Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 
0003 #include <linux/bitops.h>
0004 #include <linux/slab.h>
0005 #include <linux/bio.h>
0006 #include <linux/mm.h>
0007 #include <linux/pagemap.h>
0008 #include <linux/page-flags.h>
0009 #include <linux/sched/mm.h>
0010 #include <linux/spinlock.h>
0011 #include <linux/blkdev.h>
0012 #include <linux/swap.h>
0013 #include <linux/writeback.h>
0014 #include <linux/pagevec.h>
0015 #include <linux/prefetch.h>
0016 #include <linux/fsverity.h>
0017 #include "misc.h"
0018 #include "extent_io.h"
0019 #include "extent-io-tree.h"
0020 #include "extent_map.h"
0021 #include "ctree.h"
0022 #include "btrfs_inode.h"
0023 #include "volumes.h"
0024 #include "check-integrity.h"
0025 #include "locking.h"
0026 #include "rcu-string.h"
0027 #include "backref.h"
0028 #include "disk-io.h"
0029 #include "subpage.h"
0030 #include "zoned.h"
0031 #include "block-group.h"
0032 #include "compression.h"
0033 
0034 static struct kmem_cache *extent_state_cache;
0035 static struct kmem_cache *extent_buffer_cache;
0036 static struct bio_set btrfs_bioset;
0037 
0038 static inline bool extent_state_in_tree(const struct extent_state *state)
0039 {
0040     return !RB_EMPTY_NODE(&state->rb_node);
0041 }
0042 
0043 #ifdef CONFIG_BTRFS_DEBUG
0044 static LIST_HEAD(states);
0045 static DEFINE_SPINLOCK(leak_lock);
0046 
0047 static inline void btrfs_leak_debug_add(spinlock_t *lock,
0048                     struct list_head *new,
0049                     struct list_head *head)
0050 {
0051     unsigned long flags;
0052 
0053     spin_lock_irqsave(lock, flags);
0054     list_add(new, head);
0055     spin_unlock_irqrestore(lock, flags);
0056 }
0057 
0058 static inline void btrfs_leak_debug_del(spinlock_t *lock,
0059                     struct list_head *entry)
0060 {
0061     unsigned long flags;
0062 
0063     spin_lock_irqsave(lock, flags);
0064     list_del(entry);
0065     spin_unlock_irqrestore(lock, flags);
0066 }
0067 
0068 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
0069 {
0070     struct extent_buffer *eb;
0071     unsigned long flags;
0072 
0073     /*
0074      * If we didn't get into open_ctree our allocated_ebs will not be
0075      * initialized, so just skip this.
0076      */
0077     if (!fs_info->allocated_ebs.next)
0078         return;
0079 
0080     WARN_ON(!list_empty(&fs_info->allocated_ebs));
0081     spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
0082     while (!list_empty(&fs_info->allocated_ebs)) {
0083         eb = list_first_entry(&fs_info->allocated_ebs,
0084                       struct extent_buffer, leak_list);
0085         pr_err(
0086     "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
0087                eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
0088                btrfs_header_owner(eb));
0089         list_del(&eb->leak_list);
0090         kmem_cache_free(extent_buffer_cache, eb);
0091     }
0092     spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
0093 }
0094 
0095 static inline void btrfs_extent_state_leak_debug_check(void)
0096 {
0097     struct extent_state *state;
0098 
0099     while (!list_empty(&states)) {
0100         state = list_entry(states.next, struct extent_state, leak_list);
0101         pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
0102                state->start, state->end, state->state,
0103                extent_state_in_tree(state),
0104                refcount_read(&state->refs));
0105         list_del(&state->leak_list);
0106         kmem_cache_free(extent_state_cache, state);
0107     }
0108 }
0109 
0110 #define btrfs_debug_check_extent_io_range(tree, start, end)     \
0111     __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
0112 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
0113         struct extent_io_tree *tree, u64 start, u64 end)
0114 {
0115     struct inode *inode = tree->private_data;
0116     u64 isize;
0117 
0118     if (!inode || !is_data_inode(inode))
0119         return;
0120 
0121     isize = i_size_read(inode);
0122     if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
0123         btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
0124             "%s: ino %llu isize %llu odd range [%llu,%llu]",
0125             caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
0126     }
0127 }
0128 #else
0129 #define btrfs_leak_debug_add(lock, new, head)   do {} while (0)
0130 #define btrfs_leak_debug_del(lock, entry)   do {} while (0)
0131 #define btrfs_extent_state_leak_debug_check()   do {} while (0)
0132 #define btrfs_debug_check_extent_io_range(c, s, e)  do {} while (0)
0133 #endif
0134 
0135 struct tree_entry {
0136     u64 start;
0137     u64 end;
0138     struct rb_node rb_node;
0139 };
0140 
0141 /*
0142  * Structure to record info about the bio being assembled, and other info like
0143  * how many bytes are there before stripe/ordered extent boundary.
0144  */
0145 struct btrfs_bio_ctrl {
0146     struct bio *bio;
0147     int mirror_num;
0148     enum btrfs_compression_type compress_type;
0149     u32 len_to_stripe_boundary;
0150     u32 len_to_oe_boundary;
0151 };
0152 
0153 struct extent_page_data {
0154     struct btrfs_bio_ctrl bio_ctrl;
0155     /* tells writepage not to lock the state bits for this range
0156      * it still does the unlocking
0157      */
0158     unsigned int extent_locked:1;
0159 
0160     /* tells the submit_bio code to use REQ_SYNC */
0161     unsigned int sync_io:1;
0162 };
0163 
0164 static int add_extent_changeset(struct extent_state *state, u32 bits,
0165                  struct extent_changeset *changeset,
0166                  int set)
0167 {
0168     int ret;
0169 
0170     if (!changeset)
0171         return 0;
0172     if (set && (state->state & bits) == bits)
0173         return 0;
0174     if (!set && (state->state & bits) == 0)
0175         return 0;
0176     changeset->bytes_changed += state->end - state->start + 1;
0177     ret = ulist_add(&changeset->range_changed, state->start, state->end,
0178             GFP_ATOMIC);
0179     return ret;
0180 }
0181 
0182 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
0183 {
0184     struct bio *bio;
0185     struct bio_vec *bv;
0186     struct inode *inode;
0187     int mirror_num;
0188 
0189     if (!bio_ctrl->bio)
0190         return;
0191 
0192     bio = bio_ctrl->bio;
0193     bv = bio_first_bvec_all(bio);
0194     inode = bv->bv_page->mapping->host;
0195     mirror_num = bio_ctrl->mirror_num;
0196 
0197     /* Caller should ensure the bio has at least some range added */
0198     ASSERT(bio->bi_iter.bi_size);
0199 
0200     btrfs_bio(bio)->file_offset = page_offset(bv->bv_page) + bv->bv_offset;
0201 
0202     if (!is_data_inode(inode))
0203         btrfs_submit_metadata_bio(inode, bio, mirror_num);
0204     else if (btrfs_op(bio) == BTRFS_MAP_WRITE)
0205         btrfs_submit_data_write_bio(inode, bio, mirror_num);
0206     else
0207         btrfs_submit_data_read_bio(inode, bio, mirror_num,
0208                        bio_ctrl->compress_type);
0209 
0210     /* The bio is owned by the bi_end_io handler now */
0211     bio_ctrl->bio = NULL;
0212 }
0213 
0214 /*
0215  * Submit or fail the current bio in an extent_page_data structure.
0216  */
0217 static void submit_write_bio(struct extent_page_data *epd, int ret)
0218 {
0219     struct bio *bio = epd->bio_ctrl.bio;
0220 
0221     if (!bio)
0222         return;
0223 
0224     if (ret) {
0225         ASSERT(ret < 0);
0226         bio->bi_status = errno_to_blk_status(ret);
0227         bio_endio(bio);
0228         /* The bio is owned by the bi_end_io handler now */
0229         epd->bio_ctrl.bio = NULL;
0230     } else {
0231         submit_one_bio(&epd->bio_ctrl);
0232     }
0233 }
0234 
0235 int __init extent_state_cache_init(void)
0236 {
0237     extent_state_cache = kmem_cache_create("btrfs_extent_state",
0238             sizeof(struct extent_state), 0,
0239             SLAB_MEM_SPREAD, NULL);
0240     if (!extent_state_cache)
0241         return -ENOMEM;
0242     return 0;
0243 }
0244 
0245 int __init extent_io_init(void)
0246 {
0247     extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
0248             sizeof(struct extent_buffer), 0,
0249             SLAB_MEM_SPREAD, NULL);
0250     if (!extent_buffer_cache)
0251         return -ENOMEM;
0252 
0253     if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
0254             offsetof(struct btrfs_bio, bio),
0255             BIOSET_NEED_BVECS))
0256         goto free_buffer_cache;
0257 
0258     if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
0259         goto free_bioset;
0260 
0261     return 0;
0262 
0263 free_bioset:
0264     bioset_exit(&btrfs_bioset);
0265 
0266 free_buffer_cache:
0267     kmem_cache_destroy(extent_buffer_cache);
0268     extent_buffer_cache = NULL;
0269     return -ENOMEM;
0270 }
0271 
0272 void __cold extent_state_cache_exit(void)
0273 {
0274     btrfs_extent_state_leak_debug_check();
0275     kmem_cache_destroy(extent_state_cache);
0276 }
0277 
0278 void __cold extent_io_exit(void)
0279 {
0280     /*
0281      * Make sure all delayed rcu free are flushed before we
0282      * destroy caches.
0283      */
0284     rcu_barrier();
0285     kmem_cache_destroy(extent_buffer_cache);
0286     bioset_exit(&btrfs_bioset);
0287 }
0288 
0289 /*
0290  * For the file_extent_tree, we want to hold the inode lock when we lookup and
0291  * update the disk_i_size, but lockdep will complain because our io_tree we hold
0292  * the tree lock and get the inode lock when setting delalloc.  These two things
0293  * are unrelated, so make a class for the file_extent_tree so we don't get the
0294  * two locking patterns mixed up.
0295  */
0296 static struct lock_class_key file_extent_tree_class;
0297 
0298 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
0299              struct extent_io_tree *tree, unsigned int owner,
0300              void *private_data)
0301 {
0302     tree->fs_info = fs_info;
0303     tree->state = RB_ROOT;
0304     tree->dirty_bytes = 0;
0305     spin_lock_init(&tree->lock);
0306     tree->private_data = private_data;
0307     tree->owner = owner;
0308     if (owner == IO_TREE_INODE_FILE_EXTENT)
0309         lockdep_set_class(&tree->lock, &file_extent_tree_class);
0310 }
0311 
0312 void extent_io_tree_release(struct extent_io_tree *tree)
0313 {
0314     spin_lock(&tree->lock);
0315     /*
0316      * Do a single barrier for the waitqueue_active check here, the state
0317      * of the waitqueue should not change once extent_io_tree_release is
0318      * called.
0319      */
0320     smp_mb();
0321     while (!RB_EMPTY_ROOT(&tree->state)) {
0322         struct rb_node *node;
0323         struct extent_state *state;
0324 
0325         node = rb_first(&tree->state);
0326         state = rb_entry(node, struct extent_state, rb_node);
0327         rb_erase(&state->rb_node, &tree->state);
0328         RB_CLEAR_NODE(&state->rb_node);
0329         /*
0330          * btree io trees aren't supposed to have tasks waiting for
0331          * changes in the flags of extent states ever.
0332          */
0333         ASSERT(!waitqueue_active(&state->wq));
0334         free_extent_state(state);
0335 
0336         cond_resched_lock(&tree->lock);
0337     }
0338     spin_unlock(&tree->lock);
0339 }
0340 
0341 static struct extent_state *alloc_extent_state(gfp_t mask)
0342 {
0343     struct extent_state *state;
0344 
0345     /*
0346      * The given mask might be not appropriate for the slab allocator,
0347      * drop the unsupported bits
0348      */
0349     mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
0350     state = kmem_cache_alloc(extent_state_cache, mask);
0351     if (!state)
0352         return state;
0353     state->state = 0;
0354     state->failrec = NULL;
0355     RB_CLEAR_NODE(&state->rb_node);
0356     btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
0357     refcount_set(&state->refs, 1);
0358     init_waitqueue_head(&state->wq);
0359     trace_alloc_extent_state(state, mask, _RET_IP_);
0360     return state;
0361 }
0362 
0363 void free_extent_state(struct extent_state *state)
0364 {
0365     if (!state)
0366         return;
0367     if (refcount_dec_and_test(&state->refs)) {
0368         WARN_ON(extent_state_in_tree(state));
0369         btrfs_leak_debug_del(&leak_lock, &state->leak_list);
0370         trace_free_extent_state(state, _RET_IP_);
0371         kmem_cache_free(extent_state_cache, state);
0372     }
0373 }
0374 
0375 /**
0376  * Search @tree for an entry that contains @offset. Such entry would have
0377  * entry->start <= offset && entry->end >= offset.
0378  *
0379  * @tree:       the tree to search
0380  * @offset:     offset that should fall within an entry in @tree
0381  * @node_ret:   pointer where new node should be anchored (used when inserting an
0382  *          entry in the tree)
0383  * @parent_ret: points to entry which would have been the parent of the entry,
0384  *               containing @offset
0385  *
0386  * Return a pointer to the entry that contains @offset byte address and don't change
0387  * @node_ret and @parent_ret.
0388  *
0389  * If no such entry exists, return pointer to entry that ends before @offset
0390  * and fill parameters @node_ret and @parent_ret, ie. does not return NULL.
0391  */
0392 static inline struct rb_node *tree_search_for_insert(struct extent_io_tree *tree,
0393                                  u64 offset,
0394                              struct rb_node ***node_ret,
0395                              struct rb_node **parent_ret)
0396 {
0397     struct rb_root *root = &tree->state;
0398     struct rb_node **node = &root->rb_node;
0399     struct rb_node *prev = NULL;
0400     struct tree_entry *entry;
0401 
0402     while (*node) {
0403         prev = *node;
0404         entry = rb_entry(prev, struct tree_entry, rb_node);
0405 
0406         if (offset < entry->start)
0407             node = &(*node)->rb_left;
0408         else if (offset > entry->end)
0409             node = &(*node)->rb_right;
0410         else
0411             return *node;
0412     }
0413 
0414     if (node_ret)
0415         *node_ret = node;
0416     if (parent_ret)
0417         *parent_ret = prev;
0418 
0419     /* Search neighbors until we find the first one past the end */
0420     while (prev && offset > entry->end) {
0421         prev = rb_next(prev);
0422         entry = rb_entry(prev, struct tree_entry, rb_node);
0423     }
0424 
0425     return prev;
0426 }
0427 
0428 /*
0429  * Inexact rb-tree search, return the next entry if @offset is not found
0430  */
0431 static inline struct rb_node *tree_search(struct extent_io_tree *tree, u64 offset)
0432 {
0433     return tree_search_for_insert(tree, offset, NULL, NULL);
0434 }
0435 
0436 /**
0437  * Search offset in the tree or fill neighbor rbtree node pointers.
0438  *
0439  * @tree:      the tree to search
0440  * @offset:    offset that should fall within an entry in @tree
0441  * @next_ret:  pointer to the first entry whose range ends after @offset
0442  * @prev_ret:  pointer to the first entry whose range begins before @offset
0443  *
0444  * Return a pointer to the entry that contains @offset byte address. If no
0445  * such entry exists, then return NULL and fill @prev_ret and @next_ret.
0446  * Otherwise return the found entry and other pointers are left untouched.
0447  */
0448 static struct rb_node *tree_search_prev_next(struct extent_io_tree *tree,
0449                          u64 offset,
0450                          struct rb_node **prev_ret,
0451                          struct rb_node **next_ret)
0452 {
0453     struct rb_root *root = &tree->state;
0454     struct rb_node **node = &root->rb_node;
0455     struct rb_node *prev = NULL;
0456     struct rb_node *orig_prev = NULL;
0457     struct tree_entry *entry;
0458 
0459     ASSERT(prev_ret);
0460     ASSERT(next_ret);
0461 
0462     while (*node) {
0463         prev = *node;
0464         entry = rb_entry(prev, struct tree_entry, rb_node);
0465 
0466         if (offset < entry->start)
0467             node = &(*node)->rb_left;
0468         else if (offset > entry->end)
0469             node = &(*node)->rb_right;
0470         else
0471             return *node;
0472     }
0473 
0474     orig_prev = prev;
0475     while (prev && offset > entry->end) {
0476         prev = rb_next(prev);
0477         entry = rb_entry(prev, struct tree_entry, rb_node);
0478     }
0479     *next_ret = prev;
0480     prev = orig_prev;
0481 
0482     entry = rb_entry(prev, struct tree_entry, rb_node);
0483     while (prev && offset < entry->start) {
0484         prev = rb_prev(prev);
0485         entry = rb_entry(prev, struct tree_entry, rb_node);
0486     }
0487     *prev_ret = prev;
0488 
0489     return NULL;
0490 }
0491 
0492 /*
0493  * utility function to look for merge candidates inside a given range.
0494  * Any extents with matching state are merged together into a single
0495  * extent in the tree.  Extents with EXTENT_IO in their state field
0496  * are not merged because the end_io handlers need to be able to do
0497  * operations on them without sleeping (or doing allocations/splits).
0498  *
0499  * This should be called with the tree lock held.
0500  */
0501 static void merge_state(struct extent_io_tree *tree,
0502                 struct extent_state *state)
0503 {
0504     struct extent_state *other;
0505     struct rb_node *other_node;
0506 
0507     if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
0508         return;
0509 
0510     other_node = rb_prev(&state->rb_node);
0511     if (other_node) {
0512         other = rb_entry(other_node, struct extent_state, rb_node);
0513         if (other->end == state->start - 1 &&
0514             other->state == state->state) {
0515             if (tree->private_data &&
0516                 is_data_inode(tree->private_data))
0517                 btrfs_merge_delalloc_extent(tree->private_data,
0518                                 state, other);
0519             state->start = other->start;
0520             rb_erase(&other->rb_node, &tree->state);
0521             RB_CLEAR_NODE(&other->rb_node);
0522             free_extent_state(other);
0523         }
0524     }
0525     other_node = rb_next(&state->rb_node);
0526     if (other_node) {
0527         other = rb_entry(other_node, struct extent_state, rb_node);
0528         if (other->start == state->end + 1 &&
0529             other->state == state->state) {
0530             if (tree->private_data &&
0531                 is_data_inode(tree->private_data))
0532                 btrfs_merge_delalloc_extent(tree->private_data,
0533                                 state, other);
0534             state->end = other->end;
0535             rb_erase(&other->rb_node, &tree->state);
0536             RB_CLEAR_NODE(&other->rb_node);
0537             free_extent_state(other);
0538         }
0539     }
0540 }
0541 
0542 static void set_state_bits(struct extent_io_tree *tree,
0543                struct extent_state *state, u32 bits,
0544                struct extent_changeset *changeset);
0545 
0546 /*
0547  * insert an extent_state struct into the tree.  'bits' are set on the
0548  * struct before it is inserted.
0549  *
0550  * This may return -EEXIST if the extent is already there, in which case the
0551  * state struct is freed.
0552  *
0553  * The tree lock is not taken internally.  This is a utility function and
0554  * probably isn't what you want to call (see set/clear_extent_bit).
0555  */
0556 static int insert_state(struct extent_io_tree *tree,
0557             struct extent_state *state,
0558             u32 bits, struct extent_changeset *changeset)
0559 {
0560     struct rb_node **node;
0561     struct rb_node *parent;
0562     const u64 end = state->end;
0563 
0564     set_state_bits(tree, state, bits, changeset);
0565 
0566     node = &tree->state.rb_node;
0567     while (*node) {
0568         struct tree_entry *entry;
0569 
0570         parent = *node;
0571         entry = rb_entry(parent, struct tree_entry, rb_node);
0572 
0573         if (end < entry->start) {
0574             node = &(*node)->rb_left;
0575         } else if (end > entry->end) {
0576             node = &(*node)->rb_right;
0577         } else {
0578             btrfs_err(tree->fs_info,
0579                    "found node %llu %llu on insert of %llu %llu",
0580                    entry->start, entry->end, state->start, end);
0581             return -EEXIST;
0582         }
0583     }
0584 
0585     rb_link_node(&state->rb_node, parent, node);
0586     rb_insert_color(&state->rb_node, &tree->state);
0587 
0588     merge_state(tree, state);
0589     return 0;
0590 }
0591 
0592 /*
0593  * Insert state to @tree to the location given by @node and @parent.
0594  */
0595 static void insert_state_fast(struct extent_io_tree *tree,
0596                   struct extent_state *state, struct rb_node **node,
0597                   struct rb_node *parent, unsigned bits,
0598                   struct extent_changeset *changeset)
0599 {
0600     set_state_bits(tree, state, bits, changeset);
0601     rb_link_node(&state->rb_node, parent, node);
0602     rb_insert_color(&state->rb_node, &tree->state);
0603     merge_state(tree, state);
0604 }
0605 
0606 /*
0607  * split a given extent state struct in two, inserting the preallocated
0608  * struct 'prealloc' as the newly created second half.  'split' indicates an
0609  * offset inside 'orig' where it should be split.
0610  *
0611  * Before calling,
0612  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
0613  * are two extent state structs in the tree:
0614  * prealloc: [orig->start, split - 1]
0615  * orig: [ split, orig->end ]
0616  *
0617  * The tree locks are not taken by this function. They need to be held
0618  * by the caller.
0619  */
0620 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
0621                struct extent_state *prealloc, u64 split)
0622 {
0623     struct rb_node *parent = NULL;
0624     struct rb_node **node;
0625 
0626     if (tree->private_data && is_data_inode(tree->private_data))
0627         btrfs_split_delalloc_extent(tree->private_data, orig, split);
0628 
0629     prealloc->start = orig->start;
0630     prealloc->end = split - 1;
0631     prealloc->state = orig->state;
0632     orig->start = split;
0633 
0634     parent = &orig->rb_node;
0635     node = &parent;
0636     while (*node) {
0637         struct tree_entry *entry;
0638 
0639         parent = *node;
0640         entry = rb_entry(parent, struct tree_entry, rb_node);
0641 
0642         if (prealloc->end < entry->start) {
0643             node = &(*node)->rb_left;
0644         } else if (prealloc->end > entry->end) {
0645             node = &(*node)->rb_right;
0646         } else {
0647             free_extent_state(prealloc);
0648             return -EEXIST;
0649         }
0650     }
0651 
0652     rb_link_node(&prealloc->rb_node, parent, node);
0653     rb_insert_color(&prealloc->rb_node, &tree->state);
0654 
0655     return 0;
0656 }
0657 
0658 static struct extent_state *next_state(struct extent_state *state)
0659 {
0660     struct rb_node *next = rb_next(&state->rb_node);
0661     if (next)
0662         return rb_entry(next, struct extent_state, rb_node);
0663     else
0664         return NULL;
0665 }
0666 
0667 /*
0668  * utility function to clear some bits in an extent state struct.
0669  * it will optionally wake up anyone waiting on this state (wake == 1).
0670  *
0671  * If no bits are set on the state struct after clearing things, the
0672  * struct is freed and removed from the tree
0673  */
0674 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
0675                         struct extent_state *state,
0676                         u32 bits, int wake,
0677                         struct extent_changeset *changeset)
0678 {
0679     struct extent_state *next;
0680     u32 bits_to_clear = bits & ~EXTENT_CTLBITS;
0681     int ret;
0682 
0683     if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
0684         u64 range = state->end - state->start + 1;
0685         WARN_ON(range > tree->dirty_bytes);
0686         tree->dirty_bytes -= range;
0687     }
0688 
0689     if (tree->private_data && is_data_inode(tree->private_data))
0690         btrfs_clear_delalloc_extent(tree->private_data, state, bits);
0691 
0692     ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
0693     BUG_ON(ret < 0);
0694     state->state &= ~bits_to_clear;
0695     if (wake)
0696         wake_up(&state->wq);
0697     if (state->state == 0) {
0698         next = next_state(state);
0699         if (extent_state_in_tree(state)) {
0700             rb_erase(&state->rb_node, &tree->state);
0701             RB_CLEAR_NODE(&state->rb_node);
0702             free_extent_state(state);
0703         } else {
0704             WARN_ON(1);
0705         }
0706     } else {
0707         merge_state(tree, state);
0708         next = next_state(state);
0709     }
0710     return next;
0711 }
0712 
0713 static struct extent_state *
0714 alloc_extent_state_atomic(struct extent_state *prealloc)
0715 {
0716     if (!prealloc)
0717         prealloc = alloc_extent_state(GFP_ATOMIC);
0718 
0719     return prealloc;
0720 }
0721 
0722 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
0723 {
0724     btrfs_panic(tree->fs_info, err,
0725     "locking error: extent tree was modified by another thread while locked");
0726 }
0727 
0728 /*
0729  * clear some bits on a range in the tree.  This may require splitting
0730  * or inserting elements in the tree, so the gfp mask is used to
0731  * indicate which allocations or sleeping are allowed.
0732  *
0733  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
0734  * the given range from the tree regardless of state (ie for truncate).
0735  *
0736  * the range [start, end] is inclusive.
0737  *
0738  * This takes the tree lock, and returns 0 on success and < 0 on error.
0739  */
0740 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
0741                u32 bits, int wake, int delete,
0742                struct extent_state **cached_state,
0743                gfp_t mask, struct extent_changeset *changeset)
0744 {
0745     struct extent_state *state;
0746     struct extent_state *cached;
0747     struct extent_state *prealloc = NULL;
0748     struct rb_node *node;
0749     u64 last_end;
0750     int err;
0751     int clear = 0;
0752 
0753     btrfs_debug_check_extent_io_range(tree, start, end);
0754     trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
0755 
0756     if (bits & EXTENT_DELALLOC)
0757         bits |= EXTENT_NORESERVE;
0758 
0759     if (delete)
0760         bits |= ~EXTENT_CTLBITS;
0761 
0762     if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
0763         clear = 1;
0764 again:
0765     if (!prealloc && gfpflags_allow_blocking(mask)) {
0766         /*
0767          * Don't care for allocation failure here because we might end
0768          * up not needing the pre-allocated extent state at all, which
0769          * is the case if we only have in the tree extent states that
0770          * cover our input range and don't cover too any other range.
0771          * If we end up needing a new extent state we allocate it later.
0772          */
0773         prealloc = alloc_extent_state(mask);
0774     }
0775 
0776     spin_lock(&tree->lock);
0777     if (cached_state) {
0778         cached = *cached_state;
0779 
0780         if (clear) {
0781             *cached_state = NULL;
0782             cached_state = NULL;
0783         }
0784 
0785         if (cached && extent_state_in_tree(cached) &&
0786             cached->start <= start && cached->end > start) {
0787             if (clear)
0788                 refcount_dec(&cached->refs);
0789             state = cached;
0790             goto hit_next;
0791         }
0792         if (clear)
0793             free_extent_state(cached);
0794     }
0795     /*
0796      * this search will find the extents that end after
0797      * our range starts
0798      */
0799     node = tree_search(tree, start);
0800     if (!node)
0801         goto out;
0802     state = rb_entry(node, struct extent_state, rb_node);
0803 hit_next:
0804     if (state->start > end)
0805         goto out;
0806     WARN_ON(state->end < start);
0807     last_end = state->end;
0808 
0809     /* the state doesn't have the wanted bits, go ahead */
0810     if (!(state->state & bits)) {
0811         state = next_state(state);
0812         goto next;
0813     }
0814 
0815     /*
0816      *     | ---- desired range ---- |
0817      *  | state | or
0818      *  | ------------- state -------------- |
0819      *
0820      * We need to split the extent we found, and may flip
0821      * bits on second half.
0822      *
0823      * If the extent we found extends past our range, we
0824      * just split and search again.  It'll get split again
0825      * the next time though.
0826      *
0827      * If the extent we found is inside our range, we clear
0828      * the desired bit on it.
0829      */
0830 
0831     if (state->start < start) {
0832         prealloc = alloc_extent_state_atomic(prealloc);
0833         BUG_ON(!prealloc);
0834         err = split_state(tree, state, prealloc, start);
0835         if (err)
0836             extent_io_tree_panic(tree, err);
0837 
0838         prealloc = NULL;
0839         if (err)
0840             goto out;
0841         if (state->end <= end) {
0842             state = clear_state_bit(tree, state, bits, wake, changeset);
0843             goto next;
0844         }
0845         goto search_again;
0846     }
0847     /*
0848      * | ---- desired range ---- |
0849      *                        | state |
0850      * We need to split the extent, and clear the bit
0851      * on the first half
0852      */
0853     if (state->start <= end && state->end > end) {
0854         prealloc = alloc_extent_state_atomic(prealloc);
0855         BUG_ON(!prealloc);
0856         err = split_state(tree, state, prealloc, end + 1);
0857         if (err)
0858             extent_io_tree_panic(tree, err);
0859 
0860         if (wake)
0861             wake_up(&state->wq);
0862 
0863         clear_state_bit(tree, prealloc, bits, wake, changeset);
0864 
0865         prealloc = NULL;
0866         goto out;
0867     }
0868 
0869     state = clear_state_bit(tree, state, bits, wake, changeset);
0870 next:
0871     if (last_end == (u64)-1)
0872         goto out;
0873     start = last_end + 1;
0874     if (start <= end && state && !need_resched())
0875         goto hit_next;
0876 
0877 search_again:
0878     if (start > end)
0879         goto out;
0880     spin_unlock(&tree->lock);
0881     if (gfpflags_allow_blocking(mask))
0882         cond_resched();
0883     goto again;
0884 
0885 out:
0886     spin_unlock(&tree->lock);
0887     if (prealloc)
0888         free_extent_state(prealloc);
0889 
0890     return 0;
0891 
0892 }
0893 
0894 static void wait_on_state(struct extent_io_tree *tree,
0895               struct extent_state *state)
0896         __releases(tree->lock)
0897         __acquires(tree->lock)
0898 {
0899     DEFINE_WAIT(wait);
0900     prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
0901     spin_unlock(&tree->lock);
0902     schedule();
0903     spin_lock(&tree->lock);
0904     finish_wait(&state->wq, &wait);
0905 }
0906 
0907 /*
0908  * waits for one or more bits to clear on a range in the state tree.
