![]() |
|
|||
0001 // SPDX-License-Identifier: GPL-2.0 0002 0003 #include "ctree.h" 0004 #include "delalloc-space.h" 0005 #include "block-rsv.h" 0006 #include "btrfs_inode.h" 0007 #include "space-info.h" 0008 #include "transaction.h" 0009 #include "qgroup.h" 0010 #include "block-group.h" 0011 0012 /* 0013 * HOW DOES THIS WORK 0014 * 0015 * There are two stages to data reservations, one for data and one for metadata 0016 * to handle the new extents and checksums generated by writing data. 0017 * 0018 * 0019 * DATA RESERVATION 0020 * The general flow of the data reservation is as follows 0021 * 0022 * -> Reserve 0023 * We call into btrfs_reserve_data_bytes() for the user request bytes that 0024 * they wish to write. We make this reservation and add it to 0025 * space_info->bytes_may_use. We set EXTENT_DELALLOC on the inode io_tree 0026 * for the range and carry on if this is buffered, or follow up trying to 0027 * make a real allocation if we are pre-allocating or doing O_DIRECT. 0028 * 0029 * -> Use 0030 * At writepages()/prealloc/O_DIRECT time we will call into 0031 * btrfs_reserve_extent() for some part or all of this range of bytes. We 0032 * will make the allocation and subtract space_info->bytes_may_use by the 0033 * original requested length and increase the space_info->bytes_reserved by 0034 * the allocated length. This distinction is important because compression 0035 * may allocate a smaller on disk extent than we previously reserved. 0036 * 0037 * -> Allocation 0038 * finish_ordered_io() will insert the new file extent item for this range, 0039 * and then add a delayed ref update for the extent tree. Once that delayed 0040 * ref is written the extent size is subtracted from 0041 * space_info->bytes_reserved and added to space_info->bytes_used. 0042 * 0043 * Error handling 0044 * 0045 * -> By the reservation maker 0046 * This is the simplest case, we haven't completed our operation and we know 0047 * how much we reserved, we can simply call 0048 * btrfs_free_reserved_data_space*() and it will be removed from 0049 * space_info->bytes_may_use. 0050 * 0051 * -> After the reservation has been made, but before cow_file_range() 0052 * This is specifically for the delalloc case. You must clear 0053 * EXTENT_DELALLOC with the EXTENT_CLEAR_DATA_RESV bit, and the range will 0054 * be subtracted from space_info->bytes_may_use. 0055 * 0056 * METADATA RESERVATION 0057 * The general metadata reservation lifetimes are discussed elsewhere, this 0058 * will just focus on how it is used for delalloc space. 0059 * 0060 * We keep track of two things on a per inode bases 0061 * 0062 * ->outstanding_extents 0063 * This is the number of file extent items we'll need to handle all of the 0064 * outstanding DELALLOC space we have in this inode. We limit the maximum 0065 * size of an extent, so a large contiguous dirty area may require more than 0066 * one outstanding_extent, which is why count_max_extents() is used to 0067 * determine how many outstanding_extents get added. 0068 * 0069 * ->csum_bytes 0070 * This is essentially how many dirty bytes we have for this inode, so we 0071 * can calculate the number of checksum items we would have to add in order 0072 * to checksum our outstanding data. 0073 * 0074 * We keep a per-inode block_rsv in order to make it easier to keep track of 0075 * our reservation. We use btrfs_calculate_inode_block_rsv_size() to 0076 * calculate the current theoretical maximum reservation we would need for the 0077 * metadata for this inode. We call this and then adjust our reservation as 0078 * necessary, either by attempting to reserve more space, or freeing up excess 0079 * space. 