Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Copyright (C) 2007 Oracle.  All rights reserved.
0004  */
0005 
0006 #include <crypto/hash.h>
0007 #include <linux/kernel.h>
0008 #include <linux/bio.h>
0009 #include <linux/blk-cgroup.h>
0010 #include <linux/file.h>
0011 #include <linux/fs.h>
0012 #include <linux/pagemap.h>
0013 #include <linux/highmem.h>
0014 #include <linux/time.h>
0015 #include <linux/init.h>
0016 #include <linux/string.h>
0017 #include <linux/backing-dev.h>
0018 #include <linux/writeback.h>
0019 #include <linux/compat.h>
0020 #include <linux/xattr.h>
0021 #include <linux/posix_acl.h>
0022 #include <linux/falloc.h>
0023 #include <linux/slab.h>
0024 #include <linux/ratelimit.h>
0025 #include <linux/btrfs.h>
0026 #include <linux/blkdev.h>
0027 #include <linux/posix_acl_xattr.h>
0028 #include <linux/uio.h>
0029 #include <linux/magic.h>
0030 #include <linux/iversion.h>
0031 #include <linux/swap.h>
0032 #include <linux/migrate.h>
0033 #include <linux/sched/mm.h>
0034 #include <linux/iomap.h>
0035 #include <asm/unaligned.h>
0036 #include <linux/fsverity.h>
0037 #include "misc.h"
0038 #include "ctree.h"
0039 #include "disk-io.h"
0040 #include "transaction.h"
0041 #include "btrfs_inode.h"
0042 #include "print-tree.h"
0043 #include "ordered-data.h"
0044 #include "xattr.h"
0045 #include "tree-log.h"
0046 #include "volumes.h"
0047 #include "compression.h"
0048 #include "locking.h"
0049 #include "free-space-cache.h"
0050 #include "props.h"
0051 #include "qgroup.h"
0052 #include "delalloc-space.h"
0053 #include "block-group.h"
0054 #include "space-info.h"
0055 #include "zoned.h"
0056 #include "subpage.h"
0057 #include "inode-item.h"
0058 
0059 struct btrfs_iget_args {
0060     u64 ino;
0061     struct btrfs_root *root;
0062 };
0063 
0064 struct btrfs_dio_data {
0065     ssize_t submitted;
0066     struct extent_changeset *data_reserved;
0067     bool data_space_reserved;
0068     bool nocow_done;
0069 };
0070 
0071 struct btrfs_dio_private {
0072     struct inode *inode;
0073 
0074     /*
0075      * Since DIO can use anonymous page, we cannot use page_offset() to
0076      * grab the file offset, thus need a dedicated member for file offset.
0077      */
0078     u64 file_offset;
0079     /* Used for bio::bi_size */
0080     u32 bytes;
0081 
0082     /*
0083      * References to this structure. There is one reference per in-flight
0084      * bio plus one while we're still setting up.
0085      */
0086     refcount_t refs;
0087 
0088     /* Array of checksums */
0089     u8 *csums;
0090 
0091     /* This must be last */
0092     struct bio bio;
0093 };
0094 
0095 static struct bio_set btrfs_dio_bioset;
0096 
0097 struct btrfs_rename_ctx {
0098     /* Output field. Stores the index number of the old directory entry. */
0099     u64 index;
0100 };
0101 
0102 static const struct inode_operations btrfs_dir_inode_operations;
0103 static const struct inode_operations btrfs_symlink_inode_operations;
0104 static const struct inode_operations btrfs_special_inode_operations;
0105 static const struct inode_operations btrfs_file_inode_operations;
0106 static const struct address_space_operations btrfs_aops;
0107 static const struct file_operations btrfs_dir_file_operations;
0108 
0109 static struct kmem_cache *btrfs_inode_cachep;
0110 struct kmem_cache *btrfs_trans_handle_cachep;
0111 struct kmem_cache *btrfs_path_cachep;
0112 struct kmem_cache *btrfs_free_space_cachep;
0113 struct kmem_cache *btrfs_free_space_bitmap_cachep;
0114 
0115 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
0116 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
0117 static noinline int cow_file_range(struct btrfs_inode *inode,
0118                    struct page *locked_page,
0119                    u64 start, u64 end, int *page_started,
0120                    unsigned long *nr_written, int unlock,
0121                    u64 *done_offset);
0122 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
0123                        u64 len, u64 orig_start, u64 block_start,
0124                        u64 block_len, u64 orig_block_len,
0125                        u64 ram_bytes, int compress_type,
0126                        int type);
0127 
0128 /*
0129  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
0130  *
0131  * ilock_flags can have the following bit set:
0132  *
0133  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
0134  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
0135  *           return -EAGAIN
0136  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
0137  */
0138 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
0139 {
0140     if (ilock_flags & BTRFS_ILOCK_SHARED) {
0141         if (ilock_flags & BTRFS_ILOCK_TRY) {
0142             if (!inode_trylock_shared(inode))
0143                 return -EAGAIN;
0144             else
0145                 return 0;
0146         }
0147         inode_lock_shared(inode);
0148     } else {
0149         if (ilock_flags & BTRFS_ILOCK_TRY) {
0150             if (!inode_trylock(inode))
0151                 return -EAGAIN;
0152             else
0153                 return 0;
0154         }
0155         inode_lock(inode);
0156     }
0157     if (ilock_flags & BTRFS_ILOCK_MMAP)
0158         down_write(&BTRFS_I(inode)->i_mmap_lock);
0159     return 0;
0160 }
0161 
0162 /*
0163  * btrfs_inode_unlock - unock inode i_rwsem
0164  *
0165  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
0166  * to decide whether the lock acquired is shared or exclusive.
0167  */
0168 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
0169 {
0170     if (ilock_flags & BTRFS_ILOCK_MMAP)
0171         up_write(&BTRFS_I(inode)->i_mmap_lock);
0172     if (ilock_flags & BTRFS_ILOCK_SHARED)
0173         inode_unlock_shared(inode);
0174     else
0175         inode_unlock(inode);
0176 }
0177 
0178 /*
0179  * Cleanup all submitted ordered extents in specified range to handle errors
0180  * from the btrfs_run_delalloc_range() callback.
0181  *
0182  * NOTE: caller must ensure that when an error happens, it can not call
0183  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
0184  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
0185  * to be released, which we want to happen only when finishing the ordered
0186  * extent (btrfs_finish_ordered_io()).
0187  */
0188 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
0189                          struct page *locked_page,
0190                          u64 offset, u64 bytes)
0191 {
0192     unsigned long index = offset >> PAGE_SHIFT;
0193     unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
0194     u64 page_start, page_end;
0195     struct page *page;
0196 
0197     if (locked_page) {
0198         page_start = page_offset(locked_page);
0199         page_end = page_start + PAGE_SIZE - 1;
0200     }
0201 
0202     while (index <= end_index) {
0203         /*
0204          * For locked page, we will call end_extent_writepage() on it
0205          * in run_delalloc_range() for the error handling.  That
0206          * end_extent_writepage() function will call
0207          * btrfs_mark_ordered_io_finished() to clear page Ordered and
0208          * run the ordered extent accounting.
0209          *
0210          * Here we can't just clear the Ordered bit, or
0211          * btrfs_mark_ordered_io_finished() would skip the accounting
0212          * for the page range, and the ordered extent will never finish.
0213          */
0214         if (locked_page && index == (page_start >> PAGE_SHIFT)) {
0215             index++;
0216             continue;
0217         }
0218         page = find_get_page(inode->vfs_inode.i_mapping, index);
0219         index++;
0220         if (!page)
0221             continue;
0222 
0223         /*
0224          * Here we just clear all Ordered bits for every page in the
0225          * range, then btrfs_mark_ordered_io_finished() will handle
0226          * the ordered extent accounting for the range.
0227          */
0228         btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
0229                            offset, bytes);
0230         put_page(page);
0231     }
0232 
0233     if (locked_page) {
0234         /* The locked page covers the full range, nothing needs to be done */
0235         if (bytes + offset <= page_start + PAGE_SIZE)
0236             return;
0237         /*
0238          * In case this page belongs to the delalloc range being
0239          * instantiated then skip it, since the first page of a range is
0240          * going to be properly cleaned up by the caller of
0241          * run_delalloc_range
0242          */
0243         if (page_start >= offset && page_end <= (offset + bytes - 1)) {
0244             bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
0245             offset = page_offset(locked_page) + PAGE_SIZE;
0246         }
0247     }
0248 
0249     return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
0250 }
0251 
0252 static int btrfs_dirty_inode(struct inode *inode);
0253 
0254 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
0255                      struct btrfs_new_inode_args *args)
0256 {
0257     int err;
0258 
0259     if (args->default_acl) {
0260         err = __btrfs_set_acl(trans, args->inode, args->default_acl,
0261                       ACL_TYPE_DEFAULT);
0262         if (err)
0263             return err;
0264     }
0265     if (args->acl) {
0266         err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
0267         if (err)
0268             return err;
0269     }
0270     if (!args->default_acl && !args->acl)
0271         cache_no_acl(args->inode);
0272     return btrfs_xattr_security_init(trans, args->inode, args->dir,
0273                      &args->dentry->d_name);
0274 }
0275 
0276 /*
0277  * this does all the hard work for inserting an inline extent into
0278  * the btree.  The caller should have done a btrfs_drop_extents so that
0279  * no overlapping inline items exist in the btree
0280  */
0281 static int insert_inline_extent(struct btrfs_trans_handle *trans,
0282                 struct btrfs_path *path,
0283                 struct btrfs_inode *inode, bool extent_inserted,
0284                 size_t size, size_t compressed_size,
0285                 int compress_type,
0286                 struct page **compressed_pages,
0287                 bool update_i_size)
0288 {
0289     struct btrfs_root *root = inode->root;
0290     struct extent_buffer *leaf;
0291     struct page *page = NULL;
0292     char *kaddr;
0293     unsigned long ptr;
0294     struct btrfs_file_extent_item *ei;
0295     int ret;
0296     size_t cur_size = size;
0297     u64 i_size;
0298 
0299     ASSERT((compressed_size > 0 && compressed_pages) ||
0300            (compressed_size == 0 && !compressed_pages));
0301 
0302     if (compressed_size && compressed_pages)
0303         cur_size = compressed_size;
0304 
0305     if (!extent_inserted) {
0306         struct btrfs_key key;
0307         size_t datasize;
0308 
0309         key.objectid = btrfs_ino(inode);
0310         key.offset = 0;
0311         key.type = BTRFS_EXTENT_DATA_KEY;
0312 
0313         datasize = btrfs_file_extent_calc_inline_size(cur_size);
0314         ret = btrfs_insert_empty_item(trans, root, path, &key,
0315                           datasize);
0316         if (ret)
0317             goto fail;
0318     }
0319     leaf = path->nodes[0];
0320     ei = btrfs_item_ptr(leaf, path->slots[0],
0321                 struct btrfs_file_extent_item);
0322     btrfs_set_file_extent_generation(leaf, ei, trans->transid);
0323     btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
0324     btrfs_set_file_extent_encryption(leaf, ei, 0);
0325     btrfs_set_file_extent_other_encoding(leaf, ei, 0);
0326     btrfs_set_file_extent_ram_bytes(leaf, ei, size);
0327     ptr = btrfs_file_extent_inline_start(ei);
0328 
0329     if (compress_type != BTRFS_COMPRESS_NONE) {
0330         struct page *cpage;
0331         int i = 0;
0332         while (compressed_size > 0) {
0333             cpage = compressed_pages[i];
0334             cur_size = min_t(unsigned long, compressed_size,
0335                        PAGE_SIZE);
0336 
0337             kaddr = kmap_local_page(cpage);
0338             write_extent_buffer(leaf, kaddr, ptr, cur_size);
0339             kunmap_local(kaddr);
0340 
0341             i++;
0342             ptr += cur_size;
0343             compressed_size -= cur_size;
0344         }
0345         btrfs_set_file_extent_compression(leaf, ei,
0346                           compress_type);
0347     } else {
0348         page = find_get_page(inode->vfs_inode.i_mapping, 0);
0349         btrfs_set_file_extent_compression(leaf, ei, 0);
0350         kaddr = kmap_local_page(page);
0351         write_extent_buffer(leaf, kaddr, ptr, size);
0352         kunmap_local(kaddr);
0353         put_page(page);
0354     }
0355     btrfs_mark_buffer_dirty(leaf);
0356     btrfs_release_path(path);
0357 
0358     /*
0359      * We align size to sectorsize for inline extents just for simplicity
0360      * sake.
0361      */
0362     ret = btrfs_inode_set_file_extent_range(inode, 0,
0363                     ALIGN(size, root->fs_info->sectorsize));
0364     if (ret)
0365         goto fail;
0366 
0367     /*
0368      * We're an inline extent, so nobody can extend the file past i_size
0369      * without locking a page we already have locked.
0370      *
0371      * We must do any i_size and inode updates before we unlock the pages.
0372      * Otherwise we could end up racing with unlink.
0373      */
0374     i_size = i_size_read(&inode->vfs_inode);
0375     if (update_i_size && size > i_size) {
0376         i_size_write(&inode->vfs_inode, size);
0377         i_size = size;
0378     }
0379     inode->disk_i_size = i_size;
0380 
0381 fail:
0382     return ret;
0383 }
0384 
0385 
0386 /*
0387  * conditionally insert an inline extent into the file.  This
0388  * does the checks required to make sure the data is small enough
0389  * to fit as an inline extent.
0390  */
0391 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
0392                       size_t compressed_size,
0393                       int compress_type,
0394                       struct page **compressed_pages,
0395                       bool update_i_size)
0396 {
0397     struct btrfs_drop_extents_args drop_args = { 0 };
0398     struct btrfs_root *root = inode->root;
0399     struct btrfs_fs_info *fs_info = root->fs_info;
0400     struct btrfs_trans_handle *trans;
0401     u64 data_len = (compressed_size ?: size);
0402     int ret;
0403     struct btrfs_path *path;
0404 
0405     /*
0406      * We can create an inline extent if it ends at or beyond the current
0407      * i_size, is no larger than a sector (decompressed), and the (possibly
0408      * compressed) data fits in a leaf and the configured maximum inline
0409      * size.
0410      */
0411     if (size < i_size_read(&inode->vfs_inode) ||
0412         size > fs_info->sectorsize ||
0413         data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
0414         data_len > fs_info->max_inline)
0415         return 1;
0416 
0417     path = btrfs_alloc_path();
0418     if (!path)
0419         return -ENOMEM;
0420 
0421     trans = btrfs_join_transaction(root);
0422     if (IS_ERR(trans)) {
0423         btrfs_free_path(path);
0424         return PTR_ERR(trans);
0425     }
0426     trans->block_rsv = &inode->block_rsv;
0427 
0428     drop_args.path = path;
0429     drop_args.start = 0;
0430     drop_args.end = fs_info->sectorsize;
0431     drop_args.drop_cache = true;
0432     drop_args.replace_extent = true;
0433     drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
0434     ret = btrfs_drop_extents(trans, root, inode, &drop_args);
0435     if (ret) {
0436         btrfs_abort_transaction(trans, ret);
0437         goto out;
0438     }
0439 
0440     ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
0441                    size, compressed_size, compress_type,
0442                    compressed_pages, update_i_size);
0443     if (ret && ret != -ENOSPC) {
0444         btrfs_abort_transaction(trans, ret);
0445         goto out;
0446     } else if (ret == -ENOSPC) {
0447         ret = 1;
0448         goto out;
0449     }
0450 
0451     btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
0452     ret = btrfs_update_inode(trans, root, inode);
0453     if (ret && ret != -ENOSPC) {
0454         btrfs_abort_transaction(trans, ret);
0455         goto out;
0456     } else if (ret == -ENOSPC) {
0457         ret = 1;
0458         goto out;
0459     }
0460 
0461     btrfs_set_inode_full_sync(inode);
0462 out:
0463     /*
0464      * Don't forget to free the reserved space, as for inlined extent
0465      * it won't count as data extent, free them directly here.
0466      * And at reserve time, it's always aligned to page size, so
0467      * just free one page here.
0468      */
0469     btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
0470     btrfs_free_path(path);
0471     btrfs_end_transaction(trans);
0472     return ret;
0473 }
0474 
0475 struct async_extent {
0476     u64 start;
0477     u64 ram_size;
0478     u64 compressed_size;
0479     struct page **pages;
0480     unsigned long nr_pages;
0481     int compress_type;
0482     struct list_head list;
0483 };
0484 
0485 struct async_chunk {
0486     struct inode *inode;
0487     struct page *locked_page;
0488     u64 start;
0489     u64 end;
0490     blk_opf_t write_flags;
0491     struct list_head extents;
0492     struct cgroup_subsys_state *blkcg_css;
0493     struct btrfs_work work;
0494     struct async_cow *async_cow;
0495 };
0496 
0497 struct async_cow {
0498     atomic_t num_chunks;
0499     struct async_chunk chunks[];
0500 };
0501 
0502 static noinline int add_async_extent(struct async_chunk *cow,
0503                      u64 start, u64 ram_size,
0504                      u64 compressed_size,
0505                      struct page **pages,
0506                      unsigned long nr_pages,
0507                      int compress_type)
0508 {
0509     struct async_extent *async_extent;
0510 
0511     async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
0512     BUG_ON(!async_extent); /* -ENOMEM */
0513     async_extent->start = start;
0514     async_extent->ram_size = ram_size;
0515     async_extent->compressed_size = compressed_size;
0516     async_extent->pages = pages;
0517     async_extent->nr_pages = nr_pages;
0518     async_extent->compress_type = compress_type;
0519     list_add_tail(&async_extent->list, &cow->extents);
0520     return 0;
0521 }
0522 
0523 /*
0524  * Check if the inode needs to be submitted to compression, based on mount
0525  * options, defragmentation, properties or heuristics.
0526  */
0527 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
0528                       u64 end)
0529 {
0530     struct btrfs_fs_info *fs_info = inode->root->fs_info;
0531 
0532     if (!btrfs_inode_can_compress(inode)) {
0533         WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
0534             KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
0535             btrfs_ino(inode));
0536         return 0;
0537     }
0538     /*
0539      * Special check for subpage.
0540      *
0541      * We lock the full page then run each delalloc range in the page, thus
0542      * for the following case, we will hit some subpage specific corner case:
0543      *
0544      * 0        32K     64K
0545      * |    |///////|   |///////|
0546      *      \- A        \- B
0547      *
0548      * In above case, both range A and range B will try to unlock the full
0549      * page [0, 64K), causing the one finished later will have page
0550      * unlocked already, triggering various page lock requirement BUG_ON()s.
0551      *
0552      * So here we add an artificial limit that subpage compression can only
0553      * if the range is fully page aligned.
0554      *
0555      * In theory we only need to ensure the first page is fully covered, but
0556      * the tailing partial page will be locked until the full compression
0557      * finishes, delaying the write of other range.
0558      *
0559      * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
0560      * first to prevent any submitted async extent to unlock the full page.
0561      * By this, we can ensure for subpage case that only the last async_cow
0562      * will unlock the full page.
0563      */
0564     if (fs_info->sectorsize < PAGE_SIZE) {
0565         if (!PAGE_ALIGNED(start) ||
0566             !PAGE_ALIGNED(end + 1))
0567             return 0;
0568     }
0569 
0570     /* force compress */
0571     if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
0572         return 1;
0573     /* defrag ioctl */
0574     if (inode->defrag_compress)
0575         return 1;
0576     /* bad compression ratios */
0577     if (inode->flags & BTRFS_INODE_NOCOMPRESS)
0578         return 0;
0579     if (btrfs_test_opt(fs_info, COMPRESS) ||
0580         inode->flags & BTRFS_INODE_COMPRESS ||
0581         inode->prop_compress)
0582         return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
0583     return 0;
0584 }
0585 
0586 static inline void inode_should_defrag(struct btrfs_inode *inode,
0587         u64 start, u64 end, u64 num_bytes, u32 small_write)
0588 {
0589     /* If this is a small write inside eof, kick off a defrag */
0590     if (num_bytes < small_write &&
0591         (start > 0 || end + 1 < inode->disk_i_size))
0592         btrfs_add_inode_defrag(NULL, inode, small_write);
0593 }
0594 
0595 /*
0596  * we create compressed extents in two phases.  The first
0597  * phase compresses a range of pages that have already been
0598  * locked (both pages and state bits are locked).
0599  *
0600  * This is done inside an ordered work queue, and the compression
0601  * is spread across many cpus.  The actual IO submission is step
0602  * two, and the ordered work queue takes care of making sure that
0603  * happens in the same order things were put onto the queue by
0604  * writepages and friends.
0605  *
0606  * If this code finds it can't get good compression, it puts an
0607  * entry onto the work queue to write the uncompressed bytes.  This
0608  * makes sure that both compressed inodes and uncompressed inodes
0609  * are written in the same order that the flusher thread sent them
0610  * down.
0611  */
0612 static noinline int compress_file_range(struct async_chunk *async_chunk)
0613 {
0614     struct inode *inode = async_chunk->inode;
0615     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0616     u64 blocksize = fs_info->sectorsize;
0617     u64 start = async_chunk->start;
0618     u64 end = async_chunk->end;
0619     u64 actual_end;
0620     u64 i_size;
0621     int ret = 0;
0622     struct page **pages = NULL;
0623     unsigned long nr_pages;
0624     unsigned long total_compressed = 0;
0625     unsigned long total_in = 0;
0626     int i;
0627     int will_compress;
0628     int compress_type = fs_info->compress_type;
0629     int compressed_extents = 0;
0630     int redirty = 0;
0631 
0632     inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
0633             SZ_16K);
0634 
0635     /*
0636      * We need to save i_size before now because it could change in between
0637      * us evaluating the size and assigning it.  This is because we lock and
0638      * unlock the page in truncate and fallocate, and then modify the i_size
0639      * later on.
0640      *
0641      * The barriers are to emulate READ_ONCE, remove that once i_size_read
0642      * does that for us.
0643      */
0644     barrier();
0645     i_size = i_size_read(inode);
0646     barrier();
0647     actual_end = min_t(u64, i_size, end + 1);
0648 again:
0649     will_compress = 0;
0650     nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
0651     nr_pages = min_t(unsigned long, nr_pages,
0652             BTRFS_MAX_COMPRESSED / PAGE_SIZE);
0653 
0654     /*
0655      * we don't want to send crud past the end of i_size through
0656      * compression, that's just a waste of CPU time.  So, if the
0657      * end of the file is before the start of our current
0658      * requested range of bytes, we bail out to the uncompressed
0659      * cleanup code that can deal with all of this.
0660      *
0661      * It isn't really the fastest way to fix things, but this is a
0662      * very uncommon corner.
0663      */
0664     if (actual_end <= start)
0665         goto cleanup_and_bail_uncompressed;
0666 
0667     total_compressed = actual_end - start;
0668 
0669     /*
0670      * Skip compression for a small file range(<=blocksize) that
0671      * isn't an inline extent, since it doesn't save disk space at all.
0672      */
0673     if (total_compressed <= blocksize &&
0674        (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
0675         goto cleanup_and_bail_uncompressed;
0676 
0677     /*
0678      * For subpage case, we require full page alignment for the sector
0679      * aligned range.
0680      * Thus we must also check against @actual_end, not just @end.
0681      */
0682     if (blocksize < PAGE_SIZE) {
0683         if (!PAGE_ALIGNED(start) ||
0684             !PAGE_ALIGNED(round_up(actual_end, blocksize)))
0685             goto cleanup_and_bail_uncompressed;
0686     }
0687 
0688     total_compressed = min_t(unsigned long, total_compressed,
0689             BTRFS_MAX_UNCOMPRESSED);
0690     total_in = 0;
0691     ret = 0;
0692 
0693     /*
0694      * we do compression for mount -o compress and when the
0695      * inode has not been flagged as nocompress.  This flag can
0696      * change at any time if we discover bad compression ratios.
0697      */
0698     if (inode_need_compress(BTRFS_I(inode), start, end)) {
0699         WARN_ON(pages);
0700         pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
0701         if (!pages) {
0702             /* just bail out to the uncompressed code */
0703             nr_pages = 0;
0704             goto cont;
0705         }
0706 
0707         if (BTRFS_I(inode)->defrag_compress)
0708             compress_type = BTRFS_I(inode)->defrag_compress;
0709         else if (BTRFS_I(inode)->prop_compress)
0710             compress_type = BTRFS_I(inode)->prop_compress;
0711 
0712         /*
0713          * we need to call clear_page_dirty_for_io on each
0714          * page in the range.  Otherwise applications with the file
0715          * mmap'd can wander in and change the page contents while
0716          * we are compressing them.
0717          *
0718          * If the compression fails for any reason, we set the pages
0719          * dirty again later on.
0720          *
0721          * Note that the remaining part is redirtied, the start pointer
0722          * has moved, the end is the original one.
0723          */
0724         if (!redirty) {
0725             extent_range_clear_dirty_for_io(inode, start, end);
0726             redirty = 1;
0727         }
0728 
0729         /* Compression level is applied here and only here */
0730         ret = btrfs_compress_pages(
0731             compress_type | (fs_info->compress_level << 4),
0732                        inode->i_mapping, start,
0733                        pages,
0734                        &nr_pages,
0735                        &total_in,
0736                        &total_compressed);
0737 
0738         if (!ret) {
0739             unsigned long offset = offset_in_page(total_compressed);
0740             struct page *page = pages[nr_pages - 1];
0741 
0742             /* zero the tail end of the last page, we might be
0743              * sending it down to disk
0744              */
0745             if (offset)
0746                 memzero_page(page, offset, PAGE_SIZE - offset);
0747             will_compress = 1;
0748         }
0749     }
0750 cont:
0751     /*
0752      * Check cow_file_range() for why we don't even try to create inline
0753      * extent for subpage case.
0754      */
0755     if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
0756         /* lets try to make an inline extent */
0757         if (ret || total_in < actual_end) {
0758             /* we didn't compress the entire range, try
0759              * to make an uncompressed inline extent.
0760              */
0761             ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
0762                             0, BTRFS_COMPRESS_NONE,
0763                             NULL, false);
0764         } else {
0765             /* try making a compressed inline extent */
0766             ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
0767                             total_compressed,
0768                             compress_type, pages,
0769                             false);
0770         }
0771         if (ret <= 0) {
0772             unsigned long clear_flags = EXTENT_DELALLOC |
0773                 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
0774                 EXTENT_DO_ACCOUNTING;
0775             unsigned long page_error_op;
0776 
0777             page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
0778 
0779             /*
0780              * inline extent creation worked or returned error,
0781              * we don't need to create any more async work items.
0782              * Unlock and free up our temp pages.
0783              *
0784              * We use DO_ACCOUNTING here because we need the
0785              * delalloc_release_metadata to be done _after_ we drop
0786              * our outstanding extent for clearing delalloc for this
0787              * range.
0788              */
0789             extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
0790                              NULL,
0791                              clear_flags,
0792                              PAGE_UNLOCK |
0793                              PAGE_START_WRITEBACK |
0794                              page_error_op |
0795                              PAGE_END_WRITEBACK);
0796 
0797             /*
0798              * Ensure we only free the compressed pages if we have
0799              * them allocated, as we can still reach here with
0800              * inode_need_compress() == false.
0801              */
0802             if (pages) {
0803                 for (i = 0; i < nr_pages; i++) {
0804                     WARN_ON(pages[i]->mapping);
0805                     put_page(pages[i]);
0806                 }
0807                 kfree(pages);
0808             }
0809             return 0;
0810         }
0811     }
0812 
0813     if (will_compress) {
0814         /*
0815          * we aren't doing an inline extent round the compressed size
0816          * up to a block size boundary so the allocator does sane
0817          * things
0818          */
0819         total_compressed = ALIGN(total_compressed, blocksize);
0820 
0821         /*
0822          * one last check to make sure the compression is really a
0823          * win, compare the page count read with the blocks on disk,
0824          * compression must free at least one sector size
0825          */
0826         total_in = round_up(total_in, fs_info->sectorsize);
0827         if (total_compressed + blocksize <= total_in) {
0828             compressed_extents++;
0829 
0830             /*
0831              * The async work queues will take care of doing actual
0832              * allocation on disk for these compressed pages, and
0833              * will submit them to the elevator.
0834              */
0835             add_async_extent(async_chunk, start, total_in,
0836                     total_compressed, pages, nr_pages,
0837                     compress_type);
0838 
0839             if (start + total_in < end) {
0840                 start += total_in;
0841                 pages = NULL;
0842                 cond_resched();
0843                 goto again;
0844             }
0845             return compressed_extents;
0846         }
0847     }
0848     if (pages) {
0849         /*
0850          * the compression code ran but failed to make things smaller,
0851          * free any pages it allocated and our page pointer array
0852          */
0853         for (i = 0; i < nr_pages; i++) {
0854             WARN_ON(pages[i]->mapping);
0855             put_page(pages[i]);
0856         }
0857         kfree(pages);
0858         pages = NULL;
0859         total_compressed = 0;
0860         nr_pages = 0;
0861 
0862         /* flag the file so we don't compress in the future */
0863         if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
0864             !(BTRFS_I(inode)->prop_compress)) {
0865             BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
0866         }
0867     }
0868 cleanup_and_bail_uncompressed:
0869     /*
0870      * No compression, but we still need to write the pages in the file
0871      * we've been given so far.  redirty the locked page if it corresponds
0872      * to our extent and set things up for the async work queue to run
0873      * cow_file_range to do the normal delalloc dance.
0874      */
0875     if (async_chunk->locked_page &&
0876         (page_offset(async_chunk->locked_page) >= start &&
0877          page_offset(async_chunk->locked_page)) <= end) {
0878         __set_page_dirty_nobuffers(async_chunk->locked_page);
0879         /* unlocked later on in the async handlers */
0880     }
0881 
0882     if (redirty)
0883         extent_range_redirty_for_io(inode, start, end);
0884     add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
0885              BTRFS_COMPRESS_NONE);
0886     compressed_extents++;
0887 
0888     return compressed_extents;
0889 }
0890 
0891 static void free_async_extent_pages(struct async_extent *async_extent)
0892 {
0893     int i;
0894 
0895     if (!async_extent->pages)
0896         return;
0897 
0898     for (i = 0; i < async_extent->nr_pages; i++) {
0899         WARN_ON(async_extent->pages[i]->mapping);
0900         put_page(async_extent->pages[i]);
0901     }
0902     kfree(async_extent->pages);
0903     async_extent->nr_pages = 0;
0904     async_extent->pages = NULL;
0905 }
0906 
0907 static int submit_uncompressed_range(struct btrfs_inode *inode,
0908                      struct async_extent *async_extent,
0909                      struct page *locked_page)
0910 {
0911     u64 start = async_extent->start;
0912     u64 end = async_extent->start + async_extent->ram_size - 1;
0913     unsigned long nr_written = 0;
0914     int page_started = 0;
0915     int ret;
0916 
0917     /*
0918      * Call cow_file_range() to run the delalloc range directly, since we
0919      * won't go to NOCOW or async path again.
0920      *
0921      * Also we call cow_file_range() with @unlock_page == 0, so that we
0922      * can directly submit them without interruption.
0923      */
0924     ret = cow_file_range(inode, locked_page, start, end, &page_started,
0925                  &nr_written, 0, NULL);
0926     /* Inline extent inserted, page gets unlocked and everything is done */
0927     if (page_started) {
0928         ret = 0;
0929         goto out;
0930     }
0931     if (ret < 0) {
0932         btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
0933         if (locked_page) {
0934             const u64 page_start = page_offset(locked_page);
0935             const u64 page_end = page_start + PAGE_SIZE - 1;
0936 
0937             btrfs_page_set_error(inode->root->fs_info, locked_page,
0938                          page_start, PAGE_SIZE);
0939             set_page_writeback(locked_page);
0940             end_page_writeback(locked_page);
0941             end_extent_writepage(locked_page, ret, page_start, page_end);
0942             unlock_page(locked_page);
0943         }
0944         goto out;
0945     }
0946 
0947     ret = extent_write_locked_range(&inode->vfs_inode, start, end);
0948     /* All pages will be unlocked, including @locked_page */
0949 out:
0950     kfree(async_extent);
0951     return ret;
0952 }
0953 
0954 static int submit_one_async_extent(struct btrfs_inode *inode,
0955                    struct async_chunk *async_chunk,
0956                    struct async_extent *async_extent,
0957                    u64 *alloc_hint)
0958 {
0959     struct extent_io_tree *io_tree = &inode->io_tree;
0960     struct btrfs_root *root = inode->root;
0961     struct btrfs_fs_info *fs_info = root->fs_info;
0962     struct btrfs_key ins;
0963     struct page *locked_page = NULL;
0964     struct extent_map *em;
0965     int ret = 0;
0966     u64 start = async_extent->start;
0967     u64 end = async_extent->start + async_extent->ram_size - 1;
0968 
0969     /*
0970      * If async_chunk->locked_page is in the async_extent range, we need to
0971      * handle it.
0972      */
0973     if (async_chunk->locked_page) {
0974         u64 locked_page_start = page_offset(async_chunk->locked_page);
0975         u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
0976 
0977         if (!(start >= locked_page_end || end <= locked_page_start))
0978             locked_page = async_chunk->locked_page;
0979     }
0980     lock_extent(io_tree, start, end);
0981 
0982     /* We have fall back to uncompressed write */
0983     if (!async_extent->pages)
0984         return submit_uncompressed_range(inode, async_extent, locked_page);
0985 
0986     ret = btrfs_reserve_extent(root, async_extent->ram_size,
0987                    async_extent->compressed_size,
0988                    async_extent->compressed_size,
0989                    0, *alloc_hint, &ins, 1, 1);
0990     if (ret) {
0991         free_async_extent_pages(async_extent);
0992         /*
0993          * Here we used to try again by going back to non-compressed
0994          * path for ENOSPC.  But we can't reserve space even for
0995          * compressed size, how could it work for uncompressed size
0996          * which requires larger size?  So here we directly go error
0997          * path.
0998          */
0999         goto out_free;
1000     }
1001 
1002     /* Here we're doing allocation and writeback of the compressed pages */
1003     em = create_io_em(inode, start,
1004               async_extent->ram_size,   /* len */
1005               start,            /* orig_start */
1006               ins.objectid,         /* block_start */
1007               ins.offset,           /* block_len */
1008               ins.offset,           /* orig_block_len */
1009               async_extent->ram_size,   /* ram_bytes */
1010               async_extent->compress_type,
1011               BTRFS_ORDERED_COMPRESSED);
1012     if (IS_ERR(em)) {
1013         ret = PTR_ERR(em);
1014         goto out_free_reserve;
1015     }
1016     free_extent_map(em);
1017 
1018     ret = btrfs_add_ordered_extent(inode, start,        /* file_offset */
1019                        async_extent->ram_size,  /* num_bytes */
1020                        async_extent->ram_size,  /* ram_bytes */
1021                        ins.objectid,        /* disk_bytenr */
1022                        ins.offset,      /* disk_num_bytes */
1023                        0,           /* offset */
1024                        1 << BTRFS_ORDERED_COMPRESSED,
1025                        async_extent->compress_type);
1026     if (ret) {
1027         btrfs_drop_extent_cache(inode, start, end, 0);
1028         goto out_free_reserve;
1029     }
1030     btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1031 
1032     /* Clear dirty, set writeback and unlock the pages. */
1033     extent_clear_unlock_delalloc(inode, start, end,
1034             NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1035             PAGE_UNLOCK | PAGE_START_WRITEBACK);
1036     if (btrfs_submit_compressed_write(inode, start, /* file_offset */
1037                 async_extent->ram_size, /* num_bytes */
1038                 ins.objectid,       /* disk_bytenr */
1039                 ins.offset,         /* compressed_len */
1040                 async_extent->pages,    /* compressed_pages */
1041                 async_extent->nr_pages,
1042                 async_chunk->write_flags,
1043                 async_chunk->blkcg_css, true)) {
1044         const u64 start = async_extent->start;
1045         const u64 end = start + async_extent->ram_size - 1;
1046 
1047         btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0);
1048 
1049         extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
1050                          PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1051         free_async_extent_pages(async_extent);
1052     }
1053     *alloc_hint = ins.objectid + ins.offset;
1054     kfree(async_extent);
1055     return ret;
1056 
1057 out_free_reserve:
1058     btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1059     btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1060 out_free:
1061     extent_clear_unlock_delalloc(inode, start, end,
1062                      NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1063                      EXTENT_DELALLOC_NEW |
1064                      EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1065                      PAGE_UNLOCK | PAGE_START_WRITEBACK |
1066                      PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1067     free_async_extent_pages(async_extent);
1068     kfree(async_extent);
1069     return ret;
1070 }
1071 
1072 /*
1073  * Phase two of compressed writeback.  This is the ordered portion of the code,
1074  * which only gets called in the order the work was queued.  We walk all the
1075  * async extents created by compress_file_range and send them down to the disk.
1076  */
1077 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
1078 {
1079     struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
1080     struct btrfs_fs_info *fs_info = inode->root->fs_info;
1081     struct async_extent *async_extent;
1082     u64 alloc_hint = 0;
1083     int ret = 0;
1084 
1085     while (!list_empty(&async_chunk->extents)) {
1086         u64 extent_start;
1087         u64 ram_size;
1088 
1089         async_extent = list_entry(async_chunk->extents.next,
1090                       struct async_extent, list);
1091         list_del(&async_extent->list);
1092         extent_start = async_extent->start;
1093         ram_size = async_extent->ram_size;
1094 
1095         ret = submit_one_async_extent(inode, async_chunk, async_extent,
1096                           &alloc_hint);
1097         btrfs_debug(fs_info,
1098 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1099                 inode->root->root_key.objectid,
1100                 btrfs_ino(inode), extent_start, ram_size, ret);
1101     }
1102 }
1103 
1104 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1105                       u64 num_bytes)
1106 {
1107     struct extent_map_tree *em_tree = &inode->extent_tree;
1108     struct extent_map *em;
1109     u64 alloc_hint = 0;
1110 
1111     read_lock(&em_tree->lock);
1112     em = search_extent_mapping(em_tree, start, num_bytes);
1113     if (em) {
1114         /*
1115          * if block start isn't an actual block number then find the
1116          * first block in this inode and use that as a hint.  If that
1117          * block is also bogus then just don't worry about it.
1118          */
1119         if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1120             free_extent_map(em);
1121             em = search_extent_mapping(em_tree, 0, 0);
1122             if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1123                 alloc_hint = em->block_start;
1124             if (em)
1125                 free_extent_map(em);
1126         } else {
1127             alloc_hint = em->block_start;
1128             free_extent_map(em);
1129         }
1130     }
1131     read_unlock(&em_tree->lock);
1132 
1133     return alloc_hint;
1134 }
1135 
1136 /*
1137  * when extent_io.c finds a delayed allocation range in the file,
1138  * the call backs end up in this code.  The basic idea is to
1139  * allocate extents on disk for the range, and create ordered data structs
1140  * in ram to track those extents.
1141  *
1142  * locked_page is the page that writepage had locked already.  We use
1143  * it to make sure we don't do extra locks or unlocks.
1144  *
1145  * *page_started is set to one if we unlock locked_page and do everything
1146  * required to start IO on it.  It may be clean and already done with
1147  * IO when we return.
1148  *
1149  * When unlock == 1, we unlock the pages in successfully allocated regions.
1150  * When unlock == 0, we leave them locked for writing them out.
1151  *
1152  * However, we unlock all the pages except @locked_page in case of failure.
1153  *
1154  * In summary, page locking state will be as follow:
1155  *
1156  * - page_started == 1 (return value)
1157  *     - All the pages are unlocked. IO is started.
1158  *     - Note that this can happen only on success
1159  * - unlock == 1
1160  *     - All the pages except @locked_page are unlocked in any case
1161  * - unlock == 0
1162  *     - On success, all the pages are locked for writing out them
1163  *     - On failure, all the pages except @locked_page are unlocked
1164  *
1165  * When a failure happens in the second or later iteration of the
1166  * while-loop, the ordered extents created in previous iterations are kept
1167  * intact. So, the caller must clean them up by calling
1168  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1169  * example.
1170  */
1171 static noinline int cow_file_range(struct btrfs_inode *inode,
1172                    struct page *locked_page,
1173                    u64 start, u64 end, int *page_started,
1174                    unsigned long *nr_written, int unlock,
1175                    u64 *done_offset)
1176 {
1177     struct btrfs_root *root = inode->root;
1178     struct btrfs_fs_info *fs_info = root->fs_info;
1179     u64 alloc_hint = 0;
1180     u64 orig_start = start;
1181     u64 num_bytes;
1182     unsigned long ram_size;
1183     u64 cur_alloc_size = 0;
1184     u64 min_alloc_size;
1185     u64 blocksize = fs_info->sectorsize;
1186     struct btrfs_key ins;
1187     struct extent_map *em;
1188     unsigned clear_bits;
1189     unsigned long page_ops;
1190     bool extent_reserved = false;
1191     int ret = 0;
1192 
1193     if (btrfs_is_free_space_inode(inode)) {
1194         ret = -EINVAL;
1195         goto out_unlock;
1196     }
1197 
1198     num_bytes = ALIGN(end - start + 1, blocksize);
1199     num_bytes = max(blocksize,  num_bytes);
1200     ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1201 
1202     inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1203 
1204     /*
1205      * Due to the page size limit, for subpage we can only trigger the
1206      * writeback for the dirty sectors of page, that means data writeback
1207      * is doing more writeback than what we want.
1208      *
1209      * This is especially unexpected for some call sites like fallocate,
1210      * where we only increase i_size after everything is done.
1211      * This means we can trigger inline extent even if we didn't want to.
1212      * So here we skip inline extent creation completely.
1213      */
1214     if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
1215         u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1216                        end + 1);
1217 
1218         /* lets try to make an inline extent */
1219         ret = cow_file_range_inline(inode, actual_end, 0,
1220                         BTRFS_COMPRESS_NONE, NULL, false);
1221         if (ret == 0) {
1222             /*
1223              * We use DO_ACCOUNTING here because we need the
1224              * delalloc_release_metadata to be run _after_ we drop
1225              * our outstanding extent for clearing delalloc for this
1226              * range.
1227              */
1228             extent_clear_unlock_delalloc(inode, start, end,
1229                      locked_page,
1230                      EXTENT_LOCKED | EXTENT_DELALLOC |
1231                      EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1232                      EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1233                      PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1234             *nr_written = *nr_written +
1235                  (end - start + PAGE_SIZE) / PAGE_SIZE;
1236             *page_started = 1;
1237             /*
1238              * locked_page is locked by the caller of
1239              * writepage_delalloc(), not locked by
1240              * __process_pages_contig().
1241              *
1242              * We can't let __process_pages_contig() to unlock it,
1243              * as it doesn't have any subpage::writers recorded.
1244              *
1245              * Here we manually unlock the page, since the caller
1246              * can't use page_started to determine if it's an
1247              * inline extent or a compressed extent.
1248              */
1249             unlock_page(locked_page);
1250             goto out;
1251         } else if (ret < 0) {
1252             goto out_unlock;
1253         }
1254     }
1255 
1256     alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1257     btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1258 
1259     /*
1260      * Relocation relies on the relocated extents to have exactly the same
1261      * size as the original extents. Normally writeback for relocation data
1262      * extents follows a NOCOW path because relocation preallocates the
1263      * extents. However, due to an operation such as scrub turning a block
1264      * group to RO mode, it may fallback to COW mode, so we must make sure
1265      * an extent allocated during COW has exactly the requested size and can
1266      * not be split into smaller extents, otherwise relocation breaks and
1267      * fails during the stage where it updates the bytenr of file extent
1268      * items.
1269      */
1270     if (btrfs_is_data_reloc_root(root))
1271         min_alloc_size = num_bytes;
1272     else
1273         min_alloc_size = fs_info->sectorsize;
1274 
1275     while (num_bytes > 0) {
1276         cur_alloc_size = num_bytes;
1277         ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1278                        min_alloc_size, 0, alloc_hint,
1279                        &ins, 1, 1);
1280         if (ret < 0)
1281             goto out_unlock;
1282         cur_alloc_size = ins.offset;
1283         extent_reserved = true;
1284 
1285         ram_size = ins.offset;
1286         em = create_io_em(inode, start, ins.offset, /* len */
1287                   start, /* orig_start */
1288                   ins.objectid, /* block_start */
1289                   ins.offset, /* block_len */
1290                   ins.offset, /* orig_block_len */
1291                   ram_size, /* ram_bytes */
1292                   BTRFS_COMPRESS_NONE, /* compress_type */
1293                   BTRFS_ORDERED_REGULAR /* type */);
1294         if (IS_ERR(em)) {
1295             ret = PTR_ERR(em);
1296             goto out_reserve;
1297         }
1298         free_extent_map(em);
1299 
1300         ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size,
1301                            ins.objectid, cur_alloc_size, 0,
1302                            1 << BTRFS_ORDERED_REGULAR,
1303                            BTRFS_COMPRESS_NONE);
1304         if (ret)
1305             goto out_drop_extent_cache;
1306 
1307         if (btrfs_is_data_reloc_root(root)) {
1308             ret = btrfs_reloc_clone_csums(inode, start,
1309                               cur_alloc_size);
1310             /*
1311              * Only drop cache here, and process as normal.
1312              *
1313              * We must not allow extent_clear_unlock_delalloc()
1314              * at out_unlock label to free meta of this ordered
1315              * extent, as its meta should be freed by
1316              * btrfs_finish_ordered_io().
1317              *
1318              * So we must continue until @start is increased to
1319              * skip current ordered extent.
1320              */
1321             if (ret)
1322                 btrfs_drop_extent_cache(inode, start,
1323                         start + ram_size - 1, 0);
1324         }
1325 
1326         btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1327 
1328         /*
1329          * We're not doing compressed IO, don't unlock the first page
1330          * (which the caller expects to stay locked), don't clear any
1331          * dirty bits and don't set any writeback bits
1332          *
1333          * Do set the Ordered (Private2) bit so we know this page was
1334          * properly setup for writepage.
1335          */
1336         page_ops = unlock ? PAGE_UNLOCK : 0;
1337         page_ops |= PAGE_SET_ORDERED;
1338 
1339         extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1340                          locked_page,
1341                          EXTENT_LOCKED | EXTENT_DELALLOC,
1342                          page_ops);
1343         if (num_bytes < cur_alloc_size)
1344             num_bytes = 0;
1345         else
1346             num_bytes -= cur_alloc_size;
1347         alloc_hint = ins.objectid + ins.offset;
1348         start += cur_alloc_size;
1349         extent_reserved = false;
1350 
1351         /*
1352          * btrfs_reloc_clone_csums() error, since start is increased
1353          * extent_clear_unlock_delalloc() at out_unlock label won't
1354          * free metadata of current ordered extent, we're OK to exit.
1355          */
1356         if (ret)
1357             goto out_unlock;
1358     }
1359 out:
1360     return ret;
1361 
1362 out_drop_extent_cache:
1363     btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1364 out_reserve:
1365     btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1366     btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1367 out_unlock:
1368     /*
1369      * If done_offset is non-NULL and ret == -EAGAIN, we expect the
1370      * caller to write out the successfully allocated region and retry.
