0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012 #define pr_fmt(fmt) "%s: " fmt, __func__
0013
0014 #include <linux/kernel.h>
0015 #include <linux/init.h>
0016 #include <linux/errno.h>
0017 #include <linux/time.h>
0018 #include <linux/aio_abi.h>
0019 #include <linux/export.h>
0020 #include <linux/syscalls.h>
0021 #include <linux/backing-dev.h>
0022 #include <linux/refcount.h>
0023 #include <linux/uio.h>
0024
0025 #include <linux/sched/signal.h>
0026 #include <linux/fs.h>
0027 #include <linux/file.h>
0028 #include <linux/mm.h>
0029 #include <linux/mman.h>
0030 #include <linux/percpu.h>
0031 #include <linux/slab.h>
0032 #include <linux/timer.h>
0033 #include <linux/aio.h>
0034 #include <linux/highmem.h>
0035 #include <linux/workqueue.h>
0036 #include <linux/security.h>
0037 #include <linux/eventfd.h>
0038 #include <linux/blkdev.h>
0039 #include <linux/compat.h>
0040 #include <linux/migrate.h>
0041 #include <linux/ramfs.h>
0042 #include <linux/percpu-refcount.h>
0043 #include <linux/mount.h>
0044 #include <linux/pseudo_fs.h>
0045
0046 #include <linux/uaccess.h>
0047 #include <linux/nospec.h>
0048
0049 #include "internal.h"
0050
0051 #define KIOCB_KEY 0
0052
0053 #define AIO_RING_MAGIC 0xa10a10a1
0054 #define AIO_RING_COMPAT_FEATURES 1
0055 #define AIO_RING_INCOMPAT_FEATURES 0
0056 struct aio_ring {
0057 unsigned id;
0058 unsigned nr;
0059 unsigned head;
0060
0061 unsigned tail;
0062
0063 unsigned magic;
0064 unsigned compat_features;
0065 unsigned incompat_features;
0066 unsigned header_length;
0067
0068
0069 struct io_event io_events[];
0070 };
0071
0072
0073
0074
0075
0076 #define AIO_PLUG_THRESHOLD 2
0077
0078 #define AIO_RING_PAGES 8
0079
0080 struct kioctx_table {
0081 struct rcu_head rcu;
0082 unsigned nr;
0083 struct kioctx __rcu *table[];
0084 };
0085
0086 struct kioctx_cpu {
0087 unsigned reqs_available;
0088 };
0089
0090 struct ctx_rq_wait {
0091 struct completion comp;
0092 atomic_t count;
0093 };
0094
0095 struct kioctx {
0096 struct percpu_ref users;
0097 atomic_t dead;
0098
0099 struct percpu_ref reqs;
0100
0101 unsigned long user_id;
0102
0103 struct __percpu kioctx_cpu *cpu;
0104
0105
0106
0107
0108
0109 unsigned req_batch;
0110
0111
0112
0113
0114
0115
0116
0117 unsigned max_reqs;
0118
0119
0120 unsigned nr_events;
0121
0122 unsigned long mmap_base;
0123 unsigned long mmap_size;
0124
0125 struct page **ring_pages;
0126 long nr_pages;
0127
0128 struct rcu_work free_rwork;
0129
0130
0131
0132
0133 struct ctx_rq_wait *rq_wait;
0134
0135 struct {
0136
0137
0138
0139
0140
0141
0142
0143
0144 atomic_t reqs_available;
0145 } ____cacheline_aligned_in_smp;
0146
0147 struct {
0148 spinlock_t ctx_lock;
0149 struct list_head active_reqs;
0150 } ____cacheline_aligned_in_smp;
0151
0152 struct {
0153 struct mutex ring_lock;
0154 wait_queue_head_t wait;
0155 } ____cacheline_aligned_in_smp;
0156
0157 struct {
0158 unsigned tail;
0159 unsigned completed_events;
0160 spinlock_t completion_lock;
0161 } ____cacheline_aligned_in_smp;
0162
0163 struct page *internal_pages[AIO_RING_PAGES];
0164 struct file *aio_ring_file;
0165
0166 unsigned id;
0167 };
0168
0169
0170
0171
0172
0173 struct fsync_iocb {
0174 struct file *file;
0175 struct work_struct work;
0176 bool datasync;
0177 struct cred *creds;
0178 };
0179
0180 struct poll_iocb {
0181 struct file *file;
0182 struct wait_queue_head *head;
0183 __poll_t events;
0184 bool cancelled;
0185 bool work_scheduled;
0186 bool work_need_resched;
0187 struct wait_queue_entry wait;
0188 struct work_struct work;
0189 };
0190
0191
0192
0193
0194
0195
0196
0197 struct aio_kiocb {
0198 union {
0199 struct file *ki_filp;
0200 struct kiocb rw;
0201 struct fsync_iocb fsync;
0202 struct poll_iocb poll;
0203 };
0204
0205 struct kioctx *ki_ctx;
0206 kiocb_cancel_fn *ki_cancel;
0207
0208 struct io_event ki_res;
0209
0210 struct list_head ki_list;
0211
0212 refcount_t ki_refcnt;
0213
0214
0215
0216
0217
0218 struct eventfd_ctx *ki_eventfd;
0219 };
0220
0221
0222 static DEFINE_SPINLOCK(aio_nr_lock);
0223 static unsigned long aio_nr;
0224 static unsigned long aio_max_nr = 0x10000;
0225
0226 #ifdef CONFIG_SYSCTL
0227 static struct ctl_table aio_sysctls[] = {
0228 {
0229 .procname = "aio-nr",
0230 .data = &aio_nr,
0231 .maxlen = sizeof(aio_nr),
0232 .mode = 0444,
0233 .proc_handler = proc_doulongvec_minmax,
0234 },
0235 {
0236 .procname = "aio-max-nr",
0237 .data = &aio_max_nr,
0238 .maxlen = sizeof(aio_max_nr),
0239 .mode = 0644,
0240 .proc_handler = proc_doulongvec_minmax,
0241 },
0242 {}
0243 };
0244
0245 static void __init aio_sysctl_init(void)
0246 {
0247 register_sysctl_init("fs", aio_sysctls);
0248 }
0249 #else
0250 #define aio_sysctl_init() do { } while (0)
0251 #endif
0252
0253 static struct kmem_cache *kiocb_cachep;
0254 static struct kmem_cache *kioctx_cachep;
0255
0256 static struct vfsmount *aio_mnt;
0257
0258 static const struct file_operations aio_ring_fops;
0259 static const struct address_space_operations aio_ctx_aops;
0260
0261 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
0262 {
0263 struct file *file;
0264 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
0265 if (IS_ERR(inode))
0266 return ERR_CAST(inode);
0267
0268 inode->i_mapping->a_ops = &aio_ctx_aops;
0269 inode->i_mapping->private_data = ctx;
0270 inode->i_size = PAGE_SIZE * nr_pages;
0271
0272 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
0273 O_RDWR, &aio_ring_fops);
0274 if (IS_ERR(file))
0275 iput(inode);
0276 return file;
0277 }
0278
0279 static int aio_init_fs_context(struct fs_context *fc)
0280 {
0281 if (!init_pseudo(fc, AIO_RING_MAGIC))
0282 return -ENOMEM;
0283 fc->s_iflags |= SB_I_NOEXEC;
0284 return 0;
0285 }
0286
0287
0288
0289
0290
0291 static int __init aio_setup(void)
0292 {
0293 static struct file_system_type aio_fs = {
0294 .name = "aio",
0295 .init_fs_context = aio_init_fs_context,
0296 .kill_sb = kill_anon_super,
0297 };
0298 aio_mnt = kern_mount(&aio_fs);
0299 if (IS_ERR(aio_mnt))
0300 panic("Failed to create aio fs mount.");
0301
0302 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
0303 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
0304 aio_sysctl_init();
0305 return 0;
0306 }
0307 __initcall(aio_setup);
0308
0309 static void put_aio_ring_file(struct kioctx *ctx)
0310 {
0311 struct file *aio_ring_file = ctx->aio_ring_file;
0312 struct address_space *i_mapping;
0313
0314 if (aio_ring_file) {
0315 truncate_setsize(file_inode(aio_ring_file), 0);
0316
0317
0318 i_mapping = aio_ring_file->f_mapping;
0319 spin_lock(&i_mapping->private_lock);