0080 * 0081 * OUTSTANDING_EXTENTS HANDLING 0082 * 0083 * ->outstanding_extents is used for keeping track of how many extents we will 0084 * need to use for this inode, and it will fluctuate depending on where you are 0085 * in the life cycle of the dirty data. Consider the following normal case for 0086 * a completely clean inode, with a num_bytes < our maximum allowed extent size 0087 * 0088 * -> reserve 0089 * ->outstanding_extents += 1 (current value is 1) 0090 * 0091 * -> set_delalloc 0092 * ->outstanding_extents += 1 (current value is 2) 0093 * 0094 * -> btrfs_delalloc_release_extents() 0095 * ->outstanding_extents -= 1 (current value is 1) 0096 * 0097 * We must call this once we are done, as we hold our reservation for the 0098 * duration of our operation, and then assume set_delalloc will update the 0099 * counter appropriately. 0100 * 0101 * -> add ordered extent 0102 * ->outstanding_extents += 1 (current value is 2) 0103 * 0104 * -> btrfs_clear_delalloc_extent 0105 * ->outstanding_extents -= 1 (current value is 1) 0106 * 0107 * -> finish_ordered_io/btrfs_remove_ordered_extent 0108 * ->outstanding_extents -= 1 (current value is 0) 0109 * 0110 * Each stage is responsible for their own accounting of the extent, thus 0111 * making error handling and cleanup easier. 0112 */ 0113 0114 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) 0115 { 0116 struct btrfs_root *root = inode->root; 0117 struct btrfs_fs_info *fs_info = root->fs_info; 0118 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA; 0119 0120 /* Make sure bytes are sectorsize aligned */ 0121 bytes = ALIGN(bytes, fs_info->sectorsize); 0122 0123 if (btrfs_is_free_space_inode(inode)) 0124 flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE; 0125 0126 return btrfs_reserve_data_bytes(fs_info, bytes, flush); 0127 } 0128 0129 int btrfs_check_data_free_space(struct btrfs_inode *inode, 0130 struct extent_changeset **reserved, u64 start, u64 len) 0131 { 0132 struct btrfs_fs_info *fs_info = inode->root->fs_info; 0133 int ret; 0134 0135 /* align the range */ 0136 len = round_up(start + len, fs_info->sectorsize) - 0137 round_down(start, fs_info->sectorsize); 0138 start = round_down(start, fs_info->sectorsize); 0139 0140 ret = btrfs_alloc_data_chunk_ondemand(inode, len); 0141 if (ret < 0) 0142 return ret; 0143 0144 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 0145 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); 0146 if (ret < 0) { 0147 btrfs_free_reserved_data_space_noquota(fs_info, len); 0148 extent_changeset_free(*reserved); 0149 *reserved = NULL; 0150 } else { 0151 ret = 0; 0152 } 0153 return ret; 0154 } 0155 0156 /* 0157 * Called if we need to clear a data reservation for this inode 0158 * Normally in a error case. 0159 * 0160 * This one will *NOT* use accurate qgroup reserved space API, just for case 0161 * which we can't sleep and is sure it won't affect qgroup reserved space. 0162 * Like clear_bit_hook(). 0163 */ 0164 void btrfs_free_reserved_data_space_noquota(struct btrfs_fs_info *fs_info, 0165 u64 len) 0166 { 0167 struct btrfs_space_info *data_sinfo; 0168 0169 ASSERT(IS_ALIGNED(len, fs_info->sectorsize)); 0170 0171 data_sinfo = fs_info->data_sinfo; 0172 btrfs_space_info_free_bytes_may_use(fs_info, data_sinfo, len); 0173 } 0174 0175 /* 0176 * Called if we need to clear a data reservation for this inode 0177 * Normally in a error case. 0178 * 0179 * This one will handle the per-inode data rsv map for accurate reserved 0180 * space framework. 