1371      */
1372     if (done_offset && ret == -EAGAIN) {
1373         if (orig_start < start)
1374             *done_offset = start - 1;
1375         else
1376             *done_offset = start;
1377         return ret;
1378     } else if (ret == -EAGAIN) {
1379         /* Convert to -ENOSPC since the caller cannot retry. */
1380         ret = -ENOSPC;
1381     }
1382 
1383     /*
1384      * Now, we have three regions to clean up:
1385      *
1386      * |-------(1)----|---(2)---|-------------(3)----------|
1387      * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1388      *
1389      * We process each region below.
1390      */
1391 
1392     clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1393         EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1394     page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1395 
1396     /*
1397      * For the range (1). We have already instantiated the ordered extents
1398      * for this region. They are cleaned up by
1399      * btrfs_cleanup_ordered_extents() in e.g,
1400      * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1401      * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1402      * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1403      * function.
1404      *
1405      * However, in case of unlock == 0, we still need to unlock the pages
1406      * (except @locked_page) to ensure all the pages are unlocked.
1407      */
1408     if (!unlock && orig_start < start) {
1409         if (!locked_page)
1410             mapping_set_error(inode->vfs_inode.i_mapping, ret);
1411         extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1412                          locked_page, 0, page_ops);
1413     }
1414 
1415     /*
1416      * For the range (2). If we reserved an extent for our delalloc range
1417      * (or a subrange) and failed to create the respective ordered extent,
1418      * then it means that when we reserved the extent we decremented the
1419      * extent's size from the data space_info's bytes_may_use counter and
1420      * incremented the space_info's bytes_reserved counter by the same
1421      * amount. We must make sure extent_clear_unlock_delalloc() does not try
1422      * to decrement again the data space_info's bytes_may_use counter,
1423      * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1424      */
1425     if (extent_reserved) {
1426         extent_clear_unlock_delalloc(inode, start,
1427                          start + cur_alloc_size - 1,
1428                          locked_page,
1429                          clear_bits,
1430                          page_ops);
1431         start += cur_alloc_size;
1432         if (start >= end)
1433             return ret;
1434     }
1435 
1436     /*
1437      * For the range (3). We never touched the region. In addition to the
1438      * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1439      * space_info's bytes_may_use counter, reserved in
1440      * btrfs_check_data_free_space().
1441      */
1442     extent_clear_unlock_delalloc(inode, start, end, locked_page,
1443                      clear_bits | EXTENT_CLEAR_DATA_RESV,
1444                      page_ops);
1445     return ret;
1446 }
1447 
1448 /*
1449  * work queue call back to started compression on a file and pages
1450  */
1451 static noinline void async_cow_start(struct btrfs_work *work)
1452 {
1453     struct async_chunk *async_chunk;
1454     int compressed_extents;
1455 
1456     async_chunk = container_of(work, struct async_chunk, work);
1457 
1458     compressed_extents = compress_file_range(async_chunk);
1459     if (compressed_extents == 0) {
1460         btrfs_add_delayed_iput(async_chunk->inode);
1461         async_chunk->inode = NULL;
1462     }
1463 }
1464 
1465 /*
1466  * work queue call back to submit previously compressed pages
1467  */
1468 static noinline void async_cow_submit(struct btrfs_work *work)
1469 {
1470     struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1471                              work);
1472     struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1473     unsigned long nr_pages;
1474 
1475     nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1476         PAGE_SHIFT;
1477 
1478     /*
1479      * ->inode could be NULL if async_chunk_start has failed to compress,
1480      * in which case we don't have anything to submit, yet we need to
1481      * always adjust ->async_delalloc_pages as its paired with the init
1482      * happening in cow_file_range_async
1483      */
1484     if (async_chunk->inode)
1485         submit_compressed_extents(async_chunk);
1486 
1487     /* atomic_sub_return implies a barrier */
1488     if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1489         5 * SZ_1M)
1490         cond_wake_up_nomb(&fs_info->async_submit_wait);
1491 }
1492 
1493 static noinline void async_cow_free(struct btrfs_work *work)
1494 {
1495     struct async_chunk *async_chunk;
1496     struct async_cow *async_cow;
1497 
1498     async_chunk = container_of(work, struct async_chunk, work);
1499     if (async_chunk->inode)
1500         btrfs_add_delayed_iput(async_chunk->inode);
1501     if (async_chunk->blkcg_css)
1502         css_put(async_chunk->blkcg_css);
1503 
1504     async_cow = async_chunk->async_cow;
1505     if (atomic_dec_and_test(&async_cow->num_chunks))
1506         kvfree(async_cow);
1507 }
1508 
1509 static int cow_file_range_async(struct btrfs_inode *inode,
1510                 struct writeback_control *wbc,
1511                 struct page *locked_page,
1512                 u64 start, u64 end, int *page_started,
1513                 unsigned long *nr_written)
1514 {
1515     struct btrfs_fs_info *fs_info = inode->root->fs_info;
1516     struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1517     struct async_cow *ctx;
1518     struct async_chunk *async_chunk;
1519     unsigned long nr_pages;
1520     u64 cur_end;
1521     u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1522     int i;
1523     bool should_compress;
1524     unsigned nofs_flag;
1525     const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1526 
1527     unlock_extent(&inode->io_tree, start, end);
1528 
1529     if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1530         !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1531         num_chunks = 1;
1532         should_compress = false;
1533     } else {
1534         should_compress = true;
1535     }
1536 
1537     nofs_flag = memalloc_nofs_save();
1538     ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1539     memalloc_nofs_restore(nofs_flag);
1540 
1541     if (!ctx) {
1542         unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1543             EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1544             EXTENT_DO_ACCOUNTING;
1545         unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1546                      PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1547 
1548         extent_clear_unlock_delalloc(inode, start, end, locked_page,
1549                          clear_bits, page_ops);
1550         return -ENOMEM;
1551     }
1552 
1553     async_chunk = ctx->chunks;
1554     atomic_set(&ctx->num_chunks, num_chunks);
1555 
1556     for (i = 0; i < num_chunks; i++) {
1557         if (should_compress)
1558             cur_end = min(end, start + SZ_512K - 1);
1559         else
1560             cur_end = end;
1561 
1562         /*
1563          * igrab is called higher up in the call chain, take only the
1564          * lightweight reference for the callback lifetime
1565          */
1566         ihold(&inode->vfs_inode);
1567         async_chunk[i].async_cow = ctx;
1568         async_chunk[i].inode = &inode->vfs_inode;
1569         async_chunk[i].start = start;
1570         async_chunk[i].end = cur_end;
1571         async_chunk[i].write_flags = write_flags;
1572         INIT_LIST_HEAD(&async_chunk[i].extents);
1573 
1574         /*
1575          * The locked_page comes all the way from writepage and its
1576          * the original page we were actually given.  As we spread
1577          * this large delalloc region across multiple async_chunk
1578          * structs, only the first struct needs a pointer to locked_page
1579          *
1580          * This way we don't need racey decisions about who is supposed
1581          * to unlock it.
1582          */
1583         if (locked_page) {
1584             /*
1585              * Depending on the compressibility, the pages might or
1586              * might not go through async.  We want all of them to
1587              * be accounted against wbc once.  Let's do it here
1588              * before the paths diverge.  wbc accounting is used
1589              * only for foreign writeback detection and doesn't
1590              * need full accuracy.  Just account the whole thing
1591              * against the first page.
1592              */
1593             wbc_account_cgroup_owner(wbc, locked_page,
1594                          cur_end - start);
1595             async_chunk[i].locked_page = locked_page;
1596             locked_page = NULL;
1597         } else {
1598             async_chunk[i].locked_page = NULL;
1599         }
1600 
1601         if (blkcg_css != blkcg_root_css) {
1602             css_get(blkcg_css);
1603             async_chunk[i].blkcg_css = blkcg_css;
1604         } else {
1605             async_chunk[i].blkcg_css = NULL;
1606         }
1607 
1608         btrfs_init_work(&async_chunk[i].work, async_cow_start,
1609                 async_cow_submit, async_cow_free);
1610 
1611         nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1612         atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1613 
1614         btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1615 
1616         *nr_written += nr_pages;
1617         start = cur_end + 1;
1618     }
1619     *page_started = 1;
1620     return 0;
1621 }
1622 
1623 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1624                        struct page *locked_page, u64 start,
1625                        u64 end, int *page_started,
1626                        unsigned long *nr_written)
1627 {
1628     u64 done_offset = end;
1629     int ret;
1630     bool locked_page_done = false;
1631 
1632     while (start <= end) {
1633         ret = cow_file_range(inode, locked_page, start, end, page_started,
1634                      nr_written, 0, &done_offset);
1635         if (ret && ret != -EAGAIN)
1636             return ret;
1637 
1638         if (*page_started) {
1639             ASSERT(ret == 0);
1640             return 0;
1641         }
1642 
1643         if (ret == 0)
1644             done_offset = end;
1645 
1646         if (done_offset == start) {
1647             wait_on_bit_io(&inode->root->fs_info->flags,
1648                        BTRFS_FS_NEED_ZONE_FINISH,
1649                        TASK_UNINTERRUPTIBLE);
1650             continue;
1651         }
1652 
1653         if (!locked_page_done) {
1654             __set_page_dirty_nobuffers(locked_page);
1655             account_page_redirty(locked_page);
1656         }
1657         locked_page_done = true;
1658         extent_write_locked_range(&inode->vfs_inode, start, done_offset);
1659 
1660         start = done_offset + 1;
1661     }
1662 
1663     *page_started = 1;
1664 
1665     return 0;
1666 }
1667 
1668 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1669                     u64 bytenr, u64 num_bytes)
1670 {
1671     struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1672     struct btrfs_ordered_sum *sums;
1673     int ret;
1674     LIST_HEAD(list);
1675 
1676     ret = btrfs_lookup_csums_range(csum_root, bytenr,
1677                        bytenr + num_bytes - 1, &list, 0);
1678     if (ret == 0 && list_empty(&list))
1679         return 0;
1680 
1681     while (!list_empty(&list)) {
1682         sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1683         list_del(&sums->list);
1684         kfree(sums);
1685     }
1686     if (ret < 0)
1687         return ret;
1688     return 1;
1689 }
1690 
1691 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1692                const u64 start, const u64 end,
1693                int *page_started, unsigned long *nr_written)
1694 {
1695     const bool is_space_ino = btrfs_is_free_space_inode(inode);
1696     const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1697     const u64 range_bytes = end + 1 - start;
1698     struct extent_io_tree *io_tree = &inode->io_tree;
1699     u64 range_start = start;
1700     u64 count;
1701 
1702     /*
1703      * If EXTENT_NORESERVE is set it means that when the buffered write was
1704      * made we had not enough available data space and therefore we did not
1705      * reserve data space for it, since we though we could do NOCOW for the
1706      * respective file range (either there is prealloc extent or the inode
1707      * has the NOCOW bit set).
1708      *
1709      * However when we need to fallback to COW mode (because for example the
1710      * block group for the corresponding extent was turned to RO mode by a
1711      * scrub or relocation) we need to do the following:
1712      *
1713      * 1) We increment the bytes_may_use counter of the data space info.
1714      *    If COW succeeds, it allocates a new data extent and after doing
1715      *    that it decrements the space info's bytes_may_use counter and
1716      *    increments its bytes_reserved counter by the same amount (we do
1717      *    this at btrfs_add_reserved_bytes()). So we need to increment the
1718      *    bytes_may_use counter to compensate (when space is reserved at
1719      *    buffered write time, the bytes_may_use counter is incremented);
1720      *
1721      * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1722      *    that if the COW path fails for any reason, it decrements (through
1723      *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1724      *    data space info, which we incremented in the step above.
1725      *
1726      * If we need to fallback to cow and the inode corresponds to a free
1727      * space cache inode or an inode of the data relocation tree, we must
1728      * also increment bytes_may_use of the data space_info for the same
1729      * reason. Space caches and relocated data extents always get a prealloc
1730      * extent for them, however scrub or balance may have set the block
1731      * group that contains that extent to RO mode and therefore force COW
1732      * when starting writeback.
1733      */
1734     count = count_range_bits(io_tree, &range_start, end, range_bytes,
1735                  EXTENT_NORESERVE, 0);
1736     if (count > 0 || is_space_ino || is_reloc_ino) {
1737         u64 bytes = count;
1738         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1739         struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1740 
1741         if (is_space_ino || is_reloc_ino)
1742             bytes = range_bytes;
1743 
1744         spin_lock(&sinfo->lock);
1745         btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1746         spin_unlock(&sinfo->lock);
1747 
1748         if (count > 0)
1749             clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1750                      0, 0, NULL);
1751     }
1752 
1753     return cow_file_range(inode, locked_page, start, end, page_started,
1754                   nr_written, 1, NULL);
1755 }
1756 
1757 struct can_nocow_file_extent_args {
1758     /* Input fields. */
1759 
1760     /* Start file offset of the range we want to NOCOW. */
1761     u64 start;
1762     /* End file offset (inclusive) of the range we want to NOCOW. */
1763     u64 end;
1764     bool writeback_path;
1765     bool strict;
1766     /*
1767      * Free the path passed to can_nocow_file_extent() once it's not needed
1768      * anymore.
1769      */
1770     bool free_path;
1771 
1772     /* Output fields. Only set when can_nocow_file_extent() returns 1. */
1773 
1774     u64 disk_bytenr;
1775     u64 disk_num_bytes;
1776     u64 extent_offset;
1777     /* Number of bytes that can be written to in NOCOW mode. */
1778     u64 num_bytes;
1779 };
1780 
1781 /*
1782  * Check if we can NOCOW the file extent that the path points to.
1783  * This function may return with the path released, so the caller should check
1784  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1785  *
1786  * Returns: < 0 on error
1787  *            0 if we can not NOCOW
1788  *            1 if we can NOCOW
1789  */
1790 static int can_nocow_file_extent(struct btrfs_path *path,
1791                  struct btrfs_key *key,
1792                  struct btrfs_inode *inode,
1793                  struct can_nocow_file_extent_args *args)
1794 {
1795     const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1796     struct extent_buffer *leaf = path->nodes[0];
1797     struct btrfs_root *root = inode->root;
1798     struct btrfs_file_extent_item *fi;
1799     u64 extent_end;
1800     u8 extent_type;
1801     int can_nocow = 0;
1802     int ret = 0;
1803 
1804     fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1805     extent_type = btrfs_file_extent_type(leaf, fi);
1806 
1807     if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1808         goto out;
1809 
1810     /* Can't access these fields unless we know it's not an inline extent. */
1811     args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1812     args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1813     args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1814 
1815     if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1816         extent_type == BTRFS_FILE_EXTENT_REG)
1817         goto out;
1818 
1819     /*
1820      * If the extent was created before the generation where the last snapshot
1821      * for its subvolume was created, then this implies the extent is shared,
1822      * hence we must COW.
1823      */
1824     if (!args->strict &&
1825         btrfs_file_extent_generation(leaf, fi) <=
1826         btrfs_root_last_snapshot(&root->root_item))
1827         goto out;
1828 
1829     /* An explicit hole, must COW. */
1830     if (args->disk_bytenr == 0)
1831         goto out;
1832 
1833     /* Compressed/encrypted/encoded extents must be COWed. */
1834     if (btrfs_file_extent_compression(leaf, fi) ||
1835         btrfs_file_extent_encryption(leaf, fi) ||
1836         btrfs_file_extent_other_encoding(leaf, fi))
1837         goto out;
1838 
1839     extent_end = btrfs_file_extent_end(path);
1840 
1841     /*
1842      * The following checks can be expensive, as they need to take other
1843      * locks and do btree or rbtree searches, so release the path to avoid
1844      * blocking other tasks for too long.
1845      */
1846     btrfs_release_path(path);
1847 
1848     ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1849                     key->offset - args->extent_offset,
1850                     args->disk_bytenr, false, path);
1851     WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1852     if (ret != 0)
1853         goto out;
1854 
1855     if (args->free_path) {
1856         /*
1857          * We don't need the path anymore, plus through the
1858          * csum_exist_in_range() call below we will end up allocating
1859          * another path. So free the path to avoid unnecessary extra
1860          * memory usage.
1861          */
1862         btrfs_free_path(path);
1863         path = NULL;
1864     }
1865 
1866     /* If there are pending snapshots for this root, we must COW. */
1867     if (args->writeback_path && !is_freespace_inode &&
1868         atomic_read(&root->snapshot_force_cow))
1869         goto out;
1870 
1871     args->disk_bytenr += args->extent_offset;
1872     args->disk_bytenr += args->start - key->offset;
1873     args->num_bytes = min(args->end + 1, extent_end) - args->start;
1874 
1875     /*
1876      * Force COW if csums exist in the range. This ensures that csums for a
1877      * given extent are either valid or do not exist.
1878      */
1879     ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes);
1880     WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1881     if (ret != 0)
1882         goto out;
1883 
1884     can_nocow = 1;
1885  out:
1886     if (args->free_path && path)
1887         btrfs_free_path(path);
1888 
1889     return ret < 0 ? ret : can_nocow;
1890 }
1891 
1892 /*
1893  * when nowcow writeback call back.  This checks for snapshots or COW copies
1894  * of the extents that exist in the file, and COWs the file as required.
1895  *
1896  * If no cow copies or snapshots exist, we write directly to the existing
1897  * blocks on disk
1898  */
1899 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1900                        struct page *locked_page,
1901                        const u64 start, const u64 end,
1902                        int *page_started,
1903                        unsigned long *nr_written)
1904 {
1905     struct btrfs_fs_info *fs_info = inode->root->fs_info;
1906     struct btrfs_root *root = inode->root;
1907     struct btrfs_path *path;
1908     u64 cow_start = (u64)-1;
1909     u64 cur_offset = start;
1910     int ret;
1911     bool check_prev = true;
1912     u64 ino = btrfs_ino(inode);
1913     struct btrfs_block_group *bg;
1914     bool nocow = false;
1915     struct can_nocow_file_extent_args nocow_args = { 0 };
1916 
1917     path = btrfs_alloc_path();
1918     if (!path) {
1919         extent_clear_unlock_delalloc(inode, start, end, locked_page,
1920                          EXTENT_LOCKED | EXTENT_DELALLOC |
1921                          EXTENT_DO_ACCOUNTING |
1922                          EXTENT_DEFRAG, PAGE_UNLOCK |
1923                          PAGE_START_WRITEBACK |
1924                          PAGE_END_WRITEBACK);
1925         return -ENOMEM;
1926     }
1927 
1928     nocow_args.end = end;
1929     nocow_args.writeback_path = true;
1930 
1931     while (1) {
1932         struct btrfs_key found_key;
1933         struct btrfs_file_extent_item *fi;
1934         struct extent_buffer *leaf;
1935         u64 extent_end;
1936         u64 ram_bytes;
1937         u64 nocow_end;
1938         int extent_type;
1939 
1940         nocow = false;
1941 
1942         ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1943                            cur_offset, 0);
1944         if (ret < 0)
1945             goto error;
1946 
1947         /*
1948          * If there is no extent for our range when doing the initial
1949          * search, then go back to the previous slot as it will be the
1950          * one containing the search offset
1951          */
1952         if (ret > 0 && path->slots[0] > 0 && check_prev) {
1953             leaf = path->nodes[0];
1954             btrfs_item_key_to_cpu(leaf, &found_key,
1955                           path->slots[0] - 1);
1956             if (found_key.objectid == ino &&
1957                 found_key.type == BTRFS_EXTENT_DATA_KEY)
1958                 path->slots[0]--;
1959         }
1960         check_prev = false;
1961 next_slot:
1962         /* Go to next leaf if we have exhausted the current one */
1963         leaf = path->nodes[0];
1964         if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1965             ret = btrfs_next_leaf(root, path);
1966             if (ret < 0) {
1967                 if (cow_start != (u64)-1)
1968                     cur_offset = cow_start;
1969                 goto error;
1970             }
1971             if (ret > 0)
1972                 break;
1973             leaf = path->nodes[0];
1974         }
1975 
1976         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1977 
1978         /* Didn't find anything for our INO */
1979         if (found_key.objectid > ino)
1980             break;
1981         /*
1982          * Keep searching until we find an EXTENT_ITEM or there are no
1983          * more extents for this inode
1984          */
1985         if (WARN_ON_ONCE(found_key.objectid < ino) ||
1986             found_key.type < BTRFS_EXTENT_DATA_KEY) {
1987             path->slots[0]++;
1988             goto next_slot;
1989         }
1990 
1991         /* Found key is not EXTENT_DATA_KEY or starts after req range */
1992         if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1993             found_key.offset > end)
1994             break;
1995 
1996         /*
1997          * If the found extent starts after requested offset, then
1998          * adjust extent_end to be right before this extent begins
1999          */
2000         if (found_key.offset > cur_offset) {
2001             extent_end = found_key.offset;
2002             extent_type = 0;
2003             goto out_check;
2004         }
2005 
2006         /*
2007          * Found extent which begins before our range and potentially
2008          * intersect it
2009          */
2010         fi = btrfs_item_ptr(leaf, path->slots[0],
2011                     struct btrfs_file_extent_item);
2012         extent_type = btrfs_file_extent_type(leaf, fi);
2013         /* If this is triggered then we have a memory corruption. */
2014         ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2015         if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2016             ret = -EUCLEAN;
2017             goto error;
2018         }
2019         ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2020         extent_end = btrfs_file_extent_end(path);
2021 
2022         /*
2023          * If the extent we got ends before our current offset, skip to
2024          * the next extent.
2025          */
2026         if (extent_end <= cur_offset) {
2027             path->slots[0]++;
2028             goto next_slot;
2029         }
2030 
2031         nocow_args.start = cur_offset;
2032         ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2033         if (ret < 0) {
2034             if (cow_start != (u64)-1)
2035                 cur_offset = cow_start;
2036             goto error;
2037         } else if (ret == 0) {
2038             goto out_check;
2039         }
2040 
2041         ret = 0;
2042         bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2043         if (bg)
2044             nocow = true;
2045 out_check:
2046         /*
2047          * If nocow is false then record the beginning of the range
2048          * that needs to be COWed
2049          */
2050         if (!nocow) {
2051             if (cow_start == (u64)-1)
2052                 cow_start = cur_offset;
2053             cur_offset = extent_end;
2054             if (cur_offset > end)
2055                 break;
2056             if (!path->nodes[0])
2057                 continue;
2058             path->slots[0]++;
2059             goto next_slot;
2060         }
2061 
2062         /*
2063          * COW range from cow_start to found_key.offset - 1. As the key
2064          * will contain the beginning of the first extent that can be
2065          * NOCOW, following one which needs to be COW'ed
2066          */
2067         if (cow_start != (u64)-1) {
2068             ret = fallback_to_cow(inode, locked_page,
2069                           cow_start, found_key.offset - 1,
2070                           page_started, nr_written);
2071             if (ret)
2072                 goto error;
2073             cow_start = (u64)-1;
2074         }
2075 
2076         nocow_end = cur_offset + nocow_args.num_bytes - 1;
2077 
2078         if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
2079             u64 orig_start = found_key.offset - nocow_args.extent_offset;
2080             struct extent_map *em;
2081 
2082             em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2083                       orig_start,
2084                       nocow_args.disk_bytenr, /* block_start */
2085                       nocow_args.num_bytes, /* block_len */
2086                       nocow_args.disk_num_bytes, /* orig_block_len */
2087                       ram_bytes, BTRFS_COMPRESS_NONE,
2088                       BTRFS_ORDERED_PREALLOC);
2089             if (IS_ERR(em)) {
2090                 ret = PTR_ERR(em);
2091                 goto error;
2092             }
2093             free_extent_map(em);
2094             ret = btrfs_add_ordered_extent(inode,
2095                     cur_offset, nocow_args.num_bytes,
2096                     nocow_args.num_bytes,
2097                     nocow_args.disk_bytenr,
2098                     nocow_args.num_bytes, 0,
2099                     1 << BTRFS_ORDERED_PREALLOC,
2100                     BTRFS_COMPRESS_NONE);
2101             if (ret) {
2102                 btrfs_drop_extent_cache(inode, cur_offset,
2103                             nocow_end, 0);
2104                 goto error;
2105             }
2106         } else {
2107             ret = btrfs_add_ordered_extent(inode, cur_offset,
2108                                nocow_args.num_bytes,
2109                                nocow_args.num_bytes,
2110                                nocow_args.disk_bytenr,
2111                                nocow_args.num_bytes,
2112                                0,
2113                                1 << BTRFS_ORDERED_NOCOW,
2114                                BTRFS_COMPRESS_NONE);
2115             if (ret)
2116                 goto error;
2117         }
2118 
2119         if (nocow) {
2120             btrfs_dec_nocow_writers(bg);
2121             nocow = false;
2122         }
2123 
2124         if (btrfs_is_data_reloc_root(root))
2125             /*
2126              * Error handled later, as we must prevent
2127              * extent_clear_unlock_delalloc() in error handler
2128              * from freeing metadata of created ordered extent.
2129              */
2130             ret = btrfs_reloc_clone_csums(inode, cur_offset,
2131                               nocow_args.num_bytes);
2132 
2133         extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2134                          locked_page, EXTENT_LOCKED |
2135                          EXTENT_DELALLOC |
2136                          EXTENT_CLEAR_DATA_RESV,
2137                          PAGE_UNLOCK | PAGE_SET_ORDERED);
2138 
2139         cur_offset = extent_end;
2140 
2141         /*
2142          * btrfs_reloc_clone_csums() error, now we're OK to call error
2143          * handler, as metadata for created ordered extent will only
2144          * be freed by btrfs_finish_ordered_io().
2145          */
2146         if (ret)
2147             goto error;
2148         if (cur_offset > end)
2149             break;
2150     }
2151     btrfs_release_path(path);
2152 
2153     if (cur_offset <= end && cow_start == (u64)-1)
2154         cow_start = cur_offset;
2155 
2156     if (cow_start != (u64)-1) {
2157         cur_offset = end;
2158         ret = fallback_to_cow(inode, locked_page, cow_start, end,
2159                       page_started, nr_written);
2160         if (ret)
2161             goto error;
2162     }
2163 
2164 error:
2165     if (nocow)
2166         btrfs_dec_nocow_writers(bg);
2167 
2168     if (ret && cur_offset < end)
2169         extent_clear_unlock_delalloc(inode, cur_offset, end,
2170                          locked_page, EXTENT_LOCKED |
2171                          EXTENT_DELALLOC | EXTENT_DEFRAG |
2172                          EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2173                          PAGE_START_WRITEBACK |
2174                          PAGE_END_WRITEBACK);
2175     btrfs_free_path(path);
2176     return ret;
2177 }
2178 
2179 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2180 {
2181     if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2182         if (inode->defrag_bytes &&
2183             test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2184                    0, NULL))
2185             return false;
2186         return true;
2187     }
2188     return false;
2189 }
2190 
2191 /*
2192  * Function to process delayed allocation (create CoW) for ranges which are
2193  * being touched for the first time.
2194  */
2195 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2196         u64 start, u64 end, int *page_started, unsigned long *nr_written,
2197         struct writeback_control *wbc)
2198 {
2199     int ret;
2200     const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2201 
2202     /*
2203      * The range must cover part of the @locked_page, or the returned
2204      * @page_started can confuse the caller.
2205      */
2206     ASSERT(!(end <= page_offset(locked_page) ||
2207          start >= page_offset(locked_page) + PAGE_SIZE));
2208 
2209     if (should_nocow(inode, start, end)) {
2210         /*
2211          * Normally on a zoned device we're only doing COW writes, but
2212          * in case of relocation on a zoned filesystem we have taken
2213          * precaution, that we're only writing sequentially. It's safe
2214          * to use run_delalloc_nocow() here, like for  regular
2215          * preallocated inodes.
2216          */
2217         ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root));
2218         ret = run_delalloc_nocow(inode, locked_page, start, end,
2219                      page_started, nr_written);
2220     } else if (!btrfs_inode_can_compress(inode) ||
2221            !inode_need_compress(inode, start, end)) {
2222         if (zoned)
2223             ret = run_delalloc_zoned(inode, locked_page, start, end,
2224                          page_started, nr_written);
2225         else
2226             ret = cow_file_range(inode, locked_page, start, end,
2227                          page_started, nr_written, 1, NULL);
2228     } else {
2229         set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
2230         ret = cow_file_range_async(inode, wbc, locked_page, start, end,
2231                        page_started, nr_written);
2232     }
2233     ASSERT(ret <= 0);
2234     if (ret)
2235         btrfs_cleanup_ordered_extents(inode, locked_page, start,
2236                           end - start + 1);
2237     return ret;
2238 }
2239 
2240 void btrfs_split_delalloc_extent(struct inode *inode,
2241                  struct extent_state *orig, u64 split)
2242 {
2243     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2244     u64 size;
2245 
2246     /* not delalloc, ignore it */
2247     if (!(orig->state & EXTENT_DELALLOC))
2248         return;
2249 
2250     size = orig->end - orig->start + 1;
2251     if (size > fs_info->max_extent_size) {
2252         u32 num_extents;
2253         u64 new_size;
2254 
2255         /*
2256          * See the explanation in btrfs_merge_delalloc_extent, the same
2257          * applies here, just in reverse.
2258          */
2259         new_size = orig->end - split + 1;
2260         num_extents = count_max_extents(fs_info, new_size);
2261         new_size = split - orig->start;
2262         num_extents += count_max_extents(fs_info, new_size);
2263         if (count_max_extents(fs_info, size) >= num_extents)
2264             return;
2265     }
2266 
2267     spin_lock(&BTRFS_I(inode)->lock);
2268     btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
2269     spin_unlock(&BTRFS_I(inode)->lock);
2270 }
2271 
2272 /*
2273  * Handle merged delayed allocation extents so we can keep track of new extents
2274  * that are just merged onto old extents, such as when we are doing sequential
2275  * writes, so we can properly account for the metadata space we'll need.
2276  */
2277 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
2278                  struct extent_state *other)
2279 {
2280     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2281     u64 new_size, old_size;
2282     u32 num_extents;
2283 
2284     /* not delalloc, ignore it */
2285     if (!(other->state & EXTENT_DELALLOC))
2286         return;
2287 
2288     if (new->start > other->start)
2289         new_size = new->end - other->start + 1;
2290     else
2291         new_size = other->end - new->start + 1;
2292 
2293     /* we're not bigger than the max, unreserve the space and go */
2294     if (new_size <= fs_info->max_extent_size) {
2295         spin_lock(&BTRFS_I(inode)->lock);
2296         btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2297         spin_unlock(&BTRFS_I(inode)->lock);
2298         return;
2299     }
2300 
2301     /*
2302      * We have to add up either side to figure out how many extents were
2303      * accounted for before we merged into one big extent.  If the number of
2304      * extents we accounted for is <= the amount we need for the new range
2305      * then we can return, otherwise drop.  Think of it like this
2306      *
2307      * [ 4k][MAX_SIZE]
2308      *
2309      * So we've grown the extent by a MAX_SIZE extent, this would mean we
2310      * need 2 outstanding extents, on one side we have 1 and the other side
2311      * we have 1 so they are == and we can return.  But in this case
2312      *
2313      * [MAX_SIZE+4k][MAX_SIZE+4k]
2314      *
2315      * Each range on their own accounts for 2 extents, but merged together
2316      * they are only 3 extents worth of accounting, so we need to drop in
2317      * this case.
2318      */
2319     old_size = other->end - other->start + 1;
2320     num_extents = count_max_extents(fs_info, old_size);
2321     old_size = new->end - new->start + 1;
2322     num_extents += count_max_extents(fs_info, old_size);
2323     if (count_max_extents(fs_info, new_size) >= num_extents)
2324         return;
2325 
2326     spin_lock(&BTRFS_I(inode)->lock);
2327     btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2328     spin_unlock(&BTRFS_I(inode)->lock);
2329 }
2330 
2331 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2332                       struct inode *inode)
2333 {
2334     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2335 
2336     spin_lock(&root->delalloc_lock);
2337     if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2338         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2339                   &root->delalloc_inodes);
2340         set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2341             &BTRFS_I(inode)->runtime_flags);
2342         root->nr_delalloc_inodes++;
2343         if (root->nr_delalloc_inodes == 1) {
2344             spin_lock(&fs_info->delalloc_root_lock);
2345             BUG_ON(!list_empty(&root->delalloc_root));
2346             list_add_tail(&root->delalloc_root,
2347                       &fs_info->delalloc_roots);
2348             spin_unlock(&fs_info->delalloc_root_lock);
2349         }
2350     }
2351     spin_unlock(&root->delalloc_lock);
2352 }
2353 
2354 
2355 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2356                 struct btrfs_inode *inode)
2357 {
2358     struct btrfs_fs_info *fs_info = root->fs_info;
2359 
2360     if (!list_empty(&inode->delalloc_inodes)) {
2361         list_del_init(&inode->delalloc_inodes);
2362         clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2363               &inode->runtime_flags);
2364         root->nr_delalloc_inodes--;
2365         if (!root->nr_delalloc_inodes) {
2366             ASSERT(list_empty(&root->delalloc_inodes));
2367             spin_lock(&fs_info->delalloc_root_lock);
2368             BUG_ON(list_empty(&root->delalloc_root));
2369             list_del_init(&root->delalloc_root);
2370             spin_unlock(&fs_info->delalloc_root_lock);
2371         }
2372     }
2373 }
2374 
2375 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2376                      struct btrfs_inode *inode)
2377 {
2378     spin_lock(&root->delalloc_lock);
2379     __btrfs_del_delalloc_inode(root, inode);
2380     spin_unlock(&root->delalloc_lock);
2381 }
2382 
2383 /*
2384  * Properly track delayed allocation bytes in the inode and to maintain the
2385  * list of inodes that have pending delalloc work to be done.
2386  */
2387 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2388                    u32 bits)
2389 {
2390     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2391 
2392     if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2393         WARN_ON(1);
2394     /*
2395      * set_bit and clear bit hooks normally require _irqsave/restore
2396      * but in this case, we are only testing for the DELALLOC
2397      * bit, which is only set or cleared with irqs on
2398      */
2399     if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2400         struct btrfs_root *root = BTRFS_I(inode)->root;
2401         u64 len = state->end + 1 - state->start;
2402         u32 num_extents = count_max_extents(fs_info, len);
2403         bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2404 
2405         spin_lock(&BTRFS_I(inode)->lock);
2406         btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2407         spin_unlock(&BTRFS_I(inode)->lock);
2408 
2409         /* For sanity tests */
2410         if (btrfs_is_testing(fs_info))
2411             return;
2412 
2413         percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2414                      fs_info->delalloc_batch);
2415         spin_lock(&BTRFS_I(inode)->lock);
2416         BTRFS_I(inode)->delalloc_bytes += len;
2417         if (bits & EXTENT_DEFRAG)
2418             BTRFS_I(inode)->defrag_bytes += len;
2419         if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2420                      &BTRFS_I(inode)->runtime_flags))
2421             btrfs_add_delalloc_inodes(root, inode);
2422         spin_unlock(&BTRFS_I(inode)->lock);
2423     }
2424 
2425     if (!(state->state & EXTENT_DELALLOC_NEW) &&
2426         (bits & EXTENT_DELALLOC_NEW)) {
2427         spin_lock(&BTRFS_I(inode)->lock);
2428         BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2429             state->start;
2430         spin_unlock(&BTRFS_I(inode)->lock);
2431     }
2432 }
2433 
2434 /*
2435  * Once a range is no longer delalloc this function ensures that proper
2436  * accounting happens.
2437  */
2438 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2439                  struct extent_state *state, u32 bits)
2440 {
2441     struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2442     struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2443     u64 len = state->end + 1 - state->start;
2444     u32 num_extents = count_max_extents(fs_info, len);
2445 
2446     if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2447         spin_lock(&inode->lock);
2448         inode->defrag_bytes -= len;
2449         spin_unlock(&inode->lock);
2450     }
2451 
2452     /*
2453      * set_bit and clear bit hooks normally require _irqsave/restore
2454      * but in this case, we are only testing for the DELALLOC
2455      * bit, which is only set or cleared with irqs on
2456      */
2457     if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2458         struct btrfs_root *root = inode->root;
2459         bool do_list = !btrfs_is_free_space_inode(inode);
2460 
2461         spin_lock(&inode->lock);
2462         btrfs_mod_outstanding_extents(inode, -num_extents);
2463         spin_unlock(&inode->lock);
2464 
2465         /*
2466          * We don't reserve metadata space for space cache inodes so we
2467          * don't need to call delalloc_release_metadata if there is an
2468          * error.
2469          */
2470         if (bits & EXTENT_CLEAR_META_RESV &&
2471             root != fs_info->tree_root)
2472             btrfs_delalloc_release_metadata(inode, len, false);
2473 
2474         /* For sanity tests. */
2475         if (btrfs_is_testing(fs_info))
2476             return;
2477 
2478         if (!btrfs_is_data_reloc_root(root) &&
2479             do_list && !(state->state & EXTENT_NORESERVE) &&
2480             (bits & EXTENT_CLEAR_DATA_RESV))
2481             btrfs_free_reserved_data_space_noquota(fs_info, len);
2482 
2483         percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2484                      fs_info->delalloc_batch);
2485         spin_lock(&inode->lock);
2486         inode->delalloc_bytes -= len;
2487         if (do_list && inode->delalloc_bytes == 0 &&
2488             test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2489                     &inode->runtime_flags))
2490             btrfs_del_delalloc_inode(root, inode);
2491         spin_unlock(&inode->lock);
2492     }
2493 
2494     if ((state->state & EXTENT_DELALLOC_NEW) &&
2495         (bits & EXTENT_DELALLOC_NEW)) {
2496         spin_lock(&inode->lock);
2497         ASSERT(inode->new_delalloc_bytes >= len);
2498         inode->new_delalloc_bytes -= len;
2499         if (bits & EXTENT_ADD_INODE_BYTES)
2500             inode_add_bytes(&inode->vfs_inode, len);
2501         spin_unlock(&inode->lock);
2502     }
2503 }
2504 
2505 /*
2506  * in order to insert checksums into the metadata in large chunks,
2507  * we wait until bio submission time.   All the pages in the bio are
2508  * checksummed and sums are attached onto the ordered extent record.
2509  *
2510  * At IO completion time the cums attached on the ordered extent record
2511  * are inserted into the btree
2512  */
2513 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2514                        u64 dio_file_offset)
2515 {
2516     return btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false);
2517 }
2518 
2519 /*
2520  * Split an extent_map at [start, start + len]
2521  *
2522  * This function is intended to be used only for extract_ordered_extent().
2523  */
2524 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len,
2525               u64 pre, u64 post)
2526 {
2527     struct extent_map_tree *em_tree = &inode->extent_tree;
2528     struct extent_map *em;
2529     struct extent_map *split_pre = NULL;
2530     struct extent_map *split_mid = NULL;
2531     struct extent_map *split_post = NULL;
2532     int ret = 0;
2533     unsigned long flags;
2534 
2535     /* Sanity check */
2536     if (pre == 0 && post == 0)
2537         return 0;
2538 
2539     split_pre = alloc_extent_map();
2540     if (pre)
2541         split_mid = alloc_extent_map();
2542     if (post)
2543         split_post = alloc_extent_map();
2544     if (!split_pre || (pre && !split_mid) || (post && !split_post)) {
2545         ret = -ENOMEM;
2546         goto out;
2547     }
2548 
2549     ASSERT(pre + post < len);
2550 
2551     lock_extent(&inode->io_tree, start, start + len - 1);
2552     write_lock(&em_tree->lock);
2553     em = lookup_extent_mapping(em_tree, start, len);
2554     if (!em) {
2555         ret = -EIO;
2556         goto out_unlock;
2557     }
2558 
2559     ASSERT(em->len == len);
2560     ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2561     ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
2562     ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags));
2563     ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags));
2564     ASSERT(!list_empty(&em->list));
2565 
2566     flags = em->flags;
2567     clear_bit(EXTENT_FLAG_PINNED, &em->flags);
2568 
2569     /* First, replace the em with a new extent_map starting from * em->start */
2570     split_pre->start = em->start;
2571     split_pre->len = (pre ? pre : em->len - post);
2572     split_pre->orig_start = split_pre->start;
2573     split_pre->block_start = em->block_start;
2574     split_pre->block_len = split_pre->len;
2575     split_pre->orig_block_len = split_pre->block_len;
2576     split_pre->ram_bytes = split_pre->len;
2577     split_pre->flags = flags;
2578     split_pre->compress_type = em->compress_type;
2579     split_pre->generation = em->generation;
2580 
2581     replace_extent_mapping(em_tree, em, split_pre, 1);
2582 
2583     /*
2584      * Now we only have an extent_map at:
2585      *     [em->start, em->start + pre] if pre != 0
2586      *     [em->start, em->start + em->len - post] if pre == 0
2587      */
2588 
2589     if (pre) {
2590         /* Insert the middle extent_map */
2591         split_mid->start = em->start + pre;
2592         split_mid->len = em->len - pre - post;
2593         split_mid->orig_start = split_mid->start;
2594         split_mid->block_start = em->block_start + pre;
2595         split_mid->block_len = split_mid->len;
2596         split_mid->orig_block_len = split_mid->block_len;
2597         split_mid->ram_bytes = split_mid->len;
2598         split_mid->flags = flags;
2599         split_mid->compress_type = em->compress_type;
2600         split_mid->generation = em->generation;
2601         add_extent_mapping(em_tree, split_mid, 1);
2602     }
2603 
2604     if (post) {
2605         split_post->start = em->start + em->len - post;
2606         split_post->len = post;
2607         split_post->orig_start = split_post->start;
2608         split_post->block_start = em->block_start + em->len - post;
2609         split_post->block_len = split_post->len;
2610         split_post->orig_block_len = split_post->block_len;
2611         split_post->ram_bytes = split_post->len;
2612         split_post->flags = flags;
2613         split_post->compress_type = em->compress_type;
2614         split_post->generation = em->generation;
2615         add_extent_mapping(em_tree, split_post, 1);
2616     }
2617 
2618     /* Once for us */
2619     free_extent_map(em);
2620     /* Once for the tree */
2621     free_extent_map(em);
2622 
2623 out_unlock:
2624     write_unlock(&em_tree->lock);
2625     unlock_extent(&inode->io_tree, start, start + len - 1);
2626 out:
2627     free_extent_map(split_pre);
2628     free_extent_map(split_mid);
2629     free_extent_map(split_post);
2630 
2631     return ret;
2632 }
2633 
2634 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2635                        struct bio *bio, loff_t file_offset)
2636 {
2637     struct btrfs_ordered_extent *ordered;
2638     u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2639     u64 file_len;
2640     u64 len = bio->bi_iter.bi_size;
2641     u64 end = start + len;
2642     u64 ordered_end;
2643     u64 pre, post;
2644     int ret = 0;
2645 
2646     ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2647     if (WARN_ON_ONCE(!ordered))
2648         return BLK_STS_IOERR;
2649 
2650     /* No need to split */
2651     if (ordered->disk_num_bytes == len)
2652         goto out;
2653 
2654     /* We cannot split once end_bio'd ordered extent */
2655     if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2656         ret = -EINVAL;
2657         goto out;
2658     }
2659 
2660     /* We cannot split a compressed ordered extent */
2661     if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2662         ret = -EINVAL;
2663         goto out;
2664     }
2665 
2666     ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2667     /* bio must be in one ordered extent */
2668     if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2669         ret = -EINVAL;
2670         goto out;
2671     }
2672 
2673     /* Checksum list should be empty */
2674     if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2675         ret = -EINVAL;
2676         goto out;
2677     }
2678 
2679     file_len = ordered->num_bytes;
2680     pre = start - ordered->disk_bytenr;
2681     post = ordered_end - end;
2682 
2683     ret = btrfs_split_ordered_extent(ordered, pre, post);
2684     if (ret)
2685         goto out;
2686     ret = split_zoned_em(inode, file_offset, file_len, pre, post);
2687 
2688 out:
2689     btrfs_put_ordered_extent(ordered);
2690 
2691     return errno_to_blk_status(ret);
2692 }
2693 
2694 void btrfs_submit_data_write_bio(struct inode *inode, struct bio *bio, int mirror_num)
2695 {
2696     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2697     struct btrfs_inode *bi = BTRFS_I(inode);
2698     blk_status_t ret;
2699 
2700     if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2701         ret = extract_ordered_extent(bi, bio,
2702                 page_offset(bio_first_bvec_all(bio)->bv_page));
2703         if (ret)
2704             goto out;
2705     }
2706 
2707     /*
2708      * If we need to checksum, and the I/O is not issued by fsync and
2709      * friends, that is ->sync_writers != 0, defer the submission to a
2710      * workqueue to parallelize it.
2711      *
2712      * Csum items for reloc roots have already been cloned at this point,
2713      * so they are handled as part of the no-checksum case.
2714      */
2715     if (!(bi->flags & BTRFS_INODE_NODATASUM) &&
2716         !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) &&
2717         !btrfs_is_data_reloc_root(bi->root)) {
2718         if (!atomic_read(&bi->sync_writers) &&
2719             btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
2720                     btrfs_submit_bio_start))
2721             return;
2722 
2723         ret = btrfs_csum_one_bio(bi, bio, (u64)-1, false);
2724         if (ret)
2725             goto out;
2726     }
2727     btrfs_submit_bio(fs_info, bio, mirror_num);
2728     return;
2729 out:
2730     if (ret) {
2731         bio->bi_status = ret;
2732         bio_endio(bio);
2733     }
2734 }
2735 
2736 void btrfs_submit_data_read_bio(struct inode *inode, struct bio *bio,
2737             int mirror_num, enum btrfs_compression_type compress_type)
2738 {
2739     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2740     blk_status_t ret;
2741 
2742     if (compress_type != BTRFS_COMPRESS_NONE) {
2743         /*
2744          * btrfs_submit_compressed_read will handle completing the bio
2745          * if there were any errors, so just return here.
2746          */
2747         btrfs_submit_compressed_read(inode, bio, mirror_num);
2748         return;
2749     }
2750 
2751     /* Save the original iter for read repair */
2752     btrfs_bio(bio)->iter = bio->bi_iter;
2753 
2754     /*
2755      * Lookup bio sums does extra checks around whether we need to csum or
2756      * not, which is why we ignore skip_sum here.
2757      */
2758     ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2759     if (ret) {
2760         bio->bi_status = ret;
2761         bio_endio(bio);
2762         return;
2763     }
2764 
2765     btrfs_submit_bio(fs_info, bio, mirror_num);
2766 }
2767 
2768 /*
2769  * given a list of ordered sums record them in the inode.  This happens
2770  * at IO completion time based on sums calculated at bio submission time.
