extent is for.
0150  * @file_offset:     Logical offset in file where the extent starts.
0151  * @num_bytes:       Logical length of extent in file.
0152  * @ram_bytes:       Full length of unencoded data.
0153  * @disk_bytenr:     Offset of extent on disk.
0154  * @disk_num_bytes:  Size of extent on disk.
0155  * @offset:          Offset into unencoded data where file data starts.
0156  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
0157  * @compress_type:   Compression algorithm used for data.
0158  *
0159  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
0160  * tree is given a single reference on the ordered extent that was inserted.
0161  *
0162  * Return: 0 or -ENOMEM.
0163  */
0164 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
0165                  u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
0166                  u64 disk_num_bytes, u64 offset, unsigned flags,
0167                  int compress_type)
0168 {
0169     struct btrfs_root *root = inode->root;
0170     struct btrfs_fs_info *fs_info = root->fs_info;
0171     struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
0172     struct rb_node *node;
0173     struct btrfs_ordered_extent *entry;
0174     int ret;
0175 
0176     if (flags &
0177         ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
0178         /* For nocow write, we can release the qgroup rsv right now */
0179         ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
0180         if (ret < 0)
0181             return ret;
0182         ret = 0;
0183     } else {
0184         /*
0185          * The ordered extent has reserved qgroup space, release now
0186          * and pass the reserved number for qgroup_record to free.
0187          */
0188         ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
0189         if (ret < 0)
0190             return ret;
0191     }
0192     entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
0193     if (!entry)
0194         return -ENOMEM;
0195 
0196     entry->file_offset = file_offset;
0197     entry->num_bytes = num_bytes;
0198     entry->ram_bytes = ram_bytes;
0199     entry->disk_bytenr = disk_bytenr;
0200     entry->disk_num_bytes = disk_num_bytes;
0201     entry->offset = offset;
0202     entry->bytes_left = num_bytes;
0203     entry->inode = igrab(&inode->vfs_inode);
0204     entry->compress_type = compress_type;
0205     entry->truncated_len = (u64)-1;
0206     entry->qgroup_rsv = ret;
0207     entry->physical = (u64)-1;
0208 
0209     ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
0210     entry->flags = flags;
0211 
0212     percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
0213                  fs_info->delalloc_batch);
0214 
0215     /* one ref for the tree */
0216     refcount_set(&entry->refs, 1);
0217     init_waitqueue_head(&entry->wait);
0218     INIT_LIST_HEAD(&entry->list);
0219     INIT_LIST_HEAD(&entry->log_list);
0220     INIT_LIST_HEAD(&entry->root_extent_list);
0221     INIT_LIST_HEAD(&entry->work_list);
0222     init_completion(&entry->completion);
0223 
0224     trace_btrfs_ordered_extent_add(inode, entry);
0225 
0226     spin_lock_irq(&tree->lock);
0227     node = tree_insert(&tree->tree, file_offset,
0228                &entry->rb_node);
0229     if (node)
0230         btrfs_panic(fs_info, -EEXIST,
0231                 "inconsistency in ordered tree at offset %llu",
0232                 file_offset);
0233     spin_unlock_irq(&tree->lock);
0234 
0235     spin_lock(&root->ordered_extent_lock);
0236     list_add_tail(&entry->root_extent_list,
0237               &root->ordered_extents);
0238     root->nr_ordered_extents++;
0239     if (root->nr_ordered_extents == 1) {
0240         spin_lock(&fs_info->ordered_root_lock);
0241         BUG_ON(!list_empty(&root->ordered_root));
0242         list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
0243         spin_unlock(&fs_info->ordered_root_lock);
0244     }
0245     spin_unlock(&root->ordered_extent_lock);
0246 
0247     /*
0248      * We don't need the count_max_extents here, we can assume that all of
0249      * that work has been done at higher layers, so this is truly the
0250      * smallest the extent is going to get.
0251      */
0252     spin_lock(&inode->lock);
0253     btrfs_mod_outstanding_extents(inode, 1);
0254     spin_unlock(&inode->lock);
0255 
0256     return 0;
0257 }
0258 
0259 /*
0260  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
0261  * when an ordered extent is finished.  If the list covers more than one
0262  * ordered extent, it is split across multiples.
