Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net>
0004  */
0005 
0006 #include <linux/delay.h>
0007 #include <linux/kernel.h>
0008 #include <linux/module.h>
0009 #include <linux/moduleparam.h>
0010 #include <linux/list.h>
0011 #include <linux/interrupt.h>
0012 #include <linux/spinlock.h>
0013 #include <linux/timer.h>
0014 #include <linux/device.h>
0015 #include <linux/slab.h>
0016 #include <linux/sched.h>
0017 #include <linux/kthread.h>
0018 #include <linux/freezer.h>
0019 #include <linux/hwmon.h>
0020 #include <linux/of.h>
0021 
0022 #include <linux/atomic.h>
0023 
0024 #include "w1_internal.h"
0025 #include "w1_netlink.h"
0026 
0027 #define W1_FAMILY_DEFAULT   0
0028 #define W1_FAMILY_DS28E04       0x1C /* for crc quirk */
0029 
0030 
0031 static int w1_timeout = 10;
0032 module_param_named(timeout, w1_timeout, int, 0);
0033 MODULE_PARM_DESC(timeout, "time in seconds between automatic slave searches");
0034 
0035 static int w1_timeout_us = 0;
0036 module_param_named(timeout_us, w1_timeout_us, int, 0);
0037 MODULE_PARM_DESC(timeout_us,
0038          "time in microseconds between automatic slave searches");
0039 
0040 /* A search stops when w1_max_slave_count devices have been found in that
0041  * search.  The next search will start over and detect the same set of devices
0042  * on a static 1-wire bus.  Memory is not allocated based on this number, just
0043  * on the number of devices known to the kernel.  Having a high number does not
0044  * consume additional resources.  As a special case, if there is only one
0045  * device on the network and w1_max_slave_count is set to 1, the device id can
0046  * be read directly skipping the normal slower search process.
0047  */
0048 int w1_max_slave_count = 64;
0049 module_param_named(max_slave_count, w1_max_slave_count, int, 0);
0050 MODULE_PARM_DESC(max_slave_count,
0051     "maximum number of slaves detected in a search");
0052 
0053 int w1_max_slave_ttl = 10;
0054 module_param_named(slave_ttl, w1_max_slave_ttl, int, 0);
0055 MODULE_PARM_DESC(slave_ttl,
0056     "Number of searches not seeing a slave before it will be removed");
0057 
0058 DEFINE_MUTEX(w1_mlock);
0059 LIST_HEAD(w1_masters);
0060 
0061 static int w1_master_match(struct device *dev, struct device_driver *drv)
0062 {
0063     return 1;
0064 }
0065 
0066 static int w1_master_probe(struct device *dev)
0067 {
0068     return -ENODEV;
0069 }
0070 
0071 static void w1_master_release(struct device *dev)
0072 {
0073     struct w1_master *md = dev_to_w1_master(dev);
0074 
0075     dev_dbg(dev, "%s: Releasing %s.\n", __func__, md->name);
0076     memset(md, 0, sizeof(struct w1_master) + sizeof(struct w1_bus_master));
0077     kfree(md);
0078 }
0079 
0080 static void w1_slave_release(struct device *dev)
0081 {
0082     struct w1_slave *sl = dev_to_w1_slave(dev);
0083 
0084     dev_dbg(dev, "%s: Releasing %s [%p]\n", __func__, sl->name, sl);
0085 
0086     w1_family_put(sl->family);
0087     sl->master->slave_count--;
0088 }
0089 
0090 static ssize_t name_show(struct device *dev, struct device_attribute *attr, char *buf)
0091 {
0092     struct w1_slave *sl = dev_to_w1_slave(dev);
0093 
0094     return sprintf(buf, "%s\n", sl->name);
0095 }
0096 static DEVICE_ATTR_RO(name);
0097 
0098 static ssize_t id_show(struct device *dev,
0099     struct device_attribute *attr, char *buf)
0100 {
0101     struct w1_slave *sl = dev_to_w1_slave(dev);
0102     ssize_t count = sizeof(sl->reg_num);
0103 
0104     memcpy(buf, (u8 *)&sl->reg_num, count);
0105     return count;
0106 }
0107 static DEVICE_ATTR_RO(id);
0108 
0109 static struct attribute *w1_slave_attrs[] = {
0110     &dev_attr_name.attr,
0111     &dev_attr_id.attr,
0112     NULL,
0113 };
0114 ATTRIBUTE_GROUPS(w1_slave);
0115 
0116 /* Default family */
0117 
0118 static ssize_t rw_write(struct file *filp, struct kobject *kobj,
0119             struct bin_attribute *bin_attr, char *buf, loff_t off,
0120             size_t count)
0121 {
0122     struct w1_slave *sl = kobj_to_w1_slave(kobj);
0123 
0124     mutex_lock(&sl->master->mutex);
0125     if (w1_reset_select_slave(sl)) {
0126         count = 0;
0127         goto out_up;
0128     }
0129 
0130     w1_write_block(sl->master, buf, count);
0131 
0132 out_up:
0133     mutex_unlock(&sl->master->mutex);
0134     return count;
0135 }
0136 
0137 static ssize_t rw_read(struct file *filp, struct kobject *kobj,
0138                struct bin_attribute *bin_attr, char *buf, loff_t off,
0139                size_t count)
0140 {
0141     struct w1_slave *sl = kobj_to_w1_slave(kobj);
0142 
0143     mutex_lock(&sl->master->mutex);
0144     w1_read_block(sl->master, buf, count);
0145     mutex_unlock(&sl->master->mutex);
0146     return count;
0147 }
0148 
0149 static BIN_ATTR_RW(rw, PAGE_SIZE);
0150 
0151 static struct bin_attribute *w1_slave_bin_attrs[] = {
0152     &bin_attr_rw,
0153     NULL,
0154 };
0155 
0156 static const struct attribute_group w1_slave_default_group = {
0157     .bin_attrs = w1_slave_bin_attrs,
0158 };
