Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Copyright (C) 2007 Oracle.  All rights reserved.
0004  */
0005 
0006 #include <linux/kernel.h>
0007 #include <linux/bio.h>
0008 #include <linux/file.h>
0009 #include <linux/fs.h>
0010 #include <linux/fsnotify.h>
0011 #include <linux/pagemap.h>
0012 #include <linux/highmem.h>
0013 #include <linux/time.h>
0014 #include <linux/string.h>
0015 #include <linux/backing-dev.h>
0016 #include <linux/mount.h>
0017 #include <linux/namei.h>
0018 #include <linux/writeback.h>
0019 #include <linux/compat.h>
0020 #include <linux/security.h>
0021 #include <linux/xattr.h>
0022 #include <linux/mm.h>
0023 #include <linux/slab.h>
0024 #include <linux/blkdev.h>
0025 #include <linux/uuid.h>
0026 #include <linux/btrfs.h>
0027 #include <linux/uaccess.h>
0028 #include <linux/iversion.h>
0029 #include <linux/fileattr.h>
0030 #include <linux/fsverity.h>
0031 #include <linux/sched/xacct.h>
0032 #include "ctree.h"
0033 #include "disk-io.h"
0034 #include "export.h"
0035 #include "transaction.h"
0036 #include "btrfs_inode.h"
0037 #include "print-tree.h"
0038 #include "volumes.h"
0039 #include "locking.h"
0040 #include "backref.h"
0041 #include "rcu-string.h"
0042 #include "send.h"
0043 #include "dev-replace.h"
0044 #include "props.h"
0045 #include "sysfs.h"
0046 #include "qgroup.h"
0047 #include "tree-log.h"
0048 #include "compression.h"
0049 #include "space-info.h"
0050 #include "delalloc-space.h"
0051 #include "block-group.h"
0052 #include "subpage.h"
0053 
0054 #ifdef CONFIG_64BIT
0055 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
0056  * structures are incorrect, as the timespec structure from userspace
0057  * is 4 bytes too small. We define these alternatives here to teach
0058  * the kernel about the 32-bit struct packing.
0059  */
0060 struct btrfs_ioctl_timespec_32 {
0061     __u64 sec;
0062     __u32 nsec;
0063 } __attribute__ ((__packed__));
0064 
0065 struct btrfs_ioctl_received_subvol_args_32 {
0066     char    uuid[BTRFS_UUID_SIZE];  /* in */
0067     __u64   stransid;       /* in */
0068     __u64   rtransid;       /* out */
0069     struct btrfs_ioctl_timespec_32 stime; /* in */
0070     struct btrfs_ioctl_timespec_32 rtime; /* out */
0071     __u64   flags;          /* in */
0072     __u64   reserved[16];       /* in */
0073 } __attribute__ ((__packed__));
0074 
0075 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
0076                 struct btrfs_ioctl_received_subvol_args_32)
0077 #endif
0078 
0079 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
0080 struct btrfs_ioctl_send_args_32 {
0081     __s64 send_fd;          /* in */
0082     __u64 clone_sources_count;  /* in */
0083     compat_uptr_t clone_sources;    /* in */
0084     __u64 parent_root;      /* in */
0085     __u64 flags;            /* in */
0086     __u32 version;          /* in */
0087     __u8  reserved[28];     /* in */
0088 } __attribute__ ((__packed__));
0089 
0090 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
0091                    struct btrfs_ioctl_send_args_32)
0092 
0093 struct btrfs_ioctl_encoded_io_args_32 {
0094     compat_uptr_t iov;
0095     compat_ulong_t iovcnt;
0096     __s64 offset;
0097     __u64 flags;
0098     __u64 len;
0099     __u64 unencoded_len;
0100     __u64 unencoded_offset;
0101     __u32 compression;
0102     __u32 encryption;
0103     __u8 reserved[64];
0104 };
0105 
0106 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
0107                        struct btrfs_ioctl_encoded_io_args_32)
0108 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
0109                     struct btrfs_ioctl_encoded_io_args_32)
0110 #endif
0111 
0112 /* Mask out flags that are inappropriate for the given type of inode. */
0113 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
0114         unsigned int flags)
0115 {
0116     if (S_ISDIR(inode->i_mode))
0117         return flags;
0118     else if (S_ISREG(inode->i_mode))
0119         return flags & ~FS_DIRSYNC_FL;
0120     else
0121         return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
0122 }
0123 
0124 /*
0125  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
0126  * ioctl.
0127  */
0128 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
0129 {
0130     unsigned int iflags = 0;
0131     u32 flags = binode->flags;
0132     u32 ro_flags = binode->ro_flags;
0133 
0134     if (flags & BTRFS_INODE_SYNC)
0135         iflags |= FS_SYNC_FL;
0136     if (flags & BTRFS_INODE_IMMUTABLE)
0137         iflags |= FS_IMMUTABLE_FL;
0138     if (flags & BTRFS_INODE_APPEND)
0139         iflags |= FS_APPEND_FL;
0140     if (flags & BTRFS_INODE_NODUMP)
0141         iflags |= FS_NODUMP_FL;
0142     if (flags & BTRFS_INODE_NOATIME)
0143         iflags |= FS_NOATIME_FL;
0144     if (flags & BTRFS_INODE_DIRSYNC)
0145         iflags |= FS_DIRSYNC_FL;
0146     if (flags & BTRFS_INODE_NODATACOW)
0147         iflags |= FS_NOCOW_FL;
0148     if (ro_flags & BTRFS_INODE_RO_VERITY)
0149         iflags |= FS_VERITY_FL;
0150 
0151     if (flags & BTRFS_INODE_NOCOMPRESS)
0152         iflags |= FS_NOCOMP_FL;
0153     else if (flags & BTRFS_INODE_COMPRESS)
0154         iflags |= FS_COMPR_FL;
0155 
0156     return iflags;
0157 }
0158 
0159 /*
0160  * Update inode->i_flags based on the btrfs internal flags.
0161  */
0162 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
0163 {
0164     struct btrfs_inode *binode = BTRFS_I(inode);
0165     unsigned int new_fl = 0;
0166 
0167     if (binode->flags & BTRFS_INODE_SYNC)
0168         new_fl |= S_SYNC;
0169     if (binode->flags & BTRFS_INODE_IMMUTABLE)
0170         new_fl |= S_IMMUTABLE;
0171     if (binode->flags & BTRFS_INODE_APPEND)
0172         new_fl |= S_APPEND;
0173     if (binode->flags & BTRFS_INODE_NOATIME)
0174         new_fl |= S_NOATIME;
0175     if (binode->flags & BTRFS_INODE_DIRSYNC)
0176         new_fl |= S_DIRSYNC;
0177     if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
0178         new_fl |= S_VERITY;
0179 
0180     set_mask_bits(&inode->i_flags,
0181               S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
0182               S_VERITY, new_fl);
0183 }
0184 
0185 /*
0186  * Check if @flags are a supported and valid set of FS_*_FL flags and that
0187  * the old and new flags are not conflicting
0188  */
0189 static int check_fsflags(unsigned int old_flags, unsigned int flags)
0190 {
0191     if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
0192               FS_NOATIME_FL | FS_NODUMP_FL | \
0193               FS_SYNC_FL | FS_DIRSYNC_FL | \
0194               FS_NOCOMP_FL | FS_COMPR_FL |
0195               FS_NOCOW_FL))
0196         return -EOPNOTSUPP;
0197 
0198     /* COMPR and NOCOMP on new/old are valid */
0199     if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
0200         return -EINVAL;
0201 
0202     if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
0203         return -EINVAL;
0204 
0205     /* NOCOW and compression options are mutually exclusive */
0206     if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
0207         return -EINVAL;
0208     if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
0209         return -EINVAL;
0210 
0211     return 0;
0212 }
0213 
0214 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
0215                     unsigned int flags)
0216 {
0217     if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
0218         return -EPERM;
0219 
0220     return 0;
0221 }
0222 
0223 /*
0224  * Set flags/xflags from the internal inode flags. The remaining items of
0225  * fsxattr are zeroed.
0226  */
0227 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
0228 {
0229     struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
0230 
0231     fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
0232     return 0;
0233 }
0234 
0235 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
0236                struct dentry *dentry, struct fileattr *fa)
0237 {
0238     struct inode *inode = d_inode(dentry);
0239     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0240     struct btrfs_inode *binode = BTRFS_I(inode);
0241     struct btrfs_root *root = binode->root;
0242     struct btrfs_trans_handle *trans;
0243     unsigned int fsflags, old_fsflags;
0244     int ret;
0245     const char *comp = NULL;
0246     u32 binode_flags;
0247 
0248     if (btrfs_root_readonly(root))
0249         return -EROFS;
0250 
0251     if (fileattr_has_fsx(fa))
0252         return -EOPNOTSUPP;
0253 
0254     fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
0255     old_fsflags = btrfs_inode_flags_to_fsflags(binode);
0256     ret = check_fsflags(old_fsflags, fsflags);
0257     if (ret)
0258         return ret;
0259 
0260     ret = check_fsflags_compatible(fs_info, fsflags);
0261     if (ret)
0262         return ret;
0263 
0264     binode_flags = binode->flags;
0265     if (fsflags & FS_SYNC_FL)
0266         binode_flags |= BTRFS_INODE_SYNC;
0267     else
0268         binode_flags &= ~BTRFS_INODE_SYNC;
0269     if (fsflags & FS_IMMUTABLE_FL)
0270         binode_flags |= BTRFS_INODE_IMMUTABLE;
0271     else
0272         binode_flags &= ~BTRFS_INODE_IMMUTABLE;
0273     if (fsflags & FS_APPEND_FL)
0274         binode_flags |= BTRFS_INODE_APPEND;
0275     else
0276         binode_flags &= ~BTRFS_INODE_APPEND;
0277     if (fsflags & FS_NODUMP_FL)
0278         binode_flags |= BTRFS_INODE_NODUMP;
0279     else
0280         binode_flags &= ~BTRFS_INODE_NODUMP;
0281     if (fsflags & FS_NOATIME_FL)
0282         binode_flags |= BTRFS_INODE_NOATIME;
0283     else
0284         binode_flags &= ~BTRFS_INODE_NOATIME;
0285 
0286     /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
0287     if (!fa->flags_valid) {
0288         /* 1 item for the inode */
0289         trans = btrfs_start_transaction(root, 1);
0290         if (IS_ERR(trans))
0291             return PTR_ERR(trans);
0292         goto update_flags;
0293     }
0294 
0295     if (fsflags & FS_DIRSYNC_FL)
0296         binode_flags |= BTRFS_INODE_DIRSYNC;
0297     else
0298         binode_flags &= ~BTRFS_INODE_DIRSYNC;
0299     if (fsflags & FS_NOCOW_FL) {
0300         if (S_ISREG(inode->i_mode)) {
0301             /*
0302              * It's safe to turn csums off here, no extents exist.
0303              * Otherwise we want the flag to reflect the real COW
0304              * status of the file and will not set it.
0305              */
0306             if (inode->i_size == 0)
0307                 binode_flags |= BTRFS_INODE_NODATACOW |
0308                         BTRFS_INODE_NODATASUM;
0309         } else {
0310             binode_flags |= BTRFS_INODE_NODATACOW;
0311         }
0312     } else {
0313         /*
0314          * Revert back under same assumptions as above
0315          */
0316         if (S_ISREG(inode->i_mode)) {
0317             if (inode->i_size == 0)
0318                 binode_flags &= ~(BTRFS_INODE_NODATACOW |
0319                           BTRFS_INODE_NODATASUM);
0320         } else {
0321             binode_flags &= ~BTRFS_INODE_NODATACOW;
0322         }
0323     }
0324 
0325     /*
0326      * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
0327      * flag may be changed automatically if compression code won't make
0328      * things smaller.
0329      */
0330     if (fsflags & FS_NOCOMP_FL) {
0331         binode_flags &= ~BTRFS_INODE_COMPRESS;
0332         binode_flags |= BTRFS_INODE_NOCOMPRESS;
0333     } else if (fsflags & FS_COMPR_FL) {
0334 
0335         if (IS_SWAPFILE(inode))
0336             return -ETXTBSY;
0337 
0338         binode_flags |= BTRFS_INODE_COMPRESS;
0339         binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
0340 
0341         comp = btrfs_compress_type2str(fs_info->compress_type);
0342         if (!comp || comp[0] == 0)
0343             comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
0344     } else {
0345         binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
0346     }
0347 
0348     /*
0349      * 1 for inode item
0350      * 2 for properties
0351      */
0352     trans = btrfs_start_transaction(root, 3);
0353     if (IS_ERR(trans))
0354         return PTR_ERR(trans);
0355 
0356     if (comp) {
0357         ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
0358                      strlen(comp), 0);
0359         if (ret) {
0360             btrfs_abort_transaction(trans, ret);
0361             goto out_end_trans;
0362         }
0363     } else {
0364         ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
0365                      0, 0);
0366         if (ret && ret != -ENODATA) {
0367             btrfs_abort_transaction(trans, ret);
0368             goto out_end_trans;
0369         }
0370     }
0371 
0372 update_flags:
0373     binode->flags = binode_flags;
0374     btrfs_sync_inode_flags_to_i_flags(inode);
0375     inode_inc_iversion(inode);
0376     inode->i_ctime = current_time(inode);
0377     ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
0378 
0379  out_end_trans:
0380     btrfs_end_transaction(trans);
0381     return ret;
0382 }
0383 
0384 /*
0385  * Start exclusive operation @type, return true on success
0386  */
0387 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
0388             enum btrfs_exclusive_operation type)
0389 {
0390     bool ret = false;
0391 
0392     spin_lock(&fs_info->super_lock);
0393     if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
0394         fs_info->exclusive_operation = type;
0395         ret = true;
0396     }
0397     spin_unlock(&fs_info->super_lock);
0398 
0399     return ret;
0400 }
0401 
0402 /*
0403  * Conditionally allow to enter the exclusive operation in case it's compatible
0404  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
0405  * btrfs_exclop_finish.
0406  *
0407  * Compatibility:
0408  * - the same type is already running
0409  * - when trying to add a device and balance has been paused
0410  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
0411  *   must check the condition first that would allow none -> @type
0412  */
0413 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
0414                  enum btrfs_exclusive_operation type)
0415 {
0416     spin_lock(&fs_info->super_lock);
0417     if (fs_info->exclusive_operation == type ||
0418         (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
0419          type == BTRFS_EXCLOP_DEV_ADD))
0420         return true;
0421 
0422     spin_unlock(&fs_info->super_lock);
0423     return false;
0424 }
0425 
0426 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
0427 {
0428     spin_unlock(&fs_info->super_lock);
0429 }
0430 
0431 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
0432 {
0433     spin_lock(&fs_info->super_lock);
0434     WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
0435     spin_unlock(&fs_info->super_lock);
0436     sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
0437 }
0438 
0439 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
0440               enum btrfs_exclusive_operation op)
0441 {
0442     switch (op) {
0443     case BTRFS_EXCLOP_BALANCE_PAUSED:
0444         spin_lock(&fs_info->super_lock);
0445         ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
0446                fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD);
0447         fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
0448         spin_unlock(&fs_info->super_lock);
0449         break;
0450     case BTRFS_EXCLOP_BALANCE:
0451         spin_lock(&fs_info->super_lock);
0452         ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
0453         fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
0454         spin_unlock(&fs_info->super_lock);
0455         break;
0456     default:
0457         btrfs_warn(fs_info,
0458             "invalid exclop balance operation %d requested", op);
0459     }
0460 }
0461 
0462 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
0463 {
0464     return put_user(inode->i_generation, arg);
0465 }
0466 
0467 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
0468                     void __user *arg)
0469 {
0470     struct btrfs_device *device;
0471     struct fstrim_range range;
0472     u64 minlen = ULLONG_MAX;
0473     u64 num_devices = 0;
0474     int ret;
0475 
0476     if (!capable(CAP_SYS_ADMIN))
0477         return -EPERM;
0478 
0479     /*
0480      * btrfs_trim_block_group() depends on space cache, which is not
0481      * available in zoned filesystem. So, disallow fitrim on a zoned
0482      * filesystem for now.
0483      */
0484     if (btrfs_is_zoned(fs_info))
0485         return -EOPNOTSUPP;
0486 
0487     /*
0488      * If the fs is mounted with nologreplay, which requires it to be
0489      * mounted in RO mode as well, we can not allow discard on free space
0490      * inside block groups, because log trees refer to extents that are not
0491      * pinned in a block group's free space cache (pinning the extents is
0492      * precisely the first phase of replaying a log tree).
0493      */
0494     if (btrfs_test_opt(fs_info, NOLOGREPLAY))
0495         return -EROFS;
0496 
0497     rcu_read_lock();
0498     list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
0499                 dev_list) {
0500         if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
0501             continue;
0502         num_devices++;
0503         minlen = min_t(u64, bdev_discard_granularity(device->bdev),
0504                     minlen);
0505     }
0506     rcu_read_unlock();
0507 
0508     if (!num_devices)
0509         return -EOPNOTSUPP;
0510     if (copy_from_user(&range, arg, sizeof(range)))
0511         return -EFAULT;
0512 
0513     /*
0514      * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
0515      * block group is in the logical address space, which can be any
0516      * sectorsize aligned bytenr in  the range [0, U64_MAX].
0517      */
0518     if (range.len < fs_info->sb->s_blocksize)
0519         return -EINVAL;
0520 
0521     range.minlen = max(range.minlen, minlen);
0522     ret = btrfs_trim_fs(fs_info, &range);
0523     if (ret < 0)
0524         return ret;
0525 
0526     if (copy_to_user(arg, &range, sizeof(range)))
0527         return -EFAULT;
0528 
0529     return 0;
0530 }
0531 
0532 int __pure btrfs_is_empty_uuid(u8 *uuid)
0533 {
0534     int i;
0535 
0536     for (i = 0; i < BTRFS_UUID_SIZE; i++) {
0537         if (uuid[i])
0538             return 0;
0539     }
0540     return 1;
0541 }
0542 
0543 /*
0544  * Calculate the number of transaction items to reserve for creating a subvolume
0545  * or snapshot, not including the inode, directory entries, or parent directory.
0546  */
0547 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
0548 {
0549     /*
0550      * 1 to add root block
0551      * 1 to add root item
0552      * 1 to add root ref
0553      * 1 to add root backref
0554      * 1 to add UUID item
0555      * 1 to add qgroup info
0556      * 1 to add qgroup limit
0557      *
0558      * Ideally the last two would only be accounted if qgroups are enabled,
0559      * but that can change between now and the time we would insert them.
0560      */
0561     unsigned int num_items = 7;
0562 
0563     if (inherit) {
0564         /* 2 to add qgroup relations for each inherited qgroup */
0565         num_items += 2 * inherit->num_qgroups;
0566     }
0567     return num_items;
0568 }
0569 
0570 static noinline int create_subvol(struct user_namespace *mnt_userns,
0571                   struct inode *dir, struct dentry *dentry,
0572                   struct btrfs_qgroup_inherit *inherit)
0573 {
0574     struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
0575     struct btrfs_trans_handle *trans;
0576     struct btrfs_key key;
0577     struct btrfs_root_item *root_item;
0578     struct btrfs_inode_item *inode_item;
0579     struct extent_buffer *leaf;
0580     struct btrfs_root *root = BTRFS_I(dir)->root;
0581     struct btrfs_root *new_root;
0582     struct btrfs_block_rsv block_rsv;
0583     struct timespec64 cur_time = current_time(dir);
0584     struct btrfs_new_inode_args new_inode_args = {
0585         .dir = dir,
0586         .dentry = dentry,
0587         .subvol = true,
0588     };
0589     unsigned int trans_num_items;
0590     int ret;
0591     dev_t anon_dev;
0592     u64 objectid;
0593 
0594     root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
0595     if (!root_item)
0596         return -ENOMEM;
0597 
0598     ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
0599     if (ret)
0600         goto out_root_item;
0601 
0602     /*
0603      * Don't create subvolume whose level is not zero. Or qgroup will be
0604      * screwed up since it assumes subvolume qgroup's level to be 0.
0605      */
0606     if (btrfs_qgroup_level(objectid)) {
0607         ret = -ENOSPC;
0608         goto out_root_item;
0609     }
0610 
0611     ret = get_anon_bdev(&anon_dev);
0612     if (ret < 0)
0613         goto out_root_item;
0614 
0615     new_inode_args.inode = btrfs_new_subvol_inode(mnt_userns, dir);
0616     if (!new_inode_args.inode) {
0617         ret = -ENOMEM;
0618         goto out_anon_dev;
0619     }
0620     ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
0621     if (ret)
0622         goto out_inode;
0623     trans_num_items += create_subvol_num_items(inherit);
0624 
0625     btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
0626     ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
0627                            trans_num_items, false);
0628     if (ret)
0629         goto out_new_inode_args;
0630 
0631     trans = btrfs_start_transaction(root, 0);
0632     if (IS_ERR(trans)) {
0633         ret = PTR_ERR(trans);
0634         btrfs_subvolume_release_metadata(root, &block_rsv);
0635         goto out_new_inode_args;
0636     }
0637     trans->block_rsv = &block_rsv;
0638     trans->bytes_reserved = block_rsv.size;
0639 
0640     ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
0641     if (ret)
0642         goto out;
0643 
0644     leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
0645                       BTRFS_NESTING_NORMAL);
0646     if (IS_ERR(leaf)) {
0647         ret = PTR_ERR(leaf);
0648         goto out;
0649     }
0650 
0651     btrfs_mark_buffer_dirty(leaf);
0652 
0653     inode_item = &root_item->inode;
0654     btrfs_set_stack_inode_generation(inode_item, 1);
0655     btrfs_set_stack_inode_size(inode_item, 3);
0656     btrfs_set_stack_inode_nlink(inode_item, 1);
0657     btrfs_set_stack_inode_nbytes(inode_item,
0658                      fs_info->nodesize);
0659     btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
0660 
0661     btrfs_set_root_flags(root_item, 0);
0662     btrfs_set_root_limit(root_item, 0);
0663     btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
0664 
0665     btrfs_set_root_bytenr(root_item, leaf->start);
0666     btrfs_set_root_generation(root_item, trans->transid);
0667     btrfs_set_root_level(root_item, 0);
0668     btrfs_set_root_refs(root_item, 1);
0669     btrfs_set_root_used(root_item, leaf->len);
0670     btrfs_set_root_last_snapshot(root_item, 0);
0671 
0672     btrfs_set_root_generation_v2(root_item,
0673             btrfs_root_generation(root_item));
0674     generate_random_guid(root_item->uuid);
0675     btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
0676     btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
0677     root_item->ctime = root_item->otime;
0678     btrfs_set_root_ctransid(root_item, trans->transid);
0679     btrfs_set_root_otransid(root_item, trans->transid);
0680 
0681     btrfs_tree_unlock(leaf);
0682 
0683     btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
0684 
0685     key.objectid = objectid;
0686     key.offset = 0;
0687     key.type = BTRFS_ROOT_ITEM_KEY;
0688     ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
0689                 root_item);
0690     if (ret) {
0691         /*
0692          * Since we don't abort the transaction in this case, free the
0693          * tree block so that we don't leak space and leave the
0694          * filesystem in an inconsistent state (an extent item in the
0695          * extent tree with a backreference for a root that does not
0696          * exists).