0263  */
0264 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
0265                struct btrfs_ordered_sum *sum)
0266 {
0267     struct btrfs_ordered_inode_tree *tree;
0268 
0269     tree = &BTRFS_I(entry->inode)->ordered_tree;
0270     spin_lock_irq(&tree->lock);
0271     list_add_tail(&sum->list, &entry->list);
0272     spin_unlock_irq(&tree->lock);
0273 }
0274 
0275 static void finish_ordered_fn(struct btrfs_work *work)
0276 {
0277     struct btrfs_ordered_extent *ordered_extent;
0278 
0279     ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
0280     btrfs_finish_ordered_io(ordered_extent);
0281 }
0282 
0283 /*
0284  * Mark all ordered extents io inside the specified range finished.
0285  *
0286  * @page:    The involved page for the operation.
0287  *       For uncompressed buffered IO, the page status also needs to be
0288  *       updated to indicate whether the pending ordered io is finished.
0289  *       Can be NULL for direct IO and compressed write.
0290  *       For these cases, callers are ensured they won't execute the
0291  *       endio function twice.
0292  *
0293  * This function is called for endio, thus the range must have ordered
0294  * extent(s) covering it.
0295  */
0296 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
0297                     struct page *page, u64 file_offset,
0298                     u64 num_bytes, bool uptodate)
0299 {
0300     struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
0301     struct btrfs_fs_info *fs_info = inode->root->fs_info;
0302     struct btrfs_workqueue *wq;
0303     struct rb_node *node;
0304     struct btrfs_ordered_extent *entry = NULL;
0305     unsigned long flags;
0306     u64 cur = file_offset;
0307 
0308     if (btrfs_is_free_space_inode(inode))
0309         wq = fs_info->endio_freespace_worker;
0310     else
0311         wq = fs_info->endio_write_workers;
0312 
0313     if (page)
0314         ASSERT(page->mapping && page_offset(page) <= file_offset &&
0315                file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
0316 
0317     spin_lock_irqsave(&tree->lock, flags);
0318     while (cur < file_offset + num_bytes) {
0319         u64 entry_end;
0320         u64 end;
0321         u32 len;
0322 
0323         node = tree_search(tree, cur);
0324         /* No ordered extents at all */
0325         if (!node)
0326             break;
0327 
0328         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
0329         entry_end = entry->file_offset + entry->num_bytes;
0330         /*
0331          * |<-- OE --->|  |
0332          *        cur
0333          * Go to next OE.
0334          */
0335         if (cur >= entry_end) {
0336             node = rb_next(node);
0337             /* No more ordered extents, exit */
0338             if (!node)
0339                 break;
0340             entry = rb_entry(node, struct btrfs_ordered_extent,
0341                      rb_node);
0342 
0343             /* Go to next ordered extent and continue */
0344             cur = entry->file_offset;
0345             continue;
0346         }
0347         /*
0348          * |    |<--- OE --->|
0349          * cur
0350          * Go to the start of OE.
0351          */
0352         if (cur < entry->file_offset) {
0353             cur = entry->file_offset;
0354             continue;
0355         }
0356 
0357         /*
0358          * Now we are definitely inside one ordered extent.
0359          *
0360          * |<--- OE --->|
0361          *  |
0362          *  cur
0363          */
0364         end = min(entry->file_offset + entry->num_bytes,
0365               file_offset + num_bytes) - 1;
0366         ASSERT(end + 1 - cur < U32_MAX);
0367         len = end + 1 - cur;
0368 
0369         if (page) {
0370             /*
0371              * Ordered (Private2) bit indicates whether we still
0372              * have pending io unfinished for the ordered extent.
0373              *
0374              * If there's no such bit, we need to skip to next range.