0909  * The range [start, end] is inclusive.
0910  * The tree lock is taken by this function
0911  */
0912 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
0913                 u32 bits)
0914 {
0915     struct extent_state *state;
0916     struct rb_node *node;
0917 
0918     btrfs_debug_check_extent_io_range(tree, start, end);
0919 
0920     spin_lock(&tree->lock);
0921 again:
0922     while (1) {
0923         /*
0924          * this search will find all the extents that end after
0925          * our range starts
0926          */
0927         node = tree_search(tree, start);
0928 process_node:
0929         if (!node)
0930             break;
0931 
0932         state = rb_entry(node, struct extent_state, rb_node);
0933 
0934         if (state->start > end)
0935             goto out;
0936 
0937         if (state->state & bits) {
0938             start = state->start;
0939             refcount_inc(&state->refs);
0940             wait_on_state(tree, state);
0941             free_extent_state(state);
0942             goto again;
0943         }
0944         start = state->end + 1;
0945 
0946         if (start > end)
0947             break;
0948 
0949         if (!cond_resched_lock(&tree->lock)) {
0950             node = rb_next(node);
0951             goto process_node;
0952         }
0953     }
0954 out:
0955     spin_unlock(&tree->lock);
0956 }
0957 
0958 static void set_state_bits(struct extent_io_tree *tree,
0959                struct extent_state *state,
0960                u32 bits, struct extent_changeset *changeset)
0961 {
0962     u32 bits_to_set = bits & ~EXTENT_CTLBITS;
0963     int ret;
0964 
0965     if (tree->private_data && is_data_inode(tree->private_data))
0966         btrfs_set_delalloc_extent(tree->private_data, state, bits);
0967 
0968     if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
0969         u64 range = state->end - state->start + 1;
0970         tree->dirty_bytes += range;
0971     }
0972     ret = add_extent_changeset(state, bits_to_set, changeset, 1);
0973     BUG_ON(ret < 0);
0974     state->state |= bits_to_set;
0975 }
0976 
0977 static void cache_state_if_flags(struct extent_state *state,
0978                  struct extent_state **cached_ptr,
0979                  unsigned flags)
0980 {
0981     if (cached_ptr && !(*cached_ptr)) {
0982         if (!flags || (state->state & flags)) {
0983             *cached_ptr = state;
0984             refcount_inc(&state->refs);
0985         }
0986     }
0987 }
0988 
0989 static void cache_state(struct extent_state *state,
0990             struct extent_state **cached_ptr)
0991 {
0992     return cache_state_if_flags(state, cached_ptr,
0993                     EXTENT_LOCKED | EXTENT_BOUNDARY);
0994 }
0995 
0996 /*
0997  * set some bits on a range in the tree.  This may require allocations or
0998  * sleeping, so the gfp mask is used to indicate what is allowed.
0999  *
1000  * If any of the exclusive bits are set, this will fail with -EEXIST if some
1001  * part of the range already has the desired bits set.  The start of the
1002  * existing range is returned in failed_start in this case.
1003  *
1004  * [start, end] is inclusive This takes the tree lock.
1005  */
1006 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
1007            u32 exclusive_bits, u64 *failed_start,
1008            struct extent_state **cached_state, gfp_t mask,
1009            struct extent_changeset *changeset)
1010 {
1011     struct extent_state *state;
1012     struct extent_state *prealloc = NULL;
1013     struct rb_node *node;
1014     struct rb_node **p;
1015     struct rb_node *parent;
1016     int err = 0;
1017     u64 last_start;
1018     u64 last_end;
1019 
1020     btrfs_debug_check_extent_io_range(tree, start, end);
1021     trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
1022 
1023     if (exclusive_bits)
1024         ASSERT(failed_start);
1025     else
1026         ASSERT(failed_start == NULL);
1027 again:
1028     if (!prealloc && gfpflags_allow_blocking(mask)) {
1029         /*
1030          * Don't care for allocation failure here because we might end
1031          * up not needing the pre-allocated extent state at all, which
1032          * is the case if we only have in the tree extent states that
1033          * cover our input range and don't cover too any other range.
1034          * If we end up needing a new extent state we allocate it later.
1035          */
1036         prealloc = alloc_extent_state(mask);
1037     }
1038 
1039     spin_lock(&tree->lock);
1040     if (cached_state && *cached_state) {
1041         state = *cached_state;
1042         if (state->start <= start && state->end > start &&
1043             extent_state_in_tree(state)) {
1044             node = &state->rb_node;
1045             goto hit_next;
1046         }
1047     }
1048     /*
1049      * this search will find all the extents that end after
1050      * our range starts.
1051      */
1052     node = tree_search_for_insert(tree, start, &p, &parent);
1053     if (!node) {
1054         prealloc = alloc_extent_state_atomic(prealloc);
1055         BUG_ON(!prealloc);
1056         prealloc->start = start;
1057         prealloc->end = end;
1058         insert_state_fast(tree, prealloc, p, parent, bits, changeset);
1059         cache_state(prealloc, cached_state);
1060         prealloc = NULL;
1061         goto out;
1062     }
1063     state = rb_entry(node, struct extent_state, rb_node);
1064 hit_next:
1065     last_start = state->start;
1066     last_end = state->end;
1067 
1068     /*
1069      * | ---- desired range ---- |
1070      * | state |
1071      *
1072      * Just lock what we found and keep going
1073      */
1074     if (state->start == start && state->end <= end) {
1075         if (state->state & exclusive_bits) {
1076             *failed_start = state->start;
1077             err = -EEXIST;
1078             goto out;
1079         }
1080 
1081         set_state_bits(tree, state, bits, changeset);
1082         cache_state(state, cached_state);
1083         merge_state(tree, state);
1084         if (last_end == (u64)-1)
1085             goto out;
1086         start = last_end + 1;
1087         state = next_state(state);
1088         if (start < end && state && state->start == start &&
1089             !need_resched())
1090             goto hit_next;
1091         goto search_again;
1092     }
1093 
1094     /*
1095      *     | ---- desired range ---- |
1096      * | state |
1097      *   or
1098      * | ------------- state -------------- |
1099      *
1100      * We need to split the extent we found, and may flip bits on
1101      * second half.
1102      *
1103      * If the extent we found extends past our
1104      * range, we just split and search again.  It'll get split
1105      * again the next time though.
1106      *
1107      * If the extent we found is inside our range, we set the
1108      * desired bit on it.
1109      */
1110     if (state->start < start) {
1111         if (state->state & exclusive_bits) {
1112             *failed_start = start;
1113             err = -EEXIST;
1114             goto out;
1115         }
1116 
1117         /*
1118          * If this extent already has all the bits we want set, then
1119          * skip it, not necessary to split it or do anything with it.
1120          */
1121         if ((state->state & bits) == bits) {
1122             start = state->end + 1;
1123             cache_state(state, cached_state);
1124             goto search_again;
1125         }
1126 
1127         prealloc = alloc_extent_state_atomic(prealloc);
1128         BUG_ON(!prealloc);
1129         err = split_state(tree, state, prealloc, start);
1130         if (err)
1131             extent_io_tree_panic(tree, err);
1132 
1133         prealloc = NULL;
1134         if (err)
1135             goto out;
1136         if (state->end <= end) {
1137             set_state_bits(tree, state, bits, changeset);
1138             cache_state(state, cached_state);
1139             merge_state(tree, state);
1140             if (last_end == (u64)-1)
1141                 goto out;
1142             start = last_end + 1;
1143             state = next_state(state);
1144             if (start < end && state && state->start == start &&
1145                 !need_resched())
1146                 goto hit_next;
1147         }
1148         goto search_again;
1149     }
1150     /*
1151      * | ---- desired range ---- |
1152      *     | state | or               | state |
1153      *
1154      * There's a hole, we need to insert something in it and
1155      * ignore the extent we found.
1156      */
1157     if (state->start > start) {
1158         u64 this_end;
1159         if (end < last_start)
1160             this_end = end;
1161         else
1162             this_end = last_start - 1;
1163 
1164         prealloc = alloc_extent_state_atomic(prealloc);
1165         BUG_ON(!prealloc);
1166 
1167         /*
1168          * Avoid to free 'prealloc' if it can be merged with
1169          * the later extent.
1170          */
1171         prealloc->start = start;
1172         prealloc->end = this_end;
1173         err = insert_state(tree, prealloc, bits, changeset);
1174         if (err)
1175             extent_io_tree_panic(tree, err);
1176 
1177         cache_state(prealloc, cached_state);
1178         prealloc = NULL;
1179         start = this_end + 1;
1180         goto search_again;
1181     }
1182     /*
1183      * | ---- desired range ---- |
1184      *                        | state |
1185      * We need to split the extent, and set the bit
1186      * on the first half
1187      */
1188     if (state->start <= end && state->end > end) {
1189         if (state->state & exclusive_bits) {
1190             *failed_start = start;
1191             err = -EEXIST;
1192             goto out;
1193         }
1194 
1195         prealloc = alloc_extent_state_atomic(prealloc);
1196         BUG_ON(!prealloc);
1197         err = split_state(tree, state, prealloc, end + 1);
1198         if (err)
1199             extent_io_tree_panic(tree, err);
1200 
1201         set_state_bits(tree, prealloc, bits, changeset);
1202         cache_state(prealloc, cached_state);
1203         merge_state(tree, prealloc);
1204         prealloc = NULL;
1205         goto out;
1206     }
1207 
1208 search_again:
1209     if (start > end)
1210         goto out;
1211     spin_unlock(&tree->lock);
1212     if (gfpflags_allow_blocking(mask))
1213         cond_resched();
1214     goto again;
1215 
1216 out:
1217     spin_unlock(&tree->lock);
1218     if (prealloc)
1219         free_extent_state(prealloc);
1220 
1221     return err;
1222 
1223 }
1224 
1225 /**
1226  * convert_extent_bit - convert all bits in a given range from one bit to
1227  *          another
1228  * @tree:   the io tree to search
1229  * @start:  the start offset in bytes
1230  * @end:    the end offset in bytes (inclusive)
1231  * @bits:   the bits to set in this range
1232  * @clear_bits: the bits to clear in this range
1233  * @cached_state:   state that we're going to cache
1234  *
1235  * This will go through and set bits for the given range.  If any states exist
1236  * already in this range they are set with the given bit and cleared of the
1237  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1238  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1239  * boundary bits like LOCK.
1240  *
1241  * All allocations are done with GFP_NOFS.
1242  */
1243 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1244                u32 bits, u32 clear_bits,
1245                struct extent_state **cached_state)
1246 {
1247     struct extent_state *state;
1248     struct extent_state *prealloc = NULL;
1249     struct rb_node *node;
1250     struct rb_node **p;
1251     struct rb_node *parent;
1252     int err = 0;
1253     u64 last_start;
1254     u64 last_end;
1255     bool first_iteration = true;
1256 
1257     btrfs_debug_check_extent_io_range(tree, start, end);
1258     trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1259                        clear_bits);
1260 
1261 again:
1262     if (!prealloc) {
1263         /*
1264          * Best effort, don't worry if extent state allocation fails
1265          * here for the first iteration. We might have a cached state
1266          * that matches exactly the target range, in which case no
1267          * extent state allocations are needed. We'll only know this
1268          * after locking the tree.
1269          */
1270         prealloc = alloc_extent_state(GFP_NOFS);
1271         if (!prealloc && !first_iteration)
1272             return -ENOMEM;
1273     }
1274 
1275     spin_lock(&tree->lock);
1276     if (cached_state && *cached_state) {
1277         state = *cached_state;
1278         if (state->start <= start && state->end > start &&
1279             extent_state_in_tree(state)) {
1280             node = &state->rb_node;
1281             goto hit_next;
1282         }
1283     }
1284 
1285     /*
1286      * this search will find all the extents that end after
1287      * our range starts.
1288      */
1289     node = tree_search_for_insert(tree, start, &p, &parent);
1290     if (!node) {
1291         prealloc = alloc_extent_state_atomic(prealloc);
1292         if (!prealloc) {
1293             err = -ENOMEM;
1294             goto out;
1295         }
1296         prealloc->start = start;
1297         prealloc->end = end;
1298         insert_state_fast(tree, prealloc, p, parent, bits, NULL);
1299         cache_state(prealloc, cached_state);
1300         prealloc = NULL;
1301         goto out;
1302     }
1303     state = rb_entry(node, struct extent_state, rb_node);
1304 hit_next:
1305     last_start = state->start;
1306     last_end = state->end;
1307 
1308     /*
1309      * | ---- desired range ---- |
1310      * | state |
1311      *
1312      * Just lock what we found and keep going
1313      */
1314     if (state->start == start && state->end <= end) {
1315         set_state_bits(tree, state, bits, NULL);
1316         cache_state(state, cached_state);
1317         state = clear_state_bit(tree, state, clear_bits, 0, NULL);
1318         if (last_end == (u64)-1)
1319             goto out;
1320         start = last_end + 1;
1321         if (start < end && state && state->start == start &&
1322             !need_resched())
1323             goto hit_next;
1324         goto search_again;
1325     }
1326 
1327     /*
1328      *     | ---- desired range ---- |
1329      * | state |
1330      *   or
1331      * | ------------- state -------------- |
1332      *
1333      * We need to split the extent we found, and may flip bits on
1334      * second half.
1335      *
1336      * If the extent we found extends past our
1337      * range, we just split and search again.  It'll get split
1338      * again the next time though.
1339      *
1340      * If the extent we found is inside our range, we set the
1341      * desired bit on it.
1342      */
1343     if (state->start < start) {
1344         prealloc = alloc_extent_state_atomic(prealloc);
1345         if (!prealloc) {
1346             err = -ENOMEM;
1347             goto out;
1348         }
1349         err = split_state(tree, state, prealloc, start);
1350         if (err)
1351             extent_io_tree_panic(tree, err);
1352         prealloc = NULL;
1353         if (err)
1354             goto out;
1355         if (state->end <= end) {
1356             set_state_bits(tree, state, bits, NULL);
1357             cache_state(state, cached_state);
1358             state = clear_state_bit(tree, state, clear_bits, 0, NULL);
1359             if (last_end == (u64)-1)
1360                 goto out;
1361             start = last_end + 1;
1362             if (start < end && state && state->start == start &&
1363                 !need_resched())
1364                 goto hit_next;
1365         }
1366         goto search_again;
1367     }
1368     /*
1369      * | ---- desired range ---- |
1370      *     | state | or               | state |
1371      *
1372      * There's a hole, we need to insert something in it and
1373      * ignore the extent we found.
1374      */
1375     if (state->start > start) {
1376         u64 this_end;
1377         if (end < last_start)
1378             this_end = end;
1379         else
1380             this_end = last_start - 1;
1381 
1382         prealloc = alloc_extent_state_atomic(prealloc);
1383         if (!prealloc) {
1384             err = -ENOMEM;
1385             goto out;
1386         }
1387 
1388         /*
1389          * Avoid to free 'prealloc' if it can be merged with
1390          * the later extent.
1391          */
1392         prealloc->start = start;
1393         prealloc->end = this_end;
1394         err = insert_state(tree, prealloc, bits, NULL);
1395         if (err)
1396             extent_io_tree_panic(tree, err);
1397         cache_state(prealloc, cached_state);
1398         prealloc = NULL;
1399         start = this_end + 1;
1400         goto search_again;
1401     }
1402     /*
1403      * | ---- desired range ---- |
1404      *                        | state |
1405      * We need to split the extent, and set the bit
1406      * on the first half
1407      */
1408     if (state->start <= end && state->end > end) {
1409         prealloc = alloc_extent_state_atomic(prealloc);
1410         if (!prealloc) {
1411             err = -ENOMEM;
1412             goto out;
1413         }
1414 
1415         err = split_state(tree, state, prealloc, end + 1);
1416         if (err)
1417             extent_io_tree_panic(tree, err);
1418 
1419         set_state_bits(tree, prealloc, bits, NULL);
1420         cache_state(prealloc, cached_state);
1421         clear_state_bit(tree, prealloc, clear_bits, 0, NULL);
1422         prealloc = NULL;
1423         goto out;
1424     }
1425 
1426 search_again:
1427     if (start > end)
1428         goto out;
1429     spin_unlock(&tree->lock);
1430     cond_resched();
1431     first_iteration = false;
1432     goto again;
1433 
1434 out:
1435     spin_unlock(&tree->lock);
1436     if (prealloc)
1437         free_extent_state(prealloc);
1438 
1439     return err;
1440 }
1441 
1442 /* wrappers around set/clear extent bit */
1443 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1444                u32 bits, struct extent_changeset *changeset)
1445 {
1446     /*
1447      * We don't support EXTENT_LOCKED yet, as current changeset will
1448      * record any bits changed, so for EXTENT_LOCKED case, it will
1449      * either fail with -EEXIST or changeset will record the whole
1450      * range.
1451      */
1452     BUG_ON(bits & EXTENT_LOCKED);
1453 
1454     return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1455                   changeset);
1456 }
1457 
1458 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1459                u32 bits)
1460 {
1461     return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1462                   GFP_NOWAIT, NULL);
1463 }
1464 
1465 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1466              u32 bits, int wake, int delete,
1467              struct extent_state **cached)
1468 {
1469     return __clear_extent_bit(tree, start, end, bits, wake, delete,
1470                   cached, GFP_NOFS, NULL);
1471 }
1472 
1473 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1474         u32 bits, struct extent_changeset *changeset)
1475 {
1476     /*
1477      * Don't support EXTENT_LOCKED case, same reason as
1478      * set_record_extent_bits().
1479      */
1480     BUG_ON(bits & EXTENT_LOCKED);
1481 
1482     return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1483                   changeset);
1484 }
1485 
1486 /*
1487  * either insert or lock state struct between start and end use mask to tell
1488  * us if waiting is desired.
1489  */
1490 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1491              struct extent_state **cached_state)
1492 {
1493     int err;
1494     u64 failed_start;
1495 
1496     while (1) {
1497         err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1498                      EXTENT_LOCKED, &failed_start,
1499                      cached_state, GFP_NOFS, NULL);
1500         if (err == -EEXIST) {
1501             wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1502             start = failed_start;
1503         } else
1504             break;
1505         WARN_ON(start > end);
1506     }
1507     return err;
1508 }
1509 
1510 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1511 {
1512     int err;
1513     u64 failed_start;
1514 
1515     err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1516                  &failed_start, NULL, GFP_NOFS, NULL);
1517     if (err == -EEXIST) {
1518         if (failed_start > start)
1519             clear_extent_bit(tree, start, failed_start - 1,
1520                      EXTENT_LOCKED, 1, 0, NULL);
1521         return 0;
1522     }
1523     return 1;
1524 }
1525 
1526 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1527 {
1528     unsigned long index = start >> PAGE_SHIFT;
1529     unsigned long end_index = end >> PAGE_SHIFT;
1530     struct page *page;
1531 
1532     while (index <= end_index) {
1533         page = find_get_page(inode->i_mapping, index);
1534         BUG_ON(!page); /* Pages should be in the extent_io_tree */
1535         clear_page_dirty_for_io(page);
1536         put_page(page);
1537         index++;
1538     }
1539 }
1540 
1541 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1542 {
1543     struct address_space *mapping = inode->i_mapping;
1544     unsigned long index = start >> PAGE_SHIFT;
1545     unsigned long end_index = end >> PAGE_SHIFT;
1546     struct folio *folio;
1547 
1548     while (index <= end_index) {
1549         folio = filemap_get_folio(mapping, index);
1550         filemap_dirty_folio(mapping, folio);
1551         folio_account_redirty(folio);
1552         index += folio_nr_pages(folio);
1553         folio_put(folio);
1554     }
1555 }
1556 
1557 /* find the first state struct with 'bits' set after 'start', and
1558  * return it.  tree->lock must be held.  NULL will returned if
1559  * nothing was found after 'start'
1560  */
1561 static struct extent_state *
1562 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
1563 {
1564     struct rb_node *node;
1565     struct extent_state *state;
1566 
1567     /*
1568      * this search will find all the extents that end after
1569      * our range starts.
1570      */
1571     node = tree_search(tree, start);
1572     if (!node)
1573         goto out;
1574 
1575     while (1) {
1576         state = rb_entry(node, struct extent_state, rb_node);
1577         if (state->end >= start && (state->state & bits))
1578             return state;
1579 
1580         node = rb_next(node);
1581         if (!node)
1582             break;
1583     }
1584 out:
1585     return NULL;
1586 }
1587 
1588 /*
1589  * Find the first offset in the io tree with one or more @bits set.
1590  *
1591  * Note: If there are multiple bits set in @bits, any of them will match.
1592  *
1593  * Return 0 if we find something, and update @start_ret and @end_ret.
1594  * Return 1 if we found nothing.
1595  */
1596 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1597               u64 *start_ret, u64 *end_ret, u32 bits,
1598               struct extent_state **cached_state)
1599 {
1600     struct extent_state *state;
1601     int ret = 1;
1602 
1603     spin_lock(&tree->lock);
1604     if (cached_state && *cached_state) {
1605         state = *cached_state;
1606         if (state->end == start - 1 && extent_state_in_tree(state)) {
1607             while ((state = next_state(state)) != NULL) {
1608                 if (state->state & bits)
1609                     goto got_it;
1610             }
1611             free_extent_state(*cached_state);
1612             *cached_state = NULL;
1613             goto out;
1614         }
1615         free_extent_state(*cached_state);
1616         *cached_state = NULL;
1617     }
1618 
1619     state = find_first_extent_bit_state(tree, start, bits);
1620 got_it:
1621     if (state) {
1622         cache_state_if_flags(state, cached_state, 0);
1623         *start_ret = state->start;
1624         *end_ret = state->end;
1625         ret = 0;
1626     }
1627 out:
1628     spin_unlock(&tree->lock);
1629     return ret;
1630 }
1631 
1632 /**
1633  * Find a contiguous area of bits
1634  *
1635  * @tree:      io tree to check
1636  * @start:     offset to start the search from
1637  * @start_ret: the first offset we found with the bits set
1638  * @end_ret:   the final contiguous range of the bits that were set
1639  * @bits:      bits to look for
1640  *
1641  * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1642  * to set bits appropriately, and then merge them again.  During this time it
1643  * will drop the tree->lock, so use this helper if you want to find the actual
1644  * contiguous area for given bits.  We will search to the first bit we find, and
1645  * then walk down the tree until we find a non-contiguous area.  The area
1646  * returned will be the full contiguous area with the bits set.
1647  */
1648 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1649                    u64 *start_ret, u64 *end_ret, u32 bits)
1650 {
1651     struct extent_state *state;
1652     int ret = 1;
1653 
1654     spin_lock(&tree->lock);
1655     state = find_first_extent_bit_state(tree, start, bits);
1656     if (state) {
1657         *start_ret = state->start;
1658         *end_ret = state->end;
1659         while ((state = next_state(state)) != NULL) {
1660             if (state->start > (*end_ret + 1))
1661                 break;
1662             *end_ret = state->end;
1663         }
1664         ret = 0;
1665     }
1666     spin_unlock(&tree->lock);
1667     return ret;
1668 }
1669 
1670 /**
1671  * Find the first range that has @bits not set. This range could start before
1672  * @start.
1673  *
1674  * @tree:      the tree to search
1675  * @start:     offset at/after which the found extent should start
1676  * @start_ret: records the beginning of the range
1677  * @end_ret:   records the end of the range (inclusive)
1678  * @bits:      the set of bits which must be unset
1679  *
1680  * Since unallocated range is also considered one which doesn't have the bits
1681  * set it's possible that @end_ret contains -1, this happens in case the range
1682  * spans (last_range_end, end of device]. In this case it's up to the caller to
1683  * trim @end_ret to the appropriate size.
1684  */
1685 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1686                  u64 *start_ret, u64 *end_ret, u32 bits)
1687 {
1688     struct extent_state *state;
1689     struct rb_node *node, *prev = NULL, *next;
1690 
1691     spin_lock(&tree->lock);
1692 
1693     /* Find first extent with bits cleared */
1694     while (1) {
1695         node = tree_search_prev_next(tree, start, &prev, &next);
1696         if (!node && !next && !prev) {
1697             /*
1698              * Tree is completely empty, send full range and let
1699              * caller deal with it
1700              */
1701             *start_ret = 0;
1702             *end_ret = -1;
1703             goto out;
1704         } else if (!node && !next) {
1705             /*
1706              * We are past the last allocated chunk, set start at
1707              * the end of the last extent.
1708              */
1709             state = rb_entry(prev, struct extent_state, rb_node);
1710             *start_ret = state->end + 1;
1711             *end_ret = -1;
1712             goto out;
1713         } else if (!node) {
1714             node = next;
1715         }
1716         /*
1717          * At this point 'node' either contains 'start' or start is
1718          * before 'node'
1719          */
1720         state = rb_entry(node, struct extent_state, rb_node);
1721 
1722         if (in_range(start, state->start, state->end - state->start + 1)) {
1723             if (state->state & bits) {
1724                 /*
1725                  * |--range with bits sets--|
1726                  *    |
1727                  *    start
1728                  */
1729                 start = state->end + 1;
1730             } else {
1731                 /*
1732                  * 'start' falls within a range that doesn't
1733                  * have the bits set, so take its start as
1734                  * the beginning of the desired range
1735                  *
1736                  * |--range with bits cleared----|
1737                  *      |
1738                  *      start
1739                  */
1740                 *start_ret = state->start;
1741                 break;
1742             }
1743         } else {
1744             /*
1745              * |---prev range---|---hole/unset---|---node range---|
1746              *                          |
1747              *                        start
1748              *
1749              *                        or
1750              *
1751              * |---hole/unset--||--first node--|
1752              * 0   |
1753              *    start
1754              */
1755             if (prev) {
1756                 state = rb_entry(prev, struct extent_state,
1757                          rb_node);
1758                 *start_ret = state->end + 1;
1759             } else {
1760                 *start_ret = 0;
1761             }
1762             break;
1763         }
1764     }
1765 
1766     /*
1767      * Find the longest stretch from start until an entry which has the
1768      * bits set
1769      */
1770     while (1) {
1771         state = rb_entry(node, struct extent_state, rb_node);
1772         if (state->end >= start && !(state->state & bits)) {
1773             *end_ret = state->end;
1774         } else {
1775             *end_ret = state->start - 1;
1776             break;
1777         }
1778 
1779         node = rb_next(node);
1780         if (!node)
1781             break;
1782     }
1783 out:
1784     spin_unlock(&tree->lock);
1785 }
1786 
1787 /*
1788  * find a contiguous range of bytes in the file marked as delalloc, not
1789  * more than 'max_bytes'.  start and end are used to return the range,
1790  *
1791  * true is returned if we find something, false if nothing was in the tree
1792  */
1793 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1794                    u64 *end, u64 max_bytes,
1795                    struct extent_state **cached_state)
1796 {
1797     struct rb_node *node;
1798     struct extent_state *state;
1799     u64 cur_start = *start;
1800     bool found = false;
1801     u64 total_bytes = 0;
1802 
1803     spin_lock(&tree->lock);
1804 
1805     /*
1806      * this search will find all the extents that end after
1807      * our range starts.
1808      */
1809     node = tree_search(tree, cur_start);
1810     if (!node) {
1811         *end = (u64)-1;
1812         goto out;
1813     }
1814 
1815     while (1) {
1816         state = rb_entry(node, struct extent_state, rb_node);
1817         if (found && (state->start != cur_start ||
1818                   (state->state & EXTENT_BOUNDARY))) {
1819             goto out;
1820         }
1821         if (!(state->state & EXTENT_DELALLOC)) {
1822             if (!found)
1823                 *end = state->end;
1824             goto out;
1825         }
1826         if (!found) {
1827             *start = state->start;
1828             *cached_state = state;
1829             refcount_inc(&state->refs);
1830         }
1831         found = true;
1832         *end = state->end;
1833         cur_start = state->end + 1;
1834         node = rb_next(node);
1835         total_bytes += state->end - state->start + 1;
1836         if (total_bytes >= max_bytes)
1837             break;
1838         if (!node)
1839             break;
1840     }
1841 out:
1842     spin_unlock(&tree->lock);
1843     return found;
1844 }
1845 
1846 /*
1847  * Process one page for __process_pages_contig().
1848  *
1849  * Return >0 if we hit @page == @locked_page.
1850  * Return 0 if we updated the page status.
1851  * Return -EGAIN if the we need to try again.
1852  * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
1853  */
1854 static int process_one_page(struct btrfs_fs_info *fs_info,
1855                 struct address_space *mapping,
1856                 struct page *page, struct page *locked_page,
1857                 unsigned long page_ops, u64 start, u64 end)
1858 {
1859     u32 len;
1860 
1861     ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
1862     len = end + 1 - start;
1863 
1864     if (page_ops & PAGE_SET_ORDERED)
1865         btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1866     if (page_ops & PAGE_SET_ERROR)
1867         btrfs_page_clamp_set_error(fs_info, page, start, len);
1868     if (page_ops & PAGE_START_WRITEBACK) {
1869         btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
1870         btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1871     }
1872     if (page_ops & PAGE_END_WRITEBACK)
1873         btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1874 
1875     if (page == locked_page)
1876         return 1;
1877 
1878     if (page_ops & PAGE_LOCK) {
1879         int ret;
1880 
1881         ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
1882         if (ret)
1883             return ret;
1884         if (!PageDirty(page) || page->mapping != mapping) {
1885             btrfs_page_end_writer_lock(fs_info, page, start, len);
1886             return -EAGAIN;
1887         }
1888     }
1889     if (page_ops & PAGE_UNLOCK)
1890         btrfs_page_end_writer_lock(fs_info, page, start, len);
1891     return 0;
1892 }
1893 
1894 static int __process_pages_contig(struct address_space *mapping,
1895                   struct page *locked_page,
1896                   u64 start, u64 end, unsigned long page_ops,
1897                   u64 *processed_end)
1898 {
1899     struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1900     pgoff_t start_index = start >> PAGE_SHIFT;
1901     pgoff_t end_index = end >> PAGE_SHIFT;
1902     pgoff_t index = start_index;
1903     unsigned long nr_pages = end_index - start_index + 1;
1904     unsigned long pages_processed = 0;
1905     struct page *pages[16];
1906     int err = 0;
1907     int i;
1908 
1909     if (page_ops & PAGE_LOCK) {
1910         ASSERT(page_ops == PAGE_LOCK);
1911         ASSERT(processed_end && *processed_end == start);
1912     }
1913 
1914     if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1915         mapping_set_error(mapping, -EIO);
1916 
1917     while (nr_pages > 0) {
1918         int found_pages;
1919 
1920         found_pages = find_get_pages_contig(mapping, index,
1921                      min_t(unsigned long,
1922                      nr_pages, ARRAY_SIZE(pages)), pages);
1923         if (found_pages == 0) {
1924             /*
1925              * Only if we're going to lock these pages, we can find
1926              * nothing at @index.