0181 */ 0182 void btrfs_free_reserved_data_space(struct btrfs_inode *inode, 0183 struct extent_changeset *reserved, u64 start, u64 len) 0184 { 0185 struct btrfs_fs_info *fs_info = inode->root->fs_info; 0186 0187 /* Make sure the range is aligned to sectorsize */ 0188 len = round_up(start + len, fs_info->sectorsize) - 0189 round_down(start, fs_info->sectorsize); 0190 start = round_down(start, fs_info->sectorsize); 0191 0192 btrfs_free_reserved_data_space_noquota(fs_info, len); 0193 btrfs_qgroup_free_data(inode, reserved, start, len); 0194 } 0195 0196 /** 0197 * Release any excessive reservation 0198 * 0199 * @inode: the inode we need to release from 0200 * @qgroup_free: free or convert qgroup meta. Unlike normal operation, qgroup 0201 * meta reservation needs to know if we are freeing qgroup 0202 * reservation or just converting it into per-trans. Normally 0203 * @qgroup_free is true for error handling, and false for normal 0204 * release. 0205 * 0206 * This is the same as btrfs_block_rsv_release, except that it handles the 0207 * tracepoint for the reservation. 0208 */ 0209 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free) 0210 { 0211 struct btrfs_fs_info *fs_info = inode->root->fs_info; 0212 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 0213 u64 released = 0; 0214 u64 qgroup_to_release = 0; 0215 0216 /* 0217 * Since we statically set the block_rsv->size we just want to say we 0218 * are releasing 0 bytes, and then we'll just get the reservation over 0219 * the size free'd. 0220 */ 0221 released = btrfs_block_rsv_release(fs_info, block_rsv, 0, 0222 &qgroup_to_release); 0223 if (released > 0) 0224 trace_btrfs_space_reservation(fs_info, "delalloc", 0225 btrfs_ino(inode), released, 0); 0226 if (qgroup_free) 0227 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release); 0228 else 0229 btrfs_qgroup_convert_reserved_meta(inode->root, 0230 qgroup_to_release); 0231 } 0232 0233 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info, 0234 struct btrfs_inode *inode) 0235 { 0236 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 0237 u64 reserve_size = 0; 0238 u64 qgroup_rsv_size = 0; 0239 u64 csum_leaves; 0240 unsigned outstanding_extents; 0241 0242 lockdep_assert_held(&inode->lock); 0243 outstanding_extents = inode->outstanding_extents; 0244 0245 /* 0246 * Insert size for the number of outstanding extents, 1 normal size for 0247 * updating the inode. 0248 */ 0249 if (outstanding_extents) { 0250 reserve_size = btrfs_calc_insert_metadata_size(fs_info, 0251 outstanding_extents); 0252 reserve_size += btrfs_calc_metadata_size(fs_info, 1); 0253 } 0254 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, 0255 inode->csum_bytes); 0256 reserve_size += btrfs_calc_insert_metadata_size(fs_info, 0257 csum_leaves); 0258 /* 0259 * For qgroup rsv, the calculation is very simple: 0260 * account one nodesize for each outstanding extent 0261 * 0262 * This is overestimating in most cases. 0263 */ 0264 qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize; 0265 0266 spin_lock(&block_rsv->lock); 0267 block_rsv->size = reserve_size; 0268 block_rsv->qgroup_rsv_size = qgroup_rsv_size; 0269 spin_unlock(&block_rsv->lock); 0270 } 0271 0272 static void calc_inode_reservations(struct btrfs_fs_info *fs_info, 0273 u64 num_bytes, u64 disk_num_bytes, 0274 u64 *meta_reserve, u64 *qgroup_reserve) 0275 { 0276 u64 nr_extents = count_max_extents(fs_info, num_bytes); 0277 u64 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, disk_num_bytes); 0278 u64 inode_update = btrfs_calc_metadata_size(fs_info, 1); 0279 0280 *meta_reserve = btrfs_calc_insert_metadata_size(fs_info, 0281 nr_extents + csum_leaves); 0282 0283 /* 0284 * finish_ordered_io has to update the inode, so add the space required 0285 * for an inode update. 