0320 i_mapping->private_data = NULL;
0321 ctx->aio_ring_file = NULL;
0322 spin_unlock(&i_mapping->private_lock);
0323
0324 fput(aio_ring_file);
0325 }
0326 }
0327
0328 static void aio_free_ring(struct kioctx *ctx)
0329 {
0330 int i;
0331
0332
0333
0334
0335 put_aio_ring_file(ctx);
0336
0337 for (i = 0; i < ctx->nr_pages; i++) {
0338 struct page *page;
0339 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
0340 page_count(ctx->ring_pages[i]));
0341 page = ctx->ring_pages[i];
0342 if (!page)
0343 continue;
0344 ctx->ring_pages[i] = NULL;
0345 put_page(page);
0346 }
0347
0348 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
0349 kfree(ctx->ring_pages);
0350 ctx->ring_pages = NULL;
0351 }
0352 }
0353
0354 static int aio_ring_mremap(struct vm_area_struct *vma)
0355 {
0356 struct file *file = vma->vm_file;
0357 struct mm_struct *mm = vma->vm_mm;
0358 struct kioctx_table *table;
0359 int i, res = -EINVAL;
0360
0361 spin_lock(&mm->ioctx_lock);
0362 rcu_read_lock();
0363 table = rcu_dereference(mm->ioctx_table);
0364 for (i = 0; i < table->nr; i++) {
0365 struct kioctx *ctx;
0366
0367 ctx = rcu_dereference(table->table[i]);
0368 if (ctx && ctx->aio_ring_file == file) {
0369 if (!atomic_read(&ctx->dead)) {
0370 ctx->user_id = ctx->mmap_base = vma->vm_start;
0371 res = 0;
0372 }
0373 break;
0374 }
0375 }
0376
0377 rcu_read_unlock();
0378 spin_unlock(&mm->ioctx_lock);
0379 return res;
0380 }
0381
0382 static const struct vm_operations_struct aio_ring_vm_ops = {
0383 .mremap = aio_ring_mremap,
0384 #if IS_ENABLED(CONFIG_MMU)
0385 .fault = filemap_fault,
0386 .map_pages = filemap_map_pages,
0387 .page_mkwrite = filemap_page_mkwrite,
0388 #endif
0389 };
0390
0391 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
0392 {
0393 vma->vm_flags |= VM_DONTEXPAND;
0394 vma->vm_ops = &aio_ring_vm_ops;
0395 return 0;
0396 }
0397
0398 static const struct file_operations aio_ring_fops = {
0399 .mmap = aio_ring_mmap,
0400 };
0401
0402 #if IS_ENABLED(CONFIG_MIGRATION)
0403 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
0404 struct folio *src, enum migrate_mode mode)
0405 {
0406 struct kioctx *ctx;
0407 unsigned long flags;
0408 pgoff_t idx;
0409 int rc;
0410
0411
0412
0413
0414
0415
0416 if (mode == MIGRATE_SYNC_NO_COPY)
0417 return -EINVAL;
0418
0419 rc = 0;
0420
0421
0422 spin_lock(&mapping->private_lock);
0423 ctx = mapping->private_data;
0424 if (!ctx) {
0425 rc = -EINVAL;
0426 goto out;
0427 }
0428
0429
0430
0431
0432
0433 if (!mutex_trylock(&ctx->ring_lock)) {
0434 rc = -EAGAIN;
0435 goto out;
0436 }
0437
0438 idx = src->index;
0439 if (idx < (pgoff_t)ctx->nr_pages) {
0440
0441 if (ctx->ring_pages[idx] != &src->page)
0442 rc = -EAGAIN;
0443 } else
0444 rc = -EINVAL;
0445
0446 if (rc != 0)
0447 goto out_unlock;
0448
0449
0450 BUG_ON(folio_test_writeback(src));
0451 folio_get(dst);
0452
0453 rc = folio_migrate_mapping(mapping, dst, src, 1);
0454 if (rc != MIGRATEPAGE_SUCCESS) {
0455 folio_put(dst);
0456 goto out_unlock;
0457 }
0458
0459
0460
0461
0462
0463 spin_lock_irqsave(&ctx->completion_lock, flags);
0464 folio_migrate_copy(dst, src);
0465 BUG_ON(ctx->ring_pages[idx] != &src->page);
0466 ctx->ring_pages[idx] = &dst->page;
0467 spin_unlock_irqrestore(&ctx->completion_lock, flags);
0468
0469
0470 folio_put(src);
0471
0472 out_unlock:
0473 mutex_unlock(&ctx->ring_lock);
0474 out:
0475 spin_unlock(&mapping->private_lock);
0476 return rc;
0477 }
0478 #else
0479 #define aio_migrate_folio NULL
0480 #endif
0481
0482 static const struct address_space_operations aio_ctx_aops = {
0483 .dirty_folio = noop_dirty_folio,
0484 .migrate_folio = aio_migrate_folio,
0485 };
0486
0487 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
0488 {
0489 struct aio_ring *ring;
0490 struct mm_struct *mm = current->mm;
0491 unsigned long size, unused;
0492 int nr_pages;
0493 int i;
0494 struct file *file;
0495
0496
0497 nr_events += 2;
0498
0499 size = sizeof(struct aio_ring);
0500 size += sizeof(struct io_event) * nr_events;
0501
0502 nr_pages = PFN_UP(size);
0503 if (nr_pages < 0)
0504 return -EINVAL;
0505
0506 file = aio_private_file(ctx, nr_pages);
0507 if (IS_ERR(file)) {
0508 ctx->aio_ring_file = NULL;
0509 return -ENOMEM;
0510 }
0511
0512 ctx->aio_ring_file = file;
0513 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
0514 / sizeof(struct io_event);
0515
0516 ctx->ring_pages = ctx->internal_pages;
0517 if (nr_pages > AIO_RING_PAGES) {
0518 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
0519 GFP_KERNEL);
0520 if (!ctx->ring_pages) {
0521 put_aio_ring_file(ctx);
0522 return -ENOMEM;
0523 }
0524 }
0525
0526 for (i = 0; i < nr_pages; i++) {
0527 struct page *page;
0528 page = find_or_create_page(file->f_mapping,
0529 i, GFP_HIGHUSER | __GFP_ZERO);
0530 if (!page)
0531 break;
0532 pr_debug("pid(%d) page[%d]->count=%d\n",
0533 current->pid, i, page_count(page));
0534 SetPageUptodate(page);
0535 unlock_page(page);
0536
0537 ctx->ring_pages[i] = page;
0538 }
0539 ctx->nr_pages = i;
0540
0541 if (unlikely(i != nr_pages)) {
0542 aio_free_ring(ctx);
0543 return -ENOMEM;
0544 }
0545
0546 ctx->mmap_size = nr_pages * PAGE_SIZE;
0547 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
0548
0549 if (mmap_write_lock_killable(mm)) {
0550 ctx->mmap_size = 0;
0551 aio_free_ring(ctx);
0552 return -EINTR;
0553 }
0554
0555 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
0556 PROT_READ | PROT_WRITE,
0557 MAP_SHARED, 0, &unused, NULL);
0558 mmap_write_unlock(mm);
0559 if (IS_ERR((void *)ctx->mmap_base)) {
0560 ctx->mmap_size = 0;
0561 aio_free_ring(ctx);
0562 return -ENOMEM;
0563 }
0564
0565 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
0566
0567 ctx->user_id = ctx->mmap_base;
0568 ctx->nr_events = nr_events;
0569
0570 ring = kmap_atomic(ctx->ring_pages[0]);
0571 ring->nr = nr_events;
0572 ring->id = ~0U;
0573 ring->head = ring->tail = 0;
0574 ring->magic = AIO_RING_MAGIC;
0575 ring->compat_features = AIO_RING_COMPAT_FEATURES;
0576 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
0577 ring->header_length = sizeof(struct aio_ring);
0578 kunmap_atomic(ring);
0579 flush_dcache_page(ctx->ring_pages[0]);
0580
0581 return 0;
0582 }
0583
0584 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
0585 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
0586 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
0587
0588 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
0589 {
0590 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
0591 struct kioctx *ctx = req->ki_ctx;
0592 unsigned long flags;