0697          */
0698         btrfs_tree_lock(leaf);
0699         btrfs_clean_tree_block(leaf);
0700         btrfs_tree_unlock(leaf);
0701         btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
0702         free_extent_buffer(leaf);
0703         goto out;
0704     }
0705 
0706     free_extent_buffer(leaf);
0707     leaf = NULL;
0708 
0709     new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
0710     if (IS_ERR(new_root)) {
0711         ret = PTR_ERR(new_root);
0712         btrfs_abort_transaction(trans, ret);
0713         goto out;
0714     }
0715     /* anon_dev is owned by new_root now. */
0716     anon_dev = 0;
0717     BTRFS_I(new_inode_args.inode)->root = new_root;
0718     /* ... and new_root is owned by new_inode_args.inode now. */
0719 
0720     ret = btrfs_record_root_in_trans(trans, new_root);
0721     if (ret) {
0722         btrfs_abort_transaction(trans, ret);
0723         goto out;
0724     }
0725 
0726     ret = btrfs_uuid_tree_add(trans, root_item->uuid,
0727                   BTRFS_UUID_KEY_SUBVOL, objectid);
0728     if (ret) {
0729         btrfs_abort_transaction(trans, ret);
0730         goto out;
0731     }
0732 
0733     ret = btrfs_create_new_inode(trans, &new_inode_args);
0734     if (ret) {
0735         btrfs_abort_transaction(trans, ret);
0736         goto out;
0737     }
0738 
0739     d_instantiate_new(dentry, new_inode_args.inode);
0740     new_inode_args.inode = NULL;
0741 
0742 out:
0743     trans->block_rsv = NULL;
0744     trans->bytes_reserved = 0;
0745     btrfs_subvolume_release_metadata(root, &block_rsv);
0746 
0747     if (ret)
0748         btrfs_end_transaction(trans);
0749     else
0750         ret = btrfs_commit_transaction(trans);
0751 out_new_inode_args:
0752     btrfs_new_inode_args_destroy(&new_inode_args);
0753 out_inode:
0754     iput(new_inode_args.inode);
0755 out_anon_dev:
0756     if (anon_dev)
0757         free_anon_bdev(anon_dev);
0758 out_root_item:
0759     kfree(root_item);
0760     return ret;
0761 }
0762 
0763 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
0764                struct dentry *dentry, bool readonly,
0765                struct btrfs_qgroup_inherit *inherit)
0766 {
0767     struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
0768     struct inode *inode;
0769     struct btrfs_pending_snapshot *pending_snapshot;
0770     unsigned int trans_num_items;
0771     struct btrfs_trans_handle *trans;
0772     int ret;
0773 
0774     /* We do not support snapshotting right now. */
0775     if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
0776         btrfs_warn(fs_info,
0777                "extent tree v2 doesn't support snapshotting yet");
0778         return -EOPNOTSUPP;
0779     }
0780 
0781     if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
0782         return -EINVAL;
0783 
0784     if (atomic_read(&root->nr_swapfiles)) {
0785         btrfs_warn(fs_info,
0786                "cannot snapshot subvolume with active swapfile");
0787         return -ETXTBSY;
0788     }
0789 
0790     pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
0791     if (!pending_snapshot)
0792         return -ENOMEM;
0793 
0794     ret = get_anon_bdev(&pending_snapshot->anon_dev);
0795     if (ret < 0)
0796         goto free_pending;
0797     pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
0798             GFP_KERNEL);
0799     pending_snapshot->path = btrfs_alloc_path();
0800     if (!pending_snapshot->root_item || !pending_snapshot->path) {
0801         ret = -ENOMEM;
0802         goto free_pending;
0803     }
0804 
0805     btrfs_init_block_rsv(&pending_snapshot->block_rsv,
0806                  BTRFS_BLOCK_RSV_TEMP);
0807     /*
0808      * 1 to add dir item
0809      * 1 to add dir index
0810      * 1 to update parent inode item
0811      */
0812     trans_num_items = create_subvol_num_items(inherit) + 3;
0813     ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
0814                            &pending_snapshot->block_rsv,
0815                            trans_num_items, false);
0816     if (ret)
0817         goto free_pending;
0818 
0819     pending_snapshot->dentry = dentry;
0820     pending_snapshot->root = root;
0821     pending_snapshot->readonly = readonly;
0822     pending_snapshot->dir = dir;
0823     pending_snapshot->inherit = inherit;
0824 
0825     trans = btrfs_start_transaction(root, 0);
0826     if (IS_ERR(trans)) {
0827         ret = PTR_ERR(trans);
0828         goto fail;
0829     }
0830 
0831     trans->pending_snapshot = pending_snapshot;
0832 
0833     ret = btrfs_commit_transaction(trans);
0834     if (ret)
0835         goto fail;
0836 
0837     ret = pending_snapshot->error;
0838     if (ret)
0839         goto fail;
0840 
0841     ret = btrfs_orphan_cleanup(pending_snapshot->snap);
0842     if (ret)
0843         goto fail;
0844 
0845     inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
0846     if (IS_ERR(inode)) {
0847         ret = PTR_ERR(inode);
0848         goto fail;
0849     }
0850 
0851     d_instantiate(dentry, inode);
0852     ret = 0;
0853     pending_snapshot->anon_dev = 0;
0854 fail:
0855     /* Prevent double freeing of anon_dev */
0856     if (ret && pending_snapshot->snap)
0857         pending_snapshot->snap->anon_dev = 0;
0858     btrfs_put_root(pending_snapshot->snap);
0859     btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
0860 free_pending:
0861     if (pending_snapshot->anon_dev)
0862         free_anon_bdev(pending_snapshot->anon_dev);
0863     kfree(pending_snapshot->root_item);
0864     btrfs_free_path(pending_snapshot->path);
0865     kfree(pending_snapshot);
0866 
0867     return ret;
0868 }
0869 
0870 /*  copy of may_delete in fs/namei.c()
0871  *  Check whether we can remove a link victim from directory dir, check
0872  *  whether the type of victim is right.
0873  *  1. We can't do it if dir is read-only (done in permission())
0874  *  2. We should have write and exec permissions on dir
0875  *  3. We can't remove anything from append-only dir
0876  *  4. We can't do anything with immutable dir (done in permission())
0877  *  5. If the sticky bit on dir is set we should either
0878  *  a. be owner of dir, or
0879  *  b. be owner of victim, or
0880  *  c. have CAP_FOWNER capability
0881  *  6. If the victim is append-only or immutable we can't do anything with
0882  *     links pointing to it.
0883  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
0884  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
0885  *  9. We can't remove a root or mountpoint.
0886  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
0887  *     nfs_async_unlink().
0888  */
0889 
0890 static int btrfs_may_delete(struct user_namespace *mnt_userns,
0891                 struct inode *dir, struct dentry *victim, int isdir)
0892 {
0893     int error;
0894 
0895     if (d_really_is_negative(victim))
0896         return -ENOENT;
0897 
0898     BUG_ON(d_inode(victim->d_parent) != dir);
0899     audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
0900 
0901     error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
0902     if (error)
0903         return error;
0904     if (IS_APPEND(dir))
0905         return -EPERM;
0906     if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
0907         IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
0908         IS_SWAPFILE(d_inode(victim)))
0909         return -EPERM;
0910     if (isdir) {
0911         if (!d_is_dir(victim))
0912             return -ENOTDIR;
0913         if (IS_ROOT(victim))
0914             return -EBUSY;
0915     } else if (d_is_dir(victim))
0916         return -EISDIR;
0917     if (IS_DEADDIR(dir))
0918         return -ENOENT;
0919     if (victim->d_flags & DCACHE_NFSFS_RENAMED)
0920         return -EBUSY;
0921     return 0;
0922 }
0923 
0924 /* copy of may_create in fs/namei.c() */
0925 static inline int btrfs_may_create(struct user_namespace *mnt_userns,
0926                    struct inode *dir, struct dentry *child)
0927 {
0928     if (d_really_is_positive(child))
0929         return -EEXIST;
0930     if (IS_DEADDIR(dir))
0931         return -ENOENT;
0932     if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
0933         return -EOVERFLOW;
0934     return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
0935 }
0936 
0937 /*
0938  * Create a new subvolume below @parent.  This is largely modeled after
0939  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
0940  * inside this filesystem so it's quite a bit simpler.
0941  */
0942 static noinline int btrfs_mksubvol(const struct path *parent,
0943                    struct user_namespace *mnt_userns,
0944                    const char *name, int namelen,
0945                    struct btrfs_root *snap_src,
0946                    bool readonly,
0947                    struct btrfs_qgroup_inherit *inherit)
0948 {
0949     struct inode *dir = d_inode(parent->dentry);
0950     struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
0951     struct dentry *dentry;
0952     int error;
0953 
0954     error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
0955     if (error == -EINTR)
0956         return error;
0957 
0958     dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
0959     error = PTR_ERR(dentry);
0960     if (IS_ERR(dentry))
0961         goto out_unlock;
0962 
0963     error = btrfs_may_create(mnt_userns, dir, dentry);
0964     if (error)
0965         goto out_dput;
0966 
0967     /*
0968      * even if this name doesn't exist, we may get hash collisions.
0969      * check for them now when we can safely fail
0970      */
0971     error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
0972                            dir->i_ino, name,
0973                            namelen);
0974     if (error)
0975         goto out_dput;
0976 
0977     down_read(&fs_info->subvol_sem);
0978 
0979     if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
0980         goto out_up_read;
0981 
0982     if (snap_src)
0983         error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
0984     else
0985         error = create_subvol(mnt_userns, dir, dentry, inherit);
0986 
0987     if (!error)
0988         fsnotify_mkdir(dir, dentry);
0989 out_up_read:
0990     up_read(&fs_info->subvol_sem);
0991 out_dput:
0992     dput(dentry);
0993 out_unlock:
0994     btrfs_inode_unlock(dir, 0);
0995     return error;
0996 }
0997 
0998 static noinline int btrfs_mksnapshot(const struct path *parent,
0999                    struct user_namespace *mnt_userns,
1000                    const char *name, int namelen,
1001                    struct btrfs_root *root,
1002                    bool readonly,
1003                    struct btrfs_qgroup_inherit *inherit)
1004 {
1005     int ret;
1006     bool snapshot_force_cow = false;
1007 
1008     /*
1009      * Force new buffered writes to reserve space even when NOCOW is
1010      * possible. This is to avoid later writeback (running dealloc) to
1011      * fallback to COW mode and unexpectedly fail with ENOSPC.
1012      */
1013     btrfs_drew_read_lock(&root->snapshot_lock);
1014 
1015     ret = btrfs_start_delalloc_snapshot(root, false);
1016     if (ret)
1017         goto out;
1018 
1019     /*
1020      * All previous writes have started writeback in NOCOW mode, so now
1021      * we force future writes to fallback to COW mode during snapshot
1022      * creation.
1023      */
1024     atomic_inc(&root->snapshot_force_cow);
1025     snapshot_force_cow = true;
1026 
1027     btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1028 
1029     ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
1030                  root, readonly, inherit);
1031 out:
1032     if (snapshot_force_cow)
1033         atomic_dec(&root->snapshot_force_cow);
1034     btrfs_drew_read_unlock(&root->snapshot_lock);
1035     return ret;
1036 }
1037 
1038 /*
1039  * Defrag specific helper to get an extent map.
1040  *
1041  * Differences between this and btrfs_get_extent() are:
1042  *
1043  * - No extent_map will be added to inode->extent_tree
1044  *   To reduce memory usage in the long run.
1045  *
1046  * - Extra optimization to skip file extents older than @newer_than
1047  *   By using btrfs_search_forward() we can skip entire file ranges that
1048  *   have extents created in past transactions, because btrfs_search_forward()
1049  *   will not visit leaves and nodes with a generation smaller than given
1050  *   minimal generation threshold (@newer_than).
1051  *
1052  * Return valid em if we find a file extent matching the requirement.
1053  * Return NULL if we can not find a file extent matching the requirement.
1054  *
1055  * Return ERR_PTR() for error.
1056  */
1057 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
1058                         u64 start, u64 newer_than)
1059 {
1060     struct btrfs_root *root = inode->root;
1061     struct btrfs_file_extent_item *fi;
1062     struct btrfs_path path = { 0 };
1063     struct extent_map *em;
1064     struct btrfs_key key;
1065     u64 ino = btrfs_ino(inode);
1066     int ret;
1067 
1068     em = alloc_extent_map();
1069     if (!em) {
1070         ret = -ENOMEM;
1071         goto err;
1072     }
1073 
1074     key.objectid = ino;
1075     key.type = BTRFS_EXTENT_DATA_KEY;
1076     key.offset = start;
1077 
1078     if (newer_than) {
1079         ret = btrfs_search_forward(root, &key, &path, newer_than);
1080         if (ret < 0)
1081             goto err;
1082         /* Can't find anything newer */
1083         if (ret > 0)
1084             goto not_found;
1085     } else {
1086         ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
1087         if (ret < 0)
1088             goto err;
1089     }
1090     if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
1091         /*
1092          * If btrfs_search_slot() makes path to point beyond nritems,
1093          * we should not have an empty leaf, as this inode must at
1094          * least have its INODE_ITEM.
1095          */
1096         ASSERT(btrfs_header_nritems(path.nodes[0]));
1097         path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
1098     }
1099     btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1100     /* Perfect match, no need to go one slot back */
1101     if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
1102         key.offset == start)
1103         goto iterate;
1104 
1105     /* We didn't find a perfect match, needs to go one slot back */
1106     if (path.slots[0] > 0) {
1107         btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1108         if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
1109             path.slots[0]--;
1110     }
1111 
1112 iterate:
1113     /* Iterate through the path to find a file extent covering @start */
1114     while (true) {
1115         u64 extent_end;
1116 
1117         if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
1118             goto next;
1119 
1120         btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1121 
1122         /*
1123          * We may go one slot back to INODE_REF/XATTR item, then
1124          * need to go forward until we reach an EXTENT_DATA.
1125          * But we should still has the correct ino as key.objectid.
1126          */
1127         if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
1128             goto next;
1129 
1130         /* It's beyond our target range, definitely not extent found */
1131         if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
1132             goto not_found;
1133 
1134         /*
1135          *  |   |<- File extent ->|
1136          *  \- start
1137          *
1138          * This means there is a hole between start and key.offset.
1139          */
1140         if (key.offset > start) {
1141             em->start = start;
1142             em->orig_start = start;
1143             em->block_start = EXTENT_MAP_HOLE;
1144             em->len = key.offset - start;
1145             break;
1146         }
1147 
1148         fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
1149                     struct btrfs_file_extent_item);
1150         extent_end = btrfs_file_extent_end(&path);
1151 
1152         /*
1153          *  |<- file extent ->| |
1154          *              \- start
1155          *
1156          * We haven't reached start, search next slot.
1157          */
1158         if (extent_end <= start)
1159             goto next;
1160 
1161         /* Now this extent covers @start, convert it to em */
1162         btrfs_extent_item_to_extent_map(inode, &path, fi, false, em);
1163         break;
1164 next:
1165         ret = btrfs_next_item(root, &path);
1166         if (ret < 0)
1167             goto err;
1168         if (ret > 0)
1169             goto not_found;
1170     }
1171     btrfs_release_path(&path);
1172     return em;
1173 
1174 not_found:
1175     btrfs_release_path(&path);
1176     free_extent_map(em);
1177     return NULL;
1178 
1179 err:
1180     btrfs_release_path(&path);
1181     free_extent_map(em);
1182     return ERR_PTR(ret);
1183 }
1184 
1185 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
1186                            u64 newer_than, bool locked)
1187 {
1188     struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1189     struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1190     struct extent_map *em;
1191     const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
1192 
1193     /*
1194      * hopefully we have this extent in the tree already, try without
1195      * the full extent lock
1196      */
1197     read_lock(&em_tree->lock);
1198     em = lookup_extent_mapping(em_tree, start, sectorsize);
1199     read_unlock(&em_tree->lock);
1200 
1201     /*
1202      * We can get a merged extent, in that case, we need to re-search
1203      * tree to get the original em for defrag.
1204      *
1205      * If @newer_than is 0 or em::generation < newer_than, we can trust
1206      * this em, as either we don't care about the generation, or the
1207      * merged extent map will be rejected anyway.
1208      */
1209     if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
1210         newer_than && em->generation >= newer_than) {
1211         free_extent_map(em);
1212         em = NULL;
1213     }
1214 
1215     if (!em) {
1216         struct extent_state *cached = NULL;
1217         u64 end = start + sectorsize - 1;
1218 
1219         /* get the big lock and read metadata off disk */
1220         if (!locked)
1221             lock_extent_bits(io_tree, start, end, &cached);
1222         em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
1223         if (!locked)
1224             unlock_extent_cached(io_tree, start, end, &cached);
1225 
1226         if (IS_ERR(em))
1227             return NULL;
1228     }
1229 
1230     return em;
1231 }
1232 
1233 static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
1234                    const struct extent_map *em)
1235 {
1236     if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1237         return BTRFS_MAX_COMPRESSED;
1238     return fs_info->max_extent_size;
1239 }
1240 
1241 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
1242                      u32 extent_thresh, u64 newer_than, bool locked)
1243 {
1244     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1245     struct extent_map *next;
1246     bool ret = false;
1247 
1248     /* this is the last extent */
1249     if (em->start + em->len >= i_size_read(inode))
1250         return false;
1251 
1252     /*
1253      * Here we need to pass @newer_then when checking the next extent, or
1254      * we will hit a case we mark current extent for defrag, but the next
1255      * one will not be a target.
1256      * This will just cause extra IO without really reducing the fragments.
1257      */
1258     next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
1259     /* No more em or hole */
1260     if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1261         goto out;
1262     if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
1263         goto out;
1264     /*
1265      * If the next extent is at its max capacity, defragging current extent
1266      * makes no sense, as the total number of extents won't change.
1267      */
1268     if (next->len >= get_extent_max_capacity(fs_info, em))
1269         goto out;
1270     /* Skip older extent */
1271     if (next->generation < newer_than)
1272         goto out;
1273     /* Also check extent size */
1274     if (next->len >= extent_thresh)
1275         goto out;
1276 
1277     ret = true;
1278 out:
1279     free_extent_map(next);
1280     return ret;
1281 }
1282 
1283 /*
1284  * Prepare one page to be defragged.
1285  *
1286  * This will ensure:
1287  *
1288  * - Returned page is locked and has been set up properly.
1289  * - No ordered extent exists in the page.
1290  * - The page is uptodate.
1291  *
1292  * NOTE: Caller should also wait for page writeback after the cluster is
1293  * prepared, here we don't do writeback wait for each page.
1294  */
1295 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode,
1296                         pgoff_t index)
1297 {
1298     struct address_space *mapping = inode->vfs_inode.i_mapping;
1299     gfp_t mask = btrfs_alloc_write_mask(mapping);
1300     u64 page_start = (u64)index << PAGE_SHIFT;
1301     u64 page_end = page_start + PAGE_SIZE - 1;
1302     struct extent_state *cached_state = NULL;
1303     struct page *page;
1304     int ret;
1305 
1306 again:
1307     page = find_or_create_page(mapping, index, mask);
1308     if (!page)
1309         return ERR_PTR(-ENOMEM);
1310 
1311     /*
1312      * Since we can defragment files opened read-only, we can encounter
1313      * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
1314      * can't do I/O using huge pages yet, so return an error for now.
1315      * Filesystem transparent huge pages are typically only used for
1316      * executables that explicitly enable them, so this isn't very
1317      * restrictive.
1318      */
1319     if (PageCompound(page)) {
1320         unlock_page(page);
1321         put_page(page);
1322         return ERR_PTR(-ETXTBSY);
1323     }
1324 
1325     ret = set_page_extent_mapped(page);
1326     if (ret < 0) {
1327         unlock_page(page);
1328         put_page(page);
1329         return ERR_PTR(ret);
1330     }
1331 
1332     /* Wait for any existing ordered extent in the range */
1333     while (1) {
1334         struct btrfs_ordered_extent *ordered;
1335 
1336         lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
1337         ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
1338         unlock_extent_cached(&inode->io_tree, page_start, page_end,
1339                      &cached_state);
1340         if (!ordered)
1341             break;
1342 
1343         unlock_page(page);
1344         btrfs_start_ordered_extent(ordered, 1);
1345         btrfs_put_ordered_extent(ordered);
1346         lock_page(page);
1347         /*
1348          * We unlocked the page above, so we need check if it was
1349          * released or not.
1350          */
1351         if (page->mapping != mapping || !PagePrivate(page)) {
1352             unlock_page(page);
1353             put_page(page);
1354             goto again;
1355         }
1356     }
1357 
1358     /*
1359      * Now the page range has no ordered extent any more.  Read the page to
1360      * make it uptodate.