2771  */
2772 static int add_pending_csums(struct btrfs_trans_handle *trans,
2773                  struct list_head *list)
2774 {
2775     struct btrfs_ordered_sum *sum;
2776     struct btrfs_root *csum_root = NULL;
2777     int ret;
2778 
2779     list_for_each_entry(sum, list, list) {
2780         trans->adding_csums = true;
2781         if (!csum_root)
2782             csum_root = btrfs_csum_root(trans->fs_info,
2783                             sum->bytenr);
2784         ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2785         trans->adding_csums = false;
2786         if (ret)
2787             return ret;
2788     }
2789     return 0;
2790 }
2791 
2792 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2793                      const u64 start,
2794                      const u64 len,
2795                      struct extent_state **cached_state)
2796 {
2797     u64 search_start = start;
2798     const u64 end = start + len - 1;
2799 
2800     while (search_start < end) {
2801         const u64 search_len = end - search_start + 1;
2802         struct extent_map *em;
2803         u64 em_len;
2804         int ret = 0;
2805 
2806         em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2807         if (IS_ERR(em))
2808             return PTR_ERR(em);
2809 
2810         if (em->block_start != EXTENT_MAP_HOLE)
2811             goto next;
2812 
2813         em_len = em->len;
2814         if (em->start < search_start)
2815             em_len -= search_start - em->start;
2816         if (em_len > search_len)
2817             em_len = search_len;
2818 
2819         ret = set_extent_bit(&inode->io_tree, search_start,
2820                      search_start + em_len - 1,
2821                      EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2822                      GFP_NOFS, NULL);
2823 next:
2824         search_start = extent_map_end(em);
2825         free_extent_map(em);
2826         if (ret)
2827             return ret;
2828     }
2829     return 0;
2830 }
2831 
2832 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2833                   unsigned int extra_bits,
2834                   struct extent_state **cached_state)
2835 {
2836     WARN_ON(PAGE_ALIGNED(end));
2837 
2838     if (start >= i_size_read(&inode->vfs_inode) &&
2839         !(inode->flags & BTRFS_INODE_PREALLOC)) {
2840         /*
2841          * There can't be any extents following eof in this case so just
2842          * set the delalloc new bit for the range directly.
2843          */
2844         extra_bits |= EXTENT_DELALLOC_NEW;
2845     } else {
2846         int ret;
2847 
2848         ret = btrfs_find_new_delalloc_bytes(inode, start,
2849                             end + 1 - start,
2850                             cached_state);
2851         if (ret)
2852             return ret;
2853     }
2854 
2855     return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2856                    cached_state);
2857 }
2858 
2859 /* see btrfs_writepage_start_hook for details on why this is required */
2860 struct btrfs_writepage_fixup {
2861     struct page *page;
2862     struct inode *inode;
2863     struct btrfs_work work;
2864 };
2865 
2866 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2867 {
2868     struct btrfs_writepage_fixup *fixup;
2869     struct btrfs_ordered_extent *ordered;
2870     struct extent_state *cached_state = NULL;
2871     struct extent_changeset *data_reserved = NULL;
2872     struct page *page;
2873     struct btrfs_inode *inode;
2874     u64 page_start;
2875     u64 page_end;
2876     int ret = 0;
2877     bool free_delalloc_space = true;
2878 
2879     fixup = container_of(work, struct btrfs_writepage_fixup, work);
2880     page = fixup->page;
2881     inode = BTRFS_I(fixup->inode);
2882     page_start = page_offset(page);
2883     page_end = page_offset(page) + PAGE_SIZE - 1;
2884 
2885     /*
2886      * This is similar to page_mkwrite, we need to reserve the space before
2887      * we take the page lock.
2888      */
2889     ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2890                        PAGE_SIZE);
2891 again:
2892     lock_page(page);
2893 
2894     /*
2895      * Before we queued this fixup, we took a reference on the page.
2896      * page->mapping may go NULL, but it shouldn't be moved to a different
2897      * address space.
2898      */
2899     if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2900         /*
2901          * Unfortunately this is a little tricky, either
2902          *
2903          * 1) We got here and our page had already been dealt with and
2904          *    we reserved our space, thus ret == 0, so we need to just
2905          *    drop our space reservation and bail.  This can happen the
2906          *    first time we come into the fixup worker, or could happen
2907          *    while waiting for the ordered extent.
2908          * 2) Our page was already dealt with, but we happened to get an
2909          *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2910          *    this case we obviously don't have anything to release, but
2911          *    because the page was already dealt with we don't want to
2912          *    mark the page with an error, so make sure we're resetting
2913          *    ret to 0.  This is why we have this check _before_ the ret
2914          *    check, because we do not want to have a surprise ENOSPC
2915          *    when the page was already properly dealt with.
2916          */
2917         if (!ret) {
2918             btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2919             btrfs_delalloc_release_space(inode, data_reserved,
2920                              page_start, PAGE_SIZE,
2921                              true);
2922         }
2923         ret = 0;
2924         goto out_page;
2925     }
2926 
2927     /*
2928      * We can't mess with the page state unless it is locked, so now that
2929      * it is locked bail if we failed to make our space reservation.
2930      */
2931     if (ret)
2932         goto out_page;
2933 
2934     lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2935 
2936     /* already ordered? We're done */
2937     if (PageOrdered(page))
2938         goto out_reserved;
2939 
2940     ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2941     if (ordered) {
2942         unlock_extent_cached(&inode->io_tree, page_start, page_end,
2943                      &cached_state);
2944         unlock_page(page);
2945         btrfs_start_ordered_extent(ordered, 1);
2946         btrfs_put_ordered_extent(ordered);
2947         goto again;
2948     }
2949 
2950     ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2951                     &cached_state);
2952     if (ret)
2953         goto out_reserved;
2954 
2955     /*
2956      * Everything went as planned, we're now the owner of a dirty page with
2957      * delayed allocation bits set and space reserved for our COW
2958      * destination.
2959      *
2960      * The page was dirty when we started, nothing should have cleaned it.
2961      */
2962     BUG_ON(!PageDirty(page));
2963     free_delalloc_space = false;
2964 out_reserved:
2965     btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2966     if (free_delalloc_space)
2967         btrfs_delalloc_release_space(inode, data_reserved, page_start,
2968                          PAGE_SIZE, true);
2969     unlock_extent_cached(&inode->io_tree, page_start, page_end,
2970                  &cached_state);
2971 out_page:
2972     if (ret) {
2973         /*
2974          * We hit ENOSPC or other errors.  Update the mapping and page
2975          * to reflect the errors and clean the page.
2976          */
2977         mapping_set_error(page->mapping, ret);
2978         end_extent_writepage(page, ret, page_start, page_end);
2979         clear_page_dirty_for_io(page);
2980         SetPageError(page);
2981     }
2982     btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE);
2983     unlock_page(page);
2984     put_page(page);
2985     kfree(fixup);
2986     extent_changeset_free(data_reserved);
2987     /*
2988      * As a precaution, do a delayed iput in case it would be the last iput
2989      * that could need flushing space. Recursing back to fixup worker would
2990      * deadlock.
2991      */
2992     btrfs_add_delayed_iput(&inode->vfs_inode);
2993 }
2994 
2995 /*
2996  * There are a few paths in the higher layers of the kernel that directly
2997  * set the page dirty bit without asking the filesystem if it is a
2998  * good idea.  This causes problems because we want to make sure COW
2999  * properly happens and the data=ordered rules are followed.
3000  *
3001  * In our case any range that doesn't have the ORDERED bit set
3002  * hasn't been properly setup for IO.  We kick off an async process
3003  * to fix it up.  The async helper will wait for ordered extents, set
3004  * the delalloc bit and make it safe to write the page.
3005  */
3006 int btrfs_writepage_cow_fixup(struct page *page)
3007 {
3008     struct inode *inode = page->mapping->host;
3009     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3010     struct btrfs_writepage_fixup *fixup;
3011 
3012     /* This page has ordered extent covering it already */
3013     if (PageOrdered(page))
3014         return 0;
3015 
3016     /*
3017      * PageChecked is set below when we create a fixup worker for this page,
3018      * don't try to create another one if we're already PageChecked()
3019      *
3020      * The extent_io writepage code will redirty the page if we send back
3021      * EAGAIN.
3022      */
3023     if (PageChecked(page))
3024         return -EAGAIN;
3025 
3026     fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
3027     if (!fixup)
3028         return -EAGAIN;
3029 
3030     /*
3031      * We are already holding a reference to this inode from
3032      * write_cache_pages.  We need to hold it because the space reservation
3033      * takes place outside of the page lock, and we can't trust
3034      * page->mapping outside of the page lock.
3035      */
3036     ihold(inode);
3037     btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
3038     get_page(page);
3039     btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
3040     fixup->page = page;
3041     fixup->inode = inode;
3042     btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
3043 
3044     return -EAGAIN;
3045 }
3046 
3047 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
3048                        struct btrfs_inode *inode, u64 file_pos,
3049                        struct btrfs_file_extent_item *stack_fi,
3050                        const bool update_inode_bytes,
3051                        u64 qgroup_reserved)
3052 {
3053     struct btrfs_root *root = inode->root;
3054     const u64 sectorsize = root->fs_info->sectorsize;
3055     struct btrfs_path *path;
3056     struct extent_buffer *leaf;
3057     struct btrfs_key ins;
3058     u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
3059     u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
3060     u64 offset = btrfs_stack_file_extent_offset(stack_fi);
3061     u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
3062     u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
3063     struct btrfs_drop_extents_args drop_args = { 0 };
3064     int ret;
3065 
3066     path = btrfs_alloc_path();
3067     if (!path)
3068         return -ENOMEM;
3069 
3070     /*
3071      * we may be replacing one extent in the tree with another.
3072      * The new extent is pinned in the extent map, and we don't want
3073      * to drop it from the cache until it is completely in the btree.
3074      *
3075      * So, tell btrfs_drop_extents to leave this extent in the cache.
3076      * the caller is expected to unpin it and allow it to be merged
3077      * with the others.
3078      */
3079     drop_args.path = path;
3080     drop_args.start = file_pos;
3081     drop_args.end = file_pos + num_bytes;
3082     drop_args.replace_extent = true;
3083     drop_args.extent_item_size = sizeof(*stack_fi);
3084     ret = btrfs_drop_extents(trans, root, inode, &drop_args);
3085     if (ret)
3086         goto out;
3087 
3088     if (!drop_args.extent_inserted) {
3089         ins.objectid = btrfs_ino(inode);
3090         ins.offset = file_pos;
3091         ins.type = BTRFS_EXTENT_DATA_KEY;
3092 
3093         ret = btrfs_insert_empty_item(trans, root, path, &ins,
3094                           sizeof(*stack_fi));
3095         if (ret)
3096             goto out;
3097     }
3098     leaf = path->nodes[0];
3099     btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
3100     write_extent_buffer(leaf, stack_fi,
3101             btrfs_item_ptr_offset(leaf, path->slots[0]),
3102             sizeof(struct btrfs_file_extent_item));
3103 
3104     btrfs_mark_buffer_dirty(leaf);
3105     btrfs_release_path(path);
3106 
3107     /*
3108      * If we dropped an inline extent here, we know the range where it is
3109      * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
3110      * number of bytes only for that range containing the inline extent.
3111      * The remaining of the range will be processed when clearning the
3112      * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
3113      */
3114     if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
3115         u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
3116 
3117         inline_size = drop_args.bytes_found - inline_size;
3118         btrfs_update_inode_bytes(inode, sectorsize, inline_size);
3119         drop_args.bytes_found -= inline_size;
3120         num_bytes -= sectorsize;
3121     }
3122 
3123     if (update_inode_bytes)
3124         btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
3125 
3126     ins.objectid = disk_bytenr;
3127     ins.offset = disk_num_bytes;
3128     ins.type = BTRFS_EXTENT_ITEM_KEY;
3129 
3130     ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3131     if (ret)
3132         goto out;
3133 
3134     ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3135                            file_pos - offset,
3136                            qgroup_reserved, &ins);
3137 out:
3138     btrfs_free_path(path);
3139 
3140     return ret;
3141 }
3142 
3143 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3144                      u64 start, u64 len)
3145 {
3146     struct btrfs_block_group *cache;
3147 
3148     cache = btrfs_lookup_block_group(fs_info, start);
3149     ASSERT(cache);
3150 
3151     spin_lock(&cache->lock);
3152     cache->delalloc_bytes -= len;
3153     spin_unlock(&cache->lock);
3154 
3155     btrfs_put_block_group(cache);
3156 }
3157 
3158 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3159                          struct btrfs_ordered_extent *oe)
3160 {
3161     struct btrfs_file_extent_item stack_fi;
3162     bool update_inode_bytes;
3163     u64 num_bytes = oe->num_bytes;
3164     u64 ram_bytes = oe->ram_bytes;
3165 
3166     memset(&stack_fi, 0, sizeof(stack_fi));
3167     btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3168     btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3169     btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3170                            oe->disk_num_bytes);
3171     btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3172     if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
3173         num_bytes = oe->truncated_len;
3174         ram_bytes = num_bytes;
3175     }
3176     btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3177     btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3178     btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3179     /* Encryption and other encoding is reserved and all 0 */
3180 
3181     /*
3182      * For delalloc, when completing an ordered extent we update the inode's
3183      * bytes when clearing the range in the inode's io tree, so pass false
3184      * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3185      * except if the ordered extent was truncated.
3186      */
3187     update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3188                  test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3189                  test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3190 
3191     return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3192                        oe->file_offset, &stack_fi,
3193                        update_inode_bytes, oe->qgroup_rsv);
3194 }
3195 
3196 /*
3197  * As ordered data IO finishes, this gets called so we can finish
3198  * an ordered extent if the range of bytes in the file it covers are
3199  * fully written.
3200  */
3201 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3202 {
3203     struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3204     struct btrfs_root *root = inode->root;
3205     struct btrfs_fs_info *fs_info = root->fs_info;
3206     struct btrfs_trans_handle *trans = NULL;
3207     struct extent_io_tree *io_tree = &inode->io_tree;
3208     struct extent_state *cached_state = NULL;
3209     u64 start, end;
3210     int compress_type = 0;
3211     int ret = 0;
3212     u64 logical_len = ordered_extent->num_bytes;
3213     bool freespace_inode;
3214     bool truncated = false;
3215     bool clear_reserved_extent = true;
3216     unsigned int clear_bits = EXTENT_DEFRAG;
3217 
3218     start = ordered_extent->file_offset;
3219     end = start + ordered_extent->num_bytes - 1;
3220 
3221     if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3222         !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3223         !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3224         !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3225         clear_bits |= EXTENT_DELALLOC_NEW;
3226 
3227     freespace_inode = btrfs_is_free_space_inode(inode);
3228 
3229     if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3230         ret = -EIO;
3231         goto out;
3232     }
3233 
3234     /* A valid bdev implies a write on a sequential zone */
3235     if (ordered_extent->bdev) {
3236         btrfs_rewrite_logical_zoned(ordered_extent);
3237         btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3238                     ordered_extent->disk_num_bytes);
3239     }
3240 
3241     btrfs_free_io_failure_record(inode, start, end);
3242 
3243     if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3244         truncated = true;
3245         logical_len = ordered_extent->truncated_len;
3246         /* Truncated the entire extent, don't bother adding */
3247         if (!logical_len)
3248             goto out;
3249     }
3250 
3251     if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3252         BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3253 
3254         btrfs_inode_safe_disk_i_size_write(inode, 0);
3255         if (freespace_inode)
3256             trans = btrfs_join_transaction_spacecache(root);
3257         else
3258             trans = btrfs_join_transaction(root);
3259         if (IS_ERR(trans)) {
3260             ret = PTR_ERR(trans);
3261             trans = NULL;
3262             goto out;
3263         }
3264         trans->block_rsv = &inode->block_rsv;
3265         ret = btrfs_update_inode_fallback(trans, root, inode);
3266         if (ret) /* -ENOMEM or corruption */
3267             btrfs_abort_transaction(trans, ret);
3268         goto out;
3269     }
3270 
3271     clear_bits |= EXTENT_LOCKED;
3272     lock_extent_bits(io_tree, start, end, &cached_state);
3273 
3274     if (freespace_inode)
3275         trans = btrfs_join_transaction_spacecache(root);
3276     else
3277         trans = btrfs_join_transaction(root);
3278     if (IS_ERR(trans)) {
3279         ret = PTR_ERR(trans);
3280         trans = NULL;
3281         goto out;
3282     }
3283 
3284     trans->block_rsv = &inode->block_rsv;
3285 
3286     if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3287         compress_type = ordered_extent->compress_type;
3288     if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3289         BUG_ON(compress_type);
3290         ret = btrfs_mark_extent_written(trans, inode,
3291                         ordered_extent->file_offset,
3292                         ordered_extent->file_offset +
3293                         logical_len);
3294         btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3295                           ordered_extent->disk_num_bytes);
3296     } else {
3297         BUG_ON(root == fs_info->tree_root);
3298         ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3299         if (!ret) {
3300             clear_reserved_extent = false;
3301             btrfs_release_delalloc_bytes(fs_info,
3302                         ordered_extent->disk_bytenr,
3303                         ordered_extent->disk_num_bytes);
3304         }
3305     }
3306     unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3307                ordered_extent->num_bytes, trans->transid);
3308     if (ret < 0) {
3309         btrfs_abort_transaction(trans, ret);
3310         goto out;
3311     }
3312 
3313     ret = add_pending_csums(trans, &ordered_extent->list);
3314     if (ret) {
3315         btrfs_abort_transaction(trans, ret);
3316         goto out;
3317     }
3318 
3319     /*
3320      * If this is a new delalloc range, clear its new delalloc flag to
3321      * update the inode's number of bytes. This needs to be done first
3322      * before updating the inode item.
3323      */
3324     if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3325         !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3326         clear_extent_bit(&inode->io_tree, start, end,
3327                  EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3328                  0, 0, &cached_state);
3329 
3330     btrfs_inode_safe_disk_i_size_write(inode, 0);
3331     ret = btrfs_update_inode_fallback(trans, root, inode);
3332     if (ret) { /* -ENOMEM or corruption */
3333         btrfs_abort_transaction(trans, ret);
3334         goto out;
3335     }
3336     ret = 0;
3337 out:
3338     clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3339              (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
3340              &cached_state);
3341 
3342     if (trans)
3343         btrfs_end_transaction(trans);
3344 
3345     if (ret || truncated) {
3346         u64 unwritten_start = start;
3347 
3348         /*
3349          * If we failed to finish this ordered extent for any reason we
3350          * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3351          * extent, and mark the inode with the error if it wasn't
3352          * already set.  Any error during writeback would have already
3353          * set the mapping error, so we need to set it if we're the ones
3354          * marking this ordered extent as failed.
3355          */
3356         if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3357                          &ordered_extent->flags))
3358             mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3359 
3360         if (truncated)
3361             unwritten_start += logical_len;
3362         clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3363 
3364         /* Drop the cache for the part of the extent we didn't write. */
3365         btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
3366 
3367         /*
3368          * If the ordered extent had an IOERR or something else went
3369          * wrong we need to return the space for this ordered extent
3370          * back to the allocator.  We only free the extent in the
3371          * truncated case if we didn't write out the extent at all.
3372          *
3373          * If we made it past insert_reserved_file_extent before we
3374          * errored out then we don't need to do this as the accounting
3375          * has already been done.
3376          */
3377         if ((ret || !logical_len) &&
3378             clear_reserved_extent &&
3379             !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3380             !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3381             /*
3382              * Discard the range before returning it back to the
3383              * free space pool
3384              */
3385             if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3386                 btrfs_discard_extent(fs_info,
3387                         ordered_extent->disk_bytenr,
3388                         ordered_extent->disk_num_bytes,
3389                         NULL);
3390             btrfs_free_reserved_extent(fs_info,
3391                     ordered_extent->disk_bytenr,
3392                     ordered_extent->disk_num_bytes, 1);
3393         }
3394     }
3395 
3396     /*
3397      * This needs to be done to make sure anybody waiting knows we are done
3398      * updating everything for this ordered extent.
3399      */
3400     btrfs_remove_ordered_extent(inode, ordered_extent);
3401 
3402     /* once for us */
3403     btrfs_put_ordered_extent(ordered_extent);
3404     /* once for the tree */
3405     btrfs_put_ordered_extent(ordered_extent);
3406 
3407     return ret;
3408 }
3409 
3410 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3411                       struct page *page, u64 start,
3412                       u64 end, bool uptodate)
3413 {
3414     trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
3415 
3416     btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, uptodate);
3417 }
3418 
3419 /*
3420  * Verify the checksum for a single sector without any extra action that depend
3421  * on the type of I/O.
3422  */
3423 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3424                 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3425 {
3426     SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3427     char *kaddr;
3428 
3429     ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3430 
3431     shash->tfm = fs_info->csum_shash;
3432 
3433     kaddr = kmap_local_page(page) + pgoff;
3434     crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3435     kunmap_local(kaddr);
3436 
3437     if (memcmp(csum, csum_expected, fs_info->csum_size))
3438         return -EIO;
3439     return 0;
3440 }
3441 
3442 /*
3443  * check_data_csum - verify checksum of one sector of uncompressed data
3444  * @inode:  inode
3445  * @bbio:   btrfs_bio which contains the csum
3446  * @bio_offset: offset to the beginning of the bio (in bytes)
3447  * @page:   page where is the data to be verified
3448  * @pgoff:  offset inside the page
3449  *
3450  * The length of such check is always one sector size.
3451  *
3452  * When csum mismatch is detected, we will also report the error and fill the
3453  * corrupted range with zero. (Thus it needs the extra parameters)
3454  */
3455 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3456               u32 bio_offset, struct page *page, u32 pgoff)
3457 {
3458     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3459     u32 len = fs_info->sectorsize;
3460     u8 *csum_expected;
3461     u8 csum[BTRFS_CSUM_SIZE];
3462 
3463     ASSERT(pgoff + len <= PAGE_SIZE);
3464 
3465     csum_expected = btrfs_csum_ptr(fs_info, bbio->csum, bio_offset);
3466 
3467     if (btrfs_check_sector_csum(fs_info, page, pgoff, csum, csum_expected))
3468         goto zeroit;
3469     return 0;
3470 
3471 zeroit:
3472     btrfs_print_data_csum_error(BTRFS_I(inode),
3473                     bbio->file_offset + bio_offset,
3474                     csum, csum_expected, bbio->mirror_num);
3475     if (bbio->device)
3476         btrfs_dev_stat_inc_and_print(bbio->device,
3477                          BTRFS_DEV_STAT_CORRUPTION_ERRS);
3478     memzero_page(page, pgoff, len);
3479     return -EIO;
3480 }
3481 
3482 /*
3483  * When reads are done, we need to check csums to verify the data is correct.
3484  * if there's a match, we allow the bio to finish.  If not, the code in
3485  * extent_io.c will try to find good copies for us.
3486  *
3487  * @bio_offset: offset to the beginning of the bio (in bytes)
3488  * @start:  file offset of the range start
3489  * @end:    file offset of the range end (inclusive)
3490  *
3491  * Return a bitmap where bit set means a csum mismatch, and bit not set means
3492  * csum match.
3493  */
3494 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3495                     u32 bio_offset, struct page *page,
3496                     u64 start, u64 end)
3497 {
3498     struct inode *inode = page->mapping->host;
3499     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3500     struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3501     struct btrfs_root *root = BTRFS_I(inode)->root;
3502     const u32 sectorsize = root->fs_info->sectorsize;
3503     u32 pg_off;
3504     unsigned int result = 0;
3505 
3506     /*
3507      * This only happens for NODATASUM or compressed read.
3508      * Normally this should be covered by above check for compressed read
3509      * or the next check for NODATASUM.  Just do a quicker exit here.
3510      */
3511     if (bbio->csum == NULL)
3512         return 0;
3513 
3514     if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3515         return 0;
3516 
3517     if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)))
3518         return 0;
3519 
3520     ASSERT(page_offset(page) <= start &&
3521            end <= page_offset(page) + PAGE_SIZE - 1);
3522     for (pg_off = offset_in_page(start);
3523          pg_off < offset_in_page(end);
3524          pg_off += sectorsize, bio_offset += sectorsize) {
3525         u64 file_offset = pg_off + page_offset(page);
3526         int ret;
3527 
3528         if (btrfs_is_data_reloc_root(root) &&
3529             test_range_bit(io_tree, file_offset,
3530                    file_offset + sectorsize - 1,
3531                    EXTENT_NODATASUM, 1, NULL)) {
3532             /* Skip the range without csum for data reloc inode */
3533             clear_extent_bits(io_tree, file_offset,
3534                       file_offset + sectorsize - 1,
3535                       EXTENT_NODATASUM);
3536             continue;
3537         }
3538         ret = btrfs_check_data_csum(inode, bbio, bio_offset, page, pg_off);
3539         if (ret < 0) {
3540             const int nr_bit = (pg_off - offset_in_page(start)) >>
3541                      root->fs_info->sectorsize_bits;
3542 
3543             result |= (1U << nr_bit);
3544         }
3545     }
3546     return result;
3547 }
3548 
3549 /*
3550  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3551  *
3552  * @inode: The inode we want to perform iput on
3553  *
3554  * This function uses the generic vfs_inode::i_count to track whether we should
3555  * just decrement it (in case it's > 1) or if this is the last iput then link
3556  * the inode to the delayed iput machinery. Delayed iputs are processed at
3557  * transaction commit time/superblock commit/cleaner kthread.
3558  */
3559 void btrfs_add_delayed_iput(struct inode *inode)
3560 {
3561     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3562     struct btrfs_inode *binode = BTRFS_I(inode);
3563 
3564     if (atomic_add_unless(&inode->i_count, -1, 1))
3565         return;
3566 
3567     atomic_inc(&fs_info->nr_delayed_iputs);
3568     spin_lock(&fs_info->delayed_iput_lock);
3569     ASSERT(list_empty(&binode->delayed_iput));
3570     list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3571     spin_unlock(&fs_info->delayed_iput_lock);
3572     if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3573         wake_up_process(fs_info->cleaner_kthread);
3574 }
3575 
3576 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3577                     struct btrfs_inode *inode)
3578 {
3579     list_del_init(&inode->delayed_iput);
3580     spin_unlock(&fs_info->delayed_iput_lock);
3581     iput(&inode->vfs_inode);
3582     if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3583         wake_up(&fs_info->delayed_iputs_wait);
3584     spin_lock(&fs_info->delayed_iput_lock);
3585 }
3586 
3587 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3588                    struct btrfs_inode *inode)
3589 {
3590     if (!list_empty(&inode->delayed_iput)) {
3591         spin_lock(&fs_info->delayed_iput_lock);
3592         if (!list_empty(&inode->delayed_iput))
3593             run_delayed_iput_locked(fs_info, inode);
3594         spin_unlock(&fs_info->delayed_iput_lock);
3595     }
3596 }
3597 
3598 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3599 {
3600 
3601     spin_lock(&fs_info->delayed_iput_lock);
3602     while (!list_empty(&fs_info->delayed_iputs)) {
3603         struct btrfs_inode *inode;
3604 
3605         inode = list_first_entry(&fs_info->delayed_iputs,
3606                 struct btrfs_inode, delayed_iput);
3607         run_delayed_iput_locked(fs_info, inode);
3608         cond_resched_lock(&fs_info->delayed_iput_lock);
3609     }
3610     spin_unlock(&fs_info->delayed_iput_lock);
3611 }
3612 
3613 /**
3614  * Wait for flushing all delayed iputs
3615  *
3616  * @fs_info:  the filesystem
3617  *
3618  * This will wait on any delayed iputs that are currently running with KILLABLE
3619  * set.  Once they are all done running we will return, unless we are killed in
3620  * which case we return EINTR. This helps in user operations like fallocate etc
3621  * that might get blocked on the iputs.
3622  *
3623  * Return EINTR if we were killed, 0 if nothing's pending
3624  */
3625 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3626 {
3627     int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3628             atomic_read(&fs_info->nr_delayed_iputs) == 0);
3629     if (ret)
3630         return -EINTR;
3631     return 0;
3632 }
3633 
3634 /*
3635  * This creates an orphan entry for the given inode in case something goes wrong
3636  * in the middle of an unlink.
3637  */
3638 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3639              struct btrfs_inode *inode)
3640 {
3641     int ret;
3642 
3643     ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3644     if (ret && ret != -EEXIST) {
3645         btrfs_abort_transaction(trans, ret);
3646         return ret;
3647     }
3648 
3649     return 0;
3650 }
3651 
3652 /*
3653  * We have done the delete so we can go ahead and remove the orphan item for
3654  * this particular inode.
3655  */
3656 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3657                 struct btrfs_inode *inode)
3658 {
3659     return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3660 }
3661 
3662 /*
3663  * this cleans up any orphans that may be left on the list from the last use
3664  * of this root.
3665  */
3666 int btrfs_orphan_cleanup(struct btrfs_root *root)
3667 {
3668     struct btrfs_fs_info *fs_info = root->fs_info;
3669     struct btrfs_path *path;
3670     struct extent_buffer *leaf;
3671     struct btrfs_key key, found_key;
3672     struct btrfs_trans_handle *trans;
3673     struct inode *inode;
3674     u64 last_objectid = 0;
3675     int ret = 0, nr_unlink = 0;
3676 
3677     if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3678         return 0;
3679 
3680     path = btrfs_alloc_path();
3681     if (!path) {
3682         ret = -ENOMEM;
3683         goto out;
3684     }
3685     path->reada = READA_BACK;
3686 
3687     key.objectid = BTRFS_ORPHAN_OBJECTID;
3688     key.type = BTRFS_ORPHAN_ITEM_KEY;
3689     key.offset = (u64)-1;
3690 
3691     while (1) {
3692         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3693         if (ret < 0)
3694             goto out;
3695 
3696         /*
3697          * if ret == 0 means we found what we were searching for, which
3698          * is weird, but possible, so only screw with path if we didn't
3699          * find the key and see if we have stuff that matches
3700          */
3701         if (ret > 0) {
3702             ret = 0;
3703             if (path->slots[0] == 0)
3704                 break;
3705             path->slots[0]--;
3706         }
3707 
3708         /* pull out the item */
3709         leaf = path->nodes[0];
3710         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3711 
3712         /* make sure the item matches what we want */
3713         if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3714             break;
3715         if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3716             break;
3717 
3718         /* release the path since we're done with it */
3719         btrfs_release_path(path);
3720 
3721         /*
3722          * this is where we are basically btrfs_lookup, without the
3723          * crossing root thing.  we store the inode number in the
3724          * offset of the orphan item.
3725          */
3726 
3727         if (found_key.offset == last_objectid) {
3728             btrfs_err(fs_info,
3729                   "Error removing orphan entry, stopping orphan cleanup");
3730             ret = -EINVAL;
3731             goto out;
3732         }
3733 
3734         last_objectid = found_key.offset;
3735 
3736         found_key.objectid = found_key.offset;
3737         found_key.type = BTRFS_INODE_ITEM_KEY;
3738         found_key.offset = 0;
3739         inode = btrfs_iget(fs_info->sb, last_objectid, root);
3740         ret = PTR_ERR_OR_ZERO(inode);
3741         if (ret && ret != -ENOENT)
3742             goto out;
3743 
3744         if (ret == -ENOENT && root == fs_info->tree_root) {
3745             struct btrfs_root *dead_root;
3746             int is_dead_root = 0;
3747 
3748             /*
3749              * This is an orphan in the tree root. Currently these
3750              * could come from 2 sources:
3751              *  a) a root (snapshot/subvolume) deletion in progress
3752              *  b) a free space cache inode
3753              * We need to distinguish those two, as the orphan item
3754              * for a root must not get deleted before the deletion
3755              * of the snapshot/subvolume's tree completes.
3756              *
3757              * btrfs_find_orphan_roots() ran before us, which has
3758              * found all deleted roots and loaded them into
3759              * fs_info->fs_roots_radix. So here we can find if an
3760              * orphan item corresponds to a deleted root by looking
3761              * up the root from that radix tree.
3762              */
3763 
3764             spin_lock(&fs_info->fs_roots_radix_lock);
3765             dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3766                              (unsigned long)found_key.objectid);
3767             if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3768                 is_dead_root = 1;
3769             spin_unlock(&fs_info->fs_roots_radix_lock);
3770 
3771             if (is_dead_root) {
3772                 /* prevent this orphan from being found again */
3773                 key.offset = found_key.objectid - 1;
3774                 continue;
3775             }
3776 
3777         }
3778 
3779         /*
3780          * If we have an inode with links, there are a couple of
3781          * possibilities:
3782          *
3783          * 1. We were halfway through creating fsverity metadata for the
3784          * file. In that case, the orphan item represents incomplete
3785          * fsverity metadata which must be cleaned up with
3786          * btrfs_drop_verity_items and deleting the orphan item.
3787 
3788          * 2. Old kernels (before v3.12) used to create an
3789          * orphan item for truncate indicating that there were possibly
3790          * extent items past i_size that needed to be deleted. In v3.12,
3791          * truncate was changed to update i_size in sync with the extent
3792          * items, but the (useless) orphan item was still created. Since
3793          * v4.18, we don't create the orphan item for truncate at all.
3794          *
3795          * So, this item could mean that we need to do a truncate, but
3796          * only if this filesystem was last used on a pre-v3.12 kernel
3797          * and was not cleanly unmounted. The odds of that are quite
3798          * slim, and it's a pain to do the truncate now, so just delete
3799          * the orphan item.
3800          *
3801          * It's also possible that this orphan item was supposed to be
3802          * deleted but wasn't. The inode number may have been reused,
3803          * but either way, we can delete the orphan item.
3804          */
3805         if (ret == -ENOENT || inode->i_nlink) {
3806             if (!ret) {
3807                 ret = btrfs_drop_verity_items(BTRFS_I(inode));
3808                 iput(inode);
3809                 if (ret)
3810                     goto out;
3811             }
3812             trans = btrfs_start_transaction(root, 1);
3813             if (IS_ERR(trans)) {
3814                 ret = PTR_ERR(trans);
3815                 goto out;
3816             }
3817             btrfs_debug(fs_info, "auto deleting %Lu",
3818                     found_key.objectid);
3819             ret = btrfs_del_orphan_item(trans, root,
3820                             found_key.objectid);
3821             btrfs_end_transaction(trans);
3822             if (ret)
3823                 goto out;
3824             continue;
3825         }
3826 
3827         nr_unlink++;
3828 
3829         /* this will do delete_inode and everything for us */
3830         iput(inode);
3831     }
3832     /* release the path since we're done with it */
3833     btrfs_release_path(path);
3834 
3835     if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3836         trans = btrfs_join_transaction(root);
3837         if (!IS_ERR(trans))
3838             btrfs_end_transaction(trans);
3839     }
3840 
3841     if (nr_unlink)
3842         btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3843 
3844 out:
3845     if (ret)
3846         btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3847     btrfs_free_path(path);
3848     return ret;
3849 }
3850 
3851 /*
3852  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3853  * don't find any xattrs, we know there can't be any acls.
3854  *
3855  * slot is the slot the inode is in, objectid is the objectid of the inode
3856  */
3857 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3858                       int slot, u64 objectid,
3859                       int *first_xattr_slot)
3860 {
3861     u32 nritems = btrfs_header_nritems(leaf);
3862     struct btrfs_key found_key;
3863     static u64 xattr_access = 0;
3864     static u64 xattr_default = 0;
3865     int scanned = 0;
3866 
3867     if (!xattr_access) {
3868         xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3869                     strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3870         xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3871                     strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3872     }
3873 
3874     slot++;
3875     *first_xattr_slot = -1;
3876     while (slot < nritems) {
3877         btrfs_item_key_to_cpu(leaf, &found_key, slot);
3878 
3879         /* we found a different objectid, there must not be acls */
3880         if (found_key.objectid != objectid)
3881             return 0;
3882 
3883         /* we found an xattr, assume we've got an acl */
3884         if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3885             if (*first_xattr_slot == -1)
3886                 *first_xattr_slot = slot;
3887             if (found_key.offset == xattr_access ||
3888                 found_key.offset == xattr_default)
3889                 return 1;
3890         }
3891 
3892         /*
3893          * we found a key greater than an xattr key, there can't
3894          * be any acls later on
3895          */
3896         if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3897             return 0;
3898 
3899         slot++;
3900         scanned++;
3901 
3902         /*
3903          * it goes inode, inode backrefs, xattrs, extents,
3904          * so if there are a ton of hard links to an inode there can
3905          * be a lot of backrefs.  Don't waste time searching too hard,
3906          * this is just an optimization
3907          */
3908         if (scanned >= 8)
3909             break;
3910     }
3911     /* we hit the end of the leaf before we found an xattr or
3912      * something larger than an xattr.  We have to assume the inode
3913      * has acls
3914      */
3915     if (*first_xattr_slot == -1)
3916         *first_xattr_slot = slot;
3917     return 1;
3918 }
3919 
3920 /*
3921  * read an inode from the btree into the in-memory inode
3922  */
3923 static int btrfs_read_locked_inode(struct inode *inode,
3924                    struct btrfs_path *in_path)
3925 {
3926     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3927     struct btrfs_path *path = in_path;
3928     struct extent_buffer *leaf;
3929     struct btrfs_inode_item *inode_item;
3930     struct btrfs_root *root = BTRFS_I(inode)->root;
3931     struct btrfs_key location;
3932     unsigned long ptr;
3933     int maybe_acls;
3934     u32 rdev;
3935     int ret;
3936     bool filled = false;
3937     int first_xattr_slot;
3938 
3939     ret = btrfs_fill_inode(inode, &rdev);
3940     if (!ret)
3941         filled = true;
3942 
3943     if (!path) {
3944         path = btrfs_alloc_path();
3945         if (!path)
3946             return -ENOMEM;
3947     }
3948 
3949     memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3950 
3951     ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3952     if (ret) {
3953         if (path != in_path)
3954             btrfs_free_path(path);
3955         return ret;
3956     }
3957 
3958     leaf = path->nodes[0];
3959 
3960     if (filled)
3961         goto cache_index;
3962 
3963     inode_item = btrfs_item_ptr(leaf, path->slots[0],
3964                     struct btrfs_inode_item);
3965     inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3966     set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3967     i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3968     i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3969     btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3970     btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3971             round_up(i_size_read(inode), fs_info->sectorsize));
3972 
3973     inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3974     inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3975 
3976     inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3977     inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3978 
3979     inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3980     inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3981 
3982     BTRFS_I(inode)->i_otime.tv_sec =
3983         btrfs_timespec_sec(leaf, &inode_item->otime);
3984     BTRFS_I(inode)->i_otime.tv_nsec =
3985         btrfs_timespec_nsec(leaf, &inode_item->otime);
3986 
3987     inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3988     BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3989     BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3990 
3991     inode_set_iversion_queried(inode,
3992                    btrfs_inode_sequence(leaf, inode_item));
3993     inode->i_generation = BTRFS_I(inode)->generation;
3994     inode->i_rdev = 0;
3995     rdev = btrfs_inode_rdev(leaf, inode_item);
3996 
3997     BTRFS_I(inode)->index_cnt = (u64)-1;
3998     btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3999                 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
4000 
4001 cache_index:
4002     /*
4003      * If we were modified in the current generation and evicted from memory
4004      * and then re-read we need to do a full sync since we don't have any
4005      * idea about which extents were modified before we were evicted from
4006      * cache.
4007      *
4008      * This is required for both inode re-read from disk and delayed inode
4009      * in delayed_nodes_tree.
4010      */
4011     if (BTRFS_I(inode)->last_trans == fs_info->generation)
4012         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4013             &BTRFS_I(inode)->runtime_flags);
4014 
4015     /*
4016      * We don't persist the id of the transaction where an unlink operation
4017      * against the inode was last made. So here we assume the inode might
4018      * have been evicted, and therefore the exact value of last_unlink_trans
4019      * lost, and set it to last_trans to avoid metadata inconsistencies
4020      * between the inode and its parent if the inode is fsync'ed and the log
4021      * replayed. For example, in the scenario:
4022      *
4023      * touch mydir/foo
4024      * ln mydir/foo mydir/bar
4025      * sync
4026      * unlink mydir/bar
4027      * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
4028      * xfs_io -c fsync mydir/foo
4029      * <power failure>
4030      * mount fs, triggers fsync log replay
4031      *
4032      * We must make sure that when we fsync our inode foo we also log its
4033      * parent inode, otherwise after log replay the parent still has the
4034      * dentry with the "bar" name but our inode foo has a link count of 1
4035      * and doesn't have an inode ref with the name "bar" anymore.
4036      *
4037      * Setting last_unlink_trans to last_trans is a pessimistic approach,
4038      * but it guarantees correctness at the expense of occasional full
4039      * transaction commits on fsync if our inode is a directory, or if our
4040      * inode is not a directory, logging its parent unnecessarily.
4041      */
4042     BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
4043 
4044     /*
4045      * Same logic as for last_unlink_trans. We don't persist the generation
4046      * of the last transaction where this inode was used for a reflink
4047      * operation, so after eviction and reloading the inode we must be
4048      * pessimistic and assume the last transaction that modified the inode.
4049      */
4050     BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
4051 
4052     path->slots[0]++;
4053     if (inode->i_nlink != 1 ||
4054         path->slots[0] >= btrfs_header_nritems(leaf))
4055         goto cache_acl;
4056 
4057     btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4058     if (location.objectid != btrfs_ino(BTRFS_I(inode)))
4059         goto cache_acl;
4060 
4061     ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4062     if (location.type == BTRFS_INODE_REF_KEY) {
4063         struct btrfs_inode_ref *ref;
4064 
4065         ref = (struct btrfs_inode_ref *)ptr;
4066         BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
4067     } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
4068         struct btrfs_inode_extref *extref;
4069 
4070         extref = (struct btrfs_inode_extref *)ptr;
4071         BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
4072                                      extref);
4073     }
4074 cache_acl:
4075     /*
4076      * try to precache a NULL acl entry for files that don't have
4077      * any xattrs or acls
4078      */
4079     maybe_acls = acls_after_inode_item(leaf, path->slots[0],
4080             btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
4081     if (first_xattr_slot != -1) {
4082         path->slots[0] = first_xattr_slot;
4083         ret = btrfs_load_inode_props(inode, path);
4084         if (ret)
4085             btrfs_err(fs_info,
4086                   "error loading props for ino %llu (root %llu): %d",
4087                   btrfs_ino(BTRFS_I(inode)),
4088                   root->root_key.objectid, ret);
4089     }
4090     if (path != in_path)
4091         btrfs_free_path(path);
4092 
4093     if (!maybe_acls)
4094         cache_no_acl(inode);
4095 
4096     switch (inode->i_mode & S_IFMT) {
4097     case S_IFREG:
4098         inode->i_mapping->a_ops = &btrfs_aops;
4099         inode->i_fop = &btrfs_file_operations;
4100         inode->i_op = &btrfs_file_inode_operations;
4101         break;
4102     case S_IFDIR:
4103         inode->i_fop = &btrfs_dir_file_operations;
4104         inode->i_op = &btrfs_dir_inode_operations;
4105         break;
4106     case S_IFLNK:
4107         inode->i_op = &btrfs_symlink_inode_operations;
4108         inode_nohighmem(inode);
4109         inode->i_mapping->a_ops = &btrfs_aops;
4110         break;
4111     default:
4112         inode->i_op = &btrfs_special_inode_operations;
4113         init_special_inode(inode, inode->i_mode, rdev);
4114         break;
4115     }
4116 
4117     btrfs_sync_inode_flags_to_i_flags(inode);
4118     return 0;
4119 }
4120 
4121 /*
4122  * given a leaf and an inode, copy the inode fields into the leaf
4123  */
4124 static void fill_inode_item(struct btrfs_trans_handle *trans,
4125                 struct extent_buffer *leaf,
4126                 struct btrfs_inode_item *item,
4127                 struct inode *inode)
4128 {
4129     struct btrfs_map_token token;
4130     u64 flags;
4131 
4132     btrfs_init_map_token(&token, leaf);
4133 
4134     btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4135     btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4136     btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4137     btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4138     btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4139 
4140     btrfs_set_token_timespec_sec(&token, &item->atime,
4141                      inode->i_atime.tv_sec);
4142     btrfs_set_token_timespec_nsec(&token, &item->atime,
4143                       inode->i_atime.tv_nsec);
4144 
4145     btrfs_set_token_timespec_sec(&token, &item->mtime,
4146                      inode->i_mtime.tv_sec);
4147     btrfs_set_token_timespec_nsec(&token, &item->mtime,
4148                       inode->i_mtime.tv_nsec);
4149 
4150     btrfs_set_token_timespec_sec(&token, &item->ctime,
4151                      inode->i_ctime.tv_sec);
4152     btrfs_set_token_timespec_nsec(&token, &item->ctime,
4153                       inode->i_ctime.tv_nsec);
4154 
4155     btrfs_set_token_timespec_sec(&token, &item->otime,
4156                      BTRFS_I(inode)->i_otime.tv_sec);
4157     btrfs_set_token_timespec_nsec(&token, &item->otime,
4158                       BTRFS_I(inode)->i_otime.tv_nsec);
4159 
4160     btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4161     btrfs_set_token_inode_generation(&token, item,
4162                      BTRFS_I(inode)->generation);
4163     btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4164     btrfs_set_token_inode_transid(&token, item, trans->transid);
4165     btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4166     flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4167                       BTRFS_I(inode)->ro_flags);
4168     btrfs_set_token_inode_flags(&token, item, flags);
4169     btrfs_set_token_inode_block_group(&token, item, 0);
4170 }
4171 
4172 /*
4173  * copy everything in the in-memory inode into the btree.
4174  */
4175 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4176                 struct btrfs_root *root,
4177                 struct btrfs_inode *inode)
4178 {
4179     struct btrfs_inode_item *inode_item;
4180     struct btrfs_path *path;
4181     struct extent_buffer *leaf;
4182     int ret;
4183 
4184     path = btrfs_alloc_path();
4185     if (!path)
4186         return -ENOMEM;
4187 
4188     ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
4189     if (ret) {
4190         if (ret > 0)
4191             ret = -ENOENT;
4192         goto failed;
4193     }
4194 
4195     leaf = path->nodes[0];
4196     inode_item = btrfs_item_ptr(leaf, path->slots[0],
4197                     struct btrfs_inode_item);
4198 
4199     fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4200     btrfs_mark_buffer_dirty(leaf);
4201     btrfs_set_inode_last_trans(trans, inode);
4202     ret = 0;
4203 failed:
4204     btrfs_free_path(path);
4205     return ret;
4206 }
4207 
4208 /*
4209  * copy everything in the in-memory inode into the btree.
4210  */
4211 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4212                 struct btrfs_root *root,
4213                 struct btrfs_inode *inode)
4214 {
4215     struct btrfs_fs_info *fs_info = root->fs_info;
4216     int ret;
4217 
4218     /*
4219      * If the inode is a free space inode, we can deadlock during commit
4220      * if we put it into the delayed code.
4221      *
4222      * The data relocation inode should also be directly updated
4223      * without delay
4224      */
4225     if (!btrfs_is_free_space_inode(inode)
4226         && !btrfs_is_data_reloc_root(root)
4227         && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4228         btrfs_update_root_times(trans, root);
4229 
4230         ret = btrfs_delayed_update_inode(trans, root, inode);
4231         if (!ret)
4232             btrfs_set_inode_last_trans(trans, inode);
4233         return ret;
4234     }
4235 
4236     return btrfs_update_inode_item(trans, root, inode);
4237 }
4238 
4239 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4240                 struct btrfs_root *root, struct btrfs_inode *inode)
4241 {
4242     int ret;
4243 
4244     ret = btrfs_update_inode(trans, root, inode);
4245     if (ret == -ENOSPC)
4246         return btrfs_update_inode_item(trans, root, inode);
4247     return ret;
4248 }
4249 
4250 /*
4251  * unlink helper that gets used here in inode.c and in the tree logging
4252  * recovery code.  It remove a link in a directory with a given name, and
4253  * also drops the back refs in the inode to the directory
4254  */
4255 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4256                 struct btrfs_inode *dir,
4257                 struct btrfs_inode *inode,
4258                 const char *name, int name_len,
4259                 struct btrfs_rename_ctx *rename_ctx)
4260 {
4261     struct btrfs_root *root = dir->root;
4262     struct btrfs_fs_info *fs_info = root->fs_info;
4263     struct btrfs_path *path;
4264     int ret = 0;
4265     struct btrfs_dir_item *di;
4266     u64 index;
4267     u64 ino = btrfs_ino(inode);
4268     u64 dir_ino = btrfs_ino(dir);
4269 
4270     path = btrfs_alloc_path();
4271     if (!path) {
4272         ret = -ENOMEM;
4273         goto out;
4274     }
4275 
4276     di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4277                     name, name_len, -1);
4278     if (IS_ERR_OR_NULL(di)) {
4279         ret = di ? PTR_ERR(di) : -ENOENT;
4280         goto err;
4281     }
4282     ret = btrfs_delete_one_dir_name(trans, root, path, di);
4283     if (ret)
4284         goto err;
4285     btrfs_release_path(path);
4286 
4287     /*
4288      * If we don't have dir index, we have to get it by looking up
4289      * the inode ref, since we get the inode ref, remove it directly,
4290      * it is unnecessary to do delayed deletion.
