Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * VFIO: IOMMU DMA mapping support for Type1 IOMMU
0004  *
0005  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
0006  *     Author: Alex Williamson <alex.williamson@redhat.com>
0007  *
0008  * Derived from original vfio:
0009  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
0010  * Author: Tom Lyon, pugs@cisco.com
0011  *
0012  * We arbitrarily define a Type1 IOMMU as one matching the below code.
0013  * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
0014  * VT-d, but that makes it harder to re-use as theoretically anyone
0015  * implementing a similar IOMMU could make use of this.  We expect the
0016  * IOMMU to support the IOMMU API and have few to no restrictions around
0017  * the IOVA range that can be mapped.  The Type1 IOMMU is currently
0018  * optimized for relatively static mappings of a userspace process with
0019  * userspace pages pinned into memory.  We also assume devices and IOMMU
0020  * domains are PCI based as the IOMMU API is still centered around a
0021  * device/bus interface rather than a group interface.
0022  */
0023 
0024 #include <linux/compat.h>
0025 #include <linux/device.h>
0026 #include <linux/fs.h>
0027 #include <linux/highmem.h>
0028 #include <linux/iommu.h>
0029 #include <linux/module.h>
0030 #include <linux/mm.h>
0031 #include <linux/kthread.h>
0032 #include <linux/rbtree.h>
0033 #include <linux/sched/signal.h>
0034 #include <linux/sched/mm.h>
0035 #include <linux/slab.h>
0036 #include <linux/uaccess.h>
0037 #include <linux/vfio.h>
0038 #include <linux/workqueue.h>
0039 #include <linux/notifier.h>
0040 #include <linux/dma-iommu.h>
0041 #include <linux/irqdomain.h>
0042 #include "vfio.h"
0043 
0044 #define DRIVER_VERSION  "0.2"
0045 #define DRIVER_AUTHOR   "Alex Williamson <alex.williamson@redhat.com>"
0046 #define DRIVER_DESC     "Type1 IOMMU driver for VFIO"
0047 
0048 static bool allow_unsafe_interrupts;
0049 module_param_named(allow_unsafe_interrupts,
0050            allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
0051 MODULE_PARM_DESC(allow_unsafe_interrupts,
0052          "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
0053 
0054 static bool disable_hugepages;
0055 module_param_named(disable_hugepages,
0056            disable_hugepages, bool, S_IRUGO | S_IWUSR);
0057 MODULE_PARM_DESC(disable_hugepages,
0058          "Disable VFIO IOMMU support for IOMMU hugepages.");
0059 
0060 static unsigned int dma_entry_limit __read_mostly = U16_MAX;
0061 module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644);
0062 MODULE_PARM_DESC(dma_entry_limit,
0063          "Maximum number of user DMA mappings per container (65535).");
0064 
0065 struct vfio_iommu {
0066     struct list_head    domain_list;
0067     struct list_head    iova_list;
0068     struct mutex        lock;
0069     struct rb_root      dma_list;
0070     struct list_head    device_list;
0071     struct mutex        device_list_lock;
0072     unsigned int        dma_avail;
0073     unsigned int        vaddr_invalid_count;
0074     uint64_t        pgsize_bitmap;
0075     uint64_t        num_non_pinned_groups;
0076     wait_queue_head_t   vaddr_wait;
0077     bool            v2;
0078     bool            nesting;
0079     bool            dirty_page_tracking;
0080     bool            container_open;
0081     struct list_head    emulated_iommu_groups;
0082 };
0083 
0084 struct vfio_domain {
0085     struct iommu_domain *domain;
0086     struct list_head    next;
0087     struct list_head    group_list;
0088     bool            fgsp : 1;   /* Fine-grained super pages */
0089     bool            enforce_cache_coherency : 1;
0090 };
0091 
0092 struct vfio_dma {
0093     struct rb_node      node;
0094     dma_addr_t      iova;       /* Device address */
0095     unsigned long       vaddr;      /* Process virtual addr */
0096     size_t          size;       /* Map size (bytes) */
0097     int         prot;       /* IOMMU_READ/WRITE */
0098     bool            iommu_mapped;
0099     bool            lock_cap;   /* capable(CAP_IPC_LOCK) */
0100     bool            vaddr_invalid;
0101     struct task_struct  *task;
0102     struct rb_root      pfn_list;   /* Ex-user pinned pfn list */
0103     unsigned long       *bitmap;
0104 };
0105 
0106 struct vfio_batch {
0107     struct page     **pages;    /* for pin_user_pages_remote */
0108     struct page     *fallback_page; /* if pages alloc fails */
0109     int         capacity;   /* length of pages array */
0110     int         size;       /* of batch currently */
0111     int         offset;     /* of next entry in pages */
0112 };
0113 
0114 struct vfio_iommu_group {
0115     struct iommu_group  *iommu_group;
0116     struct list_head    next;
0117     bool            pinned_page_dirty_scope;
0118 };
0119 
0120 struct vfio_iova {
0121     struct list_head    list;
0122     dma_addr_t      start;
0123     dma_addr_t      end;
0124 };
0125 
0126 /*
0127  * Guest RAM pinning working set or DMA target
0128  */
0129 struct vfio_pfn {
0130     struct rb_node      node;
0131     dma_addr_t      iova;       /* Device address */
0132     unsigned long       pfn;        /* Host pfn */
0133     unsigned int        ref_count;
0134 };
0135 
0136 struct vfio_regions {
0137     struct list_head list;
0138     dma_addr_t iova;
0139     phys_addr_t phys;
0140     size_t len;
0141 };
0142 
0143 #define DIRTY_BITMAP_BYTES(n)   (ALIGN(n, BITS_PER_TYPE(u64)) / BITS_PER_BYTE)
0144 
0145 /*
0146  * Input argument of number of bits to bitmap_set() is unsigned integer, which
0147  * further casts to signed integer for unaligned multi-bit operation,
0148  * __bitmap_set().
0149  * Then maximum bitmap size supported is 2^31 bits divided by 2^3 bits/byte,
0150  * that is 2^28 (256 MB) which maps to 2^31 * 2^12 = 2^43 (8TB) on 4K page
0151  * system.
0152  */
0153 #define DIRTY_BITMAP_PAGES_MAX   ((u64)INT_MAX)
0154 #define DIRTY_BITMAP_SIZE_MAX    DIRTY_BITMAP_BYTES(DIRTY_BITMAP_PAGES_MAX)
0155 
0156 #define WAITED 1
0157 
0158 static int put_pfn(unsigned long pfn, int prot);
0159 
0160 static struct vfio_iommu_group*
0161 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
0162                 struct iommu_group *iommu_group);
0163 
0164 /*
0165  * This code handles mapping and unmapping of user data buffers
0166  * into DMA'ble space using the IOMMU
0167  */
0168 
0169 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
0170                       dma_addr_t start, size_t size)
0171 {
0172     struct rb_node *node = iommu->dma_list.rb_node;
0173 
0174     while (node) {
0175         struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
0176 
0177         if (start + size <= dma->iova)
0178             node = node->rb_left;
0179         else if (start >= dma->iova + dma->size)
0180             node = node->rb_right;
0181         else
0182             return dma;
0183     }
0184 
0185     return NULL;
0186 }
0187 
0188 static struct rb_node *vfio_find_dma_first_node(struct vfio_iommu *iommu,
0189                         dma_addr_t start, u64 size)
0190 {
0191     struct rb_node *res = NULL;
0192     struct rb_node *node = iommu->dma_list.rb_node;
0193     struct vfio_dma *dma_res = NULL;
0194 
0195     while (node) {
0196         struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
0197 
0198         if (start < dma->iova + dma->size) {
0199             res = node;
0200             dma_res = dma;
0201             if (start >= dma->iova)
0202                 break;
0203             node = node->rb_left;
0204         } else {
0205             node = node->rb_right;
0206         }
0207     }
0208     if (res && size && dma_res->iova >= start + size)
0209         res = NULL;
0210     return res;
0211 }
0212 
0213 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
0214 {
0215     struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
0216     struct vfio_dma *dma;
0217 
0218     while (*link) {
0219         parent = *link;
0220         dma = rb_entry(parent, struct vfio_dma, node);
0221 
0222         if (new->iova + new->size <= dma->iova)
0223             link = &(*link)->rb_left;
0224         else
0225             link = &(*link)->rb_right;
0226     }
0227 
0228     rb_link_node(&new->node, parent, link);
0229     rb_insert_color(&new->node, &iommu->dma_list);
0230 }
0231 
0232 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
0233 {
0234     rb_erase(&old->node, &iommu->dma_list);
0235 }
0236 
0237 
0238 static int vfio_dma_bitmap_alloc(struct vfio_dma *dma, size_t pgsize)
0239 {
0240     uint64_t npages = dma->size / pgsize;
0241 
0242     if (npages > DIRTY_BITMAP_PAGES_MAX)
0243         return -EINVAL;
0244 
0245     /*
0246      * Allocate extra 64 bits that are used to calculate shift required for
0247      * bitmap_shift_left() to manipulate and club unaligned number of pages
0248      * in adjacent vfio_dma ranges.
0249      */
0250     dma->bitmap = kvzalloc(DIRTY_BITMAP_BYTES(npages) + sizeof(u64),
0251                    GFP_KERNEL);
0252     if (!dma->bitmap)
0253         return -ENOMEM;
0254 
0255     return 0;
0256 }
0257 
0258 static void vfio_dma_bitmap_free(struct vfio_dma *dma)
0259 {
0260     kvfree(dma->bitmap);
0261     dma->bitmap = NULL;
0262 }
0263 
0264 static void vfio_dma_populate_bitmap(struct vfio_dma *dma, size_t pgsize)
0265 {
0266     struct rb_node *p;
0267     unsigned long pgshift = __ffs(pgsize);
0268 
0269     for (p = rb_first(&dma->pfn_list); p; p = rb_next(p)) {
0270         struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn, node);
0271 
0272         bitmap_set(dma->bitmap, (vpfn->iova - dma->iova) >> pgshift, 1);
0273     }
0274 }
0275 
0276 static void vfio_iommu_populate_bitmap_full(struct vfio_iommu *iommu)
0277 {
0278     struct rb_node *n;
0279     unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
0280 
0281     for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
0282         struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
0283 
0284         bitmap_set(dma->bitmap, 0, dma->size >> pgshift);
0285     }
0286 }
0287 
0288 static int vfio_dma_bitmap_alloc_all(struct vfio_iommu *iommu, size_t pgsize)
0289 {
0290     struct rb_node *n;
0291 
0292     for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
0293         struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
0294         int ret;
0295 
0296         ret = vfio_dma_bitmap_alloc(dma, pgsize);
0297         if (ret) {
0298             struct rb_node *p;
0299 
0300             for (p = rb_prev(n); p; p = rb_prev(p)) {
0301                 struct vfio_dma *dma = rb_entry(n,
0302                             struct vfio_dma, node);
0303 
0304                 vfio_dma_bitmap_free(dma);
0305             }
0306             return ret;
0307         }
0308         vfio_dma_populate_bitmap(dma, pgsize);
0309     }
0310     return 0;
0311 }
0312 
0313 static void vfio_dma_bitmap_free_all(struct vfio_iommu *iommu)
0314 {
0315     struct rb_node *n;
0316 
0317     for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
0318         struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
0319 
0320         vfio_dma_bitmap_free(dma);
0321     }
0322 }
0323 
0324 /*
0325  * Helper Functions for host iova-pfn list
0326  */
0327 static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
0328 {
0329     struct vfio_pfn *vpfn;
0330     struct rb_node *node = dma->pfn_list.rb_node;
0331 
0332     while (node) {
0333         vpfn = rb_entry(node, struct vfio_pfn, node);
0334 
0335         if (iova < vpfn->iova)
0336             node = node->rb_left;
0337         else if (iova > vpfn->iova)
0338             node = node->rb_right;
0339         else
0340             return vpfn;
0341     }
0342     return NULL;
0343 }
0344 
0345 static void vfio_link_pfn(struct vfio_dma *dma,
0346               struct vfio_pfn *new)
0347 {
0348     struct rb_node **link, *parent = NULL;
0349     struct vfio_pfn *vpfn;
0350 
0351     link = &dma->pfn_list.rb_node;
0352     while (*link) {
0353         parent = *link;
0354         vpfn = rb_entry(parent, struct vfio_pfn, node);
0355 
0356         if (new->iova < vpfn->iova)
0357             link = &(*link)->rb_left;
0358         else
0359             link = &(*link)->rb_right;
0360     }
0361 
0362     rb_link_node(&new->node, parent, link);
0363     rb_insert_color(&new->node, &dma->pfn_list);
0364 }
0365 
0366 static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
0367 {
0368     rb_erase(&old->node, &dma->pfn_list);
0369 }
0370 
0371 static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
0372                 unsigned long pfn)
0373 {
0374     struct vfio_pfn *vpfn;
0375 
0376     vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
0377     if (!vpfn)
0378         return -ENOMEM;
0379 
0380     vpfn->iova = iova;
0381     vpfn->pfn = pfn;
0382     vpfn->ref_count = 1;
0383     vfio_link_pfn(dma, vpfn);
0384     return 0;
0385 }
0386 
0387 static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
0388                       struct vfio_pfn *vpfn)
0389 {
0390     vfio_unlink_pfn(dma, vpfn);
0391     kfree(vpfn);
0392 }
0393 
0394 static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
0395                            unsigned long iova)
0396 {
0397     struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
0398 
0399     if (vpfn)
0400         vpfn->ref_count++;
0401     return vpfn;
0402 }
0403 
0404 static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
0405 {
0406     int ret = 0;
0407 
0408     vpfn->ref_count--;
0409     if (!vpfn->ref_count) {
0410         ret = put_pfn(vpfn->pfn, dma->prot);
0411         vfio_remove_from_pfn_list(dma, vpfn);
0412     }
0413     return ret;
0414 }
0415 
0416 static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
0417 {
0418     struct mm_struct *mm;
0419     int ret;
0420 
0421     if (!npage)
0422         return 0;
0423 
0424     mm = async ? get_task_mm(dma->task) : dma->task->mm;
0425     if (!mm)
0426         return -ESRCH; /* process exited */
0427 
0428     ret = mmap_write_lock_killable(mm);
0429     if (!ret) {
0430         ret = __account_locked_vm(mm, abs(npage), npage > 0, dma->task,
0431                       dma->lock_cap);
0432         mmap_write_unlock(mm);
0433     }
0434 
0435     if (async)
0436         mmput(mm);
0437 
0438     return ret;
0439 }
0440 
0441 /*
0442  * Some mappings aren't backed by a struct page, for example an mmap'd
0443  * MMIO range for our own or another device.  These use a different
0444  * pfn conversion and shouldn't be tracked as locked pages.