1361      */
1362     if (!PageUptodate(page)) {
1363         btrfs_read_folio(NULL, page_folio(page));
1364         lock_page(page);
1365         if (page->mapping != mapping || !PagePrivate(page)) {
1366             unlock_page(page);
1367             put_page(page);
1368             goto again;
1369         }
1370         if (!PageUptodate(page)) {
1371             unlock_page(page);
1372             put_page(page);
1373             return ERR_PTR(-EIO);
1374         }
1375     }
1376     return page;
1377 }
1378 
1379 struct defrag_target_range {
1380     struct list_head list;
1381     u64 start;
1382     u64 len;
1383 };
1384 
1385 /*
1386  * Collect all valid target extents.
1387  *
1388  * @start:     file offset to lookup
1389  * @len:       length to lookup
1390  * @extent_thresh: file extent size threshold, any extent size >= this value
1391  *         will be ignored
1392  * @newer_than:    only defrag extents newer than this value
1393  * @do_compress:   whether the defrag is doing compression
1394  *         if true, @extent_thresh will be ignored and all regular
1395  *         file extents meeting @newer_than will be targets.
1396  * @locked:    if the range has already held extent lock
1397  * @target_list:   list of targets file extents
1398  */
1399 static int defrag_collect_targets(struct btrfs_inode *inode,
1400                   u64 start, u64 len, u32 extent_thresh,
1401                   u64 newer_than, bool do_compress,
1402                   bool locked, struct list_head *target_list,
1403                   u64 *last_scanned_ret)
1404 {
1405     struct btrfs_fs_info *fs_info = inode->root->fs_info;
1406     bool last_is_target = false;
1407     u64 cur = start;
1408     int ret = 0;
1409 
1410     while (cur < start + len) {
1411         struct extent_map *em;
1412         struct defrag_target_range *new;
1413         bool next_mergeable = true;
1414         u64 range_len;
1415 
1416         last_is_target = false;
1417         em = defrag_lookup_extent(&inode->vfs_inode, cur,
1418                       newer_than, locked);
1419         if (!em)
1420             break;
1421 
1422         /*
1423          * If the file extent is an inlined one, we may still want to
1424          * defrag it (fallthrough) if it will cause a regular extent.
1425          * This is for users who want to convert inline extents to
1426          * regular ones through max_inline= mount option.
1427          */
1428         if (em->block_start == EXTENT_MAP_INLINE &&
1429             em->len <= inode->root->fs_info->max_inline)
1430             goto next;
1431 
1432         /* Skip hole/delalloc/preallocated extents */
1433         if (em->block_start == EXTENT_MAP_HOLE ||
1434             em->block_start == EXTENT_MAP_DELALLOC ||
1435             test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1436             goto next;
1437 
1438         /* Skip older extent */
1439         if (em->generation < newer_than)
1440             goto next;
1441 
1442         /* This em is under writeback, no need to defrag */
1443         if (em->generation == (u64)-1)
1444             goto next;
1445 
1446         /*
1447          * Our start offset might be in the middle of an existing extent
1448          * map, so take that into account.
1449          */
1450         range_len = em->len - (cur - em->start);
1451         /*
1452          * If this range of the extent map is already flagged for delalloc,
1453          * skip it, because:
1454          *
1455          * 1) We could deadlock later, when trying to reserve space for
1456          *    delalloc, because in case we can't immediately reserve space
1457          *    the flusher can start delalloc and wait for the respective
1458          *    ordered extents to complete. The deadlock would happen
1459          *    because we do the space reservation while holding the range
1460          *    locked, and starting writeback, or finishing an ordered
1461          *    extent, requires locking the range;
1462          *
1463          * 2) If there's delalloc there, it means there's dirty pages for
1464          *    which writeback has not started yet (we clean the delalloc
1465          *    flag when starting writeback and after creating an ordered
1466          *    extent). If we mark pages in an adjacent range for defrag,
1467          *    then we will have a larger contiguous range for delalloc,
1468          *    very likely resulting in a larger extent after writeback is
1469          *    triggered (except in a case of free space fragmentation).
1470          */
1471         if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
1472                    EXTENT_DELALLOC, 0, NULL))
1473             goto next;
1474 
1475         /*
1476          * For do_compress case, we want to compress all valid file
1477          * extents, thus no @extent_thresh or mergeable check.
1478          */
1479         if (do_compress)
1480             goto add;
1481 
1482         /* Skip too large extent */
1483         if (range_len >= extent_thresh)
1484             goto next;
1485 
1486         /*
1487          * Skip extents already at its max capacity, this is mostly for
1488          * compressed extents, which max cap is only 128K.
1489          */
1490         if (em->len >= get_extent_max_capacity(fs_info, em))
1491             goto next;
1492 
1493         /*
1494          * Normally there are no more extents after an inline one, thus
1495          * @next_mergeable will normally be false and not defragged.
1496          * So if an inline extent passed all above checks, just add it
1497          * for defrag, and be converted to regular extents.
1498          */
1499         if (em->block_start == EXTENT_MAP_INLINE)
1500             goto add;
1501 
1502         next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1503                         extent_thresh, newer_than, locked);
1504         if (!next_mergeable) {
1505             struct defrag_target_range *last;
1506 
1507             /* Empty target list, no way to merge with last entry */
1508             if (list_empty(target_list))
1509                 goto next;
1510             last = list_entry(target_list->prev,
1511                       struct defrag_target_range, list);
1512             /* Not mergeable with last entry */
1513             if (last->start + last->len != cur)
1514                 goto next;
1515 
1516             /* Mergeable, fall through to add it to @target_list. */
1517         }
1518 
1519 add:
1520         last_is_target = true;
1521         range_len = min(extent_map_end(em), start + len) - cur;
1522         /*
1523          * This one is a good target, check if it can be merged into
1524          * last range of the target list.
1525          */
1526         if (!list_empty(target_list)) {
1527             struct defrag_target_range *last;
1528 
1529             last = list_entry(target_list->prev,
1530                       struct defrag_target_range, list);
1531             ASSERT(last->start + last->len <= cur);
1532             if (last->start + last->len == cur) {
1533                 /* Mergeable, enlarge the last entry */
1534                 last->len += range_len;
1535                 goto next;
1536             }
1537             /* Fall through to allocate a new entry */
1538         }
1539 
1540         /* Allocate new defrag_target_range */
1541         new = kmalloc(sizeof(*new), GFP_NOFS);
1542         if (!new) {
1543             free_extent_map(em);
1544             ret = -ENOMEM;
1545             break;
1546         }
1547         new->start = cur;
1548         new->len = range_len;
1549         list_add_tail(&new->list, target_list);
1550 
1551 next:
1552         cur = extent_map_end(em);
1553         free_extent_map(em);
1554     }
1555     if (ret < 0) {
1556         struct defrag_target_range *entry;
1557         struct defrag_target_range *tmp;
1558 
1559         list_for_each_entry_safe(entry, tmp, target_list, list) {
1560             list_del_init(&entry->list);
1561             kfree(entry);
1562         }
1563     }
1564     if (!ret && last_scanned_ret) {
1565         /*
1566          * If the last extent is not a target, the caller can skip to
1567          * the end of that extent.
1568          * Otherwise, we can only go the end of the specified range.
1569          */
1570         if (!last_is_target)
1571             *last_scanned_ret = max(cur, *last_scanned_ret);
1572         else
1573             *last_scanned_ret = max(start + len, *last_scanned_ret);
1574     }
1575     return ret;
1576 }
1577 
1578 #define CLUSTER_SIZE    (SZ_256K)
1579 static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1580 
1581 /*
1582  * Defrag one contiguous target range.
1583  *
1584  * @inode:  target inode
1585  * @target: target range to defrag
1586  * @pages:  locked pages covering the defrag range
1587  * @nr_pages:   number of locked pages
1588  *
1589  * Caller should ensure:
1590  *
1591  * - Pages are prepared
1592  *   Pages should be locked, no ordered extent in the pages range,
1593  *   no writeback.
1594  *
1595  * - Extent bits are locked
1596  */
1597 static int defrag_one_locked_target(struct btrfs_inode *inode,
1598                     struct defrag_target_range *target,
1599                     struct page **pages, int nr_pages,
1600                     struct extent_state **cached_state)
1601 {
1602     struct btrfs_fs_info *fs_info = inode->root->fs_info;
1603     struct extent_changeset *data_reserved = NULL;
1604     const u64 start = target->start;
1605     const u64 len = target->len;
1606     unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1607     unsigned long start_index = start >> PAGE_SHIFT;
1608     unsigned long first_index = page_index(pages[0]);
1609     int ret = 0;
1610     int i;
1611 
1612     ASSERT(last_index - first_index + 1 <= nr_pages);
1613 
1614     ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1615     if (ret < 0)
1616         return ret;
1617     clear_extent_bit(&inode->io_tree, start, start + len - 1,
1618              EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1619              EXTENT_DEFRAG, 0, 0, cached_state);
1620     set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1621 
1622     /* Update the page status */
1623     for (i = start_index - first_index; i <= last_index - first_index; i++) {
1624         ClearPageChecked(pages[i]);
1625         btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1626     }
1627     btrfs_delalloc_release_extents(inode, len);
1628     extent_changeset_free(data_reserved);
1629 
1630     return ret;
1631 }
1632 
1633 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1634                 u32 extent_thresh, u64 newer_than, bool do_compress,
1635                 u64 *last_scanned_ret)
1636 {
1637     struct extent_state *cached_state = NULL;
1638     struct defrag_target_range *entry;
1639     struct defrag_target_range *tmp;
1640     LIST_HEAD(target_list);
1641     struct page **pages;
1642     const u32 sectorsize = inode->root->fs_info->sectorsize;
1643     u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1644     u64 start_index = start >> PAGE_SHIFT;
1645     unsigned int nr_pages = last_index - start_index + 1;
1646     int ret = 0;
1647     int i;
1648 
1649     ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1650     ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1651 
1652     pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1653     if (!pages)
1654         return -ENOMEM;
1655 
1656     /* Prepare all pages */
1657     for (i = 0; i < nr_pages; i++) {
1658         pages[i] = defrag_prepare_one_page(inode, start_index + i);
1659         if (IS_ERR(pages[i])) {
1660             ret = PTR_ERR(pages[i]);
1661             pages[i] = NULL;
1662             goto free_pages;
1663         }
1664     }
1665     for (i = 0; i < nr_pages; i++)
1666         wait_on_page_writeback(pages[i]);
1667 
1668     /* Lock the pages range */
1669     lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT,
1670              (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1671              &cached_state);
1672     /*
1673      * Now we have a consistent view about the extent map, re-check
1674      * which range really needs to be defragged.
1675      *
1676      * And this time we have extent locked already, pass @locked = true
1677      * so that we won't relock the extent range and cause deadlock.
1678      */
1679     ret = defrag_collect_targets(inode, start, len, extent_thresh,
1680                      newer_than, do_compress, true,
1681                      &target_list, last_scanned_ret);
1682     if (ret < 0)
1683         goto unlock_extent;
1684 
1685     list_for_each_entry(entry, &target_list, list) {
1686         ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1687                            &cached_state);
1688         if (ret < 0)
1689             break;
1690     }
1691 
1692     list_for_each_entry_safe(entry, tmp, &target_list, list) {
1693         list_del_init(&entry->list);
1694         kfree(entry);
1695     }
1696 unlock_extent:
1697     unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT,
1698                  (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1699                  &cached_state);
1700 free_pages:
1701     for (i = 0; i < nr_pages; i++) {
1702         if (pages[i]) {
1703             unlock_page(pages[i]);
1704             put_page(pages[i]);
1705         }
1706     }
1707     kfree(pages);
1708     return ret;
1709 }
1710 
1711 static int defrag_one_cluster(struct btrfs_inode *inode,
1712                   struct file_ra_state *ra,
1713                   u64 start, u32 len, u32 extent_thresh,
1714                   u64 newer_than, bool do_compress,
1715                   unsigned long *sectors_defragged,
1716                   unsigned long max_sectors,
1717                   u64 *last_scanned_ret)
1718 {
1719     const u32 sectorsize = inode->root->fs_info->sectorsize;
1720     struct defrag_target_range *entry;
1721     struct defrag_target_range *tmp;
1722     LIST_HEAD(target_list);
1723     int ret;
1724 
1725     ret = defrag_collect_targets(inode, start, len, extent_thresh,
1726                      newer_than, do_compress, false,
1727                      &target_list, NULL);
1728     if (ret < 0)
1729         goto out;
1730 
1731     list_for_each_entry(entry, &target_list, list) {
1732         u32 range_len = entry->len;
1733 
1734         /* Reached or beyond the limit */
1735         if (max_sectors && *sectors_defragged >= max_sectors) {
1736             ret = 1;
1737             break;
1738         }
1739 
1740         if (max_sectors)
1741             range_len = min_t(u32, range_len,
1742                 (max_sectors - *sectors_defragged) * sectorsize);
1743 
1744         /*
1745          * If defrag_one_range() has updated last_scanned_ret,
1746          * our range may already be invalid (e.g. hole punched).
1747          * Skip if our range is before last_scanned_ret, as there is
1748          * no need to defrag the range anymore.
1749          */
1750         if (entry->start + range_len <= *last_scanned_ret)
1751             continue;
1752 
1753         if (ra)
1754             page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1755                 ra, NULL, entry->start >> PAGE_SHIFT,
1756                 ((entry->start + range_len - 1) >> PAGE_SHIFT) -
1757                 (entry->start >> PAGE_SHIFT) + 1);
1758         /*
1759          * Here we may not defrag any range if holes are punched before
1760          * we locked the pages.
1761          * But that's fine, it only affects the @sectors_defragged
1762          * accounting.
1763          */
1764         ret = defrag_one_range(inode, entry->start, range_len,
1765                        extent_thresh, newer_than, do_compress,
1766                        last_scanned_ret);
1767         if (ret < 0)
1768             break;
1769         *sectors_defragged += range_len >>
1770                       inode->root->fs_info->sectorsize_bits;
1771     }
1772 out:
1773     list_for_each_entry_safe(entry, tmp, &target_list, list) {
1774         list_del_init(&entry->list);
1775         kfree(entry);
1776     }
1777     if (ret >= 0)
1778         *last_scanned_ret = max(*last_scanned_ret, start + len);
1779     return ret;
1780 }
1781 
1782 /*
1783  * Entry point to file defragmentation.
1784  *
1785  * @inode:     inode to be defragged
1786  * @ra:        readahead state (can be NUL)
1787  * @range:     defrag options including range and flags
1788  * @newer_than:    minimum transid to defrag
1789  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1790  *         will be defragged.
1791  *
1792  * Return <0 for error.
1793  * Return >=0 for the number of sectors defragged, and range->start will be updated
1794  * to indicate the file offset where next defrag should be started at.
1795  * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1796  *  defragging all the range).
1797  */
1798 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1799               struct btrfs_ioctl_defrag_range_args *range,
1800               u64 newer_than, unsigned long max_to_defrag)
1801 {
1802     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1803     unsigned long sectors_defragged = 0;
1804     u64 isize = i_size_read(inode);
1805     u64 cur;
1806     u64 last_byte;
1807     bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1808     bool ra_allocated = false;
1809     int compress_type = BTRFS_COMPRESS_ZLIB;
1810     int ret = 0;
1811     u32 extent_thresh = range->extent_thresh;
1812     pgoff_t start_index;
1813 
1814     if (isize == 0)
1815         return 0;
1816 
1817     if (range->start >= isize)
1818         return -EINVAL;
1819 
1820     if (do_compress) {
1821         if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1822             return -EINVAL;
1823         if (range->compress_type)
1824             compress_type = range->compress_type;
1825     }
1826 
1827     if (extent_thresh == 0)
1828         extent_thresh = SZ_256K;
1829 
1830     if (range->start + range->len > range->start) {
1831         /* Got a specific range */
1832         last_byte = min(isize, range->start + range->len);
1833     } else {
1834         /* Defrag until file end */
1835         last_byte = isize;
1836     }
1837 
1838     /* Align the range */
1839     cur = round_down(range->start, fs_info->sectorsize);
1840     last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1841 
1842     /*
1843      * If we were not given a ra, allocate a readahead context. As
1844      * readahead is just an optimization, defrag will work without it so
1845      * we don't error out.
1846      */
1847     if (!ra) {
1848         ra_allocated = true;
1849         ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1850         if (ra)
1851             file_ra_state_init(ra, inode->i_mapping);
1852     }
1853 
1854     /*
1855      * Make writeback start from the beginning of the range, so that the
1856      * defrag range can be written sequentially.
1857      */
1858     start_index = cur >> PAGE_SHIFT;
1859     if (start_index < inode->i_mapping->writeback_index)
1860         inode->i_mapping->writeback_index = start_index;
1861 
1862     while (cur < last_byte) {
1863         const unsigned long prev_sectors_defragged = sectors_defragged;
1864         u64 last_scanned = cur;
1865         u64 cluster_end;
1866 
1867         if (btrfs_defrag_cancelled(fs_info)) {
1868             ret = -EAGAIN;
1869             break;
1870         }
1871 
1872         /* We want the cluster end at page boundary when possible */
1873         cluster_end = (((cur >> PAGE_SHIFT) +
1874                    (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1875         cluster_end = min(cluster_end, last_byte);
1876 
1877         btrfs_inode_lock(inode, 0);
1878         if (IS_SWAPFILE(inode)) {
1879             ret = -ETXTBSY;
1880             btrfs_inode_unlock(inode, 0);
1881             break;
1882         }
1883         if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1884             btrfs_inode_unlock(inode, 0);
1885             break;
1886         }
1887         if (do_compress)
1888             BTRFS_I(inode)->defrag_compress = compress_type;
1889         ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1890                 cluster_end + 1 - cur, extent_thresh,
1891                 newer_than, do_compress, &sectors_defragged,
1892                 max_to_defrag, &last_scanned);
1893 
1894         if (sectors_defragged > prev_sectors_defragged)
1895             balance_dirty_pages_ratelimited(inode->i_mapping);
1896 
1897         btrfs_inode_unlock(inode, 0);
1898         if (ret < 0)
1899             break;
1900         cur = max(cluster_end + 1, last_scanned);
1901         if (ret > 0) {
1902             ret = 0;
1903             break;
1904         }
1905         cond_resched();
1906     }
1907 
1908     if (ra_allocated)
1909         kfree(ra);
1910     /*
1911      * Update range.start for autodefrag, this will indicate where to start
1912      * in next run.
1913      */
1914     range->start = cur;
1915     if (sectors_defragged) {
1916         /*
1917          * We have defragged some sectors, for compression case they
1918          * need to be written back immediately.
1919          */
1920         if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1921             filemap_flush(inode->i_mapping);
1922             if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1923                      &BTRFS_I(inode)->runtime_flags))
1924                 filemap_flush(inode->i_mapping);
1925         }
1926         if (range->compress_type == BTRFS_COMPRESS_LZO)
1927             btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1928         else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1929             btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1930         ret = sectors_defragged;
1931     }
1932     if (do_compress) {
1933         btrfs_inode_lock(inode, 0);
1934         BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1935         btrfs_inode_unlock(inode, 0);
1936     }
1937     return ret;
1938 }
1939 
1940 /*
1941  * Try to start exclusive operation @type or cancel it if it's running.
1942  *
1943  * Return:
1944  *   0        - normal mode, newly claimed op started
1945  *  >0        - normal mode, something else is running,
1946  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1947  * ECANCELED  - cancel mode, successful cancel
1948  * ENOTCONN   - cancel mode, operation not running anymore
1949  */
1950 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1951             enum btrfs_exclusive_operation type, bool cancel)
1952 {
1953     if (!cancel) {
1954         /* Start normal op */
1955         if (!btrfs_exclop_start(fs_info, type))
1956             return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1957         /* Exclusive operation is now claimed */
1958         return 0;
1959     }
1960 
1961     /* Cancel running op */
1962     if (btrfs_exclop_start_try_lock(fs_info, type)) {
1963         /*
1964          * This blocks any exclop finish from setting it to NONE, so we
1965          * request cancellation. Either it runs and we will wait for it,
1966          * or it has finished and no waiting will happen.