0593
0594 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
0595 return;
0596
0597 spin_lock_irqsave(&ctx->ctx_lock, flags);
0598 list_add_tail(&req->ki_list, &ctx->active_reqs);
0599 req->ki_cancel = cancel;
0600 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
0601 }
0602 EXPORT_SYMBOL(kiocb_set_cancel_fn);
0603
0604
0605
0606
0607
0608
0609 static void free_ioctx(struct work_struct *work)
0610 {
0611 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
0612 free_rwork);
0613 pr_debug("freeing %p\n", ctx);
0614
0615 aio_free_ring(ctx);
0616 free_percpu(ctx->cpu);
0617 percpu_ref_exit(&ctx->reqs);
0618 percpu_ref_exit(&ctx->users);
0619 kmem_cache_free(kioctx_cachep, ctx);
0620 }
0621
0622 static void free_ioctx_reqs(struct percpu_ref *ref)
0623 {
0624 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
0625
0626
0627 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
0628 complete(&ctx->rq_wait->comp);
0629
0630
0631 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
0632 queue_rcu_work(system_wq, &ctx->free_rwork);
0633 }
0634
0635
0636
0637
0638
0639
0640 static void free_ioctx_users(struct percpu_ref *ref)
0641 {
0642 struct kioctx *ctx = container_of(ref, struct kioctx, users);
0643 struct aio_kiocb *req;
0644
0645 spin_lock_irq(&ctx->ctx_lock);
0646
0647 while (!list_empty(&ctx->active_reqs)) {
0648 req = list_first_entry(&ctx->active_reqs,
0649 struct aio_kiocb, ki_list);
0650 req->ki_cancel(&req->rw);
0651 list_del_init(&req->ki_list);
0652 }
0653
0654 spin_unlock_irq(&ctx->ctx_lock);
0655
0656 percpu_ref_kill(&ctx->reqs);
0657 percpu_ref_put(&ctx->reqs);
0658 }
0659
0660 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
0661 {
0662 unsigned i, new_nr;
0663 struct kioctx_table *table, *old;
0664 struct aio_ring *ring;
0665
0666 spin_lock(&mm->ioctx_lock);
0667 table = rcu_dereference_raw(mm->ioctx_table);
0668
0669 while (1) {
0670 if (table)
0671 for (i = 0; i < table->nr; i++)
0672 if (!rcu_access_pointer(table->table[i])) {
0673 ctx->id = i;
0674 rcu_assign_pointer(table->table[i], ctx);
0675 spin_unlock(&mm->ioctx_lock);
0676
0677
0678
0679
0680
0681 ring = kmap_atomic(ctx->ring_pages[0]);
0682 ring->id = ctx->id;
0683 kunmap_atomic(ring);
0684 return 0;
0685 }
0686
0687 new_nr = (table ? table->nr : 1) * 4;
0688 spin_unlock(&mm->ioctx_lock);
0689
0690 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
0691 if (!table)
0692 return -ENOMEM;
0693
0694 table->nr = new_nr;
0695
0696 spin_lock(&mm->ioctx_lock);
0697 old = rcu_dereference_raw(mm->ioctx_table);
0698
0699 if (!old) {
0700 rcu_assign_pointer(mm->ioctx_table, table);
0701 } else if (table->nr > old->nr) {
0702 memcpy(table->table, old->table,
0703 old->nr * sizeof(struct kioctx *));
0704
0705 rcu_assign_pointer(mm->ioctx_table, table);
0706 kfree_rcu(old, rcu);
0707 } else {
0708 kfree(table);
0709 table = old;
0710 }
0711 }
0712 }
0713
0714 static void aio_nr_sub(unsigned nr)
0715 {
0716 spin_lock(&aio_nr_lock);
0717 if (WARN_ON(aio_nr - nr > aio_nr))
0718 aio_nr = 0;
0719 else
0720 aio_nr -= nr;
0721 spin_unlock(&aio_nr_lock);
0722 }
0723
0724
0725
0726
0727 static struct kioctx *ioctx_alloc(unsigned nr_events)
0728 {
0729 struct mm_struct *mm = current->mm;
0730 struct kioctx *ctx;
0731 int err = -ENOMEM;
0732
0733
0734
0735
0736
0737 unsigned int max_reqs = nr_events;
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748 nr_events = max(nr_events, num_possible_cpus() * 4);
0749 nr_events *= 2;
0750
0751
0752 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
0753 pr_debug("ENOMEM: nr_events too high\n");
0754 return ERR_PTR(-EINVAL);
0755 }
0756
0757 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
0758 return ERR_PTR(-EAGAIN);
0759
0760 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
0761 if (!ctx)
0762 return ERR_PTR(-ENOMEM);
0763
0764 ctx->max_reqs = max_reqs;
0765
0766 spin_lock_init(&ctx->ctx_lock);
0767 spin_lock_init(&ctx->completion_lock);
0768 mutex_init(&ctx->ring_lock);
0769
0770
0771 mutex_lock(&ctx->ring_lock);
0772 init_waitqueue_head(&ctx->wait);
0773
0774 INIT_LIST_HEAD(&ctx->active_reqs);
0775
0776 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
0777 goto err;
0778
0779 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
0780 goto err;
0781
0782 ctx->cpu = alloc_percpu(struct kioctx_cpu);
0783 if (!ctx->cpu)
0784 goto err;
0785
0786 err = aio_setup_ring(ctx, nr_events);
0787 if (err < 0)
0788 goto err;
0789
0790 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
0791 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
0792 if (ctx->req_batch < 1)
0793 ctx->req_batch = 1;
0794
0795
0796 spin_lock(&aio_nr_lock);
0797 if (aio_nr + ctx->max_reqs > aio_max_nr ||
0798 aio_nr + ctx->max_reqs < aio_nr) {
0799 spin_unlock(&aio_nr_lock);
0800 err = -EAGAIN;
0801 goto err_ctx;
0802 }
0803 aio_nr += ctx->max_reqs;
0804 spin_unlock(&aio_nr_lock);
0805
0806 percpu_ref_get(&ctx->users);
0807 percpu_ref_get(&ctx->reqs);
0808
0809 err = ioctx_add_table(ctx, mm);
0810 if (err)
0811 goto err_cleanup;
0812
0813
0814 mutex_unlock(&ctx->ring_lock);
0815
0816 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
0817 ctx, ctx->user_id, mm, ctx->nr_events);
0818 return ctx;
0819
0820 err_cleanup:
0821 aio_nr_sub(ctx->max_reqs);
0822 err_ctx:
0823 atomic_set(&ctx->dead, 1);
0824 if (ctx->mmap_size)
0825 vm_munmap(ctx->mmap_base, ctx->mmap_size);
0826 aio_free_ring(ctx);
0827 err:
0828 mutex_unlock(&ctx->ring_lock);
0829 free_percpu(ctx->cpu);
0830 percpu_ref_exit(&ctx->reqs);
0831 percpu_ref_exit(&ctx->users);
0832 kmem_cache_free(kioctx_cachep, ctx);
0833 pr_debug("error allocating ioctx %d\n", err);
0834 return ERR_PTR(err);
0835 }
0836
0837
0838
0839
0840
0841
0842 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
0843 struct ctx_rq_wait *wait)
0844 {
0845 struct kioctx_table *table;
0846
0847 spin_lock(&mm->ioctx_lock);
0848 if (atomic_xchg(&ctx->dead, 1)) {
0849 spin_unlock(&mm->ioctx_lock);
0850 return -EINVAL;
0851 }
0852
0853 table = rcu_dereference_raw(mm->ioctx_table);
0854 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
0855 RCU_INIT_POINTER(table->table[ctx->id], NULL);
0856 spin_unlock(&mm->ioctx_lock);
0857
0858
0859 wake_up_all(&ctx->wait);
0860
0861
0862
0863
0864
0865
0866
0867
0868 aio_nr_sub(ctx->max_reqs);
0869
0870 if (ctx->mmap_size)
0871 vm_munmap(ctx->mmap_base, ctx->mmap_size);
0872
0873 ctx->rq_wait = wait;
0874 percpu_ref_kill(&ctx->users);
0875 return 0;
0876 }
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886 void exit_aio(struct mm_struct *mm)