0375              */
0376             if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
0377                 cur += len;
0378                 continue;
0379             }
0380             btrfs_page_clear_ordered(fs_info, page, cur, len);
0381         }
0382 
0383         /* Now we're fine to update the accounting */
0384         if (unlikely(len > entry->bytes_left)) {
0385             WARN_ON(1);
0386             btrfs_crit(fs_info,
0387 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
0388                    inode->root->root_key.objectid,
0389                    btrfs_ino(inode),
0390                    entry->file_offset,
0391                    entry->num_bytes,
0392                    len, entry->bytes_left);
0393             entry->bytes_left = 0;
0394         } else {
0395             entry->bytes_left -= len;
0396         }
0397 
0398         if (!uptodate)
0399             set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
0400 
0401         /*
0402          * All the IO of the ordered extent is finished, we need to queue
0403          * the finish_func to be executed.
0404          */
0405         if (entry->bytes_left == 0) {
0406             set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
0407             cond_wake_up(&entry->wait);
0408             refcount_inc(&entry->refs);
0409             trace_btrfs_ordered_extent_mark_finished(inode, entry);
0410             spin_unlock_irqrestore(&tree->lock, flags);
0411             btrfs_init_work(&entry->work, finish_ordered_fn, NULL, NULL);
0412             btrfs_queue_work(wq, &entry->work);
0413             spin_lock_irqsave(&tree->lock, flags);
0414         }
0415         cur += len;
0416     }
0417     spin_unlock_irqrestore(&tree->lock, flags);
0418 }
0419 
0420 /*
0421  * Finish IO for one ordered extent across a given range.  The range can only
0422  * contain one ordered extent.
0423  *
0424  * @cached:  The cached ordered extent. If not NULL, we can skip the tree
0425  *               search and use the ordered extent directly.
0426  *       Will be also used to store the finished ordered extent.
0427  * @file_offset: File offset for the finished IO
0428  * @io_size:     Length of the finish IO range
0429  *
0430  * Return true if the ordered extent is finished in the range, and update
0431  * @cached.
0432  * Return false otherwise.
0433  *
0434  * NOTE: The range can NOT cross multiple ordered extents.
0435  * Thus caller should ensure the range doesn't cross ordered extents.
0436  */
0437 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
0438                     struct btrfs_ordered_extent **cached,
0439                     u64 file_offset, u64 io_size)
0440 {
0441     struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
0442     struct rb_node *node;
0443     struct btrfs_ordered_extent *entry = NULL;
0444     unsigned long flags;
0445     bool finished = false;
0446 
0447     spin_lock_irqsave(&tree->lock, flags);
0448     if (cached && *cached) {
0449         entry = *cached;
0450         goto have_entry;
0451     }
0452 
0453     node = tree_search(tree, file_offset);
0454     if (!node)
0455         goto out;
0456 
0457     entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
0458 have_entry:
0459     if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
0460         goto out;
0461 
0462     if (io_size > entry->bytes_left)
0463         btrfs_crit(inode->root->fs_info,
0464                "bad ordered accounting left %llu size %llu",
0465                entry->bytes_left, io_size);
0466 
0467     entry->bytes_left -= io_size;
0468 
0469     if (entry->bytes_left == 0) {
0470         /*
0471          * Ensure only one caller can set the flag and finished_ret
0472          * accordingly
0473          */
0474         finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
0475         /* test_and_set_bit implies a barrier */
0476         cond_wake_up_nomb(&entry->wait);
0477     }
0478 out:
0479     if (finished && cached && entry) {
0480         *cached = entry;
0481         refcount_inc(&entry->refs);
0482         trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
0483     }
0484     spin_unlock_irqrestore(&tree->lock, flags);
0485     return finished;
0486 }
0487 
0488 /*
0489  * used to drop a reference on an ordered extent.  This will free
0490  * the extent if the last reference is dropped
0491  */
0492 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
0493 {
0494     struct list_head *cur;
0495     struct btrfs_ordered_sum *sum;
0496 
0497     trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
0498 
0499     if (refcount_dec_and_test(&entry->refs)) {
0500         ASSERT(list_empty(&entry->root_extent_list));
0501         ASSERT(list_empty(&entry->log_list));
0502         ASSERT(RB_EMPTY_NODE(&entry->rb_node));
0503         if (entry->inode)
0504             btrfs_add_delayed_iput(entry->inode);
0505         while (!list_empty(&entry->list)) {
0506             cur = entry->list.next;
0507             sum = list_entry(cur, struct btrfs_ordered_sum, list);
0508             list_del(&sum->list);
0509             kvfree(sum);
0510         }
0511         kmem_cache_free(btrfs_ordered_extent_cache, entry);
0512     }
0513 }
0514 
0515 /*
0516  * remove an ordered extent from the tree.  No references are dropped
0517  * and waiters are woken up.
