Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * Copyright (c) Intel Corp. 2007.
0004  * All Rights Reserved.
0005  *
0006  * Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
0007  * develop this driver.
0008  *
0009  * This file is part of the Vermilion Range fb driver.
0010  *
0011  * Authors:
0012  *   Thomas Hellström <thomas-at-tungstengraphics-dot-com>
0013  *   Michel Dänzer <michel-at-tungstengraphics-dot-com>
0014  *   Alan Hourihane <alanh-at-tungstengraphics-dot-com>
0015  */
0016 
0017 #include <linux/module.h>
0018 #include <linux/kernel.h>
0019 #include <linux/errno.h>
0020 #include <linux/string.h>
0021 #include <linux/delay.h>
0022 #include <linux/slab.h>
0023 #include <linux/mm.h>
0024 #include <linux/fb.h>
0025 #include <linux/pci.h>
0026 #include <asm/set_memory.h>
0027 #include <asm/tlbflush.h>
0028 #include <linux/mmzone.h>
0029 
0030 /* #define VERMILION_DEBUG */
0031 
0032 #include "vermilion.h"
0033 
0034 #define MODULE_NAME "vmlfb"
0035 
0036 #define VML_TOHW(_val, _width) ((((_val) << (_width)) + 0x7FFF - (_val)) >> 16)
0037 
0038 static struct mutex vml_mutex;
0039 static struct list_head global_no_mode;
0040 static struct list_head global_has_mode;
0041 static struct fb_ops vmlfb_ops;
0042 static struct vml_sys *subsys = NULL;
0043 static char *vml_default_mode = "1024x768@60";
0044 static const struct fb_videomode defaultmode = {
0045     NULL, 60, 1024, 768, 12896, 144, 24, 29, 3, 136, 6,
0046     0, FB_VMODE_NONINTERLACED
0047 };
0048 
0049 static u32 vml_mem_requested = (10 * 1024 * 1024);
0050 static u32 vml_mem_contig = (4 * 1024 * 1024);
0051 static u32 vml_mem_min = (4 * 1024 * 1024);
0052 
0053 static u32 vml_clocks[] = {
0054     6750,
0055     13500,
0056     27000,
0057     29700,
0058     37125,
0059     54000,
0060     59400,
0061     74250,
0062     120000,
0063     148500
0064 };
0065 
0066 static u32 vml_num_clocks = ARRAY_SIZE(vml_clocks);
0067 
0068 /*
0069  * Allocate a contiguous vram area and make its linear kernel map
0070  * uncached.
0071  */
0072 
0073 static int vmlfb_alloc_vram_area(struct vram_area *va, unsigned max_order,
0074                  unsigned min_order)
0075 {
0076     gfp_t flags;
0077     unsigned long i;
0078 
0079     max_order++;
0080     do {
0081         /*
0082          * Really try hard to get the needed memory.
0083          * We need memory below the first 32MB, so we
0084          * add the __GFP_DMA flag that guarantees that we are
0085          * below the first 16MB.
0086          */
0087 
0088         flags = __GFP_DMA | __GFP_HIGH | __GFP_KSWAPD_RECLAIM;
0089         va->logical =
0090              __get_free_pages(flags, --max_order);
0091     } while (va->logical == 0 && max_order > min_order);
0092 
0093     if (!va->logical)
0094         return -ENOMEM;
0095 
0096     va->phys = virt_to_phys((void *)va->logical);
0097     va->size = PAGE_SIZE << max_order;
0098     va->order = max_order;
0099 
0100     /*
0101      * It seems like __get_free_pages only ups the usage count
0102      * of the first page. This doesn't work with fault mapping, so
0103      * up the usage count once more (XXX: should use split_page or
0104      * compound page).
0105      */
0106 
0107     memset((void *)va->logical, 0x00, va->size);
0108     for (i = va->logical; i < va->logical + va->size; i += PAGE_SIZE) {
0109         get_page(virt_to_page(i));
0110     }
0111 
0112     /*
0113      * Change caching policy of the linear kernel map to avoid
0114      * mapping type conflicts with user-space mappings.
0115      */
0116     set_pages_uc(virt_to_page(va->logical), va->size >> PAGE_SHIFT);
0117 
0118     printk(KERN_DEBUG MODULE_NAME
0119            ": Allocated %ld bytes vram area at 0x%08lx\n",
0120            va->size, va->phys);
0121 
0122     return 0;
0123 }
0124 
0125 /*
0126  * Free a contiguous vram area and reset its linear kernel map
0127  * mapping type.
0128  */
0129 
0130 static void vmlfb_free_vram_area(struct vram_area *va)
0131 {
0132     unsigned long j;
0133 
0134     if (va->logical) {
0135 
0136         /*
0137          * Reset the linear kernel map caching policy.
0138          */
0139 
0140         set_pages_wb(virt_to_page(va->logical),
0141                  va->size >> PAGE_SHIFT);
0142 
0143         /*
0144          * Decrease the usage count on the pages we've used
0145          * to compensate for upping when allocating.
0146          */
0147 
0148         for (j = va->logical; j < va->logical + va->size;
0149              j += PAGE_SIZE) {
0150             (void)put_page_testzero(virt_to_page(j));
0151         }
0152 
0153         printk(KERN_DEBUG MODULE_NAME
0154                ": Freeing %ld bytes vram area at 0x%08lx\n",
0155                va->size, va->phys);
0156         free_pages(va->logical, va->order);
0157 
0158         va->logical = 0;
0159     }
0160 }
0161 
0162 /*
0163  * Free allocated vram.