0887 {
0888 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
0889 struct ctx_rq_wait wait;
0890 int i, skipped;
0891
0892 if (!table)
0893 return;
0894
0895 atomic_set(&wait.count, table->nr);
0896 init_completion(&wait.comp);
0897
0898 skipped = 0;
0899 for (i = 0; i < table->nr; ++i) {
0900 struct kioctx *ctx =
0901 rcu_dereference_protected(table->table[i], true);
0902
0903 if (!ctx) {
0904 skipped++;
0905 continue;
0906 }
0907
0908
0909
0910
0911
0912
0913
0914
0915 ctx->mmap_size = 0;
0916 kill_ioctx(mm, ctx, &wait);
0917 }
0918
0919 if (!atomic_sub_and_test(skipped, &wait.count)) {
0920
0921 wait_for_completion(&wait.comp);
0922 }
0923
0924 RCU_INIT_POINTER(mm->ioctx_table, NULL);
0925 kfree(table);
0926 }
0927
0928 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
0929 {
0930 struct kioctx_cpu *kcpu;
0931 unsigned long flags;
0932
0933 local_irq_save(flags);
0934 kcpu = this_cpu_ptr(ctx->cpu);
0935 kcpu->reqs_available += nr;
0936
0937 while (kcpu->reqs_available >= ctx->req_batch * 2) {
0938 kcpu->reqs_available -= ctx->req_batch;
0939 atomic_add(ctx->req_batch, &ctx->reqs_available);
0940 }
0941
0942 local_irq_restore(flags);
0943 }
0944
0945 static bool __get_reqs_available(struct kioctx *ctx)
0946 {
0947 struct kioctx_cpu *kcpu;
0948 bool ret = false;
0949 unsigned long flags;
0950
0951 local_irq_save(flags);
0952 kcpu = this_cpu_ptr(ctx->cpu);
0953 if (!kcpu->reqs_available) {
0954 int old, avail = atomic_read(&ctx->reqs_available);
0955
0956 do {
0957 if (avail < ctx->req_batch)
0958 goto out;
0959
0960 old = avail;
0961 avail = atomic_cmpxchg(&ctx->reqs_available,
0962 avail, avail - ctx->req_batch);
0963 } while (avail != old);
0964
0965 kcpu->reqs_available += ctx->req_batch;
0966 }
0967
0968 ret = true;
0969 kcpu->reqs_available--;
0970 out:
0971 local_irq_restore(flags);
0972 return ret;
0973 }
0974
0975
0976
0977
0978
0979
0980
0981
0982 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
0983 unsigned tail)
0984 {
0985 unsigned events_in_ring, completed;
0986
0987
0988 head %= ctx->nr_events;
0989 if (head <= tail)
0990 events_in_ring = tail - head;
0991 else
0992 events_in_ring = ctx->nr_events - (head - tail);
0993
0994 completed = ctx->completed_events;
0995 if (events_in_ring < completed)
0996 completed -= events_in_ring;
0997 else
0998 completed = 0;
0999
1000 if (!completed)
1001 return;
1002
1003 ctx->completed_events -= completed;
1004 put_reqs_available(ctx, completed);
1005 }
1006
1007
1008
1009
1010
1011 static void user_refill_reqs_available(struct kioctx *ctx)
1012 {
1013 spin_lock_irq(&ctx->completion_lock);
1014 if (ctx->completed_events) {
1015 struct aio_ring *ring;
1016 unsigned head;
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027 ring = kmap_atomic(ctx->ring_pages[0]);
1028 head = ring->head;
1029 kunmap_atomic(ring);
1030
1031 refill_reqs_available(ctx, head, ctx->tail);
1032 }
1033
1034 spin_unlock_irq(&ctx->completion_lock);
1035 }
1036
1037 static bool get_reqs_available(struct kioctx *ctx)
1038 {
1039 if (__get_reqs_available(ctx))
1040 return true;
1041 user_refill_reqs_available(ctx);
1042 return __get_reqs_available(ctx);
1043 }
1044
1045
1046
1047
1048
1049
1050
1051
1052 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1053 {
1054 struct aio_kiocb *req;
1055
1056 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1057 if (unlikely(!req))
1058 return NULL;
1059
1060 if (unlikely(!get_reqs_available(ctx))) {
1061 kmem_cache_free(kiocb_cachep, req);
1062 return NULL;
1063 }
1064
1065 percpu_ref_get(&ctx->reqs);
1066 req->ki_ctx = ctx;
1067 INIT_LIST_HEAD(&req->ki_list);
1068 refcount_set(&req->ki_refcnt, 2);
1069 req->ki_eventfd = NULL;
1070 return req;
1071 }
1072
1073 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1074 {
1075 struct aio_ring __user *ring = (void __user *)ctx_id;
1076 struct mm_struct *mm = current->mm;
1077 struct kioctx *ctx, *ret = NULL;
1078 struct kioctx_table *table;
1079 unsigned id;
1080
1081 if (get_user(id, &ring->id))
1082 return NULL;
1083
1084 rcu_read_lock();
1085 table = rcu_dereference(mm->ioctx_table);
1086
1087 if (!table || id >= table->nr)
1088 goto out;
1089
1090 id = array_index_nospec(id, table->nr);
1091 ctx = rcu_dereference(table->table[id]);
1092 if (ctx && ctx->user_id == ctx_id) {
1093 if (percpu_ref_tryget_live(&ctx->users))
1094 ret = ctx;
1095 }
1096 out:
1097 rcu_read_unlock();
1098 return ret;
1099 }
1100
1101 static inline void iocb_destroy(struct aio_kiocb *iocb)
1102 {
1103 if (iocb->ki_eventfd)
1104 eventfd_ctx_put(iocb->ki_eventfd);
1105 if (iocb->ki_filp)
1106 fput(iocb->ki_filp);
1107 percpu_ref_put(&iocb->ki_ctx->reqs);
1108 kmem_cache_free(kiocb_cachep, iocb);
1109 }
1110
1111
1112
1113
1114 static void aio_complete(struct aio_kiocb *iocb)
1115 {
1116 struct kioctx *ctx = iocb->ki_ctx;
1117 struct aio_ring *ring;
1118 struct io_event *ev_page, *event;
1119 unsigned tail, pos, head;
1120 unsigned long flags;
1121
1122
1123
1124
1125
1126
1127 spin_lock_irqsave(&ctx->completion_lock, flags);
1128
1129 tail = ctx->tail;
1130 pos = tail + AIO_EVENTS_OFFSET;
1131
1132 if (++tail >= ctx->nr_events)
1133 tail = 0;
1134
1135 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1136 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1137
1138 *event = iocb->ki_res;
1139
1140 kunmap_atomic(ev_page);
1141 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1142
1143 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1144 (void __user *)(unsigned long)iocb->ki_res.obj,
1145 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1146
1147
1148
1149
1150 smp_wmb();
1151
1152 ctx->tail = tail;
1153
1154 ring = kmap_atomic(ctx->ring_pages[0]);
1155 head = ring->head;
1156 ring->tail = tail;
1157 kunmap_atomic(ring);
1158 flush_dcache_page(ctx->ring_pages[0]);
1159
1160 ctx->completed_events++;
1161 if (ctx->completed_events > 1)
1162 refill_reqs_available(ctx, head, tail);
1163 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1164
1165 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1166
1167
1168
1169
1170
1171
1172 if (iocb->ki_eventfd)
1173 eventfd_signal(iocb->ki_eventfd, 1);
1174
1175
1176
1177
1178
1179
1180
1181 smp_mb();
1182
1183 if (waitqueue_active(&ctx->wait))
1184 wake_up(&ctx->wait);
1185 }
1186
1187 static inline void iocb_put(struct aio_kiocb *iocb)
1188 {
1189 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1190 aio_complete(iocb);
1191 iocb_destroy(iocb);
1192 }
1193 }
1194
1195
1196
1197
1198