0518  */
0519 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
0520                  struct btrfs_ordered_extent *entry)
0521 {
0522     struct btrfs_ordered_inode_tree *tree;
0523     struct btrfs_root *root = btrfs_inode->root;
0524     struct btrfs_fs_info *fs_info = root->fs_info;
0525     struct rb_node *node;
0526     bool pending;
0527 
0528     /* This is paired with btrfs_add_ordered_extent. */
0529     spin_lock(&btrfs_inode->lock);
0530     btrfs_mod_outstanding_extents(btrfs_inode, -1);
0531     spin_unlock(&btrfs_inode->lock);
0532     if (root != fs_info->tree_root) {
0533         u64 release;
0534 
0535         if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
0536             release = entry->disk_num_bytes;
0537         else
0538             release = entry->num_bytes;
0539         btrfs_delalloc_release_metadata(btrfs_inode, release, false);
0540     }
0541 
0542     percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
0543                  fs_info->delalloc_batch);
0544 
0545     tree = &btrfs_inode->ordered_tree;
0546     spin_lock_irq(&tree->lock);
0547     node = &entry->rb_node;
0548     rb_erase(node, &tree->tree);
0549     RB_CLEAR_NODE(node);
0550     if (tree->last == node)
0551         tree->last = NULL;
0552     set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
0553     pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
0554     spin_unlock_irq(&tree->lock);
0555 
0556     /*
0557      * The current running transaction is waiting on us, we need to let it
0558      * know that we're complete and wake it up.
0559      */
0560     if (pending) {
0561         struct btrfs_transaction *trans;
0562 
0563         /*
0564          * The checks for trans are just a formality, it should be set,
0565          * but if it isn't we don't want to deref/assert under the spin
0566          * lock, so be nice and check if trans is set, but ASSERT() so
0567          * if it isn't set a developer will notice.
0568          */
0569         spin_lock(&fs_info->trans_lock);
0570         trans = fs_info->running_transaction;
0571         if (trans)
0572             refcount_inc(&trans->use_count);
0573         spin_unlock(&fs_info->trans_lock);
0574 
0575         ASSERT(trans);
0576         if (trans) {
0577             if (atomic_dec_and_test(&trans->pending_ordered))
0578                 wake_up(&trans->pending_wait);
0579             btrfs_put_transaction(trans);
0580         }
0581     }
0582 
0583     spin_lock(&root->ordered_extent_lock);
0584     list_del_init(&entry->root_extent_list);
0585     root->nr_ordered_extents--;
0586 
0587     trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
0588 
0589     if (!root->nr_ordered_extents) {
0590         spin_lock(&fs_info->ordered_root_lock);
0591         BUG_ON(list_empty(&root->ordered_root));
0592         list_del_init(&root->ordered_root);
0593         spin_unlock(&fs_info->ordered_root_lock);
0594     }
0595     spin_unlock(&root->ordered_extent_lock);
0596     wake_up(&entry->wait);
0597 }
0598 
0599 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
0600 {
0601     struct btrfs_ordered_extent *ordered;
0602 
0603     ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
0604     btrfs_start_ordered_extent(ordered, 1);
0605     complete(&ordered->completion);
0606 }
0607 
0608 /*
0609  * wait for all the ordered extents in a root.  This is done when balancing
0610  * space between drives.