0164  */
0165 
0166 static void vmlfb_free_vram(struct vml_info *vinfo)
0167 {
0168     int i;
0169 
0170     for (i = 0; i < vinfo->num_areas; ++i) {
0171         vmlfb_free_vram_area(&vinfo->vram[i]);
0172     }
0173     vinfo->num_areas = 0;
0174 }
0175 
0176 /*
0177  * Allocate vram. Currently we try to allocate contiguous areas from the
0178  * __GFP_DMA zone and puzzle them together. A better approach would be to
0179  * allocate one contiguous area for scanout and use one-page allocations for
0180  * offscreen areas. This requires user-space and GPU virtual mappings.
0181  */
0182 
0183 static int vmlfb_alloc_vram(struct vml_info *vinfo,
0184                 size_t requested,
0185                 size_t min_total, size_t min_contig)
0186 {
0187     int i, j;
0188     int order;
0189     int contiguous;
0190     int err;
0191     struct vram_area *va;
0192     struct vram_area *va2;
0193 
0194     vinfo->num_areas = 0;
0195     for (i = 0; i < VML_VRAM_AREAS; ++i) {
0196         va = &vinfo->vram[i];
0197         order = 0;
0198 
0199         while (requested > (PAGE_SIZE << order) && order < MAX_ORDER)
0200             order++;
0201 
0202         err = vmlfb_alloc_vram_area(va, order, 0);
0203 
0204         if (err)
0205             break;
0206 
0207         if (i == 0) {
0208             vinfo->vram_start = va->phys;
0209             vinfo->vram_logical = (void __iomem *) va->logical;
0210             vinfo->vram_contig_size = va->size;
0211             vinfo->num_areas = 1;
0212         } else {
0213             contiguous = 0;
0214 
0215             for (j = 0; j < i; ++j) {
0216                 va2 = &vinfo->vram[j];
0217                 if (va->phys + va->size == va2->phys ||
0218                     va2->phys + va2->size == va->phys) {
0219                     contiguous = 1;
0220                     break;
0221                 }
0222             }
0223 
0224             if (contiguous) {
0225                 vinfo->num_areas++;
0226                 if (va->phys < vinfo->vram_start) {
0227                     vinfo->vram_start = va->phys;
0228                     vinfo->vram_logical =
0229                         (void __iomem *)va->logical;
0230                 }
0231                 vinfo->vram_contig_size += va->size;
0232             } else {
0233                 vmlfb_free_vram_area(va);
0234                 break;
0235             }
0236         }
0237 
0238         if (requested < va->size)
0239             break;
0240         else
0241             requested -= va->size;
0242     }
0243 
0244     if (vinfo->vram_contig_size > min_total &&
0245         vinfo->vram_contig_size > min_contig) {
0246 
0247         printk(KERN_DEBUG MODULE_NAME
0248                ": Contiguous vram: %ld bytes at physical 0x%08lx.\n",
0249                (unsigned long)vinfo->vram_contig_size,
0250                (unsigned long)vinfo->vram_start);
0251 
0252         return 0;
0253     }
0254 
0255     printk(KERN_ERR MODULE_NAME
0256            ": Could not allocate requested minimal amount of vram.\n");
0257 
0258     vmlfb_free_vram(vinfo);
0259 
0260     return -ENOMEM;
0261 }
0262 
0263 /*
0264  * Find the GPU to use with our display controller.
0265  */
0266 
0267 static int vmlfb_get_gpu(struct vml_par *par)
0268 {
0269     mutex_lock(&vml_mutex);
0270 
0271     par->gpu = pci_get_device(PCI_VENDOR_ID_INTEL, VML_DEVICE_GPU, NULL);
0272 
0273     if (!par->gpu) {
0274         mutex_unlock(&vml_mutex);
0275         return -ENODEV;
0276     }
0277 
0278     mutex_unlock(&vml_mutex);
0279 
0280     if (pci_enable_device(par->gpu) < 0)
0281         return -ENODEV;
0282 
0283     return 0;
0284 }
0285 
0286 /*
0287  * Find a contiguous vram area that contains a given offset from vram start.
0288  */
0289 static int vmlfb_vram_offset(struct vml_info *vinfo, unsigned long offset)
0290 {
0291     unsigned long aoffset;
0292     unsigned i;
0293 
0294     for (i = 0; i < vinfo->num_areas; ++i) {
0295         aoffset = offset - (vinfo->vram[i].phys - vinfo->vram_start);
0296 
0297         if (aoffset < vinfo->vram[i].size) {
0298             return 0;
0299         }
0300     }
0301 
0302     return -EINVAL;
0303 }
0304 
0305 /*
0306  * Remap the MMIO register spaces of the VDC and the GPU.