1927              */
1928             ASSERT(page_ops & PAGE_LOCK);
1929             err = -EAGAIN;
1930             goto out;
1931         }
1932 
1933         for (i = 0; i < found_pages; i++) {
1934             int process_ret;
1935 
1936             process_ret = process_one_page(fs_info, mapping,
1937                     pages[i], locked_page, page_ops,
1938                     start, end);
1939             if (process_ret < 0) {
1940                 for (; i < found_pages; i++)
1941                     put_page(pages[i]);
1942                 err = -EAGAIN;
1943                 goto out;
1944             }
1945             put_page(pages[i]);
1946             pages_processed++;
1947         }
1948         nr_pages -= found_pages;
1949         index += found_pages;
1950         cond_resched();
1951     }
1952 out:
1953     if (err && processed_end) {
1954         /*
1955          * Update @processed_end. I know this is awful since it has
1956          * two different return value patterns (inclusive vs exclusive).
1957          *
1958          * But the exclusive pattern is necessary if @start is 0, or we
1959          * underflow and check against processed_end won't work as
1960          * expected.
1961          */
1962         if (pages_processed)
1963             *processed_end = min(end,
1964             ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
1965         else
1966             *processed_end = start;
1967     }
1968     return err;
1969 }
1970 
1971 static noinline void __unlock_for_delalloc(struct inode *inode,
1972                        struct page *locked_page,
1973                        u64 start, u64 end)
1974 {
1975     unsigned long index = start >> PAGE_SHIFT;
1976     unsigned long end_index = end >> PAGE_SHIFT;
1977 
1978     ASSERT(locked_page);
1979     if (index == locked_page->index && end_index == index)
1980         return;
1981 
1982     __process_pages_contig(inode->i_mapping, locked_page, start, end,
1983                    PAGE_UNLOCK, NULL);
1984 }
1985 
1986 static noinline int lock_delalloc_pages(struct inode *inode,
1987                     struct page *locked_page,
1988                     u64 delalloc_start,
1989                     u64 delalloc_end)
1990 {
1991     unsigned long index = delalloc_start >> PAGE_SHIFT;
1992     unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1993     u64 processed_end = delalloc_start;
1994     int ret;
1995 
1996     ASSERT(locked_page);
1997     if (index == locked_page->index && index == end_index)
1998         return 0;
1999 
2000     ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
2001                      delalloc_end, PAGE_LOCK, &processed_end);
2002     if (ret == -EAGAIN && processed_end > delalloc_start)
2003         __unlock_for_delalloc(inode, locked_page, delalloc_start,
2004                       processed_end);
2005     return ret;
2006 }
2007 
2008 /*
2009  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
2010  * more than @max_bytes.
2011  *
2012  * @start:  The original start bytenr to search.
2013  *      Will store the extent range start bytenr.
2014  * @end:    The original end bytenr of the search range
2015  *      Will store the extent range end bytenr.
2016  *
2017  * Return true if we find a delalloc range which starts inside the original
2018  * range, and @start/@end will store the delalloc range start/end.
2019  *
2020  * Return false if we can't find any delalloc range which starts inside the
2021  * original range, and @start/@end will be the non-delalloc range start/end.
2022  */
2023 EXPORT_FOR_TESTS
2024 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
2025                     struct page *locked_page, u64 *start,
2026                     u64 *end)
2027 {
2028     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2029     struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2030     const u64 orig_start = *start;
2031     const u64 orig_end = *end;
2032     /* The sanity tests may not set a valid fs_info. */
2033     u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
2034     u64 delalloc_start;
2035     u64 delalloc_end;
2036     bool found;
2037     struct extent_state *cached_state = NULL;
2038     int ret;
2039     int loops = 0;
2040 
2041     /* Caller should pass a valid @end to indicate the search range end */
2042     ASSERT(orig_end > orig_start);
2043 
2044     /* The range should at least cover part of the page */
2045     ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
2046          orig_end <= page_offset(locked_page)));
2047 again:
2048     /* step one, find a bunch of delalloc bytes starting at start */
2049     delalloc_start = *start;
2050     delalloc_end = 0;
2051     found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
2052                       max_bytes, &cached_state);
2053     if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
2054         *start = delalloc_start;
2055 
2056         /* @delalloc_end can be -1, never go beyond @orig_end */
2057         *end = min(delalloc_end, orig_end);
2058         free_extent_state(cached_state);
2059         return false;
2060     }
2061 
2062     /*
2063      * start comes from the offset of locked_page.  We have to lock
2064      * pages in order, so we can't process delalloc bytes before
2065      * locked_page
2066      */
2067     if (delalloc_start < *start)
2068         delalloc_start = *start;
2069 
2070     /*
2071      * make sure to limit the number of pages we try to lock down
2072      */
2073     if (delalloc_end + 1 - delalloc_start > max_bytes)
2074         delalloc_end = delalloc_start + max_bytes - 1;
2075 
2076     /* step two, lock all the pages after the page that has start */
2077     ret = lock_delalloc_pages(inode, locked_page,
2078                   delalloc_start, delalloc_end);
2079     ASSERT(!ret || ret == -EAGAIN);
2080     if (ret == -EAGAIN) {
2081         /* some of the pages are gone, lets avoid looping by
2082          * shortening the size of the delalloc range we're searching
2083          */
2084         free_extent_state(cached_state);
2085         cached_state = NULL;
2086         if (!loops) {
2087             max_bytes = PAGE_SIZE;
2088             loops = 1;
2089             goto again;
2090         } else {
2091             found = false;
2092             goto out_failed;
2093         }
2094     }
2095 
2096     /* step three, lock the state bits for the whole range */
2097     lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
2098 
2099     /* then test to make sure it is all still delalloc */
2100     ret = test_range_bit(tree, delalloc_start, delalloc_end,
2101                  EXTENT_DELALLOC, 1, cached_state);
2102     if (!ret) {
2103         unlock_extent_cached(tree, delalloc_start, delalloc_end,
2104                      &cached_state);
2105         __unlock_for_delalloc(inode, locked_page,
2106                   delalloc_start, delalloc_end);
2107         cond_resched();
2108         goto again;
2109     }
2110     free_extent_state(cached_state);
2111     *start = delalloc_start;
2112     *end = delalloc_end;
2113 out_failed:
2114     return found;
2115 }
2116 
2117 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2118                   struct page *locked_page,
2119                   u32 clear_bits, unsigned long page_ops)
2120 {
2121     clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2122 
2123     __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2124                    start, end, page_ops, NULL);
2125 }
2126 
2127 /*
2128  * count the number of bytes in the tree that have a given bit(s)
2129  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2130  * cached.  The total number found is returned.
2131  */
2132 u64 count_range_bits(struct extent_io_tree *tree,
2133              u64 *start, u64 search_end, u64 max_bytes,
2134              u32 bits, int contig)
2135 {
2136     struct rb_node *node;
2137     struct extent_state *state;
2138     u64 cur_start = *start;
2139     u64 total_bytes = 0;
2140     u64 last = 0;
2141     int found = 0;
2142 
2143     if (WARN_ON(search_end <= cur_start))
2144         return 0;
2145 
2146     spin_lock(&tree->lock);
2147     if (cur_start == 0 && bits == EXTENT_DIRTY) {
2148         total_bytes = tree->dirty_bytes;
2149         goto out;
2150     }
2151     /*
2152      * this search will find all the extents that end after
2153      * our range starts.
2154      */
2155     node = tree_search(tree, cur_start);
2156     if (!node)
2157         goto out;
2158 
2159     while (1) {
2160         state = rb_entry(node, struct extent_state, rb_node);
2161         if (state->start > search_end)
2162             break;
2163         if (contig && found && state->start > last + 1)
2164             break;
2165         if (state->end >= cur_start && (state->state & bits) == bits) {
2166             total_bytes += min(search_end, state->end) + 1 -
2167                        max(cur_start, state->start);
2168             if (total_bytes >= max_bytes)
2169                 break;
2170             if (!found) {
2171                 *start = max(cur_start, state->start);
2172                 found = 1;
2173             }
2174             last = state->end;
2175         } else if (contig && found) {
2176             break;
2177         }
2178         node = rb_next(node);
2179         if (!node)
2180             break;
2181     }
2182 out:
2183     spin_unlock(&tree->lock);
2184     return total_bytes;
2185 }
2186 
2187 /*
2188  * set the private field for a given byte offset in the tree.  If there isn't
2189  * an extent_state there already, this does nothing.
2190  */
2191 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2192               struct io_failure_record *failrec)
2193 {
2194     struct rb_node *node;
2195     struct extent_state *state;
2196     int ret = 0;
2197 
2198     spin_lock(&tree->lock);
2199     /*
2200      * this search will find all the extents that end after
2201      * our range starts.
2202      */
2203     node = tree_search(tree, start);
2204     if (!node) {
2205         ret = -ENOENT;
2206         goto out;
2207     }
2208     state = rb_entry(node, struct extent_state, rb_node);
2209     if (state->start != start) {
2210         ret = -ENOENT;
2211         goto out;
2212     }
2213     state->failrec = failrec;
2214 out:
2215     spin_unlock(&tree->lock);
2216     return ret;
2217 }
2218 
2219 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2220 {
2221     struct rb_node *node;
2222     struct extent_state *state;
2223     struct io_failure_record *failrec;
2224 
2225     spin_lock(&tree->lock);
2226     /*
2227      * this search will find all the extents that end after
2228      * our range starts.
2229      */
2230     node = tree_search(tree, start);
2231     if (!node) {
2232         failrec = ERR_PTR(-ENOENT);
2233         goto out;
2234     }
2235     state = rb_entry(node, struct extent_state, rb_node);
2236     if (state->start != start) {
2237         failrec = ERR_PTR(-ENOENT);
2238         goto out;
2239     }
2240 
2241     failrec = state->failrec;
2242 out:
2243     spin_unlock(&tree->lock);
2244     return failrec;
2245 }
2246 
2247 /*
2248  * searches a range in the state tree for a given mask.
2249  * If 'filled' == 1, this returns 1 only if every extent in the tree
2250  * has the bits set.  Otherwise, 1 is returned if any bit in the
2251  * range is found set.
2252  */
2253 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2254            u32 bits, int filled, struct extent_state *cached)
2255 {
2256     struct extent_state *state = NULL;
2257     struct rb_node *node;
2258     int bitset = 0;
2259 
2260     spin_lock(&tree->lock);
2261     if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2262         cached->end > start)
2263         node = &cached->rb_node;
2264     else
2265         node = tree_search(tree, start);
2266     while (node && start <= end) {
2267         state = rb_entry(node, struct extent_state, rb_node);
2268 
2269         if (filled && state->start > start) {
2270             bitset = 0;
2271             break;
2272         }
2273 
2274         if (state->start > end)
2275             break;
2276 
2277         if (state->state & bits) {
2278             bitset = 1;
2279             if (!filled)
2280                 break;
2281         } else if (filled) {
2282             bitset = 0;
2283             break;
2284         }
2285 
2286         if (state->end == (u64)-1)
2287             break;
2288 
2289         start = state->end + 1;
2290         if (start > end)
2291             break;
2292         node = rb_next(node);
2293         if (!node) {
2294             if (filled)
2295                 bitset = 0;
2296             break;
2297         }
2298     }
2299     spin_unlock(&tree->lock);
2300     return bitset;
2301 }
2302 
2303 int free_io_failure(struct extent_io_tree *failure_tree,
2304             struct extent_io_tree *io_tree,
2305             struct io_failure_record *rec)
2306 {
2307     int ret;
2308     int err = 0;
2309 
2310     set_state_failrec(failure_tree, rec->start, NULL);
2311     ret = clear_extent_bits(failure_tree, rec->start,
2312                 rec->start + rec->len - 1,
2313                 EXTENT_LOCKED | EXTENT_DIRTY);
2314     if (ret)
2315         err = ret;
2316 
2317     ret = clear_extent_bits(io_tree, rec->start,
2318                 rec->start + rec->len - 1,
2319                 EXTENT_DAMAGED);
2320     if (ret && !err)
2321         err = ret;
2322 
2323     kfree(rec);
2324     return err;
2325 }
2326 
2327 /*
2328  * this bypasses the standard btrfs submit functions deliberately, as
2329  * the standard behavior is to write all copies in a raid setup. here we only
2330  * want to write the one bad copy. so we do the mapping for ourselves and issue
2331  * submit_bio directly.
2332  * to avoid any synchronization issues, wait for the data after writing, which
2333  * actually prevents the read that triggered the error from finishing.
2334  * currently, there can be no more than two copies of every data bit. thus,
2335  * exactly one rewrite is required.
2336  */
2337 static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2338                  u64 length, u64 logical, struct page *page,
2339                  unsigned int pg_offset, int mirror_num)
2340 {
2341     struct btrfs_device *dev;
2342     struct bio_vec bvec;
2343     struct bio bio;
2344     u64 map_length = 0;
2345     u64 sector;
2346     struct btrfs_io_context *bioc = NULL;
2347     int ret = 0;
2348 
2349     ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2350     BUG_ON(!mirror_num);
2351 
2352     if (btrfs_repair_one_zone(fs_info, logical))
2353         return 0;
2354 
2355     map_length = length;
2356 
2357     /*
2358      * Avoid races with device replace and make sure our bioc has devices
2359      * associated to its stripes that don't go away while we are doing the
2360      * read repair operation.
2361      */
2362     btrfs_bio_counter_inc_blocked(fs_info);
2363     if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2364         /*
2365          * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2366          * to update all raid stripes, but here we just want to correct
2367          * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2368          * stripe's dev and sector.
2369          */
2370         ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2371                       &map_length, &bioc, 0);
2372         if (ret)
2373             goto out_counter_dec;
2374         ASSERT(bioc->mirror_num == 1);
2375     } else {
2376         ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2377                       &map_length, &bioc, mirror_num);
2378         if (ret)
2379             goto out_counter_dec;
2380         BUG_ON(mirror_num != bioc->mirror_num);
2381     }
2382 
2383     sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
2384     dev = bioc->stripes[bioc->mirror_num - 1].dev;
2385     btrfs_put_bioc(bioc);
2386 
2387     if (!dev || !dev->bdev ||
2388         !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2389         ret = -EIO;
2390         goto out_counter_dec;
2391     }
2392 
2393     bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
2394     bio.bi_iter.bi_sector = sector;
2395     __bio_add_page(&bio, page, length, pg_offset);
2396 
2397     btrfsic_check_bio(&bio);
2398     ret = submit_bio_wait(&bio);
2399     if (ret) {
2400         /* try to remap that extent elsewhere? */
2401         btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2402         goto out_bio_uninit;
2403     }
2404 
2405     btrfs_info_rl_in_rcu(fs_info,
2406         "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2407                   ino, start,
2408                   rcu_str_deref(dev->name), sector);
2409     ret = 0;
2410 
2411 out_bio_uninit:
2412     bio_uninit(&bio);
2413 out_counter_dec:
2414     btrfs_bio_counter_dec(fs_info);
2415     return ret;
2416 }
2417 
2418 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2419 {
2420     struct btrfs_fs_info *fs_info = eb->fs_info;
2421     u64 start = eb->start;
2422     int i, num_pages = num_extent_pages(eb);
2423     int ret = 0;
2424 
2425     if (sb_rdonly(fs_info->sb))
2426         return -EROFS;
2427 
2428     for (i = 0; i < num_pages; i++) {
2429         struct page *p = eb->pages[i];
2430 
2431         ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2432                     start - page_offset(p), mirror_num);
2433         if (ret)
2434             break;
2435         start += PAGE_SIZE;
2436     }
2437 
2438     return ret;
2439 }
2440 
2441 static int next_mirror(const struct io_failure_record *failrec, int cur_mirror)
2442 {
2443     if (cur_mirror == failrec->num_copies)
2444         return cur_mirror + 1 - failrec->num_copies;
2445     return cur_mirror + 1;
2446 }
2447 
2448 static int prev_mirror(const struct io_failure_record *failrec, int cur_mirror)
2449 {
2450     if (cur_mirror == 1)
2451         return failrec->num_copies;
2452     return cur_mirror - 1;
2453 }
2454 
2455 /*
2456  * each time an IO finishes, we do a fast check in the IO failure tree
2457  * to see if we need to process or clean up an io_failure_record
2458  */
2459 int clean_io_failure(struct btrfs_fs_info *fs_info,
2460              struct extent_io_tree *failure_tree,
2461              struct extent_io_tree *io_tree, u64 start,
2462              struct page *page, u64 ino, unsigned int pg_offset)
2463 {
2464     u64 private;
2465     struct io_failure_record *failrec;
2466     struct extent_state *state;
2467     int mirror;
2468     int ret;
2469 
2470     private = 0;
2471     ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2472                    EXTENT_DIRTY, 0);
2473     if (!ret)
2474         return 0;
2475 
2476     failrec = get_state_failrec(failure_tree, start);
2477     if (IS_ERR(failrec))
2478         return 0;
2479 
2480     BUG_ON(!failrec->this_mirror);
2481 
2482     if (sb_rdonly(fs_info->sb))
2483         goto out;
2484 
2485     spin_lock(&io_tree->lock);
2486     state = find_first_extent_bit_state(io_tree,
2487                         failrec->start,
2488                         EXTENT_LOCKED);
2489     spin_unlock(&io_tree->lock);
2490 
2491     if (!state || state->start > failrec->start ||
2492         state->end < failrec->start + failrec->len - 1)
2493         goto out;
2494 
2495     mirror = failrec->this_mirror;
2496     do {
2497         mirror = prev_mirror(failrec, mirror);
2498         repair_io_failure(fs_info, ino, start, failrec->len,
2499                   failrec->logical, page, pg_offset, mirror);
2500     } while (mirror != failrec->failed_mirror);
2501 
2502 out:
2503     free_io_failure(failure_tree, io_tree, failrec);
2504     return 0;
2505 }
2506 
2507 /*
2508  * Can be called when
2509  * - hold extent lock
2510  * - under ordered extent
2511  * - the inode is freeing
2512  */
2513 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2514 {
2515     struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2516     struct io_failure_record *failrec;
2517     struct extent_state *state, *next;
2518 
2519     if (RB_EMPTY_ROOT(&failure_tree->state))
2520         return;
2521 
2522     spin_lock(&failure_tree->lock);
2523     state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2524     while (state) {
2525         if (state->start > end)
2526             break;
2527 
2528         ASSERT(state->end <= end);
2529 
2530         next = next_state(state);
2531 
2532         failrec = state->failrec;
2533         free_extent_state(state);
2534         kfree(failrec);
2535 
2536         state = next;
2537     }
2538     spin_unlock(&failure_tree->lock);
2539 }
2540 
2541 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2542                                  struct btrfs_bio *bbio,
2543                                  unsigned int bio_offset)
2544 {
2545     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2546     u64 start = bbio->file_offset + bio_offset;
2547     struct io_failure_record *failrec;
2548     struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2549     struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2550     const u32 sectorsize = fs_info->sectorsize;
2551     int ret;
2552 
2553     failrec = get_state_failrec(failure_tree, start);
2554     if (!IS_ERR(failrec)) {
2555         btrfs_debug(fs_info,
2556     "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
2557             failrec->logical, failrec->start, failrec->len);
2558         /*
2559          * when data can be on disk more than twice, add to failrec here
2560          * (e.g. with a list for failed_mirror) to make
2561          * clean_io_failure() clean all those errors at once.
2562          */
2563         ASSERT(failrec->this_mirror == bbio->mirror_num);
2564         ASSERT(failrec->len == fs_info->sectorsize);
2565         return failrec;
2566     }
2567 
2568     failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2569     if (!failrec)
2570         return ERR_PTR(-ENOMEM);
2571 
2572     failrec->start = start;
2573     failrec->len = sectorsize;
2574     failrec->failed_mirror = bbio->mirror_num;
2575     failrec->this_mirror = bbio->mirror_num;
2576     failrec->logical = (bbio->iter.bi_sector << SECTOR_SHIFT) + bio_offset;
2577 
2578     btrfs_debug(fs_info,
2579             "new io failure record logical %llu start %llu",
2580             failrec->logical, start);
2581 
2582     failrec->num_copies = btrfs_num_copies(fs_info, failrec->logical, sectorsize);
2583     if (failrec->num_copies == 1) {
2584         /*
2585          * We only have a single copy of the data, so don't bother with
2586          * all the retry and error correction code that follows. No
2587          * matter what the error is, it is very likely to persist.
2588          */
2589         btrfs_debug(fs_info,
2590             "cannot repair logical %llu num_copies %d",
2591             failrec->logical, failrec->num_copies);
2592         kfree(failrec);
2593         return ERR_PTR(-EIO);
2594     }
2595 
2596     /* Set the bits in the private failure tree */
2597     ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2598                   EXTENT_LOCKED | EXTENT_DIRTY);
2599     if (ret >= 0) {
2600         ret = set_state_failrec(failure_tree, start, failrec);
2601         /* Set the bits in the inode's tree */
2602         ret = set_extent_bits(tree, start, start + sectorsize - 1,
2603                       EXTENT_DAMAGED);
2604     } else if (ret < 0) {
2605         kfree(failrec);
2606         return ERR_PTR(ret);
2607     }
2608 
2609     return failrec;
2610 }
2611 
2612 int btrfs_repair_one_sector(struct inode *inode, struct btrfs_bio *failed_bbio,
2613                 u32 bio_offset, struct page *page, unsigned int pgoff,
2614                 submit_bio_hook_t *submit_bio_hook)
2615 {
2616     u64 start = failed_bbio->file_offset + bio_offset;
2617     struct io_failure_record *failrec;
2618     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2619     struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2620     struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2621     struct bio *failed_bio = &failed_bbio->bio;
2622     const int icsum = bio_offset >> fs_info->sectorsize_bits;
2623     struct bio *repair_bio;
2624     struct btrfs_bio *repair_bbio;
2625 
2626     btrfs_debug(fs_info,
2627            "repair read error: read error at %llu", start);
2628 
2629     BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2630 
2631     failrec = btrfs_get_io_failure_record(inode, failed_bbio, bio_offset);
2632     if (IS_ERR(failrec))
2633         return PTR_ERR(failrec);
2634 
2635     /*
2636      * There are two premises:
2637      * a) deliver good data to the caller
2638      * b) correct the bad sectors on disk
2639      *
2640      * Since we're only doing repair for one sector, we only need to get
2641      * a good copy of the failed sector and if we succeed, we have setup
2642      * everything for repair_io_failure to do the rest for us.
2643      */
2644     failrec->this_mirror = next_mirror(failrec, failrec->this_mirror);
2645     if (failrec->this_mirror == failrec->failed_mirror) {
2646         btrfs_debug(fs_info,
2647             "failed to repair num_copies %d this_mirror %d failed_mirror %d",
2648             failrec->num_copies, failrec->this_mirror, failrec->failed_mirror);
2649         free_io_failure(failure_tree, tree, failrec);
2650         return -EIO;
2651     }
2652 
2653     repair_bio = btrfs_bio_alloc(1);
2654     repair_bbio = btrfs_bio(repair_bio);
2655     repair_bbio->file_offset = start;
2656     repair_bio->bi_opf = REQ_OP_READ;
2657     repair_bio->bi_end_io = failed_bio->bi_end_io;
2658     repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2659     repair_bio->bi_private = failed_bio->bi_private;
2660 
2661     if (failed_bbio->csum) {
2662         const u32 csum_size = fs_info->csum_size;
2663 
2664         repair_bbio->csum = repair_bbio->csum_inline;
2665         memcpy(repair_bbio->csum,
2666                failed_bbio->csum + csum_size * icsum, csum_size);
2667     }
2668 
2669     bio_add_page(repair_bio, page, failrec->len, pgoff);
2670     repair_bbio->iter = repair_bio->bi_iter;
2671 
2672     btrfs_debug(btrfs_sb(inode->i_sb),
2673             "repair read error: submitting new read to mirror %d",
2674             failrec->this_mirror);
2675 
2676     /*
2677      * At this point we have a bio, so any errors from submit_bio_hook()
2678      * will be handled by the endio on the repair_bio, so we can't return an
2679      * error here.
2680      */
2681     submit_bio_hook(inode, repair_bio, failrec->this_mirror, 0);
2682     return BLK_STS_OK;
2683 }
2684 
2685 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2686 {
2687     struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2688 
2689     ASSERT(page_offset(page) <= start &&
2690            start + len <= page_offset(page) + PAGE_SIZE);
2691 
2692     if (uptodate) {
2693         if (fsverity_active(page->mapping->host) &&
2694             !PageError(page) &&
2695             !PageUptodate(page) &&
2696             start < i_size_read(page->mapping->host) &&
2697             !fsverity_verify_page(page)) {
2698             btrfs_page_set_error(fs_info, page, start, len);
2699         } else {
2700             btrfs_page_set_uptodate(fs_info, page, start, len);
2701         }
2702     } else {
2703         btrfs_page_clear_uptodate(fs_info, page, start, len);
2704         btrfs_page_set_error(fs_info, page, start, len);
2705     }
2706 
2707     if (!btrfs_is_subpage(fs_info, page))
2708         unlock_page(page);
2709     else
2710         btrfs_subpage_end_reader(fs_info, page, start, len);
2711 }
2712 
2713 static void end_sector_io(struct page *page, u64 offset, bool uptodate)
2714 {
2715     struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
2716     const u32 sectorsize = inode->root->fs_info->sectorsize;
2717     struct extent_state *cached = NULL;
2718 
2719     end_page_read(page, uptodate, offset, sectorsize);
2720     if (uptodate)
2721         set_extent_uptodate(&inode->io_tree, offset,
2722                     offset + sectorsize - 1, &cached, GFP_ATOMIC);
2723     unlock_extent_cached_atomic(&inode->io_tree, offset,
2724                     offset + sectorsize - 1, &cached);
2725 }
2726 
2727 static void submit_data_read_repair(struct inode *inode,
2728                     struct btrfs_bio *failed_bbio,
2729                     u32 bio_offset, const struct bio_vec *bvec,
2730                     unsigned int error_bitmap)
2731 {
2732     const unsigned int pgoff = bvec->bv_offset;
2733     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2734     struct page *page = bvec->bv_page;
2735     const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset;
2736     const u64 end = start + bvec->bv_len - 1;
2737     const u32 sectorsize = fs_info->sectorsize;
2738     const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
2739     int i;
2740 
2741     BUG_ON(bio_op(&failed_bbio->bio) == REQ_OP_WRITE);
2742 
2743     /* This repair is only for data */
2744     ASSERT(is_data_inode(inode));
2745 
2746     /* We're here because we had some read errors or csum mismatch */
2747     ASSERT(error_bitmap);
2748 
2749     /*
2750      * We only get called on buffered IO, thus page must be mapped and bio
2751      * must not be cloned.
2752      */
2753     ASSERT(page->mapping && !bio_flagged(&failed_bbio->bio, BIO_CLONED));
2754 
2755     /* Iterate through all the sectors in the range */
2756     for (i = 0; i < nr_bits; i++) {
2757         const unsigned int offset = i * sectorsize;
2758         bool uptodate = false;
2759         int ret;
2760 
2761         if (!(error_bitmap & (1U << i))) {
2762             /*
2763              * This sector has no error, just end the page read
2764              * and unlock the range.
2765              */
2766             uptodate = true;
2767             goto next;
2768         }
2769 
2770         ret = btrfs_repair_one_sector(inode, failed_bbio,
2771                 bio_offset + offset, page, pgoff + offset,
2772                 btrfs_submit_data_read_bio);
2773         if (!ret) {
2774             /*
2775              * We have submitted the read repair, the page release
2776              * will be handled by the endio function of the
2777              * submitted repair bio.
2778              * Thus we don't need to do any thing here.
2779              */
2780             continue;
2781         }
2782         /*
2783          * Continue on failed repair, otherwise the remaining sectors
2784          * will not be properly unlocked.
2785          */
2786 next:
2787         end_sector_io(page, start + offset, uptodate);
2788     }
2789 }
2790 
2791 /* lots and lots of room for performance fixes in the end_bio funcs */
2792 
2793 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2794 {
2795     struct btrfs_inode *inode;
2796     const bool uptodate = (err == 0);
2797     int ret = 0;
2798 
2799     ASSERT(page && page->mapping);
2800     inode = BTRFS_I(page->mapping->host);
2801     btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2802 
2803     if (!uptodate) {
2804         const struct btrfs_fs_info *fs_info = inode->root->fs_info;
2805         u32 len;
2806 
2807         ASSERT(end + 1 - start <= U32_MAX);
2808         len = end + 1 - start;
2809 
2810         btrfs_page_clear_uptodate(fs_info, page, start, len);
2811         btrfs_page_set_error(fs_info, page, start, len);
2812         ret = err < 0 ? err : -EIO;
2813         mapping_set_error(page->mapping, ret);
2814     }
2815 }
2816 
2817 /*
2818  * after a writepage IO is done, we need to:
2819  * clear the uptodate bits on error
2820  * clear the writeback bits in the extent tree for this IO
2821  * end_page_writeback if the page has no more pending IO
2822  *
2823  * Scheduling is not allowed, so the extent state tree is expected
2824  * to have one and only one object corresponding to this IO.