0611  */
0612 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
0613                    const u64 range_start, const u64 range_len)
0614 {
0615     struct btrfs_fs_info *fs_info = root->fs_info;
0616     LIST_HEAD(splice);
0617     LIST_HEAD(skipped);
0618     LIST_HEAD(works);
0619     struct btrfs_ordered_extent *ordered, *next;
0620     u64 count = 0;
0621     const u64 range_end = range_start + range_len;
0622 
0623     mutex_lock(&root->ordered_extent_mutex);
0624     spin_lock(&root->ordered_extent_lock);
0625     list_splice_init(&root->ordered_extents, &splice);
0626     while (!list_empty(&splice) && nr) {
0627         ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
0628                        root_extent_list);
0629 
0630         if (range_end <= ordered->disk_bytenr ||
0631             ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
0632             list_move_tail(&ordered->root_extent_list, &skipped);
0633             cond_resched_lock(&root->ordered_extent_lock);
0634             continue;
0635         }
0636 
0637         list_move_tail(&ordered->root_extent_list,
0638                    &root->ordered_extents);
0639         refcount_inc(&ordered->refs);
0640         spin_unlock(&root->ordered_extent_lock);
0641 
0642         btrfs_init_work(&ordered->flush_work,
0643                 btrfs_run_ordered_extent_work, NULL, NULL);
0644         list_add_tail(&ordered->work_list, &works);
0645         btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
0646 
0647         cond_resched();
0648         spin_lock(&root->ordered_extent_lock);
0649         if (nr != U64_MAX)
0650             nr--;
0651         count++;
0652     }
0653     list_splice_tail(&skipped, &root->ordered_extents);
0654     list_splice_tail(&splice, &root->ordered_extents);
0655     spin_unlock(&root->ordered_extent_lock);
0656 
0657     list_for_each_entry_safe(ordered, next, &works, work_list) {
0658         list_del_init(&ordered->work_list);
0659         wait_for_completion(&ordered->completion);
0660         btrfs_put_ordered_extent(ordered);
0661         cond_resched();
0662     }
0663     mutex_unlock(&root->ordered_extent_mutex);
0664 
0665     return count;
0666 }
0667 
0668 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
0669                  const u64 range_start, const u64 range_len)
0670 {
0671     struct btrfs_root *root;
0672     struct list_head splice;
0673     u64 done;
0674 
0675     INIT_LIST_HEAD(&splice);
0676 
0677     mutex_lock(&fs_info->ordered_operations_mutex);
0678     spin_lock(&fs_info->ordered_root_lock);
0679     list_splice_init(&fs_info->ordered_roots, &splice);
0680     while (!list_empty(&splice) && nr) {
0681         root = list_first_entry(&splice, struct btrfs_root,
0682                     ordered_root);
0683         root = btrfs_grab_root(root);
0684         BUG_ON(!root);
0685         list_move_tail(&root->ordered_root,
0686                    &fs_info->ordered_roots);
0687         spin_unlock(&fs_info->ordered_root_lock);
0688 
0689         done = btrfs_wait_ordered_extents(root, nr,
0690                           range_start, range_len);
0691         btrfs_put_root(root);
0692 
0693         spin_lock(&fs_info->ordered_root_lock);
0694         if (nr != U64_MAX) {
0695             nr -= done;
0696         }
0697     }
0698     list_splice_tail(&splice, &fs_info->ordered_roots);
0699     spin_unlock(&fs_info->ordered_root_lock);
0700     mutex_unlock(&fs_info->ordered_operations_mutex);
0701 }
0702 
0703 /*
0704  * Used to start IO or wait for a given ordered extent to finish.
0705  *
0706  * If wait is one, this effectively waits on page writeback for all the pages
0707  * in the extent, and it waits on the io completion code to insert
0708  * metadata into the btree corresponding to the extent
0709  */
0710 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
0711 {
0712     u64 start = entry->file_offset;
0713     u64 end = start + entry->num_bytes - 1;
0714     struct btrfs_inode *inode = BTRFS_I(entry->inode);
0715 
0716     trace_btrfs_ordered_extent_start(inode, entry);
0717 
0718     /*
0719      * pages in the range can be dirty, clean or writeback.  We
0720      * start IO on any dirty ones so the wait doesn't stall waiting
0721      * for the flusher thread to find them
0722      */
0723     if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
0724         filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
0725     if (wait) {
0726         wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
0727                          &entry->flags));
0728     }
0729 }
0730 
0731 /*
0732  * Used to wait on ordered extents across a large range of bytes.