0159 
0160 static const struct attribute_group *w1_slave_default_groups[] = {
0161     &w1_slave_default_group,
0162     NULL,
0163 };
0164 
0165 static const struct w1_family_ops w1_default_fops = {
0166     .groups     = w1_slave_default_groups,
0167 };
0168 
0169 static struct w1_family w1_default_family = {
0170     .fops = &w1_default_fops,
0171 };
0172 
0173 static int w1_uevent(struct device *dev, struct kobj_uevent_env *env);
0174 
0175 static struct bus_type w1_bus_type = {
0176     .name = "w1",
0177     .match = w1_master_match,
0178     .uevent = w1_uevent,
0179 };
0180 
0181 struct device_driver w1_master_driver = {
0182     .name = "w1_master_driver",
0183     .bus = &w1_bus_type,
0184     .probe = w1_master_probe,
0185 };
0186 
0187 struct device w1_master_device = {
0188     .parent = NULL,
0189     .bus = &w1_bus_type,
0190     .init_name = "w1 bus master",
0191     .driver = &w1_master_driver,
0192     .release = &w1_master_release
0193 };
0194 
0195 static struct device_driver w1_slave_driver = {
0196     .name = "w1_slave_driver",
0197     .bus = &w1_bus_type,
0198 };
0199 
0200 #if 0
0201 struct device w1_slave_device = {
0202     .parent = NULL,
0203     .bus = &w1_bus_type,
0204     .init_name = "w1 bus slave",
0205     .driver = &w1_slave_driver,
0206     .release = &w1_slave_release
0207 };
0208 #endif  /*  0  */
0209 
0210 static ssize_t w1_master_attribute_show_name(struct device *dev, struct device_attribute *attr, char *buf)
0211 {
0212     struct w1_master *md = dev_to_w1_master(dev);
0213     ssize_t count;
0214 
0215     mutex_lock(&md->mutex);
0216     count = sprintf(buf, "%s\n", md->name);
0217     mutex_unlock(&md->mutex);
0218 
0219     return count;
0220 }
0221 
0222 static ssize_t w1_master_attribute_store_search(struct device * dev,
0223                         struct device_attribute *attr,
0224                         const char * buf, size_t count)
0225 {
0226     long tmp;
0227     struct w1_master *md = dev_to_w1_master(dev);
0228     int ret;
0229 
0230     ret = kstrtol(buf, 0, &tmp);
0231     if (ret)
0232         return ret;
0233 
0234     mutex_lock(&md->mutex);
0235     md->search_count = tmp;
0236     mutex_unlock(&md->mutex);
0237     /* Only wake if it is going to be searching. */
0238     if (tmp)
0239         wake_up_process(md->thread);
0240 
0241     return count;
0242 }
0243 
0244 static ssize_t w1_master_attribute_show_search(struct device *dev,
0245                            struct device_attribute *attr,
0246                            char *buf)
0247 {
0248     struct w1_master *md = dev_to_w1_master(dev);
0249     ssize_t count;
0250 
0251     mutex_lock(&md->mutex);
0252     count = sprintf(buf, "%d\n", md->search_count);
0253     mutex_unlock(&md->mutex);
0254 
0255     return count;
0256 }
0257 
0258 static ssize_t w1_master_attribute_store_pullup(struct device *dev,
0259                         struct device_attribute *attr,
0260                         const char *buf, size_t count)
0261 {
0262     long tmp;
0263     struct w1_master *md = dev_to_w1_master(dev);
0264     int ret;
0265 
0266     ret = kstrtol(buf, 0, &tmp);
0267     if (ret)
0268         return ret;
0269 
0270     mutex_lock(&md->mutex);
0271     md->enable_pullup = tmp;
0272     mutex_unlock(&md->mutex);
0273 
0274     return count;
0275 }
0276 
0277 static ssize_t w1_master_attribute_show_pullup(struct device *dev,
0278                            struct device_attribute *attr,
0279                            char *buf)
0280 {
0281     struct w1_master *md = dev_to_w1_master(dev);
0282     ssize_t count;
0283 
0284     mutex_lock(&md->mutex);
0285     count = sprintf(buf, "%d\n", md->enable_pullup);
0286     mutex_unlock(&md->mutex);
0287 
0288     return count;
0289 }
0290 
0291 static ssize_t w1_master_attribute_show_pointer(struct device *dev, struct device_attribute *attr, char *buf)
0292 {
0293     struct w1_master *md = dev_to_w1_master(dev);
0294     ssize_t count;
0295 
0296     mutex_lock(&md->mutex);
0297     count = sprintf(buf, "0x%p\n", md->bus_master);
0298     mutex_unlock(&md->mutex);
0299     return count;
0300 }
0301 
0302 static ssize_t w1_master_attribute_show_timeout(struct device *dev, struct device_attribute *attr, char *buf)
0303 {
0304     ssize_t count;
0305     count = sprintf(buf, "%d\n", w1_timeout);
0306     return count;
0307 }
0308 
0309 static ssize_t w1_master_attribute_show_timeout_us(struct device *dev,
0310     struct device_attribute *attr, char *buf)
0311 {
0312     ssize_t count;
0313     count = sprintf(buf, "%d\n", w1_timeout_us);
0314     return count;
0315 }
0316 
0317 static ssize_t w1_master_attribute_store_max_slave_count(struct device *dev,
0318     struct device_attribute *attr, const char *buf, size_t count)
0319 {
0320     int tmp;
0321     struct w1_master *md = dev_to_w1_master(dev);
0322 
0323     if (kstrtoint(buf, 0, &tmp) || tmp < 1)
0324         return -EINVAL;
0325 
0326     mutex_lock(&md->mutex);