1967          */
1968         atomic_inc(&fs_info->reloc_cancel_req);
1969         btrfs_exclop_start_unlock(fs_info);
1970 
1971         if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1972             wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1973                     TASK_INTERRUPTIBLE);
1974 
1975         return -ECANCELED;
1976     }
1977 
1978     /* Something else is running or none */
1979     return -ENOTCONN;
1980 }
1981 
1982 static noinline int btrfs_ioctl_resize(struct file *file,
1983                     void __user *arg)
1984 {
1985     BTRFS_DEV_LOOKUP_ARGS(args);
1986     struct inode *inode = file_inode(file);
1987     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1988     u64 new_size;
1989     u64 old_size;
1990     u64 devid = 1;
1991     struct btrfs_root *root = BTRFS_I(inode)->root;
1992     struct btrfs_ioctl_vol_args *vol_args;
1993     struct btrfs_trans_handle *trans;
1994     struct btrfs_device *device = NULL;
1995     char *sizestr;
1996     char *retptr;
1997     char *devstr = NULL;
1998     int ret = 0;
1999     int mod = 0;
2000     bool cancel;
2001 
2002     if (!capable(CAP_SYS_ADMIN))
2003         return -EPERM;
2004 
2005     ret = mnt_want_write_file(file);
2006     if (ret)
2007         return ret;
2008 
2009     /*
2010      * Read the arguments before checking exclusivity to be able to
2011      * distinguish regular resize and cancel
2012      */
2013     vol_args = memdup_user(arg, sizeof(*vol_args));
2014     if (IS_ERR(vol_args)) {
2015         ret = PTR_ERR(vol_args);
2016         goto out_drop;
2017     }
2018     vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2019     sizestr = vol_args->name;
2020     cancel = (strcmp("cancel", sizestr) == 0);
2021     ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
2022     if (ret)
2023         goto out_free;
2024     /* Exclusive operation is now claimed */
2025 
2026     devstr = strchr(sizestr, ':');
2027     if (devstr) {
2028         sizestr = devstr + 1;
2029         *devstr = '\0';
2030         devstr = vol_args->name;
2031         ret = kstrtoull(devstr, 10, &devid);
2032         if (ret)
2033             goto out_finish;
2034         if (!devid) {
2035             ret = -EINVAL;
2036             goto out_finish;
2037         }
2038         btrfs_info(fs_info, "resizing devid %llu", devid);
2039     }
2040 
2041     args.devid = devid;
2042     device = btrfs_find_device(fs_info->fs_devices, &args);
2043     if (!device) {
2044         btrfs_info(fs_info, "resizer unable to find device %llu",
2045                devid);
2046         ret = -ENODEV;
2047         goto out_finish;
2048     }
2049 
2050     if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2051         btrfs_info(fs_info,
2052                "resizer unable to apply on readonly device %llu",
2053                devid);
2054         ret = -EPERM;
2055         goto out_finish;
2056     }
2057 
2058     if (!strcmp(sizestr, "max"))
2059         new_size = bdev_nr_bytes(device->bdev);
2060     else {
2061         if (sizestr[0] == '-') {
2062             mod = -1;
2063             sizestr++;
2064         } else if (sizestr[0] == '+') {
2065             mod = 1;
2066             sizestr++;
2067         }
2068         new_size = memparse(sizestr, &retptr);
2069         if (*retptr != '\0' || new_size == 0) {
2070             ret = -EINVAL;
2071             goto out_finish;
2072         }
2073     }
2074 
2075     if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2076         ret = -EPERM;
2077         goto out_finish;
2078     }
2079 
2080     old_size = btrfs_device_get_total_bytes(device);
2081 
2082     if (mod < 0) {
2083         if (new_size > old_size) {
2084             ret = -EINVAL;
2085             goto out_finish;
2086         }
2087         new_size = old_size - new_size;
2088     } else if (mod > 0) {
2089         if (new_size > ULLONG_MAX - old_size) {
2090             ret = -ERANGE;
2091             goto out_finish;
2092         }
2093         new_size = old_size + new_size;
2094     }
2095 
2096     if (new_size < SZ_256M) {
2097         ret = -EINVAL;
2098         goto out_finish;
2099     }
2100     if (new_size > bdev_nr_bytes(device->bdev)) {
2101         ret = -EFBIG;
2102         goto out_finish;
2103     }
2104 
2105     new_size = round_down(new_size, fs_info->sectorsize);
2106 
2107     if (new_size > old_size) {
2108         trans = btrfs_start_transaction(root, 0);
2109         if (IS_ERR(trans)) {
2110             ret = PTR_ERR(trans);
2111             goto out_finish;
2112         }
2113         ret = btrfs_grow_device(trans, device, new_size);
2114         btrfs_commit_transaction(trans);
2115     } else if (new_size < old_size) {
2116         ret = btrfs_shrink_device(device, new_size);
2117     } /* equal, nothing need to do */
2118 
2119     if (ret == 0 && new_size != old_size)
2120         btrfs_info_in_rcu(fs_info,
2121             "resize device %s (devid %llu) from %llu to %llu",
2122             rcu_str_deref(device->name), device->devid,
2123             old_size, new_size);
2124 out_finish:
2125     btrfs_exclop_finish(fs_info);
2126 out_free:
2127     kfree(vol_args);
2128 out_drop:
2129     mnt_drop_write_file(file);
2130     return ret;
2131 }
2132 
2133 static noinline int __btrfs_ioctl_snap_create(struct file *file,
2134                 struct user_namespace *mnt_userns,
2135                 const char *name, unsigned long fd, int subvol,
2136                 bool readonly,
2137                 struct btrfs_qgroup_inherit *inherit)
2138 {
2139     int namelen;
2140     int ret = 0;
2141 
2142     if (!S_ISDIR(file_inode(file)->i_mode))
2143         return -ENOTDIR;
2144 
2145     ret = mnt_want_write_file(file);
2146     if (ret)
2147         goto out;
2148 
2149     namelen = strlen(name);
2150     if (strchr(name, '/')) {
2151         ret = -EINVAL;
2152         goto out_drop_write;
2153     }
2154 
2155     if (name[0] == '.' &&
2156        (namelen == 1 || (name[1] == '.' && namelen == 2))) {
2157         ret = -EEXIST;
2158         goto out_drop_write;
2159     }
2160 
2161     if (subvol) {
2162         ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
2163                      namelen, NULL, readonly, inherit);
2164     } else {
2165         struct fd src = fdget(fd);
2166         struct inode *src_inode;
2167         if (!src.file) {
2168             ret = -EINVAL;
2169             goto out_drop_write;
2170         }
2171 
2172         src_inode = file_inode(src.file);
2173         if (src_inode->i_sb != file_inode(file)->i_sb) {
2174             btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
2175                    "Snapshot src from another FS");
2176             ret = -EXDEV;
2177         } else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
2178             /*
2179              * Subvolume creation is not restricted, but snapshots
2180              * are limited to own subvolumes only
2181              */
2182             ret = -EPERM;
2183         } else {
2184             ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
2185                            name, namelen,
2186                            BTRFS_I(src_inode)->root,
2187                            readonly, inherit);
2188         }
2189         fdput(src);
2190     }
2191 out_drop_write:
2192     mnt_drop_write_file(file);
2193 out:
2194     return ret;
2195 }
2196 
2197 static noinline int btrfs_ioctl_snap_create(struct file *file,
2198                         void __user *arg, int subvol)
2199 {
2200     struct btrfs_ioctl_vol_args *vol_args;
2201     int ret;
2202 
2203     if (!S_ISDIR(file_inode(file)->i_mode))
2204         return -ENOTDIR;
2205 
2206     vol_args = memdup_user(arg, sizeof(*vol_args));
2207     if (IS_ERR(vol_args))
2208         return PTR_ERR(vol_args);
2209     vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2210 
2211     ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2212                     vol_args->name, vol_args->fd, subvol,
2213                     false, NULL);
2214 
2215     kfree(vol_args);
2216     return ret;
2217 }
2218 
2219 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
2220                            void __user *arg, int subvol)
2221 {
2222     struct btrfs_ioctl_vol_args_v2 *vol_args;
2223     int ret;
2224     bool readonly = false;
2225     struct btrfs_qgroup_inherit *inherit = NULL;
2226 
2227     if (!S_ISDIR(file_inode(file)->i_mode))
2228         return -ENOTDIR;
2229 
2230     vol_args = memdup_user(arg, sizeof(*vol_args));
2231     if (IS_ERR(vol_args))
2232         return PTR_ERR(vol_args);
2233     vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2234 
2235     if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
2236         ret = -EOPNOTSUPP;
2237         goto free_args;
2238     }
2239 
2240     if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
2241         readonly = true;
2242     if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
2243         u64 nums;
2244 
2245         if (vol_args->size < sizeof(*inherit) ||
2246             vol_args->size > PAGE_SIZE) {
2247             ret = -EINVAL;
2248             goto free_args;
2249         }
2250         inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
2251         if (IS_ERR(inherit)) {
2252             ret = PTR_ERR(inherit);
2253             goto free_args;
2254         }
2255 
2256         if (inherit->num_qgroups > PAGE_SIZE ||
2257             inherit->num_ref_copies > PAGE_SIZE ||
2258             inherit->num_excl_copies > PAGE_SIZE) {
2259             ret = -EINVAL;
2260             goto free_inherit;
2261         }
2262 
2263         nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
2264                2 * inherit->num_excl_copies;
2265         if (vol_args->size != struct_size(inherit, qgroups, nums)) {
2266             ret = -EINVAL;
2267             goto free_inherit;
2268         }
2269     }
2270 
2271     ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2272                     vol_args->name, vol_args->fd, subvol,
2273                     readonly, inherit);
2274     if (ret)
2275         goto free_inherit;
2276 free_inherit:
2277     kfree(inherit);
2278 free_args:
2279     kfree(vol_args);
2280     return ret;
2281 }
2282 
2283 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
2284                         void __user *arg)
2285 {
2286     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2287     struct btrfs_root *root = BTRFS_I(inode)->root;
2288     int ret = 0;
2289     u64 flags = 0;
2290 
2291     if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
2292         return -EINVAL;
2293 
2294     down_read(&fs_info->subvol_sem);
2295     if (btrfs_root_readonly(root))
2296         flags |= BTRFS_SUBVOL_RDONLY;
2297     up_read(&fs_info->subvol_sem);
2298 
2299     if (copy_to_user(arg, &flags, sizeof(flags)))
2300         ret = -EFAULT;
2301 
2302     return ret;
2303 }
2304 
2305 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
2306                           void __user *arg)
2307 {
2308     struct inode *inode = file_inode(file);
2309     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2310     struct btrfs_root *root = BTRFS_I(inode)->root;
2311     struct btrfs_trans_handle *trans;
2312     u64 root_flags;
2313     u64 flags;
2314     int ret = 0;
2315 
2316     if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
2317         return -EPERM;
2318 
2319     ret = mnt_want_write_file(file);
2320     if (ret)
2321         goto out;
2322 
2323     if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2324         ret = -EINVAL;
2325         goto out_drop_write;
2326     }
2327 
2328     if (copy_from_user(&flags, arg, sizeof(flags))) {
2329         ret = -EFAULT;
2330         goto out_drop_write;
2331     }
2332 
2333     if (flags & ~BTRFS_SUBVOL_RDONLY) {
2334         ret = -EOPNOTSUPP;
2335         goto out_drop_write;
2336     }
2337 
2338     down_write(&fs_info->subvol_sem);
2339 
2340     /* nothing to do */
2341     if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2342         goto out_drop_sem;
2343 
2344     root_flags = btrfs_root_flags(&root->root_item);
2345     if (flags & BTRFS_SUBVOL_RDONLY) {
2346         btrfs_set_root_flags(&root->root_item,
2347                      root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2348     } else {
2349         /*
2350          * Block RO -> RW transition if this subvolume is involved in
2351          * send
2352          */
2353         spin_lock(&root->root_item_lock);
2354         if (root->send_in_progress == 0) {
2355             btrfs_set_root_flags(&root->root_item,
2356                      root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2357             spin_unlock(&root->root_item_lock);
2358         } else {
2359             spin_unlock(&root->root_item_lock);
2360             btrfs_warn(fs_info,
2361                    "Attempt to set subvolume %llu read-write during send",
2362                    root->root_key.objectid);
2363             ret = -EPERM;
2364             goto out_drop_sem;
2365         }
2366     }
2367 
2368     trans = btrfs_start_transaction(root, 1);
2369     if (IS_ERR(trans)) {
2370         ret = PTR_ERR(trans);
2371         goto out_reset;
2372     }
2373 
2374     ret = btrfs_update_root(trans, fs_info->tree_root,
2375                 &root->root_key, &root->root_item);
2376     if (ret < 0) {
2377         btrfs_end_transaction(trans);
2378         goto out_reset;
2379     }
2380 
2381     ret = btrfs_commit_transaction(trans);
2382 
2383 out_reset:
2384     if (ret)
2385         btrfs_set_root_flags(&root->root_item, root_flags);
2386 out_drop_sem:
2387     up_write(&fs_info->subvol_sem);
2388 out_drop_write:
2389     mnt_drop_write_file(file);
2390 out:
2391     return ret;
2392 }
2393 
2394 static noinline int key_in_sk(struct btrfs_key *key,
2395                   struct btrfs_ioctl_search_key *sk)
2396 {
2397     struct btrfs_key test;
2398     int ret;
2399 
2400     test.objectid = sk->min_objectid;
2401     test.type = sk->min_type;
2402     test.offset = sk->min_offset;
2403 
2404     ret = btrfs_comp_cpu_keys(key, &test);
2405     if (ret < 0)
2406         return 0;
2407 
2408     test.objectid = sk->max_objectid;
2409     test.type = sk->max_type;
2410     test.offset = sk->max_offset;
2411 
2412     ret = btrfs_comp_cpu_keys(key, &test);
2413     if (ret > 0)
2414         return 0;
2415     return 1;
2416 }
2417 
2418 static noinline int copy_to_sk(struct btrfs_path *path,
2419                    struct btrfs_key *key,
2420                    struct btrfs_ioctl_search_key *sk,
2421                    size_t *buf_size,
2422                    char __user *ubuf,
2423                    unsigned long *sk_offset,
2424                    int *num_found)
2425 {
2426     u64 found_transid;
2427     struct extent_buffer *leaf;
2428     struct btrfs_ioctl_search_header sh;
2429     struct btrfs_key test;
2430     unsigned long item_off;
2431     unsigned long item_len;
2432     int nritems;
2433     int i;
2434     int slot;
2435     int ret = 0;
2436 
2437     leaf = path->nodes[0];
2438     slot = path->slots[0];
2439     nritems = btrfs_header_nritems(leaf);
2440 
2441     if (btrfs_header_generation(leaf) > sk->max_transid) {
2442         i = nritems;
2443         goto advance_key;
2444     }
2445     found_transid = btrfs_header_generation(leaf);
2446 
2447     for (i = slot; i < nritems; i++) {
2448         item_off = btrfs_item_ptr_offset(leaf, i);
2449         item_len = btrfs_item_size(leaf, i);
2450 
2451         btrfs_item_key_to_cpu(leaf, key, i);
2452         if (!key_in_sk(key, sk))
2453             continue;
2454 
2455         if (sizeof(sh) + item_len > *buf_size) {
2456             if (*num_found) {
2457                 ret = 1;
2458                 goto out;
2459             }
2460 
2461             /*
2462              * return one empty item back for v1, which does not
2463              * handle -EOVERFLOW
2464              */
2465 
2466             *buf_size = sizeof(sh) + item_len;
2467             item_len = 0;
2468             ret = -EOVERFLOW;
2469         }
2470 
2471         if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2472             ret = 1;
2473             goto out;
2474         }
2475 
2476         sh.objectid = key->objectid;
2477         sh.offset = key->offset;
2478         sh.type = key->type;
2479         sh.len = item_len;
2480         sh.transid = found_transid;
2481 
2482         /*
2483          * Copy search result header. If we fault then loop again so we
2484          * can fault in the pages and -EFAULT there if there's a
2485          * problem. Otherwise we'll fault and then copy the buffer in
2486          * properly this next time through
2487          */
2488         if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2489             ret = 0;
2490             goto out;
2491         }
2492 
2493         *sk_offset += sizeof(sh);
2494 
2495         if (item_len) {
2496             char __user *up = ubuf + *sk_offset;
2497             /*
2498              * Copy the item, same behavior as above, but reset the
2499              * * sk_offset so we copy the full thing again.
2500              */
2501             if (read_extent_buffer_to_user_nofault(leaf, up,
2502                         item_off, item_len)) {
2503                 ret = 0;
2504                 *sk_offset -= sizeof(sh);
2505                 goto out;
2506             }
2507 
2508             *sk_offset += item_len;
2509         }
2510         (*num_found)++;
2511 
2512         if (ret) /* -EOVERFLOW from above */
2513             goto out;
2514 
2515         if (*num_found >= sk->nr_items) {
2516             ret = 1;
2517             goto out;
2518         }
2519     }
2520 advance_key:
2521     ret = 0;
2522     test.objectid = sk->max_objectid;
2523     test.type = sk->max_type;
2524     test.offset = sk->max_offset;
2525     if (btrfs_comp_cpu_keys(key, &test) >= 0)
2526         ret = 1;
2527     else if (key->offset < (u64)-1)
2528         key->offset++;
2529     else if (key->type < (u8)-1) {
2530         key->offset = 0;
2531         key->type++;
2532     } else if (key->objectid < (u64)-1) {
2533         key->offset = 0;
2534         key->type = 0;
2535         key->objectid++;
2536     } else
2537         ret = 1;
2538 out:
2539     /*
2540      *  0: all items from this leaf copied, continue with next
2541      *  1: * more items can be copied, but unused buffer is too small
2542      *     * all items were found
2543      *     Either way, it will stops the loop which iterates to the next
2544      *     leaf
2545      *  -EOVERFLOW: item was to large for buffer
2546      *  -EFAULT: could not copy extent buffer back to userspace
2547      */
2548     return ret;
2549 }
2550 
2551 static noinline int search_ioctl(struct inode *inode,
2552                  struct btrfs_ioctl_search_key *sk,
2553                  size_t *buf_size,
2554                  char __user *ubuf)
2555 {
2556     struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2557     struct btrfs_root *root;
2558     struct btrfs_key key;
2559     struct btrfs_path *path;
2560     int ret;
2561     int num_found = 0;
2562     unsigned long sk_offset = 0;
2563 
2564     if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2565         *buf_size = sizeof(struct btrfs_ioctl_search_header);
2566         return -EOVERFLOW;
2567     }
2568 
2569     path = btrfs_alloc_path();
2570     if (!path)
2571         return -ENOMEM;
2572 
2573     if (sk->tree_id == 0) {
2574         /* search the root of the inode that was passed */
2575         root = btrfs_grab_root(BTRFS_I(inode)->root);
2576     } else {
2577         root = btrfs_get_fs_root(info, sk->tree_id, true);
2578         if (IS_ERR(root)) {
2579             btrfs_free_path(path);
2580             return PTR_ERR(root);
2581         }
2582     }
2583 
2584     key.objectid = sk->min_objectid;
2585     key.type = sk->min_type;
2586     key.offset = sk->min_offset;
2587 
2588     while (1) {
2589         ret = -EFAULT;
2590         /*
2591          * Ensure that the whole user buffer is faulted in at sub-page
2592          * granularity, otherwise the loop may live-lock.
2593          */
2594         if (fault_in_subpage_writeable(ubuf + sk_offset,
2595                            *buf_size - sk_offset))
2596             break;
2597 
2598         ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2599         if (ret != 0) {
2600             if (ret > 0)
2601                 ret = 0;
2602             goto err;
2603         }
2604         ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2605                  &sk_offset, &num_found);
2606         btrfs_release_path(path);
2607         if (ret)
2608             break;
2609 
2610     }
2611     if (ret > 0)
2612         ret = 0;
2613 err:
2614     sk->nr_items = num_found;
2615     btrfs_put_root(root);
2616     btrfs_free_path(path);
2617     return ret;
2618 }
2619 
2620 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
2621                         void __user *argp)
2622 {
2623     struct btrfs_ioctl_search_args __user *uargs = argp;
2624     struct btrfs_ioctl_search_key sk;
2625     int ret;
2626     size_t buf_size;
2627 
2628     if (!capable(CAP_SYS_ADMIN))
2629         return -EPERM;
2630 
2631     if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2632         return -EFAULT;
2633 
2634     buf_size = sizeof(uargs->buf);
2635 
2636     ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2637 
2638     /*
2639      * In the origin implementation an overflow is handled by returning a
2640      * search header with a len of zero, so reset ret.
2641      */
2642     if (ret == -EOVERFLOW)
2643         ret = 0;
2644 
2645     if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2646         ret = -EFAULT;
2647     return ret;
2648 }
2649 
2650 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
2651                            void __user *argp)
2652 {
2653     struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
2654     struct btrfs_ioctl_search_args_v2 args;
2655     int ret;
2656     size_t buf_size;
2657     const size_t buf_limit = SZ_16M;
2658 
2659     if (!capable(CAP_SYS_ADMIN))
2660         return -EPERM;
2661 
2662     /* copy search header and buffer size */
2663     if (copy_from_user(&args, uarg, sizeof(args)))
2664         return -EFAULT;
2665 
2666     buf_size = args.buf_size;
2667 
2668     /* limit result size to 16MB */
2669     if (buf_size > buf_limit)
2670         buf_size = buf_limit;
2671 
2672     ret = search_ioctl(inode, &args.key, &buf_size,
2673                (char __user *)(&uarg->buf[0]));
2674     if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2675         ret = -EFAULT;
2676     else if (ret == -EOVERFLOW &&
2677         copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2678         ret = -EFAULT;
2679 
2680     return ret;
2681 }
2682 
2683 /*
2684  * Search INODE_REFs to identify path name of 'dirid' directory
2685  * in a 'tree_id' tree. and sets path name to 'name'.
2686  */
2687 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2688                 u64 tree_id, u64 dirid, char *name)
2689 {
2690     struct btrfs_root *root;
2691     struct btrfs_key key;
2692     char *ptr;
2693     int ret = -1;
2694     int slot;
2695     int len;
2696     int total_len = 0;
2697     struct btrfs_inode_ref *iref;
2698     struct extent_buffer *l;
2699     struct btrfs_path *path;
2700 
2701     if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2702         name[0]='\0';
2703         return 0;
2704     }
2705 
2706     path = btrfs_alloc_path();
2707     if (!path)
2708         return -ENOMEM;
2709 
2710     ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2711 
2712     root = btrfs_get_fs_root(info, tree_id, true);
2713     if (IS_ERR(root)) {
2714         ret = PTR_ERR(root);
2715         root = NULL;
2716         goto out;
2717     }
2718 
2719     key.objectid = dirid;
2720     key.type = BTRFS_INODE_REF_KEY;
2721     key.offset = (u64)-1;
2722 
2723     while (1) {
2724         ret = btrfs_search_backwards(root, &key, path);
2725         if (ret < 0)
2726             goto out;
2727         else if (ret > 0) {
2728             ret = -ENOENT;
2729             goto out;
2730         }
2731 
2732         l = path->nodes[0];
2733         slot = path->slots[0];
2734 
2735         iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2736         len = btrfs_inode_ref_name_len(l, iref);
2737         ptr -= len + 1;
2738         total_len += len + 1;
2739         if (ptr < name) {
2740             ret = -ENAMETOOLONG;
2741             goto out;
2742         }
2743 
2744         *(ptr + len) = '/';
2745         read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2746 
2747         if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2748             break;
2749 
2750         btrfs_release_path(path);
2751         key.objectid = key.offset;
2752         key.offset = (u64)-1;
2753         dirid = key.objectid;
2754     }
2755     memmove(name, ptr, total_len);
2756     name[total_len] = '\0';
2757     ret = 0;
2758 out:
2759     btrfs_put_root(root);
2760     btrfs_free_path(path);
2761     return ret;
2762 }
2763 
2764 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
2765                 struct inode *inode,
2766                 struct btrfs_ioctl_ino_lookup_user_args *args)
2767 {
2768     struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2769     struct super_block *sb = inode->i_sb;
2770     struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2771     u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2772     u64 dirid = args->dirid;
2773     unsigned long item_off;
2774     unsigned long item_len;
2775     struct btrfs_inode_ref *iref;
2776     struct btrfs_root_ref *rref;
2777     struct btrfs_root *root = NULL;
2778     struct btrfs_path *path;
2779     struct btrfs_key key, key2;
2780     struct extent_buffer *leaf;
2781     struct inode *temp_inode;
2782     char *ptr;
2783     int slot;
2784     int len;
2785     int total_len = 0;
2786     int ret;
2787 
2788     path = btrfs_alloc_path();
2789     if (!path)
2790         return -ENOMEM;
2791 
2792     /*
2793      * If the bottom subvolume does not exist directly under upper_limit,
2794      * construct the path in from the bottom up.