2825  */
2826 static void end_bio_extent_writepage(struct bio *bio)
2827 {
2828     int error = blk_status_to_errno(bio->bi_status);
2829     struct bio_vec *bvec;
2830     u64 start;
2831     u64 end;
2832     struct bvec_iter_all iter_all;
2833     bool first_bvec = true;
2834 
2835     ASSERT(!bio_flagged(bio, BIO_CLONED));
2836     bio_for_each_segment_all(bvec, bio, iter_all) {
2837         struct page *page = bvec->bv_page;
2838         struct inode *inode = page->mapping->host;
2839         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2840         const u32 sectorsize = fs_info->sectorsize;
2841 
2842         /* Our read/write should always be sector aligned. */
2843         if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2844             btrfs_err(fs_info,
2845         "partial page write in btrfs with offset %u and length %u",
2846                   bvec->bv_offset, bvec->bv_len);
2847         else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
2848             btrfs_info(fs_info,
2849         "incomplete page write with offset %u and length %u",
2850                    bvec->bv_offset, bvec->bv_len);
2851 
2852         start = page_offset(page) + bvec->bv_offset;
2853         end = start + bvec->bv_len - 1;
2854 
2855         if (first_bvec) {
2856             btrfs_record_physical_zoned(inode, start, bio);
2857             first_bvec = false;
2858         }
2859 
2860         end_extent_writepage(page, error, start, end);
2861 
2862         btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2863     }
2864 
2865     bio_put(bio);
2866 }
2867 
2868 /*
2869  * Record previously processed extent range
2870  *
2871  * For endio_readpage_release_extent() to handle a full extent range, reducing
2872  * the extent io operations.
2873  */
2874 struct processed_extent {
2875     struct btrfs_inode *inode;
2876     /* Start of the range in @inode */
2877     u64 start;
2878     /* End of the range in @inode */
2879     u64 end;
2880     bool uptodate;
2881 };
2882 
2883 /*
2884  * Try to release processed extent range
2885  *
2886  * May not release the extent range right now if the current range is
2887  * contiguous to processed extent.
2888  *
2889  * Will release processed extent when any of @inode, @uptodate, the range is
2890  * no longer contiguous to the processed range.
2891  *
2892  * Passing @inode == NULL will force processed extent to be released.
2893  */
2894 static void endio_readpage_release_extent(struct processed_extent *processed,
2895                   struct btrfs_inode *inode, u64 start, u64 end,
2896                   bool uptodate)
2897 {
2898     struct extent_state *cached = NULL;
2899     struct extent_io_tree *tree;
2900 
2901     /* The first extent, initialize @processed */
2902     if (!processed->inode)
2903         goto update;
2904 
2905     /*
2906      * Contiguous to processed extent, just uptodate the end.
2907      *
2908      * Several things to notice:
2909      *
2910      * - bio can be merged as long as on-disk bytenr is contiguous
2911      *   This means we can have page belonging to other inodes, thus need to
2912      *   check if the inode still matches.
2913      * - bvec can contain range beyond current page for multi-page bvec
2914      *   Thus we need to do processed->end + 1 >= start check
2915      */
2916     if (processed->inode == inode && processed->uptodate == uptodate &&
2917         processed->end + 1 >= start && end >= processed->end) {
2918         processed->end = end;
2919         return;
2920     }
2921 
2922     tree = &processed->inode->io_tree;
2923     /*
2924      * Now we don't have range contiguous to the processed range, release
2925      * the processed range now.
2926      */
2927     if (processed->uptodate && tree->track_uptodate)
2928         set_extent_uptodate(tree, processed->start, processed->end,
2929                     &cached, GFP_ATOMIC);
2930     unlock_extent_cached_atomic(tree, processed->start, processed->end,
2931                     &cached);
2932 
2933 update:
2934     /* Update processed to current range */
2935     processed->inode = inode;
2936     processed->start = start;
2937     processed->end = end;
2938     processed->uptodate = uptodate;
2939 }
2940 
2941 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
2942 {
2943     ASSERT(PageLocked(page));
2944     if (!btrfs_is_subpage(fs_info, page))
2945         return;
2946 
2947     ASSERT(PagePrivate(page));
2948     btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
2949 }
2950 
2951 /*
2952  * Find extent buffer for a givne bytenr.
2953  *
2954  * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
2955  * in endio context.
2956  */
2957 static struct extent_buffer *find_extent_buffer_readpage(
2958         struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
2959 {
2960     struct extent_buffer *eb;
2961 
2962     /*
2963      * For regular sectorsize, we can use page->private to grab extent
2964      * buffer
2965      */
2966     if (fs_info->nodesize >= PAGE_SIZE) {
2967         ASSERT(PagePrivate(page) && page->private);
2968         return (struct extent_buffer *)page->private;
2969     }
2970 
2971     /* For subpage case, we need to lookup buffer radix tree */
2972     rcu_read_lock();
2973     eb = radix_tree_lookup(&fs_info->buffer_radix,
2974                    bytenr >> fs_info->sectorsize_bits);
2975     rcu_read_unlock();
2976     ASSERT(eb);
2977     return eb;
2978 }
2979 
2980 /*
2981  * after a readpage IO is done, we need to:
2982  * clear the uptodate bits on error
2983  * set the uptodate bits if things worked
2984  * set the page up to date if all extents in the tree are uptodate
2985  * clear the lock bit in the extent tree
2986  * unlock the page if there are no other extents locked for it
2987  *
2988  * Scheduling is not allowed, so the extent state tree is expected
2989  * to have one and only one object corresponding to this IO.
2990  */
2991 static void end_bio_extent_readpage(struct bio *bio)
2992 {
2993     struct bio_vec *bvec;
2994     struct btrfs_bio *bbio = btrfs_bio(bio);
2995     struct extent_io_tree *tree, *failure_tree;
2996     struct processed_extent processed = { 0 };
2997     /*
2998      * The offset to the beginning of a bio, since one bio can never be
2999      * larger than UINT_MAX, u32 here is enough.
3000      */
3001     u32 bio_offset = 0;
3002     int mirror;
3003     struct bvec_iter_all iter_all;
3004 
3005     ASSERT(!bio_flagged(bio, BIO_CLONED));
3006     bio_for_each_segment_all(bvec, bio, iter_all) {
3007         bool uptodate = !bio->bi_status;
3008         struct page *page = bvec->bv_page;
3009         struct inode *inode = page->mapping->host;
3010         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3011         const u32 sectorsize = fs_info->sectorsize;
3012         unsigned int error_bitmap = (unsigned int)-1;
3013         bool repair = false;
3014         u64 start;
3015         u64 end;
3016         u32 len;
3017 
3018         btrfs_debug(fs_info,
3019             "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
3020             bio->bi_iter.bi_sector, bio->bi_status,
3021             bbio->mirror_num);
3022         tree = &BTRFS_I(inode)->io_tree;
3023         failure_tree = &BTRFS_I(inode)->io_failure_tree;
3024 
3025         /*
3026          * We always issue full-sector reads, but if some block in a
3027          * page fails to read, blk_update_request() will advance
3028          * bv_offset and adjust bv_len to compensate.  Print a warning
3029          * for unaligned offsets, and an error if they don't add up to
3030          * a full sector.
3031          */
3032         if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
3033             btrfs_err(fs_info,
3034         "partial page read in btrfs with offset %u and length %u",
3035                   bvec->bv_offset, bvec->bv_len);
3036         else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
3037                      sectorsize))
3038             btrfs_info(fs_info,
3039         "incomplete page read with offset %u and length %u",
3040                    bvec->bv_offset, bvec->bv_len);
3041 
3042         start = page_offset(page) + bvec->bv_offset;
3043         end = start + bvec->bv_len - 1;
3044         len = bvec->bv_len;
3045 
3046         mirror = bbio->mirror_num;
3047         if (likely(uptodate)) {
3048             if (is_data_inode(inode)) {
3049                 error_bitmap = btrfs_verify_data_csum(bbio,
3050                         bio_offset, page, start, end);
3051                 if (error_bitmap)
3052                     uptodate = false;
3053             } else {
3054                 if (btrfs_validate_metadata_buffer(bbio,
3055                         page, start, end, mirror))
3056                     uptodate = false;
3057             }
3058         }
3059 
3060         if (likely(uptodate)) {
3061             loff_t i_size = i_size_read(inode);
3062             pgoff_t end_index = i_size >> PAGE_SHIFT;
3063 
3064             clean_io_failure(BTRFS_I(inode)->root->fs_info,
3065                      failure_tree, tree, start, page,
3066                      btrfs_ino(BTRFS_I(inode)), 0);
3067 
3068             /*
3069              * Zero out the remaining part if this range straddles
3070              * i_size.
3071              *
3072              * Here we should only zero the range inside the bvec,
3073              * not touch anything else.
3074              *
3075              * NOTE: i_size is exclusive while end is inclusive.
3076              */
3077             if (page->index == end_index && i_size <= end) {
3078                 u32 zero_start = max(offset_in_page(i_size),
3079                              offset_in_page(start));
3080 
3081                 zero_user_segment(page, zero_start,
3082                           offset_in_page(end) + 1);
3083             }
3084         } else if (is_data_inode(inode)) {
3085             /*
3086              * Only try to repair bios that actually made it to a
3087              * device.  If the bio failed to be submitted mirror
3088              * is 0 and we need to fail it without retrying.
3089              *
3090              * This also includes the high level bios for compressed
3091              * extents - these never make it to a device and repair
3092              * is already handled on the lower compressed bio.
3093              */
3094             if (mirror > 0)
3095                 repair = true;
3096         } else {
3097             struct extent_buffer *eb;
3098 
3099             eb = find_extent_buffer_readpage(fs_info, page, start);
3100             set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3101             eb->read_mirror = mirror;
3102             atomic_dec(&eb->io_pages);
3103         }
3104 
3105         if (repair) {
3106             /*
3107              * submit_data_read_repair() will handle all the good
3108              * and bad sectors, we just continue to the next bvec.
3109              */
3110             submit_data_read_repair(inode, bbio, bio_offset, bvec,
3111                         error_bitmap);
3112         } else {
3113             /* Update page status and unlock */
3114             end_page_read(page, uptodate, start, len);
3115             endio_readpage_release_extent(&processed, BTRFS_I(inode),
3116                     start, end, PageUptodate(page));
3117         }
3118 
3119         ASSERT(bio_offset + len > bio_offset);
3120         bio_offset += len;
3121 
3122     }
3123     /* Release the last extent */
3124     endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3125     btrfs_bio_free_csum(bbio);
3126     bio_put(bio);
3127 }
3128 
3129 /**
3130  * Populate every free slot in a provided array with pages.
3131  *
3132  * @nr_pages:   number of pages to allocate
3133  * @page_array: the array to fill with pages; any existing non-null entries in
3134  *      the array will be skipped
3135  *
3136  * Return: 0        if all pages were able to be allocated;
3137  *         -ENOMEM  otherwise, and the caller is responsible for freeing all
3138  *                  non-null page pointers in the array.
3139  */
3140 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
3141 {
3142     unsigned int allocated;
3143 
3144     for (allocated = 0; allocated < nr_pages;) {
3145         unsigned int last = allocated;
3146 
3147         allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
3148 
3149         if (allocated == nr_pages)
3150             return 0;
3151 
3152         /*
3153          * During this iteration, no page could be allocated, even
3154          * though alloc_pages_bulk_array() falls back to alloc_page()
3155          * if  it could not bulk-allocate. So we must be out of memory.
3156          */
3157         if (allocated == last)
3158             return -ENOMEM;
3159 
3160         memalloc_retry_wait(GFP_NOFS);
3161     }
3162     return 0;
3163 }
3164 
3165 /*
3166  * Initialize the members up to but not including 'bio'. Use after allocating a
3167  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3168  * 'bio' because use of __GFP_ZERO is not supported.
3169  */
3170 static inline void btrfs_bio_init(struct btrfs_bio *bbio)
3171 {
3172     memset(bbio, 0, offsetof(struct btrfs_bio, bio));
3173 }
3174 
3175 /*
3176  * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs.
3177  *
3178  * The bio allocation is backed by bioset and does not fail.
3179  */
3180 struct bio *btrfs_bio_alloc(unsigned int nr_iovecs)
3181 {
3182     struct bio *bio;
3183 
3184     ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS);
3185     bio = bio_alloc_bioset(NULL, nr_iovecs, 0, GFP_NOFS, &btrfs_bioset);
3186     btrfs_bio_init(btrfs_bio(bio));
3187     return bio;
3188 }
3189 
3190 struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size)
3191 {
3192     struct bio *bio;
3193     struct btrfs_bio *bbio;
3194 
3195     ASSERT(offset <= UINT_MAX && size <= UINT_MAX);
3196 
3197     /* this will never fail when it's backed by a bioset */
3198     bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset);
3199     ASSERT(bio);
3200 
3201     bbio = btrfs_bio(bio);
3202     btrfs_bio_init(bbio);
3203 
3204     bio_trim(bio, offset >> 9, size >> 9);
3205     bbio->iter = bio->bi_iter;
3206     return bio;
3207 }
3208 
3209 /**
3210  * Attempt to add a page to bio
3211  *
3212  * @bio_ctrl:   record both the bio, and its bio_flags
3213  * @page:   page to add to the bio
3214  * @disk_bytenr:  offset of the new bio or to check whether we are adding
3215  *                a contiguous page to the previous one
3216  * @size:   portion of page that we want to write
3217  * @pg_offset:  starting offset in the page
3218  * @compress_type:   compression type of the current bio to see if we can merge them
3219  *
3220  * Attempt to add a page to bio considering stripe alignment etc.
3221  *
3222  * Return >= 0 for the number of bytes added to the bio.
3223  * Can return 0 if the current bio is already at stripe/zone boundary.
3224  * Return <0 for error.
3225  */
3226 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
3227                   struct page *page,
3228                   u64 disk_bytenr, unsigned int size,
3229                   unsigned int pg_offset,
3230                   enum btrfs_compression_type compress_type)
3231 {
3232     struct bio *bio = bio_ctrl->bio;
3233     u32 bio_size = bio->bi_iter.bi_size;
3234     u32 real_size;
3235     const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3236     bool contig = false;
3237     int ret;
3238 
3239     ASSERT(bio);
3240     /* The limit should be calculated when bio_ctrl->bio is allocated */
3241     ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3242     if (bio_ctrl->compress_type != compress_type)
3243         return 0;
3244 
3245 
3246     if (bio->bi_iter.bi_size == 0) {
3247         /* We can always add a page into an empty bio. */
3248         contig = true;
3249     } else if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE) {
3250         struct bio_vec *bvec = bio_last_bvec_all(bio);
3251 
3252         /*
3253          * The contig check requires the following conditions to be met:
3254          * 1) The pages are belonging to the same inode
3255          *    This is implied by the call chain.
3256          *
3257          * 2) The range has adjacent logical bytenr
3258          *
3259          * 3) The range has adjacent file offset
3260          *    This is required for the usage of btrfs_bio->file_offset.
3261          */
3262         if (bio_end_sector(bio) == sector &&
3263             page_offset(bvec->bv_page) + bvec->bv_offset +
3264             bvec->bv_len == page_offset(page) + pg_offset)
3265             contig = true;
3266     } else {
3267         /*
3268          * For compression, all IO should have its logical bytenr
3269          * set to the starting bytenr of the compressed extent.
3270          */
3271         contig = bio->bi_iter.bi_sector == sector;
3272     }
3273 
3274     if (!contig)
3275         return 0;
3276 
3277     real_size = min(bio_ctrl->len_to_oe_boundary,
3278             bio_ctrl->len_to_stripe_boundary) - bio_size;
3279     real_size = min(real_size, size);
3280 
3281     /*
3282      * If real_size is 0, never call bio_add_*_page(), as even size is 0,
3283      * bio will still execute its endio function on the page!
3284      */
3285     if (real_size == 0)
3286         return 0;
3287 
3288     if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3289         ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
3290     else
3291         ret = bio_add_page(bio, page, real_size, pg_offset);
3292 
3293     return ret;
3294 }
3295 
3296 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3297                    struct btrfs_inode *inode, u64 file_offset)
3298 {
3299     struct btrfs_fs_info *fs_info = inode->root->fs_info;
3300     struct btrfs_io_geometry geom;
3301     struct btrfs_ordered_extent *ordered;
3302     struct extent_map *em;
3303     u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
3304     int ret;
3305 
3306     /*
3307      * Pages for compressed extent are never submitted to disk directly,
3308      * thus it has no real boundary, just set them to U32_MAX.
3309      *
3310      * The split happens for real compressed bio, which happens in
3311      * btrfs_submit_compressed_read/write().
3312      */
3313     if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
3314         bio_ctrl->len_to_oe_boundary = U32_MAX;
3315         bio_ctrl->len_to_stripe_boundary = U32_MAX;
3316         return 0;
3317     }
3318     em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
3319     if (IS_ERR(em))
3320         return PTR_ERR(em);
3321     ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
3322                     logical, &geom);
3323     free_extent_map(em);
3324     if (ret < 0) {
3325         return ret;
3326     }
3327     if (geom.len > U32_MAX)
3328         bio_ctrl->len_to_stripe_boundary = U32_MAX;
3329     else
3330         bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
3331 
3332     if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3333         bio_ctrl->len_to_oe_boundary = U32_MAX;
3334         return 0;
3335     }
3336 
3337     /* Ordered extent not yet created, so we're good */
3338     ordered = btrfs_lookup_ordered_extent(inode, file_offset);
3339     if (!ordered) {
3340         bio_ctrl->len_to_oe_boundary = U32_MAX;
3341         return 0;
3342     }
3343 
3344     bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
3345         ordered->disk_bytenr + ordered->disk_num_bytes - logical);
3346     btrfs_put_ordered_extent(ordered);
3347     return 0;
3348 }
3349 
3350 static int alloc_new_bio(struct btrfs_inode *inode,
3351              struct btrfs_bio_ctrl *bio_ctrl,
3352              struct writeback_control *wbc,
3353              blk_opf_t opf,
3354              bio_end_io_t end_io_func,
3355              u64 disk_bytenr, u32 offset, u64 file_offset,
3356              enum btrfs_compression_type compress_type)
3357 {
3358     struct btrfs_fs_info *fs_info = inode->root->fs_info;
3359     struct bio *bio;
3360     int ret;
3361 
3362     bio = btrfs_bio_alloc(BIO_MAX_VECS);
3363     /*
3364      * For compressed page range, its disk_bytenr is always @disk_bytenr
3365      * passed in, no matter if we have added any range into previous bio.
3366      */
3367     if (compress_type != BTRFS_COMPRESS_NONE)
3368         bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
3369     else
3370         bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
3371     bio_ctrl->bio = bio;
3372     bio_ctrl->compress_type = compress_type;
3373     bio->bi_end_io = end_io_func;
3374     bio->bi_opf = opf;
3375     ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
3376     if (ret < 0)
3377         goto error;
3378 
3379     if (wbc) {
3380         /*
3381          * For Zone append we need the correct block_device that we are
3382          * going to write to set in the bio to be able to respect the
3383          * hardware limitation.  Look it up here:
3384          */
3385         if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
3386             struct btrfs_device *dev;
3387 
3388             dev = btrfs_zoned_get_device(fs_info, disk_bytenr,
3389                              fs_info->sectorsize);
3390             if (IS_ERR(dev)) {
3391                 ret = PTR_ERR(dev);
3392                 goto error;
3393             }
3394 
3395             bio_set_dev(bio, dev->bdev);
3396         } else {
3397             /*
3398              * Otherwise pick the last added device to support
3399              * cgroup writeback.  For multi-device file systems this
3400              * means blk-cgroup policies have to always be set on the
3401              * last added/replaced device.  This is a bit odd but has
3402              * been like that for a long time.
3403              */
3404             bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev);
3405         }
3406         wbc_init_bio(wbc, bio);
3407     } else {
3408         ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND);
3409     }
3410     return 0;
3411 error:
3412     bio_ctrl->bio = NULL;
3413     bio->bi_status = errno_to_blk_status(ret);
3414     bio_endio(bio);
3415     return ret;
3416 }
3417 
3418 /*
3419  * @opf:    bio REQ_OP_* and REQ_* flags as one value
3420  * @wbc:    optional writeback control for io accounting
3421  * @page:   page to add to the bio
3422  * @disk_bytenr: logical bytenr where the write will be
3423  * @size:   portion of page that we want to write to
3424  * @pg_offset:  offset of the new bio or to check whether we are adding
3425  *              a contiguous page to the previous one
3426  * @bio_ret:    must be valid pointer, newly allocated bio will be stored there
3427  * @end_io_func:     end_io callback for new bio
3428  * @mirror_num:      desired mirror to read/write
3429  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3430  * @compress_type:   compress type for current bio
3431  */
3432 static int submit_extent_page(blk_opf_t opf,
3433                   struct writeback_control *wbc,
3434                   struct btrfs_bio_ctrl *bio_ctrl,
3435                   struct page *page, u64 disk_bytenr,
3436                   size_t size, unsigned long pg_offset,
3437                   bio_end_io_t end_io_func,
3438                   enum btrfs_compression_type compress_type,
3439                   bool force_bio_submit)
3440 {
3441     int ret = 0;
3442     struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3443     unsigned int cur = pg_offset;
3444 
3445     ASSERT(bio_ctrl);
3446 
3447     ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
3448            pg_offset + size <= PAGE_SIZE);
3449     if (force_bio_submit)
3450         submit_one_bio(bio_ctrl);
3451 
3452     while (cur < pg_offset + size) {
3453         u32 offset = cur - pg_offset;
3454         int added;
3455 
3456         /* Allocate new bio if needed */
3457         if (!bio_ctrl->bio) {
3458             ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
3459                         end_io_func, disk_bytenr, offset,
3460                         page_offset(page) + cur,
3461                         compress_type);
3462             if (ret < 0)
3463                 return ret;
3464         }
3465         /*
3466          * We must go through btrfs_bio_add_page() to ensure each
3467          * page range won't cross various boundaries.
3468          */
3469         if (compress_type != BTRFS_COMPRESS_NONE)
3470             added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
3471                     size - offset, pg_offset + offset,
3472                     compress_type);
3473         else
3474             added = btrfs_bio_add_page(bio_ctrl, page,
3475                     disk_bytenr + offset, size - offset,
3476                     pg_offset + offset, compress_type);
3477 
3478         /* Metadata page range should never be split */
3479         if (!is_data_inode(&inode->vfs_inode))
3480             ASSERT(added == 0 || added == size - offset);
3481 
3482         /* At least we added some page, update the account */
3483         if (wbc && added)
3484             wbc_account_cgroup_owner(wbc, page, added);
3485 
3486         /* We have reached boundary, submit right now */
3487         if (added < size - offset) {
3488             /* The bio should contain some page(s) */
3489             ASSERT(bio_ctrl->bio->bi_iter.bi_size);
3490             submit_one_bio(bio_ctrl);
3491         }
3492         cur += added;
3493     }
3494     return 0;
3495 }
3496 
3497 static int attach_extent_buffer_page(struct extent_buffer *eb,
3498                      struct page *page,
3499                      struct btrfs_subpage *prealloc)
3500 {
3501     struct btrfs_fs_info *fs_info = eb->fs_info;
3502     int ret = 0;
3503 
3504     /*
3505      * If the page is mapped to btree inode, we should hold the private
3506      * lock to prevent race.
3507      * For cloned or dummy extent buffers, their pages are not mapped and
3508      * will not race with any other ebs.
3509      */
3510     if (page->mapping)
3511         lockdep_assert_held(&page->mapping->private_lock);
3512 
3513     if (fs_info->nodesize >= PAGE_SIZE) {
3514         if (!PagePrivate(page))
3515             attach_page_private(page, eb);
3516         else
3517             WARN_ON(page->private != (unsigned long)eb);
3518         return 0;
3519     }
3520 
3521     /* Already mapped, just free prealloc */
3522     if (PagePrivate(page)) {
3523         btrfs_free_subpage(prealloc);
3524         return 0;
3525     }
3526 
3527     if (prealloc)
3528         /* Has preallocated memory for subpage */
3529         attach_page_private(page, prealloc);
3530     else
3531         /* Do new allocation to attach subpage */
3532         ret = btrfs_attach_subpage(fs_info, page,
3533                        BTRFS_SUBPAGE_METADATA);
3534     return ret;
3535 }
3536 
3537 int set_page_extent_mapped(struct page *page)
3538 {
3539     struct btrfs_fs_info *fs_info;
3540 
3541     ASSERT(page->mapping);
3542 
3543     if (PagePrivate(page))
3544         return 0;
3545 
3546     fs_info = btrfs_sb(page->mapping->host->i_sb);
3547 
3548     if (btrfs_is_subpage(fs_info, page))
3549         return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
3550 
3551     attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3552     return 0;
3553 }
3554 
3555 void clear_page_extent_mapped(struct page *page)
3556 {
3557     struct btrfs_fs_info *fs_info;
3558 
3559     ASSERT(page->mapping);
3560 
3561     if (!PagePrivate(page))
3562         return;
3563 
3564     fs_info = btrfs_sb(page->mapping->host->i_sb);
3565     if (btrfs_is_subpage(fs_info, page))
3566         return btrfs_detach_subpage(fs_info, page);
3567 
3568     detach_page_private(page);
3569 }
3570 
3571 static struct extent_map *
3572 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3573          u64 start, u64 len, struct extent_map **em_cached)
3574 {
3575     struct extent_map *em;
3576 
3577     if (em_cached && *em_cached) {
3578         em = *em_cached;
3579         if (extent_map_in_tree(em) && start >= em->start &&
3580             start < extent_map_end(em)) {
3581             refcount_inc(&em->refs);
3582             return em;
3583         }
3584 
3585         free_extent_map(em);
3586         *em_cached = NULL;
3587     }
3588 
3589     em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3590     if (em_cached && !IS_ERR(em)) {
3591         BUG_ON(*em_cached);
3592         refcount_inc(&em->refs);
3593         *em_cached = em;
3594     }
3595     return em;
3596 }
3597 /*
3598  * basic readpage implementation.  Locked extent state structs are inserted
3599  * into the tree that are removed when the IO is done (by the end_io
3600  * handlers)
3601  * XXX JDM: This needs looking at to ensure proper page locking
3602  * return 0 on success, otherwise return error
3603  */
3604 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3605               struct btrfs_bio_ctrl *bio_ctrl,
3606               blk_opf_t read_flags, u64 *prev_em_start)
3607 {
3608     struct inode *inode = page->mapping->host;
3609     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3610     u64 start = page_offset(page);
3611     const u64 end = start + PAGE_SIZE - 1;
3612     u64 cur = start;
3613     u64 extent_offset;
3614     u64 last_byte = i_size_read(inode);
3615     u64 block_start;
3616     u64 cur_end;
3617     struct extent_map *em;
3618     int ret = 0;
3619     size_t pg_offset = 0;
3620     size_t iosize;
3621     size_t blocksize = inode->i_sb->s_blocksize;
3622     struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3623 
3624     ret = set_page_extent_mapped(page);
3625     if (ret < 0) {
3626         unlock_extent(tree, start, end);
3627         btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
3628         unlock_page(page);
3629         goto out;
3630     }
3631 
3632     if (page->index == last_byte >> PAGE_SHIFT) {
3633         size_t zero_offset = offset_in_page(last_byte);
3634 
3635         if (zero_offset) {
3636             iosize = PAGE_SIZE - zero_offset;
3637             memzero_page(page, zero_offset, iosize);
3638         }
3639     }
3640     begin_page_read(fs_info, page);
3641     while (cur <= end) {
3642         unsigned long this_bio_flag = 0;
3643         bool force_bio_submit = false;
3644         u64 disk_bytenr;
3645 
3646         ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
3647         if (cur >= last_byte) {
3648             struct extent_state *cached = NULL;
3649 
3650             iosize = PAGE_SIZE - pg_offset;
3651             memzero_page(page, pg_offset, iosize);
3652             set_extent_uptodate(tree, cur, cur + iosize - 1,
3653                         &cached, GFP_NOFS);
3654             unlock_extent_cached(tree, cur,
3655                          cur + iosize - 1, &cached);
3656             end_page_read(page, true, cur, iosize);
3657             break;
3658         }
3659         em = __get_extent_map(inode, page, pg_offset, cur,
3660                       end - cur + 1, em_cached);
3661         if (IS_ERR(em)) {
3662             unlock_extent(tree, cur, end);
3663             end_page_read(page, false, cur, end + 1 - cur);
3664             ret = PTR_ERR(em);
3665             break;
3666         }
3667         extent_offset = cur - em->start;
3668         BUG_ON(extent_map_end(em) <= cur);
3669         BUG_ON(end < cur);
3670 
3671         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3672             this_bio_flag = em->compress_type;
3673 
3674         iosize = min(extent_map_end(em) - cur, end - cur + 1);
3675         cur_end = min(extent_map_end(em) - 1, end);
3676         iosize = ALIGN(iosize, blocksize);
3677         if (this_bio_flag != BTRFS_COMPRESS_NONE)
3678             disk_bytenr = em->block_start;
3679         else
3680             disk_bytenr = em->block_start + extent_offset;
3681         block_start = em->block_start;
3682         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3683             block_start = EXTENT_MAP_HOLE;
3684 
3685         /*
3686          * If we have a file range that points to a compressed extent
3687          * and it's followed by a consecutive file range that points
3688          * to the same compressed extent (possibly with a different
3689          * offset and/or length, so it either points to the whole extent
3690          * or only part of it), we must make sure we do not submit a
3691          * single bio to populate the pages for the 2 ranges because
3692          * this makes the compressed extent read zero out the pages
3693          * belonging to the 2nd range. Imagine the following scenario:
3694          *
3695          *  File layout
3696          *  [0 - 8K]                     [8K - 24K]
3697          *    |                               |
3698          *    |                               |
3699          * points to extent X,         points to extent X,
3700          * offset 4K, length of 8K     offset 0, length 16K
3701          *
3702          * [extent X, compressed length = 4K uncompressed length = 16K]
3703          *
3704          * If the bio to read the compressed extent covers both ranges,
3705          * it will decompress extent X into the pages belonging to the
3706          * first range and then it will stop, zeroing out the remaining
3707          * pages that belong to the other range that points to extent X.