1199 static long aio_read_events_ring(struct kioctx *ctx,
1200 struct io_event __user *event, long nr)
1201 {
1202 struct aio_ring *ring;
1203 unsigned head, tail, pos;
1204 long ret = 0;
1205 int copy_ret;
1206
1207
1208
1209
1210
1211
1212
1213 sched_annotate_sleep();
1214 mutex_lock(&ctx->ring_lock);
1215
1216
1217 ring = kmap_atomic(ctx->ring_pages[0]);
1218 head = ring->head;
1219 tail = ring->tail;
1220 kunmap_atomic(ring);
1221
1222
1223
1224
1225
1226 smp_rmb();
1227
1228 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1229
1230 if (head == tail)
1231 goto out;
1232
1233 head %= ctx->nr_events;
1234 tail %= ctx->nr_events;
1235
1236 while (ret < nr) {
1237 long avail;
1238 struct io_event *ev;
1239 struct page *page;
1240
1241 avail = (head <= tail ? tail : ctx->nr_events) - head;
1242 if (head == tail)
1243 break;
1244
1245 pos = head + AIO_EVENTS_OFFSET;
1246 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1247 pos %= AIO_EVENTS_PER_PAGE;
1248
1249 avail = min(avail, nr - ret);
1250 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1251
1252 ev = kmap(page);
1253 copy_ret = copy_to_user(event + ret, ev + pos,
1254 sizeof(*ev) * avail);
1255 kunmap(page);
1256
1257 if (unlikely(copy_ret)) {
1258 ret = -EFAULT;
1259 goto out;
1260 }
1261
1262 ret += avail;
1263 head += avail;
1264 head %= ctx->nr_events;
1265 }
1266
1267 ring = kmap_atomic(ctx->ring_pages[0]);
1268 ring->head = head;
1269 kunmap_atomic(ring);
1270 flush_dcache_page(ctx->ring_pages[0]);
1271
1272 pr_debug("%li h%u t%u\n", ret, head, tail);
1273 out:
1274 mutex_unlock(&ctx->ring_lock);
1275
1276 return ret;
1277 }
1278
1279 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1280 struct io_event __user *event, long *i)
1281 {
1282 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1283
1284 if (ret > 0)
1285 *i += ret;
1286
1287 if (unlikely(atomic_read(&ctx->dead)))
1288 ret = -EINVAL;
1289
1290 if (!*i)
1291 *i = ret;
1292
1293 return ret < 0 || *i >= min_nr;
1294 }
1295
1296 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1297 struct io_event __user *event,
1298 ktime_t until)
1299 {
1300 long ret = 0;
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316 if (until == 0)
1317 aio_read_events(ctx, min_nr, nr, event, &ret);
1318 else
1319 wait_event_interruptible_hrtimeout(ctx->wait,
1320 aio_read_events(ctx, min_nr, nr, event, &ret),
1321 until);
1322 return ret;
1323 }
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1339 {
1340 struct kioctx *ioctx = NULL;
1341 unsigned long ctx;
1342 long ret;
1343
1344 ret = get_user(ctx, ctxp);
1345 if (unlikely(ret))
1346 goto out;
1347
1348 ret = -EINVAL;
1349 if (unlikely(ctx || nr_events == 0)) {
1350 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1351 ctx, nr_events);
1352 goto out;
1353 }
1354
1355 ioctx = ioctx_alloc(nr_events);
1356 ret = PTR_ERR(ioctx);
1357 if (!IS_ERR(ioctx)) {
1358 ret = put_user(ioctx->user_id, ctxp);
1359 if (ret)
1360 kill_ioctx(current->mm, ioctx, NULL);
1361 percpu_ref_put(&ioctx->users);
1362 }
1363
1364 out:
1365 return ret;
1366 }
1367
1368 #ifdef CONFIG_COMPAT
1369 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1370 {
1371 struct kioctx *ioctx = NULL;
1372 unsigned long ctx;
1373 long ret;
1374
1375 ret = get_user(ctx, ctx32p);
1376 if (unlikely(ret))
1377 goto out;
1378
1379 ret = -EINVAL;
1380 if (unlikely(ctx || nr_events == 0)) {
1381 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1382 ctx, nr_events);
1383 goto out;
1384 }
1385
1386 ioctx = ioctx_alloc(nr_events);
1387 ret = PTR_ERR(ioctx);
1388 if (!IS_ERR(ioctx)) {
1389
1390 ret = put_user((u32)ioctx->user_id, ctx32p);
1391 if (ret)
1392 kill_ioctx(current->mm, ioctx, NULL);
1393 percpu_ref_put(&ioctx->users);
1394 }
1395
1396 out:
1397 return ret;
1398 }
1399 #endif
1400
1401
1402
1403
1404
1405
1406
1407 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1408 {
1409 struct kioctx *ioctx = lookup_ioctx(ctx);
1410 if (likely(NULL != ioctx)) {
1411 struct ctx_rq_wait wait;
1412 int ret;
1413
1414 init_completion(&wait.comp);
1415 atomic_set(&wait.count, 1);
1416
1417
1418
1419
1420
1421 ret = kill_ioctx(current->mm, ioctx, &wait);
1422 percpu_ref_put(&ioctx->users);
1423
1424
1425
1426
1427
1428 if (!ret)
1429 wait_for_completion(&wait.comp);
1430
1431 return ret;
1432 }
1433 pr_debug("EINVAL: invalid context id\n");
1434 return -EINVAL;
1435 }
1436
1437 static void aio_remove_iocb(struct aio_kiocb *iocb)
1438 {
1439 struct kioctx *ctx = iocb->ki_ctx;
1440 unsigned long flags;
1441
1442 spin_lock_irqsave(&ctx->ctx_lock, flags);
1443 list_del(&iocb->ki_list);
1444 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1445 }
1446
1447 static void aio_complete_rw(struct kiocb *kiocb, long res)
1448 {
1449 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1450
1451 if (!list_empty_careful(&iocb->ki_list))
1452 aio_remove_iocb(iocb);
1453
1454 if (kiocb->ki_flags & IOCB_WRITE) {
1455 struct inode *inode = file_inode(kiocb->ki_filp);
1456
1457
1458
1459
1460
1461 if (S_ISREG(inode->i_mode))
1462 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1463 file_end_write(kiocb->ki_filp);
1464 }
1465
1466 iocb->ki_res.res = res;
1467 iocb->ki_res.res2 = 0;
1468 iocb_put(iocb);
1469 }
1470
1471 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1472 {
1473 int ret;
1474
1475 req->ki_complete = aio_complete_rw;
1476 req->private = NULL;
1477 req->ki_pos = iocb->aio_offset;
1478 req->ki_flags = req->ki_filp->f_iocb_flags;
1479 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1480 req->ki_flags |= IOCB_EVENTFD;
1481 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1482
1483
1484
1485
1486
1487 ret = ioprio_check_cap(iocb->aio_reqprio);
1488 if (ret) {
1489 pr_debug("aio ioprio check cap error: %d\n", ret);
1490 return ret;
1491 }
1492
1493 req->ki_ioprio = iocb->aio_reqprio;
1494 } else
1495 req->ki_ioprio = get_current_ioprio();
1496
1497 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1498 if (unlikely(ret))
1499 return ret;
1500
1501 req->ki_flags &= ~IOCB_HIPRI;
1502 return 0;
1503 }
1504
1505 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1506 struct iovec **iovec, bool vectored, bool compat,
1507 struct iov_iter *iter)
1508 {
1509 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1510 size_t len = iocb->aio_nbytes;
1511
1512 if (!vectored) {
1513 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1514 *iovec = NULL;
1515 return ret;
1516 }
1517
1518 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1519 }
1520