0445  * For compound pages, any driver that sets the reserved bit in head
0446  * page needs to set the reserved bit in all subpages to be safe.
0447  */
0448 static bool is_invalid_reserved_pfn(unsigned long pfn)
0449 {
0450     if (pfn_valid(pfn))
0451         return PageReserved(pfn_to_page(pfn));
0452 
0453     return true;
0454 }
0455 
0456 static int put_pfn(unsigned long pfn, int prot)
0457 {
0458     if (!is_invalid_reserved_pfn(pfn)) {
0459         struct page *page = pfn_to_page(pfn);
0460 
0461         unpin_user_pages_dirty_lock(&page, 1, prot & IOMMU_WRITE);
0462         return 1;
0463     }
0464     return 0;
0465 }
0466 
0467 #define VFIO_BATCH_MAX_CAPACITY (PAGE_SIZE / sizeof(struct page *))
0468 
0469 static void vfio_batch_init(struct vfio_batch *batch)
0470 {
0471     batch->size = 0;
0472     batch->offset = 0;
0473 
0474     if (unlikely(disable_hugepages))
0475         goto fallback;
0476 
0477     batch->pages = (struct page **) __get_free_page(GFP_KERNEL);
0478     if (!batch->pages)
0479         goto fallback;
0480 
0481     batch->capacity = VFIO_BATCH_MAX_CAPACITY;
0482     return;
0483 
0484 fallback:
0485     batch->pages = &batch->fallback_page;
0486     batch->capacity = 1;
0487 }
0488 
0489 static void vfio_batch_unpin(struct vfio_batch *batch, struct vfio_dma *dma)
0490 {
0491     while (batch->size) {
0492         unsigned long pfn = page_to_pfn(batch->pages[batch->offset]);
0493 
0494         put_pfn(pfn, dma->prot);
0495         batch->offset++;
0496         batch->size--;
0497     }
0498 }
0499 
0500 static void vfio_batch_fini(struct vfio_batch *batch)
0501 {
0502     if (batch->capacity == VFIO_BATCH_MAX_CAPACITY)
0503         free_page((unsigned long)batch->pages);
0504 }
0505 
0506 static int follow_fault_pfn(struct vm_area_struct *vma, struct mm_struct *mm,
0507                 unsigned long vaddr, unsigned long *pfn,
0508                 bool write_fault)
0509 {
0510     pte_t *ptep;
0511     spinlock_t *ptl;
0512     int ret;
0513 
0514     ret = follow_pte(vma->vm_mm, vaddr, &ptep, &ptl);
0515     if (ret) {
0516         bool unlocked = false;
0517 
0518         ret = fixup_user_fault(mm, vaddr,
0519                        FAULT_FLAG_REMOTE |
0520                        (write_fault ?  FAULT_FLAG_WRITE : 0),
0521                        &unlocked);
0522         if (unlocked)
0523             return -EAGAIN;
0524 
0525         if (ret)
0526             return ret;
0527 
0528         ret = follow_pte(vma->vm_mm, vaddr, &ptep, &ptl);
0529         if (ret)
0530             return ret;
0531     }
0532 
0533     if (write_fault && !pte_write(*ptep))
0534         ret = -EFAULT;
0535     else
0536         *pfn = pte_pfn(*ptep);
0537 
0538     pte_unmap_unlock(ptep, ptl);
0539     return ret;
0540 }
0541 
0542 /*
0543  * Returns the positive number of pfns successfully obtained or a negative
0544  * error code.
0545  */
0546 static int vaddr_get_pfns(struct mm_struct *mm, unsigned long vaddr,
0547               long npages, int prot, unsigned long *pfn,
0548               struct page **pages)
0549 {
0550     struct vm_area_struct *vma;
0551     unsigned int flags = 0;
0552     int ret;
0553 
0554     if (prot & IOMMU_WRITE)
0555         flags |= FOLL_WRITE;
0556 
0557     mmap_read_lock(mm);
0558     ret = pin_user_pages_remote(mm, vaddr, npages, flags | FOLL_LONGTERM,
0559                     pages, NULL, NULL);
0560     if (ret > 0) {
0561         int i;
0562 
0563         /*
0564          * The zero page is always resident, we don't need to pin it
0565          * and it falls into our invalid/reserved test so we don't
0566          * unpin in put_pfn().  Unpin all zero pages in the batch here.
0567          */
0568         for (i = 0 ; i < ret; i++) {
0569             if (unlikely(is_zero_pfn(page_to_pfn(pages[i]))))
0570                 unpin_user_page(pages[i]);
0571         }
0572 
0573         *pfn = page_to_pfn(pages[0]);
0574         goto done;
0575     }
0576 
0577     vaddr = untagged_addr(vaddr);
0578 
0579 retry:
0580     vma = vma_lookup(mm, vaddr);
0581 
0582     if (vma && vma->vm_flags & VM_PFNMAP) {
0583         ret = follow_fault_pfn(vma, mm, vaddr, pfn, prot & IOMMU_WRITE);
0584         if (ret == -EAGAIN)
0585             goto retry;
0586 
0587         if (!ret) {
0588             if (is_invalid_reserved_pfn(*pfn))
0589                 ret = 1;
0590             else
0591                 ret = -EFAULT;
0592         }
0593     }
0594 done:
0595     mmap_read_unlock(mm);
0596     return ret;
0597 }
0598 
0599 static int vfio_wait(struct vfio_iommu *iommu)
0600 {
0601     DEFINE_WAIT(wait);
0602 
0603     prepare_to_wait(&iommu->vaddr_wait, &wait, TASK_KILLABLE);
0604     mutex_unlock(&iommu->lock);
0605     schedule();
0606     mutex_lock(&iommu->lock);
0607     finish_wait(&iommu->vaddr_wait, &wait);
0608     if (kthread_should_stop() || !iommu->container_open ||
0609         fatal_signal_pending(current)) {
0610         return -EFAULT;
0611     }
0612     return WAITED;
0613 }
0614 
0615 /*
0616  * Find dma struct and wait for its vaddr to be valid.  iommu lock is dropped
0617  * if the task waits, but is re-locked on return.  Return result in *dma_p.
0618  * Return 0 on success with no waiting, WAITED on success if waited, and -errno
0619  * on error.
0620  */
0621 static int vfio_find_dma_valid(struct vfio_iommu *iommu, dma_addr_t start,
0622                    size_t size, struct vfio_dma **dma_p)
0623 {
0624     int ret = 0;
0625 
0626     do {
0627         *dma_p = vfio_find_dma(iommu, start, size);
0628         if (!*dma_p)
0629             return -EINVAL;
0630         else if (!(*dma_p)->vaddr_invalid)
0631             return ret;
0632         else
0633             ret = vfio_wait(iommu);
0634     } while (ret == WAITED);
0635 
0636     return ret;
0637 }
0638 
0639 /*
0640  * Wait for all vaddr in the dma_list to become valid.  iommu lock is dropped
0641  * if the task waits, but is re-locked on return.  Return 0 on success with no
0642  * waiting, WAITED on success if waited, and -errno on error.
0643  */
0644 static int vfio_wait_all_valid(struct vfio_iommu *iommu)
0645 {
0646     int ret = 0;
0647 
0648     while (iommu->vaddr_invalid_count && ret >= 0)
0649         ret = vfio_wait(iommu);
0650 
0651     return ret;
0652 }
0653 
0654 /*
0655  * Attempt to pin pages.  We really don't want to track all the pfns and
0656  * the iommu can only map chunks of consecutive pfns anyway, so get the
0657  * first page and all consecutive pages with the same locking.
0658  */
0659 static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
0660                   long npage, unsigned long *pfn_base,
0661                   unsigned long limit, struct vfio_batch *batch)
0662 {
0663     unsigned long pfn;
0664     struct mm_struct *mm = current->mm;
0665     long ret, pinned = 0, lock_acct = 0;
0666     bool rsvd;
0667     dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
0668 
0669     /* This code path is only user initiated */
0670     if (!mm)
0671         return -ENODEV;
0672 
0673     if (batch->size) {
0674         /* Leftover pages in batch from an earlier call. */
0675         *pfn_base = page_to_pfn(batch->pages[batch->offset]);
0676         pfn = *pfn_base;
0677         rsvd = is_invalid_reserved_pfn(*pfn_base);
0678     } else {
0679         *pfn_base = 0;
0680     }
0681 
0682     while (npage) {
0683         if (!batch->size) {
0684             /* Empty batch, so refill it. */
0685             long req_pages = min_t(long, npage, batch->capacity);
0686 
0687             ret = vaddr_get_pfns(mm, vaddr, req_pages, dma->prot,
0688                          &pfn, batch->pages);
0689             if (ret < 0)
0690                 goto unpin_out;
0691 
0692             batch->size = ret;
0693             batch->offset = 0;
0694 
0695             if (!*pfn_base) {
0696                 *pfn_base = pfn;
0697                 rsvd = is_invalid_reserved_pfn(*pfn_base);
0698             }
0699         }
0700 
0701         /*
0702          * pfn is preset for the first iteration of this inner loop and
0703          * updated at the end to handle a VM_PFNMAP pfn.  In that case,
0704          * batch->pages isn't valid (there's no struct page), so allow
0705          * batch->pages to be touched only when there's more than one
0706          * pfn to check, which guarantees the pfns are from a
0707          * !VM_PFNMAP vma.
0708          */
0709         while (true) {
0710             if (pfn != *pfn_base + pinned ||
0711                 rsvd != is_invalid_reserved_pfn(pfn))
0712                 goto out;
0713 
0714             /*
0715              * Reserved pages aren't counted against the user,
0716              * externally pinned pages are already counted against
0717              * the user.