0307  */
0308 
0309 static int vmlfb_enable_mmio(struct vml_par *par)
0310 {
0311     int err;
0312 
0313     par->vdc_mem_base = pci_resource_start(par->vdc, 0);
0314     par->vdc_mem_size = pci_resource_len(par->vdc, 0);
0315     if (!request_mem_region(par->vdc_mem_base, par->vdc_mem_size, "vmlfb")) {
0316         printk(KERN_ERR MODULE_NAME
0317                ": Could not claim display controller MMIO.\n");
0318         return -EBUSY;
0319     }
0320     par->vdc_mem = ioremap(par->vdc_mem_base, par->vdc_mem_size);
0321     if (par->vdc_mem == NULL) {
0322         printk(KERN_ERR MODULE_NAME
0323                ": Could not map display controller MMIO.\n");
0324         err = -ENOMEM;
0325         goto out_err_0;
0326     }
0327 
0328     par->gpu_mem_base = pci_resource_start(par->gpu, 0);
0329     par->gpu_mem_size = pci_resource_len(par->gpu, 0);
0330     if (!request_mem_region(par->gpu_mem_base, par->gpu_mem_size, "vmlfb")) {
0331         printk(KERN_ERR MODULE_NAME ": Could not claim GPU MMIO.\n");
0332         err = -EBUSY;
0333         goto out_err_1;
0334     }
0335     par->gpu_mem = ioremap(par->gpu_mem_base, par->gpu_mem_size);
0336     if (par->gpu_mem == NULL) {
0337         printk(KERN_ERR MODULE_NAME ": Could not map GPU MMIO.\n");
0338         err = -ENOMEM;
0339         goto out_err_2;
0340     }
0341 
0342     return 0;
0343 
0344 out_err_2:
0345     release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
0346 out_err_1:
0347     iounmap(par->vdc_mem);
0348 out_err_0:
0349     release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
0350     return err;
0351 }
0352 
0353 /*
0354  * Unmap the VDC and GPU register spaces.
0355  */
0356 
0357 static void vmlfb_disable_mmio(struct vml_par *par)
0358 {
0359     iounmap(par->gpu_mem);
0360     release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
0361     iounmap(par->vdc_mem);
0362     release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
0363 }
0364 
0365 /*
0366  * Release and uninit the VDC and GPU.
0367  */
0368 
0369 static void vmlfb_release_devices(struct vml_par *par)
0370 {
0371     if (atomic_dec_and_test(&par->refcount)) {
0372         pci_disable_device(par->gpu);
0373         pci_disable_device(par->vdc);
0374     }
0375 }
0376 
0377 /*
0378  * Free up allocated resources for a device.
0379  */
0380 
0381 static void vml_pci_remove(struct pci_dev *dev)
0382 {
0383     struct fb_info *info;
0384     struct vml_info *vinfo;
0385     struct vml_par *par;
0386 
0387     info = pci_get_drvdata(dev);
0388     if (info) {
0389         vinfo = container_of(info, struct vml_info, info);
0390         par = vinfo->par;
0391         mutex_lock(&vml_mutex);
0392         unregister_framebuffer(info);
0393         fb_dealloc_cmap(&info->cmap);
0394         vmlfb_free_vram(vinfo);
0395         vmlfb_disable_mmio(par);
0396         vmlfb_release_devices(par);
0397         kfree(vinfo);
0398         kfree(par);
0399         mutex_unlock(&vml_mutex);
0400     }
0401 }
0402 
0403 static void vmlfb_set_pref_pixel_format(struct fb_var_screeninfo *var)
0404 {
0405     switch (var->bits_per_pixel) {
0406     case 16:
0407         var->blue.offset = 0;
0408         var->blue.length = 5;
0409         var->green.offset = 5;
0410         var->green.length = 5;
0411         var->red.offset = 10;
0412         var->red.length = 5;
0413         var->transp.offset = 15;
0414         var->transp.length = 1;
0415         break;
0416     case 32:
0417         var->blue.offset = 0;
0418         var->blue.length = 8;
0419         var->green.offset = 8;
0420         var->green.length = 8;
0421         var->red.offset = 16;
0422         var->red.length = 8;
0423         var->transp.offset = 24;
0424         var->transp.length = 0;
0425         break;
0426     default:
0427         break;
0428     }
0429 
0430     var->blue.msb_right = var->green.msb_right =
0431         var->red.msb_right = var->transp.msb_right = 0;
0432 }
0433 
0434 /*
0435  * Device initialization.
0436  * We initialize one vml_par struct per device and one vml_info
0437  * struct per pipe. Currently we have only one pipe.
0438  */
0439 
0440 static int vml_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
0441 {
0442     struct vml_info *vinfo;
0443     struct fb_info *info;
0444     struct vml_par *par;
0445     int err = 0;
0446 
0447     par = kzalloc(sizeof(*par), GFP_KERNEL);
0448     if (par == NULL)
0449         return -ENOMEM;
0450 
0451     vinfo = kzalloc(sizeof(*vinfo), GFP_KERNEL);
0452     if (vinfo == NULL) {
0453         err = -ENOMEM;
0454         goto out_err_0;
0455     }
0456 
0457     vinfo->par = par;
0458     par->vdc = dev;
0459     atomic_set(&par->refcount, 1);
0460 