1521 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1522 {
1523 switch (ret) {
1524 case -EIOCBQUEUED:
1525 break;
1526 case -ERESTARTSYS:
1527 case -ERESTARTNOINTR:
1528 case -ERESTARTNOHAND:
1529 case -ERESTART_RESTARTBLOCK:
1530
1531
1532
1533
1534 ret = -EINTR;
1535 fallthrough;
1536 default:
1537 req->ki_complete(req, ret);
1538 }
1539 }
1540
1541 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1542 bool vectored, bool compat)
1543 {
1544 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1545 struct iov_iter iter;
1546 struct file *file;
1547 int ret;
1548
1549 ret = aio_prep_rw(req, iocb);
1550 if (ret)
1551 return ret;
1552 file = req->ki_filp;
1553 if (unlikely(!(file->f_mode & FMODE_READ)))
1554 return -EBADF;
1555 if (unlikely(!file->f_op->read_iter))
1556 return -EINVAL;
1557
1558 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1559 if (ret < 0)
1560 return ret;
1561 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1562 if (!ret)
1563 aio_rw_done(req, call_read_iter(file, req, &iter));
1564 kfree(iovec);
1565 return ret;
1566 }
1567
1568 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1569 bool vectored, bool compat)
1570 {
1571 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1572 struct iov_iter iter;
1573 struct file *file;
1574 int ret;
1575
1576 ret = aio_prep_rw(req, iocb);
1577 if (ret)
1578 return ret;
1579 file = req->ki_filp;
1580
1581 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1582 return -EBADF;
1583 if (unlikely(!file->f_op->write_iter))
1584 return -EINVAL;
1585
1586 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1587 if (ret < 0)
1588 return ret;
1589 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1590 if (!ret) {
1591
1592
1593
1594
1595
1596
1597
1598 if (S_ISREG(file_inode(file)->i_mode)) {
1599 sb_start_write(file_inode(file)->i_sb);
1600 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1601 }
1602 req->ki_flags |= IOCB_WRITE;
1603 aio_rw_done(req, call_write_iter(file, req, &iter));
1604 }
1605 kfree(iovec);
1606 return ret;
1607 }
1608
1609 static void aio_fsync_work(struct work_struct *work)
1610 {
1611 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1612 const struct cred *old_cred = override_creds(iocb->fsync.creds);
1613
1614 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1615 revert_creds(old_cred);
1616 put_cred(iocb->fsync.creds);
1617 iocb_put(iocb);
1618 }
1619
1620 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1621 bool datasync)
1622 {
1623 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1624 iocb->aio_rw_flags))
1625 return -EINVAL;
1626
1627 if (unlikely(!req->file->f_op->fsync))
1628 return -EINVAL;
1629
1630 req->creds = prepare_creds();
1631 if (!req->creds)
1632 return -ENOMEM;
1633
1634 req->datasync = datasync;
1635 INIT_WORK(&req->work, aio_fsync_work);
1636 schedule_work(&req->work);
1637 return 0;
1638 }
1639
1640 static void aio_poll_put_work(struct work_struct *work)
1641 {
1642 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1643 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1644
1645 iocb_put(iocb);
1646 }
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1657 {
1658 wait_queue_head_t *head;
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675 rcu_read_lock();
1676 head = smp_load_acquire(&req->head);
1677 if (head) {
1678 spin_lock(&head->lock);
1679 if (!list_empty(&req->wait.entry))
1680 return true;
1681 spin_unlock(&head->lock);
1682 }
1683 rcu_read_unlock();
1684 return false;
1685 }
1686
1687 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1688 {
1689 spin_unlock(&req->head->lock);
1690 rcu_read_unlock();
1691 }
1692
1693 static void aio_poll_complete_work(struct work_struct *work)
1694 {
1695 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1696 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1697 struct poll_table_struct pt = { ._key = req->events };
1698 struct kioctx *ctx = iocb->ki_ctx;
1699 __poll_t mask = 0;
1700
1701 if (!READ_ONCE(req->cancelled))
1702 mask = vfs_poll(req->file, &pt) & req->events;
1703
1704
1705
1706
1707
1708
1709
1710
1711 spin_lock_irq(&ctx->ctx_lock);
1712 if (poll_iocb_lock_wq(req)) {
1713 if (!mask && !READ_ONCE(req->cancelled)) {
1714
1715
1716
1717
1718 if (req->work_need_resched) {
1719 schedule_work(&req->work);
1720 req->work_need_resched = false;
1721 } else {
1722 req->work_scheduled = false;
1723 }
1724 poll_iocb_unlock_wq(req);
1725 spin_unlock_irq(&ctx->ctx_lock);
1726 return;
1727 }
1728 list_del_init(&req->wait.entry);
1729 poll_iocb_unlock_wq(req);
1730 }
1731 list_del_init(&iocb->ki_list);
1732 iocb->ki_res.res = mangle_poll(mask);
1733 spin_unlock_irq(&ctx->ctx_lock);
1734
1735 iocb_put(iocb);
1736 }
1737
1738
1739 static int aio_poll_cancel(struct kiocb *iocb)
1740 {
1741 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1742 struct poll_iocb *req = &aiocb->poll;
1743
1744 if (poll_iocb_lock_wq(req)) {
1745 WRITE_ONCE(req->cancelled, true);
1746 if (!req->work_scheduled) {
1747 schedule_work(&aiocb->poll.work);
1748 req->work_scheduled = true;
1749 }
1750 poll_iocb_unlock_wq(req);
1751 }
1752
1753 return 0;
1754 }
1755
1756 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1757 void *key)
1758 {
1759 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1760 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1761 __poll_t mask = key_to_poll(key);
1762 unsigned long flags;
1763
1764
1765 if (mask && !(mask & req->events))
1766 return 0;
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781 if (mask && !req->work_scheduled &&
1782 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1783 struct kioctx *ctx = iocb->ki_ctx;
1784
1785 list_del_init(&req->wait.entry);
1786 list_del(&iocb->ki_list);
1787 iocb->ki_res.res = mangle_poll(mask);
1788 if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1789 iocb = NULL;
1790 INIT_WORK(&req->work, aio_poll_put_work);
1791 schedule_work(&req->work);
1792 }
1793 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1794 if (iocb)
1795 iocb_put(iocb);
1796 } else {
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806 if (req->work_scheduled) {
1807 req->work_need_resched = true;
1808 } else {
1809 schedule_work(&req->work);
1810 req->work_scheduled = true;
1811 }
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822 if (mask & POLLFREE) {
1823 WRITE_ONCE(req->cancelled, true);
1824 list_del_init(&req->wait.entry);
1825
1826
1827
1828
1829
1830
1831
1832 smp_store_release(&req->head, NULL);
1833 }
1834 }
1835 return 1;
1836 }