0718              */
0719             if (!rsvd && !vfio_find_vpfn(dma, iova)) {
0720                 if (!dma->lock_cap &&
0721                     mm->locked_vm + lock_acct + 1 > limit) {
0722                     pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
0723                         __func__, limit << PAGE_SHIFT);
0724                     ret = -ENOMEM;
0725                     goto unpin_out;
0726                 }
0727                 lock_acct++;
0728             }
0729 
0730             pinned++;
0731             npage--;
0732             vaddr += PAGE_SIZE;
0733             iova += PAGE_SIZE;
0734             batch->offset++;
0735             batch->size--;
0736 
0737             if (!batch->size)
0738                 break;
0739 
0740             pfn = page_to_pfn(batch->pages[batch->offset]);
0741         }
0742 
0743         if (unlikely(disable_hugepages))
0744             break;
0745     }
0746 
0747 out:
0748     ret = vfio_lock_acct(dma, lock_acct, false);
0749 
0750 unpin_out:
0751     if (batch->size == 1 && !batch->offset) {
0752         /* May be a VM_PFNMAP pfn, which the batch can't remember. */
0753         put_pfn(pfn, dma->prot);
0754         batch->size = 0;
0755     }
0756 
0757     if (ret < 0) {
0758         if (pinned && !rsvd) {
0759             for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
0760                 put_pfn(pfn, dma->prot);
0761         }
0762         vfio_batch_unpin(batch, dma);
0763 
0764         return ret;
0765     }
0766 
0767     return pinned;
0768 }
0769 
0770 static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
0771                     unsigned long pfn, long npage,
0772                     bool do_accounting)
0773 {
0774     long unlocked = 0, locked = 0;
0775     long i;
0776 
0777     for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
0778         if (put_pfn(pfn++, dma->prot)) {
0779             unlocked++;
0780             if (vfio_find_vpfn(dma, iova))
0781                 locked++;
0782         }
0783     }
0784 
0785     if (do_accounting)
0786         vfio_lock_acct(dma, locked - unlocked, true);
0787 
0788     return unlocked;
0789 }
0790 
0791 static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
0792                   unsigned long *pfn_base, bool do_accounting)
0793 {
0794     struct page *pages[1];
0795     struct mm_struct *mm;
0796     int ret;
0797 
0798     mm = get_task_mm(dma->task);
0799     if (!mm)
0800         return -ENODEV;
0801 
0802     ret = vaddr_get_pfns(mm, vaddr, 1, dma->prot, pfn_base, pages);
0803     if (ret != 1)
0804         goto out;
0805 
0806     ret = 0;
0807 
0808     if (do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
0809         ret = vfio_lock_acct(dma, 1, true);
0810         if (ret) {
0811             put_pfn(*pfn_base, dma->prot);
0812             if (ret == -ENOMEM)
0813                 pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
0814                     "(%ld) exceeded\n", __func__,
0815                     dma->task->comm, task_pid_nr(dma->task),
0816                     task_rlimit(dma->task, RLIMIT_MEMLOCK));
0817         }
0818     }
0819 
0820 out:
0821     mmput(mm);
0822     return ret;
0823 }
0824 
0825 static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
0826                     bool do_accounting)
0827 {
0828     int unlocked;
0829     struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
0830 
0831     if (!vpfn)
0832         return 0;
0833 
0834     unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
0835 
0836     if (do_accounting)
0837         vfio_lock_acct(dma, -unlocked, true);
0838 
0839     return unlocked;
0840 }
0841 
0842 static int vfio_iommu_type1_pin_pages(void *iommu_data,
0843                       struct iommu_group *iommu_group,
0844                       dma_addr_t user_iova,
0845                       int npage, int prot,
0846                       struct page **pages)
0847 {
0848     struct vfio_iommu *iommu = iommu_data;
0849     struct vfio_iommu_group *group;
0850     int i, j, ret;
0851     unsigned long remote_vaddr;
0852     struct vfio_dma *dma;
0853     bool do_accounting;
0854     dma_addr_t iova;
0855 
0856     if (!iommu || !pages)
0857         return -EINVAL;
0858 
0859     /* Supported for v2 version only */
0860     if (!iommu->v2)
0861         return -EACCES;
0862 
0863     mutex_lock(&iommu->lock);
0864 
0865     /*
0866      * Wait for all necessary vaddr's to be valid so they can be used in
0867      * the main loop without dropping the lock, to avoid racing vs unmap.
0868      */
0869 again:
0870     if (iommu->vaddr_invalid_count) {
0871         for (i = 0; i < npage; i++) {
0872             iova = user_iova + PAGE_SIZE * i;
0873             ret = vfio_find_dma_valid(iommu, iova, PAGE_SIZE, &dma);
0874             if (ret < 0)
0875                 goto pin_done;
0876             if (ret == WAITED)
0877                 goto again;
0878         }
0879     }
0880 
0881     /* Fail if no dma_umap notifier is registered */
0882     if (list_empty(&iommu->device_list)) {
0883         ret = -EINVAL;
0884         goto pin_done;
0885     }
0886 
0887     /*
0888      * If iommu capable domain exist in the container then all pages are
0889      * already pinned and accounted. Accounting should be done if there is no
0890      * iommu capable domain in the container.
0891      */
0892     do_accounting = list_empty(&iommu->domain_list);
0893 
0894     for (i = 0; i < npage; i++) {
0895         unsigned long phys_pfn;
0896         struct vfio_pfn *vpfn;
0897 
0898         iova = user_iova + PAGE_SIZE * i;
0899         dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
0900         if (!dma) {
0901             ret = -EINVAL;
0902             goto pin_unwind;
0903         }
0904 
0905         if ((dma->prot & prot) != prot) {
0906             ret = -EPERM;
0907             goto pin_unwind;
0908         }
0909 
0910         vpfn = vfio_iova_get_vfio_pfn(dma, iova);
0911         if (vpfn) {
0912             pages[i] = pfn_to_page(vpfn->pfn);
0913             continue;
0914         }
0915 
0916         remote_vaddr = dma->vaddr + (iova - dma->iova);
0917         ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn,
0918                          do_accounting);
0919         if (ret)
0920             goto pin_unwind;
0921 
0922         ret = vfio_add_to_pfn_list(dma, iova, phys_pfn);
0923         if (ret) {
0924             if (put_pfn(phys_pfn, dma->prot) && do_accounting)
0925                 vfio_lock_acct(dma, -1, true);
0926             goto pin_unwind;
0927         }
0928 
0929         pages[i] = pfn_to_page(phys_pfn);
0930 
0931         if (iommu->dirty_page_tracking) {
0932             unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
0933 
0934             /*
0935              * Bitmap populated with the smallest supported page
0936              * size
0937              */
0938             bitmap_set(dma->bitmap,
0939                    (iova - dma->iova) >> pgshift, 1);
0940         }
0941     }
0942     ret = i;
0943 
0944     group = vfio_iommu_find_iommu_group(iommu, iommu_group);
0945     if (!group->pinned_page_dirty_scope) {
0946         group->pinned_page_dirty_scope = true;
0947         iommu->num_non_pinned_groups--;
0948     }
0949 
0950     goto pin_done;
0951 
0952 pin_unwind:
0953     pages[i] = NULL;
0954     for (j = 0; j < i; j++) {
0955         dma_addr_t iova;
0956 
0957         iova = user_iova + PAGE_SIZE * j;
0958         dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
0959         vfio_unpin_page_external(dma, iova, do_accounting);
0960         pages[j] = NULL;
0961     }
0962 pin_done:
0963     mutex_unlock(&iommu->lock);
0964     return ret;
0965 }
0966 
0967 static void vfio_iommu_type1_unpin_pages(void *iommu_data,
0968                      dma_addr_t user_iova, int npage)
0969 {
0970     struct vfio_iommu *iommu = iommu_data;
0971     bool do_accounting;
0972     int i;
0973 
0974     /* Supported for v2 version only */
0975     if (WARN_ON(!iommu->v2))
0976         return;
0977 
0978     mutex_lock(&iommu->lock);
0979 
0980     do_accounting = list_empty(&iommu->domain_list);
0981     for (i = 0; i < npage; i++) {
0982         dma_addr_t iova = user_iova + PAGE_SIZE * i;
0983         struct vfio_dma *dma;
0984 
0985         dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
0986         if (!dma)
0987             break;
0988 
0989         vfio_unpin_page_external(dma, iova, do_accounting);
0990     }
0991 
0992     mutex_unlock(&iommu->lock);
0993 
0994     WARN_ON(i != npage);
0995 }
0996 
0997 static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
0998                 struct list_head *regions,
0999                 struct iommu_iotlb_gather *iotlb_gather)
1000 {
1001     long unlocked = 0;
1002     struct vfio_regions *entry, *next;
1003 
1004     iommu_iotlb_sync(domain->domain, iotlb_gather);
1005 
1006     list_for_each_entry_safe(entry, next, regions, list) {
1007         unlocked += vfio_unpin_pages_remote(dma,
1008                             entry->iova,
1009                             entry->phys >> PAGE_SHIFT,
1010                             entry->len >> PAGE_SHIFT,
1011                             false);
1012         list_del(&entry->list);
1013         kfree(entry);
1014     }
1015 
1016     cond_resched();
1017 
1018     return unlocked;
1019 }
1020 
1021 /*
1022  * Generally, VFIO needs to unpin remote pages after each IOTLB flush.
1023  * Therefore, when using IOTLB flush sync interface, VFIO need to keep track
1024  * of these regions (currently using a list).
1025  *
1026  * This value specifies maximum number of regions for each IOTLB flush sync.
1027  */
1028 #define VFIO_IOMMU_TLB_SYNC_MAX     512
1029 
1030 static size_t unmap_unpin_fast(struct vfio_domain *domain,
1031                    struct vfio_dma *dma, dma_addr_t *iova,
1032                    size_t len, phys_addr_t phys, long *unlocked,
1033                    struct list_head *unmapped_list,
1034                    int *unmapped_cnt,
1035                    struct iommu_iotlb_gather *iotlb_gather)
1036 {
1037     size_t unmapped = 0;
1038     struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1039 
1040     if (entry) {
1041         unmapped = iommu_unmap_fast(domain->domain, *iova, len,
1042                         iotlb_gather);
1043 
1044         if (!unmapped) {
1045             kfree(entry);
1046         } else {
1047             entry->iova = *iova;
1048             entry->phys = phys;
1049             entry->len  = unmapped;
1050             list_add_tail(&entry->list, unmapped_list);
1051 
1052             *iova += unmapped;
1053             (*unmapped_cnt)++;
1054         }
1055     }
1056 
1057     /*
1058      * Sync if the number of fast-unmap regions hits the limit
1059      * or in case of errors.
1060      */
1061     if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
1062         *unlocked += vfio_sync_unpin(dma, domain, unmapped_list,
1063                          iotlb_gather);
1064         *unmapped_cnt = 0;
1065     }
1066 
1067     return unmapped;
1068 }
1069 
1070 static size_t unmap_unpin_slow(struct vfio_domain *domain,
1071                    struct vfio_dma *dma, dma_addr_t *iova,
1072                    size_t len, phys_addr_t phys,
1073                    long *unlocked)
1074 {
1075     size_t unmapped = iommu_unmap(domain->domain, *iova, len);
1076 
1077     if (unmapped) {
1078         *unlocked += vfio_unpin_pages_remote(dma, *iova,
1079                              phys >> PAGE_SHIFT,
1080                              unmapped >> PAGE_SHIFT,
1081                              false);
1082         *iova += unmapped;
1083         cond_resched();
1084     }
1085     return unmapped;
1086 }
1087 
1088 static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
1089                  bool do_accounting)
1090 {
1091     dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
1092     struct vfio_domain *domain, *d;
1093     LIST_HEAD(unmapped_region_list);
1094     struct iommu_iotlb_gather iotlb_gather;
1095     int unmapped_region_cnt = 0;
1096     long unlocked = 0;
1097 
1098     if (!dma->size)
1099         return 0;
1100 
1101     if (list_empty(&iommu->domain_list))
1102         return 0;
1103 
1104     /*
1105      * We use the IOMMU to track the physical addresses, otherwise we'd
1106      * need a much more complicated tracking system.  Unfortunately that
1107      * means we need to use one of the iommu domains to figure out the
1108      * pfns to unpin.  The rest need to be unmapped in advance so we have
1109      * no iommu translations remaining when the pages are unpinned.
1110      */
1111     domain = d = list_first_entry(&iommu->domain_list,
1112                       struct vfio_domain, next);
1113 
1114     list_for_each_entry_continue(d, &iommu->domain_list, next) {
1115         iommu_unmap(d->domain, dma->iova, dma->size);
1116         cond_resched();
1117     }
1118 
1119     iommu_iotlb_gather_init(&iotlb_gather);
1120     while (iova < end) {
1121         size_t unmapped, len;
1122         phys_addr_t phys, next;
1123 
1124         phys = iommu_iova_to_phys(domain->domain, iova);
1125         if (WARN_ON(!phys)) {
1126             iova += PAGE_SIZE;
1127             continue;
1128         }
1129 
1130         /*
1131          * To optimize for fewer iommu_unmap() calls, each of which
1132          * may require hardware cache flushing, try to find the
1133          * largest contiguous physical memory chunk to unmap.
1134          */
1135         for (len = PAGE_SIZE;
1136              !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
1137             next = iommu_iova_to_phys(domain->domain, iova + len);
1138             if (next != phys + len)
1139                 break;
1140         }
1141 
1142         /*
1143          * First, try to use fast unmap/unpin. In case of failure,
1144          * switch to slow unmap/unpin path.