4291      *
4292      * But if we have dir index, needn't search inode ref to get it.
4293      * Since the inode ref is close to the inode item, it is better
4294      * that we delay to delete it, and just do this deletion when
4295      * we update the inode item.
4296      */
4297     if (inode->dir_index) {
4298         ret = btrfs_delayed_delete_inode_ref(inode);
4299         if (!ret) {
4300             index = inode->dir_index;
4301             goto skip_backref;
4302         }
4303     }
4304 
4305     ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4306                   dir_ino, &index);
4307     if (ret) {
4308         btrfs_info(fs_info,
4309             "failed to delete reference to %.*s, inode %llu parent %llu",
4310             name_len, name, ino, dir_ino);
4311         btrfs_abort_transaction(trans, ret);
4312         goto err;
4313     }
4314 skip_backref:
4315     if (rename_ctx)
4316         rename_ctx->index = index;
4317 
4318     ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4319     if (ret) {
4320         btrfs_abort_transaction(trans, ret);
4321         goto err;
4322     }
4323 
4324     /*
4325      * If we are in a rename context, we don't need to update anything in the
4326      * log. That will be done later during the rename by btrfs_log_new_name().
4327      * Besides that, doing it here would only cause extra unnecessary btree
4328      * operations on the log tree, increasing latency for applications.
4329      */
4330     if (!rename_ctx) {
4331         btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4332                        dir_ino);
4333         btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4334                          index);
4335     }
4336 
4337     /*
4338      * If we have a pending delayed iput we could end up with the final iput
4339      * being run in btrfs-cleaner context.  If we have enough of these built
4340      * up we can end up burning a lot of time in btrfs-cleaner without any
4341      * way to throttle the unlinks.  Since we're currently holding a ref on
4342      * the inode we can run the delayed iput here without any issues as the
4343      * final iput won't be done until after we drop the ref we're currently
4344      * holding.
4345      */
4346     btrfs_run_delayed_iput(fs_info, inode);
4347 err:
4348     btrfs_free_path(path);
4349     if (ret)
4350         goto out;
4351 
4352     btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4353     inode_inc_iversion(&inode->vfs_inode);
4354     inode_inc_iversion(&dir->vfs_inode);
4355     inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4356     dir->vfs_inode.i_mtime = inode->vfs_inode.i_ctime;
4357     dir->vfs_inode.i_ctime = inode->vfs_inode.i_ctime;
4358     ret = btrfs_update_inode(trans, root, dir);
4359 out:
4360     return ret;
4361 }
4362 
4363 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4364                struct btrfs_inode *dir, struct btrfs_inode *inode,
4365                const char *name, int name_len)
4366 {
4367     int ret;
4368     ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len, NULL);
4369     if (!ret) {
4370         drop_nlink(&inode->vfs_inode);
4371         ret = btrfs_update_inode(trans, inode->root, inode);
4372     }
4373     return ret;
4374 }
4375 
4376 /*
4377  * helper to start transaction for unlink and rmdir.
4378  *
4379  * unlink and rmdir are special in btrfs, they do not always free space, so
4380  * if we cannot make our reservations the normal way try and see if there is
4381  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4382  * allow the unlink to occur.
4383  */
4384 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4385 {
4386     struct btrfs_root *root = BTRFS_I(dir)->root;
4387 
4388     /*
4389      * 1 for the possible orphan item
4390      * 1 for the dir item
4391      * 1 for the dir index
4392      * 1 for the inode ref
4393      * 1 for the inode
4394      * 1 for the parent inode
4395      */
4396     return btrfs_start_transaction_fallback_global_rsv(root, 6);
4397 }
4398 
4399 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4400 {
4401     struct btrfs_trans_handle *trans;
4402     struct inode *inode = d_inode(dentry);
4403     int ret;
4404 
4405     trans = __unlink_start_trans(dir);
4406     if (IS_ERR(trans))
4407         return PTR_ERR(trans);
4408 
4409     btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4410             0);
4411 
4412     ret = btrfs_unlink_inode(trans, BTRFS_I(dir),
4413             BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4414             dentry->d_name.len);
4415     if (ret)
4416         goto out;
4417 
4418     if (inode->i_nlink == 0) {
4419         ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4420         if (ret)
4421             goto out;
4422     }
4423 
4424 out:
4425     btrfs_end_transaction(trans);
4426     btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4427     return ret;
4428 }
4429 
4430 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4431                    struct inode *dir, struct dentry *dentry)
4432 {
4433     struct btrfs_root *root = BTRFS_I(dir)->root;
4434     struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4435     struct btrfs_path *path;
4436     struct extent_buffer *leaf;
4437     struct btrfs_dir_item *di;
4438     struct btrfs_key key;
4439     const char *name = dentry->d_name.name;
4440     int name_len = dentry->d_name.len;
4441     u64 index;
4442     int ret;
4443     u64 objectid;
4444     u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4445 
4446     if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4447         objectid = inode->root->root_key.objectid;
4448     } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4449         objectid = inode->location.objectid;
4450     } else {
4451         WARN_ON(1);
4452         return -EINVAL;
4453     }
4454 
4455     path = btrfs_alloc_path();
4456     if (!path)
4457         return -ENOMEM;
4458 
4459     di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4460                    name, name_len, -1);
4461     if (IS_ERR_OR_NULL(di)) {
4462         ret = di ? PTR_ERR(di) : -ENOENT;
4463         goto out;
4464     }
4465 
4466     leaf = path->nodes[0];
4467     btrfs_dir_item_key_to_cpu(leaf, di, &key);
4468     WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4469     ret = btrfs_delete_one_dir_name(trans, root, path, di);
4470     if (ret) {
4471         btrfs_abort_transaction(trans, ret);
4472         goto out;
4473     }
4474     btrfs_release_path(path);
4475 
4476     /*
4477      * This is a placeholder inode for a subvolume we didn't have a
4478      * reference to at the time of the snapshot creation.  In the meantime
4479      * we could have renamed the real subvol link into our snapshot, so
4480      * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4481      * Instead simply lookup the dir_index_item for this entry so we can
4482      * remove it.  Otherwise we know we have a ref to the root and we can
4483      * call btrfs_del_root_ref, and it _shouldn't_ fail.
4484      */
4485     if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4486         di = btrfs_search_dir_index_item(root, path, dir_ino,
4487                          name, name_len);
4488         if (IS_ERR_OR_NULL(di)) {
4489             if (!di)
4490                 ret = -ENOENT;
4491             else
4492                 ret = PTR_ERR(di);
4493             btrfs_abort_transaction(trans, ret);
4494             goto out;
4495         }
4496 
4497         leaf = path->nodes[0];
4498         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4499         index = key.offset;
4500         btrfs_release_path(path);
4501     } else {
4502         ret = btrfs_del_root_ref(trans, objectid,
4503                      root->root_key.objectid, dir_ino,
4504                      &index, name, name_len);
4505         if (ret) {
4506             btrfs_abort_transaction(trans, ret);
4507             goto out;
4508         }
4509     }
4510 
4511     ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4512     if (ret) {
4513         btrfs_abort_transaction(trans, ret);
4514         goto out;
4515     }
4516 
4517     btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4518     inode_inc_iversion(dir);
4519     dir->i_mtime = current_time(dir);
4520     dir->i_ctime = dir->i_mtime;
4521     ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
4522     if (ret)
4523         btrfs_abort_transaction(trans, ret);
4524 out:
4525     btrfs_free_path(path);
4526     return ret;
4527 }
4528 
4529 /*
4530  * Helper to check if the subvolume references other subvolumes or if it's
4531  * default.
4532  */
4533 static noinline int may_destroy_subvol(struct btrfs_root *root)
4534 {
4535     struct btrfs_fs_info *fs_info = root->fs_info;
4536     struct btrfs_path *path;
4537     struct btrfs_dir_item *di;
4538     struct btrfs_key key;
4539     u64 dir_id;
4540     int ret;
4541 
4542     path = btrfs_alloc_path();
4543     if (!path)
4544         return -ENOMEM;
4545 
4546     /* Make sure this root isn't set as the default subvol */
4547     dir_id = btrfs_super_root_dir(fs_info->super_copy);
4548     di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4549                    dir_id, "default", 7, 0);
4550     if (di && !IS_ERR(di)) {
4551         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4552         if (key.objectid == root->root_key.objectid) {
4553             ret = -EPERM;
4554             btrfs_err(fs_info,
4555                   "deleting default subvolume %llu is not allowed",
4556                   key.objectid);
4557             goto out;
4558         }
4559         btrfs_release_path(path);
4560     }
4561 
4562     key.objectid = root->root_key.objectid;
4563     key.type = BTRFS_ROOT_REF_KEY;
4564     key.offset = (u64)-1;
4565 
4566     ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4567     if (ret < 0)
4568         goto out;
4569     BUG_ON(ret == 0);
4570 
4571     ret = 0;
4572     if (path->slots[0] > 0) {
4573         path->slots[0]--;
4574         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4575         if (key.objectid == root->root_key.objectid &&
4576             key.type == BTRFS_ROOT_REF_KEY)
4577             ret = -ENOTEMPTY;
4578     }
4579 out:
4580     btrfs_free_path(path);
4581     return ret;
4582 }
4583 
4584 /* Delete all dentries for inodes belonging to the root */
4585 static void btrfs_prune_dentries(struct btrfs_root *root)
4586 {
4587     struct btrfs_fs_info *fs_info = root->fs_info;
4588     struct rb_node *node;
4589     struct rb_node *prev;
4590     struct btrfs_inode *entry;
4591     struct inode *inode;
4592     u64 objectid = 0;
4593 
4594     if (!BTRFS_FS_ERROR(fs_info))
4595         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4596 
4597     spin_lock(&root->inode_lock);
4598 again:
4599     node = root->inode_tree.rb_node;
4600     prev = NULL;
4601     while (node) {
4602         prev = node;
4603         entry = rb_entry(node, struct btrfs_inode, rb_node);
4604 
4605         if (objectid < btrfs_ino(entry))
4606             node = node->rb_left;
4607         else if (objectid > btrfs_ino(entry))
4608             node = node->rb_right;
4609         else
4610             break;
4611     }
4612     if (!node) {
4613         while (prev) {
4614             entry = rb_entry(prev, struct btrfs_inode, rb_node);
4615             if (objectid <= btrfs_ino(entry)) {
4616                 node = prev;
4617                 break;
4618             }
4619             prev = rb_next(prev);
4620         }
4621     }
4622     while (node) {
4623         entry = rb_entry(node, struct btrfs_inode, rb_node);
4624         objectid = btrfs_ino(entry) + 1;
4625         inode = igrab(&entry->vfs_inode);
4626         if (inode) {
4627             spin_unlock(&root->inode_lock);
4628             if (atomic_read(&inode->i_count) > 1)
4629                 d_prune_aliases(inode);
4630             /*
4631              * btrfs_drop_inode will have it removed from the inode
4632              * cache when its usage count hits zero.
4633              */
4634             iput(inode);
4635             cond_resched();
4636             spin_lock(&root->inode_lock);
4637             goto again;
4638         }
4639 
4640         if (cond_resched_lock(&root->inode_lock))
4641             goto again;
4642 
4643         node = rb_next(node);
4644     }
4645     spin_unlock(&root->inode_lock);
4646 }
4647 
4648 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4649 {
4650     struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4651     struct btrfs_root *root = BTRFS_I(dir)->root;
4652     struct inode *inode = d_inode(dentry);
4653     struct btrfs_root *dest = BTRFS_I(inode)->root;
4654     struct btrfs_trans_handle *trans;
4655     struct btrfs_block_rsv block_rsv;
4656     u64 root_flags;
4657     int ret;
4658 
4659     /*
4660      * Don't allow to delete a subvolume with send in progress. This is
4661      * inside the inode lock so the error handling that has to drop the bit
4662      * again is not run concurrently.
4663      */
4664     spin_lock(&dest->root_item_lock);
4665     if (dest->send_in_progress) {
4666         spin_unlock(&dest->root_item_lock);
4667         btrfs_warn(fs_info,
4668                "attempt to delete subvolume %llu during send",
4669                dest->root_key.objectid);
4670         return -EPERM;
4671     }
4672     if (atomic_read(&dest->nr_swapfiles)) {
4673         spin_unlock(&dest->root_item_lock);
4674         btrfs_warn(fs_info,
4675                "attempt to delete subvolume %llu with active swapfile",
4676                root->root_key.objectid);
4677         return -EPERM;
4678     }
4679     root_flags = btrfs_root_flags(&dest->root_item);
4680     btrfs_set_root_flags(&dest->root_item,
4681                  root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4682     spin_unlock(&dest->root_item_lock);
4683 
4684     down_write(&fs_info->subvol_sem);
4685 
4686     ret = may_destroy_subvol(dest);
4687     if (ret)
4688         goto out_up_write;
4689 
4690     btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4691     /*
4692      * One for dir inode,
4693      * two for dir entries,
4694      * two for root ref/backref.
4695      */
4696     ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4697     if (ret)
4698         goto out_up_write;
4699 
4700     trans = btrfs_start_transaction(root, 0);
4701     if (IS_ERR(trans)) {
4702         ret = PTR_ERR(trans);
4703         goto out_release;
4704     }
4705     trans->block_rsv = &block_rsv;
4706     trans->bytes_reserved = block_rsv.size;
4707 
4708     btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4709 
4710     ret = btrfs_unlink_subvol(trans, dir, dentry);
4711     if (ret) {
4712         btrfs_abort_transaction(trans, ret);
4713         goto out_end_trans;
4714     }
4715 
4716     ret = btrfs_record_root_in_trans(trans, dest);
4717     if (ret) {
4718         btrfs_abort_transaction(trans, ret);
4719         goto out_end_trans;
4720     }
4721 
4722     memset(&dest->root_item.drop_progress, 0,
4723         sizeof(dest->root_item.drop_progress));
4724     btrfs_set_root_drop_level(&dest->root_item, 0);
4725     btrfs_set_root_refs(&dest->root_item, 0);
4726 
4727     if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4728         ret = btrfs_insert_orphan_item(trans,
4729                     fs_info->tree_root,
4730                     dest->root_key.objectid);
4731         if (ret) {
4732             btrfs_abort_transaction(trans, ret);
4733             goto out_end_trans;
4734         }
4735     }
4736 
4737     ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4738                   BTRFS_UUID_KEY_SUBVOL,
4739                   dest->root_key.objectid);
4740     if (ret && ret != -ENOENT) {
4741         btrfs_abort_transaction(trans, ret);
4742         goto out_end_trans;
4743     }
4744     if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4745         ret = btrfs_uuid_tree_remove(trans,
4746                       dest->root_item.received_uuid,
4747                       BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4748                       dest->root_key.objectid);
4749         if (ret && ret != -ENOENT) {
4750             btrfs_abort_transaction(trans, ret);
4751             goto out_end_trans;
4752         }
4753     }
4754 
4755     free_anon_bdev(dest->anon_dev);
4756     dest->anon_dev = 0;
4757 out_end_trans:
4758     trans->block_rsv = NULL;
4759     trans->bytes_reserved = 0;
4760     ret = btrfs_end_transaction(trans);
4761     inode->i_flags |= S_DEAD;
4762 out_release:
4763     btrfs_subvolume_release_metadata(root, &block_rsv);
4764 out_up_write:
4765     up_write(&fs_info->subvol_sem);
4766     if (ret) {
4767         spin_lock(&dest->root_item_lock);
4768         root_flags = btrfs_root_flags(&dest->root_item);
4769         btrfs_set_root_flags(&dest->root_item,
4770                 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4771         spin_unlock(&dest->root_item_lock);
4772     } else {
4773         d_invalidate(dentry);
4774         btrfs_prune_dentries(dest);
4775         ASSERT(dest->send_in_progress == 0);
4776     }
4777 
4778     return ret;
4779 }
4780 
4781 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4782 {
4783     struct inode *inode = d_inode(dentry);
4784     struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4785     int err = 0;
4786     struct btrfs_trans_handle *trans;
4787     u64 last_unlink_trans;
4788 
4789     if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4790         return -ENOTEMPTY;
4791     if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4792         if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4793             btrfs_err(fs_info,
4794             "extent tree v2 doesn't support snapshot deletion yet");
4795             return -EOPNOTSUPP;
4796         }
4797         return btrfs_delete_subvolume(dir, dentry);
4798     }
4799 
4800     trans = __unlink_start_trans(dir);
4801     if (IS_ERR(trans))
4802         return PTR_ERR(trans);
4803 
4804     if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4805         err = btrfs_unlink_subvol(trans, dir, dentry);
4806         goto out;
4807     }
4808 
4809     err = btrfs_orphan_add(trans, BTRFS_I(inode));
4810     if (err)
4811         goto out;
4812 
4813     last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4814 
4815     /* now the directory is empty */
4816     err = btrfs_unlink_inode(trans, BTRFS_I(dir),
4817             BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4818             dentry->d_name.len);
4819     if (!err) {
4820         btrfs_i_size_write(BTRFS_I(inode), 0);
4821         /*
4822          * Propagate the last_unlink_trans value of the deleted dir to
4823          * its parent directory. This is to prevent an unrecoverable
4824          * log tree in the case we do something like this:
4825          * 1) create dir foo
4826          * 2) create snapshot under dir foo
4827          * 3) delete the snapshot
4828          * 4) rmdir foo
4829          * 5) mkdir foo
4830          * 6) fsync foo or some file inside foo
4831          */
4832         if (last_unlink_trans >= trans->transid)
4833             BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4834     }
4835 out:
4836     btrfs_end_transaction(trans);
4837     btrfs_btree_balance_dirty(fs_info);
4838 
4839     return err;
4840 }
4841 
4842 /*
4843  * btrfs_truncate_block - read, zero a chunk and write a block
4844  * @inode - inode that we're zeroing
4845  * @from - the offset to start zeroing
4846  * @len - the length to zero, 0 to zero the entire range respective to the
4847  *  offset
4848  * @front - zero up to the offset instead of from the offset on
4849  *
4850  * This will find the block for the "from" offset and cow the block and zero the
4851  * part we want to zero.  This is used with truncate and hole punching.
4852  */
4853 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4854              int front)
4855 {
4856     struct btrfs_fs_info *fs_info = inode->root->fs_info;
4857     struct address_space *mapping = inode->vfs_inode.i_mapping;
4858     struct extent_io_tree *io_tree = &inode->io_tree;
4859     struct btrfs_ordered_extent *ordered;
4860     struct extent_state *cached_state = NULL;
4861     struct extent_changeset *data_reserved = NULL;
4862     bool only_release_metadata = false;
4863     u32 blocksize = fs_info->sectorsize;
4864     pgoff_t index = from >> PAGE_SHIFT;
4865     unsigned offset = from & (blocksize - 1);
4866     struct page *page;
4867     gfp_t mask = btrfs_alloc_write_mask(mapping);
4868     size_t write_bytes = blocksize;
4869     int ret = 0;
4870     u64 block_start;
4871     u64 block_end;
4872 
4873     if (IS_ALIGNED(offset, blocksize) &&
4874         (!len || IS_ALIGNED(len, blocksize)))
4875         goto out;
4876 
4877     block_start = round_down(from, blocksize);
4878     block_end = block_start + blocksize - 1;
4879 
4880     ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4881                       blocksize);
4882     if (ret < 0) {
4883         if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
4884             /* For nocow case, no need to reserve data space */
4885             only_release_metadata = true;
4886         } else {
4887             goto out;
4888         }
4889     }
4890     ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4891     if (ret < 0) {
4892         if (!only_release_metadata)
4893             btrfs_free_reserved_data_space(inode, data_reserved,
4894                                block_start, blocksize);
4895         goto out;
4896     }
4897 again:
4898     page = find_or_create_page(mapping, index, mask);
4899     if (!page) {
4900         btrfs_delalloc_release_space(inode, data_reserved, block_start,
4901                          blocksize, true);
4902         btrfs_delalloc_release_extents(inode, blocksize);
4903         ret = -ENOMEM;
4904         goto out;
4905     }
4906     ret = set_page_extent_mapped(page);
4907     if (ret < 0)
4908         goto out_unlock;
4909 
4910     if (!PageUptodate(page)) {
4911         ret = btrfs_read_folio(NULL, page_folio(page));
4912         lock_page(page);
4913         if (page->mapping != mapping) {
4914             unlock_page(page);
4915             put_page(page);
4916             goto again;
4917         }
4918         if (!PageUptodate(page)) {
4919             ret = -EIO;
4920             goto out_unlock;
4921         }
4922     }
4923     wait_on_page_writeback(page);
4924 
4925     lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4926 
4927     ordered = btrfs_lookup_ordered_extent(inode, block_start);
4928     if (ordered) {
4929         unlock_extent_cached(io_tree, block_start, block_end,
4930                      &cached_state);
4931         unlock_page(page);
4932         put_page(page);
4933         btrfs_start_ordered_extent(ordered, 1);
4934         btrfs_put_ordered_extent(ordered);
4935         goto again;
4936     }
4937 
4938     clear_extent_bit(&inode->io_tree, block_start, block_end,
4939              EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4940              0, 0, &cached_state);
4941 
4942     ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4943                     &cached_state);
4944     if (ret) {
4945         unlock_extent_cached(io_tree, block_start, block_end,
4946                      &cached_state);
4947         goto out_unlock;
4948     }
4949 
4950     if (offset != blocksize) {
4951         if (!len)
4952             len = blocksize - offset;
4953         if (front)
4954             memzero_page(page, (block_start - page_offset(page)),
4955                      offset);
4956         else
4957             memzero_page(page, (block_start - page_offset(page)) + offset,
4958                      len);
4959     }
4960     btrfs_page_clear_checked(fs_info, page, block_start,
4961                  block_end + 1 - block_start);
4962     btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4963     unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4964 
4965     if (only_release_metadata)
4966         set_extent_bit(&inode->io_tree, block_start, block_end,
4967                    EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
4968 
4969 out_unlock:
4970     if (ret) {
4971         if (only_release_metadata)
4972             btrfs_delalloc_release_metadata(inode, blocksize, true);
4973         else
4974             btrfs_delalloc_release_space(inode, data_reserved,
4975                     block_start, blocksize, true);
4976     }
4977     btrfs_delalloc_release_extents(inode, blocksize);
4978     unlock_page(page);
4979     put_page(page);
4980 out:
4981     if (only_release_metadata)
4982         btrfs_check_nocow_unlock(inode);
4983     extent_changeset_free(data_reserved);
4984     return ret;
4985 }
4986 
4987 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4988                  u64 offset, u64 len)
4989 {
4990     struct btrfs_fs_info *fs_info = root->fs_info;
4991     struct btrfs_trans_handle *trans;
4992     struct btrfs_drop_extents_args drop_args = { 0 };
4993     int ret;
4994 
4995     /*
4996      * If NO_HOLES is enabled, we don't need to do anything.
4997      * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4998      * or btrfs_update_inode() will be called, which guarantee that the next
4999      * fsync will know this inode was changed and needs to be logged.
5000      */
5001     if (btrfs_fs_incompat(fs_info, NO_HOLES))
5002         return 0;
5003 
5004     /*
5005      * 1 - for the one we're dropping
5006      * 1 - for the one we're adding
5007      * 1 - for updating the inode.
5008      */
5009     trans = btrfs_start_transaction(root, 3);
5010     if (IS_ERR(trans))
5011         return PTR_ERR(trans);
5012 
5013     drop_args.start = offset;
5014     drop_args.end = offset + len;
5015     drop_args.drop_cache = true;
5016 
5017     ret = btrfs_drop_extents(trans, root, inode, &drop_args);
5018     if (ret) {
5019         btrfs_abort_transaction(trans, ret);
5020         btrfs_end_transaction(trans);
5021         return ret;
5022     }
5023 
5024     ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
5025             offset, 0, 0, len, 0, len, 0, 0, 0);
5026     if (ret) {
5027         btrfs_abort_transaction(trans, ret);
5028     } else {
5029         btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5030         btrfs_update_inode(trans, root, inode);
5031     }
5032     btrfs_end_transaction(trans);
5033     return ret;
5034 }
5035 
5036 /*
5037  * This function puts in dummy file extents for the area we're creating a hole
5038  * for.  So if we are truncating this file to a larger size we need to insert
5039  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5040  * the range between oldsize and size
5041  */
5042 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5043 {
5044     struct btrfs_root *root = inode->root;
5045     struct btrfs_fs_info *fs_info = root->fs_info;
5046     struct extent_io_tree *io_tree = &inode->io_tree;
5047     struct extent_map *em = NULL;
5048     struct extent_state *cached_state = NULL;
5049     struct extent_map_tree *em_tree = &inode->extent_tree;
5050     u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5051     u64 block_end = ALIGN(size, fs_info->sectorsize);
5052     u64 last_byte;
5053     u64 cur_offset;
5054     u64 hole_size;
5055     int err = 0;
5056 
5057     /*
5058      * If our size started in the middle of a block we need to zero out the
5059      * rest of the block before we expand the i_size, otherwise we could
5060      * expose stale data.
5061      */
5062     err = btrfs_truncate_block(inode, oldsize, 0, 0);
5063     if (err)
5064         return err;
5065 
5066     if (size <= hole_start)
5067         return 0;
5068 
5069     btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5070                        &cached_state);
5071     cur_offset = hole_start;
5072     while (1) {
5073         em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5074                       block_end - cur_offset);
5075         if (IS_ERR(em)) {
5076             err = PTR_ERR(em);
5077             em = NULL;
5078             break;
5079         }
5080         last_byte = min(extent_map_end(em), block_end);
5081         last_byte = ALIGN(last_byte, fs_info->sectorsize);
5082         hole_size = last_byte - cur_offset;
5083 
5084         if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5085             struct extent_map *hole_em;
5086 
5087             err = maybe_insert_hole(root, inode, cur_offset,
5088                         hole_size);
5089             if (err)
5090                 break;
5091 
5092             err = btrfs_inode_set_file_extent_range(inode,
5093                             cur_offset, hole_size);
5094             if (err)
5095                 break;
5096 
5097             btrfs_drop_extent_cache(inode, cur_offset,
5098                         cur_offset + hole_size - 1, 0);
5099             hole_em = alloc_extent_map();
5100             if (!hole_em) {
5101                 btrfs_set_inode_full_sync(inode);
5102                 goto next;
5103             }
5104             hole_em->start = cur_offset;
5105             hole_em->len = hole_size;
5106             hole_em->orig_start = cur_offset;
5107 
5108             hole_em->block_start = EXTENT_MAP_HOLE;
5109             hole_em->block_len = 0;
5110             hole_em->orig_block_len = 0;
5111             hole_em->ram_bytes = hole_size;
5112             hole_em->compress_type = BTRFS_COMPRESS_NONE;
5113             hole_em->generation = fs_info->generation;
5114 
5115             while (1) {
5116                 write_lock(&em_tree->lock);
5117                 err = add_extent_mapping(em_tree, hole_em, 1);
5118                 write_unlock(&em_tree->lock);
5119                 if (err != -EEXIST)
5120                     break;
5121                 btrfs_drop_extent_cache(inode, cur_offset,
5122                             cur_offset +
5123                             hole_size - 1, 0);
5124             }
5125             free_extent_map(hole_em);
5126         } else {
5127             err = btrfs_inode_set_file_extent_range(inode,
5128                             cur_offset, hole_size);
5129             if (err)
5130                 break;
5131         }
5132 next:
5133         free_extent_map(em);
5134         em = NULL;
5135         cur_offset = last_byte;
5136         if (cur_offset >= block_end)
5137             break;
5138     }
5139     free_extent_map(em);
5140     unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5141     return err;
5142 }
5143 
5144 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5145 {
5146     struct btrfs_root *root = BTRFS_I(inode)->root;
5147     struct btrfs_trans_handle *trans;
5148     loff_t oldsize = i_size_read(inode);
5149     loff_t newsize = attr->ia_size;
5150     int mask = attr->ia_valid;
5151     int ret;
5152 
5153     /*
5154      * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5155      * special case where we need to update the times despite not having
5156      * these flags set.  For all other operations the VFS set these flags
5157      * explicitly if it wants a timestamp update.
5158      */
5159     if (newsize != oldsize) {
5160         inode_inc_iversion(inode);
5161         if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5162             inode->i_mtime = current_time(inode);
5163             inode->i_ctime = inode->i_mtime;
5164         }
5165     }
5166 
5167     if (newsize > oldsize) {
5168         /*
5169          * Don't do an expanding truncate while snapshotting is ongoing.
5170          * This is to ensure the snapshot captures a fully consistent
5171          * state of this file - if the snapshot captures this expanding
5172          * truncation, it must capture all writes that happened before
5173          * this truncation.
5174          */
5175         btrfs_drew_write_lock(&root->snapshot_lock);
5176         ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5177         if (ret) {
5178             btrfs_drew_write_unlock(&root->snapshot_lock);
5179             return ret;
5180         }
5181 
5182         trans = btrfs_start_transaction(root, 1);
5183         if (IS_ERR(trans)) {
5184             btrfs_drew_write_unlock(&root->snapshot_lock);
5185             return PTR_ERR(trans);
5186         }
5187 
5188         i_size_write(inode, newsize);
5189         btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5190         pagecache_isize_extended(inode, oldsize, newsize);
5191         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5192         btrfs_drew_write_unlock(&root->snapshot_lock);
5193         btrfs_end_transaction(trans);
5194     } else {
5195         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5196 
5197         if (btrfs_is_zoned(fs_info)) {
5198             ret = btrfs_wait_ordered_range(inode,
5199                     ALIGN(newsize, fs_info->sectorsize),
5200                     (u64)-1);
5201             if (ret)
5202                 return ret;
5203         }
5204 
5205         /*
5206          * We're truncating a file that used to have good data down to
5207          * zero. Make sure any new writes to the file get on disk
5208          * on close.
5209          */
5210         if (newsize == 0)
5211             set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5212                 &BTRFS_I(inode)->runtime_flags);
5213 
5214         truncate_setsize(inode, newsize);
5215 
5216         inode_dio_wait(inode);
5217 
5218         ret = btrfs_truncate(inode, newsize == oldsize);
5219         if (ret && inode->i_nlink) {
5220             int err;
5221 
5222             /*
5223              * Truncate failed, so fix up the in-memory size. We
5224              * adjusted disk_i_size down as we removed extents, so
5225              * wait for disk_i_size to be stable and then update the
5226              * in-memory size to match.
5227              */
5228             err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5229             if (err)
5230                 return err;
5231             i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5232         }
5233     }
5234 
5235     return ret;
5236 }
5237 
5238 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5239              struct iattr *attr)
5240 {
5241     struct inode *inode = d_inode(dentry);
5242     struct btrfs_root *root = BTRFS_I(inode)->root;
5243     int err;
5244 
5245     if (btrfs_root_readonly(root))
5246         return -EROFS;
5247 
5248     err = setattr_prepare(mnt_userns, dentry, attr);
5249     if (err)
5250         return err;
5251 
5252     if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5253         err = btrfs_setsize(inode, attr);
5254         if (err)
5255             return err;
5256     }
5257 
5258     if (attr->ia_valid) {
5259         setattr_copy(mnt_userns, inode, attr);
5260         inode_inc_iversion(inode);
5261         err = btrfs_dirty_inode(inode);
5262 
5263         if (!err && attr->ia_valid & ATTR_MODE)
5264             err = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5265     }
5266 
5267     return err;
5268 }
5269 
5270 /*
5271  * While truncating the inode pages during eviction, we get the VFS
5272  * calling btrfs_invalidate_folio() against each folio of the inode. This
5273  * is slow because the calls to btrfs_invalidate_folio() result in a
5274  * huge amount of calls to lock_extent_bits() and clear_extent_bit(),
5275  * which keep merging and splitting extent_state structures over and over,
5276  * wasting lots of time.
5277  *
5278  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5279  * skip all those expensive operations on a per folio basis and do only
5280  * the ordered io finishing, while we release here the extent_map and
5281  * extent_state structures, without the excessive merging and splitting.
5282  */
5283 static void evict_inode_truncate_pages(struct inode *inode)
5284 {
5285     struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5286     struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5287     struct rb_node *node;
5288 
5289     ASSERT(inode->i_state & I_FREEING);
5290     truncate_inode_pages_final(&inode->i_data);
5291 
5292     write_lock(&map_tree->lock);
5293     while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5294         struct extent_map *em;
5295 
5296         node = rb_first_cached(&map_tree->map);
5297         em = rb_entry(node, struct extent_map, rb_node);
5298         clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5299         clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5300         remove_extent_mapping(map_tree, em);
5301         free_extent_map(em);
5302         if (need_resched()) {
5303             write_unlock(&map_tree->lock);
5304             cond_resched();
5305             write_lock(&map_tree->lock);
5306         }
5307     }
5308     write_unlock(&map_tree->lock);
5309 
5310     /*
5311      * Keep looping until we have no more ranges in the io tree.
5312      * We can have ongoing bios started by readahead that have
5313      * their endio callback (extent_io.c:end_bio_extent_readpage)
5314      * still in progress (unlocked the pages in the bio but did not yet
5315      * unlocked the ranges in the io tree). Therefore this means some
5316      * ranges can still be locked and eviction started because before
5317      * submitting those bios, which are executed by a separate task (work
5318      * queue kthread), inode references (inode->i_count) were not taken
5319      * (which would be dropped in the end io callback of each bio).
5320      * Therefore here we effectively end up waiting for those bios and
5321      * anyone else holding locked ranges without having bumped the inode's
5322      * reference count - if we don't do it, when they access the inode's
5323      * io_tree to unlock a range it may be too late, leading to an
5324      * use-after-free issue.
5325      */
5326     spin_lock(&io_tree->lock);
5327     while (!RB_EMPTY_ROOT(&io_tree->state)) {
5328         struct extent_state *state;
5329         struct extent_state *cached_state = NULL;
5330         u64 start;
5331         u64 end;
5332         unsigned state_flags;
5333 
5334         node = rb_first(&io_tree->state);
5335         state = rb_entry(node, struct extent_state, rb_node);
5336         start = state->start;
5337         end = state->end;
5338         state_flags = state->state;
5339         spin_unlock(&io_tree->lock);
5340 
5341         lock_extent_bits(io_tree, start, end, &cached_state);
5342 
5343         /*
5344          * If still has DELALLOC flag, the extent didn't reach disk,
5345          * and its reserved space won't be freed by delayed_ref.
5346          * So we need to free its reserved space here.
5347          * (Refer to comment in btrfs_invalidate_folio, case 2)
5348          *
5349          * Note, end is the bytenr of last byte, so we need + 1 here.
5350          */
5351         if (state_flags & EXTENT_DELALLOC)
5352             btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5353                            end - start + 1);
5354 
5355         clear_extent_bit(io_tree, start, end,
5356                  EXTENT_LOCKED | EXTENT_DELALLOC |
5357                  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5358                  &cached_state);
5359 
5360         cond_resched();
5361         spin_lock(&io_tree->lock);
5362     }
5363     spin_unlock(&io_tree->lock);
5364 }
5365 
5366 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5367                             struct btrfs_block_rsv *rsv)
5368 {
5369     struct btrfs_fs_info *fs_info = root->fs_info;
5370     struct btrfs_trans_handle *trans;
5371     u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5372     int ret;
5373 
5374     /*
5375      * Eviction should be taking place at some place safe because of our
5376      * delayed iputs.  However the normal flushing code will run delayed
5377      * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5378      *
5379      * We reserve the delayed_refs_extra here again because we can't use
5380      * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5381      * above.  We reserve our extra bit here because we generate a ton of
5382      * delayed refs activity by truncating.
5383      *
5384      * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5385      * if we fail to make this reservation we can re-try without the
5386      * delayed_refs_extra so we can make some forward progress.
5387      */
5388     ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5389                      BTRFS_RESERVE_FLUSH_EVICT);
5390     if (ret) {
5391         ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5392                          BTRFS_RESERVE_FLUSH_EVICT);
5393         if (ret) {
5394             btrfs_warn(fs_info,
5395                    "could not allocate space for delete; will truncate on mount");
5396             return ERR_PTR(-ENOSPC);
5397         }
5398         delayed_refs_extra = 0;
5399     }
5400 
5401     trans = btrfs_join_transaction(root);
5402     if (IS_ERR(trans))
5403         return trans;
5404 
5405     if (delayed_refs_extra) {
5406         trans->block_rsv = &fs_info->trans_block_rsv;
5407         trans->bytes_reserved = delayed_refs_extra;
5408         btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5409                     delayed_refs_extra, 1);
5410     }
5411     return trans;
5412 }
5413 
5414 void btrfs_evict_inode(struct inode *inode)
5415 {
5416     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5417     struct btrfs_trans_handle *trans;
5418     struct btrfs_root *root = BTRFS_I(inode)->root;
5419     struct btrfs_block_rsv *rsv;
5420     int ret;
5421 
5422     trace_btrfs_inode_evict(inode);
5423 
5424     if (!root) {
5425         fsverity_cleanup_inode(inode);
5426         clear_inode(inode);
5427         return;
5428     }
5429 
5430     evict_inode_truncate_pages(inode);
5431 
5432     if (inode->i_nlink &&
5433         ((btrfs_root_refs(&root->root_item) != 0 &&
5434           root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5435          btrfs_is_free_space_inode(BTRFS_I(inode))))
5436         goto no_delete;
5437 
5438     if (is_bad_inode(inode))
5439         goto no_delete;
5440 
5441     btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5442 
5443     if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5444         goto no_delete;
5445 
5446     if (inode->i_nlink > 0) {
5447         BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5448                root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5449         goto no_delete;
5450     }
5451 
5452     /*
5453      * This makes sure the inode item in tree is uptodate and the space for
5454      * the inode update is released.
5455      */
5456     ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5457     if (ret)
5458         goto no_delete;
5459 
5460     /*
5461      * This drops any pending insert or delete operations we have for this
5462      * inode.  We could have a delayed dir index deletion queued up, but
5463      * we're removing the inode completely so that'll be taken care of in
5464      * the truncate.
5465      */
5466     btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5467 
5468     rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5469     if (!rsv)
5470         goto no_delete;
5471     rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5472     rsv->failfast = true;
5473 
5474     btrfs_i_size_write(BTRFS_I(inode), 0);
5475 
5476     while (1) {
5477         struct btrfs_truncate_control control = {
5478             .inode = BTRFS_I(inode),
5479             .ino = btrfs_ino(BTRFS_I(inode)),
5480             .new_size = 0,
5481             .min_type = 0,
5482         };
5483 
5484         trans = evict_refill_and_join(root, rsv);
5485         if (IS_ERR(trans))
5486             goto free_rsv;
5487 
5488         trans->block_rsv = rsv;
5489 
5490         ret = btrfs_truncate_inode_items(trans, root, &control);
5491         trans->block_rsv = &fs_info->trans_block_rsv;
5492         btrfs_end_transaction(trans);
5493         btrfs_btree_balance_dirty(fs_info);
5494         if (ret && ret != -ENOSPC && ret != -EAGAIN)
5495             goto free_rsv;
5496         else if (!ret)
5497             break;
5498     }
5499 
5500     /*
5501      * Errors here aren't a big deal, it just means we leave orphan items in
5502      * the tree. They will be cleaned up on the next mount. If the inode
5503      * number gets reused, cleanup deletes the orphan item without doing
5504      * anything, and unlink reuses the existing orphan item.
5505      *
5506      * If it turns out that we are dropping too many of these, we might want
5507      * to add a mechanism for retrying these after a commit.
5508      */
5509     trans = evict_refill_and_join(root, rsv);
5510     if (!IS_ERR(trans)) {
5511         trans->block_rsv = rsv;
5512         btrfs_orphan_del(trans, BTRFS_I(inode));
5513         trans->block_rsv = &fs_info->trans_block_rsv;
5514         btrfs_end_transaction(trans);
5515     }
5516 
5517 free_rsv:
5518     btrfs_free_block_rsv(fs_info, rsv);
5519 no_delete:
5520     /*
5521      * If we didn't successfully delete, the orphan item will still be in
5522      * the tree and we'll retry on the next mount. Again, we might also want
5523      * to retry these periodically in the future.
5524      */
5525     btrfs_remove_delayed_node(BTRFS_I(inode));
5526     fsverity_cleanup_inode(inode);
5527     clear_inode(inode);
5528 }
5529 
5530 /*
5531  * Return the key found in the dir entry in the location pointer, fill @type
5532  * with BTRFS_FT_*, and return 0.
5533  *
5534  * If no dir entries were found, returns -ENOENT.
5535  * If found a corrupted location in dir entry, returns -EUCLEAN.
5536  */
5537 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5538                    struct btrfs_key *location, u8 *type)
5539 {
5540     const char *name = dentry->d_name.name;
5541     int namelen = dentry->d_name.len;
5542     struct btrfs_dir_item *di;
5543     struct btrfs_path *path;
5544     struct btrfs_root *root = BTRFS_I(dir)->root;
5545     int ret = 0;
5546 
5547     path = btrfs_alloc_path();
5548     if (!path)
5549         return -ENOMEM;
5550 
5551     di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5552             name, namelen, 0);
5553     if (IS_ERR_OR_NULL(di)) {
5554         ret = di ? PTR_ERR(di) : -ENOENT;
5555         goto out;
5556     }
5557 
5558     btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5559     if (location->type != BTRFS_INODE_ITEM_KEY &&
5560         location->type != BTRFS_ROOT_ITEM_KEY) {
5561         ret = -EUCLEAN;
5562         btrfs_warn(root->fs_info,
5563 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5564                __func__, name, btrfs_ino(BTRFS_I(dir)),
5565                location->objectid, location->type, location->offset);
5566     }
5567     if (!ret)
5568         *type = btrfs_dir_type(path->nodes[0], di);
5569 out:
5570     btrfs_free_path(path);
5571     return ret;
5572 }
5573 
5574 /*
5575  * when we hit a tree root in a directory, the btrfs part of the inode
5576  * needs to be changed to reflect the root directory of the tree root.  This
5577  * is kind of like crossing a mount point.
5578  */
5579 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5580                     struct inode *dir,
5581                     struct dentry *dentry,
5582                     struct btrfs_key *location,
5583                     struct btrfs_root **sub_root)
5584 {
5585     struct btrfs_path *path;
5586     struct btrfs_root *new_root;
5587     struct btrfs_root_ref *ref;
5588     struct extent_buffer *leaf;
5589     struct btrfs_key key;
5590     int ret;
5591     int err = 0;
5592 
5593     path = btrfs_alloc_path();
5594     if (!path) {
5595         err = -ENOMEM;
5596         goto out;
5597     }
5598 
5599     err = -ENOENT;
5600     key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5601     key.type = BTRFS_ROOT_REF_KEY;
5602     key.offset = location->objectid;
5603 
5604     ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5605     if (ret) {
5606         if (ret < 0)
5607             err = ret;
5608         goto out;
5609     }
5610 
5611     leaf = path->nodes[0];
5612     ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5613     if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5614         btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5615         goto out;
5616 
5617     ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5618                    (unsigned long)(ref + 1),
5619                    dentry->d_name.len);
5620     if (ret)
5621         goto out;
5622 
5623     btrfs_release_path(path);
5624 
5625     new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5626     if (IS_ERR(new_root)) {
5627         err = PTR_ERR(new_root);
5628         goto out;
5629     }
5630 
5631     *sub_root = new_root;
5632     location->objectid = btrfs_root_dirid(&new_root->root_item);
5633     location->type = BTRFS_INODE_ITEM_KEY;
5634     location->offset = 0;
5635     err = 0;
5636 out:
5637     btrfs_free_path(path);
5638     return err;
5639 }
5640 
5641 static void inode_tree_add(struct inode *inode)
5642 {
5643     struct btrfs_root *root = BTRFS_I(inode)->root;
5644     struct btrfs_inode *entry;
5645     struct rb_node **p;
5646     struct rb_node *parent;
5647     struct rb_node *new = &BTRFS_I(inode)->rb_node;
5648     u64 ino = btrfs_ino(BTRFS_I(inode));
5649 
5650     if (inode_unhashed(inode))
5651         return;
5652     parent = NULL;
5653     spin_lock(&root->inode_lock);
5654     p = &root->inode_tree.rb_node;
5655     while (*p) {
5656         parent = *p;
5657         entry = rb_entry(parent, struct btrfs_inode, rb_node);
5658 
5659         if (ino < btrfs_ino(entry))
5660             p = &parent->rb_left;
5661         else if (ino > btrfs_ino(entry))
5662             p = &parent->rb_right;
5663         else {
5664             WARN_ON(!(entry->vfs_inode.i_state &
5665                   (I_WILL_FREE | I_FREEING)));
5666             rb_replace_node(parent, new, &root->inode_tree);
5667             RB_CLEAR_NODE(parent);
5668             spin_unlock(&root->inode_lock);
5669             return;
5670         }
5671     }
5672     rb_link_node(new, parent, p);
5673     rb_insert_color(new, &root->inode_tree);
5674     spin_unlock(&root->inode_lock);
5675 }
5676 
5677 static void inode_tree_del(struct btrfs_inode *inode)
5678 {
5679     struct btrfs_root *root = inode->root;
5680     int empty = 0;
5681 
5682     spin_lock(&root->inode_lock);
5683     if (!RB_EMPTY_NODE(&inode->rb_node)) {
5684         rb_erase(&inode->rb_node, &root->inode_tree);
5685         RB_CLEAR_NODE(&inode->rb_node);
5686         empty = RB_EMPTY_ROOT(&root->inode_tree);
5687     }
5688     spin_unlock(&root->inode_lock);
5689 
5690     if (empty && btrfs_root_refs(&root->root_item) == 0) {
5691         spin_lock(&root->inode_lock);
5692         empty = RB_EMPTY_ROOT(&root->inode_tree);
5693         spin_unlock(&root->inode_lock);
5694         if (empty)
5695             btrfs_add_dead_root(root);
5696     }
5697 }
5698 
5699 
5700 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5701 {
5702     struct btrfs_iget_args *args = p;
5703 
5704     inode->i_ino = args->ino;
5705     BTRFS_I(inode)->location.objectid = args->ino;
5706     BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5707     BTRFS_I(inode)->location.offset = 0;
5708     BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5709     BUG_ON(args->root && !BTRFS_I(inode)->root);
5710     return 0;
5711 }
5712 
5713 static int btrfs_find_actor(struct inode *inode, void *opaque)
5714 {
5715     struct btrfs_iget_args *args = opaque;
5716 
5717     return args->ino == BTRFS_I(inode)->location.objectid &&
5718         args->root == BTRFS_I(inode)->root;
5719 }
5720 
5721 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5722                        struct btrfs_root *root)
5723 {
5724     struct inode *inode;
5725     struct btrfs_iget_args args;
5726     unsigned long hashval = btrfs_inode_hash(ino, root);
5727 
5728     args.ino = ino;
5729     args.root = root;
5730 
5731     inode = iget5_locked(s, hashval, btrfs_find_actor,
5732                  btrfs_init_locked_inode,
5733                  (void *)&args);
5734     return inode;
5735 }
5736 
5737 /*
5738  * Get an inode object given its inode number and corresponding root.