1837
1838 struct aio_poll_table {
1839 struct poll_table_struct pt;
1840 struct aio_kiocb *iocb;
1841 bool queued;
1842 int error;
1843 };
1844
1845 static void
1846 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1847 struct poll_table_struct *p)
1848 {
1849 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1850
1851
1852 if (unlikely(pt->queued)) {
1853 pt->error = -EINVAL;
1854 return;
1855 }
1856
1857 pt->queued = true;
1858 pt->error = 0;
1859 pt->iocb->poll.head = head;
1860 add_wait_queue(head, &pt->iocb->poll.wait);
1861 }
1862
1863 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1864 {
1865 struct kioctx *ctx = aiocb->ki_ctx;
1866 struct poll_iocb *req = &aiocb->poll;
1867 struct aio_poll_table apt;
1868 bool cancel = false;
1869 __poll_t mask;
1870
1871
1872 if ((u16)iocb->aio_buf != iocb->aio_buf)
1873 return -EINVAL;
1874
1875 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1876 return -EINVAL;
1877
1878 INIT_WORK(&req->work, aio_poll_complete_work);
1879 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1880
1881 req->head = NULL;
1882 req->cancelled = false;
1883 req->work_scheduled = false;
1884 req->work_need_resched = false;
1885
1886 apt.pt._qproc = aio_poll_queue_proc;
1887 apt.pt._key = req->events;
1888 apt.iocb = aiocb;
1889 apt.queued = false;
1890 apt.error = -EINVAL;
1891
1892
1893 INIT_LIST_HEAD(&req->wait.entry);
1894 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1895
1896 mask = vfs_poll(req->file, &apt.pt) & req->events;
1897 spin_lock_irq(&ctx->ctx_lock);
1898 if (likely(apt.queued)) {
1899 bool on_queue = poll_iocb_lock_wq(req);
1900
1901 if (!on_queue || req->work_scheduled) {
1902
1903
1904
1905
1906 if (apt.error)
1907 cancel = true;
1908 apt.error = 0;
1909 mask = 0;
1910 }
1911 if (mask || apt.error) {
1912
1913 list_del_init(&req->wait.entry);
1914 } else if (cancel) {
1915
1916 WRITE_ONCE(req->cancelled, true);
1917 } else if (on_queue) {
1918
1919
1920
1921
1922 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1923 aiocb->ki_cancel = aio_poll_cancel;
1924 }
1925 if (on_queue)
1926 poll_iocb_unlock_wq(req);
1927 }
1928 if (mask) {
1929 aiocb->ki_res.res = mangle_poll(mask);
1930 apt.error = 0;
1931 }
1932 spin_unlock_irq(&ctx->ctx_lock);
1933 if (mask)
1934 iocb_put(aiocb);
1935 return apt.error;
1936 }
1937
1938 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1939 struct iocb __user *user_iocb, struct aio_kiocb *req,
1940 bool compat)
1941 {
1942 req->ki_filp = fget(iocb->aio_fildes);
1943 if (unlikely(!req->ki_filp))
1944 return -EBADF;
1945
1946 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1947 struct eventfd_ctx *eventfd;
1948
1949
1950
1951
1952
1953
1954 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1955 if (IS_ERR(eventfd))
1956 return PTR_ERR(eventfd);
1957
1958 req->ki_eventfd = eventfd;
1959 }
1960
1961 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1962 pr_debug("EFAULT: aio_key\n");
1963 return -EFAULT;
1964 }
1965
1966 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1967 req->ki_res.data = iocb->aio_data;
1968 req->ki_res.res = 0;
1969 req->ki_res.res2 = 0;
1970
1971 switch (iocb->aio_lio_opcode) {
1972 case IOCB_CMD_PREAD:
1973 return aio_read(&req->rw, iocb, false, compat);
1974 case IOCB_CMD_PWRITE:
1975 return aio_write(&req->rw, iocb, false, compat);
1976 case IOCB_CMD_PREADV:
1977 return aio_read(&req->rw, iocb, true, compat);
1978 case IOCB_CMD_PWRITEV:
1979 return aio_write(&req->rw, iocb, true, compat);
1980 case IOCB_CMD_FSYNC:
1981 return aio_fsync(&req->fsync, iocb, false);
1982 case IOCB_CMD_FDSYNC:
1983 return aio_fsync(&req->fsync, iocb, true);
1984 case IOCB_CMD_POLL:
1985 return aio_poll(req, iocb);
1986 default:
1987 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1988 return -EINVAL;
1989 }
1990 }
1991
1992 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1993 bool compat)
1994 {
1995 struct aio_kiocb *req;
1996 struct iocb iocb;
1997 int err;
1998
1999 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2000 return -EFAULT;
2001
2002
2003 if (unlikely(iocb.aio_reserved2)) {
2004 pr_debug("EINVAL: reserve field set\n");
2005 return -EINVAL;
2006 }
2007
2008
2009 if (unlikely(
2010 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2011 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2012 ((ssize_t)iocb.aio_nbytes < 0)
2013 )) {
2014 pr_debug("EINVAL: overflow check\n");
2015 return -EINVAL;
2016 }
2017
2018 req = aio_get_req(ctx);
2019 if (unlikely(!req))
2020 return -EAGAIN;
2021
2022 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2023
2024
2025 iocb_put(req);
2026
2027
2028
2029
2030
2031
2032 if (unlikely(err)) {
2033 iocb_destroy(req);
2034 put_reqs_available(ctx, 1);
2035 }
2036 return err;
2037 }
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2052 struct iocb __user * __user *, iocbpp)
2053 {
2054 struct kioctx *ctx;
2055 long ret = 0;
2056 int i = 0;
2057 struct blk_plug plug;
2058
2059 if (unlikely(nr < 0))
2060 return -EINVAL;
2061
2062 ctx = lookup_ioctx(ctx_id);
2063 if (unlikely(!ctx)) {
2064 pr_debug("EINVAL: invalid context id\n");
2065 return -EINVAL;
2066 }
2067
2068 if (nr > ctx->nr_events)
2069 nr = ctx->nr_events;
2070
2071 if (nr > AIO_PLUG_THRESHOLD)
2072 blk_start_plug(&plug);
2073 for (i = 0; i < nr; i++) {
2074 struct iocb __user *user_iocb;
2075
2076 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2077 ret = -EFAULT;
2078 break;
2079 }
2080
2081 ret = io_submit_one(ctx, user_iocb, false);
2082 if (ret)
2083 break;
2084 }
2085 if (nr > AIO_PLUG_THRESHOLD)
2086 blk_finish_plug(&plug);
2087
2088 percpu_ref_put(&ctx->users);
2089 return i ? i : ret;
2090 }
2091
2092 #ifdef CONFIG_COMPAT
2093 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2094 int, nr, compat_uptr_t __user *, iocbpp)
2095 {
2096 struct kioctx *ctx;
2097 long ret = 0;
2098 int i = 0;
2099 struct blk_plug plug;
2100
2101 if (unlikely(nr < 0))
2102 return -EINVAL;
2103
2104 ctx = lookup_ioctx(ctx_id);
2105 if (unlikely(!ctx)) {
2106 pr_debug("EINVAL: invalid context id\n");
2107 return -EINVAL;
2108 }
2109
2110 if (nr > ctx->nr_events)
2111 nr = ctx->nr_events;
2112
2113 if (nr > AIO_PLUG_THRESHOLD)
2114 blk_start_plug(&plug);
2115 for (i = 0; i < nr; i++) {
2116 compat_uptr_t user_iocb;
2117
2118 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2119 ret = -EFAULT;
2120 break;
2121 }
2122
2123 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2124 if (ret)
2125 break;
2126 }
2127 if (nr > AIO_PLUG_THRESHOLD)
2128 blk_finish_plug(&plug);