1145          */
1146         unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys,
1147                         &unlocked, &unmapped_region_list,
1148                         &unmapped_region_cnt,
1149                         &iotlb_gather);
1150         if (!unmapped) {
1151             unmapped = unmap_unpin_slow(domain, dma, &iova, len,
1152                             phys, &unlocked);
1153             if (WARN_ON(!unmapped))
1154                 break;
1155         }
1156     }
1157 
1158     dma->iommu_mapped = false;
1159 
1160     if (unmapped_region_cnt) {
1161         unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list,
1162                         &iotlb_gather);
1163     }
1164 
1165     if (do_accounting) {
1166         vfio_lock_acct(dma, -unlocked, true);
1167         return 0;
1168     }
1169     return unlocked;
1170 }
1171 
1172 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
1173 {
1174     WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list));
1175     vfio_unmap_unpin(iommu, dma, true);
1176     vfio_unlink_dma(iommu, dma);
1177     put_task_struct(dma->task);
1178     vfio_dma_bitmap_free(dma);
1179     if (dma->vaddr_invalid) {
1180         iommu->vaddr_invalid_count--;
1181         wake_up_all(&iommu->vaddr_wait);
1182     }
1183     kfree(dma);
1184     iommu->dma_avail++;
1185 }
1186 
1187 static void vfio_update_pgsize_bitmap(struct vfio_iommu *iommu)
1188 {
1189     struct vfio_domain *domain;
1190 
1191     iommu->pgsize_bitmap = ULONG_MAX;
1192 
1193     list_for_each_entry(domain, &iommu->domain_list, next)
1194         iommu->pgsize_bitmap &= domain->domain->pgsize_bitmap;
1195 
1196     /*
1197      * In case the IOMMU supports page sizes smaller than PAGE_SIZE
1198      * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
1199      * That way the user will be able to map/unmap buffers whose size/
1200      * start address is aligned with PAGE_SIZE. Pinning code uses that
1201      * granularity while iommu driver can use the sub-PAGE_SIZE size
1202      * to map the buffer.
1203      */
1204     if (iommu->pgsize_bitmap & ~PAGE_MASK) {
1205         iommu->pgsize_bitmap &= PAGE_MASK;
1206         iommu->pgsize_bitmap |= PAGE_SIZE;
1207     }
1208 }
1209 
1210 static int update_user_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1211                   struct vfio_dma *dma, dma_addr_t base_iova,
1212                   size_t pgsize)
1213 {
1214     unsigned long pgshift = __ffs(pgsize);
1215     unsigned long nbits = dma->size >> pgshift;
1216     unsigned long bit_offset = (dma->iova - base_iova) >> pgshift;
1217     unsigned long copy_offset = bit_offset / BITS_PER_LONG;
1218     unsigned long shift = bit_offset % BITS_PER_LONG;
1219     unsigned long leftover;
1220 
1221     /*
1222      * mark all pages dirty if any IOMMU capable device is not able
1223      * to report dirty pages and all pages are pinned and mapped.
1224      */
1225     if (iommu->num_non_pinned_groups && dma->iommu_mapped)
1226         bitmap_set(dma->bitmap, 0, nbits);
1227 
1228     if (shift) {
1229         bitmap_shift_left(dma->bitmap, dma->bitmap, shift,
1230                   nbits + shift);
1231 
1232         if (copy_from_user(&leftover,
1233                    (void __user *)(bitmap + copy_offset),
1234                    sizeof(leftover)))
1235             return -EFAULT;
1236 
1237         bitmap_or(dma->bitmap, dma->bitmap, &leftover, shift);
1238     }
1239 
1240     if (copy_to_user((void __user *)(bitmap + copy_offset), dma->bitmap,
1241              DIRTY_BITMAP_BYTES(nbits + shift)))
1242         return -EFAULT;
1243 
1244     return 0;
1245 }
1246 
1247 static int vfio_iova_dirty_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1248                   dma_addr_t iova, size_t size, size_t pgsize)
1249 {
1250     struct vfio_dma *dma;
1251     struct rb_node *n;
1252     unsigned long pgshift = __ffs(pgsize);
1253     int ret;
1254 
1255     /*
1256      * GET_BITMAP request must fully cover vfio_dma mappings.  Multiple
1257      * vfio_dma mappings may be clubbed by specifying large ranges, but
1258      * there must not be any previous mappings bisected by the range.
1259      * An error will be returned if these conditions are not met.
1260      */
1261     dma = vfio_find_dma(iommu, iova, 1);
1262     if (dma && dma->iova != iova)
1263         return -EINVAL;
1264 
1265     dma = vfio_find_dma(iommu, iova + size - 1, 0);
1266     if (dma && dma->iova + dma->size != iova + size)
1267         return -EINVAL;
1268 
1269     for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1270         struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1271 
1272         if (dma->iova < iova)
1273             continue;
1274 
1275         if (dma->iova > iova + size - 1)
1276             break;
1277 
1278         ret = update_user_bitmap(bitmap, iommu, dma, iova, pgsize);
1279         if (ret)
1280             return ret;
1281 
1282         /*
1283          * Re-populate bitmap to include all pinned pages which are
1284          * considered as dirty but exclude pages which are unpinned and
1285          * pages which are marked dirty by vfio_dma_rw()
1286          */
1287         bitmap_clear(dma->bitmap, 0, dma->size >> pgshift);
1288         vfio_dma_populate_bitmap(dma, pgsize);
1289     }
1290     return 0;
1291 }
1292 
1293 static int verify_bitmap_size(uint64_t npages, uint64_t bitmap_size)
1294 {
1295     if (!npages || !bitmap_size || (bitmap_size > DIRTY_BITMAP_SIZE_MAX) ||
1296         (bitmap_size < DIRTY_BITMAP_BYTES(npages)))
1297         return -EINVAL;
1298 
1299     return 0;
1300 }
1301 
1302 /*
1303  * Notify VFIO drivers using vfio_register_emulated_iommu_dev() to invalidate
1304  * and unmap iovas within the range we're about to unmap. Drivers MUST unpin
1305  * pages in response to an invalidation.
1306  */
1307 static void vfio_notify_dma_unmap(struct vfio_iommu *iommu,
1308                   struct vfio_dma *dma)
1309 {
1310     struct vfio_device *device;
1311 
1312     if (list_empty(&iommu->device_list))
1313         return;
1314 
1315     /*
1316      * The device is expected to call vfio_unpin_pages() for any IOVA it has
1317      * pinned within the range. Since vfio_unpin_pages() will eventually
1318      * call back down to this code and try to obtain the iommu->lock we must
1319      * drop it.
1320      */
1321     mutex_lock(&iommu->device_list_lock);
1322     mutex_unlock(&iommu->lock);
1323 
1324     list_for_each_entry(device, &iommu->device_list, iommu_entry)
1325         device->ops->dma_unmap(device, dma->iova, dma->size);
1326 
1327     mutex_unlock(&iommu->device_list_lock);
1328     mutex_lock(&iommu->lock);
1329 }
1330 
1331 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
1332                  struct vfio_iommu_type1_dma_unmap *unmap,
1333                  struct vfio_bitmap *bitmap)
1334 {
1335     struct vfio_dma *dma, *dma_last = NULL;
1336     size_t unmapped = 0, pgsize;
1337     int ret = -EINVAL, retries = 0;
1338     unsigned long pgshift;
1339     dma_addr_t iova = unmap->iova;
1340     u64 size = unmap->size;
1341     bool unmap_all = unmap->flags & VFIO_DMA_UNMAP_FLAG_ALL;
1342     bool invalidate_vaddr = unmap->flags & VFIO_DMA_UNMAP_FLAG_VADDR;
1343     struct rb_node *n, *first_n;
1344 
1345     mutex_lock(&iommu->lock);
1346 
1347     pgshift = __ffs(iommu->pgsize_bitmap);
1348     pgsize = (size_t)1 << pgshift;
1349 
1350     if (iova & (pgsize - 1))
1351         goto unlock;
1352 
1353     if (unmap_all) {
1354         if (iova || size)
1355             goto unlock;
1356         size = U64_MAX;
1357     } else if (!size || size & (pgsize - 1) ||
1358            iova + size - 1 < iova || size > SIZE_MAX) {
1359         goto unlock;
1360     }
1361 
1362     /* When dirty tracking is enabled, allow only min supported pgsize */
1363     if ((unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
1364         (!iommu->dirty_page_tracking || (bitmap->pgsize != pgsize))) {
1365         goto unlock;
1366     }
1367 
1368     WARN_ON((pgsize - 1) & PAGE_MASK);
1369 again:
1370     /*
1371      * vfio-iommu-type1 (v1) - User mappings were coalesced together to
1372      * avoid tracking individual mappings.  This means that the granularity
1373      * of the original mapping was lost and the user was allowed to attempt
1374      * to unmap any range.  Depending on the contiguousness of physical
1375      * memory and page sizes supported by the IOMMU, arbitrary unmaps may
1376      * or may not have worked.  We only guaranteed unmap granularity
1377      * matching the original mapping; even though it was untracked here,
1378      * the original mappings are reflected in IOMMU mappings.  This
1379      * resulted in a couple unusual behaviors.  First, if a range is not
1380      * able to be unmapped, ex. a set of 4k pages that was mapped as a
1381      * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
1382      * a zero sized unmap.  Also, if an unmap request overlaps the first
1383      * address of a hugepage, the IOMMU will unmap the entire hugepage.
1384      * This also returns success and the returned unmap size reflects the
1385      * actual size unmapped.
1386      *
1387      * We attempt to maintain compatibility with this "v1" interface, but
1388      * we take control out of the hands of the IOMMU.  Therefore, an unmap
1389      * request offset from the beginning of the original mapping will
1390      * return success with zero sized unmap.  And an unmap request covering
1391      * the first iova of mapping will unmap the entire range.
1392      *
1393      * The v2 version of this interface intends to be more deterministic.
1394      * Unmap requests must fully cover previous mappings.  Multiple
1395      * mappings may still be unmaped by specifying large ranges, but there
1396      * must not be any previous mappings bisected by the range.  An error
1397      * will be returned if these conditions are not met.  The v2 interface
1398      * will only return success and a size of zero if there were no
1399      * mappings within the range.
1400      */
1401     if (iommu->v2 && !unmap_all) {
1402         dma = vfio_find_dma(iommu, iova, 1);
1403         if (dma && dma->iova != iova)
1404             goto unlock;
1405 
1406         dma = vfio_find_dma(iommu, iova + size - 1, 0);
1407         if (dma && dma->iova + dma->size != iova + size)
1408             goto unlock;
1409     }
1410 
1411     ret = 0;
1412     n = first_n = vfio_find_dma_first_node(iommu, iova, size);
1413 
1414     while (n) {
1415         dma = rb_entry(n, struct vfio_dma, node);
1416         if (dma->iova >= iova + size)
1417             break;
1418 
1419         if (!iommu->v2 && iova > dma->iova)
1420             break;
1421 
1422         if (invalidate_vaddr) {
1423             if (dma->vaddr_invalid) {
1424                 struct rb_node *last_n = n;
1425 
1426                 for (n = first_n; n != last_n; n = rb_next(n)) {
1427                     dma = rb_entry(n,
1428                                struct vfio_dma, node);
1429                     dma->vaddr_invalid = false;
1430                     iommu->vaddr_invalid_count--;
1431                 }
1432                 ret = -EINVAL;
1433                 unmapped = 0;
1434                 break;
1435             }
1436             dma->vaddr_invalid = true;
1437             iommu->vaddr_invalid_count++;
1438             unmapped += dma->size;
1439             n = rb_next(n);
1440             continue;
1441         }
1442 
1443         if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
1444             if (dma_last == dma) {
1445                 BUG_ON(++retries > 10);
1446             } else {
1447                 dma_last = dma;
1448                 retries = 0;
1449             }
1450 
1451             vfio_notify_dma_unmap(iommu, dma);
1452             goto again;
1453         }
1454 
1455         if (unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
1456             ret = update_user_bitmap(bitmap->data, iommu, dma,
1457                          iova, pgsize);
1458             if (ret)
1459                 break;
1460         }
1461 
1462         unmapped += dma->size;
1463         n = rb_next(n);
1464         vfio_remove_dma(iommu, dma);
1465     }
1466 
1467 unlock:
1468     mutex_unlock(&iommu->lock);
1469 
1470     /* Report how much was unmapped */
1471     unmap->size = unmapped;
1472 
1473     return ret;
1474 }
1475 
1476 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
1477               unsigned long pfn, long npage, int prot)
1478 {
1479     struct vfio_domain *d;
1480     int ret;
1481 
1482     list_for_each_entry(d, &iommu->domain_list, next) {
1483         ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
1484                 npage << PAGE_SHIFT, prot | IOMMU_CACHE);
1485         if (ret)
1486             goto unwind;
1487 
1488         cond_resched();
1489     }
1490 
1491     return 0;
1492 
1493 unwind:
1494     list_for_each_entry_continue_reverse(d, &iommu->domain_list, next) {
1495         iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
1496         cond_resched();
1497     }
1498 
1499     return ret;
1500 }
1501 
1502 static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
1503                 size_t map_size)
1504 {
1505     dma_addr_t iova = dma->iova;
1506     unsigned long vaddr = dma->vaddr;
1507     struct vfio_batch batch;
1508     size_t size = map_size;
1509     long npage;
1510     unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1511     int ret = 0;
1512 
1513     vfio_batch_init(&batch);
1514 
1515     while (size) {
1516         /* Pin a contiguous chunk of memory */
1517         npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
1518                           size >> PAGE_SHIFT, &pfn, limit,
1519                           &batch);
1520         if (npage <= 0) {
1521             WARN_ON(!npage);
1522             ret = (int)npage;
1523             break;
1524         }
1525 
1526         /* Map it! */
1527         ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
1528                      dma->prot);
1529         if (ret) {
1530             vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
1531                         npage, true);
1532             vfio_batch_unpin(&batch, dma);
1533             break;
1534         }
1535 
1536         size -= npage << PAGE_SHIFT;
1537         dma->size += npage << PAGE_SHIFT;
1538     }
1539 
1540     vfio_batch_fini(&batch);
1541     dma->iommu_mapped = true;
1542 
1543     if (ret)
1544         vfio_remove_dma(iommu, dma);
1545 
1546     return ret;
1547 }
1548 
1549 /*
1550  * Check dma map request is within a valid iova range
1551  */
1552 static bool vfio_iommu_iova_dma_valid(struct vfio_iommu *iommu,
1553                       dma_addr_t start, dma_addr_t end)
1554 {
1555     struct list_head *iova = &iommu->iova_list;
1556     struct vfio_iova *node;
1557 
1558     list_for_each_entry(node, iova, list) {
1559         if (start >= node->start && end <= node->end)
1560             return true;
1561     }
1562 
1563     /*
1564      * Check for list_empty() as well since a container with
1565      * a single mdev device will have an empty list.