0461     switch (id->device) {
0462     case VML_DEVICE_VDC:
0463         if ((err = vmlfb_get_gpu(par)))
0464             goto out_err_1;
0465         pci_set_drvdata(dev, &vinfo->info);
0466         break;
0467     default:
0468         err = -ENODEV;
0469         goto out_err_1;
0470     }
0471 
0472     info = &vinfo->info;
0473     info->flags = FBINFO_DEFAULT | FBINFO_PARTIAL_PAN_OK;
0474 
0475     err = vmlfb_enable_mmio(par);
0476     if (err)
0477         goto out_err_2;
0478 
0479     err = vmlfb_alloc_vram(vinfo, vml_mem_requested,
0480                    vml_mem_contig, vml_mem_min);
0481     if (err)
0482         goto out_err_3;
0483 
0484     strcpy(info->fix.id, "Vermilion Range");
0485     info->fix.mmio_start = 0;
0486     info->fix.mmio_len = 0;
0487     info->fix.smem_start = vinfo->vram_start;
0488     info->fix.smem_len = vinfo->vram_contig_size;
0489     info->fix.type = FB_TYPE_PACKED_PIXELS;
0490     info->fix.visual = FB_VISUAL_TRUECOLOR;
0491     info->fix.ypanstep = 1;
0492     info->fix.xpanstep = 1;
0493     info->fix.ywrapstep = 0;
0494     info->fix.accel = FB_ACCEL_NONE;
0495     info->screen_base = vinfo->vram_logical;
0496     info->pseudo_palette = vinfo->pseudo_palette;
0497     info->par = par;
0498     info->fbops = &vmlfb_ops;
0499     info->device = &dev->dev;
0500 
0501     INIT_LIST_HEAD(&vinfo->head);
0502     vinfo->pipe_disabled = 1;
0503     vinfo->cur_blank_mode = FB_BLANK_UNBLANK;
0504 
0505     info->var.grayscale = 0;
0506     info->var.bits_per_pixel = 16;
0507     vmlfb_set_pref_pixel_format(&info->var);
0508 
0509     if (!fb_find_mode
0510         (&info->var, info, vml_default_mode, NULL, 0, &defaultmode, 16)) {
0511         printk(KERN_ERR MODULE_NAME ": Could not find initial mode\n");
0512     }
0513 
0514     if (fb_alloc_cmap(&info->cmap, 256, 1) < 0) {
0515         err = -ENOMEM;
0516         goto out_err_4;
0517     }
0518 
0519     err = register_framebuffer(info);
0520     if (err) {
0521         printk(KERN_ERR MODULE_NAME ": Register framebuffer error.\n");
0522         goto out_err_5;
0523     }
0524 
0525     printk("Initialized vmlfb\n");
0526 
0527     return 0;
0528 
0529 out_err_5:
0530     fb_dealloc_cmap(&info->cmap);
0531 out_err_4:
0532     vmlfb_free_vram(vinfo);
0533 out_err_3:
0534     vmlfb_disable_mmio(par);
0535 out_err_2:
0536     vmlfb_release_devices(par);
0537 out_err_1:
0538     kfree(vinfo);
0539 out_err_0:
0540     kfree(par);
0541     return err;
0542 }
0543 
0544 static int vmlfb_open(struct fb_info *info, int user)
0545 {
0546     /*
0547      * Save registers here?
0548      */
0549     return 0;
0550 }
0551 
0552 static int vmlfb_release(struct fb_info *info, int user)
0553 {
0554     /*
0555      * Restore registers here.
0556      */
0557 
0558     return 0;
0559 }
0560 
0561 static int vml_nearest_clock(int clock)
0562 {
0563 
0564     int i;
0565     int cur_index;
0566     int cur_diff;
0567     int diff;
0568 
0569     cur_index = 0;
0570     cur_diff = clock - vml_clocks[0];
0571     cur_diff = (cur_diff < 0) ? -cur_diff : cur_diff;
0572     for (i = 1; i < vml_num_clocks; ++i) {
0573         diff = clock - vml_clocks[i];
0574         diff = (diff < 0) ? -diff : diff;
0575         if (diff < cur_diff) {
0576             cur_index = i;
0577             cur_diff = diff;
0578         }
0579     }
0580     return vml_clocks[cur_index];
0581 }
0582 
0583 static int vmlfb_check_var_locked(struct fb_var_screeninfo *var,
0584                   struct vml_info *vinfo)
0585 {
0586     u32 pitch;
0587     u64 mem;
0588     int nearest_clock;
0589     int clock;
0590     int clock_diff;
0591     struct fb_var_screeninfo v;
0592 
0593     v = *var;
0594     clock = PICOS2KHZ(var->pixclock);
0595 
0596     if (subsys && subsys->nearest_clock) {
0597         nearest_clock = subsys->nearest_clock(subsys, clock);
0598     } else {
0599         nearest_clock = vml_nearest_clock(clock);
0600     }
0601 
0602     /*
0603      * Accept a 20% diff.
0604      */
0605 
0606     clock_diff = nearest_clock - clock;
0607     clock_diff = (clock_diff < 0) ? -clock_diff : clock_diff;
0608     if (clock_diff > clock / 5) {
0609 #if 0
0610         printk(KERN_DEBUG MODULE_NAME ": Diff failure. %d %d\n",clock_diff,clock);
0611 #endif
0612         return -EINVAL;
0613     }
0614 
0615     v.pixclock = KHZ2PICOS(nearest_clock);
0616 
0617     if (var->xres > VML_MAX_XRES || var->yres > VML_MAX_YRES) {
0618         printk(KERN_DEBUG MODULE_NAME ": Resolution failure.\n");
0619         return -EINVAL;
0620     }
0621     if (var->xres_virtual > VML_MAX_XRES_VIRTUAL) {
0622         printk(KERN_DEBUG MODULE_NAME
0623                ": Virtual resolution failure.\n");
0624         return -EINVAL;