3708          * So here we make sure we submit 2 bios, one for the first
3709          * range and another one for the third range. Both will target
3710          * the same physical extent from disk, but we can't currently
3711          * make the compressed bio endio callback populate the pages
3712          * for both ranges because each compressed bio is tightly
3713          * coupled with a single extent map, and each range can have
3714          * an extent map with a different offset value relative to the
3715          * uncompressed data of our extent and different lengths. This
3716          * is a corner case so we prioritize correctness over
3717          * non-optimal behavior (submitting 2 bios for the same extent).
3718          */
3719         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3720             prev_em_start && *prev_em_start != (u64)-1 &&
3721             *prev_em_start != em->start)
3722             force_bio_submit = true;
3723 
3724         if (prev_em_start)
3725             *prev_em_start = em->start;
3726 
3727         free_extent_map(em);
3728         em = NULL;
3729 
3730         /* we've found a hole, just zero and go on */
3731         if (block_start == EXTENT_MAP_HOLE) {
3732             struct extent_state *cached = NULL;
3733 
3734             memzero_page(page, pg_offset, iosize);
3735 
3736             set_extent_uptodate(tree, cur, cur + iosize - 1,
3737                         &cached, GFP_NOFS);
3738             unlock_extent_cached(tree, cur,
3739                          cur + iosize - 1, &cached);
3740             end_page_read(page, true, cur, iosize);
3741             cur = cur + iosize;
3742             pg_offset += iosize;
3743             continue;
3744         }
3745         /* the get_extent function already copied into the page */
3746         if (test_range_bit(tree, cur, cur_end,
3747                    EXTENT_UPTODATE, 1, NULL)) {
3748             unlock_extent(tree, cur, cur + iosize - 1);
3749             end_page_read(page, true, cur, iosize);
3750             cur = cur + iosize;
3751             pg_offset += iosize;
3752             continue;
3753         }
3754         /* we have an inline extent but it didn't get marked up
3755          * to date.  Error out
3756          */
3757         if (block_start == EXTENT_MAP_INLINE) {
3758             unlock_extent(tree, cur, cur + iosize - 1);
3759             end_page_read(page, false, cur, iosize);
3760             cur = cur + iosize;
3761             pg_offset += iosize;
3762             continue;
3763         }
3764 
3765         ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3766                      bio_ctrl, page, disk_bytenr, iosize,
3767                      pg_offset, end_bio_extent_readpage,
3768                      this_bio_flag, force_bio_submit);
3769         if (ret) {
3770             /*
3771              * We have to unlock the remaining range, or the page
3772              * will never be unlocked.
3773              */
3774             unlock_extent(tree, cur, end);
3775             end_page_read(page, false, cur, end + 1 - cur);
3776             goto out;
3777         }
3778         cur = cur + iosize;
3779         pg_offset += iosize;
3780     }
3781 out:
3782     return ret;
3783 }
3784 
3785 int btrfs_read_folio(struct file *file, struct folio *folio)
3786 {
3787     struct page *page = &folio->page;
3788     struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3789     u64 start = page_offset(page);
3790     u64 end = start + PAGE_SIZE - 1;
3791     struct btrfs_bio_ctrl bio_ctrl = { 0 };
3792     int ret;
3793 
3794     btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3795 
3796     ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
3797     /*
3798      * If btrfs_do_readpage() failed we will want to submit the assembled
3799      * bio to do the cleanup.
3800      */
3801     submit_one_bio(&bio_ctrl);
3802     return ret;
3803 }
3804 
3805 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3806                     u64 start, u64 end,
3807                     struct extent_map **em_cached,
3808                     struct btrfs_bio_ctrl *bio_ctrl,
3809                     u64 *prev_em_start)
3810 {
3811     struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3812     int index;
3813 
3814     btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3815 
3816     for (index = 0; index < nr_pages; index++) {
3817         btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3818                   REQ_RAHEAD, prev_em_start);
3819         put_page(pages[index]);
3820     }
3821 }
3822 
3823 /*
3824  * helper for __extent_writepage, doing all of the delayed allocation setup.
3825  *
3826  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3827  * to write the page (copy into inline extent).  In this case the IO has
3828  * been started and the page is already unlocked.
3829  *
3830  * This returns 0 if all went well (page still locked)
3831  * This returns < 0 if there were errors (page still locked)
3832  */
3833 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3834         struct page *page, struct writeback_control *wbc)
3835 {
3836     const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
3837     u64 delalloc_start = page_offset(page);
3838     u64 delalloc_to_write = 0;
3839     /* How many pages are started by btrfs_run_delalloc_range() */
3840     unsigned long nr_written = 0;
3841     int ret;
3842     int page_started = 0;
3843 
3844     while (delalloc_start < page_end) {
3845         u64 delalloc_end = page_end;
3846         bool found;
3847 
3848         found = find_lock_delalloc_range(&inode->vfs_inode, page,
3849                            &delalloc_start,
3850                            &delalloc_end);
3851         if (!found) {
3852             delalloc_start = delalloc_end + 1;
3853             continue;
3854         }
3855         ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3856                 delalloc_end, &page_started, &nr_written, wbc);
3857         if (ret) {
3858             btrfs_page_set_error(inode->root->fs_info, page,
3859                          page_offset(page), PAGE_SIZE);
3860             return ret;
3861         }
3862         /*
3863          * delalloc_end is already one less than the total length, so
3864          * we don't subtract one from PAGE_SIZE
3865          */
3866         delalloc_to_write += (delalloc_end - delalloc_start +
3867                       PAGE_SIZE) >> PAGE_SHIFT;
3868         delalloc_start = delalloc_end + 1;
3869     }
3870     if (wbc->nr_to_write < delalloc_to_write) {
3871         int thresh = 8192;
3872 
3873         if (delalloc_to_write < thresh * 2)
3874             thresh = delalloc_to_write;
3875         wbc->nr_to_write = min_t(u64, delalloc_to_write,
3876                      thresh);
3877     }
3878 
3879     /* Did btrfs_run_dealloc_range() already unlock and start the IO? */
3880     if (page_started) {
3881         /*
3882          * We've unlocked the page, so we can't update the mapping's
3883          * writeback index, just update nr_to_write.
3884          */
3885         wbc->nr_to_write -= nr_written;
3886         return 1;
3887     }
3888 
3889     return 0;
3890 }
3891 
3892 /*
3893  * Find the first byte we need to write.
3894  *
3895  * For subpage, one page can contain several sectors, and
3896  * __extent_writepage_io() will just grab all extent maps in the page
3897  * range and try to submit all non-inline/non-compressed extents.
3898  *
3899  * This is a big problem for subpage, we shouldn't re-submit already written
3900  * data at all.
3901  * This function will lookup subpage dirty bit to find which range we really
3902  * need to submit.
3903  *
3904  * Return the next dirty range in [@start, @end).
3905  * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
3906  */
3907 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
3908                  struct page *page, u64 *start, u64 *end)
3909 {
3910     struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3911     struct btrfs_subpage_info *spi = fs_info->subpage_info;
3912     u64 orig_start = *start;
3913     /* Declare as unsigned long so we can use bitmap ops */
3914     unsigned long flags;
3915     int range_start_bit;
3916     int range_end_bit;
3917 
3918     /*
3919      * For regular sector size == page size case, since one page only
3920      * contains one sector, we return the page offset directly.
3921      */
3922     if (!btrfs_is_subpage(fs_info, page)) {
3923         *start = page_offset(page);
3924         *end = page_offset(page) + PAGE_SIZE;
3925         return;
3926     }
3927 
3928     range_start_bit = spi->dirty_offset +
3929               (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
3930 
3931     /* We should have the page locked, but just in case */
3932     spin_lock_irqsave(&subpage->lock, flags);
3933     bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
3934                    spi->dirty_offset + spi->bitmap_nr_bits);
3935     spin_unlock_irqrestore(&subpage->lock, flags);
3936 
3937     range_start_bit -= spi->dirty_offset;
3938     range_end_bit -= spi->dirty_offset;
3939 
3940     *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
3941     *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
3942 }
3943 
3944 /*
3945  * helper for __extent_writepage.  This calls the writepage start hooks,
3946  * and does the loop to map the page into extents and bios.
3947  *
3948  * We return 1 if the IO is started and the page is unlocked,
3949  * 0 if all went well (page still locked)
3950  * < 0 if there were errors (page still locked)
3951  */
3952 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3953                  struct page *page,
3954                  struct writeback_control *wbc,
3955                  struct extent_page_data *epd,
3956                  loff_t i_size,
3957                  int *nr_ret)
3958 {
3959     struct btrfs_fs_info *fs_info = inode->root->fs_info;
3960     u64 cur = page_offset(page);
3961     u64 end = cur + PAGE_SIZE - 1;
3962     u64 extent_offset;
3963     u64 block_start;
3964     struct extent_map *em;
3965     int saved_ret = 0;
3966     int ret = 0;
3967     int nr = 0;
3968     enum req_op op = REQ_OP_WRITE;
3969     const blk_opf_t write_flags = wbc_to_write_flags(wbc);
3970     bool has_error = false;
3971     bool compressed;
3972 
3973     ret = btrfs_writepage_cow_fixup(page);
3974     if (ret) {
3975         /* Fixup worker will requeue */
3976         redirty_page_for_writepage(wbc, page);
3977         unlock_page(page);
3978         return 1;
3979     }
3980 
3981     /*
3982      * we don't want to touch the inode after unlocking the page,
3983      * so we update the mapping writeback index now
3984      */
3985     wbc->nr_to_write--;
3986 
3987     while (cur <= end) {
3988         u64 disk_bytenr;
3989         u64 em_end;
3990         u64 dirty_range_start = cur;
3991         u64 dirty_range_end;
3992         u32 iosize;
3993 
3994         if (cur >= i_size) {
3995             btrfs_writepage_endio_finish_ordered(inode, page, cur,
3996                                  end, true);
3997             /*
3998              * This range is beyond i_size, thus we don't need to
3999              * bother writing back.
4000              * But we still need to clear the dirty subpage bit, or
4001              * the next time the page gets dirtied, we will try to
4002              * writeback the sectors with subpage dirty bits,
4003              * causing writeback without ordered extent.
4004              */
4005             btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
4006             break;
4007         }
4008 
4009         find_next_dirty_byte(fs_info, page, &dirty_range_start,
4010                      &dirty_range_end);
4011         if (cur < dirty_range_start) {
4012             cur = dirty_range_start;
4013             continue;
4014         }
4015 
4016         em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
4017         if (IS_ERR(em)) {
4018             btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
4019             ret = PTR_ERR_OR_ZERO(em);
4020             has_error = true;
4021             if (!saved_ret)
4022                 saved_ret = ret;
4023             break;
4024         }
4025 
4026         extent_offset = cur - em->start;
4027         em_end = extent_map_end(em);
4028         ASSERT(cur <= em_end);
4029         ASSERT(cur < end);
4030         ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
4031         ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
4032         block_start = em->block_start;
4033         compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4034         disk_bytenr = em->block_start + extent_offset;
4035 
4036         /*
4037          * Note that em_end from extent_map_end() and dirty_range_end from
4038          * find_next_dirty_byte() are all exclusive
4039          */
4040         iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
4041 
4042         if (btrfs_use_zone_append(inode, em->block_start))
4043             op = REQ_OP_ZONE_APPEND;
4044 
4045         free_extent_map(em);
4046         em = NULL;
4047 
4048         /*
4049          * compressed and inline extents are written through other
4050          * paths in the FS
4051          */
4052         if (compressed || block_start == EXTENT_MAP_HOLE ||
4053             block_start == EXTENT_MAP_INLINE) {
4054             if (compressed)
4055                 nr++;
4056             else
4057                 btrfs_writepage_endio_finish_ordered(inode,
4058                         page, cur, cur + iosize - 1, true);
4059             btrfs_page_clear_dirty(fs_info, page, cur, iosize);
4060             cur += iosize;
4061             continue;
4062         }
4063 
4064         btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
4065         if (!PageWriteback(page)) {
4066             btrfs_err(inode->root->fs_info,
4067                    "page %lu not writeback, cur %llu end %llu",
4068                    page->index, cur, end);
4069         }
4070 
4071         /*
4072          * Although the PageDirty bit is cleared before entering this
4073          * function, subpage dirty bit is not cleared.
4074          * So clear subpage dirty bit here so next time we won't submit
4075          * page for range already written to disk.
4076          */
4077         btrfs_page_clear_dirty(fs_info, page, cur, iosize);
4078 
4079         ret = submit_extent_page(op | write_flags, wbc,
4080                      &epd->bio_ctrl, page,
4081                      disk_bytenr, iosize,
4082                      cur - page_offset(page),
4083                      end_bio_extent_writepage,
4084                      0, false);
4085         if (ret) {
4086             has_error = true;
4087             if (!saved_ret)
4088                 saved_ret = ret;
4089 
4090             btrfs_page_set_error(fs_info, page, cur, iosize);
4091             if (PageWriteback(page))
4092                 btrfs_page_clear_writeback(fs_info, page, cur,
4093                                iosize);
4094         }
4095 
4096         cur += iosize;
4097         nr++;
4098     }
4099     /*
4100      * If we finish without problem, we should not only clear page dirty,
4101      * but also empty subpage dirty bits
4102      */
4103     if (!has_error)
4104         btrfs_page_assert_not_dirty(fs_info, page);
4105     else
4106         ret = saved_ret;
4107     *nr_ret = nr;
4108     return ret;
4109 }
4110 
4111 /*
4112  * the writepage semantics are similar to regular writepage.  extent
4113  * records are inserted to lock ranges in the tree, and as dirty areas
4114  * are found, they are marked writeback.  Then the lock bits are removed
4115  * and the end_io handler clears the writeback ranges
4116  *
4117  * Return 0 if everything goes well.
4118  * Return <0 for error.
4119  */
4120 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
4121                   struct extent_page_data *epd)
4122 {
4123     struct folio *folio = page_folio(page);
4124     struct inode *inode = page->mapping->host;
4125     struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4126     const u64 page_start = page_offset(page);
4127     const u64 page_end = page_start + PAGE_SIZE - 1;
4128     int ret;
4129     int nr = 0;
4130     size_t pg_offset;
4131     loff_t i_size = i_size_read(inode);
4132     unsigned long end_index = i_size >> PAGE_SHIFT;
4133 
4134     trace___extent_writepage(page, inode, wbc);
4135 
4136     WARN_ON(!PageLocked(page));
4137 
4138     btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
4139                    page_offset(page), PAGE_SIZE);
4140 
4141     pg_offset = offset_in_page(i_size);
4142     if (page->index > end_index ||
4143        (page->index == end_index && !pg_offset)) {
4144         folio_invalidate(folio, 0, folio_size(folio));
4145         folio_unlock(folio);
4146         return 0;
4147     }
4148 
4149     if (page->index == end_index)
4150         memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
4151 
4152     ret = set_page_extent_mapped(page);
4153     if (ret < 0) {
4154         SetPageError(page);
4155         goto done;
4156     }
4157 
4158     if (!epd->extent_locked) {
4159         ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
4160         if (ret == 1)
4161             return 0;
4162         if (ret)
4163             goto done;
4164     }
4165 
4166     ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4167                     &nr);
4168     if (ret == 1)
4169         return 0;
4170 
4171 done:
4172     if (nr == 0) {
4173         /* make sure the mapping tag for page dirty gets cleared */
4174         set_page_writeback(page);
4175         end_page_writeback(page);
4176     }
4177     /*
4178      * Here we used to have a check for PageError() and then set @ret and
4179      * call end_extent_writepage().
4180      *
4181      * But in fact setting @ret here will cause different error paths
4182      * between subpage and regular sectorsize.
4183      *
4184      * For regular page size, we never submit current page, but only add
4185      * current page to current bio.
4186      * The bio submission can only happen in next page.
4187      * Thus if we hit the PageError() branch, @ret is already set to
4188      * non-zero value and will not get updated for regular sectorsize.
4189      *
4190      * But for subpage case, it's possible we submit part of current page,
4191      * thus can get PageError() set by submitted bio of the same page,
4192      * while our @ret is still 0.
4193      *
4194      * So here we unify the behavior and don't set @ret.
4195      * Error can still be properly passed to higher layer as page will
4196      * be set error, here we just don't handle the IO failure.
4197      *
4198      * NOTE: This is just a hotfix for subpage.
4199      * The root fix will be properly ending ordered extent when we hit
4200      * an error during writeback.
4201      *
4202      * But that needs a bigger refactoring, as we not only need to grab the
4203      * submitted OE, but also need to know exactly at which bytenr we hit
4204      * the error.
4205      * Currently the full page based __extent_writepage_io() is not
4206      * capable of that.
4207      */
4208     if (PageError(page))
4209         end_extent_writepage(page, ret, page_start, page_end);
4210     if (epd->extent_locked) {
4211         /*
4212          * If epd->extent_locked, it's from extent_write_locked_range(),
4213          * the page can either be locked by lock_page() or
4214          * process_one_page().
4215          * Let btrfs_page_unlock_writer() handle both cases.
4216          */
4217         ASSERT(wbc);
4218         btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
4219                      wbc->range_end + 1 - wbc->range_start);
4220     } else {
4221         unlock_page(page);
4222     }
4223     ASSERT(ret <= 0);
4224     return ret;
4225 }
4226 
4227 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4228 {
4229     wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
4230                TASK_UNINTERRUPTIBLE);
4231 }
4232 
4233 static void end_extent_buffer_writeback(struct extent_buffer *eb)
4234 {
4235     clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4236     smp_mb__after_atomic();
4237     wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
4238 }
4239 
4240 /*
4241  * Lock extent buffer status and pages for writeback.
4242  *
4243  * May try to flush write bio if we can't get the lock.
4244  *
4245  * Return  0 if the extent buffer doesn't need to be submitted.
4246  *           (E.g. the extent buffer is not dirty)
4247  * Return >0 is the extent buffer is submitted to bio.
4248  * Return <0 if something went wrong, no page is locked.
4249  */
4250 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4251               struct extent_page_data *epd)
4252 {
4253     struct btrfs_fs_info *fs_info = eb->fs_info;
4254     int i, num_pages;
4255     int flush = 0;
4256     int ret = 0;
4257 
4258     if (!btrfs_try_tree_write_lock(eb)) {
4259         submit_write_bio(epd, 0);
4260         flush = 1;
4261         btrfs_tree_lock(eb);
4262     }
4263 
4264     if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
4265         btrfs_tree_unlock(eb);
4266         if (!epd->sync_io)
4267             return 0;
4268         if (!flush) {
4269             submit_write_bio(epd, 0);
4270             flush = 1;
4271         }
4272         while (1) {
4273             wait_on_extent_buffer_writeback(eb);
4274             btrfs_tree_lock(eb);
4275             if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
4276                 break;
4277             btrfs_tree_unlock(eb);
4278         }
4279     }
4280 
4281     /*
4282      * We need to do this to prevent races in people who check if the eb is
4283      * under IO since we can end up having no IO bits set for a short period
4284      * of time.
4285      */
4286     spin_lock(&eb->refs_lock);
4287     if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4288         set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4289         spin_unlock(&eb->refs_lock);
4290         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4291         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4292                      -eb->len,
4293                      fs_info->dirty_metadata_batch);
4294         ret = 1;
4295     } else {
4296         spin_unlock(&eb->refs_lock);
4297     }
4298 
4299     btrfs_tree_unlock(eb);
4300 
4301     /*
4302      * Either we don't need to submit any tree block, or we're submitting
4303      * subpage eb.
4304      * Subpage metadata doesn't use page locking at all, so we can skip
4305      * the page locking.
4306      */
4307     if (!ret || fs_info->nodesize < PAGE_SIZE)
4308         return ret;
4309 
4310     num_pages = num_extent_pages(eb);
4311     for (i = 0; i < num_pages; i++) {
4312         struct page *p = eb->pages[i];
4313 
4314         if (!trylock_page(p)) {
4315             if (!flush) {
4316                 submit_write_bio(epd, 0);
4317                 flush = 1;
4318             }
4319             lock_page(p);
4320         }
4321     }
4322 
4323     return ret;
4324 }
4325 
4326 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4327 {
4328     struct btrfs_fs_info *fs_info = eb->fs_info;
4329 
4330     btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4331     if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4332         return;
4333 
4334     /*
4335      * A read may stumble upon this buffer later, make sure that it gets an
4336      * error and knows there was an error.
4337      */
4338     clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4339 
4340     /*
4341      * We need to set the mapping with the io error as well because a write
4342      * error will flip the file system readonly, and then syncfs() will
4343      * return a 0 because we are readonly if we don't modify the err seq for
4344      * the superblock.
4345      */
4346     mapping_set_error(page->mapping, -EIO);
4347 
4348     /*
4349      * If we error out, we should add back the dirty_metadata_bytes
4350      * to make it consistent.
4351      */
4352     percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4353                  eb->len, fs_info->dirty_metadata_batch);
4354 
4355     /*
4356      * If writeback for a btree extent that doesn't belong to a log tree
4357      * failed, increment the counter transaction->eb_write_errors.
4358      * We do this because while the transaction is running and before it's
4359      * committing (when we call filemap_fdata[write|wait]_range against
4360      * the btree inode), we might have
4361      * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
4362      * returns an error or an error happens during writeback, when we're
4363      * committing the transaction we wouldn't know about it, since the pages
4364      * can be no longer dirty nor marked anymore for writeback (if a
4365      * subsequent modification to the extent buffer didn't happen before the
4366      * transaction commit), which makes filemap_fdata[write|wait]_range not
4367      * able to find the pages tagged with SetPageError at transaction
4368      * commit time. So if this happens we must abort the transaction,
4369      * otherwise we commit a super block with btree roots that point to
4370      * btree nodes/leafs whose content on disk is invalid - either garbage
4371      * or the content of some node/leaf from a past generation that got
4372      * cowed or deleted and is no longer valid.
4373      *
4374      * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
4375      * not be enough - we need to distinguish between log tree extents vs
4376      * non-log tree extents, and the next filemap_fdatawait_range() call
4377      * will catch and clear such errors in the mapping - and that call might
4378      * be from a log sync and not from a transaction commit. Also, checking
4379      * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
4380      * not done and would not be reliable - the eb might have been released
4381      * from memory and reading it back again means that flag would not be
4382      * set (since it's a runtime flag, not persisted on disk).
4383      *
4384      * Using the flags below in the btree inode also makes us achieve the
4385      * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
4386      * writeback for all dirty pages and before filemap_fdatawait_range()
4387      * is called, the writeback for all dirty pages had already finished
4388      * with errors - because we were not using AS_EIO/AS_ENOSPC,
4389      * filemap_fdatawait_range() would return success, as it could not know
4390      * that writeback errors happened (the pages were no longer tagged for
4391      * writeback).
4392      */
4393     switch (eb->log_index) {
4394     case -1:
4395         set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4396         break;
4397     case 0:
4398         set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4399         break;
4400     case 1:
4401         set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4402         break;
4403     default:
4404         BUG(); /* unexpected, logic error */
4405     }
4406 }
4407 
4408 /*
4409  * The endio specific version which won't touch any unsafe spinlock in endio
4410  * context.
4411  */
4412 static struct extent_buffer *find_extent_buffer_nolock(
4413         struct btrfs_fs_info *fs_info, u64 start)
4414 {
4415     struct extent_buffer *eb;
4416 
4417     rcu_read_lock();
4418     eb = radix_tree_lookup(&fs_info->buffer_radix,
4419                    start >> fs_info->sectorsize_bits);
4420     if (eb && atomic_inc_not_zero(&eb->refs)) {
4421         rcu_read_unlock();
4422         return eb;
4423     }
4424     rcu_read_unlock();
4425     return NULL;
4426 }
4427 
4428 /*
4429  * The endio function for subpage extent buffer write.
4430  *
4431  * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
4432  * after all extent buffers in the page has finished their writeback.
4433  */
4434 static void end_bio_subpage_eb_writepage(struct bio *bio)
4435 {
4436     struct btrfs_fs_info *fs_info;
4437     struct bio_vec *bvec;
4438     struct bvec_iter_all iter_all;
4439 
4440     fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4441     ASSERT(fs_info->nodesize < PAGE_SIZE);
4442 
4443     ASSERT(!bio_flagged(bio, BIO_CLONED));
4444     bio_for_each_segment_all(bvec, bio, iter_all) {
4445         struct page *page = bvec->bv_page;
4446         u64 bvec_start = page_offset(page) + bvec->bv_offset;
4447         u64 bvec_end = bvec_start + bvec->bv_len - 1;
4448         u64 cur_bytenr = bvec_start;
4449 
4450         ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
4451 
4452         /* Iterate through all extent buffers in the range */
4453         while (cur_bytenr <= bvec_end) {
4454             struct extent_buffer *eb;
4455             int done;
4456 
4457             /*
4458              * Here we can't use find_extent_buffer(), as it may
4459              * try to lock eb->refs_lock, which is not safe in endio
4460              * context.
4461              */
4462             eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
4463             ASSERT(eb);
4464 
4465             cur_bytenr = eb->start + eb->len;
4466 
4467             ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
4468             done = atomic_dec_and_test(&eb->io_pages);
4469             ASSERT(done);
4470 
4471             if (bio->bi_status ||
4472                 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4473                 ClearPageUptodate(page);
4474                 set_btree_ioerr(page, eb);
4475             }
4476 
4477             btrfs_subpage_clear_writeback(fs_info, page, eb->start,
4478                               eb->len);
4479             end_extent_buffer_writeback(eb);
4480             /*
4481              * free_extent_buffer() will grab spinlock which is not
4482              * safe in endio context. Thus here we manually dec
4483              * the ref.
4484              */
4485             atomic_dec(&eb->refs);
4486         }
4487     }
4488     bio_put(bio);
4489 }
4490 
4491 static void end_bio_extent_buffer_writepage(struct bio *bio)
4492 {
4493     struct bio_vec *bvec;
4494     struct extent_buffer *eb;
4495     int done;
4496     struct bvec_iter_all iter_all;
4497 
4498     ASSERT(!bio_flagged(bio, BIO_CLONED));
4499     bio_for_each_segment_all(bvec, bio, iter_all) {
4500         struct page *page = bvec->bv_page;
4501 
4502         eb = (struct extent_buffer *)page->private;
4503         BUG_ON(!eb);
4504         done = atomic_dec_and_test(&eb->io_pages);
4505 
4506         if (bio->bi_status ||
4507             test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4508             ClearPageUptodate(page);
4509             set_btree_ioerr(page, eb);
4510         }
4511 
4512         end_page_writeback(page);
4513 
4514         if (!done)
4515             continue;
4516 
4517         end_extent_buffer_writeback(eb);
4518     }
4519 
4520     bio_put(bio);
4521 }
4522 
4523 static void prepare_eb_write(struct extent_buffer *eb)
4524 {
4525     u32 nritems;
4526     unsigned long start;
4527     unsigned long end;
4528 
4529     clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4530     atomic_set(&eb->io_pages, num_extent_pages(eb));
4531 
4532     /* Set btree blocks beyond nritems with 0 to avoid stale content */
4533     nritems = btrfs_header_nritems(eb);
4534     if (btrfs_header_level(eb) > 0) {
4535         end = btrfs_node_key_ptr_offset(nritems);
4536         memzero_extent_buffer(eb, end, eb->len - end);
4537     } else {
4538         /*
4539          * Leaf:
4540          * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
4541          */
4542         start = btrfs_item_nr_offset(nritems);
4543         end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
4544         memzero_extent_buffer(eb, start, end - start);
4545     }
4546 }
4547 
4548 /*
4549  * Unlike the work in write_one_eb(), we rely completely on extent locking.
4550  * Page locking is only utilized at minimum to keep the VMM code happy.
4551  */
4552 static int write_one_subpage_eb(struct extent_buffer *eb,
4553                 struct writeback_control *wbc,
4554                 struct extent_page_data *epd)
4555 {
4556     struct btrfs_fs_info *fs_info = eb->fs_info;
4557     struct page *page = eb->pages[0];
4558     blk_opf_t write_flags = wbc_to_write_flags(wbc);
4559     bool no_dirty_ebs = false;
4560     int ret;
4561 
4562     prepare_eb_write(eb);
4563 
4564     /* clear_page_dirty_for_io() in subpage helper needs page locked */
4565     lock_page(page);
4566     btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
4567 
4568     /* Check if this is the last dirty bit to update nr_written */
4569     no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
4570                               eb->start, eb->len);
4571     if (no_dirty_ebs)
4572         clear_page_dirty_for_io(page);
4573 
4574     ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4575             &epd->bio_ctrl, page, eb->start, eb->len,
4576             eb->start - page_offset(page),
4577             end_bio_subpage_eb_writepage, 0, false);
4578     if (ret) {
4579         btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
4580         set_btree_ioerr(page, eb);
4581         unlock_page(page);
4582 
4583         if (atomic_dec_and_test(&eb->io_pages))
4584             end_extent_buffer_writeback(eb);
4585         return -EIO;
4586     }
4587     unlock_page(page);
4588     /*
4589      * Submission finished without problem, if no range of the page is
4590      * dirty anymore, we have submitted a page.  Update nr_written in wbc.
4591      */
4592     if (no_dirty_ebs)
4593         wbc->nr_to_write--;
4594     return ret;
4595 }
4596 
4597 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4598             struct writeback_control *wbc,
4599             struct extent_page_data *epd)
4600 {
4601     u64 disk_bytenr = eb->start;
4602     int i, num_pages;
4603     blk_opf_t write_flags = wbc_to_write_flags(wbc);
4604     int ret = 0;
4605 
4606     prepare_eb_write(eb);
4607 
4608     num_pages = num_extent_pages(eb);
4609     for (i = 0; i < num_pages; i++) {
4610         struct page *p = eb->pages[i];
4611 
4612         clear_page_dirty_for_io(p);
4613         set_page_writeback(p);
4614         ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4615                      &epd->bio_ctrl, p, disk_bytenr,
4616                      PAGE_SIZE, 0,
4617                      end_bio_extent_buffer_writepage,
4618                      0, false);
4619         if (ret) {
4620             set_btree_ioerr(p, eb);
4621             if (PageWriteback(p))
4622                 end_page_writeback(p);
4623             if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
4624                 end_extent_buffer_writeback(eb);
4625             ret = -EIO;
4626             break;
4627         }
4628         disk_bytenr += PAGE_SIZE;
4629         wbc->nr_to_write--;
4630         unlock_page(p);
4631     }
4632 
4633     if (unlikely(ret)) {
4634         for (; i < num_pages; i++) {
4635             struct page *p = eb->pages[i];
4636             clear_page_dirty_for_io(p);
4637             unlock_page(p);
4638         }
4639     }
4640 
4641     return ret;
4642 }
4643 
4644 /*
4645  * Submit one subpage btree page.