5739  * Path can be preallocated to prevent recursing back to iget through
5740  * allocator. NULL is also valid but may require an additional allocation
5741  * later.
5742  */
5743 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5744                   struct btrfs_root *root, struct btrfs_path *path)
5745 {
5746     struct inode *inode;
5747 
5748     inode = btrfs_iget_locked(s, ino, root);
5749     if (!inode)
5750         return ERR_PTR(-ENOMEM);
5751 
5752     if (inode->i_state & I_NEW) {
5753         int ret;
5754 
5755         ret = btrfs_read_locked_inode(inode, path);
5756         if (!ret) {
5757             inode_tree_add(inode);
5758             unlock_new_inode(inode);
5759         } else {
5760             iget_failed(inode);
5761             /*
5762              * ret > 0 can come from btrfs_search_slot called by
5763              * btrfs_read_locked_inode, this means the inode item
5764              * was not found.
5765              */
5766             if (ret > 0)
5767                 ret = -ENOENT;
5768             inode = ERR_PTR(ret);
5769         }
5770     }
5771 
5772     return inode;
5773 }
5774 
5775 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5776 {
5777     return btrfs_iget_path(s, ino, root, NULL);
5778 }
5779 
5780 static struct inode *new_simple_dir(struct super_block *s,
5781                     struct btrfs_key *key,
5782                     struct btrfs_root *root)
5783 {
5784     struct inode *inode = new_inode(s);
5785 
5786     if (!inode)
5787         return ERR_PTR(-ENOMEM);
5788 
5789     BTRFS_I(inode)->root = btrfs_grab_root(root);
5790     memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5791     set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5792 
5793     inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5794     /*
5795      * We only need lookup, the rest is read-only and there's no inode
5796      * associated with the dentry
5797      */
5798     inode->i_op = &simple_dir_inode_operations;
5799     inode->i_opflags &= ~IOP_XATTR;
5800     inode->i_fop = &simple_dir_operations;
5801     inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5802     inode->i_mtime = current_time(inode);
5803     inode->i_atime = inode->i_mtime;
5804     inode->i_ctime = inode->i_mtime;
5805     BTRFS_I(inode)->i_otime = inode->i_mtime;
5806 
5807     return inode;
5808 }
5809 
5810 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5811 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5812 static_assert(BTRFS_FT_DIR == FT_DIR);
5813 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5814 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5815 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5816 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5817 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5818 
5819 static inline u8 btrfs_inode_type(struct inode *inode)
5820 {
5821     return fs_umode_to_ftype(inode->i_mode);
5822 }
5823 
5824 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5825 {
5826     struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5827     struct inode *inode;
5828     struct btrfs_root *root = BTRFS_I(dir)->root;
5829     struct btrfs_root *sub_root = root;
5830     struct btrfs_key location;
5831     u8 di_type = 0;
5832     int ret = 0;
5833 
5834     if (dentry->d_name.len > BTRFS_NAME_LEN)
5835         return ERR_PTR(-ENAMETOOLONG);
5836 
5837     ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5838     if (ret < 0)
5839         return ERR_PTR(ret);
5840 
5841     if (location.type == BTRFS_INODE_ITEM_KEY) {
5842         inode = btrfs_iget(dir->i_sb, location.objectid, root);
5843         if (IS_ERR(inode))
5844             return inode;
5845 
5846         /* Do extra check against inode mode with di_type */
5847         if (btrfs_inode_type(inode) != di_type) {
5848             btrfs_crit(fs_info,
5849 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5850                   inode->i_mode, btrfs_inode_type(inode),
5851                   di_type);
5852             iput(inode);
5853             return ERR_PTR(-EUCLEAN);
5854         }
5855         return inode;
5856     }
5857 
5858     ret = fixup_tree_root_location(fs_info, dir, dentry,
5859                        &location, &sub_root);
5860     if (ret < 0) {
5861         if (ret != -ENOENT)
5862             inode = ERR_PTR(ret);
5863         else
5864             inode = new_simple_dir(dir->i_sb, &location, root);
5865     } else {
5866         inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5867         btrfs_put_root(sub_root);
5868 
5869         if (IS_ERR(inode))
5870             return inode;
5871 
5872         down_read(&fs_info->cleanup_work_sem);
5873         if (!sb_rdonly(inode->i_sb))
5874             ret = btrfs_orphan_cleanup(sub_root);
5875         up_read(&fs_info->cleanup_work_sem);
5876         if (ret) {
5877             iput(inode);
5878             inode = ERR_PTR(ret);
5879         }
5880     }
5881 
5882     return inode;
5883 }
5884 
5885 static int btrfs_dentry_delete(const struct dentry *dentry)
5886 {
5887     struct btrfs_root *root;
5888     struct inode *inode = d_inode(dentry);
5889 
5890     if (!inode && !IS_ROOT(dentry))
5891         inode = d_inode(dentry->d_parent);
5892 
5893     if (inode) {
5894         root = BTRFS_I(inode)->root;
5895         if (btrfs_root_refs(&root->root_item) == 0)
5896             return 1;
5897 
5898         if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5899             return 1;
5900     }
5901     return 0;
5902 }
5903 
5904 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5905                    unsigned int flags)
5906 {
5907     struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5908 
5909     if (inode == ERR_PTR(-ENOENT))
5910         inode = NULL;
5911     return d_splice_alias(inode, dentry);
5912 }
5913 
5914 /*
5915  * All this infrastructure exists because dir_emit can fault, and we are holding
5916  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5917  * our information into that, and then dir_emit from the buffer.  This is
5918  * similar to what NFS does, only we don't keep the buffer around in pagecache
5919  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5920  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5921  * tree lock.
5922  */
5923 static int btrfs_opendir(struct inode *inode, struct file *file)
5924 {
5925     struct btrfs_file_private *private;
5926 
5927     private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5928     if (!private)
5929         return -ENOMEM;
5930     private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5931     if (!private->filldir_buf) {
5932         kfree(private);
5933         return -ENOMEM;
5934     }
5935     file->private_data = private;
5936     return 0;
5937 }
5938 
5939 struct dir_entry {
5940     u64 ino;
5941     u64 offset;
5942     unsigned type;
5943     int name_len;
5944 };
5945 
5946 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5947 {
5948     while (entries--) {
5949         struct dir_entry *entry = addr;
5950         char *name = (char *)(entry + 1);
5951 
5952         ctx->pos = get_unaligned(&entry->offset);
5953         if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5954                      get_unaligned(&entry->ino),
5955                      get_unaligned(&entry->type)))
5956             return 1;
5957         addr += sizeof(struct dir_entry) +
5958             get_unaligned(&entry->name_len);
5959         ctx->pos++;
5960     }
5961     return 0;
5962 }
5963 
5964 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5965 {
5966     struct inode *inode = file_inode(file);
5967     struct btrfs_root *root = BTRFS_I(inode)->root;
5968     struct btrfs_file_private *private = file->private_data;
5969     struct btrfs_dir_item *di;
5970     struct btrfs_key key;
5971     struct btrfs_key found_key;
5972     struct btrfs_path *path;
5973     void *addr;
5974     struct list_head ins_list;
5975     struct list_head del_list;
5976     int ret;
5977     char *name_ptr;
5978     int name_len;
5979     int entries = 0;
5980     int total_len = 0;
5981     bool put = false;
5982     struct btrfs_key location;
5983 
5984     if (!dir_emit_dots(file, ctx))
5985         return 0;
5986 
5987     path = btrfs_alloc_path();
5988     if (!path)
5989         return -ENOMEM;
5990 
5991     addr = private->filldir_buf;
5992     path->reada = READA_FORWARD;
5993 
5994     INIT_LIST_HEAD(&ins_list);
5995     INIT_LIST_HEAD(&del_list);
5996     put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5997 
5998 again:
5999     key.type = BTRFS_DIR_INDEX_KEY;
6000     key.offset = ctx->pos;
6001     key.objectid = btrfs_ino(BTRFS_I(inode));
6002 
6003     btrfs_for_each_slot(root, &key, &found_key, path, ret) {
6004         struct dir_entry *entry;
6005         struct extent_buffer *leaf = path->nodes[0];
6006 
6007         if (found_key.objectid != key.objectid)
6008             break;
6009         if (found_key.type != BTRFS_DIR_INDEX_KEY)
6010             break;
6011         if (found_key.offset < ctx->pos)
6012             continue;
6013         if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6014             continue;
6015         di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
6016         name_len = btrfs_dir_name_len(leaf, di);
6017         if ((total_len + sizeof(struct dir_entry) + name_len) >=
6018             PAGE_SIZE) {
6019             btrfs_release_path(path);
6020             ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6021             if (ret)
6022                 goto nopos;
6023             addr = private->filldir_buf;
6024             entries = 0;
6025             total_len = 0;
6026             goto again;
6027         }
6028 
6029         entry = addr;
6030         put_unaligned(name_len, &entry->name_len);
6031         name_ptr = (char *)(entry + 1);
6032         read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6033                    name_len);
6034         put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6035                 &entry->type);
6036         btrfs_dir_item_key_to_cpu(leaf, di, &location);
6037         put_unaligned(location.objectid, &entry->ino);
6038         put_unaligned(found_key.offset, &entry->offset);
6039         entries++;
6040         addr += sizeof(struct dir_entry) + name_len;
6041         total_len += sizeof(struct dir_entry) + name_len;
6042     }
6043     /* Catch error encountered during iteration */
6044     if (ret < 0)
6045         goto err;
6046 
6047     btrfs_release_path(path);
6048 
6049     ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6050     if (ret)
6051         goto nopos;
6052 
6053     ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6054     if (ret)
6055         goto nopos;
6056 
6057     /*
6058      * Stop new entries from being returned after we return the last
6059      * entry.
6060      *
6061      * New directory entries are assigned a strictly increasing
6062      * offset.  This means that new entries created during readdir
6063      * are *guaranteed* to be seen in the future by that readdir.
6064      * This has broken buggy programs which operate on names as
6065      * they're returned by readdir.  Until we re-use freed offsets
6066      * we have this hack to stop new entries from being returned
6067      * under the assumption that they'll never reach this huge
6068      * offset.
6069      *
6070      * This is being careful not to overflow 32bit loff_t unless the
6071      * last entry requires it because doing so has broken 32bit apps
6072      * in the past.
6073      */
6074     if (ctx->pos >= INT_MAX)
6075         ctx->pos = LLONG_MAX;
6076     else
6077         ctx->pos = INT_MAX;
6078 nopos:
6079     ret = 0;
6080 err:
6081     if (put)
6082         btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6083     btrfs_free_path(path);
6084     return ret;
6085 }
6086 
6087 /*
6088  * This is somewhat expensive, updating the tree every time the
6089  * inode changes.  But, it is most likely to find the inode in cache.
6090  * FIXME, needs more benchmarking...there are no reasons other than performance
6091  * to keep or drop this code.
6092  */
6093 static int btrfs_dirty_inode(struct inode *inode)
6094 {
6095     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6096     struct btrfs_root *root = BTRFS_I(inode)->root;
6097     struct btrfs_trans_handle *trans;
6098     int ret;
6099 
6100     if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6101         return 0;
6102 
6103     trans = btrfs_join_transaction(root);
6104     if (IS_ERR(trans))
6105         return PTR_ERR(trans);
6106 
6107     ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6108     if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6109         /* whoops, lets try again with the full transaction */
6110         btrfs_end_transaction(trans);
6111         trans = btrfs_start_transaction(root, 1);
6112         if (IS_ERR(trans))
6113             return PTR_ERR(trans);
6114 
6115         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6116     }
6117     btrfs_end_transaction(trans);
6118     if (BTRFS_I(inode)->delayed_node)
6119         btrfs_balance_delayed_items(fs_info);
6120 
6121     return ret;
6122 }
6123 
6124 /*
6125  * This is a copy of file_update_time.  We need this so we can return error on
6126  * ENOSPC for updating the inode in the case of file write and mmap writes.
6127  */
6128 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6129                  int flags)
6130 {
6131     struct btrfs_root *root = BTRFS_I(inode)->root;
6132     bool dirty = flags & ~S_VERSION;
6133 
6134     if (btrfs_root_readonly(root))
6135         return -EROFS;
6136 
6137     if (flags & S_VERSION)
6138         dirty |= inode_maybe_inc_iversion(inode, dirty);
6139     if (flags & S_CTIME)
6140         inode->i_ctime = *now;
6141     if (flags & S_MTIME)
6142         inode->i_mtime = *now;
6143     if (flags & S_ATIME)
6144         inode->i_atime = *now;
6145     return dirty ? btrfs_dirty_inode(inode) : 0;
6146 }
6147 
6148 /*
6149  * find the highest existing sequence number in a directory
6150  * and then set the in-memory index_cnt variable to reflect
6151  * free sequence numbers
6152  */
6153 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6154 {
6155     struct btrfs_root *root = inode->root;
6156     struct btrfs_key key, found_key;
6157     struct btrfs_path *path;
6158     struct extent_buffer *leaf;
6159     int ret;
6160 
6161     key.objectid = btrfs_ino(inode);
6162     key.type = BTRFS_DIR_INDEX_KEY;
6163     key.offset = (u64)-1;
6164 
6165     path = btrfs_alloc_path();
6166     if (!path)
6167         return -ENOMEM;
6168 
6169     ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6170     if (ret < 0)
6171         goto out;
6172     /* FIXME: we should be able to handle this */
6173     if (ret == 0)
6174         goto out;
6175     ret = 0;
6176 
6177     if (path->slots[0] == 0) {
6178         inode->index_cnt = BTRFS_DIR_START_INDEX;
6179         goto out;
6180     }
6181 
6182     path->slots[0]--;
6183 
6184     leaf = path->nodes[0];
6185     btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6186 
6187     if (found_key.objectid != btrfs_ino(inode) ||
6188         found_key.type != BTRFS_DIR_INDEX_KEY) {
6189         inode->index_cnt = BTRFS_DIR_START_INDEX;
6190         goto out;
6191     }
6192 
6193     inode->index_cnt = found_key.offset + 1;
6194 out:
6195     btrfs_free_path(path);
6196     return ret;
6197 }
6198 
6199 /*
6200  * helper to find a free sequence number in a given directory.  This current
6201  * code is very simple, later versions will do smarter things in the btree
6202  */
6203 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6204 {
6205     int ret = 0;
6206 
6207     if (dir->index_cnt == (u64)-1) {
6208         ret = btrfs_inode_delayed_dir_index_count(dir);
6209         if (ret) {
6210             ret = btrfs_set_inode_index_count(dir);
6211             if (ret)
6212                 return ret;
6213         }
6214     }
6215 
6216     *index = dir->index_cnt;
6217     dir->index_cnt++;
6218 
6219     return ret;
6220 }
6221 
6222 static int btrfs_insert_inode_locked(struct inode *inode)
6223 {
6224     struct btrfs_iget_args args;
6225 
6226     args.ino = BTRFS_I(inode)->location.objectid;
6227     args.root = BTRFS_I(inode)->root;
6228 
6229     return insert_inode_locked4(inode,
6230            btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6231            btrfs_find_actor, &args);
6232 }
6233 
6234 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6235                 unsigned int *trans_num_items)
6236 {
6237     struct inode *dir = args->dir;
6238     struct inode *inode = args->inode;
6239     int ret;
6240 
6241     ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6242     if (ret)
6243         return ret;
6244 
6245     /* 1 to add inode item */
6246     *trans_num_items = 1;
6247     /* 1 to add compression property */
6248     if (BTRFS_I(dir)->prop_compress)
6249         (*trans_num_items)++;
6250     /* 1 to add default ACL xattr */
6251     if (args->default_acl)
6252         (*trans_num_items)++;
6253     /* 1 to add access ACL xattr */
6254     if (args->acl)
6255         (*trans_num_items)++;
6256 #ifdef CONFIG_SECURITY
6257     /* 1 to add LSM xattr */
6258     if (dir->i_security)
6259         (*trans_num_items)++;
6260 #endif
6261     if (args->orphan) {
6262         /* 1 to add orphan item */
6263         (*trans_num_items)++;
6264     } else {
6265         /*
6266          * 1 to add dir item
6267          * 1 to add dir index
6268          * 1 to update parent inode item
6269          *
6270          * No need for 1 unit for the inode ref item because it is
6271          * inserted in a batch together with the inode item at
6272          * btrfs_create_new_inode().
6273          */
6274         *trans_num_items += 3;
6275     }
6276     return 0;
6277 }
6278 
6279 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6280 {
6281     posix_acl_release(args->acl);
6282     posix_acl_release(args->default_acl);
6283 }
6284 
6285 /*
6286  * Inherit flags from the parent inode.
6287  *
6288  * Currently only the compression flags and the cow flags are inherited.
6289  */
6290 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6291 {
6292     unsigned int flags;
6293 
6294     flags = BTRFS_I(dir)->flags;
6295 
6296     if (flags & BTRFS_INODE_NOCOMPRESS) {
6297         BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6298         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6299     } else if (flags & BTRFS_INODE_COMPRESS) {
6300         BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6301         BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6302     }
6303 
6304     if (flags & BTRFS_INODE_NODATACOW) {
6305         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6306         if (S_ISREG(inode->i_mode))
6307             BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6308     }
6309 
6310     btrfs_sync_inode_flags_to_i_flags(inode);
6311 }
6312 
6313 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6314                struct btrfs_new_inode_args *args)
6315 {
6316     struct inode *dir = args->dir;
6317     struct inode *inode = args->inode;
6318     const char *name = args->orphan ? NULL : args->dentry->d_name.name;
6319     int name_len = args->orphan ? 0 : args->dentry->d_name.len;
6320     struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6321     struct btrfs_root *root;
6322     struct btrfs_inode_item *inode_item;
6323     struct btrfs_key *location;
6324     struct btrfs_path *path;
6325     u64 objectid;
6326     struct btrfs_inode_ref *ref;
6327     struct btrfs_key key[2];
6328     u32 sizes[2];
6329     struct btrfs_item_batch batch;
6330     unsigned long ptr;
6331     int ret;
6332 
6333     path = btrfs_alloc_path();
6334     if (!path)
6335         return -ENOMEM;
6336 
6337     if (!args->subvol)
6338         BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6339     root = BTRFS_I(inode)->root;
6340 
6341     ret = btrfs_get_free_objectid(root, &objectid);
6342     if (ret)
6343         goto out;
6344     inode->i_ino = objectid;
6345 
6346     if (args->orphan) {
6347         /*
6348          * O_TMPFILE, set link count to 0, so that after this point, we
6349          * fill in an inode item with the correct link count.
6350          */
6351         set_nlink(inode, 0);
6352     } else {
6353         trace_btrfs_inode_request(dir);
6354 
6355         ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6356         if (ret)
6357             goto out;
6358     }
6359     /* index_cnt is ignored for everything but a dir. */
6360     BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6361     BTRFS_I(inode)->generation = trans->transid;
6362     inode->i_generation = BTRFS_I(inode)->generation;
6363 
6364     /*
6365      * Subvolumes don't inherit flags from their parent directory.
6366      * Originally this was probably by accident, but we probably can't
6367      * change it now without compatibility issues.
6368      */
6369     if (!args->subvol)
6370         btrfs_inherit_iflags(inode, dir);
6371 
6372     if (S_ISREG(inode->i_mode)) {
6373         if (btrfs_test_opt(fs_info, NODATASUM))
6374             BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6375         if (btrfs_test_opt(fs_info, NODATACOW))
6376             BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6377                 BTRFS_INODE_NODATASUM;
6378     }
6379 
6380     location = &BTRFS_I(inode)->location;
6381     location->objectid = objectid;
6382     location->offset = 0;
6383     location->type = BTRFS_INODE_ITEM_KEY;
6384 
6385     ret = btrfs_insert_inode_locked(inode);
6386     if (ret < 0) {
6387         if (!args->orphan)
6388             BTRFS_I(dir)->index_cnt--;
6389         goto out;
6390     }
6391 
6392     /*
6393      * We could have gotten an inode number from somebody who was fsynced
6394      * and then removed in this same transaction, so let's just set full
6395      * sync since it will be a full sync anyway and this will blow away the
6396      * old info in the log.
6397      */
6398     btrfs_set_inode_full_sync(BTRFS_I(inode));
6399 
6400     key[0].objectid = objectid;
6401     key[0].type = BTRFS_INODE_ITEM_KEY;
6402     key[0].offset = 0;
6403 
6404     sizes[0] = sizeof(struct btrfs_inode_item);
6405 
6406     if (!args->orphan) {
6407         /*
6408          * Start new inodes with an inode_ref. This is slightly more
6409          * efficient for small numbers of hard links since they will
6410          * be packed into one item. Extended refs will kick in if we
6411          * add more hard links than can fit in the ref item.
6412          */
6413         key[1].objectid = objectid;
6414         key[1].type = BTRFS_INODE_REF_KEY;
6415         if (args->subvol) {
6416             key[1].offset = objectid;
6417             sizes[1] = 2 + sizeof(*ref);
6418         } else {
6419             key[1].offset = btrfs_ino(BTRFS_I(dir));
6420             sizes[1] = name_len + sizeof(*ref);
6421         }
6422     }
6423 
6424     batch.keys = &key[0];
6425     batch.data_sizes = &sizes[0];
6426     batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6427     batch.nr = args->orphan ? 1 : 2;
6428     ret = btrfs_insert_empty_items(trans, root, path, &batch);
6429     if (ret != 0) {
6430         btrfs_abort_transaction(trans, ret);
6431         goto discard;
6432     }
6433 
6434     inode->i_mtime = current_time(inode);
6435     inode->i_atime = inode->i_mtime;
6436     inode->i_ctime = inode->i_mtime;
6437     BTRFS_I(inode)->i_otime = inode->i_mtime;
6438 
6439     /*
6440      * We're going to fill the inode item now, so at this point the inode
6441      * must be fully initialized.
6442      */
6443 
6444     inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6445                   struct btrfs_inode_item);
6446     memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6447                  sizeof(*inode_item));
6448     fill_inode_item(trans, path->nodes[0], inode_item, inode);
6449 
6450     if (!args->orphan) {
6451         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6452                      struct btrfs_inode_ref);
6453         ptr = (unsigned long)(ref + 1);
6454         if (args->subvol) {
6455             btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6456             btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6457             write_extent_buffer(path->nodes[0], "..", ptr, 2);
6458         } else {
6459             btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6460             btrfs_set_inode_ref_index(path->nodes[0], ref,
6461                           BTRFS_I(inode)->dir_index);
6462             write_extent_buffer(path->nodes[0], name, ptr, name_len);
6463         }
6464     }
6465 
6466     btrfs_mark_buffer_dirty(path->nodes[0]);
6467     /*
6468      * We don't need the path anymore, plus inheriting properties, adding
6469      * ACLs, security xattrs, orphan item or adding the link, will result in
6470      * allocating yet another path. So just free our path.
6471      */
6472     btrfs_free_path(path);
6473     path = NULL;
6474 
6475     if (args->subvol) {
6476         struct inode *parent;
6477 
6478         /*
6479          * Subvolumes inherit properties from their parent subvolume,
6480          * not the directory they were created in.
6481          */
6482         parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6483                     BTRFS_I(dir)->root);
6484         if (IS_ERR(parent)) {
6485             ret = PTR_ERR(parent);
6486         } else {
6487             ret = btrfs_inode_inherit_props(trans, inode, parent);
6488             iput(parent);
6489         }
6490     } else {
6491         ret = btrfs_inode_inherit_props(trans, inode, dir);
6492     }
6493     if (ret) {
6494         btrfs_err(fs_info,
6495               "error inheriting props for ino %llu (root %llu): %d",
6496               btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6497               ret);
6498     }
6499 
6500     /*
6501      * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6502      * probably a bug.
6503      */
6504     if (!args->subvol) {
6505         ret = btrfs_init_inode_security(trans, args);
6506         if (ret) {
6507             btrfs_abort_transaction(trans, ret);
6508             goto discard;
6509         }
6510     }
6511 
6512     inode_tree_add(inode);
6513 
6514     trace_btrfs_inode_new(inode);
6515     btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6516 
6517     btrfs_update_root_times(trans, root);
6518 
6519     if (args->orphan) {
6520         ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6521     } else {
6522         ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6523                      name_len, 0, BTRFS_I(inode)->dir_index);
6524     }
6525     if (ret) {
6526         btrfs_abort_transaction(trans, ret);
6527         goto discard;
6528     }
6529 
6530     return 0;
6531 
6532 discard:
6533     /*
6534      * discard_new_inode() calls iput(), but the caller owns the reference
6535      * to the inode.
6536      */
6537     ihold(inode);
6538     discard_new_inode(inode);
6539 out:
6540     btrfs_free_path(path);
6541     return ret;
6542 }
6543 
6544 /*
6545  * utility function to add 'inode' into 'parent_inode' with
6546  * a give name and a given sequence number.
6547  * if 'add_backref' is true, also insert a backref from the
6548  * inode to the parent directory.
6549  */
6550 int btrfs_add_link(struct btrfs_trans_handle *trans,
6551            struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6552            const char *name, int name_len, int add_backref, u64 index)
6553 {
6554     int ret = 0;
6555     struct btrfs_key key;
6556     struct btrfs_root *root = parent_inode->root;
6557     u64 ino = btrfs_ino(inode);
6558     u64 parent_ino = btrfs_ino(parent_inode);
6559 
6560     if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6561         memcpy(&key, &inode->root->root_key, sizeof(key));
6562     } else {
6563         key.objectid = ino;
6564         key.type = BTRFS_INODE_ITEM_KEY;
6565         key.offset = 0;
6566     }
6567 
6568     if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6569         ret = btrfs_add_root_ref(trans, key.objectid,
6570                      root->root_key.objectid, parent_ino,
6571                      index, name, name_len);
6572     } else if (add_backref) {
6573         ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6574                          parent_ino, index);
6575     }
6576 
6577     /* Nothing to clean up yet */
6578     if (ret)
6579         return ret;
6580 
6581     ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6582                     btrfs_inode_type(&inode->vfs_inode), index);
6583     if (ret == -EEXIST || ret == -EOVERFLOW)
6584         goto fail_dir_item;
6585     else if (ret) {
6586         btrfs_abort_transaction(trans, ret);
6587         return ret;
6588     }
6589 
6590     btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6591                name_len * 2);
6592     inode_inc_iversion(&parent_inode->vfs_inode);
6593     /*
6594      * If we are replaying a log tree, we do not want to update the mtime
6595      * and ctime of the parent directory with the current time, since the
6596      * log replay procedure is responsible for setting them to their correct
6597      * values (the ones it had when the fsync was done).
6598      */
6599     if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6600         struct timespec64 now = current_time(&parent_inode->vfs_inode);
6601 
6602         parent_inode->vfs_inode.i_mtime = now;
6603         parent_inode->vfs_inode.i_ctime = now;
6604     }
6605     ret = btrfs_update_inode(trans, root, parent_inode);
6606     if (ret)
6607         btrfs_abort_transaction(trans, ret);
6608     return ret;
6609 
6610 fail_dir_item:
6611     if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6612         u64 local_index;
6613         int err;
6614         err = btrfs_del_root_ref(trans, key.objectid,
6615                      root->root_key.objectid, parent_ino,
6616                      &local_index, name, name_len);
6617         if (err)
6618             btrfs_abort_transaction(trans, err);
6619     } else if (add_backref) {
6620         u64 local_index;
6621         int err;
6622 
6623         err = btrfs_del_inode_ref(trans, root, name, name_len,
6624                       ino, parent_ino, &local_index);
6625         if (err)
6626             btrfs_abort_transaction(trans, err);
6627     }
6628 
6629     /* Return the original error code */
6630     return ret;
6631 }
6632 
6633 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6634                    struct inode *inode)
6635 {
6636     struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6637     struct btrfs_root *root = BTRFS_I(dir)->root;
6638     struct btrfs_new_inode_args new_inode_args = {
6639         .dir = dir,
6640         .dentry = dentry,
6641         .inode = inode,
6642     };
6643     unsigned int trans_num_items;
6644     struct btrfs_trans_handle *trans;
6645     int err;
6646 
6647     err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6648     if (err)
6649         goto out_inode;
6650 
6651     trans = btrfs_start_transaction(root, trans_num_items);
6652     if (IS_ERR(trans)) {
6653         err = PTR_ERR(trans);
6654         goto out_new_inode_args;
6655     }
6656 
6657     err = btrfs_create_new_inode(trans, &new_inode_args);
6658     if (!err)
6659         d_instantiate_new(dentry, inode);
6660 
6661     btrfs_end_transaction(trans);
6662     btrfs_btree_balance_dirty(fs_info);
6663 out_new_inode_args:
6664     btrfs_new_inode_args_destroy(&new_inode_args);
6665 out_inode:
6666     if (err)
6667         iput(inode);
6668     return err;
6669 }
6670 
6671 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6672                struct dentry *dentry, umode_t mode, dev_t rdev)
6673 {
6674     struct inode *inode;
6675 
6676     inode = new_inode(dir->i_sb);
6677     if (!inode)
6678         return -ENOMEM;
6679     inode_init_owner(mnt_userns, inode, dir, mode);
6680     inode->i_op = &btrfs_special_inode_operations;
6681     init_special_inode(inode, inode->i_mode, rdev);
6682     return btrfs_create_common(dir, dentry, inode);
6683 }
6684 
6685 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6686             struct dentry *dentry, umode_t mode, bool excl)
6687 {
6688     struct inode *inode;
6689 
6690     inode = new_inode(dir->i_sb);
6691     if (!inode)
6692         return -ENOMEM;
6693     inode_init_owner(mnt_userns, inode, dir, mode);
6694     inode->i_fop = &btrfs_file_operations;
6695     inode->i_op = &btrfs_file_inode_operations;
6696     inode->i_mapping->a_ops = &btrfs_aops;
6697     return btrfs_create_common(dir, dentry, inode);
6698 }
6699 
6700 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6701               struct dentry *dentry)
6702 {
6703     struct btrfs_trans_handle *trans = NULL;
6704     struct btrfs_root *root = BTRFS_I(dir)->root;
6705     struct inode *inode = d_inode(old_dentry);
6706     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6707     u64 index;
6708     int err;
6709     int drop_inode = 0;
6710 
6711     /* do not allow sys_link's with other subvols of the same device */
6712     if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6713         return -EXDEV;
6714 
6715     if (inode->i_nlink >= BTRFS_LINK_MAX)
6716         return -EMLINK;
6717 
6718     err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6719     if (err)
6720         goto fail;
6721 
6722     /*
6723      * 2 items for inode and inode ref
6724      * 2 items for dir items
6725      * 1 item for parent inode
6726      * 1 item for orphan item deletion if O_TMPFILE
6727      */
6728     trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6729     if (IS_ERR(trans)) {
6730         err = PTR_ERR(trans);
6731         trans = NULL;
6732         goto fail;
6733     }
6734 
6735     /* There are several dir indexes for this inode, clear the cache. */
6736     BTRFS_I(inode)->dir_index = 0ULL;
6737     inc_nlink(inode);
6738     inode_inc_iversion(inode);
6739     inode->i_ctime = current_time(inode);
6740     ihold(inode);
6741     set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6742 
6743     err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6744                  dentry->d_name.name, dentry->d_name.len, 1, index);
6745 
6746     if (err) {
6747         drop_inode = 1;
6748     } else {
6749         struct dentry *parent = dentry->d_parent;
6750 
6751         err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6752         if (err)
6753             goto fail;
6754         if (inode->i_nlink == 1) {
6755             /*
6756              * If new hard link count is 1, it's a file created
6757              * with open(2) O_TMPFILE flag.
6758              */
6759             err = btrfs_orphan_del(trans, BTRFS_I(inode));
6760             if (err)
6761                 goto fail;
6762         }
6763         d_instantiate(dentry, inode);
6764         btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6765     }
6766 
6767 fail:
6768     if (trans)
6769         btrfs_end_transaction(trans);
6770     if (drop_inode) {
6771         inode_dec_link_count(inode);
6772         iput(inode);
6773     }
6774     btrfs_btree_balance_dirty(fs_info);
6775     return err;
6776 }
6777 
6778 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6779                struct dentry *dentry, umode_t mode)
6780 {
6781     struct inode *inode;
6782 
6783     inode = new_inode(dir->i_sb);
6784     if (!inode)
6785         return -ENOMEM;
6786     inode_init_owner(mnt_userns, inode, dir, S_IFDIR | mode);
6787     inode->i_op = &btrfs_dir_inode_operations;
6788     inode->i_fop = &btrfs_dir_file_operations;
6789     return btrfs_create_common(dir, dentry, inode);
6790 }
6791 
6792 static noinline int uncompress_inline(struct btrfs_path *path,
6793                       struct page *page,
6794                       size_t pg_offset, u64 extent_offset,
6795                       struct btrfs_file_extent_item *item)
6796 {
6797     int ret;
6798     struct extent_buffer *leaf = path->nodes[0];
6799     char *tmp;
6800     size_t max_size;
6801     unsigned long inline_size;
6802     unsigned long ptr;
6803     int compress_type;
6804 
6805     WARN_ON(pg_offset != 0);
6806     compress_type = btrfs_file_extent_compression(leaf, item);
6807     max_size = btrfs_file_extent_ram_bytes(leaf, item);
6808     inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6809     tmp = kmalloc(inline_size, GFP_NOFS);
6810     if (!tmp)
6811         return -ENOMEM;
6812     ptr = btrfs_file_extent_inline_start(item);
6813 
6814     read_extent_buffer(leaf, tmp, ptr, inline_size);
6815 
6816     max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6817     ret = btrfs_decompress(compress_type, tmp, page,
6818                    extent_offset, inline_size, max_size);
6819 
6820     /*
6821      * decompression code contains a memset to fill in any space between the end
6822      * of the uncompressed data and the end of max_size in case the decompressed
6823      * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6824      * the end of an inline extent and the beginning of the next block, so we
6825      * cover that region here.
6826      */
6827 
6828     if (max_size + pg_offset < PAGE_SIZE)
6829         memzero_page(page,  pg_offset + max_size,
6830                  PAGE_SIZE - max_size - pg_offset);
6831     kfree(tmp);
6832     return ret;
6833 }
6834 
6835 /**
6836  * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6837  * @inode:  file to search in
6838  * @page:   page to read extent data into if the extent is inline
6839  * @pg_offset:  offset into @page to copy to
6840  * @start:  file offset
6841  * @len:    length of range starting at @start
6842  *
6843  * This returns the first &struct extent_map which overlaps with the given
6844  * range, reading it from the B-tree and caching it if necessary. Note that
6845  * there may be more extents which overlap the given range after the returned
6846  * extent_map.
6847  *
6848  * If @page is not NULL and the extent is inline, this also reads the extent
6849  * data directly into the page and marks the extent up to date in the io_tree.
6850  *
6851  * Return: ERR_PTR on error, non-NULL extent_map on success.
6852  */
6853 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6854                     struct page *page, size_t pg_offset,
6855                     u64 start, u64 len)
6856 {
6857     struct btrfs_fs_info *fs_info = inode->root->fs_info;
6858     int ret = 0;
6859     u64 extent_start = 0;
6860     u64 extent_end = 0;
6861     u64 objectid = btrfs_ino(inode);
6862     int extent_type = -1;
6863     struct btrfs_path *path = NULL;
6864     struct btrfs_root *root = inode->root;
6865     struct btrfs_file_extent_item *item;
6866     struct extent_buffer *leaf;
6867     struct btrfs_key found_key;
6868     struct extent_map *em = NULL;
6869     struct extent_map_tree *em_tree = &inode->extent_tree;
6870     struct extent_io_tree *io_tree = &inode->io_tree;
6871 
6872     read_lock(&em_tree->lock);
6873     em = lookup_extent_mapping(em_tree, start, len);
6874     read_unlock(&em_tree->lock);
6875 
6876     if (em) {
6877         if (em->start > start || em->start + em->len <= start)
6878             free_extent_map(em);
6879         else if (em->block_start == EXTENT_MAP_INLINE && page)
6880             free_extent_map(em);
6881         else
6882             goto out;
6883     }
6884     em = alloc_extent_map();
6885     if (!em) {
6886         ret = -ENOMEM;
6887         goto out;
6888     }
6889     em->start = EXTENT_MAP_HOLE;
6890     em->orig_start = EXTENT_MAP_HOLE;
6891     em->len = (u64)-1;
6892     em->block_len = (u64)-1;
6893 
6894     path = btrfs_alloc_path();
6895     if (!path) {
6896         ret = -ENOMEM;
6897         goto out;
6898     }
6899 
6900     /* Chances are we'll be called again, so go ahead and do readahead */
6901     path->reada = READA_FORWARD;
6902 
6903     /*
6904      * The same explanation in load_free_space_cache applies here as well,
6905      * we only read when we're loading the free space cache, and at that
6906      * point the commit_root has everything we need.
6907      */
6908     if (btrfs_is_free_space_inode(inode)) {
6909         path->search_commit_root = 1;
6910         path->skip_locking = 1;
6911     }
6912 
6913     ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6914     if (ret < 0) {
6915         goto out;
6916     } else if (ret > 0) {
6917         if (path->slots[0] == 0)
6918             goto not_found;
6919         path->slots[0]--;
6920         ret = 0;
6921     }
6922 
6923     leaf = path->nodes[0];
6924     item = btrfs_item_ptr(leaf, path->slots[0],
6925                   struct btrfs_file_extent_item);
6926     btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6927     if (found_key.objectid != objectid ||
6928         found_key.type != BTRFS_EXTENT_DATA_KEY) {
6929         /*
6930          * If we backup past the first extent we want to move forward
6931          * and see if there is an extent in front of us, otherwise we'll
6932          * say there is a hole for our whole search range which can
6933          * cause problems.
6934          */
6935         extent_end = start;
6936         goto next;
6937     }
6938 
6939     extent_type = btrfs_file_extent_type(leaf, item);
6940     extent_start = found_key.offset;
6941     extent_end = btrfs_file_extent_end(path);
6942     if (extent_type == BTRFS_FILE_EXTENT_REG ||
6943         extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6944         /* Only regular file could have regular/prealloc extent */
6945         if (!S_ISREG(inode->vfs_inode.i_mode)) {
6946             ret = -EUCLEAN;
6947             btrfs_crit(fs_info,
6948         "regular/prealloc extent found for non-regular inode %llu",
6949                    btrfs_ino(inode));
6950             goto out;
6951         }
6952         trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6953                                extent_start);
6954     } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6955         trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6956                               path->slots[0],
6957                               extent_start);
6958     }
6959 next:
6960     if (start >= extent_end) {
6961         path->slots[0]++;
6962         if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6963             ret = btrfs_next_leaf(root, path);
6964             if (ret < 0)
6965                 goto out;
6966             else if (ret > 0)
6967                 goto not_found;
6968 
6969             leaf = path->nodes[0];
6970         }
6971         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6972         if (found_key.objectid != objectid ||
6973             found_key.type != BTRFS_EXTENT_DATA_KEY)
6974             goto not_found;
6975         if (start + len <= found_key.offset)
6976             goto not_found;
6977         if (start > found_key.offset)
6978             goto next;
6979 
6980         /* New extent overlaps with existing one */
6981         em->start = start;
6982         em->orig_start = start;
6983         em->len = found_key.offset - start;
6984         em->block_start = EXTENT_MAP_HOLE;
6985         goto insert;
6986     }
6987 
6988     btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6989 
6990     if (extent_type == BTRFS_FILE_EXTENT_REG ||
6991         extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6992         goto insert;
6993     } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6994         unsigned long ptr;
6995         char *map;
6996         size_t size;
6997         size_t extent_offset;
6998         size_t copy_size;
6999 
7000         if (!page)
7001             goto out;
7002 
7003         size = btrfs_file_extent_ram_bytes(leaf, item);
7004         extent_offset = page_offset(page) + pg_offset - extent_start;
7005         copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7006                   size - extent_offset);
7007         em->start = extent_start + extent_offset;
7008         em->len = ALIGN(copy_size, fs_info->sectorsize);
7009         em->orig_block_len = em->len;
7010         em->orig_start = em->start;
7011         ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7012 
7013         if (!PageUptodate(page)) {
7014             if (btrfs_file_extent_compression(leaf, item) !=
7015                 BTRFS_COMPRESS_NONE) {
7016                 ret = uncompress_inline(path, page, pg_offset,
7017                             extent_offset, item);
7018                 if (ret)
7019                     goto out;
7020             } else {
7021                 map = kmap_local_page(page);
7022                 read_extent_buffer(leaf, map + pg_offset, ptr,
7023                            copy_size);
7024                 if (pg_offset + copy_size < PAGE_SIZE) {
7025                     memset(map + pg_offset + copy_size, 0,
7026                            PAGE_SIZE - pg_offset -
7027                            copy_size);
7028                 }
7029                 kunmap_local(map);
7030             }
7031             flush_dcache_page(page);
7032         }
7033         set_extent_uptodate(io_tree, em->start,
7034                     extent_map_end(em) - 1, NULL, GFP_NOFS);
7035         goto insert;
7036     }
7037 not_found:
7038     em->start = start;
7039     em->orig_start = start;
7040     em->len = len;
7041     em->block_start = EXTENT_MAP_HOLE;
7042 insert:
7043     ret = 0;
7044     btrfs_release_path(path);
7045     if (em->start > start || extent_map_end(em) <= start) {
7046         btrfs_err(fs_info,
7047               "bad extent! em: [%llu %llu] passed [%llu %llu]",
7048               em->start, em->len, start, len);
7049         ret = -EIO;
7050         goto out;
7051     }
7052 
7053     write_lock(&em_tree->lock);
7054     ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7055     write_unlock(&em_tree->lock);
7056 out:
7057     btrfs_free_path(path);
7058 
7059     trace_btrfs_get_extent(root, inode, em);
7060 
7061     if (ret) {
7062         free_extent_map(em);
7063         return ERR_PTR(ret);
7064     }
7065     return em;
7066 }
7067 
7068 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7069                        u64 start, u64 len)
7070 {
7071     struct extent_map *em;
7072     struct extent_map *hole_em = NULL;
7073     u64 delalloc_start = start;
7074     u64 end;
7075     u64 delalloc_len;
7076     u64 delalloc_end;
7077     int err = 0;
7078 
7079     em = btrfs_get_extent(inode, NULL, 0, start, len);
7080     if (IS_ERR(em))
7081         return em;
7082     /*
7083      * If our em maps to:
7084      * - a hole or
7085      * - a pre-alloc extent,
7086      * there might actually be delalloc bytes behind it.
7087      */
7088     if (em->block_start != EXTENT_MAP_HOLE &&
7089         !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7090         return em;
7091     else
7092         hole_em = em;
7093 
7094     /* check to see if we've wrapped (len == -1 or similar) */
7095     end = start + len;
7096     if (end < start)
7097         end = (u64)-1;
7098     else
7099         end -= 1;
7100 
7101     em = NULL;
7102 
7103     /* ok, we didn't find anything, lets look for delalloc */
7104     delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7105                  end, len, EXTENT_DELALLOC, 1);
7106     delalloc_end = delalloc_start + delalloc_len;
7107     if (delalloc_end < delalloc_start)
7108         delalloc_end = (u64)-1;
7109 
7110     /*
7111      * We didn't find anything useful, return the original results from
7112      * get_extent()
7113      */
7114     if (delalloc_start > end || delalloc_end <= start) {
7115         em = hole_em;
7116         hole_em = NULL;
7117         goto out;
7118     }
7119 
7120     /*
7121      * Adjust the delalloc_start to make sure it doesn't go backwards from
7122      * the start they passed in
7123      */
7124     delalloc_start = max(start, delalloc_start);
7125     delalloc_len = delalloc_end - delalloc_start;
7126 
7127     if (delalloc_len > 0) {
7128         u64 hole_start;
7129         u64 hole_len;
7130         const u64 hole_end = extent_map_end(hole_em);
7131 
7132         em = alloc_extent_map();
7133         if (!em) {
7134             err = -ENOMEM;
7135             goto out;
7136         }
7137 
7138         ASSERT(hole_em);
7139         /*
7140          * When btrfs_get_extent can't find anything it returns one
7141          * huge hole
7142          *
7143          * Make sure what it found really fits our range, and adjust to
7144          * make sure it is based on the start from the caller
7145          */
7146         if (hole_end <= start || hole_em->start > end) {
7147                free_extent_map(hole_em);
7148                hole_em = NULL;
7149         } else {
7150                hole_start = max(hole_em->start, start);
7151                hole_len = hole_end - hole_start;
7152         }
7153 
7154         if (hole_em && delalloc_start > hole_start) {
7155             /*
7156              * Our hole starts before our delalloc, so we have to
7157              * return just the parts of the hole that go until the
7158              * delalloc starts
7159              */
7160             em->len = min(hole_len, delalloc_start - hole_start);
7161             em->start = hole_start;
7162             em->orig_start = hole_start;
7163             /*
7164              * Don't adjust block start at all, it is fixed at
7165              * EXTENT_MAP_HOLE
7166              */
7167             em->block_start = hole_em->block_start;
7168             em->block_len = hole_len;
7169             if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7170                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7171         } else {
7172             /*
7173              * Hole is out of passed range or it starts after
7174              * delalloc range
7175              */
7176             em->start = delalloc_start;
7177             em->len = delalloc_len;
7178             em->orig_start = delalloc_start;
7179             em->block_start = EXTENT_MAP_DELALLOC;
7180             em->block_len = delalloc_len;
7181         }
7182     } else {
7183         return hole_em;
7184     }
7185 out:
7186 
7187     free_extent_map(hole_em);
7188     if (err) {
7189         free_extent_map(em);
7190         return ERR_PTR(err);
7191     }
7192     return em;
7193 }
7194 
7195 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7196                           const u64 start,
7197                           const u64 len,
7198                           const u64 orig_start,
7199                           const u64 block_start,
7200                           const u64 block_len,
7201                           const u64 orig_block_len,
7202                           const u64 ram_bytes,
7203                           const int type)
7204 {
7205     struct extent_map *em = NULL;
7206     int ret;
7207 
7208     if (type != BTRFS_ORDERED_NOCOW) {
7209         em = create_io_em(inode, start, len, orig_start, block_start,
7210                   block_len, orig_block_len, ram_bytes,
7211                   BTRFS_COMPRESS_NONE, /* compress_type */
7212                   type);
7213         if (IS_ERR(em))
7214             goto out;
7215     }
7216     ret = btrfs_add_ordered_extent(inode, start, len, len, block_start,
7217                        block_len, 0,
7218                        (1 << type) |
7219                        (1 << BTRFS_ORDERED_DIRECT),
7220                        BTRFS_COMPRESS_NONE);
7221     if (ret) {
7222         if (em) {
7223             free_extent_map(em);
7224             btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
7225         }
7226         em = ERR_PTR(ret);
7227     }
7228  out:
7229 
7230     return em;
7231 }
7232 
7233 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7234                           u64 start, u64 len)
7235 {
7236     struct btrfs_root *root = inode->root;
7237     struct btrfs_fs_info *fs_info = root->fs_info;
7238     struct extent_map *em;
7239     struct btrfs_key ins;
7240     u64 alloc_hint;
7241     int ret;
7242 
7243     alloc_hint = get_extent_allocation_hint(inode, start, len);
7244     ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7245                    0, alloc_hint, &ins, 1, 1);
7246     if (ret)
7247         return ERR_PTR(ret);
7248 
7249     em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7250                      ins.objectid, ins.offset, ins.offset,
7251                      ins.offset, BTRFS_ORDERED_REGULAR);
7252     btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7253     if (IS_ERR(em))
7254         btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7255                        1);
7256 
7257     return em;
7258 }
7259 
7260 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7261 {
7262     struct btrfs_block_group *block_group;
7263     bool readonly = false;
7264 
7265     block_group = btrfs_lookup_block_group(fs_info, bytenr);
7266     if (!block_group || block_group->ro)
7267         readonly = true;
7268     if (block_group)
7269         btrfs_put_block_group(block_group);
7270     return readonly;
7271 }
7272 
7273 /*
7274  * Check if we can do nocow write into the range [@offset, @offset + @len)
7275  *
7276  * @offset: File offset
7277  * @len:    The length to write, will be updated to the nocow writeable
7278  *      range
7279  * @orig_start: (optional) Return the original file offset of the file extent
7280  * @orig_len:   (optional) Return the original on-disk length of the file extent
7281  * @ram_bytes:  (optional) Return the ram_bytes of the file extent
7282  * @strict: if true, omit optimizations that might force us into unnecessary
7283  *      cow. e.g., don't trust generation number.