0625     }
0626     switch (v.bits_per_pixel) {
0627     case 0 ... 16:
0628         v.bits_per_pixel = 16;
0629         break;
0630     case 17 ... 32:
0631         v.bits_per_pixel = 32;
0632         break;
0633     default:
0634         printk(KERN_DEBUG MODULE_NAME ": Invalid bpp: %d.\n",
0635                var->bits_per_pixel);
0636         return -EINVAL;
0637     }
0638 
0639     pitch = ALIGN((var->xres * var->bits_per_pixel) >> 3, 0x40);
0640     mem = (u64)pitch * var->yres_virtual;
0641     if (mem > vinfo->vram_contig_size) {
0642         return -ENOMEM;
0643     }
0644 
0645     switch (v.bits_per_pixel) {
0646     case 16:
0647         if (var->blue.offset != 0 ||
0648             var->blue.length != 5 ||
0649             var->green.offset != 5 ||
0650             var->green.length != 5 ||
0651             var->red.offset != 10 ||
0652             var->red.length != 5 ||
0653             var->transp.offset != 15 || var->transp.length != 1) {
0654             vmlfb_set_pref_pixel_format(&v);
0655         }
0656         break;
0657     case 32:
0658         if (var->blue.offset != 0 ||
0659             var->blue.length != 8 ||
0660             var->green.offset != 8 ||
0661             var->green.length != 8 ||
0662             var->red.offset != 16 ||
0663             var->red.length != 8 ||
0664             (var->transp.length != 0 && var->transp.length != 8) ||
0665             (var->transp.length == 8 && var->transp.offset != 24)) {
0666             vmlfb_set_pref_pixel_format(&v);
0667         }
0668         break;
0669     default:
0670         return -EINVAL;
0671     }
0672 
0673     *var = v;
0674 
0675     return 0;
0676 }
0677 
0678 static int vmlfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
0679 {
0680     struct vml_info *vinfo = container_of(info, struct vml_info, info);
0681     int ret;
0682 
0683     mutex_lock(&vml_mutex);
0684     ret = vmlfb_check_var_locked(var, vinfo);
0685     mutex_unlock(&vml_mutex);
0686 
0687     return ret;
0688 }
0689 
0690 static void vml_wait_vblank(struct vml_info *vinfo)
0691 {
0692     /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
0693     mdelay(20);
0694 }
0695 
0696 static void vmlfb_disable_pipe(struct vml_info *vinfo)
0697 {
0698     struct vml_par *par = vinfo->par;
0699 
0700     /* Disable the MDVO pad */
0701     VML_WRITE32(par, VML_RCOMPSTAT, 0);
0702     while (!(VML_READ32(par, VML_RCOMPSTAT) & VML_MDVO_VDC_I_RCOMP)) ;
0703 
0704     /* Disable display planes */
0705     VML_WRITE32(par, VML_DSPCCNTR,
0706             VML_READ32(par, VML_DSPCCNTR) & ~VML_GFX_ENABLE);
0707     (void)VML_READ32(par, VML_DSPCCNTR);
0708     /* Wait for vblank for the disable to take effect */
0709     vml_wait_vblank(vinfo);
0710 
0711     /* Next, disable display pipes */
0712     VML_WRITE32(par, VML_PIPEACONF, 0);
0713     (void)VML_READ32(par, VML_PIPEACONF);
0714 
0715     vinfo->pipe_disabled = 1;
0716 }
0717 
0718 #ifdef VERMILION_DEBUG
0719 static void vml_dump_regs(struct vml_info *vinfo)
0720 {
0721     struct vml_par *par = vinfo->par;
0722 
0723     printk(KERN_DEBUG MODULE_NAME ": Modesetting register dump:\n");
0724     printk(KERN_DEBUG MODULE_NAME ": \tHTOTAL_A         : 0x%08x\n",
0725            (unsigned)VML_READ32(par, VML_HTOTAL_A));
0726     printk(KERN_DEBUG MODULE_NAME ": \tHBLANK_A         : 0x%08x\n",
0727            (unsigned)VML_READ32(par, VML_HBLANK_A));
0728     printk(KERN_DEBUG MODULE_NAME ": \tHSYNC_A          : 0x%08x\n",
0729            (unsigned)VML_READ32(par, VML_HSYNC_A));
0730     printk(KERN_DEBUG MODULE_NAME ": \tVTOTAL_A         : 0x%08x\n",
0731            (unsigned)VML_READ32(par, VML_VTOTAL_A));
0732     printk(KERN_DEBUG MODULE_NAME ": \tVBLANK_A         : 0x%08x\n",
0733            (unsigned)VML_READ32(par, VML_VBLANK_A));
0734     printk(KERN_DEBUG MODULE_NAME ": \tVSYNC_A          : 0x%08x\n",
0735            (unsigned)VML_READ32(par, VML_VSYNC_A));
0736     printk(KERN_DEBUG MODULE_NAME ": \tDSPCSTRIDE       : 0x%08x\n",
0737            (unsigned)VML_READ32(par, VML_DSPCSTRIDE));
0738     printk(KERN_DEBUG MODULE_NAME ": \tDSPCSIZE         : 0x%08x\n",
0739            (unsigned)VML_READ32(par, VML_DSPCSIZE));
0740     printk(KERN_DEBUG MODULE_NAME ": \tDSPCPOS          : 0x%08x\n",
0741            (unsigned)VML_READ32(par, VML_DSPCPOS));
0742     printk(KERN_DEBUG MODULE_NAME ": \tDSPARB           : 0x%08x\n",
0743            (unsigned)VML_READ32(par, VML_DSPARB));
0744     printk(KERN_DEBUG MODULE_NAME ": \tDSPCADDR         : 0x%08x\n",
0745            (unsigned)VML_READ32(par, VML_DSPCADDR));
0746     printk(KERN_DEBUG MODULE_NAME ": \tBCLRPAT_A        : 0x%08x\n",
0747            (unsigned)VML_READ32(par, VML_BCLRPAT_A));