4646  *
4647  * The main difference to submit_eb_page() is:
4648  * - Page locking
4649  *   For subpage, we don't rely on page locking at all.
4650  *
4651  * - Flush write bio
4652  *   We only flush bio if we may be unable to fit current extent buffers into
4653  *   current bio.
4654  *
4655  * Return >=0 for the number of submitted extent buffers.
4656  * Return <0 for fatal error.
4657  */
4658 static int submit_eb_subpage(struct page *page,
4659                  struct writeback_control *wbc,
4660                  struct extent_page_data *epd)
4661 {
4662     struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4663     int submitted = 0;
4664     u64 page_start = page_offset(page);
4665     int bit_start = 0;
4666     int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
4667     int ret;
4668 
4669     /* Lock and write each dirty extent buffers in the range */
4670     while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
4671         struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
4672         struct extent_buffer *eb;
4673         unsigned long flags;
4674         u64 start;
4675 
4676         /*
4677          * Take private lock to ensure the subpage won't be detached
4678          * in the meantime.
4679          */
4680         spin_lock(&page->mapping->private_lock);
4681         if (!PagePrivate(page)) {
4682             spin_unlock(&page->mapping->private_lock);
4683             break;
4684         }
4685         spin_lock_irqsave(&subpage->lock, flags);
4686         if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
4687                   subpage->bitmaps)) {
4688             spin_unlock_irqrestore(&subpage->lock, flags);
4689             spin_unlock(&page->mapping->private_lock);
4690             bit_start++;
4691             continue;
4692         }
4693 
4694         start = page_start + bit_start * fs_info->sectorsize;
4695         bit_start += sectors_per_node;
4696 
4697         /*
4698          * Here we just want to grab the eb without touching extra
4699          * spin locks, so call find_extent_buffer_nolock().
4700          */
4701         eb = find_extent_buffer_nolock(fs_info, start);
4702         spin_unlock_irqrestore(&subpage->lock, flags);
4703         spin_unlock(&page->mapping->private_lock);
4704 
4705         /*
4706          * The eb has already reached 0 refs thus find_extent_buffer()
4707          * doesn't return it. We don't need to write back such eb
4708          * anyway.
4709          */
4710         if (!eb)
4711             continue;
4712 
4713         ret = lock_extent_buffer_for_io(eb, epd);
4714         if (ret == 0) {
4715             free_extent_buffer(eb);
4716             continue;
4717         }
4718         if (ret < 0) {
4719             free_extent_buffer(eb);
4720             goto cleanup;
4721         }
4722         ret = write_one_subpage_eb(eb, wbc, epd);
4723         free_extent_buffer(eb);
4724         if (ret < 0)
4725             goto cleanup;
4726         submitted++;
4727     }
4728     return submitted;
4729 
4730 cleanup:
4731     /* We hit error, end bio for the submitted extent buffers */
4732     submit_write_bio(epd, ret);
4733     return ret;
4734 }
4735 
4736 /*
4737  * Submit all page(s) of one extent buffer.
4738  *
4739  * @page:   the page of one extent buffer
4740  * @eb_context: to determine if we need to submit this page, if current page
4741  *      belongs to this eb, we don't need to submit
4742  *
4743  * The caller should pass each page in their bytenr order, and here we use
4744  * @eb_context to determine if we have submitted pages of one extent buffer.
4745  *
4746  * If we have, we just skip until we hit a new page that doesn't belong to
4747  * current @eb_context.
4748  *
4749  * If not, we submit all the page(s) of the extent buffer.
4750  *
4751  * Return >0 if we have submitted the extent buffer successfully.
4752  * Return 0 if we don't need to submit the page, as it's already submitted by
4753  * previous call.
4754  * Return <0 for fatal error.
4755  */
4756 static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4757               struct extent_page_data *epd,
4758               struct extent_buffer **eb_context)
4759 {
4760     struct address_space *mapping = page->mapping;
4761     struct btrfs_block_group *cache = NULL;
4762     struct extent_buffer *eb;
4763     int ret;
4764 
4765     if (!PagePrivate(page))
4766         return 0;
4767 
4768     if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4769         return submit_eb_subpage(page, wbc, epd);
4770 
4771     spin_lock(&mapping->private_lock);
4772     if (!PagePrivate(page)) {
4773         spin_unlock(&mapping->private_lock);
4774         return 0;
4775     }
4776 
4777     eb = (struct extent_buffer *)page->private;
4778 
4779     /*
4780      * Shouldn't happen and normally this would be a BUG_ON but no point
4781      * crashing the machine for something we can survive anyway.
4782      */
4783     if (WARN_ON(!eb)) {
4784         spin_unlock(&mapping->private_lock);
4785         return 0;
4786     }
4787 
4788     if (eb == *eb_context) {
4789         spin_unlock(&mapping->private_lock);
4790         return 0;
4791     }
4792     ret = atomic_inc_not_zero(&eb->refs);
4793     spin_unlock(&mapping->private_lock);
4794     if (!ret)
4795         return 0;
4796 
4797     if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
4798         /*
4799          * If for_sync, this hole will be filled with
4800          * trasnsaction commit.
4801          */
4802         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4803             ret = -EAGAIN;
4804         else
4805             ret = 0;
4806         free_extent_buffer(eb);
4807         return ret;
4808     }
4809 
4810     *eb_context = eb;
4811 
4812     ret = lock_extent_buffer_for_io(eb, epd);
4813     if (ret <= 0) {
4814         btrfs_revert_meta_write_pointer(cache, eb);
4815         if (cache)
4816             btrfs_put_block_group(cache);
4817         free_extent_buffer(eb);
4818         return ret;
4819     }
4820     if (cache) {
4821         /*
4822          * Implies write in zoned mode. Mark the last eb in a block group.
4823          */
4824         btrfs_schedule_zone_finish_bg(cache, eb);
4825         btrfs_put_block_group(cache);
4826     }
4827     ret = write_one_eb(eb, wbc, epd);
4828     free_extent_buffer(eb);
4829     if (ret < 0)
4830         return ret;
4831     return 1;
4832 }
4833 
4834 int btree_write_cache_pages(struct address_space *mapping,
4835                    struct writeback_control *wbc)
4836 {
4837     struct extent_buffer *eb_context = NULL;
4838     struct extent_page_data epd = {
4839         .bio_ctrl = { 0 },
4840         .extent_locked = 0,
4841         .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4842     };
4843     struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4844     int ret = 0;
4845     int done = 0;
4846     int nr_to_write_done = 0;
4847     struct pagevec pvec;
4848     int nr_pages;
4849     pgoff_t index;
4850     pgoff_t end;        /* Inclusive */
4851     int scanned = 0;
4852     xa_mark_t tag;
4853 
4854     pagevec_init(&pvec);
4855     if (wbc->range_cyclic) {
4856         index = mapping->writeback_index; /* Start from prev offset */
4857         end = -1;
4858         /*
4859          * Start from the beginning does not need to cycle over the
4860          * range, mark it as scanned.
4861          */
4862         scanned = (index == 0);
4863     } else {
4864         index = wbc->range_start >> PAGE_SHIFT;
4865         end = wbc->range_end >> PAGE_SHIFT;
4866         scanned = 1;
4867     }
4868     if (wbc->sync_mode == WB_SYNC_ALL)
4869         tag = PAGECACHE_TAG_TOWRITE;
4870     else
4871         tag = PAGECACHE_TAG_DIRTY;
4872     btrfs_zoned_meta_io_lock(fs_info);
4873 retry:
4874     if (wbc->sync_mode == WB_SYNC_ALL)
4875         tag_pages_for_writeback(mapping, index, end);
4876     while (!done && !nr_to_write_done && (index <= end) &&
4877            (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4878             tag))) {
4879         unsigned i;
4880 
4881         for (i = 0; i < nr_pages; i++) {
4882             struct page *page = pvec.pages[i];
4883 
4884             ret = submit_eb_page(page, wbc, &epd, &eb_context);
4885             if (ret == 0)
4886                 continue;
4887             if (ret < 0) {
4888                 done = 1;
4889                 break;
4890             }
4891 
4892             /*
4893              * the filesystem may choose to bump up nr_to_write.
4894              * We have to make sure to honor the new nr_to_write
4895              * at any time
4896              */
4897             nr_to_write_done = wbc->nr_to_write <= 0;
4898         }
4899         pagevec_release(&pvec);
4900         cond_resched();
4901     }
4902     if (!scanned && !done) {
4903         /*
4904          * We hit the last page and there is more work to be done: wrap
4905          * back to the start of the file
4906          */
4907         scanned = 1;
4908         index = 0;
4909         goto retry;
4910     }
4911     /*
4912      * If something went wrong, don't allow any metadata write bio to be
4913      * submitted.
4914      *
4915      * This would prevent use-after-free if we had dirty pages not
4916      * cleaned up, which can still happen by fuzzed images.
4917      *
4918      * - Bad extent tree
4919      *   Allowing existing tree block to be allocated for other trees.
4920      *
4921      * - Log tree operations
4922      *   Exiting tree blocks get allocated to log tree, bumps its
4923      *   generation, then get cleaned in tree re-balance.
4924      *   Such tree block will not be written back, since it's clean,
4925      *   thus no WRITTEN flag set.
4926      *   And after log writes back, this tree block is not traced by
4927      *   any dirty extent_io_tree.
4928      *
4929      * - Offending tree block gets re-dirtied from its original owner
4930      *   Since it has bumped generation, no WRITTEN flag, it can be
4931      *   reused without COWing. This tree block will not be traced
4932      *   by btrfs_transaction::dirty_pages.
4933      *
4934      *   Now such dirty tree block will not be cleaned by any dirty
4935      *   extent io tree. Thus we don't want to submit such wild eb
4936      *   if the fs already has error.
4937      *
4938      * We can get ret > 0 from submit_extent_page() indicating how many ebs
4939      * were submitted. Reset it to 0 to avoid false alerts for the caller.
4940      */
4941     if (ret > 0)
4942         ret = 0;
4943     if (!ret && BTRFS_FS_ERROR(fs_info))
4944         ret = -EROFS;
4945     submit_write_bio(&epd, ret);
4946 
4947     btrfs_zoned_meta_io_unlock(fs_info);
4948     return ret;
4949 }
4950 
4951 /**
4952  * Walk the list of dirty pages of the given address space and write all of them.
4953  *
4954  * @mapping: address space structure to write
4955  * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
4956  * @epd:     holds context for the write, namely the bio
4957  *
4958  * If a page is already under I/O, write_cache_pages() skips it, even
4959  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4960  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4961  * and msync() need to guarantee that all the data which was dirty at the time
4962  * the call was made get new I/O started against them.  If wbc->sync_mode is
4963  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4964  * existing IO to complete.
4965  */
4966 static int extent_write_cache_pages(struct address_space *mapping,
4967                  struct writeback_control *wbc,
4968                  struct extent_page_data *epd)
4969 {
4970     struct inode *inode = mapping->host;
4971     int ret = 0;
4972     int done = 0;
4973     int nr_to_write_done = 0;
4974     struct pagevec pvec;
4975     int nr_pages;
4976     pgoff_t index;
4977     pgoff_t end;        /* Inclusive */
4978     pgoff_t done_index;
4979     int range_whole = 0;
4980     int scanned = 0;
4981     xa_mark_t tag;
4982 
4983     /*
4984      * We have to hold onto the inode so that ordered extents can do their
4985      * work when the IO finishes.  The alternative to this is failing to add
4986      * an ordered extent if the igrab() fails there and that is a huge pain
4987      * to deal with, so instead just hold onto the inode throughout the
4988      * writepages operation.  If it fails here we are freeing up the inode
4989      * anyway and we'd rather not waste our time writing out stuff that is
4990      * going to be truncated anyway.
4991      */
4992     if (!igrab(inode))
4993         return 0;
4994 
4995     pagevec_init(&pvec);
4996     if (wbc->range_cyclic) {
4997         index = mapping->writeback_index; /* Start from prev offset */
4998         end = -1;
4999         /*
5000          * Start from the beginning does not need to cycle over the
5001          * range, mark it as scanned.
5002          */
5003         scanned = (index == 0);
5004     } else {
5005         index = wbc->range_start >> PAGE_SHIFT;
5006         end = wbc->range_end >> PAGE_SHIFT;
5007         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
5008             range_whole = 1;
5009         scanned = 1;
5010     }
5011 
5012     /*
5013      * We do the tagged writepage as long as the snapshot flush bit is set
5014      * and we are the first one who do the filemap_flush() on this inode.
5015      *
5016      * The nr_to_write == LONG_MAX is needed to make sure other flushers do
5017      * not race in and drop the bit.
5018      */
5019     if (range_whole && wbc->nr_to_write == LONG_MAX &&
5020         test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
5021                    &BTRFS_I(inode)->runtime_flags))
5022         wbc->tagged_writepages = 1;
5023 
5024     if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5025         tag = PAGECACHE_TAG_TOWRITE;
5026     else
5027         tag = PAGECACHE_TAG_DIRTY;
5028 retry:
5029     if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5030         tag_pages_for_writeback(mapping, index, end);
5031     done_index = index;
5032     while (!done && !nr_to_write_done && (index <= end) &&
5033             (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
5034                         &index, end, tag))) {
5035         unsigned i;
5036 
5037         for (i = 0; i < nr_pages; i++) {
5038             struct page *page = pvec.pages[i];
5039 
5040             done_index = page->index + 1;
5041             /*
5042              * At this point we hold neither the i_pages lock nor
5043              * the page lock: the page may be truncated or
5044              * invalidated (changing page->mapping to NULL),
5045              * or even swizzled back from swapper_space to
5046              * tmpfs file mapping
5047              */
5048             if (!trylock_page(page)) {
5049                 submit_write_bio(epd, 0);
5050                 lock_page(page);
5051             }
5052 
5053             if (unlikely(page->mapping != mapping)) {
5054                 unlock_page(page);
5055                 continue;
5056             }
5057 
5058             if (wbc->sync_mode != WB_SYNC_NONE) {
5059                 if (PageWriteback(page))
5060                     submit_write_bio(epd, 0);
5061                 wait_on_page_writeback(page);
5062             }
5063 
5064             if (PageWriteback(page) ||
5065                 !clear_page_dirty_for_io(page)) {
5066                 unlock_page(page);
5067                 continue;
5068             }
5069 
5070             ret = __extent_writepage(page, wbc, epd);
5071             if (ret < 0) {
5072                 done = 1;
5073                 break;
5074             }
5075 
5076             /*
5077              * the filesystem may choose to bump up nr_to_write.
5078              * We have to make sure to honor the new nr_to_write
5079              * at any time
5080              */
5081             nr_to_write_done = wbc->nr_to_write <= 0;
5082         }
5083         pagevec_release(&pvec);
5084         cond_resched();
5085     }
5086     if (!scanned && !done) {
5087         /*
5088          * We hit the last page and there is more work to be done: wrap
5089          * back to the start of the file
5090          */
5091         scanned = 1;
5092         index = 0;
5093 
5094         /*
5095          * If we're looping we could run into a page that is locked by a
5096          * writer and that writer could be waiting on writeback for a
5097          * page in our current bio, and thus deadlock, so flush the
5098          * write bio here.
5099          */
5100         submit_write_bio(epd, 0);
5101         goto retry;
5102     }
5103 
5104     if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
5105         mapping->writeback_index = done_index;
5106 
5107     btrfs_add_delayed_iput(inode);
5108     return ret;
5109 }
5110 
5111 /*
5112  * Submit the pages in the range to bio for call sites which delalloc range has
5113  * already been ran (aka, ordered extent inserted) and all pages are still
5114  * locked.
5115  */
5116 int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
5117 {
5118     bool found_error = false;
5119     int first_error = 0;
5120     int ret = 0;
5121     struct address_space *mapping = inode->i_mapping;
5122     struct page *page;
5123     u64 cur = start;
5124     unsigned long nr_pages;
5125     const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
5126     struct extent_page_data epd = {
5127         .bio_ctrl = { 0 },
5128         .extent_locked = 1,
5129         .sync_io = 1,
5130     };
5131     struct writeback_control wbc_writepages = {
5132         .sync_mode  = WB_SYNC_ALL,
5133         .range_start    = start,
5134         .range_end  = end + 1,
5135         /* We're called from an async helper function */
5136         .punt_to_cgroup = 1,
5137         .no_cgroup_owner = 1,
5138     };
5139 
5140     ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
5141     nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
5142            PAGE_SHIFT;
5143     wbc_writepages.nr_to_write = nr_pages * 2;
5144 
5145     wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
5146     while (cur <= end) {
5147         u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
5148 
5149         page = find_get_page(mapping, cur >> PAGE_SHIFT);
5150         /*
5151          * All pages in the range are locked since
5152          * btrfs_run_delalloc_range(), thus there is no way to clear
5153          * the page dirty flag.
5154          */
5155         ASSERT(PageLocked(page));
5156         ASSERT(PageDirty(page));
5157         clear_page_dirty_for_io(page);
5158         ret = __extent_writepage(page, &wbc_writepages, &epd);
5159         ASSERT(ret <= 0);
5160         if (ret < 0) {
5161             found_error = true;
5162             first_error = ret;
5163         }
5164         put_page(page);
5165         cur = cur_end + 1;
5166     }
5167 
5168     submit_write_bio(&epd, found_error ? ret : 0);
5169 
5170     wbc_detach_inode(&wbc_writepages);
5171     if (found_error)
5172         return first_error;
5173     return ret;
5174 }
5175 
5176 int extent_writepages(struct address_space *mapping,
5177               struct writeback_control *wbc)
5178 {
5179     struct inode *inode = mapping->host;
5180     int ret = 0;
5181     struct extent_page_data epd = {
5182         .bio_ctrl = { 0 },
5183         .extent_locked = 0,
5184         .sync_io = wbc->sync_mode == WB_SYNC_ALL,
5185     };
5186 
5187     /*
5188      * Allow only a single thread to do the reloc work in zoned mode to
5189      * protect the write pointer updates.
5190      */
5191     btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
5192     ret = extent_write_cache_pages(mapping, wbc, &epd);
5193     submit_write_bio(&epd, ret);
5194     btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
5195     return ret;
5196 }
5197 
5198 void extent_readahead(struct readahead_control *rac)
5199 {
5200     struct btrfs_bio_ctrl bio_ctrl = { 0 };
5201     struct page *pagepool[16];
5202     struct extent_map *em_cached = NULL;
5203     u64 prev_em_start = (u64)-1;
5204     int nr;
5205 
5206     while ((nr = readahead_page_batch(rac, pagepool))) {
5207         u64 contig_start = readahead_pos(rac);
5208         u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5209 
5210         contiguous_readpages(pagepool, nr, contig_start, contig_end,
5211                 &em_cached, &bio_ctrl, &prev_em_start);
5212     }
5213 
5214     if (em_cached)
5215         free_extent_map(em_cached);
5216     submit_one_bio(&bio_ctrl);
5217 }
5218 
5219 /*
5220  * basic invalidate_folio code, this waits on any locked or writeback
5221  * ranges corresponding to the folio, and then deletes any extent state
5222  * records from the tree
5223  */
5224 int extent_invalidate_folio(struct extent_io_tree *tree,
5225               struct folio *folio, size_t offset)
5226 {
5227     struct extent_state *cached_state = NULL;
5228     u64 start = folio_pos(folio);
5229     u64 end = start + folio_size(folio) - 1;
5230     size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
5231 
5232     /* This function is only called for the btree inode */
5233     ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
5234 
5235     start += ALIGN(offset, blocksize);
5236     if (start > end)
5237         return 0;
5238 
5239     lock_extent_bits(tree, start, end, &cached_state);
5240     folio_wait_writeback(folio);
5241 
5242     /*
5243      * Currently for btree io tree, only EXTENT_LOCKED is utilized,
5244      * so here we only need to unlock the extent range to free any
5245      * existing extent state.
5246      */
5247     unlock_extent_cached(tree, start, end, &cached_state);
5248     return 0;
5249 }
5250 
5251 /*
5252  * a helper for release_folio, this tests for areas of the page that
5253  * are locked or under IO and drops the related state bits if it is safe
5254  * to drop the page.
5255  */
5256 static int try_release_extent_state(struct extent_io_tree *tree,
5257                     struct page *page, gfp_t mask)
5258 {
5259     u64 start = page_offset(page);
5260     u64 end = start + PAGE_SIZE - 1;
5261     int ret = 1;
5262 
5263     if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5264         ret = 0;
5265     } else {
5266         /*
5267          * At this point we can safely clear everything except the
5268          * locked bit, the nodatasum bit and the delalloc new bit.
5269          * The delalloc new bit will be cleared by ordered extent
5270          * completion.
5271          */
5272         ret = __clear_extent_bit(tree, start, end,
5273              ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
5274              0, 0, NULL, mask, NULL);
5275 
5276         /* if clear_extent_bit failed for enomem reasons,
5277          * we can't allow the release to continue.
5278          */
5279         if (ret < 0)
5280             ret = 0;
5281         else
5282             ret = 1;
5283     }
5284     return ret;
5285 }
5286 
5287 /*
5288  * a helper for release_folio.  As long as there are no locked extents
5289  * in the range corresponding to the page, both state records and extent
5290  * map records are removed
5291  */
5292 int try_release_extent_mapping(struct page *page, gfp_t mask)
5293 {
5294     struct extent_map *em;
5295     u64 start = page_offset(page);
5296     u64 end = start + PAGE_SIZE - 1;
5297     struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
5298     struct extent_io_tree *tree = &btrfs_inode->io_tree;
5299     struct extent_map_tree *map = &btrfs_inode->extent_tree;
5300 
5301     if (gfpflags_allow_blocking(mask) &&
5302         page->mapping->host->i_size > SZ_16M) {
5303         u64 len;
5304         while (start <= end) {
5305             struct btrfs_fs_info *fs_info;
5306             u64 cur_gen;
5307 
5308             len = end - start + 1;
5309             write_lock(&map->lock);
5310             em = lookup_extent_mapping(map, start, len);
5311             if (!em) {
5312                 write_unlock(&map->lock);
5313                 break;
5314             }
5315             if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
5316                 em->start != start) {
5317                 write_unlock(&map->lock);
5318                 free_extent_map(em);
5319                 break;
5320             }
5321             if (test_range_bit(tree, em->start,
5322                        extent_map_end(em) - 1,
5323                        EXTENT_LOCKED, 0, NULL))
5324                 goto next;
5325             /*
5326              * If it's not in the list of modified extents, used
5327              * by a fast fsync, we can remove it. If it's being
5328              * logged we can safely remove it since fsync took an
5329              * extra reference on the em.
5330              */
5331             if (list_empty(&em->list) ||
5332                 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
5333                 goto remove_em;
5334             /*
5335              * If it's in the list of modified extents, remove it
5336              * only if its generation is older then the current one,
5337              * in which case we don't need it for a fast fsync.
5338              * Otherwise don't remove it, we could be racing with an
5339              * ongoing fast fsync that could miss the new extent.
5340              */
5341             fs_info = btrfs_inode->root->fs_info;
5342             spin_lock(&fs_info->trans_lock);
5343             cur_gen = fs_info->generation;
5344             spin_unlock(&fs_info->trans_lock);
5345             if (em->generation >= cur_gen)
5346                 goto next;
5347 remove_em:
5348             /*
5349              * We only remove extent maps that are not in the list of
5350              * modified extents or that are in the list but with a
5351              * generation lower then the current generation, so there
5352              * is no need to set the full fsync flag on the inode (it
5353              * hurts the fsync performance for workloads with a data
5354              * size that exceeds or is close to the system's memory).
5355              */
5356             remove_extent_mapping(map, em);
5357             /* once for the rb tree */
5358             free_extent_map(em);
5359 next:
5360             start = extent_map_end(em);
5361             write_unlock(&map->lock);
5362 
5363             /* once for us */
5364             free_extent_map(em);
5365 
5366             cond_resched(); /* Allow large-extent preemption. */
5367         }
5368     }
5369     return try_release_extent_state(tree, page, mask);
5370 }
5371 
5372 /*
5373  * helper function for fiemap, which doesn't want to see any holes.
5374  * This maps until we find something past 'last'
5375  */
5376 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5377                         u64 offset, u64 last)
5378 {
5379     u64 sectorsize = btrfs_inode_sectorsize(inode);
5380     struct extent_map *em;
5381     u64 len;
5382 
5383     if (offset >= last)
5384         return NULL;
5385 
5386     while (1) {
5387         len = last - offset;
5388         if (len == 0)
5389             break;
5390         len = ALIGN(len, sectorsize);
5391         em = btrfs_get_extent_fiemap(inode, offset, len);
5392         if (IS_ERR(em))
5393             return em;
5394 
5395         /* if this isn't a hole return it */
5396         if (em->block_start != EXTENT_MAP_HOLE)
5397             return em;
5398 
5399         /* this is a hole, advance to the next extent */
5400         offset = extent_map_end(em);
5401         free_extent_map(em);
5402         if (offset >= last)
5403             break;
5404     }
5405     return NULL;
5406 }
5407 
5408 /*
5409  * To cache previous fiemap extent
5410  *
5411  * Will be used for merging fiemap extent
5412  */
5413 struct fiemap_cache {
5414     u64 offset;
5415     u64 phys;
5416     u64 len;
5417     u32 flags;
5418     bool cached;
5419 };
5420 
5421 /*
5422  * Helper to submit fiemap extent.
5423  *
5424  * Will try to merge current fiemap extent specified by @offset, @phys,
5425  * @len and @flags with cached one.
5426  * And only when we fails to merge, cached one will be submitted as
5427  * fiemap extent.
5428  *
5429  * Return value is the same as fiemap_fill_next_extent().
5430  */
5431 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
5432                 struct fiemap_cache *cache,
5433                 u64 offset, u64 phys, u64 len, u32 flags)
5434 {
5435     int ret = 0;
5436 
5437     if (!cache->cached)
5438         goto assign;
5439 
5440     /*
5441      * Sanity check, extent_fiemap() should have ensured that new
5442      * fiemap extent won't overlap with cached one.
5443      * Not recoverable.
5444      *
5445      * NOTE: Physical address can overlap, due to compression
5446      */
5447     if (cache->offset + cache->len > offset) {
5448         WARN_ON(1);
5449         return -EINVAL;
5450     }
5451 
5452     /*
5453      * Only merges fiemap extents if
5454      * 1) Their logical addresses are continuous
5455      *
5456      * 2) Their physical addresses are continuous
5457      *    So truly compressed (physical size smaller than logical size)
5458      *    extents won't get merged with each other
5459      *
5460      * 3) Share same flags except FIEMAP_EXTENT_LAST
5461      *    So regular extent won't get merged with prealloc extent
5462      */
5463     if (cache->offset + cache->len  == offset &&
5464         cache->phys + cache->len == phys  &&
5465         (cache->flags & ~FIEMAP_EXTENT_LAST) ==
5466             (flags & ~FIEMAP_EXTENT_LAST)) {
5467         cache->len += len;
5468         cache->flags |= flags;
5469         goto try_submit_last;
5470     }
5471 
5472     /* Not mergeable, need to submit cached one */
5473     ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5474                       cache->len, cache->flags);
5475     cache->cached = false;
5476     if (ret)
5477         return ret;
5478 assign:
5479     cache->cached = true;
5480     cache->offset = offset;
5481     cache->phys = phys;
5482     cache->len = len;
5483     cache->flags = flags;
5484 try_submit_last:
5485     if (cache->flags & FIEMAP_EXTENT_LAST) {
5486         ret = fiemap_fill_next_extent(fieinfo, cache->offset,
5487                 cache->phys, cache->len, cache->flags);
5488         cache->cached = false;
5489     }
5490     return ret;
5491 }
5492 
5493 /*
5494  * Emit last fiemap cache
5495  *
5496  * The last fiemap cache may still be cached in the following case:
5497  * 0              4k            8k
5498  * |<- Fiemap range ->|
5499  * |<------------  First extent ----------->|
5500  *
5501  * In this case, the first extent range will be cached but not emitted.
5502  * So we must emit it before ending extent_fiemap().