2795      */
2796     if (dirid != upper_limit.objectid) {
2797         ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2798 
2799         root = btrfs_get_fs_root(fs_info, treeid, true);
2800         if (IS_ERR(root)) {
2801             ret = PTR_ERR(root);
2802             goto out;
2803         }
2804 
2805         key.objectid = dirid;
2806         key.type = BTRFS_INODE_REF_KEY;
2807         key.offset = (u64)-1;
2808         while (1) {
2809             ret = btrfs_search_backwards(root, &key, path);
2810             if (ret < 0)
2811                 goto out_put;
2812             else if (ret > 0) {
2813                 ret = -ENOENT;
2814                 goto out_put;
2815             }
2816 
2817             leaf = path->nodes[0];
2818             slot = path->slots[0];
2819 
2820             iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2821             len = btrfs_inode_ref_name_len(leaf, iref);
2822             ptr -= len + 1;
2823             total_len += len + 1;
2824             if (ptr < args->path) {
2825                 ret = -ENAMETOOLONG;
2826                 goto out_put;
2827             }
2828 
2829             *(ptr + len) = '/';
2830             read_extent_buffer(leaf, ptr,
2831                     (unsigned long)(iref + 1), len);
2832 
2833             /* Check the read+exec permission of this directory */
2834             ret = btrfs_previous_item(root, path, dirid,
2835                           BTRFS_INODE_ITEM_KEY);
2836             if (ret < 0) {
2837                 goto out_put;
2838             } else if (ret > 0) {
2839                 ret = -ENOENT;
2840                 goto out_put;
2841             }
2842 
2843             leaf = path->nodes[0];
2844             slot = path->slots[0];
2845             btrfs_item_key_to_cpu(leaf, &key2, slot);
2846             if (key2.objectid != dirid) {
2847                 ret = -ENOENT;
2848                 goto out_put;
2849             }
2850 
2851             temp_inode = btrfs_iget(sb, key2.objectid, root);
2852             if (IS_ERR(temp_inode)) {
2853                 ret = PTR_ERR(temp_inode);
2854                 goto out_put;
2855             }
2856             ret = inode_permission(mnt_userns, temp_inode,
2857                            MAY_READ | MAY_EXEC);
2858             iput(temp_inode);
2859             if (ret) {
2860                 ret = -EACCES;
2861                 goto out_put;
2862             }
2863 
2864             if (key.offset == upper_limit.objectid)
2865                 break;
2866             if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2867                 ret = -EACCES;
2868                 goto out_put;
2869             }
2870 
2871             btrfs_release_path(path);
2872             key.objectid = key.offset;
2873             key.offset = (u64)-1;
2874             dirid = key.objectid;
2875         }
2876 
2877         memmove(args->path, ptr, total_len);
2878         args->path[total_len] = '\0';
2879         btrfs_put_root(root);
2880         root = NULL;
2881         btrfs_release_path(path);
2882     }
2883 
2884     /* Get the bottom subvolume's name from ROOT_REF */
2885     key.objectid = treeid;
2886     key.type = BTRFS_ROOT_REF_KEY;
2887     key.offset = args->treeid;
2888     ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2889     if (ret < 0) {
2890         goto out;
2891     } else if (ret > 0) {
2892         ret = -ENOENT;
2893         goto out;
2894     }
2895 
2896     leaf = path->nodes[0];
2897     slot = path->slots[0];
2898     btrfs_item_key_to_cpu(leaf, &key, slot);
2899 
2900     item_off = btrfs_item_ptr_offset(leaf, slot);
2901     item_len = btrfs_item_size(leaf, slot);
2902     /* Check if dirid in ROOT_REF corresponds to passed dirid */
2903     rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2904     if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2905         ret = -EINVAL;
2906         goto out;
2907     }
2908 
2909     /* Copy subvolume's name */
2910     item_off += sizeof(struct btrfs_root_ref);
2911     item_len -= sizeof(struct btrfs_root_ref);
2912     read_extent_buffer(leaf, args->name, item_off, item_len);
2913     args->name[item_len] = 0;
2914 
2915 out_put:
2916     btrfs_put_root(root);
2917 out:
2918     btrfs_free_path(path);
2919     return ret;
2920 }
2921 
2922 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2923                        void __user *argp)
2924 {
2925     struct btrfs_ioctl_ino_lookup_args *args;
2926     int ret = 0;
2927 
2928     args = memdup_user(argp, sizeof(*args));
2929     if (IS_ERR(args))
2930         return PTR_ERR(args);
2931 
2932     /*
2933      * Unprivileged query to obtain the containing subvolume root id. The
2934      * path is reset so it's consistent with btrfs_search_path_in_tree.
2935      */
2936     if (args->treeid == 0)
2937         args->treeid = root->root_key.objectid;
2938 
2939     if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2940         args->name[0] = 0;
2941         goto out;
2942     }
2943 
2944     if (!capable(CAP_SYS_ADMIN)) {
2945         ret = -EPERM;
2946         goto out;
2947     }
2948 
2949     ret = btrfs_search_path_in_tree(root->fs_info,
2950                     args->treeid, args->objectid,
2951                     args->name);
2952 
2953 out:
2954     if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2955         ret = -EFAULT;
2956 
2957     kfree(args);
2958     return ret;
2959 }
2960 
2961 /*
2962  * Version of ino_lookup ioctl (unprivileged)
2963  *
2964  * The main differences from ino_lookup ioctl are:
2965  *
2966  *   1. Read + Exec permission will be checked using inode_permission() during
2967  *      path construction. -EACCES will be returned in case of failure.
2968  *   2. Path construction will be stopped at the inode number which corresponds
2969  *      to the fd with which this ioctl is called. If constructed path does not
2970  *      exist under fd's inode, -EACCES will be returned.
2971  *   3. The name of bottom subvolume is also searched and filled.
2972  */
2973 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2974 {
2975     struct btrfs_ioctl_ino_lookup_user_args *args;
2976     struct inode *inode;
2977     int ret;
2978 
2979     args = memdup_user(argp, sizeof(*args));
2980     if (IS_ERR(args))
2981         return PTR_ERR(args);
2982 
2983     inode = file_inode(file);
2984 
2985     if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2986         BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2987         /*
2988          * The subvolume does not exist under fd with which this is
2989          * called
2990          */
2991         kfree(args);
2992         return -EACCES;
2993     }
2994 
2995     ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2996 
2997     if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2998         ret = -EFAULT;
2999 
3000     kfree(args);
3001     return ret;
3002 }
3003 
3004 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
3005 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
3006 {
3007     struct btrfs_ioctl_get_subvol_info_args *subvol_info;
3008     struct btrfs_fs_info *fs_info;
3009     struct btrfs_root *root;
3010     struct btrfs_path *path;
3011     struct btrfs_key key;
3012     struct btrfs_root_item *root_item;
3013     struct btrfs_root_ref *rref;
3014     struct extent_buffer *leaf;
3015     unsigned long item_off;
3016     unsigned long item_len;
3017     int slot;
3018     int ret = 0;
3019 
3020     path = btrfs_alloc_path();
3021     if (!path)
3022         return -ENOMEM;
3023 
3024     subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
3025     if (!subvol_info) {
3026         btrfs_free_path(path);
3027         return -ENOMEM;
3028     }
3029 
3030     fs_info = BTRFS_I(inode)->root->fs_info;
3031 
3032     /* Get root_item of inode's subvolume */
3033     key.objectid = BTRFS_I(inode)->root->root_key.objectid;
3034     root = btrfs_get_fs_root(fs_info, key.objectid, true);
3035     if (IS_ERR(root)) {
3036         ret = PTR_ERR(root);
3037         goto out_free;
3038     }
3039     root_item = &root->root_item;
3040 
3041     subvol_info->treeid = key.objectid;
3042 
3043     subvol_info->generation = btrfs_root_generation(root_item);
3044     subvol_info->flags = btrfs_root_flags(root_item);
3045 
3046     memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
3047     memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
3048                             BTRFS_UUID_SIZE);
3049     memcpy(subvol_info->received_uuid, root_item->received_uuid,
3050                             BTRFS_UUID_SIZE);
3051 
3052     subvol_info->ctransid = btrfs_root_ctransid(root_item);
3053     subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
3054     subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
3055 
3056     subvol_info->otransid = btrfs_root_otransid(root_item);
3057     subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
3058     subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
3059 
3060     subvol_info->stransid = btrfs_root_stransid(root_item);
3061     subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
3062     subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
3063 
3064     subvol_info->rtransid = btrfs_root_rtransid(root_item);
3065     subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
3066     subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
3067 
3068     if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
3069         /* Search root tree for ROOT_BACKREF of this subvolume */
3070         key.type = BTRFS_ROOT_BACKREF_KEY;
3071         key.offset = 0;
3072         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3073         if (ret < 0) {
3074             goto out;
3075         } else if (path->slots[0] >=
3076                btrfs_header_nritems(path->nodes[0])) {
3077             ret = btrfs_next_leaf(fs_info->tree_root, path);
3078             if (ret < 0) {
3079                 goto out;
3080             } else if (ret > 0) {
3081                 ret = -EUCLEAN;
3082                 goto out;
3083             }
3084         }
3085 
3086         leaf = path->nodes[0];
3087         slot = path->slots[0];
3088         btrfs_item_key_to_cpu(leaf, &key, slot);
3089         if (key.objectid == subvol_info->treeid &&
3090             key.type == BTRFS_ROOT_BACKREF_KEY) {
3091             subvol_info->parent_id = key.offset;
3092 
3093             rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
3094             subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
3095 
3096             item_off = btrfs_item_ptr_offset(leaf, slot)
3097                     + sizeof(struct btrfs_root_ref);
3098             item_len = btrfs_item_size(leaf, slot)
3099                     - sizeof(struct btrfs_root_ref);
3100             read_extent_buffer(leaf, subvol_info->name,
3101                        item_off, item_len);
3102         } else {
3103             ret = -ENOENT;
3104             goto out;
3105         }
3106     }
3107 
3108     if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
3109         ret = -EFAULT;
3110 
3111 out:
3112     btrfs_put_root(root);
3113 out_free:
3114     btrfs_free_path(path);
3115     kfree(subvol_info);
3116     return ret;
3117 }
3118 
3119 /*
3120  * Return ROOT_REF information of the subvolume containing this inode
3121  * except the subvolume name.
3122  */
3123 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
3124                       void __user *argp)
3125 {
3126     struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
3127     struct btrfs_root_ref *rref;
3128     struct btrfs_path *path;
3129     struct btrfs_key key;
3130     struct extent_buffer *leaf;
3131     u64 objectid;
3132     int slot;
3133     int ret;
3134     u8 found;
3135 
3136     path = btrfs_alloc_path();
3137     if (!path)
3138         return -ENOMEM;
3139 
3140     rootrefs = memdup_user(argp, sizeof(*rootrefs));
3141     if (IS_ERR(rootrefs)) {
3142         btrfs_free_path(path);
3143         return PTR_ERR(rootrefs);
3144     }
3145 
3146     objectid = root->root_key.objectid;
3147     key.objectid = objectid;
3148     key.type = BTRFS_ROOT_REF_KEY;
3149     key.offset = rootrefs->min_treeid;
3150     found = 0;
3151 
3152     root = root->fs_info->tree_root;
3153     ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3154     if (ret < 0) {
3155         goto out;
3156     } else if (path->slots[0] >=
3157            btrfs_header_nritems(path->nodes[0])) {
3158         ret = btrfs_next_leaf(root, path);
3159         if (ret < 0) {
3160             goto out;
3161         } else if (ret > 0) {
3162             ret = -EUCLEAN;
3163             goto out;
3164         }
3165     }
3166     while (1) {
3167         leaf = path->nodes[0];
3168         slot = path->slots[0];
3169 
3170         btrfs_item_key_to_cpu(leaf, &key, slot);
3171         if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
3172             ret = 0;
3173             goto out;
3174         }
3175 
3176         if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
3177             ret = -EOVERFLOW;
3178             goto out;
3179         }
3180 
3181         rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
3182         rootrefs->rootref[found].treeid = key.offset;
3183         rootrefs->rootref[found].dirid =
3184                   btrfs_root_ref_dirid(leaf, rref);
3185         found++;
3186 
3187         ret = btrfs_next_item(root, path);
3188         if (ret < 0) {
3189             goto out;
3190         } else if (ret > 0) {
3191             ret = -EUCLEAN;
3192             goto out;
3193         }
3194     }
3195 
3196 out:
3197     if (!ret || ret == -EOVERFLOW) {
3198         rootrefs->num_items = found;
3199         /* update min_treeid for next search */
3200         if (found)
3201             rootrefs->min_treeid =
3202                 rootrefs->rootref[found - 1].treeid + 1;
3203         if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
3204             ret = -EFAULT;
3205     }
3206 
3207     kfree(rootrefs);
3208     btrfs_free_path(path);
3209 
3210     return ret;
3211 }
3212 
3213 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
3214                          void __user *arg,
3215                          bool destroy_v2)
3216 {
3217     struct dentry *parent = file->f_path.dentry;
3218     struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
3219     struct dentry *dentry;
3220     struct inode *dir = d_inode(parent);
3221     struct inode *inode;
3222     struct btrfs_root *root = BTRFS_I(dir)->root;
3223     struct btrfs_root *dest = NULL;
3224     struct btrfs_ioctl_vol_args *vol_args = NULL;
3225     struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
3226     struct user_namespace *mnt_userns = file_mnt_user_ns(file);
3227     char *subvol_name, *subvol_name_ptr = NULL;
3228     int subvol_namelen;
3229     int err = 0;
3230     bool destroy_parent = false;
3231 
3232     /* We don't support snapshots with extent tree v2 yet. */
3233     if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3234         btrfs_err(fs_info,
3235               "extent tree v2 doesn't support snapshot deletion yet");
3236         return -EOPNOTSUPP;
3237     }
3238 
3239     if (destroy_v2) {
3240         vol_args2 = memdup_user(arg, sizeof(*vol_args2));
3241         if (IS_ERR(vol_args2))
3242             return PTR_ERR(vol_args2);
3243 
3244         if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
3245             err = -EOPNOTSUPP;
3246             goto out;
3247         }
3248 
3249         /*
3250          * If SPEC_BY_ID is not set, we are looking for the subvolume by
3251          * name, same as v1 currently does.
3252          */
3253         if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
3254             vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
3255             subvol_name = vol_args2->name;
3256 
3257             err = mnt_want_write_file(file);
3258             if (err)
3259                 goto out;
3260         } else {
3261             struct inode *old_dir;
3262 
3263             if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
3264                 err = -EINVAL;
3265                 goto out;
3266             }
3267 
3268             err = mnt_want_write_file(file);
3269             if (err)
3270                 goto out;
3271 
3272             dentry = btrfs_get_dentry(fs_info->sb,
3273                     BTRFS_FIRST_FREE_OBJECTID,
3274                     vol_args2->subvolid, 0, 0);
3275             if (IS_ERR(dentry)) {
3276                 err = PTR_ERR(dentry);
3277                 goto out_drop_write;
3278             }
3279 
3280             /*
3281              * Change the default parent since the subvolume being
3282              * deleted can be outside of the current mount point.
3283              */
3284             parent = btrfs_get_parent(dentry);
3285 
3286             /*
3287              * At this point dentry->d_name can point to '/' if the
3288              * subvolume we want to destroy is outsite of the
3289              * current mount point, so we need to release the
3290              * current dentry and execute the lookup to return a new
3291              * one with ->d_name pointing to the
3292              * <mount point>/subvol_name.
3293              */
3294             dput(dentry);
3295             if (IS_ERR(parent)) {
3296                 err = PTR_ERR(parent);
3297                 goto out_drop_write;
3298             }
3299             old_dir = dir;
3300             dir = d_inode(parent);
3301 
3302             /*
3303              * If v2 was used with SPEC_BY_ID, a new parent was
3304              * allocated since the subvolume can be outside of the
3305              * current mount point. Later on we need to release this
3306              * new parent dentry.
3307              */
3308             destroy_parent = true;
3309 
3310             /*
3311              * On idmapped mounts, deletion via subvolid is
3312              * restricted to subvolumes that are immediate
3313              * ancestors of the inode referenced by the file
3314              * descriptor in the ioctl. Otherwise the idmapping
3315              * could potentially be abused to delete subvolumes
3316              * anywhere in the filesystem the user wouldn't be able
3317              * to delete without an idmapped mount.
3318              */
3319             if (old_dir != dir && mnt_userns != &init_user_ns) {
3320                 err = -EOPNOTSUPP;
3321                 goto free_parent;
3322             }
3323 
3324             subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3325                         fs_info, vol_args2->subvolid);
3326             if (IS_ERR(subvol_name_ptr)) {
3327                 err = PTR_ERR(subvol_name_ptr);
3328                 goto free_parent;
3329             }
3330             /* subvol_name_ptr is already nul terminated */
3331             subvol_name = (char *)kbasename(subvol_name_ptr);
3332         }
3333     } else {
3334         vol_args = memdup_user(arg, sizeof(*vol_args));
3335         if (IS_ERR(vol_args))
3336             return PTR_ERR(vol_args);
3337 
3338         vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3339         subvol_name = vol_args->name;
3340 
3341         err = mnt_want_write_file(file);
3342         if (err)
3343             goto out;
3344     }
3345 
3346     subvol_namelen = strlen(subvol_name);
3347 
3348     if (strchr(subvol_name, '/') ||
3349         strncmp(subvol_name, "..", subvol_namelen) == 0) {
3350         err = -EINVAL;
3351         goto free_subvol_name;
3352     }
3353 
3354     if (!S_ISDIR(dir->i_mode)) {
3355         err = -ENOTDIR;
3356         goto free_subvol_name;
3357     }
3358 
3359     err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3360     if (err == -EINTR)
3361         goto free_subvol_name;
3362     dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
3363     if (IS_ERR(dentry)) {
3364         err = PTR_ERR(dentry);
3365         goto out_unlock_dir;
3366     }
3367 
3368     if (d_really_is_negative(dentry)) {
3369         err = -ENOENT;
3370         goto out_dput;
3371     }
3372 
3373     inode = d_inode(dentry);
3374     dest = BTRFS_I(inode)->root;
3375     if (!capable(CAP_SYS_ADMIN)) {
3376         /*
3377          * Regular user.  Only allow this with a special mount
3378          * option, when the user has write+exec access to the
3379          * subvol root, and when rmdir(2) would have been
3380          * allowed.
3381          *
3382          * Note that this is _not_ check that the subvol is
3383          * empty or doesn't contain data that we wouldn't
3384          * otherwise be able to delete.
3385          *
3386          * Users who want to delete empty subvols should try
3387          * rmdir(2).
3388          */
3389         err = -EPERM;
3390         if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3391             goto out_dput;
3392 
3393         /*
3394          * Do not allow deletion if the parent dir is the same
3395          * as the dir to be deleted.  That means the ioctl
3396          * must be called on the dentry referencing the root
3397          * of the subvol, not a random directory contained
3398          * within it.
3399          */
3400         err = -EINVAL;
3401         if (root == dest)
3402             goto out_dput;
3403 
3404         err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
3405         if (err)
3406             goto out_dput;
3407     }
3408 
3409     /* check if subvolume may be deleted by a user */
3410     err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
3411     if (err)
3412         goto out_dput;
3413 
3414     if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3415         err = -EINVAL;
3416         goto out_dput;
3417     }
3418 
3419     btrfs_inode_lock(inode, 0);
3420     err = btrfs_delete_subvolume(dir, dentry);
3421     btrfs_inode_unlock(inode, 0);
3422     if (!err)
3423         d_delete_notify(dir, dentry);
3424 
3425 out_dput:
3426     dput(dentry);
3427 out_unlock_dir:
3428     btrfs_inode_unlock(dir, 0);
3429 free_subvol_name:
3430     kfree(subvol_name_ptr);
3431 free_parent:
3432     if (destroy_parent)
3433         dput(parent);
3434 out_drop_write:
3435     mnt_drop_write_file(file);
3436 out:
3437     kfree(vol_args2);
3438     kfree(vol_args);
3439     return err;
3440 }
3441 
3442 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3443 {
3444     struct inode *inode = file_inode(file);
3445     struct btrfs_root *root = BTRFS_I(inode)->root;
3446     struct btrfs_ioctl_defrag_range_args range = {0};
3447     int ret;
3448 
3449     ret = mnt_want_write_file(file);
3450     if (ret)
3451         return ret;
3452 
3453     if (btrfs_root_readonly(root)) {
3454         ret = -EROFS;
3455         goto out;
3456     }
3457 
3458     switch (inode->i_mode & S_IFMT) {
3459     case S_IFDIR:
3460         if (!capable(CAP_SYS_ADMIN)) {
3461             ret = -EPERM;
3462             goto out;
3463         }
3464         ret = btrfs_defrag_root(root);
3465         break;
3466     case S_IFREG:
3467         /*
3468          * Note that this does not check the file descriptor for write
3469          * access. This prevents defragmenting executables that are
3470          * running and allows defrag on files open in read-only mode.