0286 */ 0287 *meta_reserve += inode_update; 0288 *qgroup_reserve = nr_extents * fs_info->nodesize; 0289 } 0290 0291 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes, 0292 u64 disk_num_bytes, bool noflush) 0293 { 0294 struct btrfs_root *root = inode->root; 0295 struct btrfs_fs_info *fs_info = root->fs_info; 0296 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 0297 u64 meta_reserve, qgroup_reserve; 0298 unsigned nr_extents; 0299 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 0300 int ret = 0; 0301 0302 /* 0303 * If we are a free space inode we need to not flush since we will be in 0304 * the middle of a transaction commit. We also don't need the delalloc 0305 * mutex since we won't race with anybody. We need this mostly to make 0306 * lockdep shut its filthy mouth. 0307 * 0308 * If we have a transaction open (can happen if we call truncate_block 0309 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 0310 */ 0311 if (noflush || btrfs_is_free_space_inode(inode)) { 0312 flush = BTRFS_RESERVE_NO_FLUSH; 0313 } else { 0314 if (current->journal_info) 0315 flush = BTRFS_RESERVE_FLUSH_LIMIT; 0316 0317 if (btrfs_transaction_in_commit(fs_info)) 0318 schedule_timeout(1); 0319 } 0320 0321 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 0322 disk_num_bytes = ALIGN(disk_num_bytes, fs_info->sectorsize); 0323 0324 /* 0325 * We always want to do it this way, every other way is wrong and ends 0326 * in tears. Pre-reserving the amount we are going to add will always 0327 * be the right way, because otherwise if we have enough parallelism we 0328 * could end up with thousands of inodes all holding little bits of 0329 * reservations they were able to make previously and the only way to 0330 * reclaim that space is to ENOSPC out the operations and clear 0331 * everything out and try again, which is bad. This way we just 0332 * over-reserve slightly, and clean up the mess when we are done. 0333 */ 0334 calc_inode_reservations(fs_info, num_bytes, disk_num_bytes, 0335 &meta_reserve, &qgroup_reserve); 0336 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true, 0337 noflush); 0338 if (ret) 0339 return ret; 0340 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, meta_reserve, flush); 0341 if (ret) { 0342 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve); 0343 return ret; 0344 } 0345 0346 /* 0347 * Now we need to update our outstanding extents and csum bytes _first_ 0348 * and then add the reservation to the block_rsv. This keeps us from 0349 * racing with an ordered completion or some such that would think it 0350 * needs to free the reservation we just made. 0351 */ 0352 spin_lock(&inode->lock); 0353 nr_extents = count_max_extents(fs_info, num_bytes); 0354 btrfs_mod_outstanding_extents(inode, nr_extents); 0355 inode->csum_bytes += disk_num_bytes; 0356 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 0357 spin_unlock(&inode->lock); 0358 0359 /* Now we can safely add our space to our block rsv */ 0360 btrfs_block_rsv_add_bytes(block_rsv, meta_reserve, false); 0361 trace_btrfs_space_reservation(root->fs_info, "delalloc", 0362 btrfs_ino(inode), meta_reserve, 1); 0363 0364 spin_lock(&block_rsv->lock); 0365 block_rsv->qgroup_rsv_reserved += qgroup_reserve; 0366 spin_unlock(&block_rsv->lock); 0367 0368 return 0; 0369 } 0370 0371 /** 0372 * Release a metadata reservation for an inode 0373 * 0374 * @inode: the inode to release the reservation for. 0375 * @num_bytes: the number of bytes we are releasing. 0376 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation 0377 * 0378 * This will release the metadata reservation for an inode. This can be called 0379 * once we complete IO for a given set of bytes to release their metadata 0380 * reservations, or on error for the same reason. 