0733  */
0734 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
0735 {
0736     int ret = 0;
0737     int ret_wb = 0;
0738     u64 end;
0739     u64 orig_end;
0740     struct btrfs_ordered_extent *ordered;
0741 
0742     if (start + len < start) {
0743         orig_end = INT_LIMIT(loff_t);
0744     } else {
0745         orig_end = start + len - 1;
0746         if (orig_end > INT_LIMIT(loff_t))
0747             orig_end = INT_LIMIT(loff_t);
0748     }
0749 
0750     /* start IO across the range first to instantiate any delalloc
0751      * extents
0752      */
0753     ret = btrfs_fdatawrite_range(inode, start, orig_end);
0754     if (ret)
0755         return ret;
0756 
0757     /*
0758      * If we have a writeback error don't return immediately. Wait first
0759      * for any ordered extents that haven't completed yet. This is to make
0760      * sure no one can dirty the same page ranges and call writepages()
0761      * before the ordered extents complete - to avoid failures (-EEXIST)
0762      * when adding the new ordered extents to the ordered tree.
0763      */
0764     ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
0765 
0766     end = orig_end;
0767     while (1) {
0768         ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
0769         if (!ordered)
0770             break;
0771         if (ordered->file_offset > orig_end) {
0772             btrfs_put_ordered_extent(ordered);
0773             break;
0774         }
0775         if (ordered->file_offset + ordered->num_bytes <= start) {
0776             btrfs_put_ordered_extent(ordered);
0777             break;
0778         }
0779         btrfs_start_ordered_extent(ordered, 1);
0780         end = ordered->file_offset;
0781         /*
0782          * If the ordered extent had an error save the error but don't
0783          * exit without waiting first for all other ordered extents in
0784          * the range to complete.
0785          */
0786         if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
0787             ret = -EIO;
0788         btrfs_put_ordered_extent(ordered);
0789         if (end == 0 || end == start)
0790             break;
0791         end--;
0792     }
0793     return ret_wb ? ret_wb : ret;
0794 }
0795 
0796 /*
0797  * find an ordered extent corresponding to file_offset.  return NULL if
0798  * nothing is found, otherwise take a reference on the extent and return it
0799  */
0800 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
0801                              u64 file_offset)
0802 {
0803     struct btrfs_ordered_inode_tree *tree;
0804     struct rb_node *node;
0805     struct btrfs_ordered_extent *entry = NULL;
0806     unsigned long flags;
0807 
0808     tree = &inode->ordered_tree;
0809     spin_lock_irqsave(&tree->lock, flags);
0810     node = tree_search(tree, file_offset);
0811     if (!node)
0812         goto out;
0813 
0814     entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
0815     if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
0816         entry = NULL;
0817     if (entry) {
0818         refcount_inc(&entry->refs);
0819         trace_btrfs_ordered_extent_lookup(inode, entry);
0820     }
0821 out:
0822     spin_unlock_irqrestore(&tree->lock, flags);
0823     return entry;
0824 }
0825 
0826 /* Since the DIO code tries to lock a wide area we need to look for any ordered
0827  * extents that exist in the range, rather than just the start of the range.
0828  */
0829 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
0830         struct btrfs_inode *inode, u64 file_offset, u64 len)
0831 {
0832     struct btrfs_ordered_inode_tree *tree;
0833     struct rb_node *node;
0834     struct btrfs_ordered_extent *entry = NULL;
0835 
0836     tree = &inode->ordered_tree;
0837     spin_lock_irq(&tree->lock);
0838     node = tree_search(tree, file_offset);
0839     if (!node) {
0840         node = tree_search(tree, file_offset + len);
0841         if (!node)
0842             goto out;
0843     }
0844 
0845     while (1) {
0846         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
0847         if (range_overlaps(entry, file_offset, len))
0848             break;
0849 
0850         if (entry->file_offset >= file_offset + len) {
0851             entry = NULL;
0852             break;
0853         }
0854         entry = NULL;
0855         node = rb_next(node);
0856         if (!node)
0857             break;
0858     }
0859 out:
0860     if (entry) {
0861         refcount_inc(&entry->refs);
0862         trace_btrfs_ordered_extent_lookup_range(inode, entry);
0863     }
0864     spin_unlock_irq(&tree->lock);
0865     return entry;
0866 }
0867 
0868 /*
0869  * Adds all ordered extents to the given list. The list ends up sorted by the
0870  * file_offset of the ordered extents.