1566      */
1567     return list_empty(iova);
1568 }
1569 
1570 static int vfio_dma_do_map(struct vfio_iommu *iommu,
1571                struct vfio_iommu_type1_dma_map *map)
1572 {
1573     bool set_vaddr = map->flags & VFIO_DMA_MAP_FLAG_VADDR;
1574     dma_addr_t iova = map->iova;
1575     unsigned long vaddr = map->vaddr;
1576     size_t size = map->size;
1577     int ret = 0, prot = 0;
1578     size_t pgsize;
1579     struct vfio_dma *dma;
1580 
1581     /* Verify that none of our __u64 fields overflow */
1582     if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1583         return -EINVAL;
1584 
1585     /* READ/WRITE from device perspective */
1586     if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1587         prot |= IOMMU_WRITE;
1588     if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1589         prot |= IOMMU_READ;
1590 
1591     if ((prot && set_vaddr) || (!prot && !set_vaddr))
1592         return -EINVAL;
1593 
1594     mutex_lock(&iommu->lock);
1595 
1596     pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
1597 
1598     WARN_ON((pgsize - 1) & PAGE_MASK);
1599 
1600     if (!size || (size | iova | vaddr) & (pgsize - 1)) {
1601         ret = -EINVAL;
1602         goto out_unlock;
1603     }
1604 
1605     /* Don't allow IOVA or virtual address wrap */
1606     if (iova + size - 1 < iova || vaddr + size - 1 < vaddr) {
1607         ret = -EINVAL;
1608         goto out_unlock;
1609     }
1610 
1611     dma = vfio_find_dma(iommu, iova, size);
1612     if (set_vaddr) {
1613         if (!dma) {
1614             ret = -ENOENT;
1615         } else if (!dma->vaddr_invalid || dma->iova != iova ||
1616                dma->size != size) {
1617             ret = -EINVAL;
1618         } else {
1619             dma->vaddr = vaddr;
1620             dma->vaddr_invalid = false;
1621             iommu->vaddr_invalid_count--;
1622             wake_up_all(&iommu->vaddr_wait);
1623         }
1624         goto out_unlock;
1625     } else if (dma) {
1626         ret = -EEXIST;
1627         goto out_unlock;
1628     }
1629 
1630     if (!iommu->dma_avail) {
1631         ret = -ENOSPC;
1632         goto out_unlock;
1633     }
1634 
1635     if (!vfio_iommu_iova_dma_valid(iommu, iova, iova + size - 1)) {
1636         ret = -EINVAL;
1637         goto out_unlock;
1638     }
1639 
1640     dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1641     if (!dma) {
1642         ret = -ENOMEM;
1643         goto out_unlock;
1644     }
1645 
1646     iommu->dma_avail--;
1647     dma->iova = iova;
1648     dma->vaddr = vaddr;
1649     dma->prot = prot;
1650 
1651     /*
1652      * We need to be able to both add to a task's locked memory and test
1653      * against the locked memory limit and we need to be able to do both
1654      * outside of this call path as pinning can be asynchronous via the
1655      * external interfaces for mdev devices.  RLIMIT_MEMLOCK requires a
1656      * task_struct and VM locked pages requires an mm_struct, however
1657      * holding an indefinite mm reference is not recommended, therefore we
1658      * only hold a reference to a task.  We could hold a reference to
1659      * current, however QEMU uses this call path through vCPU threads,
1660      * which can be killed resulting in a NULL mm and failure in the unmap
1661      * path when called via a different thread.  Avoid this problem by
1662      * using the group_leader as threads within the same group require
1663      * both CLONE_THREAD and CLONE_VM and will therefore use the same
1664      * mm_struct.
1665      *
1666      * Previously we also used the task for testing CAP_IPC_LOCK at the
1667      * time of pinning and accounting, however has_capability() makes use
1668      * of real_cred, a copy-on-write field, so we can't guarantee that it
1669      * matches group_leader, or in fact that it might not change by the
1670      * time it's evaluated.  If a process were to call MAP_DMA with
1671      * CAP_IPC_LOCK but later drop it, it doesn't make sense that they
1672      * possibly see different results for an iommu_mapped vfio_dma vs
1673      * externally mapped.  Therefore track CAP_IPC_LOCK in vfio_dma at the
1674      * time of calling MAP_DMA.
1675      */
1676     get_task_struct(current->group_leader);
1677     dma->task = current->group_leader;
1678     dma->lock_cap = capable(CAP_IPC_LOCK);
1679 
1680     dma->pfn_list = RB_ROOT;
1681 
1682     /* Insert zero-sized and grow as we map chunks of it */
1683     vfio_link_dma(iommu, dma);
1684 
1685     /* Don't pin and map if container doesn't contain IOMMU capable domain*/
1686     if (list_empty(&iommu->domain_list))
1687         dma->size = size;
1688     else
1689         ret = vfio_pin_map_dma(iommu, dma, size);
1690 
1691     if (!ret && iommu->dirty_page_tracking) {
1692         ret = vfio_dma_bitmap_alloc(dma, pgsize);
1693         if (ret)
1694             vfio_remove_dma(iommu, dma);
1695     }
1696 
1697 out_unlock:
1698     mutex_unlock(&iommu->lock);
1699     return ret;
1700 }
1701 
1702 static int vfio_iommu_replay(struct vfio_iommu *iommu,
1703                  struct vfio_domain *domain)
1704 {
1705     struct vfio_batch batch;
1706     struct vfio_domain *d = NULL;
1707     struct rb_node *n;
1708     unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1709     int ret;
1710 
1711     ret = vfio_wait_all_valid(iommu);
1712     if (ret < 0)
1713         return ret;
1714 
1715     /* Arbitrarily pick the first domain in the list for lookups */
1716     if (!list_empty(&iommu->domain_list))
1717         d = list_first_entry(&iommu->domain_list,
1718                      struct vfio_domain, next);
1719 
1720     vfio_batch_init(&batch);
1721 
1722     n = rb_first(&iommu->dma_list);
1723 
1724     for (; n; n = rb_next(n)) {
1725         struct vfio_dma *dma;
1726         dma_addr_t iova;
1727 
1728         dma = rb_entry(n, struct vfio_dma, node);
1729         iova = dma->iova;
1730 
1731         while (iova < dma->iova + dma->size) {
1732             phys_addr_t phys;
1733             size_t size;
1734 
1735             if (dma->iommu_mapped) {
1736                 phys_addr_t p;
1737                 dma_addr_t i;
1738 
1739                 if (WARN_ON(!d)) { /* mapped w/o a domain?! */
1740                     ret = -EINVAL;
1741                     goto unwind;
1742                 }
1743 
1744                 phys = iommu_iova_to_phys(d->domain, iova);
1745 
1746                 if (WARN_ON(!phys)) {
1747                     iova += PAGE_SIZE;
1748                     continue;
1749                 }
1750 
1751                 size = PAGE_SIZE;
1752                 p = phys + size;
1753                 i = iova + size;
1754                 while (i < dma->iova + dma->size &&
1755                        p == iommu_iova_to_phys(d->domain, i)) {
1756                     size += PAGE_SIZE;
1757                     p += PAGE_SIZE;
1758                     i += PAGE_SIZE;
1759                 }
1760             } else {
1761                 unsigned long pfn;
1762                 unsigned long vaddr = dma->vaddr +
1763                              (iova - dma->iova);
1764                 size_t n = dma->iova + dma->size - iova;
1765                 long npage;
1766 
1767                 npage = vfio_pin_pages_remote(dma, vaddr,
1768                                   n >> PAGE_SHIFT,
1769                                   &pfn, limit,
1770                                   &batch);
1771                 if (npage <= 0) {
1772                     WARN_ON(!npage);
1773                     ret = (int)npage;
1774                     goto unwind;
1775                 }
1776 
1777                 phys = pfn << PAGE_SHIFT;
1778                 size = npage << PAGE_SHIFT;
1779             }
1780 
1781             ret = iommu_map(domain->domain, iova, phys,
1782                     size, dma->prot | IOMMU_CACHE);
1783             if (ret) {
1784                 if (!dma->iommu_mapped) {
1785                     vfio_unpin_pages_remote(dma, iova,
1786                             phys >> PAGE_SHIFT,
1787                             size >> PAGE_SHIFT,
1788                             true);
1789                     vfio_batch_unpin(&batch, dma);
1790                 }
1791                 goto unwind;
1792             }
1793 
1794             iova += size;
1795         }
1796     }
1797 
1798     /* All dmas are now mapped, defer to second tree walk for unwind */
1799     for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1800         struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1801 
1802         dma->iommu_mapped = true;
1803     }
1804 
1805     vfio_batch_fini(&batch);
1806     return 0;
1807 
1808 unwind:
1809     for (; n; n = rb_prev(n)) {
1810         struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1811         dma_addr_t iova;
1812 
1813         if (dma->iommu_mapped) {
1814             iommu_unmap(domain->domain, dma->iova, dma->size);
1815             continue;
1816         }
1817 
1818         iova = dma->iova;
1819         while (iova < dma->iova + dma->size) {
1820             phys_addr_t phys, p;
1821             size_t size;
1822             dma_addr_t i;
1823 
1824             phys = iommu_iova_to_phys(domain->domain, iova);
1825             if (!phys) {
1826                 iova += PAGE_SIZE;
1827                 continue;
1828             }
1829 
1830             size = PAGE_SIZE;
1831             p = phys + size;
1832             i = iova + size;
1833             while (i < dma->iova + dma->size &&
1834                    p == iommu_iova_to_phys(domain->domain, i)) {
1835                 size += PAGE_SIZE;
1836                 p += PAGE_SIZE;
1837                 i += PAGE_SIZE;
1838             }
1839 
1840             iommu_unmap(domain->domain, iova, size);
1841             vfio_unpin_pages_remote(dma, iova, phys >> PAGE_SHIFT,
1842                         size >> PAGE_SHIFT, true);
1843         }
1844     }
1845 
1846     vfio_batch_fini(&batch);
1847     return ret;
1848 }
1849 
1850 /*
1851  * We change our unmap behavior slightly depending on whether the IOMMU
1852  * supports fine-grained superpages.  IOMMUs like AMD-Vi will use a superpage
1853  * for practically any contiguous power-of-two mapping we give it.  This means
1854  * we don't need to look for contiguous chunks ourselves to make unmapping
1855  * more efficient.  On IOMMUs with coarse-grained super pages, like Intel VT-d
1856  * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1857  * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1858  * hugetlbfs is in use.