7284  *
7285  * Return:
7286  * >0   and update @len if we can do nocow write
7287  *  0   if we can't do nocow write
7288  * <0   if error happened
7289  *
7290  * NOTE: This only checks the file extents, caller is responsible to wait for
7291  *   any ordered extents.
7292  */
7293 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7294                   u64 *orig_start, u64 *orig_block_len,
7295                   u64 *ram_bytes, bool strict)
7296 {
7297     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7298     struct can_nocow_file_extent_args nocow_args = { 0 };
7299     struct btrfs_path *path;
7300     int ret;
7301     struct extent_buffer *leaf;
7302     struct btrfs_root *root = BTRFS_I(inode)->root;
7303     struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7304     struct btrfs_file_extent_item *fi;
7305     struct btrfs_key key;
7306     int found_type;
7307 
7308     path = btrfs_alloc_path();
7309     if (!path)
7310         return -ENOMEM;
7311 
7312     ret = btrfs_lookup_file_extent(NULL, root, path,
7313             btrfs_ino(BTRFS_I(inode)), offset, 0);
7314     if (ret < 0)
7315         goto out;
7316 
7317     if (ret == 1) {
7318         if (path->slots[0] == 0) {
7319             /* can't find the item, must cow */
7320             ret = 0;
7321             goto out;
7322         }
7323         path->slots[0]--;
7324     }
7325     ret = 0;
7326     leaf = path->nodes[0];
7327     btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7328     if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7329         key.type != BTRFS_EXTENT_DATA_KEY) {
7330         /* not our file or wrong item type, must cow */
7331         goto out;
7332     }
7333 
7334     if (key.offset > offset) {
7335         /* Wrong offset, must cow */
7336         goto out;
7337     }
7338 
7339     if (btrfs_file_extent_end(path) <= offset)
7340         goto out;
7341 
7342     fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7343     found_type = btrfs_file_extent_type(leaf, fi);
7344     if (ram_bytes)
7345         *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7346 
7347     nocow_args.start = offset;
7348     nocow_args.end = offset + *len - 1;
7349     nocow_args.strict = strict;
7350     nocow_args.free_path = true;
7351 
7352     ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7353     /* can_nocow_file_extent() has freed the path. */
7354     path = NULL;
7355 
7356     if (ret != 1) {
7357         /* Treat errors as not being able to NOCOW. */
7358         ret = 0;
7359         goto out;
7360     }
7361 
7362     ret = 0;
7363     if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7364         goto out;
7365 
7366     if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7367         found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7368         u64 range_end;
7369 
7370         range_end = round_up(offset + nocow_args.num_bytes,
7371                      root->fs_info->sectorsize) - 1;
7372         ret = test_range_bit(io_tree, offset, range_end,
7373                      EXTENT_DELALLOC, 0, NULL);
7374         if (ret) {
7375             ret = -EAGAIN;
7376             goto out;
7377         }
7378     }
7379 
7380     if (orig_start)
7381         *orig_start = key.offset - nocow_args.extent_offset;
7382     if (orig_block_len)
7383         *orig_block_len = nocow_args.disk_num_bytes;
7384 
7385     *len = nocow_args.num_bytes;
7386     ret = 1;
7387 out:
7388     btrfs_free_path(path);
7389     return ret;
7390 }
7391 
7392 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7393                   struct extent_state **cached_state,
7394                   unsigned int iomap_flags)
7395 {
7396     const bool writing = (iomap_flags & IOMAP_WRITE);
7397     const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7398     struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7399     struct btrfs_ordered_extent *ordered;
7400     int ret = 0;
7401 
7402     while (1) {
7403         if (nowait) {
7404             if (!try_lock_extent(io_tree, lockstart, lockend))
7405                 return -EAGAIN;
7406         } else {
7407             lock_extent_bits(io_tree, lockstart, lockend, cached_state);
7408         }
7409         /*
7410          * We're concerned with the entire range that we're going to be
7411          * doing DIO to, so we need to make sure there's no ordered
7412          * extents in this range.
7413          */
7414         ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7415                              lockend - lockstart + 1);
7416 
7417         /*
7418          * We need to make sure there are no buffered pages in this
7419          * range either, we could have raced between the invalidate in
7420          * generic_file_direct_write and locking the extent.  The
7421          * invalidate needs to happen so that reads after a write do not
7422          * get stale data.
7423          */
7424         if (!ordered &&
7425             (!writing || !filemap_range_has_page(inode->i_mapping,
7426                              lockstart, lockend)))
7427             break;
7428 
7429         unlock_extent_cached(io_tree, lockstart, lockend, cached_state);
7430 
7431         if (ordered) {
7432             if (nowait) {
7433                 btrfs_put_ordered_extent(ordered);
7434                 ret = -EAGAIN;
7435                 break;
7436             }
7437             /*
7438              * If we are doing a DIO read and the ordered extent we
7439              * found is for a buffered write, we can not wait for it
7440              * to complete and retry, because if we do so we can
7441              * deadlock with concurrent buffered writes on page
7442              * locks. This happens only if our DIO read covers more
7443              * than one extent map, if at this point has already
7444              * created an ordered extent for a previous extent map
7445              * and locked its range in the inode's io tree, and a
7446              * concurrent write against that previous extent map's
7447              * range and this range started (we unlock the ranges
7448              * in the io tree only when the bios complete and
7449              * buffered writes always lock pages before attempting
7450              * to lock range in the io tree).
7451              */
7452             if (writing ||
7453                 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7454                 btrfs_start_ordered_extent(ordered, 1);
7455             else
7456                 ret = nowait ? -EAGAIN : -ENOTBLK;
7457             btrfs_put_ordered_extent(ordered);
7458         } else {
7459             /*
7460              * We could trigger writeback for this range (and wait
7461              * for it to complete) and then invalidate the pages for
7462              * this range (through invalidate_inode_pages2_range()),
7463              * but that can lead us to a deadlock with a concurrent
7464              * call to readahead (a buffered read or a defrag call
7465              * triggered a readahead) on a page lock due to an
7466              * ordered dio extent we created before but did not have
7467              * yet a corresponding bio submitted (whence it can not
7468              * complete), which makes readahead wait for that
7469              * ordered extent to complete while holding a lock on
7470              * that page.
7471              */
7472             ret = nowait ? -EAGAIN : -ENOTBLK;
7473         }
7474 
7475         if (ret)
7476             break;
7477 
7478         cond_resched();
7479     }
7480 
7481     return ret;
7482 }
7483 
7484 /* The callers of this must take lock_extent() */
7485 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7486                        u64 len, u64 orig_start, u64 block_start,
7487                        u64 block_len, u64 orig_block_len,
7488                        u64 ram_bytes, int compress_type,
7489                        int type)
7490 {
7491     struct extent_map_tree *em_tree;
7492     struct extent_map *em;
7493     int ret;
7494 
7495     ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7496            type == BTRFS_ORDERED_COMPRESSED ||
7497            type == BTRFS_ORDERED_NOCOW ||
7498            type == BTRFS_ORDERED_REGULAR);
7499 
7500     em_tree = &inode->extent_tree;
7501     em = alloc_extent_map();
7502     if (!em)
7503         return ERR_PTR(-ENOMEM);
7504 
7505     em->start = start;
7506     em->orig_start = orig_start;
7507     em->len = len;
7508     em->block_len = block_len;
7509     em->block_start = block_start;
7510     em->orig_block_len = orig_block_len;
7511     em->ram_bytes = ram_bytes;
7512     em->generation = -1;
7513     set_bit(EXTENT_FLAG_PINNED, &em->flags);
7514     if (type == BTRFS_ORDERED_PREALLOC) {
7515         set_bit(EXTENT_FLAG_FILLING, &em->flags);
7516     } else if (type == BTRFS_ORDERED_COMPRESSED) {
7517         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7518         em->compress_type = compress_type;
7519     }
7520 
7521     do {
7522         btrfs_drop_extent_cache(inode, em->start,
7523                     em->start + em->len - 1, 0);
7524         write_lock(&em_tree->lock);
7525         ret = add_extent_mapping(em_tree, em, 1);
7526         write_unlock(&em_tree->lock);
7527         /*
7528          * The caller has taken lock_extent(), who could race with us
7529          * to add em?
7530          */
7531     } while (ret == -EEXIST);
7532 
7533     if (ret) {
7534         free_extent_map(em);
7535         return ERR_PTR(ret);
7536     }
7537 
7538     /* em got 2 refs now, callers needs to do free_extent_map once. */
7539     return em;
7540 }
7541 
7542 
7543 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7544                      struct inode *inode,
7545                      struct btrfs_dio_data *dio_data,
7546                      u64 start, u64 len,
7547                      unsigned int iomap_flags)
7548 {
7549     const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7550     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7551     struct extent_map *em = *map;
7552     int type;
7553     u64 block_start, orig_start, orig_block_len, ram_bytes;
7554     struct btrfs_block_group *bg;
7555     bool can_nocow = false;
7556     bool space_reserved = false;
7557     u64 prev_len;
7558     int ret = 0;
7559 
7560     /*
7561      * We don't allocate a new extent in the following cases
7562      *
7563      * 1) The inode is marked as NODATACOW. In this case we'll just use the
7564      * existing extent.
7565      * 2) The extent is marked as PREALLOC. We're good to go here and can
7566      * just use the extent.
7567      *
7568      */
7569     if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7570         ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7571          em->block_start != EXTENT_MAP_HOLE)) {
7572         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7573             type = BTRFS_ORDERED_PREALLOC;
7574         else
7575             type = BTRFS_ORDERED_NOCOW;
7576         len = min(len, em->len - (start - em->start));
7577         block_start = em->block_start + (start - em->start);
7578 
7579         if (can_nocow_extent(inode, start, &len, &orig_start,
7580                      &orig_block_len, &ram_bytes, false) == 1) {
7581             bg = btrfs_inc_nocow_writers(fs_info, block_start);
7582             if (bg)
7583                 can_nocow = true;
7584         }
7585     }
7586 
7587     prev_len = len;
7588     if (can_nocow) {
7589         struct extent_map *em2;
7590 
7591         /* We can NOCOW, so only need to reserve metadata space. */
7592         ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7593                               nowait);
7594         if (ret < 0) {
7595             /* Our caller expects us to free the input extent map. */
7596             free_extent_map(em);
7597             *map = NULL;
7598             btrfs_dec_nocow_writers(bg);
7599             if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7600                 ret = -EAGAIN;
7601             goto out;
7602         }
7603         space_reserved = true;
7604 
7605         em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7606                           orig_start, block_start,
7607                           len, orig_block_len,
7608                           ram_bytes, type);
7609         btrfs_dec_nocow_writers(bg);
7610         if (type == BTRFS_ORDERED_PREALLOC) {
7611             free_extent_map(em);
7612             *map = em2;
7613             em = em2;
7614         }
7615 
7616         if (IS_ERR(em2)) {
7617             ret = PTR_ERR(em2);
7618             goto out;
7619         }
7620 
7621         dio_data->nocow_done = true;
7622     } else {
7623         /* Our caller expects us to free the input extent map. */
7624         free_extent_map(em);
7625         *map = NULL;
7626 
7627         if (nowait)
7628             return -EAGAIN;
7629 
7630         /*
7631          * If we could not allocate data space before locking the file
7632          * range and we can't do a NOCOW write, then we have to fail.
7633          */
7634         if (!dio_data->data_space_reserved)
7635             return -ENOSPC;
7636 
7637         /*
7638          * We have to COW and we have already reserved data space before,
7639          * so now we reserve only metadata.
7640          */
7641         ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7642                               false);
7643         if (ret < 0)
7644             goto out;
7645         space_reserved = true;
7646 
7647         em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7648         if (IS_ERR(em)) {
7649             ret = PTR_ERR(em);
7650             goto out;
7651         }
7652         *map = em;
7653         len = min(len, em->len - (start - em->start));
7654         if (len < prev_len)
7655             btrfs_delalloc_release_metadata(BTRFS_I(inode),
7656                             prev_len - len, true);
7657     }
7658 
7659     /*
7660      * We have created our ordered extent, so we can now release our reservation
7661      * for an outstanding extent.
7662      */
7663     btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7664 
7665     /*
7666      * Need to update the i_size under the extent lock so buffered
7667      * readers will get the updated i_size when we unlock.
7668      */
7669     if (start + len > i_size_read(inode))
7670         i_size_write(inode, start + len);
7671 out:
7672     if (ret && space_reserved) {
7673         btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7674         btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7675     }
7676     return ret;
7677 }
7678 
7679 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7680         loff_t length, unsigned int flags, struct iomap *iomap,
7681         struct iomap *srcmap)
7682 {
7683     struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7684     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7685     struct extent_map *em;
7686     struct extent_state *cached_state = NULL;
7687     struct btrfs_dio_data *dio_data = iter->private;
7688     u64 lockstart, lockend;
7689     const bool write = !!(flags & IOMAP_WRITE);
7690     int ret = 0;
7691     u64 len = length;
7692     const u64 data_alloc_len = length;
7693     bool unlock_extents = false;
7694 
7695     /*
7696      * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7697      * we're NOWAIT we may submit a bio for a partial range and return
7698      * EIOCBQUEUED, which would result in an errant short read.
7699      *
7700      * The best way to handle this would be to allow for partial completions
7701      * of iocb's, so we could submit the partial bio, return and fault in
7702      * the rest of the pages, and then submit the io for the rest of the
7703      * range.  However we don't have that currently, so simply return
7704      * -EAGAIN at this point so that the normal path is used.
7705      */
7706     if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7707         return -EAGAIN;
7708 
7709     /*
7710      * Cap the size of reads to that usually seen in buffered I/O as we need
7711      * to allocate a contiguous array for the checksums.
7712      */
7713     if (!write)
7714         len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7715 
7716     lockstart = start;
7717     lockend = start + len - 1;
7718 
7719     /*
7720      * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7721      * enough if we've written compressed pages to this area, so we need to
7722      * flush the dirty pages again to make absolutely sure that any
7723      * outstanding dirty pages are on disk - the first flush only starts
7724      * compression on the data, while keeping the pages locked, so by the
7725      * time the second flush returns we know bios for the compressed pages
7726      * were submitted and finished, and the pages no longer under writeback.
7727      *
7728      * If we have a NOWAIT request and we have any pages in the range that
7729      * are locked, likely due to compression still in progress, we don't want
7730      * to block on page locks. We also don't want to block on pages marked as
7731      * dirty or under writeback (same as for the non-compression case).
7732      * iomap_dio_rw() did the same check, but after that and before we got
7733      * here, mmap'ed writes may have happened or buffered reads started
7734      * (readpage() and readahead(), which lock pages), as we haven't locked
7735      * the file range yet.
7736      */
7737     if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7738              &BTRFS_I(inode)->runtime_flags)) {
7739         if (flags & IOMAP_NOWAIT) {
7740             if (filemap_range_needs_writeback(inode->i_mapping,
7741                               lockstart, lockend))
7742                 return -EAGAIN;
7743         } else {
7744             ret = filemap_fdatawrite_range(inode->i_mapping, start,
7745                                start + length - 1);
7746             if (ret)
7747                 return ret;
7748         }
7749     }
7750 
7751     memset(dio_data, 0, sizeof(*dio_data));
7752 
7753     /*
7754      * We always try to allocate data space and must do it before locking
7755      * the file range, to avoid deadlocks with concurrent writes to the same
7756      * range if the range has several extents and the writes don't expand the
7757      * current i_size (the inode lock is taken in shared mode). If we fail to
7758      * allocate data space here we continue and later, after locking the
7759      * file range, we fail with ENOSPC only if we figure out we can not do a
7760      * NOCOW write.
7761      */
7762     if (write && !(flags & IOMAP_NOWAIT)) {
7763         ret = btrfs_check_data_free_space(BTRFS_I(inode),
7764                           &dio_data->data_reserved,
7765                           start, data_alloc_len);
7766         if (!ret)
7767             dio_data->data_space_reserved = true;
7768         else if (ret && !(BTRFS_I(inode)->flags &
7769                   (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7770             goto err;
7771     }
7772 
7773     /*
7774      * If this errors out it's because we couldn't invalidate pagecache for
7775      * this range and we need to fallback to buffered IO, or we are doing a
7776      * NOWAIT read/write and we need to block.
7777      */
7778     ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7779     if (ret < 0)
7780         goto err;
7781 
7782     em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7783     if (IS_ERR(em)) {
7784         ret = PTR_ERR(em);
7785         goto unlock_err;
7786     }
7787 
7788     /*
7789      * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7790      * io.  INLINE is special, and we could probably kludge it in here, but
7791      * it's still buffered so for safety lets just fall back to the generic
7792      * buffered path.
7793      *
7794      * For COMPRESSED we _have_ to read the entire extent in so we can
7795      * decompress it, so there will be buffering required no matter what we
7796      * do, so go ahead and fallback to buffered.
7797      *
7798      * We return -ENOTBLK because that's what makes DIO go ahead and go back
7799      * to buffered IO.  Don't blame me, this is the price we pay for using
7800      * the generic code.
7801      */
7802     if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7803         em->block_start == EXTENT_MAP_INLINE) {
7804         free_extent_map(em);
7805         /*
7806          * If we are in a NOWAIT context, return -EAGAIN in order to
7807          * fallback to buffered IO. This is not only because we can
7808          * block with buffered IO (no support for NOWAIT semantics at
7809          * the moment) but also to avoid returning short reads to user
7810          * space - this happens if we were able to read some data from
7811          * previous non-compressed extents and then when we fallback to
7812          * buffered IO, at btrfs_file_read_iter() by calling
7813          * filemap_read(), we fail to fault in pages for the read buffer,
7814          * in which case filemap_read() returns a short read (the number
7815          * of bytes previously read is > 0, so it does not return -EFAULT).
7816          */
7817         ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7818         goto unlock_err;
7819     }
7820 
7821     len = min(len, em->len - (start - em->start));
7822 
7823     /*
7824      * If we have a NOWAIT request and the range contains multiple extents
7825      * (or a mix of extents and holes), then we return -EAGAIN to make the
7826      * caller fallback to a context where it can do a blocking (without
7827      * NOWAIT) request. This way we avoid doing partial IO and returning
7828      * success to the caller, which is not optimal for writes and for reads
7829      * it can result in unexpected behaviour for an application.
7830      *
7831      * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7832      * iomap_dio_rw(), we can end up returning less data then what the caller
7833      * asked for, resulting in an unexpected, and incorrect, short read.
7834      * That is, the caller asked to read N bytes and we return less than that,
7835      * which is wrong unless we are crossing EOF. This happens if we get a
7836      * page fault error when trying to fault in pages for the buffer that is
7837      * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7838      * have previously submitted bios for other extents in the range, in
7839      * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7840      * those bios have completed by the time we get the page fault error,
7841      * which we return back to our caller - we should only return EIOCBQUEUED
7842      * after we have submitted bios for all the extents in the range.
7843      */
7844     if ((flags & IOMAP_NOWAIT) && len < length) {
7845         free_extent_map(em);
7846         ret = -EAGAIN;
7847         goto unlock_err;
7848     }
7849 
7850     if (write) {
7851         ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7852                             start, len, flags);
7853         if (ret < 0)
7854             goto unlock_err;
7855         unlock_extents = true;
7856         /* Recalc len in case the new em is smaller than requested */
7857         len = min(len, em->len - (start - em->start));
7858         if (dio_data->data_space_reserved) {
7859             u64 release_offset;
7860             u64 release_len = 0;
7861 
7862             if (dio_data->nocow_done) {
7863                 release_offset = start;
7864                 release_len = data_alloc_len;
7865             } else if (len < data_alloc_len) {
7866                 release_offset = start + len;
7867                 release_len = data_alloc_len - len;
7868             }
7869 
7870             if (release_len > 0)
7871                 btrfs_free_reserved_data_space(BTRFS_I(inode),
7872                                    dio_data->data_reserved,
7873                                    release_offset,
7874                                    release_len);
7875         }
7876     } else {
7877         /*
7878          * We need to unlock only the end area that we aren't using.
7879          * The rest is going to be unlocked by the endio routine.
7880          */
7881         lockstart = start + len;
7882         if (lockstart < lockend)
7883             unlock_extents = true;
7884     }
7885 
7886     if (unlock_extents)
7887         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7888                      lockstart, lockend, &cached_state);
7889     else
7890         free_extent_state(cached_state);
7891 
7892     /*
7893      * Translate extent map information to iomap.
7894      * We trim the extents (and move the addr) even though iomap code does
7895      * that, since we have locked only the parts we are performing I/O in.
7896      */
7897     if ((em->block_start == EXTENT_MAP_HOLE) ||
7898         (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7899         iomap->addr = IOMAP_NULL_ADDR;
7900         iomap->type = IOMAP_HOLE;
7901     } else {
7902         iomap->addr = em->block_start + (start - em->start);
7903         iomap->type = IOMAP_MAPPED;
7904     }
7905     iomap->offset = start;
7906     iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7907     iomap->length = len;
7908 
7909     if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start))
7910         iomap->flags |= IOMAP_F_ZONE_APPEND;
7911 
7912     free_extent_map(em);
7913 
7914     return 0;
7915 
7916 unlock_err:
7917     unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7918                  &cached_state);
7919 err:
7920     if (dio_data->data_space_reserved) {
7921         btrfs_free_reserved_data_space(BTRFS_I(inode),
7922                            dio_data->data_reserved,
7923                            start, data_alloc_len);
7924         extent_changeset_free(dio_data->data_reserved);
7925     }
7926 
7927     return ret;
7928 }
7929 
7930 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7931         ssize_t written, unsigned int flags, struct iomap *iomap)
7932 {
7933     struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7934     struct btrfs_dio_data *dio_data = iter->private;
7935     size_t submitted = dio_data->submitted;
7936     const bool write = !!(flags & IOMAP_WRITE);
7937     int ret = 0;
7938 
7939     if (!write && (iomap->type == IOMAP_HOLE)) {
7940         /* If reading from a hole, unlock and return */
7941         unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7942         return 0;
7943     }
7944 
7945     if (submitted < length) {
7946         pos += submitted;
7947         length -= submitted;
7948         if (write)
7949             btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
7950                                pos, length, false);
7951         else
7952             unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7953                       pos + length - 1);
7954         ret = -ENOTBLK;
7955     }
7956 
7957     if (write)
7958         extent_changeset_free(dio_data->data_reserved);
7959     return ret;
7960 }
7961 
7962 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7963 {
7964     /*
7965      * This implies a barrier so that stores to dio_bio->bi_status before
7966      * this and loads of dio_bio->bi_status after this are fully ordered.
7967      */
7968     if (!refcount_dec_and_test(&dip->refs))
7969         return;
7970 
7971     if (btrfs_op(&dip->bio) == BTRFS_MAP_WRITE) {
7972         btrfs_mark_ordered_io_finished(BTRFS_I(dip->inode), NULL,
7973                            dip->file_offset, dip->bytes,
7974                            !dip->bio.bi_status);
7975     } else {
7976         unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7977                   dip->file_offset,
7978                   dip->file_offset + dip->bytes - 1);
7979     }
7980 
7981     kfree(dip->csums);
7982     bio_endio(&dip->bio);
7983 }
7984 
7985 static void submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7986                   int mirror_num,
7987                   enum btrfs_compression_type compress_type)
7988 {
7989     struct btrfs_dio_private *dip = bio->bi_private;
7990     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7991 
7992     BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7993 
7994     refcount_inc(&dip->refs);
7995     btrfs_submit_bio(fs_info, bio, mirror_num);
7996 }
7997 
7998 static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip,
7999                          struct btrfs_bio *bbio,
8000                          const bool uptodate)
8001 {
8002     struct inode *inode = dip->inode;
8003     struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
8004     struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8005     struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8006     const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
8007     blk_status_t err = BLK_STS_OK;
8008     struct bvec_iter iter;
8009     struct bio_vec bv;
8010     u32 offset;
8011 
8012     btrfs_bio_for_each_sector(fs_info, bv, bbio, iter, offset) {
8013         u64 start = bbio->file_offset + offset;
8014 
8015         if (uptodate &&
8016             (!csum || !btrfs_check_data_csum(inode, bbio, offset, bv.bv_page,
8017                            bv.bv_offset))) {
8018             clean_io_failure(fs_info, failure_tree, io_tree, start,
8019                      bv.bv_page, btrfs_ino(BTRFS_I(inode)),
8020                      bv.bv_offset);
8021         } else {
8022             int ret;
8023 
8024             ret = btrfs_repair_one_sector(inode, bbio, offset,
8025                     bv.bv_page, bv.bv_offset,
8026                     submit_dio_repair_bio);
8027             if (ret)
8028                 err = errno_to_blk_status(ret);
8029         }
8030     }
8031 
8032     return err;
8033 }
8034 
8035 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
8036                              struct bio *bio,
8037                              u64 dio_file_offset)
8038 {
8039     return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, false);
8040 }
8041 
8042 static void btrfs_end_dio_bio(struct bio *bio)
8043 {
8044     struct btrfs_dio_private *dip = bio->bi_private;
8045     struct btrfs_bio *bbio = btrfs_bio(bio);
8046     blk_status_t err = bio->bi_status;
8047 
8048     if (err)
8049         btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8050                "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8051                btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8052                bio->bi_opf, bio->bi_iter.bi_sector,
8053                bio->bi_iter.bi_size, err);
8054 
8055     if (bio_op(bio) == REQ_OP_READ)
8056         err = btrfs_check_read_dio_bio(dip, bbio, !err);
8057 
8058     if (err)
8059         dip->bio.bi_status = err;
8060 
8061     btrfs_record_physical_zoned(dip->inode, bbio->file_offset, bio);
8062 
8063     bio_put(bio);
8064     btrfs_dio_private_put(dip);
8065 }
8066 
8067 static void btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8068                  u64 file_offset, int async_submit)
8069 {
8070     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8071     struct btrfs_dio_private *dip = bio->bi_private;
8072     blk_status_t ret;
8073 
8074     /* Save the original iter for read repair */
8075     if (btrfs_op(bio) == BTRFS_MAP_READ)
8076         btrfs_bio(bio)->iter = bio->bi_iter;
8077 
8078     if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8079         goto map;
8080 
8081     if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
8082         /* Check btrfs_submit_data_write_bio() for async submit rules */
8083         if (async_submit && !atomic_read(&BTRFS_I(inode)->sync_writers) &&
8084             btrfs_wq_submit_bio(inode, bio, 0, file_offset,
8085                     btrfs_submit_bio_start_direct_io))
8086             return;
8087 
8088         /*
8089          * If we aren't doing async submit, calculate the csum of the
8090          * bio now.
8091          */
8092         ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, false);
8093         if (ret) {
8094             bio->bi_status = ret;
8095             bio_endio(bio);
8096             return;
8097         }
8098     } else {
8099         btrfs_bio(bio)->csum = btrfs_csum_ptr(fs_info, dip->csums,
8100                               file_offset - dip->file_offset);
8101     }
8102 map:
8103     btrfs_submit_bio(fs_info, bio, 0);
8104 }
8105 
8106 static void btrfs_submit_direct(const struct iomap_iter *iter,
8107         struct bio *dio_bio, loff_t file_offset)
8108 {
8109     struct btrfs_dio_private *dip =
8110         container_of(dio_bio, struct btrfs_dio_private, bio);
8111     struct inode *inode = iter->inode;
8112     const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8113     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8114     const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
8115                  BTRFS_BLOCK_GROUP_RAID56_MASK);
8116     struct bio *bio;
8117     u64 start_sector;
8118     int async_submit = 0;
8119     u64 submit_len;
8120     u64 clone_offset = 0;
8121     u64 clone_len;
8122     u64 logical;
8123     int ret;
8124     blk_status_t status;
8125     struct btrfs_io_geometry geom;
8126     struct btrfs_dio_data *dio_data = iter->private;
8127     struct extent_map *em = NULL;
8128 
8129     dip->inode = inode;
8130     dip->file_offset = file_offset;
8131     dip->bytes = dio_bio->bi_iter.bi_size;
8132     refcount_set(&dip->refs, 1);
8133     dip->csums = NULL;
8134 
8135     if (!write && !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
8136         unsigned int nr_sectors =
8137             (dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
8138 
8139         /*
8140          * Load the csums up front to reduce csum tree searches and
8141          * contention when submitting bios.
8142          */
8143         status = BLK_STS_RESOURCE;
8144         dip->csums = kcalloc(nr_sectors, fs_info->csum_size, GFP_NOFS);
8145         if (!dip)
8146             goto out_err;
8147 
8148         status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
8149         if (status != BLK_STS_OK)
8150             goto out_err;
8151     }
8152 
8153     start_sector = dio_bio->bi_iter.bi_sector;
8154     submit_len = dio_bio->bi_iter.bi_size;
8155 
8156     do {
8157         logical = start_sector << 9;
8158         em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8159         if (IS_ERR(em)) {
8160             status = errno_to_blk_status(PTR_ERR(em));
8161             em = NULL;
8162             goto out_err_em;
8163         }
8164         ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8165                         logical, &geom);
8166         if (ret) {
8167             status = errno_to_blk_status(ret);
8168             goto out_err_em;
8169         }
8170 
8171         clone_len = min(submit_len, geom.len);
8172         ASSERT(clone_len <= UINT_MAX);
8173 
8174         /*
8175          * This will never fail as it's passing GPF_NOFS and
8176          * the allocation is backed by btrfs_bioset.
8177          */
8178         bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
8179         bio->bi_private = dip;
8180         bio->bi_end_io = btrfs_end_dio_bio;
8181         btrfs_bio(bio)->file_offset = file_offset;
8182 
8183         if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8184             status = extract_ordered_extent(BTRFS_I(inode), bio,
8185                             file_offset);
8186             if (status) {
8187                 bio_put(bio);
8188                 goto out_err;
8189             }
8190         }
8191 
8192         ASSERT(submit_len >= clone_len);
8193         submit_len -= clone_len;
8194 
8195         /*
8196          * Increase the count before we submit the bio so we know
8197          * the end IO handler won't happen before we increase the
8198          * count. Otherwise, the dip might get freed before we're
8199          * done setting it up.
8200          *
8201          * We transfer the initial reference to the last bio, so we
8202          * don't need to increment the reference count for the last one.
8203          */
8204         if (submit_len > 0) {
8205             refcount_inc(&dip->refs);
8206             /*
8207              * If we are submitting more than one bio, submit them
8208              * all asynchronously. The exception is RAID 5 or 6, as
8209              * asynchronous checksums make it difficult to collect
8210              * full stripe writes.
8211              */
8212             if (!raid56)
8213                 async_submit = 1;
8214         }
8215 
8216         btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8217 
8218         dio_data->submitted += clone_len;
8219         clone_offset += clone_len;
8220         start_sector += clone_len >> 9;
8221         file_offset += clone_len;
8222 
8223         free_extent_map(em);
8224     } while (submit_len > 0);
8225     return;
8226 
8227 out_err_em:
8228     free_extent_map(em);
8229 out_err:
8230     dio_bio->bi_status = status;
8231     btrfs_dio_private_put(dip);
8232 }
8233 
8234 static const struct iomap_ops btrfs_dio_iomap_ops = {
8235     .iomap_begin            = btrfs_dio_iomap_begin,
8236     .iomap_end              = btrfs_dio_iomap_end,
8237 };
8238 
8239 static const struct iomap_dio_ops btrfs_dio_ops = {
8240     .submit_io      = btrfs_submit_direct,
8241     .bio_set        = &btrfs_dio_bioset,
8242 };
8243 
8244 ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
8245 {
8246     struct btrfs_dio_data data;
8247 
8248     return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
8249                 IOMAP_DIO_PARTIAL | IOMAP_DIO_NOSYNC,
8250                 &data, done_before);
8251 }
8252 
8253 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8254             u64 start, u64 len)
8255 {
8256     int ret;
8257 
8258     ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8259     if (ret)
8260         return ret;
8261 
8262     return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8263 }
8264 
8265 static int btrfs_writepages(struct address_space *mapping,
8266                 struct writeback_control *wbc)
8267 {
8268     return extent_writepages(mapping, wbc);
8269 }
8270 
8271 static void btrfs_readahead(struct readahead_control *rac)
8272 {
8273     extent_readahead(rac);
8274 }
8275 
8276 /*
8277  * For release_folio() and invalidate_folio() we have a race window where
8278  * folio_end_writeback() is called but the subpage spinlock is not yet released.
8279  * If we continue to release/invalidate the page, we could cause use-after-free
8280  * for subpage spinlock.  So this function is to spin and wait for subpage
8281  * spinlock.
8282  */
8283 static void wait_subpage_spinlock(struct page *page)
8284 {
8285     struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
8286     struct btrfs_subpage *subpage;
8287 
8288     if (!btrfs_is_subpage(fs_info, page))
8289         return;
8290 
8291     ASSERT(PagePrivate(page) && page->private);
8292     subpage = (struct btrfs_subpage *)page->private;
8293 
8294     /*
8295      * This may look insane as we just acquire the spinlock and release it,
8296      * without doing anything.  But we just want to make sure no one is
8297      * still holding the subpage spinlock.
8298      * And since the page is not dirty nor writeback, and we have page
8299      * locked, the only possible way to hold a spinlock is from the endio
8300      * function to clear page writeback.
8301      *
8302      * Here we just acquire the spinlock so that all existing callers
8303      * should exit and we're safe to release/invalidate the page.
8304      */
8305     spin_lock_irq(&subpage->lock);
8306     spin_unlock_irq(&subpage->lock);
8307 }
8308 
8309 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8310 {
8311     int ret = try_release_extent_mapping(&folio->page, gfp_flags);
8312 
8313     if (ret == 1) {
8314         wait_subpage_spinlock(&folio->page);
8315         clear_page_extent_mapped(&folio->page);
8316     }
8317     return ret;
8318 }
8319 
8320 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8321 {
8322     if (folio_test_writeback(folio) || folio_test_dirty(folio))
8323         return false;
8324     return __btrfs_release_folio(folio, gfp_flags);
8325 }
8326 
8327 #ifdef CONFIG_MIGRATION
8328 static int btrfs_migrate_folio(struct address_space *mapping,
8329                  struct folio *dst, struct folio *src,
8330                  enum migrate_mode mode)
8331 {
8332     int ret = filemap_migrate_folio(mapping, dst, src, mode);
8333 
8334     if (ret != MIGRATEPAGE_SUCCESS)
8335         return ret;
8336 
8337     if (folio_test_ordered(src)) {
8338         folio_clear_ordered(src);
8339         folio_set_ordered(dst);
8340     }
8341 
8342     return MIGRATEPAGE_SUCCESS;
8343 }
8344 #else
8345 #define btrfs_migrate_folio NULL
8346 #endif
8347 
8348 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
8349                  size_t length)
8350 {
8351     struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
8352     struct btrfs_fs_info *fs_info = inode->root->fs_info;
8353     struct extent_io_tree *tree = &inode->io_tree;
8354     struct extent_state *cached_state = NULL;
8355     u64 page_start = folio_pos(folio);
8356     u64 page_end = page_start + folio_size(folio) - 1;
8357     u64 cur;
8358     int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8359 
8360     /*
8361      * We have folio locked so no new ordered extent can be created on this
8362      * page, nor bio can be submitted for this folio.
8363      *
8364      * But already submitted bio can still be finished on this folio.
8365      * Furthermore, endio function won't skip folio which has Ordered
8366      * (Private2) already cleared, so it's possible for endio and
8367      * invalidate_folio to do the same ordered extent accounting twice
8368      * on one folio.
8369      *
8370      * So here we wait for any submitted bios to finish, so that we won't
8371      * do double ordered extent accounting on the same folio.
8372      */
8373     folio_wait_writeback(folio);
8374     wait_subpage_spinlock(&folio->page);
8375 
8376     /*
8377      * For subpage case, we have call sites like
8378      * btrfs_punch_hole_lock_range() which passes range not aligned to
8379      * sectorsize.
8380      * If the range doesn't cover the full folio, we don't need to and
8381      * shouldn't clear page extent mapped, as folio->private can still
8382      * record subpage dirty bits for other part of the range.
8383      *
8384      * For cases that invalidate the full folio even the range doesn't
8385      * cover the full folio, like invalidating the last folio, we're
8386      * still safe to wait for ordered extent to finish.
8387      */
8388     if (!(offset == 0 && length == folio_size(folio))) {
8389         btrfs_release_folio(folio, GFP_NOFS);
8390         return;
8391     }
8392 
8393     if (!inode_evicting)
8394         lock_extent_bits(tree, page_start, page_end, &cached_state);
8395 
8396     cur = page_start;
8397     while (cur < page_end) {
8398         struct btrfs_ordered_extent *ordered;
8399         bool delete_states;
8400         u64 range_end;
8401         u32 range_len;
8402 
8403         ordered = btrfs_lookup_first_ordered_range(inode, cur,
8404                                page_end + 1 - cur);
8405         if (!ordered) {
8406             range_end = page_end;
8407             /*
8408              * No ordered extent covering this range, we are safe
8409              * to delete all extent states in the range.
8410              */
8411             delete_states = true;
8412             goto next;
8413         }
8414         if (ordered->file_offset > cur) {
8415             /*
8416              * There is a range between [cur, oe->file_offset) not
8417              * covered by any ordered extent.
8418              * We are safe to delete all extent states, and handle
8419              * the ordered extent in the next iteration.
8420              */
8421             range_end = ordered->file_offset - 1;
8422             delete_states = true;
8423             goto next;
8424         }
8425 
8426         range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8427                 page_end);
8428         ASSERT(range_end + 1 - cur < U32_MAX);
8429         range_len = range_end + 1 - cur;
8430         if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
8431             /*
8432              * If Ordered (Private2) is cleared, it means endio has
8433              * already been executed for the range.
8434              * We can't delete the extent states as
8435              * btrfs_finish_ordered_io() may still use some of them.
8436              */
8437             delete_states = false;
8438             goto next;
8439         }
8440         btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8441 
8442         /*
8443          * IO on this page will never be started, so we need to account
8444          * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8445          * here, must leave that up for the ordered extent completion.
8446          *
8447          * This will also unlock the range for incoming
8448          * btrfs_finish_ordered_io().
8449          */
8450         if (!inode_evicting)
8451             clear_extent_bit(tree, cur, range_end,
8452                      EXTENT_DELALLOC |
8453                      EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8454                      EXTENT_DEFRAG, 1, 0, &cached_state);
8455 
8456         spin_lock_irq(&inode->ordered_tree.lock);
8457         set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8458         ordered->truncated_len = min(ordered->truncated_len,
8459                          cur - ordered->file_offset);
8460         spin_unlock_irq(&inode->ordered_tree.lock);
8461 
8462         if (btrfs_dec_test_ordered_pending(inode, &ordered,
8463                            cur, range_end + 1 - cur)) {
8464             btrfs_finish_ordered_io(ordered);
8465             /*
8466              * The ordered extent has finished, now we're again
8467              * safe to delete all extent states of the range.
8468              */
8469             delete_states = true;
8470         } else {
8471             /*
8472              * btrfs_finish_ordered_io() will get executed by endio
8473              * of other pages, thus we can't delete extent states
8474              * anymore
8475              */
8476             delete_states = false;
8477         }
8478 next:
8479         if (ordered)
8480             btrfs_put_ordered_extent(ordered);
8481         /*
8482          * Qgroup reserved space handler
8483          * Sector(s) here will be either:
8484          *
8485          * 1) Already written to disk or bio already finished
8486          *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8487          *    Qgroup will be handled by its qgroup_record then.
8488          *    btrfs_qgroup_free_data() call will do nothing here.
8489          *
8490          * 2) Not written to disk yet
8491          *    Then btrfs_qgroup_free_data() call will clear the
8492          *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8493          *    reserved data space.
8494          *    Since the IO will never happen for this page.
8495          */
8496         btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8497         if (!inode_evicting) {
8498             clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8499                  EXTENT_DELALLOC | EXTENT_UPTODATE |
8500                  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8501                  delete_states, &cached_state);
8502         }
8503         cur = range_end + 1;
8504     }
8505     /*
8506      * We have iterated through all ordered extents of the page, the page
8507      * should not have Ordered (Private2) anymore, or the above iteration
8508      * did something wrong.
8509      */
8510     ASSERT(!folio_test_ordered(folio));
8511     btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8512     if (!inode_evicting)
8513         __btrfs_release_folio(folio, GFP_NOFS);
8514     clear_page_extent_mapped(&folio->page);
8515 }
8516 
8517 /*
8518  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8519  * called from a page fault handler when a page is first dirtied. Hence we must
8520  * be careful to check for EOF conditions here. We set the page up correctly
8521  * for a written page which means we get ENOSPC checking when writing into
8522  * holes and correct delalloc and unwritten extent mapping on filesystems that
8523  * support these features.
8524  *
8525  * We are not allowed to take the i_mutex here so we have to play games to
8526  * protect against truncate races as the page could now be beyond EOF.  Because
8527  * truncate_setsize() writes the inode size before removing pages, once we have
8528  * the page lock we can determine safely if the page is beyond EOF. If it is not
8529  * beyond EOF, then the page is guaranteed safe against truncation until we
8530  * unlock the page.
8531  */
8532 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8533 {
8534     struct page *page = vmf->page;
8535     struct inode *inode = file_inode(vmf->vma->vm_file);
8536     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8537     struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8538     struct btrfs_ordered_extent *ordered;
8539     struct extent_state *cached_state = NULL;
8540     struct extent_changeset *data_reserved = NULL;
8541     unsigned long zero_start;
8542     loff_t size;
8543     vm_fault_t ret;
8544     int ret2;
8545     int reserved = 0;
8546     u64 reserved_space;
8547     u64 page_start;
8548     u64 page_end;
8549     u64 end;
8550 
8551     reserved_space = PAGE_SIZE;
8552 
8553     sb_start_pagefault(inode->i_sb);
8554     page_start = page_offset(page);
8555     page_end = page_start + PAGE_SIZE - 1;
8556     end = page_end;
8557 
8558     /*
8559      * Reserving delalloc space after obtaining the page lock can lead to
8560      * deadlock. For example, if a dirty page is locked by this function
8561      * and the call to btrfs_delalloc_reserve_space() ends up triggering
8562      * dirty page write out, then the btrfs_writepages() function could
8563      * end up waiting indefinitely to get a lock on the page currently
8564      * being processed by btrfs_page_mkwrite() function.
8565      */
8566     ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8567                         page_start, reserved_space);
8568     if (!ret2) {
8569         ret2 = file_update_time(vmf->vma->vm_file);
8570         reserved = 1;
8571     }
8572     if (ret2) {
8573         ret = vmf_error(ret2);
8574         if (reserved)
8575             goto out;
8576         goto out_noreserve;
8577     }
8578 
8579     ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8580 again:
8581     down_read(&BTRFS_I(inode)->i_mmap_lock);
8582     lock_page(page);
8583     size = i_size_read(inode);
8584 
8585     if ((page->mapping != inode->i_mapping) ||
8586         (page_start >= size)) {
8587         /* page got truncated out from underneath us */
8588         goto out_unlock;
8589     }
8590     wait_on_page_writeback(page);
8591 
8592     lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8593     ret2 = set_page_extent_mapped(page);
8594     if (ret2 < 0) {
8595         ret = vmf_error(ret2);
8596         unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8597         goto out_unlock;
8598     }
8599 
8600     /*
8601      * we can't set the delalloc bits if there are pending ordered
8602      * extents.  Drop our locks and wait for them to finish
8603      */
8604     ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8605             PAGE_SIZE);
8606     if (ordered) {
8607         unlock_extent_cached(io_tree, page_start, page_end,
8608                      &cached_state);
8609         unlock_page(page);
8610         up_read(&BTRFS_I(inode)->i_mmap_lock);
8611         btrfs_start_ordered_extent(ordered, 1);
8612         btrfs_put_ordered_extent(ordered);
8613         goto again;
8614     }
8615 
8616     if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8617         reserved_space = round_up(size - page_start,
8618                       fs_info->sectorsize);
8619         if (reserved_space < PAGE_SIZE) {
8620             end = page_start + reserved_space - 1;
8621             btrfs_delalloc_release_space(BTRFS_I(inode),
8622                     data_reserved, page_start,
8623                     PAGE_SIZE - reserved_space, true);
8624         }
8625     }
8626 
8627     /*
8628      * page_mkwrite gets called when the page is firstly dirtied after it's
8629      * faulted in, but write(2) could also dirty a page and set delalloc
8630      * bits, thus in this case for space account reason, we still need to
8631      * clear any delalloc bits within this page range since we have to
8632      * reserve data&meta space before lock_page() (see above comments).
8633      */
8634     clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8635               EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8636               EXTENT_DEFRAG, 0, 0, &cached_state);
8637 
8638     ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8639                     &cached_state);
8640     if (ret2) {
8641         unlock_extent_cached(io_tree, page_start, page_end,
8642                      &cached_state);
8643         ret = VM_FAULT_SIGBUS;
8644         goto out_unlock;
8645     }
8646 
8647     /* page is wholly or partially inside EOF */
8648     if (page_start + PAGE_SIZE > size)
8649         zero_start = offset_in_page(size);
8650     else
8651         zero_start = PAGE_SIZE;
8652 
8653     if (zero_start != PAGE_SIZE)
8654         memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8655 
8656     btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8657     btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8658     btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8659 
8660     btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8661 
8662     unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8663     up_read(&BTRFS_I(inode)->i_mmap_lock);
8664 
8665     btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8666     sb_end_pagefault(inode->i_sb);
8667     extent_changeset_free(data_reserved);
8668     return VM_FAULT_LOCKED;
8669 
8670 out_unlock:
8671     unlock_page(page);
8672     up_read(&BTRFS_I(inode)->i_mmap_lock);
8673 out:
8674     btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8675     btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8676                      reserved_space, (ret != 0));
8677 out_noreserve:
8678     sb_end_pagefault(inode->i_sb);
8679     extent_changeset_free(data_reserved);
8680     return ret;
8681 }
8682 
8683 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8684 {
8685     struct btrfs_truncate_control control = {
8686         .inode = BTRFS_I(inode),
8687         .ino = btrfs_ino(BTRFS_I(inode)),
8688         .min_type = BTRFS_EXTENT_DATA_KEY,
8689         .clear_extent_range = true,
8690     };
8691     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8692     struct btrfs_root *root = BTRFS_I(inode)->root;
8693     struct btrfs_block_rsv *rsv;
8694     int ret;
8695     struct btrfs_trans_handle *trans;
8696     u64 mask = fs_info->sectorsize - 1;
8697     u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8698 
8699     if (!skip_writeback) {
8700         ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8701                            (u64)-1);
8702         if (ret)
8703             return ret;
8704     }
8705 
8706     /*
8707      * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8708      * things going on here:
8709      *
8710      * 1) We need to reserve space to update our inode.