0748     printk(KERN_DEBUG MODULE_NAME ": \tCANVSCLR_A       : 0x%08x\n",
0749            (unsigned)VML_READ32(par, VML_CANVSCLR_A));
0750     printk(KERN_DEBUG MODULE_NAME ": \tPIPEASRC         : 0x%08x\n",
0751            (unsigned)VML_READ32(par, VML_PIPEASRC));
0752     printk(KERN_DEBUG MODULE_NAME ": \tPIPEACONF        : 0x%08x\n",
0753            (unsigned)VML_READ32(par, VML_PIPEACONF));
0754     printk(KERN_DEBUG MODULE_NAME ": \tDSPCCNTR         : 0x%08x\n",
0755            (unsigned)VML_READ32(par, VML_DSPCCNTR));
0756     printk(KERN_DEBUG MODULE_NAME ": \tRCOMPSTAT        : 0x%08x\n",
0757            (unsigned)VML_READ32(par, VML_RCOMPSTAT));
0758     printk(KERN_DEBUG MODULE_NAME ": End of modesetting register dump.\n");
0759 }
0760 #endif
0761 
0762 static int vmlfb_set_par_locked(struct vml_info *vinfo)
0763 {
0764     struct vml_par *par = vinfo->par;
0765     struct fb_info *info = &vinfo->info;
0766     struct fb_var_screeninfo *var = &info->var;
0767     u32 htotal, hactive, hblank_start, hblank_end, hsync_start, hsync_end;
0768     u32 vtotal, vactive, vblank_start, vblank_end, vsync_start, vsync_end;
0769     u32 dspcntr;
0770     int clock;
0771 
0772     vinfo->bytes_per_pixel = var->bits_per_pixel >> 3;
0773     vinfo->stride = ALIGN(var->xres_virtual * vinfo->bytes_per_pixel, 0x40);
0774     info->fix.line_length = vinfo->stride;
0775 
0776     if (!subsys)
0777         return 0;
0778 
0779     htotal =
0780         var->xres + var->right_margin + var->hsync_len + var->left_margin;
0781     hactive = var->xres;
0782     hblank_start = var->xres;
0783     hblank_end = htotal;
0784     hsync_start = hactive + var->right_margin;
0785     hsync_end = hsync_start + var->hsync_len;
0786 
0787     vtotal =
0788         var->yres + var->lower_margin + var->vsync_len + var->upper_margin;
0789     vactive = var->yres;
0790     vblank_start = var->yres;
0791     vblank_end = vtotal;
0792     vsync_start = vactive + var->lower_margin;
0793     vsync_end = vsync_start + var->vsync_len;
0794 
0795     dspcntr = VML_GFX_ENABLE | VML_GFX_GAMMABYPASS;
0796     clock = PICOS2KHZ(var->pixclock);
0797 
0798     if (subsys->nearest_clock) {
0799         clock = subsys->nearest_clock(subsys, clock);
0800     } else {
0801         clock = vml_nearest_clock(clock);
0802     }
0803     printk(KERN_DEBUG MODULE_NAME
0804            ": Set mode Hfreq : %d kHz, Vfreq : %d Hz.\n", clock / htotal,
0805            ((clock / htotal) * 1000) / vtotal);
0806 
0807     switch (var->bits_per_pixel) {
0808     case 16:
0809         dspcntr |= VML_GFX_ARGB1555;
0810         break;
0811     case 32:
0812         if (var->transp.length == 8)
0813             dspcntr |= VML_GFX_ARGB8888 | VML_GFX_ALPHAMULT;
0814         else
0815             dspcntr |= VML_GFX_RGB0888;
0816         break;
0817     default:
0818         return -EINVAL;
0819     }
0820 
0821     vmlfb_disable_pipe(vinfo);
0822     mb();
0823 
0824     if (subsys->set_clock)
0825         subsys->set_clock(subsys, clock);
0826     else
0827         return -EINVAL;
0828 
0829     VML_WRITE32(par, VML_HTOTAL_A, ((htotal - 1) << 16) | (hactive - 1));
0830     VML_WRITE32(par, VML_HBLANK_A,
0831             ((hblank_end - 1) << 16) | (hblank_start - 1));
0832     VML_WRITE32(par, VML_HSYNC_A,
0833             ((hsync_end - 1) << 16) | (hsync_start - 1));
0834     VML_WRITE32(par, VML_VTOTAL_A, ((vtotal - 1) << 16) | (vactive - 1));
0835     VML_WRITE32(par, VML_VBLANK_A,
0836             ((vblank_end - 1) << 16) | (vblank_start - 1));
0837     VML_WRITE32(par, VML_VSYNC_A,
0838             ((vsync_end - 1) << 16) | (vsync_start - 1));
0839     VML_WRITE32(par, VML_DSPCSTRIDE, vinfo->stride);
0840     VML_WRITE32(par, VML_DSPCSIZE,
0841             ((var->yres - 1) << 16) | (var->xres - 1));
0842     VML_WRITE32(par, VML_DSPCPOS, 0x00000000);
0843     VML_WRITE32(par, VML_DSPARB, VML_FIFO_DEFAULT);
0844     VML_WRITE32(par, VML_BCLRPAT_A, 0x00000000);
0845     VML_WRITE32(par, VML_CANVSCLR_A, 0x00000000);
0846     VML_WRITE32(par, VML_PIPEASRC,
0847             ((var->xres - 1) << 16) | (var->yres - 1));
0848 
0849     wmb();
0850     VML_WRITE32(par, VML_PIPEACONF, VML_PIPE_ENABLE);
0851     wmb();
0852     VML_WRITE32(par, VML_DSPCCNTR, dspcntr);
0853     wmb();
0854     VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
0855             var->yoffset * vinfo->stride +
0856             var->xoffset * vinfo->bytes_per_pixel);
0857 
0858     VML_WRITE32(par, VML_RCOMPSTAT, VML_MDVO_PAD_ENABLE);
0859 
0860     while (!(VML_READ32(par, VML_RCOMPSTAT) &
0861          (VML_MDVO_VDC_I_RCOMP | VML_MDVO_PAD_ENABLE))) ;
0862 
0863     vinfo->pipe_disabled = 0;
0864 #ifdef VERMILION_DEBUG