3471          */
3472         if (!capable(CAP_SYS_ADMIN) &&
3473             inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3474             ret = -EPERM;
3475             goto out;
3476         }
3477 
3478         if (argp) {
3479             if (copy_from_user(&range, argp, sizeof(range))) {
3480                 ret = -EFAULT;
3481                 goto out;
3482             }
3483             /* compression requires us to start the IO */
3484             if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3485                 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3486                 range.extent_thresh = (u32)-1;
3487             }
3488         } else {
3489             /* the rest are all set to zero by kzalloc */
3490             range.len = (u64)-1;
3491         }
3492         ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
3493                     &range, BTRFS_OLDEST_GENERATION, 0);
3494         if (ret > 0)
3495             ret = 0;
3496         break;
3497     default:
3498         ret = -EINVAL;
3499     }
3500 out:
3501     mnt_drop_write_file(file);
3502     return ret;
3503 }
3504 
3505 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3506 {
3507     struct btrfs_ioctl_vol_args *vol_args;
3508     bool restore_op = false;
3509     int ret;
3510 
3511     if (!capable(CAP_SYS_ADMIN))
3512         return -EPERM;
3513 
3514     if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3515         btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
3516         return -EINVAL;
3517     }
3518 
3519     if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
3520         if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
3521             return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3522 
3523         /*
3524          * We can do the device add because we have a paused balanced,
3525          * change the exclusive op type and remember we should bring
3526          * back the paused balance
3527          */
3528         fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
3529         btrfs_exclop_start_unlock(fs_info);
3530         restore_op = true;
3531     }
3532 
3533     vol_args = memdup_user(arg, sizeof(*vol_args));
3534     if (IS_ERR(vol_args)) {
3535         ret = PTR_ERR(vol_args);
3536         goto out;
3537     }
3538 
3539     vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3540     ret = btrfs_init_new_device(fs_info, vol_args->name);
3541 
3542     if (!ret)
3543         btrfs_info(fs_info, "disk added %s", vol_args->name);
3544 
3545     kfree(vol_args);
3546 out:
3547     if (restore_op)
3548         btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
3549     else
3550         btrfs_exclop_finish(fs_info);
3551     return ret;
3552 }
3553 
3554 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3555 {
3556     BTRFS_DEV_LOOKUP_ARGS(args);
3557     struct inode *inode = file_inode(file);
3558     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3559     struct btrfs_ioctl_vol_args_v2 *vol_args;
3560     struct block_device *bdev = NULL;
3561     fmode_t mode;
3562     int ret;
3563     bool cancel = false;
3564 
3565     if (!capable(CAP_SYS_ADMIN))
3566         return -EPERM;
3567 
3568     vol_args = memdup_user(arg, sizeof(*vol_args));
3569     if (IS_ERR(vol_args))
3570         return PTR_ERR(vol_args);
3571 
3572     if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3573         ret = -EOPNOTSUPP;
3574         goto out;
3575     }
3576 
3577     vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3578     if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3579         args.devid = vol_args->devid;
3580     } else if (!strcmp("cancel", vol_args->name)) {
3581         cancel = true;
3582     } else {
3583         ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3584         if (ret)
3585             goto out;
3586     }
3587 
3588     ret = mnt_want_write_file(file);
3589     if (ret)
3590         goto out;
3591 
3592     ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3593                        cancel);
3594     if (ret)
3595         goto err_drop;
3596 
3597     /* Exclusive operation is now claimed */
3598     ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3599 
3600     btrfs_exclop_finish(fs_info);
3601 
3602     if (!ret) {
3603         if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3604             btrfs_info(fs_info, "device deleted: id %llu",
3605                     vol_args->devid);
3606         else
3607             btrfs_info(fs_info, "device deleted: %s",
3608                     vol_args->name);
3609     }
3610 err_drop:
3611     mnt_drop_write_file(file);
3612     if (bdev)
3613         blkdev_put(bdev, mode);
3614 out:
3615     btrfs_put_dev_args_from_path(&args);
3616     kfree(vol_args);
3617     return ret;
3618 }
3619 
3620 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3621 {
3622     BTRFS_DEV_LOOKUP_ARGS(args);
3623     struct inode *inode = file_inode(file);
3624     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3625     struct btrfs_ioctl_vol_args *vol_args;
3626     struct block_device *bdev = NULL;
3627     fmode_t mode;
3628     int ret;
3629     bool cancel = false;
3630 
3631     if (!capable(CAP_SYS_ADMIN))
3632         return -EPERM;
3633 
3634     vol_args = memdup_user(arg, sizeof(*vol_args));
3635     if (IS_ERR(vol_args))
3636         return PTR_ERR(vol_args);
3637 
3638     vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3639     if (!strcmp("cancel", vol_args->name)) {
3640         cancel = true;
3641     } else {
3642         ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3643         if (ret)
3644             goto out;
3645     }
3646 
3647     ret = mnt_want_write_file(file);
3648     if (ret)
3649         goto out;
3650 
3651     ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3652                        cancel);
3653     if (ret == 0) {
3654         ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3655         if (!ret)
3656             btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3657         btrfs_exclop_finish(fs_info);
3658     }
3659 
3660     mnt_drop_write_file(file);
3661     if (bdev)
3662         blkdev_put(bdev, mode);
3663 out:
3664     btrfs_put_dev_args_from_path(&args);
3665     kfree(vol_args);
3666     return ret;
3667 }
3668 
3669 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3670                 void __user *arg)
3671 {
3672     struct btrfs_ioctl_fs_info_args *fi_args;
3673     struct btrfs_device *device;
3674     struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3675     u64 flags_in;
3676     int ret = 0;
3677 
3678     fi_args = memdup_user(arg, sizeof(*fi_args));
3679     if (IS_ERR(fi_args))
3680         return PTR_ERR(fi_args);
3681 
3682     flags_in = fi_args->flags;
3683     memset(fi_args, 0, sizeof(*fi_args));
3684 
3685     rcu_read_lock();
3686     fi_args->num_devices = fs_devices->num_devices;
3687 
3688     list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3689         if (device->devid > fi_args->max_id)
3690             fi_args->max_id = device->devid;
3691     }
3692     rcu_read_unlock();
3693 
3694     memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3695     fi_args->nodesize = fs_info->nodesize;
3696     fi_args->sectorsize = fs_info->sectorsize;
3697     fi_args->clone_alignment = fs_info->sectorsize;
3698 
3699     if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3700         fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3701         fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3702         fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3703     }
3704 
3705     if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3706         fi_args->generation = fs_info->generation;
3707         fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3708     }
3709 
3710     if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3711         memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3712                sizeof(fi_args->metadata_uuid));
3713         fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3714     }
3715 
3716     if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3717         ret = -EFAULT;
3718 
3719     kfree(fi_args);
3720     return ret;
3721 }
3722 
3723 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3724                  void __user *arg)
3725 {
3726     BTRFS_DEV_LOOKUP_ARGS(args);
3727     struct btrfs_ioctl_dev_info_args *di_args;
3728     struct btrfs_device *dev;
3729     int ret = 0;
3730 
3731     di_args = memdup_user(arg, sizeof(*di_args));
3732     if (IS_ERR(di_args))
3733         return PTR_ERR(di_args);
3734 
3735     args.devid = di_args->devid;
3736     if (!btrfs_is_empty_uuid(di_args->uuid))
3737         args.uuid = di_args->uuid;
3738 
3739     rcu_read_lock();
3740     dev = btrfs_find_device(fs_info->fs_devices, &args);
3741     if (!dev) {
3742         ret = -ENODEV;
3743         goto out;
3744     }
3745 
3746     di_args->devid = dev->devid;
3747     di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3748     di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3749     memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3750     if (dev->name) {
3751         strncpy(di_args->path, rcu_str_deref(dev->name),
3752                 sizeof(di_args->path) - 1);
3753         di_args->path[sizeof(di_args->path) - 1] = 0;
3754     } else {
3755         di_args->path[0] = '\0';
3756     }
3757 
3758 out:
3759     rcu_read_unlock();
3760     if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3761         ret = -EFAULT;
3762 
3763     kfree(di_args);
3764     return ret;
3765 }
3766 
3767 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3768 {
3769     struct inode *inode = file_inode(file);
3770     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3771     struct btrfs_root *root = BTRFS_I(inode)->root;
3772     struct btrfs_root *new_root;
3773     struct btrfs_dir_item *di;
3774     struct btrfs_trans_handle *trans;
3775     struct btrfs_path *path = NULL;
3776     struct btrfs_disk_key disk_key;
3777     u64 objectid = 0;
3778     u64 dir_id;
3779     int ret;
3780 
3781     if (!capable(CAP_SYS_ADMIN))
3782         return -EPERM;
3783 
3784     ret = mnt_want_write_file(file);
3785     if (ret)
3786         return ret;
3787 
3788     if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3789         ret = -EFAULT;
3790         goto out;
3791     }
3792 
3793     if (!objectid)
3794         objectid = BTRFS_FS_TREE_OBJECTID;
3795 
3796     new_root = btrfs_get_fs_root(fs_info, objectid, true);
3797     if (IS_ERR(new_root)) {
3798         ret = PTR_ERR(new_root);
3799         goto out;
3800     }
3801     if (!is_fstree(new_root->root_key.objectid)) {
3802         ret = -ENOENT;
3803         goto out_free;
3804     }
3805 
3806     path = btrfs_alloc_path();
3807     if (!path) {
3808         ret = -ENOMEM;
3809         goto out_free;
3810     }
3811 
3812     trans = btrfs_start_transaction(root, 1);
3813     if (IS_ERR(trans)) {
3814         ret = PTR_ERR(trans);
3815         goto out_free;
3816     }
3817 
3818     dir_id = btrfs_super_root_dir(fs_info->super_copy);
3819     di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3820                    dir_id, "default", 7, 1);
3821     if (IS_ERR_OR_NULL(di)) {
3822         btrfs_release_path(path);
3823         btrfs_end_transaction(trans);
3824         btrfs_err(fs_info,
3825               "Umm, you don't have the default diritem, this isn't going to work");
3826         ret = -ENOENT;
3827         goto out_free;
3828     }
3829 
3830     btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3831     btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3832     btrfs_mark_buffer_dirty(path->nodes[0]);
3833     btrfs_release_path(path);
3834 
3835     btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3836     btrfs_end_transaction(trans);
3837 out_free:
3838     btrfs_put_root(new_root);
3839     btrfs_free_path(path);
3840 out:
3841     mnt_drop_write_file(file);
3842     return ret;
3843 }
3844 
3845 static void get_block_group_info(struct list_head *groups_list,
3846                  struct btrfs_ioctl_space_info *space)
3847 {
3848     struct btrfs_block_group *block_group;
3849 
3850     space->total_bytes = 0;
3851     space->used_bytes = 0;
3852     space->flags = 0;
3853     list_for_each_entry(block_group, groups_list, list) {
3854         space->flags = block_group->flags;
3855         space->total_bytes += block_group->length;
3856         space->used_bytes += block_group->used;
3857     }
3858 }
3859 
3860 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3861                    void __user *arg)
3862 {
3863     struct btrfs_ioctl_space_args space_args;
3864     struct btrfs_ioctl_space_info space;
3865     struct btrfs_ioctl_space_info *dest;
3866     struct btrfs_ioctl_space_info *dest_orig;
3867     struct btrfs_ioctl_space_info __user *user_dest;
3868     struct btrfs_space_info *info;
3869     static const u64 types[] = {
3870         BTRFS_BLOCK_GROUP_DATA,
3871         BTRFS_BLOCK_GROUP_SYSTEM,
3872         BTRFS_BLOCK_GROUP_METADATA,
3873         BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3874     };
3875     int num_types = 4;
3876     int alloc_size;
3877     int ret = 0;
3878     u64 slot_count = 0;
3879     int i, c;
3880 
3881     if (copy_from_user(&space_args,
3882                (struct btrfs_ioctl_space_args __user *)arg,
3883                sizeof(space_args)))
3884         return -EFAULT;
3885 
3886     for (i = 0; i < num_types; i++) {
3887         struct btrfs_space_info *tmp;
3888 
3889         info = NULL;
3890         list_for_each_entry(tmp, &fs_info->space_info, list) {
3891             if (tmp->flags == types[i]) {
3892                 info = tmp;
3893                 break;
3894             }
3895         }
3896 
3897         if (!info)
3898             continue;
3899 
3900         down_read(&info->groups_sem);
3901         for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3902             if (!list_empty(&info->block_groups[c]))
3903                 slot_count++;
3904         }
3905         up_read(&info->groups_sem);
3906     }
3907 
3908     /*
3909      * Global block reserve, exported as a space_info
3910      */
3911     slot_count++;
3912 
3913     /* space_slots == 0 means they are asking for a count */
3914     if (space_args.space_slots == 0) {
3915         space_args.total_spaces = slot_count;
3916         goto out;
3917     }
3918 
3919     slot_count = min_t(u64, space_args.space_slots, slot_count);
3920 
3921     alloc_size = sizeof(*dest) * slot_count;
3922 
3923     /* we generally have at most 6 or so space infos, one for each raid
3924      * level.  So, a whole page should be more than enough for everyone
3925      */
3926     if (alloc_size > PAGE_SIZE)
3927         return -ENOMEM;
3928 
3929     space_args.total_spaces = 0;
3930     dest = kmalloc(alloc_size, GFP_KERNEL);
3931     if (!dest)
3932         return -ENOMEM;
3933     dest_orig = dest;
3934 
3935     /* now we have a buffer to copy into */
3936     for (i = 0; i < num_types; i++) {
3937         struct btrfs_space_info *tmp;
3938 
3939         if (!slot_count)
3940             break;
3941 
3942         info = NULL;
3943         list_for_each_entry(tmp, &fs_info->space_info, list) {
3944             if (tmp->flags == types[i]) {
3945                 info = tmp;
3946                 break;
3947             }
3948         }
3949 
3950         if (!info)
3951             continue;
3952         down_read(&info->groups_sem);
3953         for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3954             if (!list_empty(&info->block_groups[c])) {
3955                 get_block_group_info(&info->block_groups[c],
3956                              &space);
3957                 memcpy(dest, &space, sizeof(space));
3958                 dest++;
3959                 space_args.total_spaces++;
3960                 slot_count--;
3961             }
3962             if (!slot_count)
3963                 break;
3964         }
3965         up_read(&info->groups_sem);
3966     }
3967 
3968     /*
3969      * Add global block reserve
3970      */
3971     if (slot_count) {
3972         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3973 
3974         spin_lock(&block_rsv->lock);
3975         space.total_bytes = block_rsv->size;
3976         space.used_bytes = block_rsv->size - block_rsv->reserved;
3977         spin_unlock(&block_rsv->lock);
3978         space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3979         memcpy(dest, &space, sizeof(space));
3980         space_args.total_spaces++;
3981     }
3982 
3983     user_dest = (struct btrfs_ioctl_space_info __user *)
3984         (arg + sizeof(struct btrfs_ioctl_space_args));
3985 
3986     if (copy_to_user(user_dest, dest_orig, alloc_size))
3987         ret = -EFAULT;
3988 
3989     kfree(dest_orig);
3990 out:
3991     if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3992         ret = -EFAULT;
3993 
3994     return ret;
3995 }
3996 
3997 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3998                         void __user *argp)
3999 {
4000     struct btrfs_trans_handle *trans;
4001     u64 transid;
4002 
4003     trans = btrfs_attach_transaction_barrier(root);
4004     if (IS_ERR(trans)) {
4005         if (PTR_ERR(trans) != -ENOENT)
4006             return PTR_ERR(trans);
4007 
4008         /* No running transaction, don't bother */
4009         transid = root->fs_info->last_trans_committed;
4010         goto out;
4011     }
4012     transid = trans->transid;
4013     btrfs_commit_transaction_async(trans);
4014 out:
4015     if (argp)
4016         if (copy_to_user(argp, &transid, sizeof(transid)))
4017             return -EFAULT;
4018     return 0;
4019 }
4020 
4021 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4022                        void __user *argp)
4023 {
4024     u64 transid;
4025 
4026     if (argp) {
4027         if (copy_from_user(&transid, argp, sizeof(transid)))
4028             return -EFAULT;
4029     } else {
4030         transid = 0;  /* current trans */
4031     }
4032     return btrfs_wait_for_commit(fs_info, transid);
4033 }
4034 
4035 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4036 {
4037     struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4038     struct btrfs_ioctl_scrub_args *sa;
4039     int ret;
4040 
4041     if (!capable(CAP_SYS_ADMIN))
4042         return -EPERM;
4043 
4044     if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
4045         btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
4046         return -EINVAL;
4047     }
4048 
4049     sa = memdup_user(arg, sizeof(*sa));
4050     if (IS_ERR(sa))
4051         return PTR_ERR(sa);
4052 
4053     if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4054         ret = mnt_want_write_file(file);
4055         if (ret)
4056             goto out;
4057     }
4058 
4059     ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4060                   &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4061                   0);
4062 
4063     /*
4064      * Copy scrub args to user space even if btrfs_scrub_dev() returned an
4065      * error. This is important as it allows user space to know how much
4066      * progress scrub has done. For example, if scrub is canceled we get
4067      * -ECANCELED from btrfs_scrub_dev() and return that error back to user
4068      * space. Later user space can inspect the progress from the structure
4069      * btrfs_ioctl_scrub_args and resume scrub from where it left off
4070      * previously (btrfs-progs does this).
4071      * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
4072      * then return -EFAULT to signal the structure was not copied or it may
4073      * be corrupt and unreliable due to a partial copy.
4074      */
4075     if (copy_to_user(arg, sa, sizeof(*sa)))
4076         ret = -EFAULT;
4077 
4078     if (!(sa->flags & BTRFS_SCRUB_READONLY))
4079         mnt_drop_write_file(file);
4080 out:
4081     kfree(sa);
4082     return ret;
4083 }
4084 
4085 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4086 {
4087     if (!capable(CAP_SYS_ADMIN))
4088         return -EPERM;
4089 
4090     return btrfs_scrub_cancel(fs_info);
4091 }
4092 
4093 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4094                        void __user *arg)
4095 {
4096     struct btrfs_ioctl_scrub_args *sa;
4097     int ret;
4098 
4099     if (!capable(CAP_SYS_ADMIN))
4100         return -EPERM;
4101 
4102     sa = memdup_user(arg, sizeof(*sa));
4103     if (IS_ERR(sa))
4104         return PTR_ERR(sa);
4105 
4106     ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4107 
4108     if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4109         ret = -EFAULT;
4110 
4111     kfree(sa);
4112     return ret;
4113 }
4114 
4115 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4116                       void __user *arg)
4117 {
4118     struct btrfs_ioctl_get_dev_stats *sa;
4119     int ret;
4120 
4121     sa = memdup_user(arg, sizeof(*sa));
4122     if (IS_ERR(sa))
4123         return PTR_ERR(sa);
4124 
4125     if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4126         kfree(sa);
4127         return -EPERM;
4128     }
4129 
4130     ret = btrfs_get_dev_stats(fs_info, sa);
4131 
4132     if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4133         ret = -EFAULT;
4134 
4135     kfree(sa);
4136     return ret;
4137 }
4138 
4139 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4140                     void __user *arg)
4141 {
4142     struct btrfs_ioctl_dev_replace_args *p;
4143     int ret;
4144 
4145     if (!capable(CAP_SYS_ADMIN))
4146         return -EPERM;
4147 
4148     if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
4149         btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
4150         return -EINVAL;
4151     }
4152 
4153     p = memdup_user(arg, sizeof(*p));
4154     if (IS_ERR(p))
4155         return PTR_ERR(p);
4156 
4157     switch (p->cmd) {
4158     case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4159         if (sb_rdonly(fs_info->sb)) {
4160             ret = -EROFS;
4161             goto out;
4162         }
4163         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
4164             ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4165         } else {
4166             ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4167             btrfs_exclop_finish(fs_info);
4168         }
4169         break;
4170     case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4171         btrfs_dev_replace_status(fs_info, p);
4172         ret = 0;
4173         break;
4174     case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4175         p->result = btrfs_dev_replace_cancel(fs_info);
4176         ret = 0;
4177         break;
4178     default:
4179         ret = -EINVAL;
4180         break;
4181     }
4182 
4183     if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
4184         ret = -EFAULT;
4185 out:
4186     kfree(p);
4187     return ret;
4188 }
4189 
4190 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4191 {
4192     int ret = 0;
4193     int i;
4194     u64 rel_ptr;
4195     int size;
4196     struct btrfs_ioctl_ino_path_args *ipa = NULL;
4197     struct inode_fs_paths *ipath = NULL;
4198     struct btrfs_path *path;
4199 
4200     if (!capable(CAP_DAC_READ_SEARCH))
4201         return -EPERM;
4202 
4203     path = btrfs_alloc_path();
4204     if (!path) {
4205         ret = -ENOMEM;
4206         goto out;
4207     }
4208 
4209     ipa = memdup_user(arg, sizeof(*ipa));
4210     if (IS_ERR(ipa)) {
4211         ret = PTR_ERR(ipa);
4212         ipa = NULL;
4213         goto out;
4214     }
4215 
4216     size = min_t(u32, ipa->size, 4096);
4217     ipath = init_ipath(size, root, path);
4218     if (IS_ERR(ipath)) {
4219         ret = PTR_ERR(ipath);
4220         ipath = NULL;
4221         goto out;
4222     }
4223 
4224     ret = paths_from_inode(ipa->inum, ipath);
4225     if (ret < 0)
4226         goto out;
4227 
4228     for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4229         rel_ptr = ipath->fspath->val[i] -
4230               (u64)(unsigned long)ipath->fspath->val;
4231         ipath->fspath->val[i] = rel_ptr;
4232     }
4233 
4234     ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4235                ipath->fspath, size);
4236     if (ret) {
4237         ret = -EFAULT;
4238         goto out;
4239     }
4240 
4241 out:
4242     btrfs_free_path(path);
4243     free_ipath(ipath);
4244     kfree(ipa);
4245 
4246     return ret;
4247 }
4248 
4249 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4250                     void __user *arg, int version)
4251 {
4252     int ret = 0;
4253     int size;
4254     struct btrfs_ioctl_logical_ino_args *loi;
4255     struct btrfs_data_container *inodes = NULL;
4256     struct btrfs_path *path = NULL;
4257     bool ignore_offset;
4258 
4259     if (!capable(CAP_SYS_ADMIN))
4260         return -EPERM;
4261 
4262     loi = memdup_user(arg, sizeof(*loi));
4263     if (IS_ERR(loi))
4264         return PTR_ERR(loi);
4265 
4266     if (version == 1) {
4267         ignore_offset = false;
4268         size = min_t(u32, loi->size, SZ_64K);
4269     } else {
4270         /* All reserved bits must be 0 for now */
4271         if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4272             ret = -EINVAL;
4273             goto out_loi;
4274         }
4275         /* Only accept flags we have defined so far */
4276         if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4277             ret = -EINVAL;
4278             goto out_loi;
4279         }
4280         ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4281         size = min_t(u32, loi->size, SZ_16M);
4282     }
4283 
4284     path = btrfs_alloc_path();
4285     if (!path) {
4286         ret = -ENOMEM;
4287         goto out;
4288     }
4289 
4290     inodes = init_data_container(size);
4291     if (IS_ERR(inodes)) {
4292         ret = PTR_ERR(inodes);
4293         inodes = NULL;
4294         goto out;
4295     }
4296 
4297     ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4298                       inodes, ignore_offset);
4299     if (ret == -EINVAL)
4300         ret = -ENOENT;
4301     if (ret < 0)
4302         goto out;
4303 
4304     ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4305                size);
4306     if (ret)
4307         ret = -EFAULT;
4308 
4309 out:
4310     btrfs_free_path(path);
4311     kvfree(inodes);
4312 out_loi:
4313     kfree(loi);
4314 
4315     return ret;
4316 }
4317 
4318 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4319                    struct btrfs_ioctl_balance_args *bargs)
4320 {
4321     struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4322 
4323     bargs->flags = bctl->flags;
4324 
4325     if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4326         bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4327     if (atomic_read(&fs_info->balance_pause_req))
4328         bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4329     if (atomic_read(&fs_info->balance_cancel_req))
4330         bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4331 
4332     memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4333     memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4334     memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4335 
4336     spin_lock(&fs_info->balance_lock);
4337     memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4338     spin_unlock(&fs_info->balance_lock);
4339 }
4340 
4341 /**
4342  * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
4343  * required.