8711      *
8712      * 2) We need to have something to cache all the space that is going to
8713      * be free'd up by the truncate operation, but also have some slack
8714      * space reserved in case it uses space during the truncate (thank you
8715      * very much snapshotting).
8716      *
8717      * And we need these to be separate.  The fact is we can use a lot of
8718      * space doing the truncate, and we have no earthly idea how much space
8719      * we will use, so we need the truncate reservation to be separate so it
8720      * doesn't end up using space reserved for updating the inode.  We also
8721      * need to be able to stop the transaction and start a new one, which
8722      * means we need to be able to update the inode several times, and we
8723      * have no idea of knowing how many times that will be, so we can't just
8724      * reserve 1 item for the entirety of the operation, so that has to be
8725      * done separately as well.
8726      *
8727      * So that leaves us with
8728      *
8729      * 1) rsv - for the truncate reservation, which we will steal from the
8730      * transaction reservation.
8731      * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8732      * updating the inode.
8733      */
8734     rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8735     if (!rsv)
8736         return -ENOMEM;
8737     rsv->size = min_size;
8738     rsv->failfast = true;
8739 
8740     /*
8741      * 1 for the truncate slack space
8742      * 1 for updating the inode.
8743      */
8744     trans = btrfs_start_transaction(root, 2);
8745     if (IS_ERR(trans)) {
8746         ret = PTR_ERR(trans);
8747         goto out;
8748     }
8749 
8750     /* Migrate the slack space for the truncate to our reserve */
8751     ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8752                       min_size, false);
8753     BUG_ON(ret);
8754 
8755     trans->block_rsv = rsv;
8756 
8757     while (1) {
8758         struct extent_state *cached_state = NULL;
8759         const u64 new_size = inode->i_size;
8760         const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8761 
8762         control.new_size = new_size;
8763         lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
8764                  &cached_state);
8765         /*
8766          * We want to drop from the next block forward in case this new
8767          * size is not block aligned since we will be keeping the last
8768          * block of the extent just the way it is.
8769          */
8770         btrfs_drop_extent_cache(BTRFS_I(inode),
8771                     ALIGN(new_size, fs_info->sectorsize),
8772                     (u64)-1, 0);
8773 
8774         ret = btrfs_truncate_inode_items(trans, root, &control);
8775 
8776         inode_sub_bytes(inode, control.sub_bytes);
8777         btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), control.last_size);
8778 
8779         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
8780                      (u64)-1, &cached_state);
8781 
8782         trans->block_rsv = &fs_info->trans_block_rsv;
8783         if (ret != -ENOSPC && ret != -EAGAIN)
8784             break;
8785 
8786         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
8787         if (ret)
8788             break;
8789 
8790         btrfs_end_transaction(trans);
8791         btrfs_btree_balance_dirty(fs_info);
8792 
8793         trans = btrfs_start_transaction(root, 2);
8794         if (IS_ERR(trans)) {
8795             ret = PTR_ERR(trans);
8796             trans = NULL;
8797             break;
8798         }
8799 
8800         btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8801         ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8802                           rsv, min_size, false);
8803         BUG_ON(ret);    /* shouldn't happen */
8804         trans->block_rsv = rsv;
8805     }
8806 
8807     /*
8808      * We can't call btrfs_truncate_block inside a trans handle as we could
8809      * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8810      * know we've truncated everything except the last little bit, and can
8811      * do btrfs_truncate_block and then update the disk_i_size.
8812      */
8813     if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8814         btrfs_end_transaction(trans);
8815         btrfs_btree_balance_dirty(fs_info);
8816 
8817         ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
8818         if (ret)
8819             goto out;
8820         trans = btrfs_start_transaction(root, 1);
8821         if (IS_ERR(trans)) {
8822             ret = PTR_ERR(trans);
8823             goto out;
8824         }
8825         btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8826     }
8827 
8828     if (trans) {
8829         int ret2;
8830 
8831         trans->block_rsv = &fs_info->trans_block_rsv;
8832         ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
8833         if (ret2 && !ret)
8834             ret = ret2;
8835 
8836         ret2 = btrfs_end_transaction(trans);
8837         if (ret2 && !ret)
8838             ret = ret2;
8839         btrfs_btree_balance_dirty(fs_info);
8840     }
8841 out:
8842     btrfs_free_block_rsv(fs_info, rsv);
8843     /*
8844      * So if we truncate and then write and fsync we normally would just
8845      * write the extents that changed, which is a problem if we need to
8846      * first truncate that entire inode.  So set this flag so we write out
8847      * all of the extents in the inode to the sync log so we're completely
8848      * safe.
8849      *
8850      * If no extents were dropped or trimmed we don't need to force the next
8851      * fsync to truncate all the inode's items from the log and re-log them
8852      * all. This means the truncate operation did not change the file size,
8853      * or changed it to a smaller size but there was only an implicit hole
8854      * between the old i_size and the new i_size, and there were no prealloc
8855      * extents beyond i_size to drop.
8856      */
8857     if (control.extents_found > 0)
8858         btrfs_set_inode_full_sync(BTRFS_I(inode));
8859 
8860     return ret;
8861 }
8862 
8863 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
8864                      struct inode *dir)
8865 {
8866     struct inode *inode;
8867 
8868     inode = new_inode(dir->i_sb);
8869     if (inode) {
8870         /*
8871          * Subvolumes don't inherit the sgid bit or the parent's gid if
8872          * the parent's sgid bit is set. This is probably a bug.
8873          */
8874         inode_init_owner(mnt_userns, inode, NULL,
8875                  S_IFDIR | (~current_umask() & S_IRWXUGO));
8876         inode->i_op = &btrfs_dir_inode_operations;
8877         inode->i_fop = &btrfs_dir_file_operations;
8878     }
8879     return inode;
8880 }
8881 
8882 struct inode *btrfs_alloc_inode(struct super_block *sb)
8883 {
8884     struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8885     struct btrfs_inode *ei;
8886     struct inode *inode;
8887 
8888     ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8889     if (!ei)
8890         return NULL;
8891 
8892     ei->root = NULL;
8893     ei->generation = 0;
8894     ei->last_trans = 0;
8895     ei->last_sub_trans = 0;
8896     ei->logged_trans = 0;
8897     ei->delalloc_bytes = 0;
8898     ei->new_delalloc_bytes = 0;
8899     ei->defrag_bytes = 0;
8900     ei->disk_i_size = 0;
8901     ei->flags = 0;
8902     ei->ro_flags = 0;
8903     ei->csum_bytes = 0;
8904     ei->index_cnt = (u64)-1;
8905     ei->dir_index = 0;
8906     ei->last_unlink_trans = 0;
8907     ei->last_reflink_trans = 0;
8908     ei->last_log_commit = 0;
8909 
8910     spin_lock_init(&ei->lock);
8911     ei->outstanding_extents = 0;
8912     if (sb->s_magic != BTRFS_TEST_MAGIC)
8913         btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8914                           BTRFS_BLOCK_RSV_DELALLOC);
8915     ei->runtime_flags = 0;
8916     ei->prop_compress = BTRFS_COMPRESS_NONE;
8917     ei->defrag_compress = BTRFS_COMPRESS_NONE;
8918 
8919     ei->delayed_node = NULL;
8920 
8921     ei->i_otime.tv_sec = 0;
8922     ei->i_otime.tv_nsec = 0;
8923 
8924     inode = &ei->vfs_inode;
8925     extent_map_tree_init(&ei->extent_tree);
8926     extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8927     extent_io_tree_init(fs_info, &ei->io_failure_tree,
8928                 IO_TREE_INODE_IO_FAILURE, inode);
8929     extent_io_tree_init(fs_info, &ei->file_extent_tree,
8930                 IO_TREE_INODE_FILE_EXTENT, inode);
8931     ei->io_tree.track_uptodate = true;
8932     ei->io_failure_tree.track_uptodate = true;
8933     atomic_set(&ei->sync_writers, 0);
8934     mutex_init(&ei->log_mutex);
8935     btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8936     INIT_LIST_HEAD(&ei->delalloc_inodes);
8937     INIT_LIST_HEAD(&ei->delayed_iput);
8938     RB_CLEAR_NODE(&ei->rb_node);
8939     init_rwsem(&ei->i_mmap_lock);
8940 
8941     return inode;
8942 }
8943 
8944 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8945 void btrfs_test_destroy_inode(struct inode *inode)
8946 {
8947     btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8948     kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8949 }
8950 #endif
8951 
8952 void btrfs_free_inode(struct inode *inode)
8953 {
8954     kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8955 }
8956 
8957 void btrfs_destroy_inode(struct inode *vfs_inode)
8958 {
8959     struct btrfs_ordered_extent *ordered;
8960     struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8961     struct btrfs_root *root = inode->root;
8962 
8963     WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8964     WARN_ON(vfs_inode->i_data.nrpages);
8965     WARN_ON(inode->block_rsv.reserved);
8966     WARN_ON(inode->block_rsv.size);
8967     WARN_ON(inode->outstanding_extents);
8968     if (!S_ISDIR(vfs_inode->i_mode)) {
8969         WARN_ON(inode->delalloc_bytes);
8970         WARN_ON(inode->new_delalloc_bytes);
8971     }
8972     WARN_ON(inode->csum_bytes);
8973     WARN_ON(inode->defrag_bytes);
8974 
8975     /*
8976      * This can happen where we create an inode, but somebody else also
8977      * created the same inode and we need to destroy the one we already
8978      * created.
8979      */
8980     if (!root)
8981         return;
8982 
8983     while (1) {
8984         ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8985         if (!ordered)
8986             break;
8987         else {
8988             btrfs_err(root->fs_info,
8989                   "found ordered extent %llu %llu on inode cleanup",
8990                   ordered->file_offset, ordered->num_bytes);
8991             btrfs_remove_ordered_extent(inode, ordered);
8992             btrfs_put_ordered_extent(ordered);
8993             btrfs_put_ordered_extent(ordered);
8994         }
8995     }
8996     btrfs_qgroup_check_reserved_leak(inode);
8997     inode_tree_del(inode);
8998     btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8999     btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
9000     btrfs_put_root(inode->root);
9001 }
9002 
9003 int btrfs_drop_inode(struct inode *inode)
9004 {
9005     struct btrfs_root *root = BTRFS_I(inode)->root;
9006 
9007     if (root == NULL)
9008         return 1;
9009 
9010     /* the snap/subvol tree is on deleting */
9011     if (btrfs_root_refs(&root->root_item) == 0)
9012         return 1;
9013     else
9014         return generic_drop_inode(inode);
9015 }
9016 
9017 static void init_once(void *foo)
9018 {
9019     struct btrfs_inode *ei = foo;
9020 
9021     inode_init_once(&ei->vfs_inode);
9022 }
9023 
9024 void __cold btrfs_destroy_cachep(void)
9025 {
9026     /*
9027      * Make sure all delayed rcu free inodes are flushed before we
9028      * destroy cache.
9029      */
9030     rcu_barrier();
9031     bioset_exit(&btrfs_dio_bioset);
9032     kmem_cache_destroy(btrfs_inode_cachep);
9033     kmem_cache_destroy(btrfs_trans_handle_cachep);
9034     kmem_cache_destroy(btrfs_path_cachep);
9035     kmem_cache_destroy(btrfs_free_space_cachep);
9036     kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
9037 }
9038 
9039 int __init btrfs_init_cachep(void)
9040 {
9041     btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9042             sizeof(struct btrfs_inode), 0,
9043             SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9044             init_once);
9045     if (!btrfs_inode_cachep)
9046         goto fail;
9047 
9048     btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9049             sizeof(struct btrfs_trans_handle), 0,
9050             SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9051     if (!btrfs_trans_handle_cachep)
9052         goto fail;
9053 
9054     btrfs_path_cachep = kmem_cache_create("btrfs_path",
9055             sizeof(struct btrfs_path), 0,
9056             SLAB_MEM_SPREAD, NULL);
9057     if (!btrfs_path_cachep)
9058         goto fail;
9059 
9060     btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9061             sizeof(struct btrfs_free_space), 0,
9062             SLAB_MEM_SPREAD, NULL);
9063     if (!btrfs_free_space_cachep)
9064         goto fail;
9065 
9066     btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9067                             PAGE_SIZE, PAGE_SIZE,
9068                             SLAB_MEM_SPREAD, NULL);
9069     if (!btrfs_free_space_bitmap_cachep)
9070         goto fail;
9071 
9072     if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
9073             offsetof(struct btrfs_dio_private, bio),
9074             BIOSET_NEED_BVECS))
9075         goto fail;
9076 
9077     return 0;
9078 fail:
9079     btrfs_destroy_cachep();
9080     return -ENOMEM;
9081 }
9082 
9083 static int btrfs_getattr(struct user_namespace *mnt_userns,
9084              const struct path *path, struct kstat *stat,
9085              u32 request_mask, unsigned int flags)
9086 {
9087     u64 delalloc_bytes;
9088     u64 inode_bytes;
9089     struct inode *inode = d_inode(path->dentry);
9090     u32 blocksize = inode->i_sb->s_blocksize;
9091     u32 bi_flags = BTRFS_I(inode)->flags;
9092     u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
9093 
9094     stat->result_mask |= STATX_BTIME;
9095     stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9096     stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9097     if (bi_flags & BTRFS_INODE_APPEND)
9098         stat->attributes |= STATX_ATTR_APPEND;
9099     if (bi_flags & BTRFS_INODE_COMPRESS)
9100         stat->attributes |= STATX_ATTR_COMPRESSED;
9101     if (bi_flags & BTRFS_INODE_IMMUTABLE)
9102         stat->attributes |= STATX_ATTR_IMMUTABLE;
9103     if (bi_flags & BTRFS_INODE_NODUMP)
9104         stat->attributes |= STATX_ATTR_NODUMP;
9105     if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
9106         stat->attributes |= STATX_ATTR_VERITY;
9107 
9108     stat->attributes_mask |= (STATX_ATTR_APPEND |
9109                   STATX_ATTR_COMPRESSED |
9110                   STATX_ATTR_IMMUTABLE |
9111                   STATX_ATTR_NODUMP);
9112 
9113     generic_fillattr(mnt_userns, inode, stat);
9114     stat->dev = BTRFS_I(inode)->root->anon_dev;
9115 
9116     spin_lock(&BTRFS_I(inode)->lock);
9117     delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9118     inode_bytes = inode_get_bytes(inode);
9119     spin_unlock(&BTRFS_I(inode)->lock);
9120     stat->blocks = (ALIGN(inode_bytes, blocksize) +
9121             ALIGN(delalloc_bytes, blocksize)) >> 9;
9122     return 0;
9123 }
9124 
9125 static int btrfs_rename_exchange(struct inode *old_dir,
9126                   struct dentry *old_dentry,
9127                   struct inode *new_dir,
9128                   struct dentry *new_dentry)
9129 {
9130     struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9131     struct btrfs_trans_handle *trans;
9132     unsigned int trans_num_items;
9133     struct btrfs_root *root = BTRFS_I(old_dir)->root;
9134     struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9135     struct inode *new_inode = new_dentry->d_inode;
9136     struct inode *old_inode = old_dentry->d_inode;
9137     struct timespec64 ctime = current_time(old_inode);
9138     struct btrfs_rename_ctx old_rename_ctx;
9139     struct btrfs_rename_ctx new_rename_ctx;
9140     u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9141     u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9142     u64 old_idx = 0;
9143     u64 new_idx = 0;
9144     int ret;
9145     int ret2;
9146     bool need_abort = false;
9147 
9148     /*
9149      * For non-subvolumes allow exchange only within one subvolume, in the
9150      * same inode namespace. Two subvolumes (represented as directory) can
9151      * be exchanged as they're a logical link and have a fixed inode number.
9152      */
9153     if (root != dest &&
9154         (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9155          new_ino != BTRFS_FIRST_FREE_OBJECTID))
9156         return -EXDEV;
9157 
9158     /* close the race window with snapshot create/destroy ioctl */
9159     if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9160         new_ino == BTRFS_FIRST_FREE_OBJECTID)
9161         down_read(&fs_info->subvol_sem);
9162 
9163     /*
9164      * For each inode:
9165      * 1 to remove old dir item
9166      * 1 to remove old dir index
9167      * 1 to add new dir item
9168      * 1 to add new dir index
9169      * 1 to update parent inode
9170      *
9171      * If the parents are the same, we only need to account for one
9172      */
9173     trans_num_items = (old_dir == new_dir ? 9 : 10);
9174     if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9175         /*
9176          * 1 to remove old root ref
9177          * 1 to remove old root backref
9178          * 1 to add new root ref
9179          * 1 to add new root backref
9180          */
9181         trans_num_items += 4;
9182     } else {
9183         /*
9184          * 1 to update inode item
9185          * 1 to remove old inode ref
9186          * 1 to add new inode ref
9187          */
9188         trans_num_items += 3;
9189     }
9190     if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9191         trans_num_items += 4;
9192     else
9193         trans_num_items += 3;
9194     trans = btrfs_start_transaction(root, trans_num_items);
9195     if (IS_ERR(trans)) {
9196         ret = PTR_ERR(trans);
9197         goto out_notrans;
9198     }
9199 
9200     if (dest != root) {
9201         ret = btrfs_record_root_in_trans(trans, dest);
9202         if (ret)
9203             goto out_fail;
9204     }
9205 
9206     /*
9207      * We need to find a free sequence number both in the source and
9208      * in the destination directory for the exchange.
9209      */
9210     ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9211     if (ret)
9212         goto out_fail;
9213     ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9214     if (ret)
9215         goto out_fail;
9216 
9217     BTRFS_I(old_inode)->dir_index = 0ULL;
9218     BTRFS_I(new_inode)->dir_index = 0ULL;
9219 
9220     /* Reference for the source. */
9221     if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9222         /* force full log commit if subvolume involved. */
9223         btrfs_set_log_full_commit(trans);
9224     } else {
9225         ret = btrfs_insert_inode_ref(trans, dest,
9226                          new_dentry->d_name.name,
9227                          new_dentry->d_name.len,
9228                          old_ino,
9229                          btrfs_ino(BTRFS_I(new_dir)),
9230                          old_idx);
9231         if (ret)
9232             goto out_fail;
9233         need_abort = true;
9234     }
9235 
9236     /* And now for the dest. */
9237     if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9238         /* force full log commit if subvolume involved. */
9239         btrfs_set_log_full_commit(trans);
9240     } else {
9241         ret = btrfs_insert_inode_ref(trans, root,
9242                          old_dentry->d_name.name,
9243                          old_dentry->d_name.len,
9244                          new_ino,
9245                          btrfs_ino(BTRFS_I(old_dir)),
9246                          new_idx);
9247         if (ret) {
9248             if (need_abort)
9249                 btrfs_abort_transaction(trans, ret);
9250             goto out_fail;
9251         }
9252     }
9253 
9254     /* Update inode version and ctime/mtime. */
9255     inode_inc_iversion(old_dir);
9256     inode_inc_iversion(new_dir);
9257     inode_inc_iversion(old_inode);
9258     inode_inc_iversion(new_inode);
9259     old_dir->i_mtime = ctime;
9260     old_dir->i_ctime = ctime;
9261     new_dir->i_mtime = ctime;
9262     new_dir->i_ctime = ctime;
9263     old_inode->i_ctime = ctime;
9264     new_inode->i_ctime = ctime;
9265 
9266     if (old_dentry->d_parent != new_dentry->d_parent) {
9267         btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9268                 BTRFS_I(old_inode), 1);
9269         btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9270                 BTRFS_I(new_inode), 1);
9271     }
9272 
9273     /* src is a subvolume */
9274     if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9275         ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9276     } else { /* src is an inode */
9277         ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9278                        BTRFS_I(old_dentry->d_inode),
9279                        old_dentry->d_name.name,
9280                        old_dentry->d_name.len,
9281                        &old_rename_ctx);
9282         if (!ret)
9283             ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9284     }
9285     if (ret) {
9286         btrfs_abort_transaction(trans, ret);
9287         goto out_fail;
9288     }
9289 
9290     /* dest is a subvolume */
9291     if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9292         ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9293     } else { /* dest is an inode */
9294         ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9295                        BTRFS_I(new_dentry->d_inode),
9296                        new_dentry->d_name.name,
9297                        new_dentry->d_name.len,
9298                        &new_rename_ctx);
9299         if (!ret)
9300             ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9301     }
9302     if (ret) {
9303         btrfs_abort_transaction(trans, ret);
9304         goto out_fail;
9305     }
9306 
9307     ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9308                  new_dentry->d_name.name,
9309                  new_dentry->d_name.len, 0, old_idx);
9310     if (ret) {
9311         btrfs_abort_transaction(trans, ret);
9312         goto out_fail;
9313     }
9314 
9315     ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9316                  old_dentry->d_name.name,
9317                  old_dentry->d_name.len, 0, new_idx);
9318     if (ret) {
9319         btrfs_abort_transaction(trans, ret);
9320         goto out_fail;
9321     }
9322 
9323     if (old_inode->i_nlink == 1)
9324         BTRFS_I(old_inode)->dir_index = old_idx;
9325     if (new_inode->i_nlink == 1)
9326         BTRFS_I(new_inode)->dir_index = new_idx;
9327 
9328     /*
9329      * Now pin the logs of the roots. We do it to ensure that no other task
9330      * can sync the logs while we are in progress with the rename, because
9331      * that could result in an inconsistency in case any of the inodes that
9332      * are part of this rename operation were logged before.
9333      */
9334     if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9335         btrfs_pin_log_trans(root);
9336     if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9337         btrfs_pin_log_trans(dest);
9338 
9339     /* Do the log updates for all inodes. */
9340     if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9341         btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9342                    old_rename_ctx.index, new_dentry->d_parent);
9343     if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9344         btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
9345                    new_rename_ctx.index, old_dentry->d_parent);
9346 
9347     /* Now unpin the logs. */
9348     if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9349         btrfs_end_log_trans(root);
9350     if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9351         btrfs_end_log_trans(dest);
9352 out_fail:
9353     ret2 = btrfs_end_transaction(trans);
9354     ret = ret ? ret : ret2;
9355 out_notrans:
9356     if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9357         old_ino == BTRFS_FIRST_FREE_OBJECTID)
9358         up_read(&fs_info->subvol_sem);
9359 
9360     return ret;
9361 }
9362 
9363 static struct inode *new_whiteout_inode(struct user_namespace *mnt_userns,
9364                     struct inode *dir)
9365 {
9366     struct inode *inode;
9367 
9368     inode = new_inode(dir->i_sb);
9369     if (inode) {
9370         inode_init_owner(mnt_userns, inode, dir,
9371                  S_IFCHR | WHITEOUT_MODE);
9372         inode->i_op = &btrfs_special_inode_operations;
9373         init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
9374     }
9375     return inode;
9376 }
9377 
9378 static int btrfs_rename(struct user_namespace *mnt_userns,
9379             struct inode *old_dir, struct dentry *old_dentry,
9380             struct inode *new_dir, struct dentry *new_dentry,
9381             unsigned int flags)
9382 {
9383     struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9384     struct btrfs_new_inode_args whiteout_args = {
9385         .dir = old_dir,
9386         .dentry = old_dentry,
9387     };
9388     struct btrfs_trans_handle *trans;
9389     unsigned int trans_num_items;
9390     struct btrfs_root *root = BTRFS_I(old_dir)->root;
9391     struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9392     struct inode *new_inode = d_inode(new_dentry);
9393     struct inode *old_inode = d_inode(old_dentry);
9394     struct btrfs_rename_ctx rename_ctx;
9395     u64 index = 0;
9396     int ret;
9397     int ret2;
9398     u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9399 
9400     if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9401         return -EPERM;
9402 
9403     /* we only allow rename subvolume link between subvolumes */
9404     if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9405         return -EXDEV;
9406 
9407     if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9408         (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9409         return -ENOTEMPTY;
9410 
9411     if (S_ISDIR(old_inode->i_mode) && new_inode &&
9412         new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9413         return -ENOTEMPTY;
9414 
9415 
9416     /* check for collisions, even if the  name isn't there */
9417     ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9418                  new_dentry->d_name.name,
9419                  new_dentry->d_name.len);
9420 
9421     if (ret) {
9422         if (ret == -EEXIST) {
9423             /* we shouldn't get
9424              * eexist without a new_inode */
9425             if (WARN_ON(!new_inode)) {
9426                 return ret;
9427             }
9428         } else {
9429             /* maybe -EOVERFLOW */
9430             return ret;
9431         }
9432     }
9433     ret = 0;
9434 
9435     /*
9436      * we're using rename to replace one file with another.  Start IO on it
9437      * now so  we don't add too much work to the end of the transaction
9438      */
9439     if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9440         filemap_flush(old_inode->i_mapping);
9441 
9442     if (flags & RENAME_WHITEOUT) {
9443         whiteout_args.inode = new_whiteout_inode(mnt_userns, old_dir);
9444         if (!whiteout_args.inode)
9445             return -ENOMEM;
9446         ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9447         if (ret)
9448             goto out_whiteout_inode;
9449     } else {
9450         /* 1 to update the old parent inode. */
9451         trans_num_items = 1;
9452     }
9453 
9454     if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9455         /* Close the race window with snapshot create/destroy ioctl */
9456         down_read(&fs_info->subvol_sem);
9457         /*
9458          * 1 to remove old root ref
9459          * 1 to remove old root backref
9460          * 1 to add new root ref
9461          * 1 to add new root backref
9462          */
9463         trans_num_items += 4;
9464     } else {
9465         /*
9466          * 1 to update inode
9467          * 1 to remove old inode ref
9468          * 1 to add new inode ref
9469          */
9470         trans_num_items += 3;
9471     }
9472     /*
9473      * 1 to remove old dir item
9474      * 1 to remove old dir index
9475      * 1 to add new dir item
9476      * 1 to add new dir index
9477      */
9478     trans_num_items += 4;
9479     /* 1 to update new parent inode if it's not the same as the old parent */
9480     if (new_dir != old_dir)
9481         trans_num_items++;
9482     if (new_inode) {
9483         /*
9484          * 1 to update inode
9485          * 1 to remove inode ref
9486          * 1 to remove dir item
9487          * 1 to remove dir index
9488          * 1 to possibly add orphan item
9489          */
9490         trans_num_items += 5;
9491     }
9492     trans = btrfs_start_transaction(root, trans_num_items);
9493     if (IS_ERR(trans)) {
9494         ret = PTR_ERR(trans);
9495         goto out_notrans;
9496     }
9497 
9498     if (dest != root) {
9499         ret = btrfs_record_root_in_trans(trans, dest);
9500         if (ret)
9501             goto out_fail;
9502     }
9503 
9504     ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9505     if (ret)
9506         goto out_fail;
9507 
9508     BTRFS_I(old_inode)->dir_index = 0ULL;
9509     if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9510         /* force full log commit if subvolume involved. */
9511         btrfs_set_log_full_commit(trans);
9512     } else {
9513         ret = btrfs_insert_inode_ref(trans, dest,
9514                          new_dentry->d_name.name,
9515                          new_dentry->d_name.len,
9516                          old_ino,
9517                          btrfs_ino(BTRFS_I(new_dir)), index);
9518         if (ret)
9519             goto out_fail;
9520     }
9521 
9522     inode_inc_iversion(old_dir);
9523     inode_inc_iversion(new_dir);
9524     inode_inc_iversion(old_inode);
9525     old_dir->i_mtime = current_time(old_dir);
9526     old_dir->i_ctime = old_dir->i_mtime;
9527     new_dir->i_mtime = old_dir->i_mtime;
9528     new_dir->i_ctime = old_dir->i_mtime;
9529     old_inode->i_ctime = old_dir->i_mtime;
9530 
9531     if (old_dentry->d_parent != new_dentry->d_parent)
9532         btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9533                 BTRFS_I(old_inode), 1);
9534 
9535     if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9536         ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9537     } else {
9538         ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9539                     BTRFS_I(d_inode(old_dentry)),
9540                     old_dentry->d_name.name,
9541                     old_dentry->d_name.len,
9542                     &rename_ctx);
9543         if (!ret)
9544             ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9545     }
9546     if (ret) {
9547         btrfs_abort_transaction(trans, ret);
9548         goto out_fail;
9549     }
9550 
9551     if (new_inode) {
9552         inode_inc_iversion(new_inode);
9553         new_inode->i_ctime = current_time(new_inode);
9554         if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9555                  BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9556             ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9557             BUG_ON(new_inode->i_nlink == 0);
9558         } else {
9559             ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9560                          BTRFS_I(d_inode(new_dentry)),
9561                          new_dentry->d_name.name,
9562                          new_dentry->d_name.len);
9563         }
9564         if (!ret && new_inode->i_nlink == 0)
9565             ret = btrfs_orphan_add(trans,
9566                     BTRFS_I(d_inode(new_dentry)));
9567         if (ret) {
9568             btrfs_abort_transaction(trans, ret);
9569             goto out_fail;
9570         }
9571     }
9572 
9573     ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9574                  new_dentry->d_name.name,
9575                  new_dentry->d_name.len, 0, index);
9576     if (ret) {
9577         btrfs_abort_transaction(trans, ret);
9578         goto out_fail;
9579     }
9580 
9581     if (old_inode->i_nlink == 1)
9582         BTRFS_I(old_inode)->dir_index = index;
9583 
9584     if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9585         btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9586                    rename_ctx.index, new_dentry->d_parent);
9587 
9588     if (flags & RENAME_WHITEOUT) {
9589         ret = btrfs_create_new_inode(trans, &whiteout_args);
9590         if (ret) {
9591             btrfs_abort_transaction(trans, ret);
9592             goto out_fail;
9593         } else {
9594             unlock_new_inode(whiteout_args.inode);
9595             iput(whiteout_args.inode);
9596             whiteout_args.inode = NULL;
9597         }
9598     }
9599 out_fail:
9600     ret2 = btrfs_end_transaction(trans);
9601     ret = ret ? ret : ret2;
9602 out_notrans:
9603     if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9604         up_read(&fs_info->subvol_sem);
9605     if (flags & RENAME_WHITEOUT)
9606         btrfs_new_inode_args_destroy(&whiteout_args);
9607 out_whiteout_inode:
9608     if (flags & RENAME_WHITEOUT)
9609         iput(whiteout_args.inode);
9610     return ret;
9611 }
9612 
9613 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9614              struct dentry *old_dentry, struct inode *new_dir,
9615              struct dentry *new_dentry, unsigned int flags)
9616 {
9617     int ret;
9618 
9619     if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9620         return -EINVAL;
9621 
9622     if (flags & RENAME_EXCHANGE)
9623         ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9624                         new_dentry);
9625     else
9626         ret = btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir,
9627                    new_dentry, flags);
9628 
9629     btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9630 
9631     return ret;
9632 }
9633 
9634 struct btrfs_delalloc_work {
9635     struct inode *inode;
9636     struct completion completion;
9637     struct list_head list;
9638     struct btrfs_work work;
9639 };
9640 
9641 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9642 {
9643     struct btrfs_delalloc_work *delalloc_work;
9644     struct inode *inode;
9645 
9646     delalloc_work = container_of(work, struct btrfs_delalloc_work,
9647                      work);
9648     inode = delalloc_work->inode;
9649     filemap_flush(inode->i_mapping);
9650     if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9651                 &BTRFS_I(inode)->runtime_flags))
9652         filemap_flush(inode->i_mapping);
9653 
9654     iput(inode);
9655     complete(&delalloc_work->completion);
9656 }
9657 
9658 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9659 {
9660     struct btrfs_delalloc_work *work;
9661 
9662     work = kmalloc(sizeof(*work), GFP_NOFS);
9663     if (!work)
9664         return NULL;
9665 
9666     init_completion(&work->completion);
9667     INIT_LIST_HEAD(&work->list);
9668     work->inode = inode;
9669     btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9670 
9671     return work;
9672 }
9673 
9674 /*
9675  * some fairly slow code that needs optimization. This walks the list
9676  * of all the inodes with pending delalloc and forces them to disk.
9677  */
9678 static int start_delalloc_inodes(struct btrfs_root *root,
9679                  struct writeback_control *wbc, bool snapshot,
9680                  bool in_reclaim_context)
9681 {
9682     struct btrfs_inode *binode;
9683     struct inode *inode;
9684     struct btrfs_delalloc_work *work, *next;
9685     struct list_head works;
9686     struct list_head splice;
9687     int ret = 0;
9688     bool full_flush = wbc->nr_to_write == LONG_MAX;
9689 
9690     INIT_LIST_HEAD(&works);
9691     INIT_LIST_HEAD(&splice);
9692 
9693     mutex_lock(&root->delalloc_mutex);
9694     spin_lock(&root->delalloc_lock);
9695     list_splice_init(&root->delalloc_inodes, &splice);
9696     while (!list_empty(&splice)) {
9697         binode = list_entry(splice.next, struct btrfs_inode,
9698                     delalloc_inodes);
9699 
9700         list_move_tail(&binode->delalloc_inodes,
9701                    &root->delalloc_inodes);
9702 
9703         if (in_reclaim_context &&
9704             test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9705             continue;
9706 
9707         inode = igrab(&binode->vfs_inode);
9708         if (!inode) {
9709             cond_resched_lock(&root->delalloc_lock);
9710             continue;
9711         }
9712         spin_unlock(&root->delalloc_lock);
9713 
9714         if (snapshot)
9715             set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9716                 &binode->runtime_flags);
9717         if (full_flush) {
9718             work = btrfs_alloc_delalloc_work(inode);
9719             if (!work) {
9720                 iput(inode);
9721                 ret = -ENOMEM;
9722                 goto out;
9723             }
9724             list_add_tail(&work->list, &works);
9725             btrfs_queue_work(root->fs_info->flush_workers,
9726                      &work->work);
9727         } else {
9728             ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9729             btrfs_add_delayed_iput(inode);
9730             if (ret || wbc->nr_to_write <= 0)
9731                 goto out;
9732         }
9733         cond_resched();
9734         spin_lock(&root->delalloc_lock);
9735     }
9736     spin_unlock(&root->delalloc_lock);
9737 
9738 out:
9739     list_for_each_entry_safe(work, next, &works, list) {
9740         list_del_init(&work->list);
9741         wait_for_completion(&work->completion);
9742         kfree(work);
9743     }
9744 
9745     if (!list_empty(&splice)) {
9746         spin_lock(&root->delalloc_lock);
9747         list_splice_tail(&splice, &root->delalloc_inodes);
9748         spin_unlock(&root->delalloc_lock);
9749     }
9750     mutex_unlock(&root->delalloc_mutex);
9751     return ret;
9752 }
9753 
9754 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9755 {
9756     struct writeback_control wbc = {
9757         .nr_to_write = LONG_MAX,
9758         .sync_mode = WB_SYNC_NONE,
9759         .range_start = 0,
9760         .range_end = LLONG_MAX,
9761     };
9762     struct btrfs_fs_info *fs_info = root->fs_info;
9763 
9764     if (BTRFS_FS_ERROR(fs_info))
9765         return -EROFS;
9766 
9767     return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9768 }
9769 
9770 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9771                    bool in_reclaim_context)
9772 {
9773     struct writeback_control wbc = {
9774         .nr_to_write = nr,
9775         .sync_mode = WB_SYNC_NONE,
9776         .range_start = 0,
9777         .range_end = LLONG_MAX,
9778     };
9779     struct btrfs_root *root;
9780     struct list_head splice;
9781     int ret;
9782 
9783     if (BTRFS_FS_ERROR(fs_info))
9784         return -EROFS;
9785 
9786     INIT_LIST_HEAD(&splice);
9787 
9788     mutex_lock(&fs_info->delalloc_root_mutex);
9789     spin_lock(&fs_info->delalloc_root_lock);
9790     list_splice_init(&fs_info->delalloc_roots, &splice);
9791     while (!list_empty(&splice)) {
9792         /*
9793          * Reset nr_to_write here so we know that we're doing a full
9794          * flush.
9795          */
9796         if (nr == LONG_MAX)
9797             wbc.nr_to_write = LONG_MAX;
9798 
9799         root = list_first_entry(&splice, struct btrfs_root,
9800                     delalloc_root);
9801         root = btrfs_grab_root(root);
9802         BUG_ON(!root);
9803         list_move_tail(&root->delalloc_root,
9804                    &fs_info->delalloc_roots);
9805         spin_unlock(&fs_info->delalloc_root_lock);
9806 
9807         ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9808         btrfs_put_root(root);
9809         if (ret < 0 || wbc.nr_to_write <= 0)
9810             goto out;
9811         spin_lock(&fs_info->delalloc_root_lock);
9812     }
9813     spin_unlock(&fs_info->delalloc_root_lock);
9814 
9815     ret = 0;
9816 out:
9817     if (!list_empty(&splice)) {
9818         spin_lock(&fs_info->delalloc_root_lock);
9819         list_splice_tail(&splice, &fs_info->delalloc_roots);
9820         spin_unlock(&fs_info->delalloc_root_lock);
9821     }
9822     mutex_unlock(&fs_info->delalloc_root_mutex);
9823     return ret;
9824 }
9825 
9826 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
9827              struct dentry *dentry, const char *symname)
9828 {
9829     struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9830     struct btrfs_trans_handle *trans;
9831     struct btrfs_root *root = BTRFS_I(dir)->root;
9832     struct btrfs_path *path;
9833     struct btrfs_key key;
9834     struct inode *inode;
9835     struct btrfs_new_inode_args new_inode_args = {
9836         .dir = dir,
9837         .dentry = dentry,
9838     };
9839     unsigned int trans_num_items;
9840     int err;
9841     int name_len;
9842     int datasize;
9843     unsigned long ptr;
9844     struct btrfs_file_extent_item *ei;
9845     struct extent_buffer *leaf;
9846 
9847     name_len = strlen(symname);
9848     if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9849         return -ENAMETOOLONG;
9850 
9851     inode = new_inode(dir->i_sb);
9852     if (!inode)
9853         return -ENOMEM;
9854     inode_init_owner(mnt_userns, inode, dir, S_IFLNK | S_IRWXUGO);
9855     inode->i_op = &btrfs_symlink_inode_operations;
9856     inode_nohighmem(inode);
9857     inode->i_mapping->a_ops = &btrfs_aops;
9858     btrfs_i_size_write(BTRFS_I(inode), name_len);
9859     inode_set_bytes(inode, name_len);
9860 
9861     new_inode_args.inode = inode;
9862     err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9863     if (err)
9864         goto out_inode;
9865     /* 1 additional item for the inline extent */
9866     trans_num_items++;
9867 
9868     trans = btrfs_start_transaction(root, trans_num_items);
9869     if (IS_ERR(trans)) {
9870         err = PTR_ERR(trans);
9871         goto out_new_inode_args;
9872     }
9873 
9874     err = btrfs_create_new_inode(trans, &new_inode_args);
9875     if (err)
9876         goto out;
9877 
9878     path = btrfs_alloc_path();
9879     if (!path) {
9880         err = -ENOMEM;
9881         btrfs_abort_transaction(trans, err);
9882         discard_new_inode(inode);
9883         inode = NULL;
9884         goto out;
9885     }
9886     key.objectid = btrfs_ino(BTRFS_I(inode));
9887     key.offset = 0;
9888     key.type = BTRFS_EXTENT_DATA_KEY;
9889     datasize = btrfs_file_extent_calc_inline_size(name_len);
9890     err = btrfs_insert_empty_item(trans, root, path, &key,
9891                       datasize);
9892     if (err) {
9893         btrfs_abort_transaction(trans, err);
9894         btrfs_free_path(path);
9895         discard_new_inode(inode);
9896         inode = NULL;
9897         goto out;
9898     }
9899     leaf = path->nodes[0];
9900     ei = btrfs_item_ptr(leaf, path->slots[0],
9901                 struct btrfs_file_extent_item);
9902     btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9903     btrfs_set_file_extent_type(leaf, ei,
9904                    BTRFS_FILE_EXTENT_INLINE);
9905     btrfs_set_file_extent_encryption(leaf, ei, 0);
9906     btrfs_set_file_extent_compression(leaf, ei, 0);
9907     btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9908     btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9909 
9910     ptr = btrfs_file_extent_inline_start(ei);
9911     write_extent_buffer(leaf, symname, ptr, name_len);
9912     btrfs_mark_buffer_dirty(leaf);
9913     btrfs_free_path(path);
9914 
9915     d_instantiate_new(dentry, inode);
9916     err = 0;
9917 out:
9918     btrfs_end_transaction(trans);
9919     btrfs_btree_balance_dirty(fs_info);
9920 out_new_inode_args:
9921     btrfs_new_inode_args_destroy(&new_inode_args);
9922 out_inode:
9923     if (err)
9924         iput(inode);
9925     return err;
9926 }
9927 
9928 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9929                        struct btrfs_trans_handle *trans_in,
9930                        struct btrfs_inode *inode,
9931                        struct btrfs_key *ins,
9932                        u64 file_offset)
9933 {
9934     struct btrfs_file_extent_item stack_fi;
9935     struct btrfs_replace_extent_info extent_info;
9936     struct btrfs_trans_handle *trans = trans_in;
9937     struct btrfs_path *path;
9938     u64 start = ins->objectid;
9939     u64 len = ins->offset;
9940     int qgroup_released;
9941     int ret;
9942 
9943     memset(&stack_fi, 0, sizeof(stack_fi));
9944 
9945     btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9946     btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9947     btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9948     btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9949     btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9950     btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9951     /* Encryption and other encoding is reserved and all 0 */
9952 
9953     qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9954     if (qgroup_released < 0)
9955         return ERR_PTR(qgroup_released);
9956 
9957     if (trans) {
9958         ret = insert_reserved_file_extent(trans, inode,
9959                           file_offset, &stack_fi,
9960                           true, qgroup_released);
9961         if (ret)
9962             goto free_qgroup;
9963         return trans;
9964     }
9965 
9966     extent_info.disk_offset = start;
9967     extent_info.disk_len = len;
9968     extent_info.data_offset = 0;
9969     extent_info.data_len = len;
9970     extent_info.file_offset = file_offset;
9971     extent_info.extent_buf = (char *)&stack_fi;
9972     extent_info.is_new_extent = true;
9973     extent_info.update_times = true;
9974     extent_info.qgroup_reserved = qgroup_released;
9975     extent_info.insertions = 0;
9976 
9977     path = btrfs_alloc_path();
9978     if (!path) {
9979         ret = -ENOMEM;
9980         goto free_qgroup;
9981     }
9982 
9983     ret = btrfs_replace_file_extents(inode, path, file_offset,
9984                      file_offset + len - 1, &extent_info,
9985                      &trans);
9986     btrfs_free_path(path);
9987     if (ret)
9988         goto free_qgroup;
9989     return trans;
9990 
9991 free_qgroup:
9992     /*
9993      * We have released qgroup data range at the beginning of the function,
9994      * and normally qgroup_released bytes will be freed when committing
9995      * transaction.
9996      * But if we error out early, we have to free what we have released
9997      * or we leak qgroup data reservation.
9998      */
9999     btrfs_qgroup_free_refroot(inode->root->fs_info,
10000             inode->root->root_key.objectid, qgroup_released,
10001             BTRFS_QGROUP_RSV_DATA);
10002     return ERR_PTR(ret);
10003 }
10004 
10005 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10006                        u64 start, u64 num_bytes, u64 min_size,
10007                        loff_t actual_len, u64 *alloc_hint,
10008                        struct btrfs_trans_handle *trans)
10009 {
10010     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10011     struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10012     struct extent_map *em;
10013     struct btrfs_root *root = BTRFS_I(inode)->root;
10014     struct btrfs_key ins;
10015     u64 cur_offset = start;
10016     u64 clear_offset = start;
10017     u64 i_size;
10018     u64 cur_bytes;
10019     u64 last_alloc = (u64)-1;
10020     int ret = 0;
10021     bool own_trans = true;
10022     u64 end = start + num_bytes - 1;
10023 
10024     if (trans)
10025         own_trans = false;
10026     while (num_bytes > 0) {
10027         cur_bytes = min_t(u64, num_bytes, SZ_256M);
10028         cur_bytes = max(cur_bytes, min_size);
10029         /*
10030          * If we are severely fragmented we could end up with really
10031          * small allocations, so if the allocator is returning small
10032          * chunks lets make its job easier by only searching for those
10033          * sized chunks.
10034          */
10035         cur_bytes = min(cur_bytes, last_alloc);
10036         ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10037                 min_size, 0, *alloc_hint, &ins, 1, 0);
10038         if (ret)
10039             break;
10040 
10041         /*
10042          * We've reserved this space, and thus converted it from
10043          * ->bytes_may_use to ->bytes_reserved.  Any error that happens
10044          * from here on out we will only need to clear our reservation
10045          * for the remaining unreserved area, so advance our
10046          * clear_offset by our extent size.
10047          */
10048         clear_offset += ins.offset;
10049 
10050         last_alloc = ins.offset;
10051         trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
10052                             &ins, cur_offset);
10053         /*
10054          * Now that we inserted the prealloc extent we can finally
10055          * decrement the number of reservations in the block group.
10056          * If we did it before, we could race with relocation and have
10057          * relocation miss the reserved extent, making it fail later.