0327     md->max_slave_count = tmp;
0328     /* allow each time the max_slave_count is updated */
0329     clear_bit(W1_WARN_MAX_COUNT, &md->flags);
0330     mutex_unlock(&md->mutex);
0331 
0332     return count;
0333 }
0334 
0335 static ssize_t w1_master_attribute_show_max_slave_count(struct device *dev, struct device_attribute *attr, char *buf)
0336 {
0337     struct w1_master *md = dev_to_w1_master(dev);
0338     ssize_t count;
0339 
0340     mutex_lock(&md->mutex);
0341     count = sprintf(buf, "%d\n", md->max_slave_count);
0342     mutex_unlock(&md->mutex);
0343     return count;
0344 }
0345 
0346 static ssize_t w1_master_attribute_show_attempts(struct device *dev, struct device_attribute *attr, char *buf)
0347 {
0348     struct w1_master *md = dev_to_w1_master(dev);
0349     ssize_t count;
0350 
0351     mutex_lock(&md->mutex);
0352     count = sprintf(buf, "%lu\n", md->attempts);
0353     mutex_unlock(&md->mutex);
0354     return count;
0355 }
0356 
0357 static ssize_t w1_master_attribute_show_slave_count(struct device *dev, struct device_attribute *attr, char *buf)
0358 {
0359     struct w1_master *md = dev_to_w1_master(dev);
0360     ssize_t count;
0361 
0362     mutex_lock(&md->mutex);
0363     count = sprintf(buf, "%d\n", md->slave_count);
0364     mutex_unlock(&md->mutex);
0365     return count;
0366 }
0367 
0368 static ssize_t w1_master_attribute_show_slaves(struct device *dev,
0369     struct device_attribute *attr, char *buf)
0370 {
0371     struct w1_master *md = dev_to_w1_master(dev);
0372     int c = PAGE_SIZE;
0373     struct list_head *ent, *n;
0374     struct w1_slave *sl = NULL;
0375 
0376     mutex_lock(&md->list_mutex);
0377 
0378     list_for_each_safe(ent, n, &md->slist) {
0379         sl = list_entry(ent, struct w1_slave, w1_slave_entry);
0380 
0381         c -= snprintf(buf + PAGE_SIZE - c, c, "%s\n", sl->name);
0382     }
0383     if (!sl)
0384         c -= snprintf(buf + PAGE_SIZE - c, c, "not found.\n");
0385 
0386     mutex_unlock(&md->list_mutex);
0387 
0388     return PAGE_SIZE - c;
0389 }
0390 
0391 static ssize_t w1_master_attribute_show_add(struct device *dev,
0392     struct device_attribute *attr, char *buf)
0393 {
0394     int c = PAGE_SIZE;
0395     c -= snprintf(buf+PAGE_SIZE - c, c,
0396         "write device id xx-xxxxxxxxxxxx to add slave\n");
0397     return PAGE_SIZE - c;
0398 }
0399 
0400 static int w1_atoreg_num(struct device *dev, const char *buf, size_t count,
0401     struct w1_reg_num *rn)
0402 {
0403     unsigned int family;
0404     unsigned long long id;
0405     int i;
0406     u64 rn64_le;
0407 
0408     /* The CRC value isn't read from the user because the sysfs directory
0409      * doesn't include it and most messages from the bus search don't
0410      * print it either.  It would be unreasonable for the user to then
0411      * provide it.
0412      */
0413     const char *error_msg = "bad slave string format, expecting "
0414         "ff-dddddddddddd\n";
0415 
0416     if (buf[2] != '-') {
0417         dev_err(dev, "%s", error_msg);
0418         return -EINVAL;
0419     }
0420     i = sscanf(buf, "%02x-%012llx", &family, &id);
0421     if (i != 2) {
0422         dev_err(dev, "%s", error_msg);
0423         return -EINVAL;
0424     }
0425     rn->family = family;
0426     rn->id = id;
0427 
0428     rn64_le = cpu_to_le64(*(u64 *)rn);
0429     rn->crc = w1_calc_crc8((u8 *)&rn64_le, 7);
0430 
0431 #if 0
0432     dev_info(dev, "With CRC device is %02x.%012llx.%02x.\n",
0433           rn->family, (unsigned long long)rn->id, rn->crc);
0434 #endif
0435 
0436     return 0;
0437 }
0438 
0439 /* Searches the slaves in the w1_master and returns a pointer or NULL.
0440  * Note: must not hold list_mutex
0441  */
0442 struct w1_slave *w1_slave_search_device(struct w1_master *dev,
0443     struct w1_reg_num *rn)
0444 {
0445     struct w1_slave *sl;
0446     mutex_lock(&dev->list_mutex);
0447     list_for_each_entry(sl, &dev->slist, w1_slave_entry) {
0448         if (sl->reg_num.family == rn->family &&
0449                 sl->reg_num.id == rn->id &&
0450                 sl->reg_num.crc == rn->crc) {
0451             mutex_unlock(&dev->list_mutex);
0452             return sl;
0453         }
0454     }
0455     mutex_unlock(&dev->list_mutex);
0456     return NULL;
0457 }
0458 
0459 static ssize_t w1_master_attribute_store_add(struct device *dev,
0460                         struct device_attribute *attr,
0461                         const char *buf, size_t count)
0462 {
0463     struct w1_master *md = dev_to_w1_master(dev);
0464     struct w1_reg_num rn;
0465     struct w1_slave *sl;
0466     ssize_t result = count;
0467 
0468     if (w1_atoreg_num(dev, buf, count, &rn))
0469         return -EINVAL;
0470 
0471     mutex_lock(&md->mutex);
0472     sl = w1_slave_search_device(md, &rn);
0473     /* It would be nice to do a targeted search one the one-wire bus
0474      * for the new device to see if it is out there or not.  But the
0475      * current search doesn't support that.