1859  */
1860 static void vfio_test_domain_fgsp(struct vfio_domain *domain)
1861 {
1862     struct page *pages;
1863     int ret, order = get_order(PAGE_SIZE * 2);
1864 
1865     pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1866     if (!pages)
1867         return;
1868 
1869     ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2,
1870             IOMMU_READ | IOMMU_WRITE | IOMMU_CACHE);
1871     if (!ret) {
1872         size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE);
1873 
1874         if (unmapped == PAGE_SIZE)
1875             iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE);
1876         else
1877             domain->fgsp = true;
1878     }
1879 
1880     __free_pages(pages, order);
1881 }
1882 
1883 static struct vfio_iommu_group *find_iommu_group(struct vfio_domain *domain,
1884                          struct iommu_group *iommu_group)
1885 {
1886     struct vfio_iommu_group *g;
1887 
1888     list_for_each_entry(g, &domain->group_list, next) {
1889         if (g->iommu_group == iommu_group)
1890             return g;
1891     }
1892 
1893     return NULL;
1894 }
1895 
1896 static struct vfio_iommu_group*
1897 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
1898                 struct iommu_group *iommu_group)
1899 {
1900     struct vfio_iommu_group *group;
1901     struct vfio_domain *domain;
1902 
1903     list_for_each_entry(domain, &iommu->domain_list, next) {
1904         group = find_iommu_group(domain, iommu_group);
1905         if (group)
1906             return group;
1907     }
1908 
1909     list_for_each_entry(group, &iommu->emulated_iommu_groups, next)
1910         if (group->iommu_group == iommu_group)
1911             return group;
1912     return NULL;
1913 }
1914 
1915 static bool vfio_iommu_has_sw_msi(struct list_head *group_resv_regions,
1916                   phys_addr_t *base)
1917 {
1918     struct iommu_resv_region *region;
1919     bool ret = false;
1920 
1921     list_for_each_entry(region, group_resv_regions, list) {
1922         /*
1923          * The presence of any 'real' MSI regions should take
1924          * precedence over the software-managed one if the
1925          * IOMMU driver happens to advertise both types.
1926          */
1927         if (region->type == IOMMU_RESV_MSI) {
1928             ret = false;
1929             break;
1930         }
1931 
1932         if (region->type == IOMMU_RESV_SW_MSI) {
1933             *base = region->start;
1934             ret = true;
1935         }
1936     }
1937 
1938     return ret;
1939 }
1940 
1941 /*
1942  * This is a helper function to insert an address range to iova list.
1943  * The list is initially created with a single entry corresponding to
1944  * the IOMMU domain geometry to which the device group is attached.
1945  * The list aperture gets modified when a new domain is added to the
1946  * container if the new aperture doesn't conflict with the current one
1947  * or with any existing dma mappings. The list is also modified to
1948  * exclude any reserved regions associated with the device group.
1949  */
1950 static int vfio_iommu_iova_insert(struct list_head *head,
1951                   dma_addr_t start, dma_addr_t end)
1952 {
1953     struct vfio_iova *region;
1954 
1955     region = kmalloc(sizeof(*region), GFP_KERNEL);
1956     if (!region)
1957         return -ENOMEM;
1958 
1959     INIT_LIST_HEAD(&region->list);
1960     region->start = start;
1961     region->end = end;
1962 
1963     list_add_tail(&region->list, head);
1964     return 0;
1965 }
1966 
1967 /*
1968  * Check the new iommu aperture conflicts with existing aper or with any
1969  * existing dma mappings.
1970  */
1971 static bool vfio_iommu_aper_conflict(struct vfio_iommu *iommu,
1972                      dma_addr_t start, dma_addr_t end)
1973 {
1974     struct vfio_iova *first, *last;
1975     struct list_head *iova = &iommu->iova_list;
1976 
1977     if (list_empty(iova))
1978         return false;
1979 
1980     /* Disjoint sets, return conflict */
1981     first = list_first_entry(iova, struct vfio_iova, list);
1982     last = list_last_entry(iova, struct vfio_iova, list);
1983     if (start > last->end || end < first->start)
1984         return true;
1985 
1986     /* Check for any existing dma mappings below the new start */
1987     if (start > first->start) {
1988         if (vfio_find_dma(iommu, first->start, start - first->start))
1989             return true;
1990     }
1991 
1992     /* Check for any existing dma mappings beyond the new end */
1993     if (end < last->end) {
1994         if (vfio_find_dma(iommu, end + 1, last->end - end))
1995             return true;
1996     }
1997 
1998     return false;
1999 }
2000 
2001 /*
2002  * Resize iommu iova aperture window. This is called only if the new
2003  * aperture has no conflict with existing aperture and dma mappings.
2004  */
2005 static int vfio_iommu_aper_resize(struct list_head *iova,
2006                   dma_addr_t start, dma_addr_t end)
2007 {
2008     struct vfio_iova *node, *next;
2009 
2010     if (list_empty(iova))
2011         return vfio_iommu_iova_insert(iova, start, end);
2012 
2013     /* Adjust iova list start */
2014     list_for_each_entry_safe(node, next, iova, list) {
2015         if (start < node->start)
2016             break;
2017         if (start >= node->start && start < node->end) {
2018             node->start = start;
2019             break;
2020         }
2021         /* Delete nodes before new start */
2022         list_del(&node->list);
2023         kfree(node);
2024     }
2025 
2026     /* Adjust iova list end */
2027     list_for_each_entry_safe(node, next, iova, list) {
2028         if (end > node->end)
2029             continue;
2030         if (end > node->start && end <= node->end) {
2031             node->end = end;
2032             continue;
2033         }
2034         /* Delete nodes after new end */
2035         list_del(&node->list);
2036         kfree(node);
2037     }
2038 
2039     return 0;
2040 }
2041 
2042 /*
2043  * Check reserved region conflicts with existing dma mappings
2044  */
2045 static bool vfio_iommu_resv_conflict(struct vfio_iommu *iommu,
2046                      struct list_head *resv_regions)
2047 {
2048     struct iommu_resv_region *region;
2049 
2050     /* Check for conflict with existing dma mappings */
2051     list_for_each_entry(region, resv_regions, list) {
2052         if (region->type == IOMMU_RESV_DIRECT_RELAXABLE)
2053             continue;
2054 
2055         if (vfio_find_dma(iommu, region->start, region->length))
2056             return true;
2057     }
2058 
2059     return false;
2060 }
2061 
2062 /*
2063  * Check iova region overlap with  reserved regions and
2064  * exclude them from the iommu iova range
2065  */
2066 static int vfio_iommu_resv_exclude(struct list_head *iova,
2067                    struct list_head *resv_regions)
2068 {
2069     struct iommu_resv_region *resv;
2070     struct vfio_iova *n, *next;
2071 
2072     list_for_each_entry(resv, resv_regions, list) {
2073         phys_addr_t start, end;
2074 
2075         if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE)
2076             continue;
2077 
2078         start = resv->start;
2079         end = resv->start + resv->length - 1;
2080 
2081         list_for_each_entry_safe(n, next, iova, list) {
2082             int ret = 0;
2083 
2084             /* No overlap */
2085             if (start > n->end || end < n->start)
2086                 continue;
2087             /*
2088              * Insert a new node if current node overlaps with the
2089              * reserve region to exclude that from valid iova range.
2090              * Note that, new node is inserted before the current
2091              * node and finally the current node is deleted keeping
2092              * the list updated and sorted.
2093              */
2094             if (start > n->start)
2095                 ret = vfio_iommu_iova_insert(&n->list, n->start,
2096                                  start - 1);
2097             if (!ret && end < n->end)
2098                 ret = vfio_iommu_iova_insert(&n->list, end + 1,
2099                                  n->end);
2100             if (ret)
2101                 return ret;
2102 
2103             list_del(&n->list);
2104             kfree(n);
2105         }
2106     }
2107 
2108     if (list_empty(iova))
2109         return -EINVAL;
2110 
2111     return 0;
2112 }
2113 
2114 static void vfio_iommu_resv_free(struct list_head *resv_regions)
2115 {
2116     struct iommu_resv_region *n, *next;
2117 
2118     list_for_each_entry_safe(n, next, resv_regions, list) {
2119         list_del(&n->list);
2120         kfree(n);
2121     }
2122 }
2123 
2124 static void vfio_iommu_iova_free(struct list_head *iova)
2125 {
2126     struct vfio_iova *n, *next;
2127 
2128     list_for_each_entry_safe(n, next, iova, list) {
2129         list_del(&n->list);
2130         kfree(n);
2131     }
2132 }
2133 
2134 static int vfio_iommu_iova_get_copy(struct vfio_iommu *iommu,
2135                     struct list_head *iova_copy)
2136 {
2137     struct list_head *iova = &iommu->iova_list;
2138     struct vfio_iova *n;
2139     int ret;
2140 
2141     list_for_each_entry(n, iova, list) {
2142         ret = vfio_iommu_iova_insert(iova_copy, n->start, n->end);
2143         if (ret)
2144             goto out_free;
2145     }
2146 
2147     return 0;
2148 
2149 out_free:
2150     vfio_iommu_iova_free(iova_copy);
2151     return ret;
2152 }
2153 
2154 static void vfio_iommu_iova_insert_copy(struct vfio_iommu *iommu,
2155                     struct list_head *iova_copy)
2156 {
2157     struct list_head *iova = &iommu->iova_list;
2158 
2159     vfio_iommu_iova_free(iova);
2160 
2161     list_splice_tail(iova_copy, iova);
2162 }
2163 
2164 /* Redundantly walks non-present capabilities to simplify caller */
2165 static int vfio_iommu_device_capable(struct device *dev, void *data)
2166 {
2167     return device_iommu_capable(dev, (enum iommu_cap)data);
2168 }
2169 
2170 static int vfio_iommu_domain_alloc(struct device *dev, void *data)
2171 {
2172     struct iommu_domain **domain = data;
2173 
2174     *domain = iommu_domain_alloc(dev->bus);
2175     return 1; /* Don't iterate */
2176 }
2177 
2178 static int vfio_iommu_type1_attach_group(void *iommu_data,
2179         struct iommu_group *iommu_group, enum vfio_group_type type)
2180 {
2181     struct vfio_iommu *iommu = iommu_data;
2182     struct vfio_iommu_group *group;
2183     struct vfio_domain *domain, *d;
2184     bool resv_msi, msi_remap;
2185     phys_addr_t resv_msi_base = 0;
2186     struct iommu_domain_geometry *geo;
2187     LIST_HEAD(iova_copy);
2188     LIST_HEAD(group_resv_regions);
2189     int ret = -EINVAL;
2190 
2191     mutex_lock(&iommu->lock);
2192 
2193     /* Check for duplicates */
2194     if (vfio_iommu_find_iommu_group(iommu, iommu_group))
2195         goto out_unlock;
2196 
2197     ret = -ENOMEM;
2198     group = kzalloc(sizeof(*group), GFP_KERNEL);
2199     if (!group)
2200         goto out_unlock;
2201     group->iommu_group = iommu_group;
2202 
2203     if (type == VFIO_EMULATED_IOMMU) {
2204         list_add(&group->next, &iommu->emulated_iommu_groups);
2205         /*
2206          * An emulated IOMMU group cannot dirty memory directly, it can
2207          * only use interfaces that provide dirty tracking.
2208          * The iommu scope can only be promoted with the addition of a
2209          * dirty tracking group.
2210          */
2211         group->pinned_page_dirty_scope = true;
2212         ret = 0;
2213         goto out_unlock;
2214     }
2215 
2216     ret = -ENOMEM;
2217     domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2218     if (!domain)
2219         goto out_free_group;
2220 
2221     /*
2222      * Going via the iommu_group iterator avoids races, and trivially gives
2223      * us a representative device for the IOMMU API call. We don't actually
2224      * want to iterate beyond the first device (if any).
2225      */
2226     ret = -EIO;
2227     iommu_group_for_each_dev(iommu_group, &domain->domain,
2228                  vfio_iommu_domain_alloc);
2229     if (!domain->domain)
2230         goto out_free_domain;
2231 
2232     if (iommu->nesting) {
2233         ret = iommu_enable_nesting(domain->domain);
2234         if (ret)
2235             goto out_domain;
2236     }
2237 
2238     ret = iommu_attach_group(domain->domain, group->iommu_group);
2239     if (ret)
2240         goto out_domain;
2241 
2242     /* Get aperture info */
2243     geo = &domain->domain->geometry;
2244     if (vfio_iommu_aper_conflict(iommu, geo->aperture_start,
2245                      geo->aperture_end)) {
2246         ret = -EINVAL;
2247         goto out_detach;
2248     }
2249 
2250     ret = iommu_get_group_resv_regions(iommu_group, &group_resv_regions);
2251     if (ret)
2252         goto out_detach;
2253 
2254     if (vfio_iommu_resv_conflict(iommu, &group_resv_regions)) {
2255         ret = -EINVAL;
2256         goto out_detach;
2257     }
2258 
2259     /*
2260      * We don't want to work on the original iova list as the list
2261      * gets modified and in case of failure we have to retain the
2262      * original list. Get a copy here.