2129
2130 percpu_ref_put(&ctx->users);
2131 return i ? i : ret;
2132 }
2133 #endif
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2146 struct io_event __user *, result)
2147 {
2148 struct kioctx *ctx;
2149 struct aio_kiocb *kiocb;
2150 int ret = -EINVAL;
2151 u32 key;
2152 u64 obj = (u64)(unsigned long)iocb;
2153
2154 if (unlikely(get_user(key, &iocb->aio_key)))
2155 return -EFAULT;
2156 if (unlikely(key != KIOCB_KEY))
2157 return -EINVAL;
2158
2159 ctx = lookup_ioctx(ctx_id);
2160 if (unlikely(!ctx))
2161 return -EINVAL;
2162
2163 spin_lock_irq(&ctx->ctx_lock);
2164
2165 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2166 if (kiocb->ki_res.obj == obj) {
2167 ret = kiocb->ki_cancel(&kiocb->rw);
2168 list_del_init(&kiocb->ki_list);
2169 break;
2170 }
2171 }
2172 spin_unlock_irq(&ctx->ctx_lock);
2173
2174 if (!ret) {
2175
2176
2177
2178
2179
2180 ret = -EINPROGRESS;
2181 }
2182
2183 percpu_ref_put(&ctx->users);
2184
2185 return ret;
2186 }
2187
2188 static long do_io_getevents(aio_context_t ctx_id,
2189 long min_nr,
2190 long nr,
2191 struct io_event __user *events,
2192 struct timespec64 *ts)
2193 {
2194 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2195 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2196 long ret = -EINVAL;
2197
2198 if (likely(ioctx)) {
2199 if (likely(min_nr <= nr && min_nr >= 0))
2200 ret = read_events(ioctx, min_nr, nr, events, until);
2201 percpu_ref_put(&ioctx->users);
2202 }
2203
2204 return ret;
2205 }
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219 #ifdef CONFIG_64BIT
2220
2221 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2222 long, min_nr,
2223 long, nr,
2224 struct io_event __user *, events,
2225 struct __kernel_timespec __user *, timeout)
2226 {
2227 struct timespec64 ts;
2228 int ret;
2229
2230 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2231 return -EFAULT;
2232
2233 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2234 if (!ret && signal_pending(current))
2235 ret = -EINTR;
2236 return ret;
2237 }
2238
2239 #endif
2240
2241 struct __aio_sigset {
2242 const sigset_t __user *sigmask;
2243 size_t sigsetsize;
2244 };
2245
2246 SYSCALL_DEFINE6(io_pgetevents,
2247 aio_context_t, ctx_id,
2248 long, min_nr,
2249 long, nr,
2250 struct io_event __user *, events,
2251 struct __kernel_timespec __user *, timeout,
2252 const struct __aio_sigset __user *, usig)
2253 {
2254 struct __aio_sigset ksig = { NULL, };
2255 struct timespec64 ts;
2256 bool interrupted;
2257 int ret;
2258
2259 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2260 return -EFAULT;
2261
2262 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2263 return -EFAULT;
2264
2265 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2266 if (ret)
2267 return ret;
2268
2269 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2270
2271 interrupted = signal_pending(current);
2272 restore_saved_sigmask_unless(interrupted);
2273 if (interrupted && !ret)
2274 ret = -ERESTARTNOHAND;
2275
2276 return ret;
2277 }
2278
2279 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2280
2281 SYSCALL_DEFINE6(io_pgetevents_time32,
2282 aio_context_t, ctx_id,
2283 long, min_nr,
2284 long, nr,
2285 struct io_event __user *, events,
2286 struct old_timespec32 __user *, timeout,
2287 const struct __aio_sigset __user *, usig)
2288 {
2289 struct __aio_sigset ksig = { NULL, };
2290 struct timespec64 ts;
2291 bool interrupted;
2292 int ret;
2293
2294 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2295 return -EFAULT;
2296
2297 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2298 return -EFAULT;
2299
2300
2301 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2302 if (ret)
2303 return ret;
2304
2305 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2306
2307 interrupted = signal_pending(current);
2308 restore_saved_sigmask_unless(interrupted);
2309 if (interrupted && !ret)
2310 ret = -ERESTARTNOHAND;
2311
2312 return ret;
2313 }
2314
2315 #endif
2316
2317 #if defined(CONFIG_COMPAT_32BIT_TIME)
2318
2319 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2320 __s32, min_nr,
2321 __s32, nr,
2322 struct io_event __user *, events,
2323 struct old_timespec32 __user *, timeout)
2324 {
2325 struct timespec64 t;
2326 int ret;
2327
2328 if (timeout && get_old_timespec32(&t, timeout))
2329 return -EFAULT;
2330
2331 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2332 if (!ret && signal_pending(current))
2333 ret = -EINTR;
2334 return ret;
2335 }
2336
2337 #endif
2338
2339 #ifdef CONFIG_COMPAT
2340
2341 struct __compat_aio_sigset {
2342 compat_uptr_t sigmask;
2343 compat_size_t sigsetsize;
2344 };
2345
2346 #if defined(CONFIG_COMPAT_32BIT_TIME)
2347
2348 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2349 compat_aio_context_t, ctx_id,
2350 compat_long_t, min_nr,
2351 compat_long_t, nr,
2352 struct io_event __user *, events,
2353 struct old_timespec32 __user *, timeout,
2354 const struct __compat_aio_sigset __user *, usig)
2355 {
2356 struct __compat_aio_sigset ksig = { 0, };
2357 struct timespec64 t;
2358 bool interrupted;
2359 int ret;
2360
2361 if (timeout && get_old_timespec32(&t, timeout))
2362 return -EFAULT;
2363
2364 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2365 return -EFAULT;
2366
2367 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2368 if (ret)
2369 return ret;
2370
2371 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2372
2373 interrupted = signal_pending(current);
2374 restore_saved_sigmask_unless(interrupted);
2375 if (interrupted && !ret)
2376 ret = -ERESTARTNOHAND;
2377
2378 return ret;
2379 }
2380
2381 #endif
2382
2383 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2384 compat_aio_context_t, ctx_id,
2385 compat_long_t, min_nr,
2386 compat_long_t, nr,
2387 struct io_event __user *, events,
2388 struct __kernel_timespec __user *, timeout,
2389 const struct __compat_aio_sigset __user *, usig)
2390 {
2391 struct __compat_aio_sigset ksig = { 0, };
2392 struct timespec64 t;
2393 bool interrupted;
2394 int ret;
2395
2396 if (timeout && get_timespec64(&t, timeout))
2397 return -EFAULT;
2398
2399 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2400 return -EFAULT;
2401
2402 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2403 if (ret)
2404 return ret;
2405
2406 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2407
2408 interrupted = signal_pending(current);
2409 restore_saved_sigmask_unless(interrupted);
2410 if (interrupted && !ret)
2411 ret = -ERESTARTNOHAND;
2412
2413 return ret;
2414 }
2415 #endif