0476      */
0477     if (sl) {
0478         dev_info(dev, "Device %s already exists\n", sl->name);
0479         result = -EINVAL;
0480     } else {
0481         w1_attach_slave_device(md, &rn);
0482     }
0483     mutex_unlock(&md->mutex);
0484 
0485     return result;
0486 }
0487 
0488 static ssize_t w1_master_attribute_show_remove(struct device *dev,
0489     struct device_attribute *attr, char *buf)
0490 {
0491     int c = PAGE_SIZE;
0492     c -= snprintf(buf+PAGE_SIZE - c, c,
0493         "write device id xx-xxxxxxxxxxxx to remove slave\n");
0494     return PAGE_SIZE - c;
0495 }
0496 
0497 static ssize_t w1_master_attribute_store_remove(struct device *dev,
0498                         struct device_attribute *attr,
0499                         const char *buf, size_t count)
0500 {
0501     struct w1_master *md = dev_to_w1_master(dev);
0502     struct w1_reg_num rn;
0503     struct w1_slave *sl;
0504     ssize_t result = count;
0505 
0506     if (w1_atoreg_num(dev, buf, count, &rn))
0507         return -EINVAL;
0508 
0509     mutex_lock(&md->mutex);
0510     sl = w1_slave_search_device(md, &rn);
0511     if (sl) {
0512         result = w1_slave_detach(sl);
0513         /* refcnt 0 means it was detached in the call */
0514         if (result == 0)
0515             result = count;
0516     } else {
0517         dev_info(dev, "Device %02x-%012llx doesn't exists\n", rn.family,
0518             (unsigned long long)rn.id);
0519         result = -EINVAL;
0520     }
0521     mutex_unlock(&md->mutex);
0522 
0523     return result;
0524 }
0525 
0526 #define W1_MASTER_ATTR_RO(_name, _mode)             \
0527     struct device_attribute w1_master_attribute_##_name =   \
0528         __ATTR(w1_master_##_name, _mode,        \
0529                w1_master_attribute_show_##_name, NULL)
0530 
0531 #define W1_MASTER_ATTR_RW(_name, _mode)             \
0532     struct device_attribute w1_master_attribute_##_name =   \
0533         __ATTR(w1_master_##_name, _mode,        \
0534                w1_master_attribute_show_##_name,    \
0535                w1_master_attribute_store_##_name)
0536 
0537 static W1_MASTER_ATTR_RO(name, S_IRUGO);
0538 static W1_MASTER_ATTR_RO(slaves, S_IRUGO);
0539 static W1_MASTER_ATTR_RO(slave_count, S_IRUGO);
0540 static W1_MASTER_ATTR_RW(max_slave_count, S_IRUGO | S_IWUSR | S_IWGRP);
0541 static W1_MASTER_ATTR_RO(attempts, S_IRUGO);
0542 static W1_MASTER_ATTR_RO(timeout, S_IRUGO);
0543 static W1_MASTER_ATTR_RO(timeout_us, S_IRUGO);
0544 static W1_MASTER_ATTR_RO(pointer, S_IRUGO);
0545 static W1_MASTER_ATTR_RW(search, S_IRUGO | S_IWUSR | S_IWGRP);
0546 static W1_MASTER_ATTR_RW(pullup, S_IRUGO | S_IWUSR | S_IWGRP);
0547 static W1_MASTER_ATTR_RW(add, S_IRUGO | S_IWUSR | S_IWGRP);
0548 static W1_MASTER_ATTR_RW(remove, S_IRUGO | S_IWUSR | S_IWGRP);
0549 
0550 static struct attribute *w1_master_default_attrs[] = {
0551     &w1_master_attribute_name.attr,
0552     &w1_master_attribute_slaves.attr,
0553     &w1_master_attribute_slave_count.attr,
0554     &w1_master_attribute_max_slave_count.attr,
0555     &w1_master_attribute_attempts.attr,
0556     &w1_master_attribute_timeout.attr,
0557     &w1_master_attribute_timeout_us.attr,
0558     &w1_master_attribute_pointer.attr,
0559     &w1_master_attribute_search.attr,
0560     &w1_master_attribute_pullup.attr,
0561     &w1_master_attribute_add.attr,
0562     &w1_master_attribute_remove.attr,
0563     NULL
0564 };
0565 
0566 static const struct attribute_group w1_master_defattr_group = {
0567     .attrs = w1_master_default_attrs,
0568 };
0569 
0570 int w1_create_master_attributes(struct w1_master *master)
0571 {
0572     return sysfs_create_group(&master->dev.kobj, &w1_master_defattr_group);
0573 }
0574 
0575 void w1_destroy_master_attributes(struct w1_master *master)
0576 {
0577     sysfs_remove_group(&master->dev.kobj, &w1_master_defattr_group);
0578 }
0579 
0580 static int w1_uevent(struct device *dev, struct kobj_uevent_env *env)
0581 {
0582     struct w1_master *md = NULL;
0583     struct w1_slave *sl = NULL;
0584     char *event_owner, *name;
0585     int err = 0;
0586 
0587     if (dev->driver == &w1_master_driver) {
0588         md = container_of(dev, struct w1_master, dev);
0589         event_owner = "master";
0590         name = md->name;
0591     } else if (dev->driver == &w1_slave_driver) {
0592         sl = container_of(dev, struct w1_slave, dev);
0593         event_owner = "slave";
0594         name = sl->name;
0595     } else {
0596         dev_dbg(dev, "Unknown event.\n");
0597         return -EINVAL;
0598     }
0599 
0600     dev_dbg(dev, "Hotplug event for %s %s, bus_id=%s.\n",
0601             event_owner, name, dev_name(dev));
0602 
0603     if (dev->driver != &w1_slave_driver || !sl)
0604         goto end;
0605 
0606     err = add_uevent_var(env, "W1_FID=%02X", sl->reg_num.family);
0607     if (err)
0608         goto end;
0609 
0610     err = add_uevent_var(env, "W1_SLAVE_ID=%024LX",
0611                  (unsigned long long)sl->reg_num.id);
0612 end:
0613     return err;
0614 }
0615 
0616 static int w1_family_notify(unsigned long action, struct w1_slave *sl)
0617 {
0618     const struct w1_family_ops *fops;
0619     int err;
0620 
0621     fops = sl->family->fops;
0622 
0623     if (!fops)
0624         return 0;
0625 
0626     switch (action) {
0627     case BUS_NOTIFY_ADD_DEVICE:
0628         /* if the family driver needs to initialize something... */
0629         if (fops->add_slave) {
0630             err = fops->add_slave(sl);
0631             if (err < 0) {
0632                 dev_err(&sl->dev,
0633                     "add_slave() call failed. err=%d\n",
0634                     err);
0635                 return err;
0636             }
0637         }
0638         if (fops->groups) {
0639             err = sysfs_create_groups(&sl->dev.kobj, fops->groups);
0640             if (err) {
0641                 dev_err(&sl->dev,
0642                     "sysfs group creation failed. err=%d\n",
0643                     err);
0644                 return err;
0645             }
0646         }
0647         if (IS_REACHABLE(CONFIG_HWMON) && fops->chip_info) {
0648             struct device *hwmon
0649                 = hwmon_device_register_with_info(&sl->dev,
0650                         "w1_slave_temp", sl,
0651                         fops->chip_info,
0652                         NULL);
0653             if (IS_ERR(hwmon)) {
0654                 dev_warn(&sl->dev,
0655                      "could not create hwmon device\n");
0656             } else {
0657                 sl->hwmon = hwmon;
0658             }
0659         }
0660         break;
0661     case BUS_NOTIFY_DEL_DEVICE:
0662         if (IS_REACHABLE(CONFIG_HWMON) && fops->chip_info &&
0663                 sl->hwmon)
0664             hwmon_device_unregister(sl->hwmon);
0665         if (fops->remove_slave)
0666             sl->family->fops->remove_slave(sl);
0667         if (fops->groups)
0668             sysfs_remove_groups(&sl->dev.kobj, fops->groups);
0669         break;
0670     }
0671     return 0;
0672 }
0673 
0674 static int __w1_attach_slave_device(struct w1_slave *sl)
0675 {
0676     int err;
0677 
0678     sl->dev.parent = &sl->master->dev;
0679     sl->dev.driver = &w1_slave_driver;
0680     sl->dev.bus = &w1_bus_type;
0681     sl->dev.release = &w1_slave_release;
0682     sl->dev.groups = w1_slave_groups;
0683     sl->dev.of_node = of_find_matching_node(sl->master->dev.of_node,
0684                         sl->family->of_match_table);
0685 
0686     dev_set_name(&sl->dev, "%02x-%012llx",
0687          (unsigned int) sl->reg_num.family,
0688          (unsigned long long) sl->reg_num.id);
0689     snprintf(&sl->name[0], sizeof(sl->name),
0690          "%02x-%012llx",
0691          (unsigned int) sl->reg_num.family,
0692          (unsigned long long) sl->reg_num.id);
0693 
0694     dev_dbg(&sl->dev, "%s: registering %s as %p.\n", __func__,
0695         dev_name(&sl->dev), sl);
0696 
0697     /* suppress for w1_family_notify before sending KOBJ_ADD */
0698     dev_set_uevent_suppress(&sl->dev, true);
0699 
0700     err = device_register(&sl->dev);
0701     if (err < 0) {
0702         dev_err(&sl->dev,
0703             "Device registration [%s] failed. err=%d\n",
0704             dev_name(&sl->dev), err);
0705         put_device(&sl->dev);
0706         return err;
0707     }
0708     w1_family_notify(BUS_NOTIFY_ADD_DEVICE, sl);
0709 
0710     dev_set_uevent_suppress(&sl->dev, false);
0711     kobject_uevent(&sl->dev.kobj, KOBJ_ADD);
0712 
0713     mutex_lock(&sl->master->list_mutex);
0714     list_add_tail(&sl->w1_slave_entry, &sl->master->slist);
0715     mutex_unlock(&sl->master->list_mutex);
0716 
0717     return 0;
0718 }
0719 
0720 int w1_attach_slave_device(struct w1_master *dev, struct w1_reg_num *rn)
0721 {
0722     struct w1_slave *sl;
0723     struct w1_family *f;
0724     int err;
0725     struct w1_netlink_msg msg;
0726 
0727     sl = kzalloc(sizeof(struct w1_slave), GFP_KERNEL);
0728     if (!sl) {
0729         dev_err(&dev->dev,
0730              "%s: failed to allocate new slave device.\n",
0731              __func__);
0732         return -ENOMEM;
0733     }
0734 
0735 
0736     sl->owner = THIS_MODULE;
0737     sl->master = dev;
0738     set_bit(W1_SLAVE_ACTIVE, &sl->flags);
0739 
0740     memset(&msg, 0, sizeof(msg));
0741     memcpy(&sl->reg_num, rn, sizeof(sl->reg_num));
0742     atomic_set(&sl->refcnt, 1);
0743     atomic_inc(&sl->master->refcnt);
0744     dev->slave_count++;
0745     dev_info(&dev->dev, "Attaching one wire slave %02x.%012llx crc %02x\n",
0746           rn->family, (unsigned long long)rn->id, rn->crc);
0747 
0748     /* slave modules need to be loaded in a context with unlocked mutex */
0749     mutex_unlock(&dev->mutex);
0750     request_module("w1-family-0x%02X", rn->family);
0751     mutex_lock(&dev->mutex);
0752 
0753     spin_lock(&w1_flock);
0754     f = w1_family_registered(rn->family);
0755     if (!f) {
0756         f= &w1_default_family;
0757         dev_info(&dev->dev, "Family %x for %02x.%012llx.%02x is not registered.\n",
0758               rn->family, rn->family,
0759               (unsigned long long)rn->id, rn->crc);
0760     }
0761     __w1_family_get(f);
0762     spin_unlock(&w1_flock);
0763 
0764     sl->family = f;
0765 
0766     err = __w1_attach_slave_device(sl);
0767     if (err < 0) {
0768         dev_err(&dev->dev, "%s: Attaching %s failed.\n", __func__,
0769              sl->name);
0770         dev->slave_count--;
0771         w1_family_put(sl->family);
0772         atomic_dec(&sl->master->refcnt);
0773         kfree(sl);
0774         return err;
0775     }
0776 
0777     sl->ttl = dev->slave_ttl;
0778 