0871  */
0872 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
0873                        struct list_head *list)
0874 {
0875     struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
0876     struct rb_node *n;
0877 
0878     ASSERT(inode_is_locked(&inode->vfs_inode));
0879 
0880     spin_lock_irq(&tree->lock);
0881     for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
0882         struct btrfs_ordered_extent *ordered;
0883 
0884         ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
0885 
0886         if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
0887             continue;
0888 
0889         ASSERT(list_empty(&ordered->log_list));
0890         list_add_tail(&ordered->log_list, list);
0891         refcount_inc(&ordered->refs);
0892         trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
0893     }
0894     spin_unlock_irq(&tree->lock);
0895 }
0896 
0897 /*
0898  * lookup and return any extent before 'file_offset'.  NULL is returned
0899  * if none is found
0900  */
0901 struct btrfs_ordered_extent *
0902 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
0903 {
0904     struct btrfs_ordered_inode_tree *tree;
0905     struct rb_node *node;
0906     struct btrfs_ordered_extent *entry = NULL;
0907 
0908     tree = &inode->ordered_tree;
0909     spin_lock_irq(&tree->lock);
0910     node = tree_search(tree, file_offset);
0911     if (!node)
0912         goto out;
0913 
0914     entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
0915     refcount_inc(&entry->refs);
0916     trace_btrfs_ordered_extent_lookup_first(inode, entry);
0917 out:
0918     spin_unlock_irq(&tree->lock);
0919     return entry;
0920 }
0921 
0922 /*
0923  * Lookup the first ordered extent that overlaps the range
0924  * [@file_offset, @file_offset + @len).
0925  *
0926  * The difference between this and btrfs_lookup_first_ordered_extent() is
0927  * that this one won't return any ordered extent that does not overlap the range.
0928  * And the difference against btrfs_lookup_ordered_extent() is, this function
0929  * ensures the first ordered extent gets returned.
0930  */
0931 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
0932             struct btrfs_inode *inode, u64 file_offset, u64 len)
0933 {
0934     struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
0935     struct rb_node *node;
0936     struct rb_node *cur;
0937     struct rb_node *prev;
0938     struct rb_node *next;
0939     struct btrfs_ordered_extent *entry = NULL;
0940 
0941     spin_lock_irq(&tree->lock);
0942     node = tree->tree.rb_node;
0943     /*
0944      * Here we don't want to use tree_search() which will use tree->last
0945      * and screw up the search order.
0946      * And __tree_search() can't return the adjacent ordered extents
0947      * either, thus here we do our own search.
0948      */
0949     while (node) {
0950         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
0951 
0952         if (file_offset < entry->file_offset) {
0953             node = node->rb_left;
0954         } else if (file_offset >= entry_end(entry)) {
0955             node = node->rb_right;
0956         } else {
0957             /*
0958              * Direct hit, got an ordered extent that starts at
0959              * @file_offset
0960              */
0961             goto out;
0962         }
0963     }
0964     if (!entry) {
0965         /* Empty tree */
0966         goto out;
0967     }
0968 
0969     cur = &entry->rb_node;
0970     /* We got an entry around @file_offset, check adjacent entries */
0971     if (entry->file_offset < file_offset) {
0972         prev = cur;
0973         next = rb_next(cur);
0974     } else {
0975         prev = rb_prev(cur);
0976         next = cur;
0977     }
0978     if (prev) {
0979         entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
0980         if (range_overlaps(entry, file_offset, len))
0981             goto out;
0982     }
0983     if (next) {
0984         entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
0985         if (range_overlaps(entry, file_offset, len))
0986             goto out;
0987     }
0988     /* No ordered extent in the range */
0989     entry = NULL;
0990 out:
0991     if (entry) {
0992         refcount_inc(&entry->refs);
0993         trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
0994     }
0995 
0996     spin_unlock_irq(&tree->lock);
0997     return entry;
0998 }
0999 
1000 /*
1001  * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
1002  * ordered extents in it are run to completion.