0381 */ 0382 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes, 0383 bool qgroup_free) 0384 { 0385 struct btrfs_fs_info *fs_info = inode->root->fs_info; 0386 0387 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 0388 spin_lock(&inode->lock); 0389 inode->csum_bytes -= num_bytes; 0390 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 0391 spin_unlock(&inode->lock); 0392 0393 if (btrfs_is_testing(fs_info)) 0394 return; 0395 0396 btrfs_inode_rsv_release(inode, qgroup_free); 0397 } 0398 0399 /** 0400 * btrfs_delalloc_release_extents - release our outstanding_extents 0401 * @inode: the inode to balance the reservation for. 0402 * @num_bytes: the number of bytes we originally reserved with 0403 * 0404 * When we reserve space we increase outstanding_extents for the extents we may 0405 * add. Once we've set the range as delalloc or created our ordered extents we 0406 * have outstanding_extents to track the real usage, so we use this to free our 0407 * temporarily tracked outstanding_extents. This _must_ be used in conjunction 0408 * with btrfs_delalloc_reserve_metadata. 0409 */ 0410 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes) 0411 { 0412 struct btrfs_fs_info *fs_info = inode->root->fs_info; 0413 unsigned num_extents; 0414 0415 spin_lock(&inode->lock); 0416 num_extents = count_max_extents(fs_info, num_bytes); 0417 btrfs_mod_outstanding_extents(inode, -num_extents); 0418 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 0419 spin_unlock(&inode->lock); 0420 0421 if (btrfs_is_testing(fs_info)) 0422 return; 0423 0424 btrfs_inode_rsv_release(inode, true); 0425 } 0426 0427 /** 0428 * btrfs_delalloc_reserve_space - reserve data and metadata space for 0429 * delalloc 0430 * @inode: inode we're writing to 0431 * @start: start range we are writing to 0432 * @len: how long the range we are writing to 0433 * @reserved: mandatory parameter, record actually reserved qgroup ranges of 0434 * current reservation. 0435 * 0436 * This will do the following things 0437 * 0438 * - reserve space in data space info for num bytes 0439 * and reserve precious corresponding qgroup space 0440 * (Done in check_data_free_space) 0441 * 0442 * - reserve space for metadata space, based on the number of outstanding 0443 * extents and how much csums will be needed 0444 * also reserve metadata space in a per root over-reserve method. 0445 * - add to the inodes->delalloc_bytes 0446 * - add it to the fs_info's delalloc inodes list. 0447 * (Above 3 all done in delalloc_reserve_metadata) 0448 * 0449 * Return 0 for success 0450 * Return <0 for error(-ENOSPC or -EQUOT) 0451 */ 0452 int btrfs_delalloc_reserve_space(struct btrfs_inode *inode, 0453 struct extent_changeset **reserved, u64 start, u64 len) 0454 { 0455 int ret; 0456 0457 ret = btrfs_check_data_free_space(inode, reserved, start, len); 0458 if (ret < 0) 0459 return ret; 0460 ret = btrfs_delalloc_reserve_metadata(inode, len, len, false); 0461 if (ret < 0) { 0462 btrfs_free_reserved_data_space(inode, *reserved, start, len); 0463 extent_changeset_free(*reserved); 0464 *reserved = NULL; 0465 } 0466 return ret; 0467 } 0468 0469 /** 0470 * Release data and metadata space for delalloc 0471 * 0472 * @inode: inode we're releasing space for 0473 * @reserved: list of changed/reserved ranges 0474 * @start: start position of the space already reserved 0475 * @len: length of the space already reserved 0476 * @qgroup_free: should qgroup reserved-space also be freed 0477 * 0478 * This function will release the metadata space that was not used and will 0479 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 0480 * list if there are no delalloc bytes left. 0481 * Also it will handle the qgroup reserved space. 0482 */ 0483 void btrfs_delalloc_release_space(struct btrfs_inode *inode, 0484 struct extent_changeset *reserved, 0485 u64 start, u64 len, bool qgroup_free) 0486 { 0487 btrfs_delalloc_release_metadata(inode, len, qgroup_free); 0488 btrfs_free_reserved_data_space(inode, reserved, start, len); 0489 }
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.1.0 LXR engine. The LXR team |
![]() ![]() |