0779     memcpy(msg.id.id, rn, sizeof(msg.id));
0780     msg.type = W1_SLAVE_ADD;
0781     w1_netlink_send(dev, &msg);
0782 
0783     return 0;
0784 }
0785 
0786 int w1_unref_slave(struct w1_slave *sl)
0787 {
0788     struct w1_master *dev = sl->master;
0789     int refcnt;
0790     mutex_lock(&dev->list_mutex);
0791     refcnt = atomic_sub_return(1, &sl->refcnt);
0792     if (refcnt == 0) {
0793         struct w1_netlink_msg msg;
0794 
0795         dev_dbg(&sl->dev, "%s: detaching %s [%p].\n", __func__,
0796             sl->name, sl);
0797 
0798         list_del(&sl->w1_slave_entry);
0799 
0800         memset(&msg, 0, sizeof(msg));
0801         memcpy(msg.id.id, &sl->reg_num, sizeof(msg.id));
0802         msg.type = W1_SLAVE_REMOVE;
0803         w1_netlink_send(sl->master, &msg);
0804 
0805         w1_family_notify(BUS_NOTIFY_DEL_DEVICE, sl);
0806         device_unregister(&sl->dev);
0807         #ifdef DEBUG
0808         memset(sl, 0, sizeof(*sl));
0809         #endif
0810         kfree(sl);
0811     }
0812     atomic_dec(&dev->refcnt);
0813     mutex_unlock(&dev->list_mutex);
0814     return refcnt;
0815 }
0816 
0817 int w1_slave_detach(struct w1_slave *sl)
0818 {
0819     /* Only detach a slave once as it decreases the refcnt each time. */
0820     int destroy_now;
0821     mutex_lock(&sl->master->list_mutex);
0822     destroy_now = !test_bit(W1_SLAVE_DETACH, &sl->flags);
0823     set_bit(W1_SLAVE_DETACH, &sl->flags);
0824     mutex_unlock(&sl->master->list_mutex);
0825 
0826     if (destroy_now)
0827         destroy_now = !w1_unref_slave(sl);
0828     return destroy_now ? 0 : -EBUSY;
0829 }
0830 
0831 struct w1_master *w1_search_master_id(u32 id)
0832 {
0833     struct w1_master *dev;
0834     int found = 0;
0835 
0836     mutex_lock(&w1_mlock);
0837     list_for_each_entry(dev, &w1_masters, w1_master_entry) {
0838         if (dev->id == id) {
0839             found = 1;
0840             atomic_inc(&dev->refcnt);
0841             break;
0842         }
0843     }
0844     mutex_unlock(&w1_mlock);
0845 
0846     return (found)?dev:NULL;
0847 }
0848 
0849 struct w1_slave *w1_search_slave(struct w1_reg_num *id)
0850 {
0851     struct w1_master *dev;
0852     struct w1_slave *sl = NULL;
0853     int found = 0;
0854 
0855     mutex_lock(&w1_mlock);
0856     list_for_each_entry(dev, &w1_masters, w1_master_entry) {
0857         mutex_lock(&dev->list_mutex);
0858         list_for_each_entry(sl, &dev->slist, w1_slave_entry) {
0859             if (sl->reg_num.family == id->family &&
0860                     sl->reg_num.id == id->id &&
0861                     sl->reg_num.crc == id->crc) {
0862                 found = 1;
0863                 atomic_inc(&dev->refcnt);
0864                 atomic_inc(&sl->refcnt);
0865                 break;
0866             }
0867         }
0868         mutex_unlock(&dev->list_mutex);
0869 
0870         if (found)
0871             break;
0872     }
0873     mutex_unlock(&w1_mlock);
0874 
0875     return (found)?sl:NULL;
0876 }
0877 
0878 void w1_reconnect_slaves(struct w1_family *f, int attach)
0879 {
0880     struct w1_slave *sl, *sln;
0881     struct w1_master *dev;
0882 
0883     mutex_lock(&w1_mlock);
0884     list_for_each_entry(dev, &w1_masters, w1_master_entry) {
0885         dev_dbg(&dev->dev, "Reconnecting slaves in device %s "
0886             "for family %02x.\n", dev->name, f->fid);
0887         mutex_lock(&dev->mutex);
0888         mutex_lock(&dev->list_mutex);
0889         list_for_each_entry_safe(sl, sln, &dev->slist, w1_slave_entry) {
0890             /* If it is a new family, slaves with the default
0891              * family driver and are that family will be
0892              * connected.  If the family is going away, devices
0893              * matching that family are reconneced.
0894              */
0895             if ((attach && sl->family->fid == W1_FAMILY_DEFAULT
0896                 && sl->reg_num.family == f->fid) ||
0897                 (!attach && sl->family->fid == f->fid)) {
0898                 struct w1_reg_num rn;
0899 
0900                 mutex_unlock(&dev->list_mutex);
0901                 memcpy(&rn, &sl->reg_num, sizeof(rn));
0902                 /* If it was already in use let the automatic
0903                  * scan pick it up again later.
0904                  */
0905                 if (!w1_slave_detach(sl))
0906                     w1_attach_slave_device(dev, &rn);
0907                 mutex_lock(&dev->list_mutex);
0908             }
0909         }
0910         dev_dbg(&dev->dev, "Reconnecting slaves in device %s "
0911             "has been finished.\n", dev->name);
0912         mutex_unlock(&dev->list_mutex);
0913         mutex_unlock(&dev->mutex);
0914     }
0915     mutex_unlock(&w1_mlock);
0916 }
0917 
0918 static int w1_addr_crc_is_valid(struct w1_master *dev, u64 rn)
0919 {
0920     u64 rn_le = cpu_to_le64(rn);
0921     struct w1_reg_num *tmp = (struct w1_reg_num *)&rn;
0922     u8 crc;
0923 
0924     crc = w1_calc_crc8((u8 *)&rn_le, 7);
0925 
0926     /* quirk:
0927      *   DS28E04 (1w eeprom) has strapping pins to change
0928      *   address, but will not update the crc. So normal rules
0929      *   for consistent w1 addresses are violated. We test
0930      *   with the 7 LSBs of the address forced high.
0931      *
0932      *   (char*)&rn_le = { family, addr_lsb, ..., addr_msb, crc }.