10058          */
10059         btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10060         if (IS_ERR(trans)) {
10061             ret = PTR_ERR(trans);
10062             btrfs_free_reserved_extent(fs_info, ins.objectid,
10063                            ins.offset, 0);
10064             break;
10065         }
10066 
10067         btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10068                     cur_offset + ins.offset -1, 0);
10069 
10070         em = alloc_extent_map();
10071         if (!em) {
10072             btrfs_set_inode_full_sync(BTRFS_I(inode));
10073             goto next;
10074         }
10075 
10076         em->start = cur_offset;
10077         em->orig_start = cur_offset;
10078         em->len = ins.offset;
10079         em->block_start = ins.objectid;
10080         em->block_len = ins.offset;
10081         em->orig_block_len = ins.offset;
10082         em->ram_bytes = ins.offset;
10083         set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10084         em->generation = trans->transid;
10085 
10086         while (1) {
10087             write_lock(&em_tree->lock);
10088             ret = add_extent_mapping(em_tree, em, 1);
10089             write_unlock(&em_tree->lock);
10090             if (ret != -EEXIST)
10091                 break;
10092             btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10093                         cur_offset + ins.offset - 1,
10094                         0);
10095         }
10096         free_extent_map(em);
10097 next:
10098         num_bytes -= ins.offset;
10099         cur_offset += ins.offset;
10100         *alloc_hint = ins.objectid + ins.offset;
10101 
10102         inode_inc_iversion(inode);
10103         inode->i_ctime = current_time(inode);
10104         BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10105         if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10106             (actual_len > inode->i_size) &&
10107             (cur_offset > inode->i_size)) {
10108             if (cur_offset > actual_len)
10109                 i_size = actual_len;
10110             else
10111                 i_size = cur_offset;
10112             i_size_write(inode, i_size);
10113             btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10114         }
10115 
10116         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10117 
10118         if (ret) {
10119             btrfs_abort_transaction(trans, ret);
10120             if (own_trans)
10121                 btrfs_end_transaction(trans);
10122             break;
10123         }
10124 
10125         if (own_trans) {
10126             btrfs_end_transaction(trans);
10127             trans = NULL;
10128         }
10129     }
10130     if (clear_offset < end)
10131         btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10132             end - clear_offset + 1);
10133     return ret;
10134 }
10135 
10136 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10137                   u64 start, u64 num_bytes, u64 min_size,
10138                   loff_t actual_len, u64 *alloc_hint)
10139 {
10140     return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10141                        min_size, actual_len, alloc_hint,
10142                        NULL);
10143 }
10144 
10145 int btrfs_prealloc_file_range_trans(struct inode *inode,
10146                     struct btrfs_trans_handle *trans, int mode,
10147                     u64 start, u64 num_bytes, u64 min_size,
10148                     loff_t actual_len, u64 *alloc_hint)
10149 {
10150     return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10151                        min_size, actual_len, alloc_hint, trans);
10152 }
10153 
10154 static int btrfs_permission(struct user_namespace *mnt_userns,
10155                 struct inode *inode, int mask)
10156 {
10157     struct btrfs_root *root = BTRFS_I(inode)->root;
10158     umode_t mode = inode->i_mode;
10159 
10160     if (mask & MAY_WRITE &&
10161         (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10162         if (btrfs_root_readonly(root))
10163             return -EROFS;
10164         if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10165             return -EACCES;
10166     }
10167     return generic_permission(mnt_userns, inode, mask);
10168 }
10169 
10170 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10171              struct dentry *dentry, umode_t mode)
10172 {
10173     struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10174     struct btrfs_trans_handle *trans;
10175     struct btrfs_root *root = BTRFS_I(dir)->root;
10176     struct inode *inode;
10177     struct btrfs_new_inode_args new_inode_args = {
10178         .dir = dir,
10179         .dentry = dentry,
10180         .orphan = true,
10181     };
10182     unsigned int trans_num_items;
10183     int ret;
10184 
10185     inode = new_inode(dir->i_sb);
10186     if (!inode)
10187         return -ENOMEM;
10188     inode_init_owner(mnt_userns, inode, dir, mode);
10189     inode->i_fop = &btrfs_file_operations;
10190     inode->i_op = &btrfs_file_inode_operations;
10191     inode->i_mapping->a_ops = &btrfs_aops;
10192 
10193     new_inode_args.inode = inode;
10194     ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
10195     if (ret)
10196         goto out_inode;
10197 
10198     trans = btrfs_start_transaction(root, trans_num_items);
10199     if (IS_ERR(trans)) {
10200         ret = PTR_ERR(trans);
10201         goto out_new_inode_args;
10202     }
10203 
10204     ret = btrfs_create_new_inode(trans, &new_inode_args);
10205 
10206     /*
10207      * We set number of links to 0 in btrfs_create_new_inode(), and here we
10208      * set it to 1 because d_tmpfile() will issue a warning if the count is
10209      * 0, through:
10210      *
10211      *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10212      */
10213     set_nlink(inode, 1);
10214 
10215     if (!ret) {
10216         d_tmpfile(dentry, inode);
10217         unlock_new_inode(inode);
10218         mark_inode_dirty(inode);
10219     }
10220 
10221     btrfs_end_transaction(trans);
10222     btrfs_btree_balance_dirty(fs_info);
10223 out_new_inode_args:
10224     btrfs_new_inode_args_destroy(&new_inode_args);
10225 out_inode:
10226     if (ret)
10227         iput(inode);
10228     return ret;
10229 }
10230 
10231 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
10232 {
10233     struct btrfs_fs_info *fs_info = inode->root->fs_info;
10234     unsigned long index = start >> PAGE_SHIFT;
10235     unsigned long end_index = end >> PAGE_SHIFT;
10236     struct page *page;
10237     u32 len;
10238 
10239     ASSERT(end + 1 - start <= U32_MAX);
10240     len = end + 1 - start;
10241     while (index <= end_index) {
10242         page = find_get_page(inode->vfs_inode.i_mapping, index);
10243         ASSERT(page); /* Pages should be in the extent_io_tree */
10244 
10245         btrfs_page_set_writeback(fs_info, page, start, len);
10246         put_page(page);
10247         index++;
10248     }
10249 }
10250 
10251 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
10252                          int compress_type)
10253 {
10254     switch (compress_type) {
10255     case BTRFS_COMPRESS_NONE:
10256         return BTRFS_ENCODED_IO_COMPRESSION_NONE;
10257     case BTRFS_COMPRESS_ZLIB:
10258         return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
10259     case BTRFS_COMPRESS_LZO:
10260         /*
10261          * The LZO format depends on the sector size. 64K is the maximum
10262          * sector size that we support.
10263          */
10264         if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
10265             return -EINVAL;
10266         return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
10267                (fs_info->sectorsize_bits - 12);
10268     case BTRFS_COMPRESS_ZSTD:
10269         return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
10270     default:
10271         return -EUCLEAN;
10272     }
10273 }
10274 
10275 static ssize_t btrfs_encoded_read_inline(
10276                 struct kiocb *iocb,
10277                 struct iov_iter *iter, u64 start,
10278                 u64 lockend,
10279                 struct extent_state **cached_state,
10280                 u64 extent_start, size_t count,
10281                 struct btrfs_ioctl_encoded_io_args *encoded,
10282                 bool *unlocked)
10283 {
10284     struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10285     struct btrfs_root *root = inode->root;
10286     struct btrfs_fs_info *fs_info = root->fs_info;
10287     struct extent_io_tree *io_tree = &inode->io_tree;
10288     struct btrfs_path *path;
10289     struct extent_buffer *leaf;
10290     struct btrfs_file_extent_item *item;
10291     u64 ram_bytes;
10292     unsigned long ptr;
10293     void *tmp;
10294     ssize_t ret;
10295 
10296     path = btrfs_alloc_path();
10297     if (!path) {
10298         ret = -ENOMEM;
10299         goto out;
10300     }
10301     ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
10302                        extent_start, 0);
10303     if (ret) {
10304         if (ret > 0) {
10305             /* The extent item disappeared? */
10306             ret = -EIO;
10307         }
10308         goto out;
10309     }
10310     leaf = path->nodes[0];
10311     item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10312 
10313     ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
10314     ptr = btrfs_file_extent_inline_start(item);
10315 
10316     encoded->len = min_t(u64, extent_start + ram_bytes,
10317                  inode->vfs_inode.i_size) - iocb->ki_pos;
10318     ret = btrfs_encoded_io_compression_from_extent(fs_info,
10319                  btrfs_file_extent_compression(leaf, item));
10320     if (ret < 0)
10321         goto out;
10322     encoded->compression = ret;
10323     if (encoded->compression) {
10324         size_t inline_size;
10325 
10326         inline_size = btrfs_file_extent_inline_item_len(leaf,
10327                                 path->slots[0]);
10328         if (inline_size > count) {
10329             ret = -ENOBUFS;
10330             goto out;
10331         }
10332         count = inline_size;
10333         encoded->unencoded_len = ram_bytes;
10334         encoded->unencoded_offset = iocb->ki_pos - extent_start;
10335     } else {
10336         count = min_t(u64, count, encoded->len);
10337         encoded->len = count;
10338         encoded->unencoded_len = count;
10339         ptr += iocb->ki_pos - extent_start;
10340     }
10341 
10342     tmp = kmalloc(count, GFP_NOFS);
10343     if (!tmp) {
10344         ret = -ENOMEM;
10345         goto out;
10346     }
10347     read_extent_buffer(leaf, tmp, ptr, count);
10348     btrfs_release_path(path);
10349     unlock_extent_cached(io_tree, start, lockend, cached_state);
10350     btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10351     *unlocked = true;
10352 
10353     ret = copy_to_iter(tmp, count, iter);
10354     if (ret != count)
10355         ret = -EFAULT;
10356     kfree(tmp);
10357 out:
10358     btrfs_free_path(path);
10359     return ret;
10360 }
10361 
10362 struct btrfs_encoded_read_private {
10363     struct btrfs_inode *inode;
10364     u64 file_offset;
10365     wait_queue_head_t wait;
10366     atomic_t pending;
10367     blk_status_t status;
10368     bool skip_csum;
10369 };
10370 
10371 static blk_status_t submit_encoded_read_bio(struct btrfs_inode *inode,
10372                         struct bio *bio, int mirror_num)
10373 {
10374     struct btrfs_encoded_read_private *priv = bio->bi_private;
10375     struct btrfs_fs_info *fs_info = inode->root->fs_info;
10376     blk_status_t ret;
10377 
10378     if (!priv->skip_csum) {
10379         ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL);
10380         if (ret)
10381             return ret;
10382     }
10383 
10384     atomic_inc(&priv->pending);
10385     btrfs_submit_bio(fs_info, bio, mirror_num);
10386     return BLK_STS_OK;
10387 }
10388 
10389 static blk_status_t btrfs_encoded_read_verify_csum(struct btrfs_bio *bbio)
10390 {
10391     const bool uptodate = (bbio->bio.bi_status == BLK_STS_OK);
10392     struct btrfs_encoded_read_private *priv = bbio->bio.bi_private;
10393     struct btrfs_inode *inode = priv->inode;
10394     struct btrfs_fs_info *fs_info = inode->root->fs_info;
10395     u32 sectorsize = fs_info->sectorsize;
10396     struct bio_vec *bvec;
10397     struct bvec_iter_all iter_all;
10398     u32 bio_offset = 0;
10399 
10400     if (priv->skip_csum || !uptodate)
10401         return bbio->bio.bi_status;
10402 
10403     bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
10404         unsigned int i, nr_sectors, pgoff;
10405 
10406         nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
10407         pgoff = bvec->bv_offset;
10408         for (i = 0; i < nr_sectors; i++) {
10409             ASSERT(pgoff < PAGE_SIZE);
10410             if (btrfs_check_data_csum(&inode->vfs_inode, bbio, bio_offset,
10411                         bvec->bv_page, pgoff))
10412                 return BLK_STS_IOERR;
10413             bio_offset += sectorsize;
10414             pgoff += sectorsize;
10415         }
10416     }
10417     return BLK_STS_OK;
10418 }
10419 
10420 static void btrfs_encoded_read_endio(struct bio *bio)
10421 {
10422     struct btrfs_encoded_read_private *priv = bio->bi_private;
10423     struct btrfs_bio *bbio = btrfs_bio(bio);
10424     blk_status_t status;
10425 
10426     status = btrfs_encoded_read_verify_csum(bbio);
10427     if (status) {
10428         /*
10429          * The memory barrier implied by the atomic_dec_return() here
10430          * pairs with the memory barrier implied by the
10431          * atomic_dec_return() or io_wait_event() in
10432          * btrfs_encoded_read_regular_fill_pages() to ensure that this
10433          * write is observed before the load of status in
10434          * btrfs_encoded_read_regular_fill_pages().
10435          */
10436         WRITE_ONCE(priv->status, status);
10437     }
10438     if (!atomic_dec_return(&priv->pending))
10439         wake_up(&priv->wait);
10440     btrfs_bio_free_csum(bbio);
10441     bio_put(bio);
10442 }
10443 
10444 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
10445                       u64 file_offset, u64 disk_bytenr,
10446                       u64 disk_io_size, struct page **pages)
10447 {
10448     struct btrfs_fs_info *fs_info = inode->root->fs_info;
10449     struct btrfs_encoded_read_private priv = {
10450         .inode = inode,
10451         .file_offset = file_offset,
10452         .pending = ATOMIC_INIT(1),
10453         .skip_csum = (inode->flags & BTRFS_INODE_NODATASUM),
10454     };
10455     unsigned long i = 0;
10456     u64 cur = 0;
10457     int ret;
10458 
10459     init_waitqueue_head(&priv.wait);
10460     /*
10461      * Submit bios for the extent, splitting due to bio or stripe limits as
10462      * necessary.
10463      */
10464     while (cur < disk_io_size) {
10465         struct extent_map *em;
10466         struct btrfs_io_geometry geom;
10467         struct bio *bio = NULL;
10468         u64 remaining;
10469 
10470         em = btrfs_get_chunk_map(fs_info, disk_bytenr + cur,
10471                      disk_io_size - cur);
10472         if (IS_ERR(em)) {
10473             ret = PTR_ERR(em);
10474         } else {
10475             ret = btrfs_get_io_geometry(fs_info, em, BTRFS_MAP_READ,
10476                             disk_bytenr + cur, &geom);
10477             free_extent_map(em);
10478         }
10479         if (ret) {
10480             WRITE_ONCE(priv.status, errno_to_blk_status(ret));
10481             break;
10482         }
10483         remaining = min(geom.len, disk_io_size - cur);
10484         while (bio || remaining) {
10485             size_t bytes = min_t(u64, remaining, PAGE_SIZE);
10486 
10487             if (!bio) {
10488                 bio = btrfs_bio_alloc(BIO_MAX_VECS);
10489                 bio->bi_iter.bi_sector =
10490                     (disk_bytenr + cur) >> SECTOR_SHIFT;
10491                 bio->bi_end_io = btrfs_encoded_read_endio;
10492                 bio->bi_private = &priv;
10493                 bio->bi_opf = REQ_OP_READ;
10494             }
10495 
10496             if (!bytes ||
10497                 bio_add_page(bio, pages[i], bytes, 0) < bytes) {
10498                 blk_status_t status;
10499 
10500                 status = submit_encoded_read_bio(inode, bio, 0);
10501                 if (status) {
10502                     WRITE_ONCE(priv.status, status);
10503                     bio_put(bio);
10504                     goto out;
10505                 }
10506                 bio = NULL;
10507                 continue;
10508             }
10509 
10510             i++;
10511             cur += bytes;
10512             remaining -= bytes;
10513         }
10514     }
10515 
10516 out:
10517     if (atomic_dec_return(&priv.pending))
10518         io_wait_event(priv.wait, !atomic_read(&priv.pending));
10519     /* See btrfs_encoded_read_endio() for ordering. */
10520     return blk_status_to_errno(READ_ONCE(priv.status));
10521 }
10522 
10523 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10524                       struct iov_iter *iter,
10525                       u64 start, u64 lockend,
10526                       struct extent_state **cached_state,
10527                       u64 disk_bytenr, u64 disk_io_size,
10528                       size_t count, bool compressed,
10529                       bool *unlocked)
10530 {
10531     struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10532     struct extent_io_tree *io_tree = &inode->io_tree;
10533     struct page **pages;
10534     unsigned long nr_pages, i;
10535     u64 cur;
10536     size_t page_offset;
10537     ssize_t ret;
10538 
10539     nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10540     pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10541     if (!pages)
10542         return -ENOMEM;
10543     ret = btrfs_alloc_page_array(nr_pages, pages);
10544     if (ret) {
10545         ret = -ENOMEM;
10546         goto out;
10547         }
10548 
10549     ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10550                             disk_io_size, pages);
10551     if (ret)
10552         goto out;
10553 
10554     unlock_extent_cached(io_tree, start, lockend, cached_state);
10555     btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10556     *unlocked = true;
10557 
10558     if (compressed) {
10559         i = 0;
10560         page_offset = 0;
10561     } else {
10562         i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10563         page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10564     }
10565     cur = 0;
10566     while (cur < count) {
10567         size_t bytes = min_t(size_t, count - cur,
10568                      PAGE_SIZE - page_offset);
10569 
10570         if (copy_page_to_iter(pages[i], page_offset, bytes,
10571                       iter) != bytes) {
10572             ret = -EFAULT;
10573             goto out;
10574         }
10575         i++;
10576         cur += bytes;
10577         page_offset = 0;
10578     }
10579     ret = count;
10580 out:
10581     for (i = 0; i < nr_pages; i++) {
10582         if (pages[i])
10583             __free_page(pages[i]);
10584     }
10585     kfree(pages);
10586     return ret;
10587 }
10588 
10589 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10590                struct btrfs_ioctl_encoded_io_args *encoded)
10591 {
10592     struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10593     struct btrfs_fs_info *fs_info = inode->root->fs_info;
10594     struct extent_io_tree *io_tree = &inode->io_tree;
10595     ssize_t ret;
10596     size_t count = iov_iter_count(iter);
10597     u64 start, lockend, disk_bytenr, disk_io_size;
10598     struct extent_state *cached_state = NULL;
10599     struct extent_map *em;
10600     bool unlocked = false;
10601 
10602     file_accessed(iocb->ki_filp);
10603 
10604     btrfs_inode_lock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10605 
10606     if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10607         btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10608         return 0;
10609     }
10610     start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10611     /*
10612      * We don't know how long the extent containing iocb->ki_pos is, but if
10613      * it's compressed we know that it won't be longer than this.
10614      */
10615     lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10616 
10617     for (;;) {
10618         struct btrfs_ordered_extent *ordered;
10619 
10620         ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10621                            lockend - start + 1);
10622         if (ret)
10623             goto out_unlock_inode;
10624         lock_extent_bits(io_tree, start, lockend, &cached_state);
10625         ordered = btrfs_lookup_ordered_range(inode, start,
10626                              lockend - start + 1);
10627         if (!ordered)
10628             break;
10629         btrfs_put_ordered_extent(ordered);
10630         unlock_extent_cached(io_tree, start, lockend, &cached_state);
10631         cond_resched();
10632     }
10633 
10634     em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10635     if (IS_ERR(em)) {
10636         ret = PTR_ERR(em);
10637         goto out_unlock_extent;
10638     }
10639 
10640     if (em->block_start == EXTENT_MAP_INLINE) {
10641         u64 extent_start = em->start;
10642 
10643         /*
10644          * For inline extents we get everything we need out of the
10645          * extent item.
10646          */
10647         free_extent_map(em);
10648         em = NULL;
10649         ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10650                         &cached_state, extent_start,
10651                         count, encoded, &unlocked);
10652         goto out;
10653     }
10654 
10655     /*
10656      * We only want to return up to EOF even if the extent extends beyond
10657      * that.
10658      */
10659     encoded->len = min_t(u64, extent_map_end(em),
10660                  inode->vfs_inode.i_size) - iocb->ki_pos;
10661     if (em->block_start == EXTENT_MAP_HOLE ||
10662         test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10663         disk_bytenr = EXTENT_MAP_HOLE;
10664         count = min_t(u64, count, encoded->len);
10665         encoded->len = count;
10666         encoded->unencoded_len = count;
10667     } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10668         disk_bytenr = em->block_start;
10669         /*
10670          * Bail if the buffer isn't large enough to return the whole
10671          * compressed extent.
10672          */
10673         if (em->block_len > count) {
10674             ret = -ENOBUFS;
10675             goto out_em;
10676         }
10677         disk_io_size = em->block_len;
10678         count = em->block_len;
10679         encoded->unencoded_len = em->ram_bytes;
10680         encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10681         ret = btrfs_encoded_io_compression_from_extent(fs_info,
10682                                  em->compress_type);
10683         if (ret < 0)
10684             goto out_em;
10685         encoded->compression = ret;
10686     } else {
10687         disk_bytenr = em->block_start + (start - em->start);
10688         if (encoded->len > count)
10689             encoded->len = count;
10690         /*
10691          * Don't read beyond what we locked. This also limits the page
10692          * allocations that we'll do.
10693          */
10694         disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10695         count = start + disk_io_size - iocb->ki_pos;
10696         encoded->len = count;
10697         encoded->unencoded_len = count;
10698         disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10699     }
10700     free_extent_map(em);
10701     em = NULL;
10702 
10703     if (disk_bytenr == EXTENT_MAP_HOLE) {
10704         unlock_extent_cached(io_tree, start, lockend, &cached_state);
10705         btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10706         unlocked = true;
10707         ret = iov_iter_zero(count, iter);
10708         if (ret != count)
10709             ret = -EFAULT;
10710     } else {
10711         ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10712                          &cached_state, disk_bytenr,
10713                          disk_io_size, count,
10714                          encoded->compression,
10715                          &unlocked);
10716     }
10717 
10718 out:
10719     if (ret >= 0)
10720         iocb->ki_pos += encoded->len;
10721 out_em:
10722     free_extent_map(em);
10723 out_unlock_extent:
10724     if (!unlocked)
10725         unlock_extent_cached(io_tree, start, lockend, &cached_state);
10726 out_unlock_inode:
10727     if (!unlocked)
10728         btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10729     return ret;
10730 }
10731 
10732 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10733                    const struct btrfs_ioctl_encoded_io_args *encoded)
10734 {
10735     struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10736     struct btrfs_root *root = inode->root;
10737     struct btrfs_fs_info *fs_info = root->fs_info;
10738     struct extent_io_tree *io_tree = &inode->io_tree;
10739     struct extent_changeset *data_reserved = NULL;
10740     struct extent_state *cached_state = NULL;
10741     int compression;
10742     size_t orig_count;
10743     u64 start, end;
10744     u64 num_bytes, ram_bytes, disk_num_bytes;
10745     unsigned long nr_pages, i;
10746     struct page **pages;
10747     struct btrfs_key ins;
10748     bool extent_reserved = false;
10749     struct extent_map *em;
10750     ssize_t ret;
10751 
10752     switch (encoded->compression) {
10753     case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10754         compression = BTRFS_COMPRESS_ZLIB;
10755         break;
10756     case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10757         compression = BTRFS_COMPRESS_ZSTD;
10758         break;
10759     case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10760     case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10761     case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10762     case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10763     case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10764         /* The sector size must match for LZO. */
10765         if (encoded->compression -
10766             BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10767             fs_info->sectorsize_bits)
10768             return -EINVAL;
10769         compression = BTRFS_COMPRESS_LZO;
10770         break;
10771     default:
10772         return -EINVAL;
10773     }
10774     if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10775         return -EINVAL;
10776 
10777     orig_count = iov_iter_count(from);
10778 
10779     /* The extent size must be sane. */
10780     if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10781         orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10782         return -EINVAL;
10783 
10784     /*
10785      * The compressed data must be smaller than the decompressed data.
10786      *
10787      * It's of course possible for data to compress to larger or the same
10788      * size, but the buffered I/O path falls back to no compression for such
10789      * data, and we don't want to break any assumptions by creating these
10790      * extents.
10791      *
10792      * Note that this is less strict than the current check we have that the
10793      * compressed data must be at least one sector smaller than the
10794      * decompressed data. We only want to enforce the weaker requirement
10795      * from old kernels that it is at least one byte smaller.
10796      */
10797     if (orig_count >= encoded->unencoded_len)
10798         return -EINVAL;
10799 
10800     /* The extent must start on a sector boundary. */
10801     start = iocb->ki_pos;
10802     if (!IS_ALIGNED(start, fs_info->sectorsize))
10803         return -EINVAL;
10804 
10805     /*
10806      * The extent must end on a sector boundary. However, we allow a write
10807      * which ends at or extends i_size to have an unaligned length; we round
10808      * up the extent size and set i_size to the unaligned end.
10809      */
10810     if (start + encoded->len < inode->vfs_inode.i_size &&
10811         !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10812         return -EINVAL;
10813 
10814     /* Finally, the offset in the unencoded data must be sector-aligned. */
10815     if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10816         return -EINVAL;
10817 
10818     num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10819     ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10820     end = start + num_bytes - 1;
10821 
10822     /*
10823      * If the extent cannot be inline, the compressed data on disk must be
10824      * sector-aligned. For convenience, we extend it with zeroes if it
10825      * isn't.
10826      */
10827     disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10828     nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10829     pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10830     if (!pages)
10831         return -ENOMEM;
10832     for (i = 0; i < nr_pages; i++) {
10833         size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10834         char *kaddr;
10835 
10836         pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10837         if (!pages[i]) {
10838             ret = -ENOMEM;
10839             goto out_pages;
10840         }
10841         kaddr = kmap_local_page(pages[i]);
10842         if (copy_from_iter(kaddr, bytes, from) != bytes) {
10843             kunmap_local(kaddr);
10844             ret = -EFAULT;
10845             goto out_pages;
10846         }
10847         if (bytes < PAGE_SIZE)
10848             memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10849         kunmap_local(kaddr);
10850     }
10851 
10852     for (;;) {
10853         struct btrfs_ordered_extent *ordered;
10854 
10855         ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10856         if (ret)
10857             goto out_pages;
10858         ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10859                             start >> PAGE_SHIFT,
10860                             end >> PAGE_SHIFT);
10861         if (ret)
10862             goto out_pages;
10863         lock_extent_bits(io_tree, start, end, &cached_state);
10864         ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10865         if (!ordered &&
10866             !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10867             break;
10868         if (ordered)
10869             btrfs_put_ordered_extent(ordered);
10870         unlock_extent_cached(io_tree, start, end, &cached_state);
10871         cond_resched();
10872     }
10873 
10874     /*
10875      * We don't use the higher-level delalloc space functions because our
10876      * num_bytes and disk_num_bytes are different.
10877      */
10878     ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10879     if (ret)
10880         goto out_unlock;
10881     ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10882     if (ret)
10883         goto out_free_data_space;
10884     ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10885                           false);
10886     if (ret)
10887         goto out_qgroup_free_data;
10888 
10889     /* Try an inline extent first. */
10890     if (start == 0 && encoded->unencoded_len == encoded->len &&
10891         encoded->unencoded_offset == 0) {
10892         ret = cow_file_range_inline(inode, encoded->len, orig_count,
10893                         compression, pages, true);
10894         if (ret <= 0) {
10895             if (ret == 0)
10896                 ret = orig_count;
10897             goto out_delalloc_release;
10898         }
10899     }
10900 
10901     ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10902                    disk_num_bytes, 0, 0, &ins, 1, 1);
10903     if (ret)
10904         goto out_delalloc_release;
10905     extent_reserved = true;
10906 
10907     em = create_io_em(inode, start, num_bytes,
10908               start - encoded->unencoded_offset, ins.objectid,
10909               ins.offset, ins.offset, ram_bytes, compression,
10910               BTRFS_ORDERED_COMPRESSED);
10911     if (IS_ERR(em)) {
10912         ret = PTR_ERR(em);
10913         goto out_free_reserved;
10914     }
10915     free_extent_map(em);
10916 
10917     ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes,
10918                        ins.objectid, ins.offset,
10919                        encoded->unencoded_offset,
10920                        (1 << BTRFS_ORDERED_ENCODED) |
10921                        (1 << BTRFS_ORDERED_COMPRESSED),
10922                        compression);
10923     if (ret) {
10924         btrfs_drop_extent_cache(inode, start, end, 0);
10925         goto out_free_reserved;
10926     }
10927     btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10928 
10929     if (start + encoded->len > inode->vfs_inode.i_size)
10930         i_size_write(&inode->vfs_inode, start + encoded->len);
10931 
10932     unlock_extent_cached(io_tree, start, end, &cached_state);
10933 
10934     btrfs_delalloc_release_extents(inode, num_bytes);
10935 
10936     if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid,
10937                       ins.offset, pages, nr_pages, 0, NULL,
10938                       false)) {
10939         btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0);
10940         ret = -EIO;
10941         goto out_pages;
10942     }
10943     ret = orig_count;
10944     goto out;
10945 
10946 out_free_reserved:
10947     btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10948     btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10949 out_delalloc_release:
10950     btrfs_delalloc_release_extents(inode, num_bytes);
10951     btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10952 out_qgroup_free_data:
10953     if (ret < 0)
10954         btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
10955 out_free_data_space:
10956     /*
10957      * If btrfs_reserve_extent() succeeded, then we already decremented
10958      * bytes_may_use.
10959      */
10960     if (!extent_reserved)
10961         btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10962 out_unlock:
10963     unlock_extent_cached(io_tree, start, end, &cached_state);
10964 out_pages:
10965     for (i = 0; i < nr_pages; i++) {
10966         if (pages[i])
10967             __free_page(pages[i]);
10968     }
10969     kvfree(pages);
10970 out:
10971     if (ret >= 0)
10972         iocb->ki_pos += encoded->len;
10973     return ret;
10974 }
10975 
10976 #ifdef CONFIG_SWAP
10977 /*
10978  * Add an entry indicating a block group or device which is pinned by a
10979  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10980  * negative errno on failure.
10981  */
10982 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10983                   bool is_block_group)
10984 {
10985     struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10986     struct btrfs_swapfile_pin *sp, *entry;
10987     struct rb_node **p;
10988     struct rb_node *parent = NULL;
10989 
10990     sp = kmalloc(sizeof(*sp), GFP_NOFS);
10991     if (!sp)
10992         return -ENOMEM;
10993     sp->ptr = ptr;
10994     sp->inode = inode;
10995     sp->is_block_group = is_block_group;
10996     sp->bg_extent_count = 1;
10997 
10998     spin_lock(&fs_info->swapfile_pins_lock);
10999     p = &fs_info->swapfile_pins.rb_node;
11000     while (*p) {
11001         parent = *p;
11002         entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
11003         if (sp->ptr < entry->ptr ||
11004             (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
11005             p = &(*p)->rb_left;
11006         } else if (sp->ptr > entry->ptr ||
11007                (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
11008             p = &(*p)->rb_right;
11009         } else {
11010             if (is_block_group)
11011                 entry->bg_extent_count++;
11012             spin_unlock(&fs_info->swapfile_pins_lock);
11013             kfree(sp);
11014             return 1;
11015         }
11016     }
11017     rb_link_node(&sp->node, parent, p);
11018     rb_insert_color(&sp->node, &fs_info->swapfile_pins);
11019     spin_unlock(&fs_info->swapfile_pins_lock);
11020     return 0;
11021 }
11022 
11023 /* Free all of the entries pinned by this swapfile. */
11024 static void btrfs_free_swapfile_pins(struct inode *inode)
11025 {
11026     struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
11027     struct btrfs_swapfile_pin *sp;
11028     struct rb_node *node, *next;
11029 
11030     spin_lock(&fs_info->swapfile_pins_lock);
11031     node = rb_first(&fs_info->swapfile_pins);
11032     while (node) {
11033         next = rb_next(node);
11034         sp = rb_entry(node, struct btrfs_swapfile_pin, node);
11035         if (sp->inode == inode) {
11036             rb_erase(&sp->node, &fs_info->swapfile_pins);
11037             if (sp->is_block_group) {
11038                 btrfs_dec_block_group_swap_extents(sp->ptr,
11039                                sp->bg_extent_count);
11040                 btrfs_put_block_group(sp->ptr);
11041             }
11042             kfree(sp);
11043         }
11044         node = next;
11045     }
11046     spin_unlock(&fs_info->swapfile_pins_lock);
11047 }
11048 
11049 struct btrfs_swap_info {
11050     u64 start;
11051     u64 block_start;
11052     u64 block_len;
11053     u64 lowest_ppage;
11054     u64 highest_ppage;
11055     unsigned long nr_pages;
11056     int nr_extents;
11057 };
11058 
11059 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
11060                  struct btrfs_swap_info *bsi)
11061 {
11062     unsigned long nr_pages;
11063     unsigned long max_pages;
11064     u64 first_ppage, first_ppage_reported, next_ppage;
11065     int ret;
11066 
11067     /*
11068      * Our swapfile may have had its size extended after the swap header was
11069      * written. In that case activating the swapfile should not go beyond
11070      * the max size set in the swap header.
11071      */
11072     if (bsi->nr_pages >= sis->max)
11073         return 0;
11074 
11075     max_pages = sis->max - bsi->nr_pages;
11076     first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
11077     next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
11078                 PAGE_SIZE) >> PAGE_SHIFT;
11079 
11080     if (first_ppage >= next_ppage)
11081         return 0;
11082     nr_pages = next_ppage - first_ppage;
11083     nr_pages = min(nr_pages, max_pages);
11084 
11085     first_ppage_reported = first_ppage;
11086     if (bsi->start == 0)
11087         first_ppage_reported++;
11088     if (bsi->lowest_ppage > first_ppage_reported)
11089         bsi->lowest_ppage = first_ppage_reported;
11090     if (bsi->highest_ppage < (next_ppage - 1))
11091         bsi->highest_ppage = next_ppage - 1;
11092 
11093     ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
11094     if (ret < 0)
11095         return ret;
11096     bsi->nr_extents += ret;
11097     bsi->nr_pages += nr_pages;
11098     return 0;
11099 }
11100 
11101 static void btrfs_swap_deactivate(struct file *file)
11102 {
11103     struct inode *inode = file_inode(file);
11104 
11105     btrfs_free_swapfile_pins(inode);
11106     atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
11107 }
11108 
11109 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11110                    sector_t *span)
11111 {
11112     struct inode *inode = file_inode(file);
11113     struct btrfs_root *root = BTRFS_I(inode)->root;
11114     struct btrfs_fs_info *fs_info = root->fs_info;
11115     struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
11116     struct extent_state *cached_state = NULL;
11117     struct extent_map *em = NULL;
11118     struct btrfs_device *device = NULL;
11119     struct btrfs_swap_info bsi = {
11120         .lowest_ppage = (sector_t)-1ULL,
11121     };
11122     int ret = 0;
11123     u64 isize;
11124     u64 start;
11125 
11126     /*
11127      * If the swap file was just created, make sure delalloc is done. If the
11128      * file changes again after this, the user is doing something stupid and
11129      * we don't really care.
11130      */
11131     ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
11132     if (ret)
11133         return ret;
11134 
11135     /*
11136      * The inode is locked, so these flags won't change after we check them.
11137      */
11138     if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
11139         btrfs_warn(fs_info, "swapfile must not be compressed");
11140         return -EINVAL;
11141     }
11142     if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
11143         btrfs_warn(fs_info, "swapfile must not be copy-on-write");
11144         return -EINVAL;
11145     }
11146     if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
11147         btrfs_warn(fs_info, "swapfile must not be checksummed");
11148         return -EINVAL;
11149     }
11150 
11151     /*
11152      * Balance or device remove/replace/resize can move stuff around from
11153      * under us. The exclop protection makes sure they aren't running/won't
11154      * run concurrently while we are mapping the swap extents, and
11155      * fs_info->swapfile_pins prevents them from running while the swap
11156      * file is active and moving the extents. Note that this also prevents
11157      * a concurrent device add which isn't actually necessary, but it's not
11158      * really worth the trouble to allow it.
11159      */
11160     if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
11161         btrfs_warn(fs_info,
11162        "cannot activate swapfile while exclusive operation is running");
11163         return -EBUSY;
11164     }
11165 
11166     /*
11167      * Prevent snapshot creation while we are activating the swap file.
11168      * We do not want to race with snapshot creation. If snapshot creation
11169      * already started before we bumped nr_swapfiles from 0 to 1 and
11170      * completes before the first write into the swap file after it is
11171      * activated, than that write would fallback to COW.
11172      */
11173     if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
11174         btrfs_exclop_finish(fs_info);
11175         btrfs_warn(fs_info,
11176        "cannot activate swapfile because snapshot creation is in progress");
11177         return -EINVAL;
11178     }
11179     /*
11180      * Snapshots can create extents which require COW even if NODATACOW is
11181      * set. We use this counter to prevent snapshots. We must increment it
11182      * before walking the extents because we don't want a concurrent
11183      * snapshot to run after we've already checked the extents.
11184      *
11185      * It is possible that subvolume is marked for deletion but still not
11186      * removed yet. To prevent this race, we check the root status before
11187      * activating the swapfile.
11188      */
11189     spin_lock(&root->root_item_lock);
11190     if (btrfs_root_dead(root)) {
11191         spin_unlock(&root->root_item_lock);
11192 
11193         btrfs_exclop_finish(fs_info);
11194         btrfs_warn(fs_info,
11195         "cannot activate swapfile because subvolume %llu is being deleted",
11196             root->root_key.objectid);
11197         return -EPERM;
11198     }
11199     atomic_inc(&root->nr_swapfiles);
11200     spin_unlock(&root->root_item_lock);
11201 
11202     isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
11203 
11204     lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
11205     start = 0;
11206     while (start < isize) {
11207         u64 logical_block_start, physical_block_start;
11208         struct btrfs_block_group *bg;
11209         u64 len = isize - start;
11210 
11211         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
11212         if (IS_ERR(em)) {
11213             ret = PTR_ERR(em);
11214             goto out;
11215         }
11216 
11217         if (em->block_start == EXTENT_MAP_HOLE) {
11218             btrfs_warn(fs_info, "swapfile must not have holes");
11219             ret = -EINVAL;
11220             goto out;
11221         }
11222         if (em->block_start == EXTENT_MAP_INLINE) {
11223             /*
11224              * It's unlikely we'll ever actually find ourselves
11225              * here, as a file small enough to fit inline won't be
11226              * big enough to store more than the swap header, but in
11227              * case something changes in the future, let's catch it
11228              * here rather than later.
11229              */
11230             btrfs_warn(fs_info, "swapfile must not be inline");
11231             ret = -EINVAL;
11232             goto out;
11233         }
11234         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
11235             btrfs_warn(fs_info, "swapfile must not be compressed");
11236             ret = -EINVAL;
11237             goto out;
11238         }
11239 
11240         logical_block_start = em->block_start + (start - em->start);
11241         len = min(len, em->len - (start - em->start));
11242         free_extent_map(em);
11243         em = NULL;
11244 
11245         ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
11246         if (ret < 0) {
11247             goto out;
11248         } else if (ret) {
11249             ret = 0;
11250         } else {
11251             btrfs_warn(fs_info,
11252                    "swapfile must not be copy-on-write");
11253             ret = -EINVAL;
11254             goto out;
11255         }
11256 
11257         em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
11258         if (IS_ERR(em)) {
11259             ret = PTR_ERR(em);
11260             goto out;
11261         }
11262 
11263         if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
11264             btrfs_warn(fs_info,
11265                    "swapfile must have single data profile");
11266             ret = -EINVAL;
11267             goto out;
11268         }
11269 
11270         if (device == NULL) {
11271             device = em->map_lookup->stripes[0].dev;
11272             ret = btrfs_add_swapfile_pin(inode, device, false);
11273             if (ret == 1)
11274                 ret = 0;
11275             else if (ret)
11276                 goto out;
11277         } else if (device != em->map_lookup->stripes[0].dev) {
11278             btrfs_warn(fs_info, "swapfile must be on one device");
11279             ret = -EINVAL;
11280             goto out;
11281         }
11282 
11283         physical_block_start = (em->map_lookup->stripes[0].physical +
11284                     (logical_block_start - em->start));
11285         len = min(len, em->len - (logical_block_start - em->start));
11286         free_extent_map(em);
11287         em = NULL;
11288 
11289         bg = btrfs_lookup_block_group(fs_info, logical_block_start);
11290         if (!bg) {
11291             btrfs_warn(fs_info,
11292                "could not find block group containing swapfile");
11293             ret = -EINVAL;
11294             goto out;
11295         }
11296 
11297         if (!btrfs_inc_block_group_swap_extents(bg)) {
11298             btrfs_warn(fs_info,
11299                "block group for swapfile at %llu is read-only%s",
11300                bg->start,
11301                atomic_read(&fs_info->scrubs_running) ?
11302                        " (scrub running)" : "");
11303             btrfs_put_block_group(bg);
11304             ret = -EINVAL;
11305             goto out;
11306         }
11307 
11308         ret = btrfs_add_swapfile_pin(inode, bg, true);
11309         if (ret) {
11310             btrfs_put_block_group(bg);
11311             if (ret == 1)
11312                 ret = 0;
11313             else
11314                 goto out;
11315         }
11316 
11317         if (bsi.block_len &&
11318             bsi.block_start + bsi.block_len == physical_block_start) {
11319             bsi.block_len += len;
11320         } else {
11321             if (bsi.block_len) {
11322                 ret = btrfs_add_swap_extent(sis, &bsi);
11323                 if (ret)
11324                     goto out;
11325             }
11326             bsi.start = start;
11327             bsi.block_start = physical_block_start;
11328             bsi.block_len = len;
11329         }
11330 
11331         start += len;
11332     }
11333 
11334     if (bsi.block_len)
11335         ret = btrfs_add_swap_extent(sis, &bsi);
11336 
11337 out:
11338     if (!IS_ERR_OR_NULL(em))
11339         free_extent_map(em);
11340 
11341     unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
11342 
11343     if (ret)
11344         btrfs_swap_deactivate(file);
11345 
11346     btrfs_drew_write_unlock(&root->snapshot_lock);
11347 
11348     btrfs_exclop_finish(fs_info);
11349 
11350     if (ret)
11351         return ret;
11352 
11353     if (device)
11354         sis->bdev = device->bdev;
11355     *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
11356     sis->max = bsi.nr_pages;
11357     sis->pages = bsi.nr_pages - 1;
11358     sis->highest_bit = bsi.nr_pages - 1;
11359     return bsi.nr_extents;
11360 }
11361 #else
11362 static void btrfs_swap_deactivate(struct file *file)
11363 {
11364 }
11365 
11366 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11367                    sector_t *span)
11368 {
11369     return -EOPNOTSUPP;
11370 }
11371 #endif
11372 
11373 /*
11374  * Update the number of bytes used in the VFS' inode. When we replace extents in
11375  * a range (clone, dedupe, fallocate's zero range), we must update the number of
11376  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
11377  * always get a correct value.
11378  */
11379 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
11380                   const u64 add_bytes,
11381                   const u64 del_bytes)
11382 {
11383     if (add_bytes == del_bytes)
11384         return;
11385 
11386     spin_lock(&inode->lock);
11387     if (del_bytes > 0)
11388         inode_sub_bytes(&inode->vfs_inode, del_bytes);
11389     if (add_bytes > 0)
11390         inode_add_bytes(&inode->vfs_inode, add_bytes);
11391     spin_unlock(&inode->lock);
11392 }
11393 
11394 /**
11395  * Verify that there are no ordered extents for a given file range.
11396  *
11397  * @inode:   The target inode.
11398  * @start:   Start offset of the file range, should be sector size aligned.
11399  * @end:     End offset (inclusive) of the file range, its value +1 should be
11400  *           sector size aligned.
11401  *
11402  * This should typically be used for cases where we locked an inode's VFS lock in
11403  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
11404  * we have flushed all delalloc in the range, we have waited for all ordered
11405  * extents in the range to complete and finally we have locked the file range in
11406  * the inode's io_tree.
11407  */
11408 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
11409 {
11410     struct btrfs_root *root = inode->root;
11411     struct btrfs_ordered_extent *ordered;
11412 
11413     if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
11414         return;
11415 
11416     ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
11417     if (ordered) {
11418         btrfs_err(root->fs_info,
11419 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
11420               start, end, btrfs_ino(inode), root->root_key.objectid,
11421               ordered->file_offset,
11422               ordered->file_offset + ordered->num_bytes - 1);
11423         btrfs_put_ordered_extent(ordered);
11424     }
11425 
11426     ASSERT(ordered == NULL);
11427 }
11428 
11429 static const struct inode_operations btrfs_dir_inode_operations = {
11430     .getattr    = btrfs_getattr,
11431     .lookup     = btrfs_lookup,
11432     .create     = btrfs_create,
11433     .unlink     = btrfs_unlink,
11434     .link       = btrfs_link,
11435     .mkdir      = btrfs_mkdir,
11436     .rmdir      = btrfs_rmdir,
11437     .rename     = btrfs_rename2,
11438     .symlink    = btrfs_symlink,
11439     .setattr    = btrfs_setattr,
11440     .mknod      = btrfs_mknod,
11441     .listxattr  = btrfs_listxattr,
11442     .permission = btrfs_permission,
11443     .get_acl    = btrfs_get_acl,
11444     .set_acl    = btrfs_set_acl,
11445     .update_time    = btrfs_update_time,
11446     .tmpfile        = btrfs_tmpfile,
11447     .fileattr_get   = btrfs_fileattr_get,
11448     .fileattr_set   = btrfs_fileattr_set,
11449 };
11450 
11451 static const struct file_operations btrfs_dir_file_operations = {
11452     .llseek     = generic_file_llseek,
11453     .read       = generic_read_dir,
11454     .iterate_shared = btrfs_real_readdir,
11455     .open       = btrfs_opendir,
11456     .unlocked_ioctl = btrfs_ioctl,
11457 #ifdef CONFIG_COMPAT
11458     .compat_ioctl   = btrfs_compat_ioctl,
11459 #endif
11460     .release        = btrfs_release_file,
11461     .fsync      = btrfs_sync_file,
11462 };
11463 
11464 /*
11465  * btrfs doesn't support the bmap operation because swapfiles
11466  * use bmap to make a mapping of extents in the file.  They assume
11467  * these extents won't change over the life of the file and they
11468  * use the bmap result to do IO directly to the drive.
11469  *
11470  * the btrfs bmap call would return logical addresses that aren't
11471  * suitable for IO and they also will change frequently as COW
11472  * operations happen.  So, swapfile + btrfs == corruption.
11473  *
11474  * For now we're avoiding this by dropping bmap.
11475  */
11476 static const struct address_space_operations btrfs_aops = {
11477     .read_folio = btrfs_read_folio,
11478     .writepages = btrfs_writepages,
11479     .readahead  = btrfs_readahead,
11480     .direct_IO  = noop_direct_IO,
11481     .invalidate_folio = btrfs_invalidate_folio,
11482     .release_folio  = btrfs_release_folio,
11483     .migrate_folio  = btrfs_migrate_folio,
11484     .dirty_folio    = filemap_dirty_folio,
11485     .error_remove_page = generic_error_remove_page,
11486     .swap_activate  = btrfs_swap_activate,
11487     .swap_deactivate = btrfs_swap_deactivate,
11488 };
11489 
11490 static const struct inode_operations btrfs_file_inode_operations = {
11491     .getattr    = btrfs_getattr,
11492     .setattr    = btrfs_setattr,
11493     .listxattr      = btrfs_listxattr,
11494     .permission = btrfs_permission,
11495     .fiemap     = btrfs_fiemap,
11496     .get_acl    = btrfs_get_acl,
11497     .set_acl    = btrfs_set_acl,
11498     .update_time    = btrfs_update_time,
11499     .fileattr_get   = btrfs_fileattr_get,
11500     .fileattr_set   = btrfs_fileattr_set,
11501 };
11502 static const struct inode_operations btrfs_special_inode_operations = {
11503     .getattr    = btrfs_getattr,
11504     .setattr    = btrfs_setattr,
11505     .permission = btrfs_permission,
11506     .listxattr  = btrfs_listxattr,
11507     .get_acl    = btrfs_get_acl,
11508     .set_acl    = btrfs_set_acl,
11509     .update_time    = btrfs_update_time,
11510 };
11511 static const struct inode_operations btrfs_symlink_inode_operations = {
11512     .get_link   = page_get_link,
11513     .getattr    = btrfs_getattr,
11514     .setattr    = btrfs_setattr,
11515     .permission = btrfs_permission,
11516     .listxattr  = btrfs_listxattr,
11517     .update_time    = btrfs_update_time,
11518 };
11519 
11520 const struct dentry_operations btrfs_dentry_operations = {
11521     .d_delete   = btrfs_dentry_delete,
11522 };