0865     vml_dump_regs(vinfo);
0866 #endif
0867 
0868     return 0;
0869 }
0870 
0871 static int vmlfb_set_par(struct fb_info *info)
0872 {
0873     struct vml_info *vinfo = container_of(info, struct vml_info, info);
0874     int ret;
0875 
0876     mutex_lock(&vml_mutex);
0877     list_move(&vinfo->head, (subsys) ? &global_has_mode : &global_no_mode);
0878     ret = vmlfb_set_par_locked(vinfo);
0879 
0880     mutex_unlock(&vml_mutex);
0881     return ret;
0882 }
0883 
0884 static int vmlfb_blank_locked(struct vml_info *vinfo)
0885 {
0886     struct vml_par *par = vinfo->par;
0887     u32 cur = VML_READ32(par, VML_PIPEACONF);
0888 
0889     switch (vinfo->cur_blank_mode) {
0890     case FB_BLANK_UNBLANK:
0891         if (vinfo->pipe_disabled) {
0892             vmlfb_set_par_locked(vinfo);
0893         }
0894         VML_WRITE32(par, VML_PIPEACONF, cur & ~VML_PIPE_FORCE_BORDER);
0895         (void)VML_READ32(par, VML_PIPEACONF);
0896         break;
0897     case FB_BLANK_NORMAL:
0898         if (vinfo->pipe_disabled) {
0899             vmlfb_set_par_locked(vinfo);
0900         }
0901         VML_WRITE32(par, VML_PIPEACONF, cur | VML_PIPE_FORCE_BORDER);
0902         (void)VML_READ32(par, VML_PIPEACONF);
0903         break;
0904     case FB_BLANK_VSYNC_SUSPEND:
0905     case FB_BLANK_HSYNC_SUSPEND:
0906         if (!vinfo->pipe_disabled) {
0907             vmlfb_disable_pipe(vinfo);
0908         }
0909         break;
0910     case FB_BLANK_POWERDOWN:
0911         if (!vinfo->pipe_disabled) {
0912             vmlfb_disable_pipe(vinfo);
0913         }
0914         break;
0915     default:
0916         return -EINVAL;
0917     }
0918 
0919     return 0;
0920 }
0921 
0922 static int vmlfb_blank(int blank_mode, struct fb_info *info)
0923 {
0924     struct vml_info *vinfo = container_of(info, struct vml_info, info);
0925     int ret;
0926 
0927     mutex_lock(&vml_mutex);
0928     vinfo->cur_blank_mode = blank_mode;
0929     ret = vmlfb_blank_locked(vinfo);
0930     mutex_unlock(&vml_mutex);
0931     return ret;
0932 }
0933 
0934 static int vmlfb_pan_display(struct fb_var_screeninfo *var,
0935                  struct fb_info *info)
0936 {
0937     struct vml_info *vinfo = container_of(info, struct vml_info, info);
0938     struct vml_par *par = vinfo->par;
0939 
0940     mutex_lock(&vml_mutex);
0941     VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
0942             var->yoffset * vinfo->stride +
0943             var->xoffset * vinfo->bytes_per_pixel);
0944     (void)VML_READ32(par, VML_DSPCADDR);
0945     mutex_unlock(&vml_mutex);
0946 
0947     return 0;
0948 }
0949 
0950 static int vmlfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
0951                u_int transp, struct fb_info *info)
0952 {
0953     u32 v;
0954 
0955     if (regno >= 16)
0956         return -EINVAL;
0957 
0958     if (info->var.grayscale) {
0959         red = green = blue = (red * 77 + green * 151 + blue * 28) >> 8;
0960     }
0961 
0962     if (info->fix.visual != FB_VISUAL_TRUECOLOR)
0963         return -EINVAL;
0964 
0965     red = VML_TOHW(red, info->var.red.length);
0966     blue = VML_TOHW(blue, info->var.blue.length);
0967     green = VML_TOHW(green, info->var.green.length);
0968     transp = VML_TOHW(transp, info->var.transp.length);
0969 
0970     v = (red << info->var.red.offset) |
0971         (green << info->var.green.offset) |
0972         (blue << info->var.blue.offset) |
0973         (transp << info->var.transp.offset);
0974 
0975     switch (info->var.bits_per_pixel) {
0976     case 16:
0977         ((u32 *) info->pseudo_palette)[regno] = v;
0978         break;
0979     case 24:
0980     case 32:
0981         ((u32 *) info->pseudo_palette)[regno] = v;
0982         break;
0983     }
0984     return 0;
0985 }
0986 
0987 static int vmlfb_mmap(struct fb_info *info, struct vm_area_struct *vma)
0988 {
0989     struct vml_info *vinfo = container_of(info, struct vml_info, info);
0990     unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
0991     int ret;
0992     unsigned long prot;
0993 
0994     ret = vmlfb_vram_offset(vinfo, offset);
0995     if (ret)
0996         return -EINVAL;
0997 
0998     prot = pgprot_val(vma->vm_page_prot) & ~_PAGE_CACHE_MASK;
0999     pgprot_val(vma->vm_page_prot) =
1000         prot | cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS);
1001 
1002     return vm_iomap_memory(vma, vinfo->vram_start,
1003             vinfo->vram_contig_size);
1004 }
1005 
1006 static int vmlfb_sync(struct fb_info *info)
1007 {
1008     return 0;
1009 }
1010 
1011 static int vmlfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1012 {
1013     return -EINVAL; /* just to force soft_cursor() call */
1014 }
1015 
1016 static struct fb_ops vmlfb_ops = {