0933      */
0934     if (crc != tmp->crc && tmp->family == W1_FAMILY_DS28E04) {
0935         u64 corr_le = rn_le;
0936 
0937         ((u8 *)&corr_le)[1] |= 0x7f;
0938         crc = w1_calc_crc8((u8 *)&corr_le, 7);
0939 
0940         dev_info(&dev->dev, "DS28E04 crc workaround on %02x.%012llx.%02x\n",
0941             tmp->family, (unsigned long long)tmp->id, tmp->crc);
0942     }
0943 
0944     if (crc != tmp->crc) {
0945         dev_dbg(&dev->dev, "w1 addr crc mismatch: %02x.%012llx.%02x != 0x%02x.\n",
0946             tmp->family, (unsigned long long)tmp->id, tmp->crc, crc);
0947         return 0;
0948     }
0949     return 1;
0950 }
0951 
0952 void w1_slave_found(struct w1_master *dev, u64 rn)
0953 {
0954     struct w1_slave *sl;
0955     struct w1_reg_num *tmp;
0956 
0957     atomic_inc(&dev->refcnt);
0958 
0959     tmp = (struct w1_reg_num *) &rn;
0960 
0961     sl = w1_slave_search_device(dev, tmp);
0962     if (sl) {
0963         set_bit(W1_SLAVE_ACTIVE, &sl->flags);
0964     } else {
0965         if (rn && w1_addr_crc_is_valid(dev, rn))
0966             w1_attach_slave_device(dev, tmp);
0967     }
0968 
0969     atomic_dec(&dev->refcnt);
0970 }
0971 
0972 /**
0973  * w1_search() - Performs a ROM Search & registers any devices found.
0974  * @dev: The master device to search
0975  * @search_type: W1_SEARCH to search all devices, or W1_ALARM_SEARCH
0976  * to return only devices in the alarmed state
0977  * @cb: Function to call when a device is found
0978  *
0979  * The 1-wire search is a simple binary tree search.
0980  * For each bit of the address, we read two bits and write one bit.
0981  * The bit written will put to sleep all devies that don't match that bit.
0982  * When the two reads differ, the direction choice is obvious.
0983  * When both bits are 0, we must choose a path to take.
0984  * When we can scan all 64 bits without having to choose a path, we are done.
0985  *
0986  * See "Application note 187 1-wire search algorithm" at www.maxim-ic.com
0987  *
0988  */
0989 void w1_search(struct w1_master *dev, u8 search_type, w1_slave_found_callback cb)
0990 {
0991     u64 last_rn, rn, tmp64;
0992     int i, slave_count = 0;
0993     int last_zero, last_device;
0994     int search_bit, desc_bit;
0995     u8  triplet_ret = 0;
0996 
0997     search_bit = 0;
0998     rn = dev->search_id;
0999     last_rn = 0;
1000     last_device = 0;
1001     last_zero = -1;
1002 
1003     desc_bit = 64;
1004 
1005     while ( !last_device && (slave_count++ < dev->max_slave_count) ) {
1006         last_rn = rn;
1007         rn = 0;
1008 
1009         /*
1010          * Reset bus and all 1-wire device state machines
1011          * so they can respond to our requests.
1012          *
1013          * Return 0 - device(s) present, 1 - no devices present.
1014          */
1015         mutex_lock(&dev->bus_mutex);
1016         if (w1_reset_bus(dev)) {
1017             mutex_unlock(&dev->bus_mutex);
1018             dev_dbg(&dev->dev, "No devices present on the wire.\n");
1019             break;
1020         }
1021 
1022         /* Do fast search on single slave bus */
1023         if (dev->max_slave_count == 1) {
1024             int rv;
1025             w1_write_8(dev, W1_READ_ROM);
1026             rv = w1_read_block(dev, (u8 *)&rn, 8);
1027             mutex_unlock(&dev->bus_mutex);
1028 
1029             if (rv == 8 && rn)
1030                 cb(dev, rn);
1031 
1032             break;
1033         }
1034 
1035         /* Start the search */
1036         w1_write_8(dev, search_type);
1037         for (i = 0; i < 64; ++i) {
1038             /* Determine the direction/search bit */
1039             if (i == desc_bit)
1040                 search_bit = 1;   /* took the 0 path last time, so take the 1 path */
1041             else if (i > desc_bit)
1042                 search_bit = 0;   /* take the 0 path on the next branch */
1043             else
1044                 search_bit = ((last_rn >> i) & 0x1);
1045 
1046             /* Read two bits and write one bit */
1047             triplet_ret = w1_triplet(dev, search_bit);
1048 
1049             /* quit if no device responded */
1050             if ( (triplet_ret & 0x03) == 0x03 )
1051                 break;
1052 
1053             /* If both directions were valid, and we took the 0 path... */
1054             if (triplet_ret == 0)
1055                 last_zero = i;
1056 
1057             /* extract the direction taken & update the device number */
1058             tmp64 = (triplet_ret >> 2);
1059             rn |= (tmp64 << i);
1060 
1061             if (test_bit(W1_ABORT_SEARCH, &dev->flags)) {
1062                 mutex_unlock(&dev->bus_mutex);
1063                 dev_dbg(&dev->dev, "Abort w1_search\n");
1064                 return;
1065             }
1066         }
1067         mutex_unlock(&dev->bus_mutex);
1068 
1069         if ( (triplet_ret & 0x03) != 0x03 ) {
1070             if ((desc_bit == last_zero) || (last_zero < 0)) {
1071                 last_device = 1;
1072                 dev->search_id = 0;
1073             } else {
1074                 dev->search_id = rn;
1075             }
1076             desc_bit = last_zero;
1077             cb(dev, rn);
1078         }
1079 
1080         if (!last_device && slave_count == dev->max_slave_count &&
1081             !test_bit(W1_WARN_MAX_COUNT, &dev->flags)) {
1082             /* Only max_slave_count will be scanned in a search,
1083              * but it will start where it left off next search
1084              * until all ids are identified and then it will start
1085              * over.  A continued search will report the previous
1086              * last id as the first id (provided it is still on the
1087              * bus).