4344  *
4345  * @fs_info:       the filesystem
4346  * @excl_acquired: ptr to boolean value which is set to false in case balance
4347  *                 is being resumed
4348  *
4349  * Return 0 on success in which case both fs_info::balance is acquired as well
4350  * as exclusive ops are blocked. In case of failure return an error code.
4351  */
4352 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
4353 {
4354     int ret;
4355 
4356     /*
4357      * Exclusive operation is locked. Three possibilities:
4358      *   (1) some other op is running
4359      *   (2) balance is running
4360      *   (3) balance is paused -- special case (think resume)
4361      */
4362     while (1) {
4363         if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4364             *excl_acquired = true;
4365             mutex_lock(&fs_info->balance_mutex);
4366             return 0;
4367         }
4368 
4369         mutex_lock(&fs_info->balance_mutex);
4370         if (fs_info->balance_ctl) {
4371             /* This is either (2) or (3) */
4372             if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4373                 /* This is (2) */
4374                 ret = -EINPROGRESS;
4375                 goto out_failure;
4376 
4377             } else {
4378                 mutex_unlock(&fs_info->balance_mutex);
4379                 /*
4380                  * Lock released to allow other waiters to
4381                  * continue, we'll reexamine the status again.
4382                  */
4383                 mutex_lock(&fs_info->balance_mutex);
4384 
4385                 if (fs_info->balance_ctl &&
4386                     !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4387                     /* This is (3) */
4388                     *excl_acquired = false;
4389                     return 0;
4390                 }
4391             }
4392         } else {
4393             /* This is (1) */
4394             ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4395             goto out_failure;
4396         }
4397 
4398         mutex_unlock(&fs_info->balance_mutex);
4399     }
4400 
4401 out_failure:
4402     mutex_unlock(&fs_info->balance_mutex);
4403     *excl_acquired = false;
4404     return ret;
4405 }
4406 
4407 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4408 {
4409     struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4410     struct btrfs_fs_info *fs_info = root->fs_info;
4411     struct btrfs_ioctl_balance_args *bargs;
4412     struct btrfs_balance_control *bctl;
4413     bool need_unlock = true;
4414     int ret;
4415 
4416     if (!capable(CAP_SYS_ADMIN))
4417         return -EPERM;
4418 
4419     ret = mnt_want_write_file(file);
4420     if (ret)
4421         return ret;
4422 
4423     bargs = memdup_user(arg, sizeof(*bargs));
4424     if (IS_ERR(bargs)) {
4425         ret = PTR_ERR(bargs);
4426         bargs = NULL;
4427         goto out;
4428     }
4429 
4430     ret = btrfs_try_lock_balance(fs_info, &need_unlock);
4431     if (ret)
4432         goto out;
4433 
4434     lockdep_assert_held(&fs_info->balance_mutex);
4435 
4436     if (bargs->flags & BTRFS_BALANCE_RESUME) {
4437         if (!fs_info->balance_ctl) {
4438             ret = -ENOTCONN;
4439             goto out_unlock;
4440         }
4441 
4442         bctl = fs_info->balance_ctl;
4443         spin_lock(&fs_info->balance_lock);
4444         bctl->flags |= BTRFS_BALANCE_RESUME;
4445         spin_unlock(&fs_info->balance_lock);
4446         btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
4447 
4448         goto do_balance;
4449     }
4450 
4451     if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4452         ret = -EINVAL;
4453         goto out_unlock;
4454     }
4455 
4456     if (fs_info->balance_ctl) {
4457         ret = -EINPROGRESS;
4458         goto out_unlock;
4459     }
4460 
4461     bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4462     if (!bctl) {
4463         ret = -ENOMEM;
4464         goto out_unlock;
4465     }
4466 
4467     memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4468     memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4469     memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4470 
4471     bctl->flags = bargs->flags;
4472 do_balance:
4473     /*
4474      * Ownership of bctl and exclusive operation goes to btrfs_balance.
4475      * bctl is freed in reset_balance_state, or, if restriper was paused
4476      * all the way until unmount, in free_fs_info.  The flag should be
4477      * cleared after reset_balance_state.
4478      */
4479     need_unlock = false;
4480 
4481     ret = btrfs_balance(fs_info, bctl, bargs);
4482     bctl = NULL;
4483 
4484     if (ret == 0 || ret == -ECANCELED) {
4485         if (copy_to_user(arg, bargs, sizeof(*bargs)))
4486             ret = -EFAULT;
4487     }
4488 
4489     kfree(bctl);
4490 out_unlock:
4491     mutex_unlock(&fs_info->balance_mutex);
4492     if (need_unlock)
4493         btrfs_exclop_finish(fs_info);
4494 out:
4495     mnt_drop_write_file(file);
4496     kfree(bargs);
4497     return ret;
4498 }
4499 
4500 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4501 {
4502     if (!capable(CAP_SYS_ADMIN))
4503         return -EPERM;
4504 
4505     switch (cmd) {
4506     case BTRFS_BALANCE_CTL_PAUSE:
4507         return btrfs_pause_balance(fs_info);
4508     case BTRFS_BALANCE_CTL_CANCEL:
4509         return btrfs_cancel_balance(fs_info);
4510     }
4511 
4512     return -EINVAL;
4513 }
4514 
4515 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4516                      void __user *arg)
4517 {
4518     struct btrfs_ioctl_balance_args *bargs;
4519     int ret = 0;
4520 
4521     if (!capable(CAP_SYS_ADMIN))
4522         return -EPERM;
4523 
4524     mutex_lock(&fs_info->balance_mutex);
4525     if (!fs_info->balance_ctl) {
4526         ret = -ENOTCONN;
4527         goto out;
4528     }
4529 
4530     bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4531     if (!bargs) {
4532         ret = -ENOMEM;
4533         goto out;
4534     }
4535 
4536     btrfs_update_ioctl_balance_args(fs_info, bargs);
4537 
4538     if (copy_to_user(arg, bargs, sizeof(*bargs)))
4539         ret = -EFAULT;
4540 
4541     kfree(bargs);
4542 out:
4543     mutex_unlock(&fs_info->balance_mutex);
4544     return ret;
4545 }
4546 
4547 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4548 {
4549     struct inode *inode = file_inode(file);
4550     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4551     struct btrfs_ioctl_quota_ctl_args *sa;
4552     int ret;
4553 
4554     if (!capable(CAP_SYS_ADMIN))
4555         return -EPERM;
4556 
4557     ret = mnt_want_write_file(file);
4558     if (ret)
4559         return ret;
4560 
4561     sa = memdup_user(arg, sizeof(*sa));
4562     if (IS_ERR(sa)) {
4563         ret = PTR_ERR(sa);
4564         goto drop_write;
4565     }
4566 
4567     down_write(&fs_info->subvol_sem);
4568 
4569     switch (sa->cmd) {
4570     case BTRFS_QUOTA_CTL_ENABLE:
4571         ret = btrfs_quota_enable(fs_info);
4572         break;
4573     case BTRFS_QUOTA_CTL_DISABLE:
4574         ret = btrfs_quota_disable(fs_info);
4575         break;
4576     default:
4577         ret = -EINVAL;
4578         break;
4579     }
4580 
4581     kfree(sa);
4582     up_write(&fs_info->subvol_sem);
4583 drop_write:
4584     mnt_drop_write_file(file);
4585     return ret;
4586 }
4587 
4588 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4589 {
4590     struct inode *inode = file_inode(file);
4591     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4592     struct btrfs_root *root = BTRFS_I(inode)->root;
4593     struct btrfs_ioctl_qgroup_assign_args *sa;
4594     struct btrfs_trans_handle *trans;
4595     int ret;
4596     int err;
4597 
4598     if (!capable(CAP_SYS_ADMIN))
4599         return -EPERM;
4600 
4601     ret = mnt_want_write_file(file);
4602     if (ret)
4603         return ret;
4604 
4605     sa = memdup_user(arg, sizeof(*sa));
4606     if (IS_ERR(sa)) {
4607         ret = PTR_ERR(sa);
4608         goto drop_write;
4609     }
4610 
4611     trans = btrfs_join_transaction(root);
4612     if (IS_ERR(trans)) {
4613         ret = PTR_ERR(trans);
4614         goto out;
4615     }
4616 
4617     if (sa->assign) {
4618         ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4619     } else {
4620         ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4621     }
4622 
4623     /* update qgroup status and info */
4624     err = btrfs_run_qgroups(trans);
4625     if (err < 0)
4626         btrfs_handle_fs_error(fs_info, err,
4627                       "failed to update qgroup status and info");
4628     err = btrfs_end_transaction(trans);
4629     if (err && !ret)
4630         ret = err;
4631 
4632 out:
4633     kfree(sa);
4634 drop_write:
4635     mnt_drop_write_file(file);
4636     return ret;
4637 }
4638 
4639 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4640 {
4641     struct inode *inode = file_inode(file);
4642     struct btrfs_root *root = BTRFS_I(inode)->root;
4643     struct btrfs_ioctl_qgroup_create_args *sa;
4644     struct btrfs_trans_handle *trans;
4645     int ret;
4646     int err;
4647 
4648     if (!capable(CAP_SYS_ADMIN))
4649         return -EPERM;
4650 
4651     ret = mnt_want_write_file(file);
4652     if (ret)
4653         return ret;
4654 
4655     sa = memdup_user(arg, sizeof(*sa));
4656     if (IS_ERR(sa)) {
4657         ret = PTR_ERR(sa);
4658         goto drop_write;
4659     }
4660 
4661     if (!sa->qgroupid) {
4662         ret = -EINVAL;
4663         goto out;
4664     }
4665 
4666     trans = btrfs_join_transaction(root);
4667     if (IS_ERR(trans)) {
4668         ret = PTR_ERR(trans);
4669         goto out;
4670     }
4671 
4672     if (sa->create) {
4673         ret = btrfs_create_qgroup(trans, sa->qgroupid);
4674     } else {
4675         ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4676     }
4677 
4678     err = btrfs_end_transaction(trans);
4679     if (err && !ret)
4680         ret = err;
4681 
4682 out:
4683     kfree(sa);
4684 drop_write:
4685     mnt_drop_write_file(file);
4686     return ret;
4687 }
4688 
4689 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4690 {
4691     struct inode *inode = file_inode(file);
4692     struct btrfs_root *root = BTRFS_I(inode)->root;
4693     struct btrfs_ioctl_qgroup_limit_args *sa;
4694     struct btrfs_trans_handle *trans;
4695     int ret;
4696     int err;
4697     u64 qgroupid;
4698 
4699     if (!capable(CAP_SYS_ADMIN))
4700         return -EPERM;
4701 
4702     ret = mnt_want_write_file(file);
4703     if (ret)
4704         return ret;
4705 
4706     sa = memdup_user(arg, sizeof(*sa));
4707     if (IS_ERR(sa)) {
4708         ret = PTR_ERR(sa);
4709         goto drop_write;
4710     }
4711 
4712     trans = btrfs_join_transaction(root);
4713     if (IS_ERR(trans)) {
4714         ret = PTR_ERR(trans);
4715         goto out;
4716     }
4717 
4718     qgroupid = sa->qgroupid;
4719     if (!qgroupid) {
4720         /* take the current subvol as qgroup */
4721         qgroupid = root->root_key.objectid;
4722     }
4723 
4724     ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4725 
4726     err = btrfs_end_transaction(trans);
4727     if (err && !ret)
4728         ret = err;
4729 
4730 out:
4731     kfree(sa);
4732 drop_write:
4733     mnt_drop_write_file(file);
4734     return ret;
4735 }
4736 
4737 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4738 {
4739     struct inode *inode = file_inode(file);
4740     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4741     struct btrfs_ioctl_quota_rescan_args *qsa;
4742     int ret;
4743 
4744     if (!capable(CAP_SYS_ADMIN))
4745         return -EPERM;
4746 
4747     ret = mnt_want_write_file(file);
4748     if (ret)
4749         return ret;
4750 
4751     qsa = memdup_user(arg, sizeof(*qsa));
4752     if (IS_ERR(qsa)) {
4753         ret = PTR_ERR(qsa);
4754         goto drop_write;
4755     }
4756 
4757     if (qsa->flags) {
4758         ret = -EINVAL;
4759         goto out;
4760     }
4761 
4762     ret = btrfs_qgroup_rescan(fs_info);
4763 
4764 out:
4765     kfree(qsa);
4766 drop_write:
4767     mnt_drop_write_file(file);
4768     return ret;
4769 }
4770 
4771 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4772                         void __user *arg)
4773 {
4774     struct btrfs_ioctl_quota_rescan_args qsa = {0};
4775 
4776     if (!capable(CAP_SYS_ADMIN))
4777         return -EPERM;
4778 
4779     if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4780         qsa.flags = 1;
4781         qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4782     }
4783 
4784     if (copy_to_user(arg, &qsa, sizeof(qsa)))
4785         return -EFAULT;
4786 
4787     return 0;
4788 }
4789 
4790 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4791                         void __user *arg)
4792 {
4793     if (!capable(CAP_SYS_ADMIN))
4794         return -EPERM;
4795 
4796     return btrfs_qgroup_wait_for_completion(fs_info, true);
4797 }
4798 
4799 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4800                         struct user_namespace *mnt_userns,
4801                         struct btrfs_ioctl_received_subvol_args *sa)
4802 {
4803     struct inode *inode = file_inode(file);
4804     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4805     struct btrfs_root *root = BTRFS_I(inode)->root;
4806     struct btrfs_root_item *root_item = &root->root_item;
4807     struct btrfs_trans_handle *trans;
4808     struct timespec64 ct = current_time(inode);
4809     int ret = 0;
4810     int received_uuid_changed;
4811 
4812     if (!inode_owner_or_capable(mnt_userns, inode))
4813         return -EPERM;
4814 
4815     ret = mnt_want_write_file(file);
4816     if (ret < 0)
4817         return ret;
4818 
4819     down_write(&fs_info->subvol_sem);
4820 
4821     if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4822         ret = -EINVAL;
4823         goto out;
4824     }
4825 
4826     if (btrfs_root_readonly(root)) {
4827         ret = -EROFS;
4828         goto out;
4829     }
4830 
4831     /*
4832      * 1 - root item
4833      * 2 - uuid items (received uuid + subvol uuid)
4834      */
4835     trans = btrfs_start_transaction(root, 3);
4836     if (IS_ERR(trans)) {
4837         ret = PTR_ERR(trans);
4838         trans = NULL;
4839         goto out;
4840     }
4841 
4842     sa->rtransid = trans->transid;
4843     sa->rtime.sec = ct.tv_sec;
4844     sa->rtime.nsec = ct.tv_nsec;
4845 
4846     received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4847                        BTRFS_UUID_SIZE);
4848     if (received_uuid_changed &&
4849         !btrfs_is_empty_uuid(root_item->received_uuid)) {
4850         ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4851                       BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4852                       root->root_key.objectid);
4853         if (ret && ret != -ENOENT) {
4854                 btrfs_abort_transaction(trans, ret);
4855                 btrfs_end_transaction(trans);
4856                 goto out;
4857         }
4858     }
4859     memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4860     btrfs_set_root_stransid(root_item, sa->stransid);
4861     btrfs_set_root_rtransid(root_item, sa->rtransid);
4862     btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4863     btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4864     btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4865     btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4866 
4867     ret = btrfs_update_root(trans, fs_info->tree_root,
4868                 &root->root_key, &root->root_item);
4869     if (ret < 0) {
4870         btrfs_end_transaction(trans);
4871         goto out;
4872     }
4873     if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4874         ret = btrfs_uuid_tree_add(trans, sa->uuid,
4875                       BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4876                       root->root_key.objectid);
4877         if (ret < 0 && ret != -EEXIST) {
4878             btrfs_abort_transaction(trans, ret);
4879             btrfs_end_transaction(trans);
4880             goto out;
4881         }
4882     }
4883     ret = btrfs_commit_transaction(trans);
4884 out:
4885     up_write(&fs_info->subvol_sem);
4886     mnt_drop_write_file(file);
4887     return ret;
4888 }
4889 
4890 #ifdef CONFIG_64BIT
4891 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4892                         void __user *arg)
4893 {
4894     struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4895     struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4896     int ret = 0;
4897 
4898     args32 = memdup_user(arg, sizeof(*args32));
4899     if (IS_ERR(args32))
4900         return PTR_ERR(args32);
4901 
4902     args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4903     if (!args64) {
4904         ret = -ENOMEM;
4905         goto out;
4906     }
4907 
4908     memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4909     args64->stransid = args32->stransid;
4910     args64->rtransid = args32->rtransid;
4911     args64->stime.sec = args32->stime.sec;
4912     args64->stime.nsec = args32->stime.nsec;
4913     args64->rtime.sec = args32->rtime.sec;
4914     args64->rtime.nsec = args32->rtime.nsec;
4915     args64->flags = args32->flags;
4916 
4917     ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4918     if (ret)
4919         goto out;
4920 
4921     memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4922     args32->stransid = args64->stransid;
4923     args32->rtransid = args64->rtransid;
4924     args32->stime.sec = args64->stime.sec;
4925     args32->stime.nsec = args64->stime.nsec;
4926     args32->rtime.sec = args64->rtime.sec;
4927     args32->rtime.nsec = args64->rtime.nsec;
4928     args32->flags = args64->flags;
4929 
4930     ret = copy_to_user(arg, args32, sizeof(*args32));
4931     if (ret)
4932         ret = -EFAULT;
4933 
4934 out:
4935     kfree(args32);
4936     kfree(args64);
4937     return ret;
4938 }
4939 #endif
4940 
4941 static long btrfs_ioctl_set_received_subvol(struct file *file,
4942                         void __user *arg)
4943 {
4944     struct btrfs_ioctl_received_subvol_args *sa = NULL;
4945     int ret = 0;
4946 
4947     sa = memdup_user(arg, sizeof(*sa));
4948     if (IS_ERR(sa))
4949         return PTR_ERR(sa);
4950 
4951     ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4952 
4953     if (ret)
4954         goto out;
4955 
4956     ret = copy_to_user(arg, sa, sizeof(*sa));
4957     if (ret)
4958         ret = -EFAULT;
4959 
4960 out:
4961     kfree(sa);
4962     return ret;
4963 }
4964 
4965 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4966                     void __user *arg)
4967 {
4968     size_t len;
4969     int ret;
4970     char label[BTRFS_LABEL_SIZE];
4971 
4972     spin_lock(&fs_info->super_lock);
4973     memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4974     spin_unlock(&fs_info->super_lock);
4975 
4976     len = strnlen(label, BTRFS_LABEL_SIZE);
4977 
4978     if (len == BTRFS_LABEL_SIZE) {
4979         btrfs_warn(fs_info,
4980                "label is too long, return the first %zu bytes",
4981                --len);
4982     }
4983 
4984     ret = copy_to_user(arg, label, len);
4985 
4986     return ret ? -EFAULT : 0;
4987 }
4988 
4989 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4990 {
4991     struct inode *inode = file_inode(file);
4992     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4993     struct btrfs_root *root = BTRFS_I(inode)->root;
4994     struct btrfs_super_block *super_block = fs_info->super_copy;
4995     struct btrfs_trans_handle *trans;
4996     char label[BTRFS_LABEL_SIZE];
4997     int ret;
4998 
4999     if (!capable(CAP_SYS_ADMIN))
5000         return -EPERM;
5001 
5002     if (copy_from_user(label, arg, sizeof(label)))
5003         return -EFAULT;
5004 
5005     if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5006         btrfs_err(fs_info,
5007               "unable to set label with more than %d bytes",
5008               BTRFS_LABEL_SIZE - 1);
5009         return -EINVAL;
5010     }
5011 
5012     ret = mnt_want_write_file(file);
5013     if (ret)
5014         return ret;
5015 
5016     trans = btrfs_start_transaction(root, 0);
5017     if (IS_ERR(trans)) {
5018         ret = PTR_ERR(trans);
5019         goto out_unlock;
5020     }
5021 
5022     spin_lock(&fs_info->super_lock);
5023     strcpy(super_block->label, label);
5024     spin_unlock(&fs_info->super_lock);
5025     ret = btrfs_commit_transaction(trans);
5026 
5027 out_unlock:
5028     mnt_drop_write_file(file);
5029     return ret;
5030 }
5031 
5032 #define INIT_FEATURE_FLAGS(suffix) \