2263      */
2264     ret = vfio_iommu_iova_get_copy(iommu, &iova_copy);
2265     if (ret)
2266         goto out_detach;
2267 
2268     ret = vfio_iommu_aper_resize(&iova_copy, geo->aperture_start,
2269                      geo->aperture_end);
2270     if (ret)
2271         goto out_detach;
2272 
2273     ret = vfio_iommu_resv_exclude(&iova_copy, &group_resv_regions);
2274     if (ret)
2275         goto out_detach;
2276 
2277     resv_msi = vfio_iommu_has_sw_msi(&group_resv_regions, &resv_msi_base);
2278 
2279     INIT_LIST_HEAD(&domain->group_list);
2280     list_add(&group->next, &domain->group_list);
2281 
2282     msi_remap = irq_domain_check_msi_remap() ||
2283             iommu_group_for_each_dev(iommu_group, (void *)IOMMU_CAP_INTR_REMAP,
2284                          vfio_iommu_device_capable);
2285 
2286     if (!allow_unsafe_interrupts && !msi_remap) {
2287         pr_warn("%s: No interrupt remapping support.  Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
2288                __func__);
2289         ret = -EPERM;
2290         goto out_detach;
2291     }
2292 
2293     /*
2294      * If the IOMMU can block non-coherent operations (ie PCIe TLPs with
2295      * no-snoop set) then VFIO always turns this feature on because on Intel
2296      * platforms it optimizes KVM to disable wbinvd emulation.
2297      */
2298     if (domain->domain->ops->enforce_cache_coherency)
2299         domain->enforce_cache_coherency =
2300             domain->domain->ops->enforce_cache_coherency(
2301                 domain->domain);
2302 
2303     /*
2304      * Try to match an existing compatible domain.  We don't want to
2305      * preclude an IOMMU driver supporting multiple bus_types and being
2306      * able to include different bus_types in the same IOMMU domain, so
2307      * we test whether the domains use the same iommu_ops rather than
2308      * testing if they're on the same bus_type.
2309      */
2310     list_for_each_entry(d, &iommu->domain_list, next) {
2311         if (d->domain->ops == domain->domain->ops &&
2312             d->enforce_cache_coherency ==
2313                 domain->enforce_cache_coherency) {
2314             iommu_detach_group(domain->domain, group->iommu_group);
2315             if (!iommu_attach_group(d->domain,
2316                         group->iommu_group)) {
2317                 list_add(&group->next, &d->group_list);
2318                 iommu_domain_free(domain->domain);
2319                 kfree(domain);
2320                 goto done;
2321             }
2322 
2323             ret = iommu_attach_group(domain->domain,
2324                          group->iommu_group);
2325             if (ret)
2326                 goto out_domain;
2327         }
2328     }
2329 
2330     vfio_test_domain_fgsp(domain);
2331 
2332     /* replay mappings on new domains */
2333     ret = vfio_iommu_replay(iommu, domain);
2334     if (ret)
2335         goto out_detach;
2336 
2337     if (resv_msi) {
2338         ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
2339         if (ret && ret != -ENODEV)
2340             goto out_detach;
2341     }
2342 
2343     list_add(&domain->next, &iommu->domain_list);
2344     vfio_update_pgsize_bitmap(iommu);
2345 done:
2346     /* Delete the old one and insert new iova list */
2347     vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2348 
2349     /*
2350      * An iommu backed group can dirty memory directly and therefore
2351      * demotes the iommu scope until it declares itself dirty tracking
2352      * capable via the page pinning interface.
2353      */
2354     iommu->num_non_pinned_groups++;
2355     mutex_unlock(&iommu->lock);
2356     vfio_iommu_resv_free(&group_resv_regions);
2357 
2358     return 0;
2359 
2360 out_detach:
2361     iommu_detach_group(domain->domain, group->iommu_group);
2362 out_domain:
2363     iommu_domain_free(domain->domain);
2364     vfio_iommu_iova_free(&iova_copy);
2365     vfio_iommu_resv_free(&group_resv_regions);
2366 out_free_domain:
2367     kfree(domain);
2368 out_free_group:
2369     kfree(group);
2370 out_unlock:
2371     mutex_unlock(&iommu->lock);
2372     return ret;
2373 }
2374 
2375 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
2376 {
2377     struct rb_node *node;
2378 
2379     while ((node = rb_first(&iommu->dma_list)))
2380         vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
2381 }
2382 
2383 static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
2384 {
2385     struct rb_node *n, *p;
2386 
2387     n = rb_first(&iommu->dma_list);
2388     for (; n; n = rb_next(n)) {
2389         struct vfio_dma *dma;
2390         long locked = 0, unlocked = 0;
2391 
2392         dma = rb_entry(n, struct vfio_dma, node);
2393         unlocked += vfio_unmap_unpin(iommu, dma, false);
2394         p = rb_first(&dma->pfn_list);
2395         for (; p; p = rb_next(p)) {
2396             struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
2397                              node);
2398 
2399             if (!is_invalid_reserved_pfn(vpfn->pfn))
2400                 locked++;
2401         }
2402         vfio_lock_acct(dma, locked - unlocked, true);
2403     }
2404 }
2405 
2406 /*
2407  * Called when a domain is removed in detach. It is possible that
2408  * the removed domain decided the iova aperture window. Modify the
2409  * iova aperture with the smallest window among existing domains.
2410  */
2411 static void vfio_iommu_aper_expand(struct vfio_iommu *iommu,
2412                    struct list_head *iova_copy)
2413 {
2414     struct vfio_domain *domain;
2415     struct vfio_iova *node;
2416     dma_addr_t start = 0;
2417     dma_addr_t end = (dma_addr_t)~0;
2418 
2419     if (list_empty(iova_copy))
2420         return;
2421 
2422     list_for_each_entry(domain, &iommu->domain_list, next) {
2423         struct iommu_domain_geometry *geo = &domain->domain->geometry;
2424 
2425         if (geo->aperture_start > start)
2426             start = geo->aperture_start;
2427         if (geo->aperture_end < end)
2428             end = geo->aperture_end;
2429     }
2430 
2431     /* Modify aperture limits. The new aper is either same or bigger */
2432     node = list_first_entry(iova_copy, struct vfio_iova, list);
2433     node->start = start;
2434     node = list_last_entry(iova_copy, struct vfio_iova, list);
2435     node->end = end;
2436 }
2437 
2438 /*
2439  * Called when a group is detached. The reserved regions for that
2440  * group can be part of valid iova now. But since reserved regions
2441  * may be duplicated among groups, populate the iova valid regions
2442  * list again.
2443  */
2444 static int vfio_iommu_resv_refresh(struct vfio_iommu *iommu,
2445                    struct list_head *iova_copy)
2446 {
2447     struct vfio_domain *d;
2448     struct vfio_iommu_group *g;
2449     struct vfio_iova *node;
2450     dma_addr_t start, end;
2451     LIST_HEAD(resv_regions);
2452     int ret;
2453 
2454     if (list_empty(iova_copy))
2455         return -EINVAL;
2456 
2457     list_for_each_entry(d, &iommu->domain_list, next) {
2458         list_for_each_entry(g, &d->group_list, next) {
2459             ret = iommu_get_group_resv_regions(g->iommu_group,
2460                                &resv_regions);
2461             if (ret)
2462                 goto done;
2463         }
2464     }
2465 
2466     node = list_first_entry(iova_copy, struct vfio_iova, list);
2467     start = node->start;
2468     node = list_last_entry(iova_copy, struct vfio_iova, list);
2469     end = node->end;
2470 
2471     /* purge the iova list and create new one */
2472     vfio_iommu_iova_free(iova_copy);
2473 
2474     ret = vfio_iommu_aper_resize(iova_copy, start, end);
2475     if (ret)
2476         goto done;
2477 
2478     /* Exclude current reserved regions from iova ranges */
2479     ret = vfio_iommu_resv_exclude(iova_copy, &resv_regions);
2480 done:
2481     vfio_iommu_resv_free(&resv_regions);
2482     return ret;
2483 }
2484 
2485 static void vfio_iommu_type1_detach_group(void *iommu_data,
2486                       struct iommu_group *iommu_group)
2487 {
2488     struct vfio_iommu *iommu = iommu_data;
2489     struct vfio_domain *domain;
2490     struct vfio_iommu_group *group;
2491     bool update_dirty_scope = false;
2492     LIST_HEAD(iova_copy);
2493 
2494     mutex_lock(&iommu->lock);
2495     list_for_each_entry(group, &iommu->emulated_iommu_groups, next) {
2496         if (group->iommu_group != iommu_group)
2497             continue;
2498         update_dirty_scope = !group->pinned_page_dirty_scope;
2499         list_del(&group->next);
2500         kfree(group);
2501 
2502         if (list_empty(&iommu->emulated_iommu_groups) &&
2503             list_empty(&iommu->domain_list)) {
2504             WARN_ON(!list_empty(&iommu->device_list));
2505             vfio_iommu_unmap_unpin_all(iommu);
2506         }
2507         goto detach_group_done;
2508     }
2509 
2510     /*
2511      * Get a copy of iova list. This will be used to update
2512      * and to replace the current one later. Please note that
2513      * we will leave the original list as it is if update fails.
2514      */
2515     vfio_iommu_iova_get_copy(iommu, &iova_copy);
2516 
2517     list_for_each_entry(domain, &iommu->domain_list, next) {
2518         group = find_iommu_group(domain, iommu_group);
2519         if (!group)
2520             continue;
2521 
2522         iommu_detach_group(domain->domain, group->iommu_group);
2523         update_dirty_scope = !group->pinned_page_dirty_scope;
2524         list_del(&group->next);
2525         kfree(group);
2526         /*
2527          * Group ownership provides privilege, if the group list is
2528          * empty, the domain goes away. If it's the last domain with
2529          * iommu and external domain doesn't exist, then all the
2530          * mappings go away too. If it's the last domain with iommu and
2531          * external domain exist, update accounting
2532          */
2533         if (list_empty(&domain->group_list)) {
2534             if (list_is_singular(&iommu->domain_list)) {
2535                 if (list_empty(&iommu->emulated_iommu_groups)) {
2536                     WARN_ON(!list_empty(
2537                         &iommu->device_list));
2538                     vfio_iommu_unmap_unpin_all(iommu);
2539                 } else {
2540                     vfio_iommu_unmap_unpin_reaccount(iommu);
2541                 }
2542             }
2543             iommu_domain_free(domain->domain);
2544             list_del(&domain->next);
2545             kfree(domain);
2546             vfio_iommu_aper_expand(iommu, &iova_copy);
2547             vfio_update_pgsize_bitmap(iommu);
2548         }
2549         break;
2550     }
2551 
2552     if (!vfio_iommu_resv_refresh(iommu, &iova_copy))
2553         vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2554     else
2555         vfio_iommu_iova_free(&iova_copy);
2556 
2557 detach_group_done:
2558     /*
2559      * Removal of a group without dirty tracking may allow the iommu scope
2560      * to be promoted.