5503  */
5504 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5505                   struct fiemap_cache *cache)
5506 {
5507     int ret;
5508 
5509     if (!cache->cached)
5510         return 0;
5511 
5512     ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5513                       cache->len, cache->flags);
5514     cache->cached = false;
5515     if (ret > 0)
5516         ret = 0;
5517     return ret;
5518 }
5519 
5520 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5521           u64 start, u64 len)
5522 {
5523     int ret = 0;
5524     u64 off;
5525     u64 max = start + len;
5526     u32 flags = 0;
5527     u32 found_type;
5528     u64 last;
5529     u64 last_for_get_extent = 0;
5530     u64 disko = 0;
5531     u64 isize = i_size_read(&inode->vfs_inode);
5532     struct btrfs_key found_key;
5533     struct extent_map *em = NULL;
5534     struct extent_state *cached_state = NULL;
5535     struct btrfs_path *path;
5536     struct btrfs_root *root = inode->root;
5537     struct fiemap_cache cache = { 0 };
5538     struct ulist *roots;
5539     struct ulist *tmp_ulist;
5540     int end = 0;
5541     u64 em_start = 0;
5542     u64 em_len = 0;
5543     u64 em_end = 0;
5544 
5545     if (len == 0)
5546         return -EINVAL;
5547 
5548     path = btrfs_alloc_path();
5549     if (!path)
5550         return -ENOMEM;
5551 
5552     roots = ulist_alloc(GFP_KERNEL);
5553     tmp_ulist = ulist_alloc(GFP_KERNEL);
5554     if (!roots || !tmp_ulist) {
5555         ret = -ENOMEM;
5556         goto out_free_ulist;
5557     }
5558 
5559     /*
5560      * We can't initialize that to 'start' as this could miss extents due
5561      * to extent item merging
5562      */
5563     off = 0;
5564     start = round_down(start, btrfs_inode_sectorsize(inode));
5565     len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5566 
5567     /*
5568      * lookup the last file extent.  We're not using i_size here
5569      * because there might be preallocation past i_size
5570      */
5571     ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
5572                        0);
5573     if (ret < 0) {
5574         goto out_free_ulist;
5575     } else {
5576         WARN_ON(!ret);
5577         if (ret == 1)
5578             ret = 0;
5579     }
5580 
5581     path->slots[0]--;
5582     btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5583     found_type = found_key.type;
5584 
5585     /* No extents, but there might be delalloc bits */
5586     if (found_key.objectid != btrfs_ino(inode) ||
5587         found_type != BTRFS_EXTENT_DATA_KEY) {
5588         /* have to trust i_size as the end */
5589         last = (u64)-1;
5590         last_for_get_extent = isize;
5591     } else {
5592         /*
5593          * remember the start of the last extent.  There are a
5594          * bunch of different factors that go into the length of the
5595          * extent, so its much less complex to remember where it started
5596          */
5597         last = found_key.offset;
5598         last_for_get_extent = last + 1;
5599     }
5600     btrfs_release_path(path);
5601 
5602     /*
5603      * we might have some extents allocated but more delalloc past those
5604      * extents.  so, we trust isize unless the start of the last extent is
5605      * beyond isize
5606      */
5607     if (last < isize) {
5608         last = (u64)-1;
5609         last_for_get_extent = isize;
5610     }
5611 
5612     lock_extent_bits(&inode->io_tree, start, start + len - 1,
5613              &cached_state);
5614 
5615     em = get_extent_skip_holes(inode, start, last_for_get_extent);
5616     if (!em)
5617         goto out;
5618     if (IS_ERR(em)) {
5619         ret = PTR_ERR(em);
5620         goto out;
5621     }
5622 
5623     while (!end) {
5624         u64 offset_in_extent = 0;
5625 
5626         /* break if the extent we found is outside the range */
5627         if (em->start >= max || extent_map_end(em) < off)
5628             break;
5629 
5630         /*
5631          * get_extent may return an extent that starts before our
5632          * requested range.  We have to make sure the ranges
5633          * we return to fiemap always move forward and don't
5634          * overlap, so adjust the offsets here
5635          */
5636         em_start = max(em->start, off);
5637 
5638         /*
5639          * record the offset from the start of the extent
5640          * for adjusting the disk offset below.  Only do this if the
5641          * extent isn't compressed since our in ram offset may be past
5642          * what we have actually allocated on disk.
5643          */
5644         if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5645             offset_in_extent = em_start - em->start;
5646         em_end = extent_map_end(em);
5647         em_len = em_end - em_start;
5648         flags = 0;
5649         if (em->block_start < EXTENT_MAP_LAST_BYTE)
5650             disko = em->block_start + offset_in_extent;
5651         else
5652             disko = 0;
5653 
5654         /*
5655          * bump off for our next call to get_extent
5656          */
5657         off = extent_map_end(em);
5658         if (off >= max)
5659             end = 1;
5660 
5661         if (em->block_start == EXTENT_MAP_LAST_BYTE) {
5662             end = 1;
5663             flags |= FIEMAP_EXTENT_LAST;
5664         } else if (em->block_start == EXTENT_MAP_INLINE) {
5665             flags |= (FIEMAP_EXTENT_DATA_INLINE |
5666                   FIEMAP_EXTENT_NOT_ALIGNED);
5667         } else if (em->block_start == EXTENT_MAP_DELALLOC) {
5668             flags |= (FIEMAP_EXTENT_DELALLOC |
5669                   FIEMAP_EXTENT_UNKNOWN);
5670         } else if (fieinfo->fi_extents_max) {
5671             u64 bytenr = em->block_start -
5672                 (em->start - em->orig_start);
5673 
5674             /*
5675              * As btrfs supports shared space, this information
5676              * can be exported to userspace tools via
5677              * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
5678              * then we're just getting a count and we can skip the
5679              * lookup stuff.
5680              */
5681             ret = btrfs_check_shared(root, btrfs_ino(inode),
5682                          bytenr, roots, tmp_ulist);
5683             if (ret < 0)
5684                 goto out_free;
5685             if (ret)
5686                 flags |= FIEMAP_EXTENT_SHARED;
5687             ret = 0;
5688         }
5689         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5690             flags |= FIEMAP_EXTENT_ENCODED;
5691         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5692             flags |= FIEMAP_EXTENT_UNWRITTEN;
5693 
5694         free_extent_map(em);
5695         em = NULL;
5696         if ((em_start >= last) || em_len == (u64)-1 ||
5697            (last == (u64)-1 && isize <= em_end)) {
5698             flags |= FIEMAP_EXTENT_LAST;
5699             end = 1;
5700         }
5701 
5702         /* now scan forward to see if this is really the last extent. */
5703         em = get_extent_skip_holes(inode, off, last_for_get_extent);
5704         if (IS_ERR(em)) {
5705             ret = PTR_ERR(em);
5706             goto out;
5707         }
5708         if (!em) {
5709             flags |= FIEMAP_EXTENT_LAST;
5710             end = 1;
5711         }
5712         ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
5713                        em_len, flags);
5714         if (ret) {
5715             if (ret == 1)
5716                 ret = 0;
5717             goto out_free;
5718         }
5719     }
5720 out_free:
5721     if (!ret)
5722         ret = emit_last_fiemap_cache(fieinfo, &cache);
5723     free_extent_map(em);
5724 out:
5725     unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5726                  &cached_state);
5727 
5728 out_free_ulist:
5729     btrfs_free_path(path);
5730     ulist_free(roots);
5731     ulist_free(tmp_ulist);
5732     return ret;
5733 }
5734 
5735 static void __free_extent_buffer(struct extent_buffer *eb)
5736 {
5737     kmem_cache_free(extent_buffer_cache, eb);
5738 }
5739 
5740 int extent_buffer_under_io(const struct extent_buffer *eb)
5741 {
5742     return (atomic_read(&eb->io_pages) ||
5743         test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
5744         test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5745 }
5746 
5747 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5748 {
5749     struct btrfs_subpage *subpage;
5750 
5751     lockdep_assert_held(&page->mapping->private_lock);
5752 
5753     if (PagePrivate(page)) {
5754         subpage = (struct btrfs_subpage *)page->private;
5755         if (atomic_read(&subpage->eb_refs))
5756             return true;
5757         /*
5758          * Even there is no eb refs here, we may still have
5759          * end_page_read() call relying on page::private.
5760          */
5761         if (atomic_read(&subpage->readers))
5762             return true;
5763     }
5764     return false;
5765 }
5766 
5767 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
5768 {
5769     struct btrfs_fs_info *fs_info = eb->fs_info;
5770     const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5771 
5772     /*
5773      * For mapped eb, we're going to change the page private, which should
5774      * be done under the private_lock.
5775      */
5776     if (mapped)
5777         spin_lock(&page->mapping->private_lock);
5778 
5779     if (!PagePrivate(page)) {
5780         if (mapped)
5781             spin_unlock(&page->mapping->private_lock);
5782         return;
5783     }
5784 
5785     if (fs_info->nodesize >= PAGE_SIZE) {
5786         /*
5787          * We do this since we'll remove the pages after we've
5788          * removed the eb from the radix tree, so we could race
5789          * and have this page now attached to the new eb.  So
5790          * only clear page_private if it's still connected to
5791          * this eb.
5792          */
5793         if (PagePrivate(page) &&
5794             page->private == (unsigned long)eb) {
5795             BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5796             BUG_ON(PageDirty(page));
5797             BUG_ON(PageWriteback(page));
5798             /*
5799              * We need to make sure we haven't be attached
5800              * to a new eb.
5801              */
5802             detach_page_private(page);
5803         }
5804         if (mapped)
5805             spin_unlock(&page->mapping->private_lock);
5806         return;
5807     }
5808 
5809     /*
5810      * For subpage, we can have dummy eb with page private.  In this case,
5811      * we can directly detach the private as such page is only attached to
5812      * one dummy eb, no sharing.
5813      */
5814     if (!mapped) {
5815         btrfs_detach_subpage(fs_info, page);
5816         return;
5817     }
5818 
5819     btrfs_page_dec_eb_refs(fs_info, page);
5820 
5821     /*
5822      * We can only detach the page private if there are no other ebs in the
5823      * page range and no unfinished IO.
5824      */
5825     if (!page_range_has_eb(fs_info, page))
5826         btrfs_detach_subpage(fs_info, page);
5827 
5828     spin_unlock(&page->mapping->private_lock);
5829 }
5830 
5831 /* Release all pages attached to the extent buffer */
5832 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
5833 {
5834     int i;
5835     int num_pages;
5836 
5837     ASSERT(!extent_buffer_under_io(eb));
5838 
5839     num_pages = num_extent_pages(eb);
5840     for (i = 0; i < num_pages; i++) {
5841         struct page *page = eb->pages[i];
5842 
5843         if (!page)
5844             continue;
5845 
5846         detach_extent_buffer_page(eb, page);
5847 
5848         /* One for when we allocated the page */
5849         put_page(page);
5850     }
5851 }
5852 
5853 /*
5854  * Helper for releasing the extent buffer.
5855  */
5856 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5857 {
5858     btrfs_release_extent_buffer_pages(eb);
5859     btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5860     __free_extent_buffer(eb);
5861 }
5862 
5863 static struct extent_buffer *
5864 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5865               unsigned long len)
5866 {
5867     struct extent_buffer *eb = NULL;
5868 
5869     eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5870     eb->start = start;
5871     eb->len = len;
5872     eb->fs_info = fs_info;
5873     eb->bflags = 0;
5874     init_rwsem(&eb->lock);
5875 
5876     btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5877                  &fs_info->allocated_ebs);
5878     INIT_LIST_HEAD(&eb->release_list);
5879 
5880     spin_lock_init(&eb->refs_lock);
5881     atomic_set(&eb->refs, 1);
5882     atomic_set(&eb->io_pages, 0);
5883 
5884     ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5885 
5886     return eb;
5887 }
5888 
5889 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5890 {
5891     int i;
5892     struct extent_buffer *new;
5893     int num_pages = num_extent_pages(src);
5894     int ret;
5895 
5896     new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5897     if (new == NULL)
5898         return NULL;
5899 
5900     /*
5901      * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
5902      * btrfs_release_extent_buffer() have different behavior for
5903      * UNMAPPED subpage extent buffer.
5904      */
5905     set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5906 
5907     memset(new->pages, 0, sizeof(*new->pages) * num_pages);
5908     ret = btrfs_alloc_page_array(num_pages, new->pages);
5909     if (ret) {
5910         btrfs_release_extent_buffer(new);
5911         return NULL;
5912     }
5913 
5914     for (i = 0; i < num_pages; i++) {
5915         int ret;
5916         struct page *p = new->pages[i];
5917 
5918         ret = attach_extent_buffer_page(new, p, NULL);
5919         if (ret < 0) {
5920             btrfs_release_extent_buffer(new);
5921             return NULL;
5922         }
5923         WARN_ON(PageDirty(p));
5924         copy_page(page_address(p), page_address(src->pages[i]));
5925     }
5926     set_extent_buffer_uptodate(new);
5927 
5928     return new;
5929 }
5930 
5931 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5932                           u64 start, unsigned long len)
5933 {
5934     struct extent_buffer *eb;
5935     int num_pages;
5936     int i;
5937     int ret;
5938 
5939     eb = __alloc_extent_buffer(fs_info, start, len);
5940     if (!eb)
5941         return NULL;
5942 
5943     num_pages = num_extent_pages(eb);
5944     ret = btrfs_alloc_page_array(num_pages, eb->pages);
5945     if (ret)
5946         goto err;
5947 
5948     for (i = 0; i < num_pages; i++) {
5949         struct page *p = eb->pages[i];
5950 
5951         ret = attach_extent_buffer_page(eb, p, NULL);
5952         if (ret < 0)
5953             goto err;
5954     }
5955 
5956     set_extent_buffer_uptodate(eb);
5957     btrfs_set_header_nritems(eb, 0);
5958     set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5959 
5960     return eb;
5961 err:
5962     for (i = 0; i < num_pages; i++) {
5963         if (eb->pages[i]) {
5964             detach_extent_buffer_page(eb, eb->pages[i]);
5965             __free_page(eb->pages[i]);
5966         }
5967     }
5968     __free_extent_buffer(eb);
5969     return NULL;
5970 }
5971 
5972 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5973                         u64 start)
5974 {
5975     return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5976 }
5977 
5978 static void check_buffer_tree_ref(struct extent_buffer *eb)
5979 {
5980     int refs;
5981     /*
5982      * The TREE_REF bit is first set when the extent_buffer is added
5983      * to the radix tree. It is also reset, if unset, when a new reference
5984      * is created by find_extent_buffer.
5985      *
5986      * It is only cleared in two cases: freeing the last non-tree
5987      * reference to the extent_buffer when its STALE bit is set or
5988      * calling release_folio when the tree reference is the only reference.
5989      *
5990      * In both cases, care is taken to ensure that the extent_buffer's
5991      * pages are not under io. However, release_folio can be concurrently
5992      * called with creating new references, which is prone to race
5993      * conditions between the calls to check_buffer_tree_ref in those
5994      * codepaths and clearing TREE_REF in try_release_extent_buffer.
5995      *
5996      * The actual lifetime of the extent_buffer in the radix tree is
5997      * adequately protected by the refcount, but the TREE_REF bit and
5998      * its corresponding reference are not. To protect against this
5999      * class of races, we call check_buffer_tree_ref from the codepaths
6000      * which trigger io after they set eb->io_pages. Note that once io is
6001      * initiated, TREE_REF can no longer be cleared, so that is the
6002      * moment at which any such race is best fixed.
6003      */
6004     refs = atomic_read(&eb->refs);
6005     if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6006         return;
6007 
6008     spin_lock(&eb->refs_lock);
6009     if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6010         atomic_inc(&eb->refs);
6011     spin_unlock(&eb->refs_lock);
6012 }
6013 
6014 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
6015         struct page *accessed)
6016 {
6017     int num_pages, i;
6018 
6019     check_buffer_tree_ref(eb);
6020 
6021     num_pages = num_extent_pages(eb);
6022     for (i = 0; i < num_pages; i++) {
6023         struct page *p = eb->pages[i];
6024 
6025         if (p != accessed)
6026             mark_page_accessed(p);
6027     }
6028 }
6029 
6030 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
6031                      u64 start)
6032 {
6033     struct extent_buffer *eb;
6034 
6035     eb = find_extent_buffer_nolock(fs_info, start);
6036     if (!eb)
6037         return NULL;
6038     /*
6039      * Lock our eb's refs_lock to avoid races with free_extent_buffer().
6040      * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
6041      * another task running free_extent_buffer() might have seen that flag
6042      * set, eb->refs == 2, that the buffer isn't under IO (dirty and
6043      * writeback flags not set) and it's still in the tree (flag
6044      * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
6045      * decrementing the extent buffer's reference count twice.  So here we
6046      * could race and increment the eb's reference count, clear its stale
6047      * flag, mark it as dirty and drop our reference before the other task
6048      * finishes executing free_extent_buffer, which would later result in
6049      * an attempt to free an extent buffer that is dirty.
6050      */
6051     if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
6052         spin_lock(&eb->refs_lock);
6053         spin_unlock(&eb->refs_lock);
6054     }
6055     mark_extent_buffer_accessed(eb, NULL);
6056     return eb;
6057 }
6058 
6059 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6060 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
6061                     u64 start)
6062 {
6063     struct extent_buffer *eb, *exists = NULL;
6064     int ret;
6065 
6066     eb = find_extent_buffer(fs_info, start);
6067     if (eb)
6068         return eb;
6069     eb = alloc_dummy_extent_buffer(fs_info, start);
6070     if (!eb)
6071         return ERR_PTR(-ENOMEM);
6072     eb->fs_info = fs_info;
6073 again:
6074     ret = radix_tree_preload(GFP_NOFS);
6075     if (ret) {
6076         exists = ERR_PTR(ret);
6077         goto free_eb;
6078     }
6079     spin_lock(&fs_info->buffer_lock);
6080     ret = radix_tree_insert(&fs_info->buffer_radix,
6081                 start >> fs_info->sectorsize_bits, eb);
6082     spin_unlock(&fs_info->buffer_lock);
6083     radix_tree_preload_end();
6084     if (ret == -EEXIST) {
6085         exists = find_extent_buffer(fs_info, start);
6086         if (exists)
6087             goto free_eb;
6088         else
6089             goto again;
6090     }
6091     check_buffer_tree_ref(eb);
6092     set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6093 
6094     return eb;
6095 free_eb:
6096     btrfs_release_extent_buffer(eb);
6097     return exists;
6098 }
6099 #endif
6100 
6101 static struct extent_buffer *grab_extent_buffer(
6102         struct btrfs_fs_info *fs_info, struct page *page)
6103 {
6104     struct extent_buffer *exists;
6105 
6106     /*
6107      * For subpage case, we completely rely on radix tree to ensure we
6108      * don't try to insert two ebs for the same bytenr.  So here we always
6109      * return NULL and just continue.
6110      */
6111     if (fs_info->nodesize < PAGE_SIZE)
6112         return NULL;
6113 
6114     /* Page not yet attached to an extent buffer */
6115     if (!PagePrivate(page))
6116         return NULL;
6117 
6118     /*
6119      * We could have already allocated an eb for this page and attached one
6120      * so lets see if we can get a ref on the existing eb, and if we can we
6121      * know it's good and we can just return that one, else we know we can
6122      * just overwrite page->private.
6123      */
6124     exists = (struct extent_buffer *)page->private;
6125     if (atomic_inc_not_zero(&exists->refs))
6126         return exists;
6127 
6128     WARN_ON(PageDirty(page));
6129     detach_page_private(page);
6130     return NULL;
6131 }
6132 
6133 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
6134 {
6135     if (!IS_ALIGNED(start, fs_info->sectorsize)) {
6136         btrfs_err(fs_info, "bad tree block start %llu", start);
6137         return -EINVAL;
6138     }
6139 
6140     if (fs_info->nodesize < PAGE_SIZE &&
6141         offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
6142         btrfs_err(fs_info,
6143         "tree block crosses page boundary, start %llu nodesize %u",
6144               start, fs_info->nodesize);
6145         return -EINVAL;
6146     }
6147     if (fs_info->nodesize >= PAGE_SIZE &&
6148         !PAGE_ALIGNED(start)) {
6149         btrfs_err(fs_info,
6150         "tree block is not page aligned, start %llu nodesize %u",
6151               start, fs_info->nodesize);
6152         return -EINVAL;
6153     }
6154     return 0;
6155 }
6156 
6157 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
6158                       u64 start, u64 owner_root, int level)
6159 {
6160     unsigned long len = fs_info->nodesize;
6161     int num_pages;
6162     int i;
6163     unsigned long index = start >> PAGE_SHIFT;
6164     struct extent_buffer *eb;
6165     struct extent_buffer *exists = NULL;
6166     struct page *p;
6167     struct address_space *mapping = fs_info->btree_inode->i_mapping;
6168     u64 lockdep_owner = owner_root;
6169     int uptodate = 1;
6170     int ret;
6171 
6172     if (check_eb_alignment(fs_info, start))
6173         return ERR_PTR(-EINVAL);
6174 
6175 #if BITS_PER_LONG == 32
6176     if (start >= MAX_LFS_FILESIZE) {
6177         btrfs_err_rl(fs_info,
6178         "extent buffer %llu is beyond 32bit page cache limit", start);
6179         btrfs_err_32bit_limit(fs_info);
6180         return ERR_PTR(-EOVERFLOW);
6181     }
6182     if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6183         btrfs_warn_32bit_limit(fs_info);
6184 #endif
6185 
6186     eb = find_extent_buffer(fs_info, start);
6187     if (eb)
6188         return eb;
6189 
6190     eb = __alloc_extent_buffer(fs_info, start, len);
6191     if (!eb)
6192         return ERR_PTR(-ENOMEM);
6193 
6194     /*
6195      * The reloc trees are just snapshots, so we need them to appear to be
6196      * just like any other fs tree WRT lockdep.
6197      */
6198     if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
6199         lockdep_owner = BTRFS_FS_TREE_OBJECTID;
6200 
6201     btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
6202 
6203     num_pages = num_extent_pages(eb);
6204     for (i = 0; i < num_pages; i++, index++) {
6205         struct btrfs_subpage *prealloc = NULL;
6206 
6207         p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6208         if (!p) {
6209             exists = ERR_PTR(-ENOMEM);
6210             goto free_eb;
6211         }
6212 
6213         /*
6214          * Preallocate page->private for subpage case, so that we won't
6215          * allocate memory with private_lock hold.  The memory will be
6216          * freed by attach_extent_buffer_page() or freed manually if
6217          * we exit earlier.
6218          *
6219          * Although we have ensured one subpage eb can only have one
6220          * page, but it may change in the future for 16K page size
6221          * support, so we still preallocate the memory in the loop.
6222          */
6223         if (fs_info->nodesize < PAGE_SIZE) {
6224             prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
6225             if (IS_ERR(prealloc)) {
6226                 ret = PTR_ERR(prealloc);
6227                 unlock_page(p);
6228                 put_page(p);
6229                 exists = ERR_PTR(ret);
6230                 goto free_eb;
6231             }
6232         }
6233 
6234         spin_lock(&mapping->private_lock);
6235         exists = grab_extent_buffer(fs_info, p);
6236         if (exists) {
6237             spin_unlock(&mapping->private_lock);
6238             unlock_page(p);
6239             put_page(p);
6240             mark_extent_buffer_accessed(exists, p);
6241             btrfs_free_subpage(prealloc);
6242             goto free_eb;
6243         }
6244         /* Should not fail, as we have preallocated the memory */
6245         ret = attach_extent_buffer_page(eb, p, prealloc);
6246         ASSERT(!ret);
6247         /*
6248          * To inform we have extra eb under allocation, so that
6249          * detach_extent_buffer_page() won't release the page private
6250          * when the eb hasn't yet been inserted into radix tree.
6251          *
6252          * The ref will be decreased when the eb released the page, in
6253          * detach_extent_buffer_page().
6254          * Thus needs no special handling in error path.
6255          */
6256         btrfs_page_inc_eb_refs(fs_info, p);
6257         spin_unlock(&mapping->private_lock);
6258 
6259         WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6260         eb->pages[i] = p;
6261         if (!PageUptodate(p))
6262             uptodate = 0;
6263 
6264         /*
6265          * We can't unlock the pages just yet since the extent buffer
6266          * hasn't been properly inserted in the radix tree, this
6267          * opens a race with btree_release_folio which can free a page
6268          * while we are still filling in all pages for the buffer and
6269          * we could crash.
6270          */
6271     }
6272     if (uptodate)
6273         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6274 again:
6275     ret = radix_tree_preload(GFP_NOFS);
6276     if (ret) {
6277         exists = ERR_PTR(ret);
6278         goto free_eb;
6279     }
6280 
6281     spin_lock(&fs_info->buffer_lock);
6282     ret = radix_tree_insert(&fs_info->buffer_radix,
6283                 start >> fs_info->sectorsize_bits, eb);
6284     spin_unlock(&fs_info->buffer_lock);
6285     radix_tree_preload_end();
6286     if (ret == -EEXIST) {
6287         exists = find_extent_buffer(fs_info, start);
6288         if (exists)
6289             goto free_eb;
6290         else
6291             goto again;
6292     }
6293     /* add one reference for the tree */
6294     check_buffer_tree_ref(eb);
6295     set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6296 
6297     /*
6298      * Now it's safe to unlock the pages because any calls to
6299      * btree_release_folio will correctly detect that a page belongs to a
6300      * live buffer and won't free them prematurely.
6301      */
6302     for (i = 0; i < num_pages; i++)
6303         unlock_page(eb->pages[i]);
6304     return eb;
6305 
6306 free_eb:
6307     WARN_ON(!atomic_dec_and_test(&eb->refs));
6308     for (i = 0; i < num_pages; i++) {
6309         if (eb->pages[i])
6310             unlock_page(eb->pages[i]);
6311     }
6312 
6313     btrfs_release_extent_buffer(eb);
6314     return exists;
6315 }
6316 
6317 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
6318 {
6319     struct extent_buffer *eb =
6320             container_of(head, struct extent_buffer, rcu_head);
6321 
6322     __free_extent_buffer(eb);
6323 }
6324 
6325 static int release_extent_buffer(struct extent_buffer *eb)
6326     __releases(&eb->refs_lock)
6327 {
6328     lockdep_assert_held(&eb->refs_lock);
6329 
6330     WARN_ON(atomic_read(&eb->refs) == 0);
6331     if (atomic_dec_and_test(&eb->refs)) {
6332         if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6333             struct btrfs_fs_info *fs_info = eb->fs_info;
6334 
6335             spin_unlock(&eb->refs_lock);
6336 
6337             spin_lock(&fs_info->buffer_lock);
6338             radix_tree_delete(&fs_info->buffer_radix,
6339                       eb->start >> fs_info->sectorsize_bits);
6340             spin_unlock(&fs_info->buffer_lock);
6341         } else {
6342             spin_unlock(&eb->refs_lock);
6343         }
6344 
6345         btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6346         /* Should be safe to release our pages at this point */
6347         btrfs_release_extent_buffer_pages(eb);
6348 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6349         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6350             __free_extent_buffer(eb);
6351             return 1;
6352         }
6353 #endif
6354         call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6355         return 1;
6356     }
6357     spin_unlock(&eb->refs_lock);
6358 
6359     return 0;
6360 }
6361 
6362 void free_extent_buffer(struct extent_buffer *eb)
6363 {
6364     int refs;
6365     int old;
6366     if (!eb)
6367         return;
6368 
6369     while (1) {
6370         refs = atomic_read(&eb->refs);
6371         if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
6372             || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
6373             refs == 1))
6374             break;
6375         old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
6376         if (old == refs)
6377             return;
6378     }
6379 
6380     spin_lock(&eb->refs_lock);
6381     if (atomic_read(&eb->refs) == 2 &&
6382         test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6383         !extent_buffer_under_io(eb) &&
6384         test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6385         atomic_dec(&eb->refs);
6386 
6387     /*
6388      * I know this is terrible, but it's temporary until we stop tracking
6389      * the uptodate bits and such for the extent buffers.
6390      */
6391     release_extent_buffer(eb);
6392 }
6393 
6394 void free_extent_buffer_stale(struct extent_buffer *eb)
6395 {
6396     if (!eb)
6397         return;
6398 
6399     spin_lock(&eb->refs_lock);
6400     set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
6401 
6402     if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6403         test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6404         atomic_dec(&eb->refs);
6405     release_extent_buffer(eb);
6406 }
6407 
6408 static void btree_clear_page_dirty(struct page *page)
6409 {
6410     ASSERT(PageDirty(page));
6411     ASSERT(PageLocked(page));
6412     clear_page_dirty_for_io(page);
6413     xa_lock_irq(&page->mapping->i_pages);
6414     if (!PageDirty(page))
6415         __xa_clear_mark(&page->mapping->i_pages,
6416                 page_index(page), PAGECACHE_TAG_DIRTY);
6417     xa_unlock_irq(&page->mapping->i_pages);
6418 }
6419 
6420 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
6421 {
6422     struct btrfs_fs_info *fs_info = eb->fs_info;
6423     struct page *page = eb->pages[0];
6424     bool last;
6425 
6426     /* btree_clear_page_dirty() needs page locked */
6427     lock_page(page);
6428     last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
6429                           eb->len);
6430     if (last)
6431         btree_clear_page_dirty(page);
6432     unlock_page(page);
6433     WARN_ON(atomic_read(&eb->refs) == 0);
6434 }
6435 
6436 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6437 {
6438     int i;
6439     int num_pages;
6440     struct page *page;
6441 
6442     if (eb->fs_info->nodesize < PAGE_SIZE)
6443         return clear_subpage_extent_buffer_dirty(eb);
6444 
6445     num_pages = num_extent_pages(eb);
6446 
6447     for (i = 0; i < num_pages; i++) {
6448         page = eb->pages[i];
6449         if (!PageDirty(page))
6450             continue;
6451         lock_page(page);
6452         btree_clear_page_dirty(page);
6453         ClearPageError(page);
6454         unlock_page(page);
6455     }
6456     WARN_ON(atomic_read(&eb->refs) == 0);
6457 }
6458 
6459 bool set_extent_buffer_dirty(struct extent_buffer *eb)
6460 {
6461     int i;
6462     int num_pages;
6463     bool was_dirty;
6464 
6465     check_buffer_tree_ref(eb);
6466 
6467     was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6468 
6469     num_pages = num_extent_pages(eb);
6470     WARN_ON(atomic_read(&eb->refs) == 0);
6471     WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
6472 
6473     if (!was_dirty) {
6474         bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
6475 
6476         /*
6477          * For subpage case, we can have other extent buffers in the
6478          * same page, and in clear_subpage_extent_buffer_dirty() we
6479          * have to clear page dirty without subpage lock held.
6480          * This can cause race where our page gets dirty cleared after
6481          * we just set it.
6482          *
6483          * Thankfully, clear_subpage_extent_buffer_dirty() has locked
6484          * its page for other reasons, we can use page lock to prevent
6485          * the above race.