1003  *
1004  * @inode:        Inode whose ordered tree is to be searched
1005  * @start:        Beginning of range to flush
1006  * @end:          Last byte of range to lock
1007  * @cached_state: If passed, will return the extent state responsible for the
1008  * locked range. It's the caller's responsibility to free the cached state.
1009  *
1010  * This function always returns with the given range locked, ensuring after it's
1011  * called no order extent can be pending.
1012  */
1013 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1014                     u64 end,
1015                     struct extent_state **cached_state)
1016 {
1017     struct btrfs_ordered_extent *ordered;
1018     struct extent_state *cache = NULL;
1019     struct extent_state **cachedp = &cache;
1020 
1021     if (cached_state)
1022         cachedp = cached_state;
1023 
1024     while (1) {
1025         lock_extent_bits(&inode->io_tree, start, end, cachedp);
1026         ordered = btrfs_lookup_ordered_range(inode, start,
1027                              end - start + 1);
1028         if (!ordered) {
1029             /*
1030              * If no external cached_state has been passed then
1031              * decrement the extra ref taken for cachedp since we
1032              * aren't exposing it outside of this function
1033              */
1034             if (!cached_state)
1035                 refcount_dec(&cache->refs);
1036             break;
1037         }
1038         unlock_extent_cached(&inode->io_tree, start, end, cachedp);
1039         btrfs_start_ordered_extent(ordered, 1);
1040         btrfs_put_ordered_extent(ordered);
1041     }
1042 }
1043 
1044 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
1045                 u64 len)
1046 {
1047     struct inode *inode = ordered->inode;
1048     struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1049     u64 file_offset = ordered->file_offset + pos;
1050     u64 disk_bytenr = ordered->disk_bytenr + pos;
1051     unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS;
1052 
1053     /*
1054      * The splitting extent is already counted and will be added again in
1055      * btrfs_add_ordered_extent_*(). Subtract len to avoid double counting.
1056      */
1057     percpu_counter_add_batch(&fs_info->ordered_bytes, -len,
1058                  fs_info->delalloc_batch);
1059     WARN_ON_ONCE(flags & (1 << BTRFS_ORDERED_COMPRESSED));
1060     return btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, len, len,
1061                     disk_bytenr, len, 0, flags,
1062                     ordered->compress_type);
1063 }
1064 
1065 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1066                 u64 post)
1067 {
1068     struct inode *inode = ordered->inode;
1069     struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1070     struct rb_node *node;
1071     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1072     int ret = 0;
1073 
1074     trace_btrfs_ordered_extent_split(BTRFS_I(inode), ordered);
1075 
1076     spin_lock_irq(&tree->lock);
1077     /* Remove from tree once */
1078     node = &ordered->rb_node;
1079     rb_erase(node, &tree->tree);
1080     RB_CLEAR_NODE(node);
1081     if (tree->last == node)
1082         tree->last = NULL;
1083 
1084     ordered->file_offset += pre;
1085     ordered->disk_bytenr += pre;
1086     ordered->num_bytes -= (pre + post);
1087     ordered->disk_num_bytes -= (pre + post);
1088     ordered->bytes_left -= (pre + post);
1089 
1090     /* Re-insert the node */
1091     node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1092     if (node)
1093         btrfs_panic(fs_info, -EEXIST,
1094             "zoned: inconsistency in ordered tree at offset %llu",
1095                 ordered->file_offset);
1096 
1097     spin_unlock_irq(&tree->lock);
1098 
1099     if (pre)
1100         ret = clone_ordered_extent(ordered, 0, pre);
1101     if (ret == 0 && post)
1102         ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1103                        post);
1104 
1105     return ret;
1106 }
1107 
1108 int __init ordered_data_init(void)
1109 {
1110     btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1111                      sizeof(struct btrfs_ordered_extent), 0,
1112                      SLAB_MEM_SPREAD,
1113                      NULL);
1114     if (!btrfs_ordered_extent_cache)
1115         return -ENOMEM;
1116 
1117     return 0;
1118 }
1119 
1120 void __cold ordered_data_exit(void)
1121 {
1122     kmem_cache_destroy(btrfs_ordered_extent_cache);
1123 }