5033     { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5034       .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5035       .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5036 
5037 int btrfs_ioctl_get_supported_features(void __user *arg)
5038 {
5039     static const struct btrfs_ioctl_feature_flags features[3] = {
5040         INIT_FEATURE_FLAGS(SUPP),
5041         INIT_FEATURE_FLAGS(SAFE_SET),
5042         INIT_FEATURE_FLAGS(SAFE_CLEAR)
5043     };
5044 
5045     if (copy_to_user(arg, &features, sizeof(features)))
5046         return -EFAULT;
5047 
5048     return 0;
5049 }
5050 
5051 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
5052                     void __user *arg)
5053 {
5054     struct btrfs_super_block *super_block = fs_info->super_copy;
5055     struct btrfs_ioctl_feature_flags features;
5056 
5057     features.compat_flags = btrfs_super_compat_flags(super_block);
5058     features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5059     features.incompat_flags = btrfs_super_incompat_flags(super_block);
5060 
5061     if (copy_to_user(arg, &features, sizeof(features)))
5062         return -EFAULT;
5063 
5064     return 0;
5065 }
5066 
5067 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5068                   enum btrfs_feature_set set,
5069                   u64 change_mask, u64 flags, u64 supported_flags,
5070                   u64 safe_set, u64 safe_clear)
5071 {
5072     const char *type = btrfs_feature_set_name(set);
5073     char *names;
5074     u64 disallowed, unsupported;
5075     u64 set_mask = flags & change_mask;
5076     u64 clear_mask = ~flags & change_mask;
5077 
5078     unsupported = set_mask & ~supported_flags;
5079     if (unsupported) {
5080         names = btrfs_printable_features(set, unsupported);
5081         if (names) {
5082             btrfs_warn(fs_info,
5083                    "this kernel does not support the %s feature bit%s",
5084                    names, strchr(names, ',') ? "s" : "");
5085             kfree(names);
5086         } else
5087             btrfs_warn(fs_info,
5088                    "this kernel does not support %s bits 0x%llx",
5089                    type, unsupported);
5090         return -EOPNOTSUPP;
5091     }
5092 
5093     disallowed = set_mask & ~safe_set;
5094     if (disallowed) {
5095         names = btrfs_printable_features(set, disallowed);
5096         if (names) {
5097             btrfs_warn(fs_info,
5098                    "can't set the %s feature bit%s while mounted",
5099                    names, strchr(names, ',') ? "s" : "");
5100             kfree(names);
5101         } else
5102             btrfs_warn(fs_info,
5103                    "can't set %s bits 0x%llx while mounted",
5104                    type, disallowed);
5105         return -EPERM;
5106     }
5107 
5108     disallowed = clear_mask & ~safe_clear;
5109     if (disallowed) {
5110         names = btrfs_printable_features(set, disallowed);
5111         if (names) {
5112             btrfs_warn(fs_info,
5113                    "can't clear the %s feature bit%s while mounted",
5114                    names, strchr(names, ',') ? "s" : "");
5115             kfree(names);
5116         } else
5117             btrfs_warn(fs_info,
5118                    "can't clear %s bits 0x%llx while mounted",
5119                    type, disallowed);
5120         return -EPERM;
5121     }
5122 
5123     return 0;
5124 }
5125 
5126 #define check_feature(fs_info, change_mask, flags, mask_base)   \
5127 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,   \
5128            BTRFS_FEATURE_ ## mask_base ## _SUPP,    \
5129            BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,    \
5130            BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5131 
5132 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5133 {
5134     struct inode *inode = file_inode(file);
5135     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5136     struct btrfs_root *root = BTRFS_I(inode)->root;
5137     struct btrfs_super_block *super_block = fs_info->super_copy;
5138     struct btrfs_ioctl_feature_flags flags[2];
5139     struct btrfs_trans_handle *trans;
5140     u64 newflags;
5141     int ret;
5142 
5143     if (!capable(CAP_SYS_ADMIN))
5144         return -EPERM;
5145 
5146     if (copy_from_user(flags, arg, sizeof(flags)))
5147         return -EFAULT;
5148 
5149     /* Nothing to do */
5150     if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5151         !flags[0].incompat_flags)
5152         return 0;
5153 
5154     ret = check_feature(fs_info, flags[0].compat_flags,
5155                 flags[1].compat_flags, COMPAT);
5156     if (ret)
5157         return ret;
5158 
5159     ret = check_feature(fs_info, flags[0].compat_ro_flags,
5160                 flags[1].compat_ro_flags, COMPAT_RO);
5161     if (ret)
5162         return ret;
5163 
5164     ret = check_feature(fs_info, flags[0].incompat_flags,
5165                 flags[1].incompat_flags, INCOMPAT);
5166     if (ret)
5167         return ret;
5168 
5169     ret = mnt_want_write_file(file);
5170     if (ret)
5171         return ret;
5172 
5173     trans = btrfs_start_transaction(root, 0);
5174     if (IS_ERR(trans)) {
5175         ret = PTR_ERR(trans);
5176         goto out_drop_write;
5177     }
5178 
5179     spin_lock(&fs_info->super_lock);
5180     newflags = btrfs_super_compat_flags(super_block);
5181     newflags |= flags[0].compat_flags & flags[1].compat_flags;
5182     newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5183     btrfs_set_super_compat_flags(super_block, newflags);
5184 
5185     newflags = btrfs_super_compat_ro_flags(super_block);
5186     newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5187     newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5188     btrfs_set_super_compat_ro_flags(super_block, newflags);
5189 
5190     newflags = btrfs_super_incompat_flags(super_block);
5191     newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5192     newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5193     btrfs_set_super_incompat_flags(super_block, newflags);
5194     spin_unlock(&fs_info->super_lock);
5195 
5196     ret = btrfs_commit_transaction(trans);
5197 out_drop_write:
5198     mnt_drop_write_file(file);
5199 
5200     return ret;
5201 }
5202 
5203 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
5204 {
5205     struct btrfs_ioctl_send_args *arg;
5206     int ret;
5207 
5208     if (compat) {
5209 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5210         struct btrfs_ioctl_send_args_32 args32;
5211 
5212         ret = copy_from_user(&args32, argp, sizeof(args32));
5213         if (ret)
5214             return -EFAULT;
5215         arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5216         if (!arg)
5217             return -ENOMEM;
5218         arg->send_fd = args32.send_fd;
5219         arg->clone_sources_count = args32.clone_sources_count;
5220         arg->clone_sources = compat_ptr(args32.clone_sources);
5221         arg->parent_root = args32.parent_root;
5222         arg->flags = args32.flags;
5223         memcpy(arg->reserved, args32.reserved,
5224                sizeof(args32.reserved));
5225 #else
5226         return -ENOTTY;
5227 #endif
5228     } else {
5229         arg = memdup_user(argp, sizeof(*arg));
5230         if (IS_ERR(arg))
5231             return PTR_ERR(arg);
5232     }
5233     ret = btrfs_ioctl_send(inode, arg);
5234     kfree(arg);
5235     return ret;
5236 }
5237 
5238 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
5239                     bool compat)
5240 {
5241     struct btrfs_ioctl_encoded_io_args args = { 0 };
5242     size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
5243                          flags);
5244     size_t copy_end;
5245     struct iovec iovstack[UIO_FASTIOV];
5246     struct iovec *iov = iovstack;
5247     struct iov_iter iter;
5248     loff_t pos;
5249     struct kiocb kiocb;
5250     ssize_t ret;
5251 
5252     if (!capable(CAP_SYS_ADMIN)) {
5253         ret = -EPERM;
5254         goto out_acct;
5255     }
5256 
5257     if (compat) {
5258 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5259         struct btrfs_ioctl_encoded_io_args_32 args32;
5260 
5261         copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
5262                        flags);
5263         if (copy_from_user(&args32, argp, copy_end)) {
5264             ret = -EFAULT;
5265             goto out_acct;
5266         }
5267         args.iov = compat_ptr(args32.iov);
5268         args.iovcnt = args32.iovcnt;
5269         args.offset = args32.offset;
5270         args.flags = args32.flags;
5271 #else
5272         return -ENOTTY;
5273 #endif
5274     } else {
5275         copy_end = copy_end_kernel;
5276         if (copy_from_user(&args, argp, copy_end)) {
5277             ret = -EFAULT;
5278             goto out_acct;
5279         }
5280     }
5281     if (args.flags != 0) {
5282         ret = -EINVAL;
5283         goto out_acct;
5284     }
5285 
5286     ret = import_iovec(READ, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
5287                &iov, &iter);
5288     if (ret < 0)
5289         goto out_acct;
5290 
5291     if (iov_iter_count(&iter) == 0) {
5292         ret = 0;
5293         goto out_iov;
5294     }
5295     pos = args.offset;
5296     ret = rw_verify_area(READ, file, &pos, args.len);
5297     if (ret < 0)
5298         goto out_iov;
5299 
5300     init_sync_kiocb(&kiocb, file);
5301     kiocb.ki_pos = pos;
5302 
5303     ret = btrfs_encoded_read(&kiocb, &iter, &args);
5304     if (ret >= 0) {
5305         fsnotify_access(file);
5306         if (copy_to_user(argp + copy_end,
5307                  (char *)&args + copy_end_kernel,
5308                  sizeof(args) - copy_end_kernel))
5309             ret = -EFAULT;
5310     }
5311 
5312 out_iov:
5313     kfree(iov);
5314 out_acct:
5315     if (ret > 0)
5316         add_rchar(current, ret);
5317     inc_syscr(current);
5318     return ret;
5319 }
5320 
5321 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
5322 {
5323     struct btrfs_ioctl_encoded_io_args args;
5324     struct iovec iovstack[UIO_FASTIOV];
5325     struct iovec *iov = iovstack;
5326     struct iov_iter iter;
5327     loff_t pos;
5328     struct kiocb kiocb;
5329     ssize_t ret;
5330 
5331     if (!capable(CAP_SYS_ADMIN)) {
5332         ret = -EPERM;
5333         goto out_acct;
5334     }
5335 
5336     if (!(file->f_mode & FMODE_WRITE)) {
5337         ret = -EBADF;
5338         goto out_acct;
5339     }
5340 
5341     if (compat) {
5342 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5343         struct btrfs_ioctl_encoded_io_args_32 args32;
5344 
5345         if (copy_from_user(&args32, argp, sizeof(args32))) {
5346             ret = -EFAULT;
5347             goto out_acct;
5348         }
5349         args.iov = compat_ptr(args32.iov);
5350         args.iovcnt = args32.iovcnt;
5351         args.offset = args32.offset;
5352         args.flags = args32.flags;
5353         args.len = args32.len;
5354         args.unencoded_len = args32.unencoded_len;
5355         args.unencoded_offset = args32.unencoded_offset;
5356         args.compression = args32.compression;
5357         args.encryption = args32.encryption;
5358         memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
5359 #else
5360         return -ENOTTY;
5361 #endif
5362     } else {
5363         if (copy_from_user(&args, argp, sizeof(args))) {
5364             ret = -EFAULT;
5365             goto out_acct;
5366         }
5367     }
5368 
5369     ret = -EINVAL;
5370     if (args.flags != 0)
5371         goto out_acct;
5372     if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
5373         goto out_acct;
5374     if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
5375         args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
5376         goto out_acct;
5377     if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
5378         args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
5379         goto out_acct;
5380     if (args.unencoded_offset > args.unencoded_len)
5381         goto out_acct;
5382     if (args.len > args.unencoded_len - args.unencoded_offset)
5383         goto out_acct;
5384 
5385     ret = import_iovec(WRITE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
5386                &iov, &iter);
5387     if (ret < 0)
5388         goto out_acct;
5389 
5390     file_start_write(file);
5391 
5392     if (iov_iter_count(&iter) == 0) {
5393         ret = 0;
5394         goto out_end_write;
5395     }
5396     pos = args.offset;
5397     ret = rw_verify_area(WRITE, file, &pos, args.len);
5398     if (ret < 0)
5399         goto out_end_write;
5400 
5401     init_sync_kiocb(&kiocb, file);
5402     ret = kiocb_set_rw_flags(&kiocb, 0);
5403     if (ret)
5404         goto out_end_write;
5405     kiocb.ki_pos = pos;
5406 
5407     ret = btrfs_do_write_iter(&kiocb, &iter, &args);
5408     if (ret > 0)
5409         fsnotify_modify(file);
5410 
5411 out_end_write:
5412     file_end_write(file);
5413     kfree(iov);
5414 out_acct:
5415     if (ret > 0)
5416         add_wchar(current, ret);
5417     inc_syscw(current);
5418     return ret;
5419 }
5420 
5421 long btrfs_ioctl(struct file *file, unsigned int
5422         cmd, unsigned long arg)
5423 {
5424     struct inode *inode = file_inode(file);
5425     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5426     struct btrfs_root *root = BTRFS_I(inode)->root;
5427     void __user *argp = (void __user *)arg;
5428 
5429     switch (cmd) {
5430     case FS_IOC_GETVERSION:
5431         return btrfs_ioctl_getversion(inode, argp);
5432     case FS_IOC_GETFSLABEL:
5433         return btrfs_ioctl_get_fslabel(fs_info, argp);
5434     case FS_IOC_SETFSLABEL:
5435         return btrfs_ioctl_set_fslabel(file, argp);
5436     case FITRIM:
5437         return btrfs_ioctl_fitrim(fs_info, argp);
5438     case BTRFS_IOC_SNAP_CREATE:
5439         return btrfs_ioctl_snap_create(file, argp, 0);
5440     case BTRFS_IOC_SNAP_CREATE_V2:
5441         return btrfs_ioctl_snap_create_v2(file, argp, 0);
5442     case BTRFS_IOC_SUBVOL_CREATE:
5443         return btrfs_ioctl_snap_create(file, argp, 1);
5444     case BTRFS_IOC_SUBVOL_CREATE_V2:
5445         return btrfs_ioctl_snap_create_v2(file, argp, 1);
5446     case BTRFS_IOC_SNAP_DESTROY:
5447         return btrfs_ioctl_snap_destroy(file, argp, false);
5448     case BTRFS_IOC_SNAP_DESTROY_V2:
5449         return btrfs_ioctl_snap_destroy(file, argp, true);
5450     case BTRFS_IOC_SUBVOL_GETFLAGS:
5451         return btrfs_ioctl_subvol_getflags(inode, argp);
5452     case BTRFS_IOC_SUBVOL_SETFLAGS:
5453         return btrfs_ioctl_subvol_setflags(file, argp);
5454     case BTRFS_IOC_DEFAULT_SUBVOL:
5455         return btrfs_ioctl_default_subvol(file, argp);
5456     case BTRFS_IOC_DEFRAG:
5457         return btrfs_ioctl_defrag(file, NULL);
5458     case BTRFS_IOC_DEFRAG_RANGE:
5459         return btrfs_ioctl_defrag(file, argp);
5460     case BTRFS_IOC_RESIZE:
5461         return btrfs_ioctl_resize(file, argp);
5462     case BTRFS_IOC_ADD_DEV:
5463         return btrfs_ioctl_add_dev(fs_info, argp);
5464     case BTRFS_IOC_RM_DEV:
5465         return btrfs_ioctl_rm_dev(file, argp);
5466     case BTRFS_IOC_RM_DEV_V2:
5467         return btrfs_ioctl_rm_dev_v2(file, argp);
5468     case BTRFS_IOC_FS_INFO:
5469         return btrfs_ioctl_fs_info(fs_info, argp);
5470     case BTRFS_IOC_DEV_INFO:
5471         return btrfs_ioctl_dev_info(fs_info, argp);
5472     case BTRFS_IOC_TREE_SEARCH:
5473         return btrfs_ioctl_tree_search(inode, argp);
5474     case BTRFS_IOC_TREE_SEARCH_V2:
5475         return btrfs_ioctl_tree_search_v2(inode, argp);
5476     case BTRFS_IOC_INO_LOOKUP:
5477         return btrfs_ioctl_ino_lookup(root, argp);
5478     case BTRFS_IOC_INO_PATHS:
5479         return btrfs_ioctl_ino_to_path(root, argp);
5480     case BTRFS_IOC_LOGICAL_INO:
5481         return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5482     case BTRFS_IOC_LOGICAL_INO_V2:
5483         return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5484     case BTRFS_IOC_SPACE_INFO:
5485         return btrfs_ioctl_space_info(fs_info, argp);
5486     case BTRFS_IOC_SYNC: {
5487         int ret;
5488 
5489         ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5490         if (ret)
5491             return ret;
5492         ret = btrfs_sync_fs(inode->i_sb, 1);
5493         /*
5494          * The transaction thread may want to do more work,
5495          * namely it pokes the cleaner kthread that will start
5496          * processing uncleaned subvols.
5497          */
5498         wake_up_process(fs_info->transaction_kthread);
5499         return ret;
5500     }
5501     case BTRFS_IOC_START_SYNC:
5502         return btrfs_ioctl_start_sync(root, argp);
5503     case BTRFS_IOC_WAIT_SYNC:
5504         return btrfs_ioctl_wait_sync(fs_info, argp);
5505     case BTRFS_IOC_SCRUB:
5506         return btrfs_ioctl_scrub(file, argp);
5507     case BTRFS_IOC_SCRUB_CANCEL:
5508         return btrfs_ioctl_scrub_cancel(fs_info);
5509     case BTRFS_IOC_SCRUB_PROGRESS:
5510         return btrfs_ioctl_scrub_progress(fs_info, argp);
5511     case BTRFS_IOC_BALANCE_V2:
5512         return btrfs_ioctl_balance(file, argp);
5513     case BTRFS_IOC_BALANCE_CTL:
5514         return btrfs_ioctl_balance_ctl(fs_info, arg);
5515     case BTRFS_IOC_BALANCE_PROGRESS:
5516         return btrfs_ioctl_balance_progress(fs_info, argp);
5517     case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5518         return btrfs_ioctl_set_received_subvol(file, argp);
5519 #ifdef CONFIG_64BIT
5520     case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5521         return btrfs_ioctl_set_received_subvol_32(file, argp);
5522 #endif
5523     case BTRFS_IOC_SEND:
5524         return _btrfs_ioctl_send(inode, argp, false);
5525 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5526     case BTRFS_IOC_SEND_32:
5527         return _btrfs_ioctl_send(inode, argp, true);
5528 #endif
5529     case BTRFS_IOC_GET_DEV_STATS:
5530         return btrfs_ioctl_get_dev_stats(fs_info, argp);
5531     case BTRFS_IOC_QUOTA_CTL:
5532         return btrfs_ioctl_quota_ctl(file, argp);
5533     case BTRFS_IOC_QGROUP_ASSIGN:
5534         return btrfs_ioctl_qgroup_assign(file, argp);
5535     case BTRFS_IOC_QGROUP_CREATE:
5536         return btrfs_ioctl_qgroup_create(file, argp);
5537     case BTRFS_IOC_QGROUP_LIMIT:
5538         return btrfs_ioctl_qgroup_limit(file, argp);
5539     case BTRFS_IOC_QUOTA_RESCAN:
5540         return btrfs_ioctl_quota_rescan(file, argp);
5541     case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5542         return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5543     case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5544         return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5545     case BTRFS_IOC_DEV_REPLACE:
5546         return btrfs_ioctl_dev_replace(fs_info, argp);
5547     case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5548         return btrfs_ioctl_get_supported_features(argp);
5549     case BTRFS_IOC_GET_FEATURES:
5550         return btrfs_ioctl_get_features(fs_info, argp);
5551     case BTRFS_IOC_SET_FEATURES:
5552         return btrfs_ioctl_set_features(file, argp);
5553     case BTRFS_IOC_GET_SUBVOL_INFO:
5554         return btrfs_ioctl_get_subvol_info(inode, argp);
5555     case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5556         return btrfs_ioctl_get_subvol_rootref(root, argp);
5557     case BTRFS_IOC_INO_LOOKUP_USER:
5558         return btrfs_ioctl_ino_lookup_user(file, argp);
5559     case FS_IOC_ENABLE_VERITY:
5560         return fsverity_ioctl_enable(file, (const void __user *)argp);
5561     case FS_IOC_MEASURE_VERITY:
5562         return fsverity_ioctl_measure(file, argp);
5563     case BTRFS_IOC_ENCODED_READ:
5564         return btrfs_ioctl_encoded_read(file, argp, false);
5565     case BTRFS_IOC_ENCODED_WRITE:
5566         return btrfs_ioctl_encoded_write(file, argp, false);
5567 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5568     case BTRFS_IOC_ENCODED_READ_32:
5569         return btrfs_ioctl_encoded_read(file, argp, true);
5570     case BTRFS_IOC_ENCODED_WRITE_32:
5571         return btrfs_ioctl_encoded_write(file, argp, true);
5572 #endif
5573     }
5574 
5575     return -ENOTTY;
5576 }
5577 
5578 #ifdef CONFIG_COMPAT
5579 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5580 {
5581     /*
5582      * These all access 32-bit values anyway so no further
5583      * handling is necessary.
5584      */
5585     switch (cmd) {
5586     case FS_IOC32_GETVERSION:
5587         cmd = FS_IOC_GETVERSION;
5588         break;
5589     }
5590 
5591     return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5592 }
5593 #endif