1088              */
1089             dev_info(&dev->dev, "%s: max_slave_count %d reached, "
1090                 "will continue next search.\n", __func__,
1091                 dev->max_slave_count);
1092             set_bit(W1_WARN_MAX_COUNT, &dev->flags);
1093         }
1094     }
1095 }
1096 
1097 void w1_search_process_cb(struct w1_master *dev, u8 search_type,
1098     w1_slave_found_callback cb)
1099 {
1100     struct w1_slave *sl, *sln;
1101 
1102     mutex_lock(&dev->list_mutex);
1103     list_for_each_entry(sl, &dev->slist, w1_slave_entry)
1104         clear_bit(W1_SLAVE_ACTIVE, &sl->flags);
1105     mutex_unlock(&dev->list_mutex);
1106 
1107     w1_search_devices(dev, search_type, cb);
1108 
1109     mutex_lock(&dev->list_mutex);
1110     list_for_each_entry_safe(sl, sln, &dev->slist, w1_slave_entry) {
1111         if (!test_bit(W1_SLAVE_ACTIVE, &sl->flags) && !--sl->ttl) {
1112             mutex_unlock(&dev->list_mutex);
1113             w1_slave_detach(sl);
1114             mutex_lock(&dev->list_mutex);
1115         }
1116         else if (test_bit(W1_SLAVE_ACTIVE, &sl->flags))
1117             sl->ttl = dev->slave_ttl;
1118     }
1119     mutex_unlock(&dev->list_mutex);
1120 
1121     if (dev->search_count > 0)
1122         dev->search_count--;
1123 }
1124 
1125 static void w1_search_process(struct w1_master *dev, u8 search_type)
1126 {
1127     w1_search_process_cb(dev, search_type, w1_slave_found);
1128 }
1129 
1130 /**
1131  * w1_process_callbacks() - execute each dev->async_list callback entry
1132  * @dev: w1_master device
1133  *
1134  * The w1 master list_mutex must be held.
1135  *
1136  * Return: 1 if there were commands to executed 0 otherwise
1137  */
1138 int w1_process_callbacks(struct w1_master *dev)
1139 {
1140     int ret = 0;
1141     struct w1_async_cmd *async_cmd, *async_n;
1142 
1143     /* The list can be added to in another thread, loop until it is empty */
1144     while (!list_empty(&dev->async_list)) {
1145         list_for_each_entry_safe(async_cmd, async_n, &dev->async_list,
1146             async_entry) {
1147             /* drop the lock, if it is a search it can take a long
1148              * time */
1149             mutex_unlock(&dev->list_mutex);
1150             async_cmd->cb(dev, async_cmd);
1151             ret = 1;
1152             mutex_lock(&dev->list_mutex);
1153         }
1154     }
1155     return ret;
1156 }
1157 
1158 int w1_process(void *data)
1159 {
1160     struct w1_master *dev = (struct w1_master *) data;
1161     /* As long as w1_timeout is only set by a module parameter the sleep
1162      * time can be calculated in jiffies once.
1163      */
1164     const unsigned long jtime =
1165       usecs_to_jiffies(w1_timeout * 1000000 + w1_timeout_us);
1166     /* remainder if it woke up early */
1167     unsigned long jremain = 0;
1168 
1169     for (;;) {
1170 
1171         if (!jremain && dev->search_count) {
1172             mutex_lock(&dev->mutex);
1173             w1_search_process(dev, W1_SEARCH);
1174             mutex_unlock(&dev->mutex);
1175         }
1176 
1177         mutex_lock(&dev->list_mutex);
1178         /* Note, w1_process_callback drops the lock while processing,
1179          * but locks it again before returning.
1180          */
1181         if (!w1_process_callbacks(dev) && jremain) {
1182             /* a wake up is either to stop the thread, process
1183              * callbacks, or search, it isn't process callbacks, so
1184              * schedule a search.
1185              */
1186             jremain = 1;
1187         }
1188 
1189         __set_current_state(TASK_INTERRUPTIBLE);
1190 
1191         /* hold list_mutex until after interruptible to prevent loosing
1192          * the wakeup signal when async_cmd is added.
1193          */
1194         mutex_unlock(&dev->list_mutex);
1195 
1196         if (kthread_should_stop())
1197             break;
1198 
1199         /* Only sleep when the search is active. */
1200         if (dev->search_count) {
1201             if (!jremain)
1202                 jremain = jtime;
1203             jremain = schedule_timeout(jremain);
1204         }
1205         else
1206             schedule();
1207     }
1208 
1209     atomic_dec(&dev->refcnt);
1210 
1211     return 0;
1212 }
1213 
1214 static int __init w1_init(void)
1215 {
1216     int retval;
1217 
1218     pr_info("Driver for 1-wire Dallas network protocol.\n");
1219 
1220     w1_init_netlink();
1221 
1222     retval = bus_register(&w1_bus_type);
1223     if (retval) {
1224         pr_err("Failed to register bus. err=%d.\n", retval);
1225         goto err_out_exit_init;
1226     }
1227 
1228     retval = driver_register(&w1_master_driver);
1229     if (retval) {
1230         pr_err("Failed to register master driver. err=%d.\n",
1231             retval);
1232         goto err_out_bus_unregister;
1233     }
1234 
1235     retval = driver_register(&w1_slave_driver);
1236     if (retval) {
1237         pr_err("Failed to register slave driver. err=%d.\n",
1238             retval);
1239         goto err_out_master_unregister;
1240     }
1241 
1242     return 0;
1243 
1244 #if 0
1245 /* For undoing the slave register if there was a step after it. */
1246 err_out_slave_unregister:
1247     driver_unregister(&w1_slave_driver);
1248 #endif
1249 
1250 err_out_master_unregister:
1251     driver_unregister(&w1_master_driver);
1252 
1253 err_out_bus_unregister:
1254     bus_unregister(&w1_bus_type);
1255 
1256 err_out_exit_init:
1257     return retval;
1258 }
1259 
1260 static void __exit w1_fini(void)
1261 {
1262     struct w1_master *dev;
1263 
1264     /* Set netlink removal messages and some cleanup */
1265     list_for_each_entry(dev, &w1_masters, w1_master_entry)
1266         __w1_remove_master_device(dev);
1267 
1268     w1_fini_netlink();
1269 
1270     driver_unregister(&w1_slave_driver);
1271     driver_unregister(&w1_master_driver);
1272     bus_unregister(&w1_bus_type);
1273 }
1274 
1275 module_init(w1_init);
1276 module_exit(w1_fini);
1277 
1278 MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
1279 MODULE_DESCRIPTION("Driver for 1-wire Dallas network protocol.");
1280 MODULE_LICENSE("GPL");