6486          */
6487         if (subpage)
6488             lock_page(eb->pages[0]);
6489         for (i = 0; i < num_pages; i++)
6490             btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
6491                          eb->start, eb->len);
6492         if (subpage)
6493             unlock_page(eb->pages[0]);
6494     }
6495 #ifdef CONFIG_BTRFS_DEBUG
6496     for (i = 0; i < num_pages; i++)
6497         ASSERT(PageDirty(eb->pages[i]));
6498 #endif
6499 
6500     return was_dirty;
6501 }
6502 
6503 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6504 {
6505     struct btrfs_fs_info *fs_info = eb->fs_info;
6506     struct page *page;
6507     int num_pages;
6508     int i;
6509 
6510     clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6511     num_pages = num_extent_pages(eb);
6512     for (i = 0; i < num_pages; i++) {
6513         page = eb->pages[i];
6514         if (!page)
6515             continue;
6516 
6517         /*
6518          * This is special handling for metadata subpage, as regular
6519          * btrfs_is_subpage() can not handle cloned/dummy metadata.
6520          */
6521         if (fs_info->nodesize >= PAGE_SIZE)
6522             ClearPageUptodate(page);
6523         else
6524             btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
6525                              eb->len);
6526     }
6527 }
6528 
6529 void set_extent_buffer_uptodate(struct extent_buffer *eb)
6530 {
6531     struct btrfs_fs_info *fs_info = eb->fs_info;
6532     struct page *page;
6533     int num_pages;
6534     int i;
6535 
6536     set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6537     num_pages = num_extent_pages(eb);
6538     for (i = 0; i < num_pages; i++) {
6539         page = eb->pages[i];
6540 
6541         /*
6542          * This is special handling for metadata subpage, as regular
6543          * btrfs_is_subpage() can not handle cloned/dummy metadata.
6544          */
6545         if (fs_info->nodesize >= PAGE_SIZE)
6546             SetPageUptodate(page);
6547         else
6548             btrfs_subpage_set_uptodate(fs_info, page, eb->start,
6549                            eb->len);
6550     }
6551 }
6552 
6553 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
6554                       int mirror_num)
6555 {
6556     struct btrfs_fs_info *fs_info = eb->fs_info;
6557     struct extent_io_tree *io_tree;
6558     struct page *page = eb->pages[0];
6559     struct btrfs_bio_ctrl bio_ctrl = {
6560         .mirror_num = mirror_num,
6561     };
6562     int ret = 0;
6563 
6564     ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
6565     ASSERT(PagePrivate(page));
6566     io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
6567 
6568     if (wait == WAIT_NONE) {
6569         if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
6570             return -EAGAIN;
6571     } else {
6572         ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6573         if (ret < 0)
6574             return ret;
6575     }
6576 
6577     ret = 0;
6578     if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
6579         PageUptodate(page) ||
6580         btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
6581         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6582         unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6583         return ret;
6584     }
6585 
6586     clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6587     eb->read_mirror = 0;
6588     atomic_set(&eb->io_pages, 1);
6589     check_buffer_tree_ref(eb);
6590     btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
6591 
6592     btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6593     ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl,
6594                  page, eb->start, eb->len,
6595                  eb->start - page_offset(page),
6596                  end_bio_extent_readpage, 0, true);
6597     if (ret) {
6598         /*
6599          * In the endio function, if we hit something wrong we will
6600          * increase the io_pages, so here we need to decrease it for
6601          * error path.
6602          */
6603         atomic_dec(&eb->io_pages);
6604     }
6605     submit_one_bio(&bio_ctrl);
6606     if (ret || wait != WAIT_COMPLETE)
6607         return ret;
6608 
6609     wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
6610     if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6611         ret = -EIO;
6612     return ret;
6613 }
6614 
6615 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6616 {
6617     int i;
6618     struct page *page;
6619     int err;
6620     int ret = 0;
6621     int locked_pages = 0;
6622     int all_uptodate = 1;
6623     int num_pages;
6624     unsigned long num_reads = 0;
6625     struct btrfs_bio_ctrl bio_ctrl = {
6626         .mirror_num = mirror_num,
6627     };
6628 
6629     if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6630         return 0;
6631 
6632     /*
6633      * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
6634      * operation, which could potentially still be in flight.  In this case
6635      * we simply want to return an error.
6636      */
6637     if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
6638         return -EIO;
6639 
6640     if (eb->fs_info->nodesize < PAGE_SIZE)
6641         return read_extent_buffer_subpage(eb, wait, mirror_num);
6642 
6643     num_pages = num_extent_pages(eb);
6644     for (i = 0; i < num_pages; i++) {
6645         page = eb->pages[i];
6646         if (wait == WAIT_NONE) {
6647             /*
6648              * WAIT_NONE is only utilized by readahead. If we can't
6649              * acquire the lock atomically it means either the eb
6650              * is being read out or under modification.
6651              * Either way the eb will be or has been cached,
6652              * readahead can exit safely.
6653              */
6654             if (!trylock_page(page))
6655                 goto unlock_exit;
6656         } else {
6657             lock_page(page);
6658         }
6659         locked_pages++;
6660     }
6661     /*
6662      * We need to firstly lock all pages to make sure that
6663      * the uptodate bit of our pages won't be affected by
6664      * clear_extent_buffer_uptodate().
6665      */
6666     for (i = 0; i < num_pages; i++) {
6667         page = eb->pages[i];
6668         if (!PageUptodate(page)) {
6669             num_reads++;
6670             all_uptodate = 0;
6671         }
6672     }
6673 
6674     if (all_uptodate) {
6675         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6676         goto unlock_exit;
6677     }
6678 
6679     clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6680     eb->read_mirror = 0;
6681     atomic_set(&eb->io_pages, num_reads);
6682     /*
6683      * It is possible for release_folio to clear the TREE_REF bit before we
6684      * set io_pages. See check_buffer_tree_ref for a more detailed comment.
6685      */
6686     check_buffer_tree_ref(eb);
6687     for (i = 0; i < num_pages; i++) {
6688         page = eb->pages[i];
6689 
6690         if (!PageUptodate(page)) {
6691             if (ret) {
6692                 atomic_dec(&eb->io_pages);
6693                 unlock_page(page);
6694                 continue;
6695             }
6696 
6697             ClearPageError(page);
6698             err = submit_extent_page(REQ_OP_READ, NULL,
6699                      &bio_ctrl, page, page_offset(page),
6700                      PAGE_SIZE, 0, end_bio_extent_readpage,
6701                      0, false);
6702             if (err) {
6703                 /*
6704                  * We failed to submit the bio so it's the
6705                  * caller's responsibility to perform cleanup
6706                  * i.e unlock page/set error bit.
6707                  */
6708                 ret = err;
6709                 SetPageError(page);
6710                 unlock_page(page);
6711                 atomic_dec(&eb->io_pages);
6712             }
6713         } else {
6714             unlock_page(page);
6715         }
6716     }
6717 
6718     submit_one_bio(&bio_ctrl);
6719 
6720     if (ret || wait != WAIT_COMPLETE)
6721         return ret;
6722 
6723     for (i = 0; i < num_pages; i++) {
6724         page = eb->pages[i];
6725         wait_on_page_locked(page);
6726         if (!PageUptodate(page))
6727             ret = -EIO;
6728     }
6729 
6730     return ret;
6731 
6732 unlock_exit:
6733     while (locked_pages > 0) {
6734         locked_pages--;
6735         page = eb->pages[locked_pages];
6736         unlock_page(page);
6737     }
6738     return ret;
6739 }
6740 
6741 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
6742                 unsigned long len)
6743 {
6744     btrfs_warn(eb->fs_info,
6745         "access to eb bytenr %llu len %lu out of range start %lu len %lu",
6746         eb->start, eb->len, start, len);
6747     WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6748 
6749     return true;
6750 }
6751 
6752 /*
6753  * Check if the [start, start + len) range is valid before reading/writing
6754  * the eb.
6755  * NOTE: @start and @len are offset inside the eb, not logical address.
6756  *
6757  * Caller should not touch the dst/src memory if this function returns error.
6758  */
6759 static inline int check_eb_range(const struct extent_buffer *eb,
6760                  unsigned long start, unsigned long len)
6761 {
6762     unsigned long offset;
6763 
6764     /* start, start + len should not go beyond eb->len nor overflow */
6765     if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
6766         return report_eb_range(eb, start, len);
6767 
6768     return false;
6769 }
6770 
6771 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
6772             unsigned long start, unsigned long len)
6773 {
6774     size_t cur;
6775     size_t offset;
6776     struct page *page;
6777     char *kaddr;
6778     char *dst = (char *)dstv;
6779     unsigned long i = get_eb_page_index(start);
6780 
6781     if (check_eb_range(eb, start, len))
6782         return;
6783 
6784     offset = get_eb_offset_in_page(eb, start);
6785 
6786     while (len > 0) {
6787         page = eb->pages[i];
6788 
6789         cur = min(len, (PAGE_SIZE - offset));
6790         kaddr = page_address(page);
6791         memcpy(dst, kaddr + offset, cur);
6792 
6793         dst += cur;
6794         len -= cur;
6795         offset = 0;
6796         i++;
6797     }
6798 }
6799 
6800 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
6801                        void __user *dstv,
6802                        unsigned long start, unsigned long len)
6803 {
6804     size_t cur;
6805     size_t offset;
6806     struct page *page;
6807     char *kaddr;
6808     char __user *dst = (char __user *)dstv;
6809     unsigned long i = get_eb_page_index(start);
6810     int ret = 0;
6811 
6812     WARN_ON(start > eb->len);
6813     WARN_ON(start + len > eb->start + eb->len);
6814 
6815     offset = get_eb_offset_in_page(eb, start);
6816 
6817     while (len > 0) {
6818         page = eb->pages[i];
6819 
6820         cur = min(len, (PAGE_SIZE - offset));
6821         kaddr = page_address(page);
6822         if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6823             ret = -EFAULT;
6824             break;
6825         }
6826 
6827         dst += cur;
6828         len -= cur;
6829         offset = 0;
6830         i++;
6831     }
6832 
6833     return ret;
6834 }
6835 
6836 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
6837              unsigned long start, unsigned long len)
6838 {
6839     size_t cur;
6840     size_t offset;
6841     struct page *page;
6842     char *kaddr;
6843     char *ptr = (char *)ptrv;
6844     unsigned long i = get_eb_page_index(start);
6845     int ret = 0;
6846 
6847     if (check_eb_range(eb, start, len))
6848         return -EINVAL;
6849 
6850     offset = get_eb_offset_in_page(eb, start);
6851 
6852     while (len > 0) {
6853         page = eb->pages[i];
6854 
6855         cur = min(len, (PAGE_SIZE - offset));
6856 
6857         kaddr = page_address(page);
6858         ret = memcmp(ptr, kaddr + offset, cur);
6859         if (ret)
6860             break;
6861 
6862         ptr += cur;
6863         len -= cur;
6864         offset = 0;
6865         i++;
6866     }
6867     return ret;
6868 }
6869 
6870 /*
6871  * Check that the extent buffer is uptodate.
6872  *
6873  * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
6874  * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
6875  */
6876 static void assert_eb_page_uptodate(const struct extent_buffer *eb,
6877                     struct page *page)
6878 {
6879     struct btrfs_fs_info *fs_info = eb->fs_info;
6880 
6881     /*
6882      * If we are using the commit root we could potentially clear a page
6883      * Uptodate while we're using the extent buffer that we've previously
6884      * looked up.  We don't want to complain in this case, as the page was
6885      * valid before, we just didn't write it out.  Instead we want to catch
6886      * the case where we didn't actually read the block properly, which
6887      * would have !PageUptodate && !PageError, as we clear PageError before
6888      * reading.
6889      */
6890     if (fs_info->nodesize < PAGE_SIZE) {
6891         bool uptodate, error;
6892 
6893         uptodate = btrfs_subpage_test_uptodate(fs_info, page,
6894                                eb->start, eb->len);
6895         error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
6896         WARN_ON(!uptodate && !error);
6897     } else {
6898         WARN_ON(!PageUptodate(page) && !PageError(page));
6899     }
6900 }
6901 
6902 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6903         const void *srcv)
6904 {
6905     char *kaddr;
6906 
6907     assert_eb_page_uptodate(eb, eb->pages[0]);
6908     kaddr = page_address(eb->pages[0]) +
6909         get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
6910                            chunk_tree_uuid));
6911     memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6912 }
6913 
6914 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6915 {
6916     char *kaddr;
6917 
6918     assert_eb_page_uptodate(eb, eb->pages[0]);
6919     kaddr = page_address(eb->pages[0]) +
6920         get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
6921     memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6922 }
6923 
6924 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6925              unsigned long start, unsigned long len)
6926 {
6927     size_t cur;
6928     size_t offset;
6929     struct page *page;
6930     char *kaddr;
6931     char *src = (char *)srcv;
6932     unsigned long i = get_eb_page_index(start);
6933 
6934     WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
6935 
6936     if (check_eb_range(eb, start, len))
6937         return;
6938 
6939     offset = get_eb_offset_in_page(eb, start);
6940 
6941     while (len > 0) {
6942         page = eb->pages[i];
6943         assert_eb_page_uptodate(eb, page);
6944 
6945         cur = min(len, PAGE_SIZE - offset);
6946         kaddr = page_address(page);
6947         memcpy(kaddr + offset, src, cur);
6948 
6949         src += cur;
6950         len -= cur;
6951         offset = 0;
6952         i++;
6953     }
6954 }
6955 
6956 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6957         unsigned long len)
6958 {
6959     size_t cur;
6960     size_t offset;
6961     struct page *page;
6962     char *kaddr;
6963     unsigned long i = get_eb_page_index(start);
6964 
6965     if (check_eb_range(eb, start, len))
6966         return;
6967 
6968     offset = get_eb_offset_in_page(eb, start);
6969 
6970     while (len > 0) {
6971         page = eb->pages[i];
6972         assert_eb_page_uptodate(eb, page);
6973 
6974         cur = min(len, PAGE_SIZE - offset);
6975         kaddr = page_address(page);
6976         memset(kaddr + offset, 0, cur);
6977 
6978         len -= cur;
6979         offset = 0;
6980         i++;
6981     }
6982 }
6983 
6984 void copy_extent_buffer_full(const struct extent_buffer *dst,
6985                  const struct extent_buffer *src)
6986 {
6987     int i;
6988     int num_pages;
6989 
6990     ASSERT(dst->len == src->len);
6991 
6992     if (dst->fs_info->nodesize >= PAGE_SIZE) {
6993         num_pages = num_extent_pages(dst);
6994         for (i = 0; i < num_pages; i++)
6995             copy_page(page_address(dst->pages[i]),
6996                   page_address(src->pages[i]));
6997     } else {
6998         size_t src_offset = get_eb_offset_in_page(src, 0);
6999         size_t dst_offset = get_eb_offset_in_page(dst, 0);
7000 
7001         ASSERT(src->fs_info->nodesize < PAGE_SIZE);
7002         memcpy(page_address(dst->pages[0]) + dst_offset,
7003                page_address(src->pages[0]) + src_offset,
7004                src->len);
7005     }
7006 }
7007 
7008 void copy_extent_buffer(const struct extent_buffer *dst,
7009             const struct extent_buffer *src,
7010             unsigned long dst_offset, unsigned long src_offset,
7011             unsigned long len)
7012 {
7013     u64 dst_len = dst->len;
7014     size_t cur;
7015     size_t offset;
7016     struct page *page;
7017     char *kaddr;
7018     unsigned long i = get_eb_page_index(dst_offset);
7019 
7020     if (check_eb_range(dst, dst_offset, len) ||
7021         check_eb_range(src, src_offset, len))
7022         return;
7023 
7024     WARN_ON(src->len != dst_len);
7025 
7026     offset = get_eb_offset_in_page(dst, dst_offset);
7027 
7028     while (len > 0) {
7029         page = dst->pages[i];
7030         assert_eb_page_uptodate(dst, page);
7031 
7032         cur = min(len, (unsigned long)(PAGE_SIZE - offset));
7033 
7034         kaddr = page_address(page);
7035         read_extent_buffer(src, kaddr + offset, src_offset, cur);
7036 
7037         src_offset += cur;
7038         len -= cur;
7039         offset = 0;
7040         i++;
7041     }
7042 }
7043 
7044 /*
7045  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
7046  * given bit number
7047  * @eb: the extent buffer
7048  * @start: offset of the bitmap item in the extent buffer
7049  * @nr: bit number
7050  * @page_index: return index of the page in the extent buffer that contains the
7051  * given bit number
7052  * @page_offset: return offset into the page given by page_index
7053  *
7054  * This helper hides the ugliness of finding the byte in an extent buffer which
7055  * contains a given bit.
7056  */
7057 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
7058                     unsigned long start, unsigned long nr,
7059                     unsigned long *page_index,
7060                     size_t *page_offset)
7061 {
7062     size_t byte_offset = BIT_BYTE(nr);
7063     size_t offset;
7064 
7065     /*
7066      * The byte we want is the offset of the extent buffer + the offset of
7067      * the bitmap item in the extent buffer + the offset of the byte in the
7068      * bitmap item.
7069      */
7070     offset = start + offset_in_page(eb->start) + byte_offset;
7071 
7072     *page_index = offset >> PAGE_SHIFT;
7073     *page_offset = offset_in_page(offset);
7074 }
7075 
7076 /**
7077  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
7078  * @eb: the extent buffer
7079  * @start: offset of the bitmap item in the extent buffer
7080  * @nr: bit number to test
7081  */
7082 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
7083                unsigned long nr)
7084 {
7085     u8 *kaddr;
7086     struct page *page;
7087     unsigned long i;
7088     size_t offset;
7089 
7090     eb_bitmap_offset(eb, start, nr, &i, &offset);
7091     page = eb->pages[i];
7092     assert_eb_page_uptodate(eb, page);
7093     kaddr = page_address(page);
7094     return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
7095 }
7096 
7097 /**
7098  * extent_buffer_bitmap_set - set an area of a bitmap
7099  * @eb: the extent buffer
7100  * @start: offset of the bitmap item in the extent buffer
7101  * @pos: bit number of the first bit
7102  * @len: number of bits to set
7103  */
7104 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
7105                   unsigned long pos, unsigned long len)
7106 {
7107     u8 *kaddr;
7108     struct page *page;
7109     unsigned long i;
7110     size_t offset;
7111     const unsigned int size = pos + len;
7112     int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7113     u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
7114 
7115     eb_bitmap_offset(eb, start, pos, &i, &offset);
7116     page = eb->pages[i];
7117     assert_eb_page_uptodate(eb, page);
7118     kaddr = page_address(page);
7119 
7120     while (len >= bits_to_set) {
7121         kaddr[offset] |= mask_to_set;
7122         len -= bits_to_set;
7123         bits_to_set = BITS_PER_BYTE;
7124         mask_to_set = ~0;
7125         if (++offset >= PAGE_SIZE && len > 0) {
7126             offset = 0;
7127             page = eb->pages[++i];
7128             assert_eb_page_uptodate(eb, page);
7129             kaddr = page_address(page);
7130         }
7131     }
7132     if (len) {
7133         mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
7134         kaddr[offset] |= mask_to_set;
7135     }
7136 }
7137 
7138 
7139 /**
7140  * extent_buffer_bitmap_clear - clear an area of a bitmap
7141  * @eb: the extent buffer
7142  * @start: offset of the bitmap item in the extent buffer
7143  * @pos: bit number of the first bit
7144  * @len: number of bits to clear
7145  */
7146 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
7147                 unsigned long start, unsigned long pos,
7148                 unsigned long len)
7149 {
7150     u8 *kaddr;
7151     struct page *page;
7152     unsigned long i;
7153     size_t offset;
7154     const unsigned int size = pos + len;
7155     int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7156     u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
7157 
7158     eb_bitmap_offset(eb, start, pos, &i, &offset);
7159     page = eb->pages[i];
7160     assert_eb_page_uptodate(eb, page);
7161     kaddr = page_address(page);
7162 
7163     while (len >= bits_to_clear) {
7164         kaddr[offset] &= ~mask_to_clear;
7165         len -= bits_to_clear;
7166         bits_to_clear = BITS_PER_BYTE;
7167         mask_to_clear = ~0;
7168         if (++offset >= PAGE_SIZE && len > 0) {
7169             offset = 0;
7170             page = eb->pages[++i];
7171             assert_eb_page_uptodate(eb, page);
7172             kaddr = page_address(page);
7173         }
7174     }
7175     if (len) {
7176         mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
7177         kaddr[offset] &= ~mask_to_clear;
7178     }
7179 }
7180 
7181 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
7182 {
7183     unsigned long distance = (src > dst) ? src - dst : dst - src;
7184     return distance < len;
7185 }
7186 
7187 static void copy_pages(struct page *dst_page, struct page *src_page,
7188                unsigned long dst_off, unsigned long src_off,
7189                unsigned long len)
7190 {
7191     char *dst_kaddr = page_address(dst_page);
7192     char *src_kaddr;
7193     int must_memmove = 0;
7194 
7195     if (dst_page != src_page) {
7196         src_kaddr = page_address(src_page);
7197     } else {
7198         src_kaddr = dst_kaddr;
7199         if (areas_overlap(src_off, dst_off, len))
7200             must_memmove = 1;
7201     }
7202 
7203     if (must_memmove)
7204         memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
7205     else
7206         memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
7207 }
7208 
7209 void memcpy_extent_buffer(const struct extent_buffer *dst,
7210               unsigned long dst_offset, unsigned long src_offset,
7211               unsigned long len)
7212 {
7213     size_t cur;
7214     size_t dst_off_in_page;
7215     size_t src_off_in_page;
7216     unsigned long dst_i;
7217     unsigned long src_i;
7218 
7219     if (check_eb_range(dst, dst_offset, len) ||
7220         check_eb_range(dst, src_offset, len))
7221         return;
7222 
7223     while (len > 0) {
7224         dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
7225         src_off_in_page = get_eb_offset_in_page(dst, src_offset);
7226 
7227         dst_i = get_eb_page_index(dst_offset);
7228         src_i = get_eb_page_index(src_offset);
7229 
7230         cur = min(len, (unsigned long)(PAGE_SIZE -
7231                            src_off_in_page));
7232         cur = min_t(unsigned long, cur,
7233             (unsigned long)(PAGE_SIZE - dst_off_in_page));
7234 
7235         copy_pages(dst->pages[dst_i], dst->pages[src_i],
7236                dst_off_in_page, src_off_in_page, cur);
7237 
7238         src_offset += cur;
7239         dst_offset += cur;
7240         len -= cur;
7241     }
7242 }
7243 
7244 void memmove_extent_buffer(const struct extent_buffer *dst,
7245                unsigned long dst_offset, unsigned long src_offset,
7246                unsigned long len)
7247 {
7248     size_t cur;
7249     size_t dst_off_in_page;
7250     size_t src_off_in_page;
7251     unsigned long dst_end = dst_offset + len - 1;
7252     unsigned long src_end = src_offset + len - 1;
7253     unsigned long dst_i;
7254     unsigned long src_i;
7255 
7256     if (check_eb_range(dst, dst_offset, len) ||
7257         check_eb_range(dst, src_offset, len))
7258         return;
7259     if (dst_offset < src_offset) {
7260         memcpy_extent_buffer(dst, dst_offset, src_offset, len);
7261         return;
7262     }
7263     while (len > 0) {
7264         dst_i = get_eb_page_index(dst_end);
7265         src_i = get_eb_page_index(src_end);
7266 
7267         dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
7268         src_off_in_page = get_eb_offset_in_page(dst, src_end);
7269 
7270         cur = min_t(unsigned long, len, src_off_in_page + 1);
7271         cur = min(cur, dst_off_in_page + 1);
7272         copy_pages(dst->pages[dst_i], dst->pages[src_i],
7273                dst_off_in_page - cur + 1,
7274                src_off_in_page - cur + 1, cur);
7275 
7276         dst_end -= cur;
7277         src_end -= cur;
7278         len -= cur;
7279     }
7280 }
7281 
7282 #define GANG_LOOKUP_SIZE    16
7283 static struct extent_buffer *get_next_extent_buffer(
7284         struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
7285 {
7286     struct extent_buffer *gang[GANG_LOOKUP_SIZE];
7287     struct extent_buffer *found = NULL;
7288     u64 page_start = page_offset(page);
7289     u64 cur = page_start;
7290 
7291     ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
7292     lockdep_assert_held(&fs_info->buffer_lock);
7293 
7294     while (cur < page_start + PAGE_SIZE) {
7295         int ret;
7296         int i;
7297 
7298         ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
7299                 (void **)gang, cur >> fs_info->sectorsize_bits,
7300                 min_t(unsigned int, GANG_LOOKUP_SIZE,
7301                       PAGE_SIZE / fs_info->nodesize));
7302         if (ret == 0)
7303             goto out;
7304         for (i = 0; i < ret; i++) {
7305             /* Already beyond page end */
7306             if (gang[i]->start >= page_start + PAGE_SIZE)
7307                 goto out;
7308             /* Found one */
7309             if (gang[i]->start >= bytenr) {
7310                 found = gang[i];
7311                 goto out;
7312             }
7313         }
7314         cur = gang[ret - 1]->start + gang[ret - 1]->len;
7315     }
7316 out:
7317     return found;
7318 }
7319 
7320 static int try_release_subpage_extent_buffer(struct page *page)
7321 {
7322     struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7323     u64 cur = page_offset(page);
7324     const u64 end = page_offset(page) + PAGE_SIZE;
7325     int ret;
7326 
7327     while (cur < end) {
7328         struct extent_buffer *eb = NULL;
7329 
7330         /*
7331          * Unlike try_release_extent_buffer() which uses page->private
7332          * to grab buffer, for subpage case we rely on radix tree, thus
7333          * we need to ensure radix tree consistency.
7334          *
7335          * We also want an atomic snapshot of the radix tree, thus go
7336          * with spinlock rather than RCU.
7337          */
7338         spin_lock(&fs_info->buffer_lock);
7339         eb = get_next_extent_buffer(fs_info, page, cur);
7340         if (!eb) {
7341             /* No more eb in the page range after or at cur */
7342             spin_unlock(&fs_info->buffer_lock);
7343             break;
7344         }
7345         cur = eb->start + eb->len;
7346 
7347         /*
7348          * The same as try_release_extent_buffer(), to ensure the eb
7349          * won't disappear out from under us.
7350          */
7351         spin_lock(&eb->refs_lock);
7352         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7353             spin_unlock(&eb->refs_lock);
7354             spin_unlock(&fs_info->buffer_lock);
7355             break;
7356         }
7357         spin_unlock(&fs_info->buffer_lock);
7358 
7359         /*
7360          * If tree ref isn't set then we know the ref on this eb is a
7361          * real ref, so just return, this eb will likely be freed soon
7362          * anyway.
7363          */
7364         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7365             spin_unlock(&eb->refs_lock);
7366             break;
7367         }
7368 
7369         /*
7370          * Here we don't care about the return value, we will always
7371          * check the page private at the end.  And
7372          * release_extent_buffer() will release the refs_lock.
7373          */
7374         release_extent_buffer(eb);
7375     }
7376     /*
7377      * Finally to check if we have cleared page private, as if we have
7378      * released all ebs in the page, the page private should be cleared now.
7379      */
7380     spin_lock(&page->mapping->private_lock);
7381     if (!PagePrivate(page))
7382         ret = 1;
7383     else
7384         ret = 0;
7385     spin_unlock(&page->mapping->private_lock);
7386     return ret;
7387 
7388 }
7389 
7390 int try_release_extent_buffer(struct page *page)
7391 {
7392     struct extent_buffer *eb;
7393 
7394     if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
7395         return try_release_subpage_extent_buffer(page);
7396 
7397     /*
7398      * We need to make sure nobody is changing page->private, as we rely on
7399      * page->private as the pointer to extent buffer.
7400      */
7401     spin_lock(&page->mapping->private_lock);
7402     if (!PagePrivate(page)) {
7403         spin_unlock(&page->mapping->private_lock);
7404         return 1;
7405     }
7406 
7407     eb = (struct extent_buffer *)page->private;
7408     BUG_ON(!eb);
7409 
7410     /*
7411      * This is a little awful but should be ok, we need to make sure that
7412      * the eb doesn't disappear out from under us while we're looking at
7413      * this page.
7414      */
7415     spin_lock(&eb->refs_lock);
7416     if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7417         spin_unlock(&eb->refs_lock);
7418         spin_unlock(&page->mapping->private_lock);
7419         return 0;
7420     }
7421     spin_unlock(&page->mapping->private_lock);
7422 
7423     /*
7424      * If tree ref isn't set then we know the ref on this eb is a real ref,
7425      * so just return, this page will likely be freed soon anyway.
7426      */
7427     if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7428         spin_unlock(&eb->refs_lock);
7429         return 0;
7430     }
7431 
7432     return release_extent_buffer(eb);
7433 }
7434 
7435 /*
7436  * btrfs_readahead_tree_block - attempt to readahead a child block
7437  * @fs_info:    the fs_info
7438  * @bytenr: bytenr to read
7439  * @owner_root: objectid of the root that owns this eb
7440  * @gen:    generation for the uptodate check, can be 0
7441  * @level:  level for the eb
7442  *
7443  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
7444  * normal uptodate check of the eb, without checking the generation.  If we have
7445  * to read the block we will not block on anything.
7446  */
7447 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7448                 u64 bytenr, u64 owner_root, u64 gen, int level)
7449 {
7450     struct extent_buffer *eb;
7451     int ret;
7452 
7453     eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7454     if (IS_ERR(eb))
7455         return;
7456 
7457     if (btrfs_buffer_uptodate(eb, gen, 1)) {
7458         free_extent_buffer(eb);
7459         return;
7460     }
7461 
7462     ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
7463     if (ret < 0)
7464         free_extent_buffer_stale(eb);
7465     else
7466         free_extent_buffer(eb);
7467 }
7468 
7469 /*
7470  * btrfs_readahead_node_child - readahead a node's child block
7471  * @node:   parent node we're reading from
7472  * @slot:   slot in the parent node for the child we want to read
7473  *
7474  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
7475  * the slot in the node provided.
7476  */
7477 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
7478 {
7479     btrfs_readahead_tree_block(node->fs_info,
7480                    btrfs_node_blockptr(node, slot),
7481                    btrfs_header_owner(node),
7482                    btrfs_node_ptr_generation(node, slot),
7483                    btrfs_header_level(node) - 1);
7484 }