1017     .owner = THIS_MODULE,
1018     .fb_open = vmlfb_open,
1019     .fb_release = vmlfb_release,
1020     .fb_check_var = vmlfb_check_var,
1021     .fb_set_par = vmlfb_set_par,
1022     .fb_blank = vmlfb_blank,
1023     .fb_pan_display = vmlfb_pan_display,
1024     .fb_fillrect = cfb_fillrect,
1025     .fb_copyarea = cfb_copyarea,
1026     .fb_imageblit = cfb_imageblit,
1027     .fb_cursor = vmlfb_cursor,
1028     .fb_sync = vmlfb_sync,
1029     .fb_mmap = vmlfb_mmap,
1030     .fb_setcolreg = vmlfb_setcolreg
1031 };
1032 
1033 static const struct pci_device_id vml_ids[] = {
1034     {PCI_DEVICE(PCI_VENDOR_ID_INTEL, VML_DEVICE_VDC)},
1035     {0}
1036 };
1037 
1038 static struct pci_driver vmlfb_pci_driver = {
1039     .name = "vmlfb",
1040     .id_table = vml_ids,
1041     .probe = vml_pci_probe,
1042     .remove = vml_pci_remove,
1043 };
1044 
1045 static void __exit vmlfb_cleanup(void)
1046 {
1047     pci_unregister_driver(&vmlfb_pci_driver);
1048 }
1049 
1050 static int __init vmlfb_init(void)
1051 {
1052 
1053 #ifndef MODULE
1054     char *option = NULL;
1055 
1056     if (fb_get_options(MODULE_NAME, &option))
1057         return -ENODEV;
1058 #endif
1059 
1060     printk(KERN_DEBUG MODULE_NAME ": initializing\n");
1061     mutex_init(&vml_mutex);
1062     INIT_LIST_HEAD(&global_no_mode);
1063     INIT_LIST_HEAD(&global_has_mode);
1064 
1065     return pci_register_driver(&vmlfb_pci_driver);
1066 }
1067 
1068 int vmlfb_register_subsys(struct vml_sys *sys)
1069 {
1070     struct vml_info *entry;
1071     struct list_head *list;
1072     u32 save_activate;
1073 
1074     mutex_lock(&vml_mutex);
1075     if (subsys != NULL) {
1076         subsys->restore(subsys);
1077     }
1078     subsys = sys;
1079     subsys->save(subsys);
1080 
1081     /*
1082      * We need to restart list traversal for each item, since we
1083      * release the list mutex in the loop.
1084      */
1085 
1086     list = global_no_mode.next;
1087     while (list != &global_no_mode) {
1088         list_del_init(list);
1089         entry = list_entry(list, struct vml_info, head);
1090 
1091         /*
1092          * First, try the current mode which might not be
1093          * completely validated with respect to the pixel clock.
1094          */
1095 
1096         if (!vmlfb_check_var_locked(&entry->info.var, entry)) {
1097             vmlfb_set_par_locked(entry);
1098             list_add_tail(list, &global_has_mode);
1099         } else {
1100 
1101             /*
1102              * Didn't work. Try to find another mode,
1103              * that matches this subsys.
1104              */
1105 
1106             mutex_unlock(&vml_mutex);
1107             save_activate = entry->info.var.activate;
1108             entry->info.var.bits_per_pixel = 16;
1109             vmlfb_set_pref_pixel_format(&entry->info.var);
1110             if (fb_find_mode(&entry->info.var,
1111                      &entry->info,
1112                      vml_default_mode, NULL, 0, NULL, 16)) {
1113                 entry->info.var.activate |=
1114                     FB_ACTIVATE_FORCE | FB_ACTIVATE_NOW;
1115                 fb_set_var(&entry->info, &entry->info.var);
1116             } else {
1117                 printk(KERN_ERR MODULE_NAME
1118                        ": Sorry. no mode found for this subsys.\n");
1119             }
1120             entry->info.var.activate = save_activate;
1121             mutex_lock(&vml_mutex);
1122         }
1123         vmlfb_blank_locked(entry);
1124         list = global_no_mode.next;
1125     }
1126     mutex_unlock(&vml_mutex);
1127 
1128     printk(KERN_DEBUG MODULE_NAME ": Registered %s subsystem.\n",
1129                 subsys->name ? subsys->name : "unknown");
1130     return 0;
1131 }
1132 
1133 EXPORT_SYMBOL_GPL(vmlfb_register_subsys);
1134 
1135 void vmlfb_unregister_subsys(struct vml_sys *sys)
1136 {
1137     struct vml_info *entry, *next;
1138 
1139     mutex_lock(&vml_mutex);
1140     if (subsys != sys) {
1141         mutex_unlock(&vml_mutex);
1142         return;
1143     }
1144     subsys->restore(subsys);
1145     subsys = NULL;
1146     list_for_each_entry_safe(entry, next, &global_has_mode, head) {
1147         printk(KERN_DEBUG MODULE_NAME ": subsys disable pipe\n");
1148         vmlfb_disable_pipe(entry);
1149         list_move_tail(&entry->head, &global_no_mode);
1150     }
1151     mutex_unlock(&vml_mutex);
1152 }
1153 
1154 EXPORT_SYMBOL_GPL(vmlfb_unregister_subsys);
1155 
1156 module_init(vmlfb_init);
1157 module_exit(vmlfb_cleanup);
1158 
1159 MODULE_AUTHOR("Tungsten Graphics");
1160 MODULE_DESCRIPTION("Initialization of the Vermilion display devices");
1161 MODULE_VERSION("1.0.0");
1162 MODULE_LICENSE("GPL");