2561      */
2562     if (update_dirty_scope) {
2563         iommu->num_non_pinned_groups--;
2564         if (iommu->dirty_page_tracking)
2565             vfio_iommu_populate_bitmap_full(iommu);
2566     }
2567     mutex_unlock(&iommu->lock);
2568 }
2569 
2570 static void *vfio_iommu_type1_open(unsigned long arg)
2571 {
2572     struct vfio_iommu *iommu;
2573 
2574     iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
2575     if (!iommu)
2576         return ERR_PTR(-ENOMEM);
2577 
2578     switch (arg) {
2579     case VFIO_TYPE1_IOMMU:
2580         break;
2581     case VFIO_TYPE1_NESTING_IOMMU:
2582         iommu->nesting = true;
2583         fallthrough;
2584     case VFIO_TYPE1v2_IOMMU:
2585         iommu->v2 = true;
2586         break;
2587     default:
2588         kfree(iommu);
2589         return ERR_PTR(-EINVAL);
2590     }
2591 
2592     INIT_LIST_HEAD(&iommu->domain_list);
2593     INIT_LIST_HEAD(&iommu->iova_list);
2594     iommu->dma_list = RB_ROOT;
2595     iommu->dma_avail = dma_entry_limit;
2596     iommu->container_open = true;
2597     mutex_init(&iommu->lock);
2598     mutex_init(&iommu->device_list_lock);
2599     INIT_LIST_HEAD(&iommu->device_list);
2600     init_waitqueue_head(&iommu->vaddr_wait);
2601     iommu->pgsize_bitmap = PAGE_MASK;
2602     INIT_LIST_HEAD(&iommu->emulated_iommu_groups);
2603 
2604     return iommu;
2605 }
2606 
2607 static void vfio_release_domain(struct vfio_domain *domain)
2608 {
2609     struct vfio_iommu_group *group, *group_tmp;
2610 
2611     list_for_each_entry_safe(group, group_tmp,
2612                  &domain->group_list, next) {
2613         iommu_detach_group(domain->domain, group->iommu_group);
2614         list_del(&group->next);
2615         kfree(group);
2616     }
2617 
2618     iommu_domain_free(domain->domain);
2619 }
2620 
2621 static void vfio_iommu_type1_release(void *iommu_data)
2622 {
2623     struct vfio_iommu *iommu = iommu_data;
2624     struct vfio_domain *domain, *domain_tmp;
2625     struct vfio_iommu_group *group, *next_group;
2626 
2627     list_for_each_entry_safe(group, next_group,
2628             &iommu->emulated_iommu_groups, next) {
2629         list_del(&group->next);
2630         kfree(group);
2631     }
2632 
2633     vfio_iommu_unmap_unpin_all(iommu);
2634 
2635     list_for_each_entry_safe(domain, domain_tmp,
2636                  &iommu->domain_list, next) {
2637         vfio_release_domain(domain);
2638         list_del(&domain->next);
2639         kfree(domain);
2640     }
2641 
2642     vfio_iommu_iova_free(&iommu->iova_list);
2643 
2644     kfree(iommu);
2645 }
2646 
2647 static int vfio_domains_have_enforce_cache_coherency(struct vfio_iommu *iommu)
2648 {
2649     struct vfio_domain *domain;
2650     int ret = 1;
2651 
2652     mutex_lock(&iommu->lock);
2653     list_for_each_entry(domain, &iommu->domain_list, next) {
2654         if (!(domain->enforce_cache_coherency)) {
2655             ret = 0;
2656             break;
2657         }
2658     }
2659     mutex_unlock(&iommu->lock);
2660 
2661     return ret;
2662 }
2663 
2664 static int vfio_iommu_type1_check_extension(struct vfio_iommu *iommu,
2665                         unsigned long arg)
2666 {
2667     switch (arg) {
2668     case VFIO_TYPE1_IOMMU:
2669     case VFIO_TYPE1v2_IOMMU:
2670     case VFIO_TYPE1_NESTING_IOMMU:
2671     case VFIO_UNMAP_ALL:
2672     case VFIO_UPDATE_VADDR:
2673         return 1;
2674     case VFIO_DMA_CC_IOMMU:
2675         if (!iommu)
2676             return 0;
2677         return vfio_domains_have_enforce_cache_coherency(iommu);
2678     default:
2679         return 0;
2680     }
2681 }
2682 
2683 static int vfio_iommu_iova_add_cap(struct vfio_info_cap *caps,
2684          struct vfio_iommu_type1_info_cap_iova_range *cap_iovas,
2685          size_t size)
2686 {
2687     struct vfio_info_cap_header *header;
2688     struct vfio_iommu_type1_info_cap_iova_range *iova_cap;
2689 
2690     header = vfio_info_cap_add(caps, size,
2691                    VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE, 1);
2692     if (IS_ERR(header))
2693         return PTR_ERR(header);
2694 
2695     iova_cap = container_of(header,
2696                 struct vfio_iommu_type1_info_cap_iova_range,
2697                 header);
2698     iova_cap->nr_iovas = cap_iovas->nr_iovas;
2699     memcpy(iova_cap->iova_ranges, cap_iovas->iova_ranges,
2700            cap_iovas->nr_iovas * sizeof(*cap_iovas->iova_ranges));
2701     return 0;
2702 }
2703 
2704 static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu,
2705                       struct vfio_info_cap *caps)
2706 {
2707     struct vfio_iommu_type1_info_cap_iova_range *cap_iovas;
2708     struct vfio_iova *iova;
2709     size_t size;
2710     int iovas = 0, i = 0, ret;
2711 
2712     list_for_each_entry(iova, &iommu->iova_list, list)
2713         iovas++;
2714 
2715     if (!iovas) {
2716         /*
2717          * Return 0 as a container with a single mdev device
2718          * will have an empty list
2719          */
2720         return 0;
2721     }
2722 
2723     size = struct_size(cap_iovas, iova_ranges, iovas);
2724 
2725     cap_iovas = kzalloc(size, GFP_KERNEL);
2726     if (!cap_iovas)
2727         return -ENOMEM;
2728 
2729     cap_iovas->nr_iovas = iovas;
2730 
2731     list_for_each_entry(iova, &iommu->iova_list, list) {
2732         cap_iovas->iova_ranges[i].start = iova->start;
2733         cap_iovas->iova_ranges[i].end = iova->end;
2734         i++;
2735     }
2736 
2737     ret = vfio_iommu_iova_add_cap(caps, cap_iovas, size);
2738 
2739     kfree(cap_iovas);
2740     return ret;
2741 }
2742 
2743 static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu,
2744                        struct vfio_info_cap *caps)
2745 {
2746     struct vfio_iommu_type1_info_cap_migration cap_mig;
2747 
2748     cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION;
2749     cap_mig.header.version = 1;
2750 
2751     cap_mig.flags = 0;
2752     /* support minimum pgsize */
2753     cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2754     cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX;
2755 
2756     return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig));
2757 }
2758 
2759 static int vfio_iommu_dma_avail_build_caps(struct vfio_iommu *iommu,
2760                        struct vfio_info_cap *caps)
2761 {
2762     struct vfio_iommu_type1_info_dma_avail cap_dma_avail;
2763 
2764     cap_dma_avail.header.id = VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL;
2765     cap_dma_avail.header.version = 1;
2766 
2767     cap_dma_avail.avail = iommu->dma_avail;
2768 
2769     return vfio_info_add_capability(caps, &cap_dma_avail.header,
2770                     sizeof(cap_dma_avail));
2771 }
2772 
2773 static int vfio_iommu_type1_get_info(struct vfio_iommu *iommu,
2774                      unsigned long arg)
2775 {
2776     struct vfio_iommu_type1_info info;
2777     unsigned long minsz;
2778     struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
2779     unsigned long capsz;
2780     int ret;
2781 
2782     minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
2783 
2784     /* For backward compatibility, cannot require this */
2785     capsz = offsetofend(struct vfio_iommu_type1_info, cap_offset);
2786 
2787     if (copy_from_user(&info, (void __user *)arg, minsz))
2788         return -EFAULT;
2789 
2790     if (info.argsz < minsz)
2791         return -EINVAL;
2792 
2793     if (info.argsz >= capsz) {
2794         minsz = capsz;
2795         info.cap_offset = 0; /* output, no-recopy necessary */
2796     }
2797 
2798     mutex_lock(&iommu->lock);
2799     info.flags = VFIO_IOMMU_INFO_PGSIZES;
2800 
2801     info.iova_pgsizes = iommu->pgsize_bitmap;
2802 
2803     ret = vfio_iommu_migration_build_caps(iommu, &caps);
2804 
2805     if (!ret)
2806         ret = vfio_iommu_dma_avail_build_caps(iommu, &caps);
2807 
2808     if (!ret)
2809         ret = vfio_iommu_iova_build_caps(iommu, &caps);
2810 
2811     mutex_unlock(&iommu->lock);
2812 
2813     if (ret)
2814         return ret;
2815 
2816     if (caps.size) {
2817         info.flags |= VFIO_IOMMU_INFO_CAPS;
2818 
2819         if (info.argsz < sizeof(info) + caps.size) {
2820             info.argsz = sizeof(info) + caps.size;
2821         } else {
2822             vfio_info_cap_shift(&caps, sizeof(info));
2823             if (copy_to_user((void __user *)arg +
2824                     sizeof(info), caps.buf,
2825                     caps.size)) {
2826                 kfree(caps.buf);
2827                 return -EFAULT;
2828             }
2829             info.cap_offset = sizeof(info);
2830         }
2831 
2832         kfree(caps.buf);
2833     }
2834 
2835     return copy_to_user((void __user *)arg, &info, minsz) ?
2836             -EFAULT : 0;
2837 }
2838 
2839 static int vfio_iommu_type1_map_dma(struct vfio_iommu *iommu,
2840                     unsigned long arg)
2841 {
2842     struct vfio_iommu_type1_dma_map map;
2843     unsigned long minsz;
2844     uint32_t mask = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE |
2845             VFIO_DMA_MAP_FLAG_VADDR;
2846 
2847     minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
2848 
2849     if (copy_from_user(&map, (void __user *)arg, minsz))
2850         return -EFAULT;
2851 
2852     if (map.argsz < minsz || map.flags & ~mask)
2853         return -EINVAL;
2854 
2855     return vfio_dma_do_map(iommu, &map);
2856 }
2857 
2858 static int vfio_iommu_type1_unmap_dma(struct vfio_iommu *iommu,
2859                       unsigned long arg)
2860 {
2861     struct vfio_iommu_type1_dma_unmap unmap;
2862     struct vfio_bitmap bitmap = { 0 };
2863     uint32_t mask = VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP |
2864             VFIO_DMA_UNMAP_FLAG_VADDR |
2865             VFIO_DMA_UNMAP_FLAG_ALL;
2866     unsigned long minsz;
2867     int ret;
2868 
2869     minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
2870 
2871     if (copy_from_user(&unmap, (void __user *)arg, minsz))
2872         return -EFAULT;
2873 
2874     if (unmap.argsz < minsz || unmap.flags & ~mask)
2875         return -EINVAL;
2876 
2877     if ((unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
2878         (unmap.flags & (VFIO_DMA_UNMAP_FLAG_ALL |
2879                 VFIO_DMA_UNMAP_FLAG_VADDR)))
2880         return -EINVAL;
2881 
2882     if (unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
2883         unsigned long pgshift;
2884 
2885         if (unmap.argsz < (minsz + sizeof(bitmap)))
2886             return -EINVAL;
2887 
2888         if (copy_from_user(&bitmap,
2889                    (void __user *)(arg + minsz),
2890                    sizeof(bitmap)))
2891             return -EFAULT;
2892 
2893         if (!access_ok((void __user *)bitmap.data, bitmap.size))
2894             return -EINVAL;
2895 
2896         pgshift = __ffs(bitmap.pgsize);
2897         ret = verify_bitmap_size(unmap.size >> pgshift,
2898                      bitmap.size);
2899         if (ret)
2900             return ret;
2901     }
2902 
2903     ret = vfio_dma_do_unmap(iommu, &unmap, &bitmap);
2904     if (ret)
2905         return ret;
2906 
2907     return copy_to_user((void __user *)arg, &unmap, minsz) ?
2908             -EFAULT : 0;
2909 }
2910 
2911 static int vfio_iommu_type1_dirty_pages(struct vfio_iommu *iommu,
2912                     unsigned long arg)
2913 {
2914     struct vfio_iommu_type1_dirty_bitmap dirty;
2915     uint32_t mask = VFIO_IOMMU_DIRTY_PAGES_FLAG_START |
2916             VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP |
2917             VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
2918     unsigned long minsz;
2919     int ret = 0;
2920 
2921     if (!iommu->v2)
2922         return -EACCES;
2923 
2924     minsz = offsetofend(struct vfio_iommu_type1_dirty_bitmap, flags);
2925 
2926     if (copy_from_user(&dirty, (void __user *)arg, minsz))
2927         return -EFAULT;
2928 
2929     if (dirty.argsz < minsz || dirty.flags & ~mask)
2930         return -EINVAL;
2931 
2932     /* only one flag should be set at a time */
2933     if (__ffs(dirty.flags) != __fls(dirty.flags))
2934         return -EINVAL;
2935 
2936     if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_START) {
2937         size_t pgsize;
2938 
2939         mutex_lock(&iommu->lock);
2940         pgsize = 1 << __ffs(iommu->pgsize_bitmap);
2941         if (!iommu->dirty_page_tracking) {
2942             ret = vfio_dma_bitmap_alloc_all(iommu, pgsize);
2943             if (!ret)
2944                 iommu->dirty_page_tracking = true;
2945         }
2946         mutex_unlock(&iommu->lock);
2947         return ret;
2948     } else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP) {
2949         mutex_lock(&iommu->lock);
2950         if (iommu->dirty_page_tracking) {
2951             iommu->dirty_page_tracking = false;
2952             vfio_dma_bitmap_free_all(iommu);
2953         }
2954         mutex_unlock(&iommu->lock);
2955         return 0;
2956     } else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP) {
2957         struct vfio_iommu_type1_dirty_bitmap_get range;
2958         unsigned long pgshift;
2959         size_t data_size = dirty.argsz - minsz;
2960         size_t iommu_pgsize;
2961 
2962         if (!data_size || data_size < sizeof(range))
2963             return -EINVAL;
2964 
2965         if (copy_from_user(&range, (void __user *)(arg + minsz),
2966                    sizeof(range)))
2967             return -EFAULT;
2968 
2969         if (range.iova + range.size < range.iova)
2970             return -EINVAL;
2971         if (!access_ok((void __user *)range.bitmap.data,
2972                    range.bitmap.size))
2973             return -EINVAL;
2974 
2975         pgshift = __ffs(range.bitmap.pgsize);
2976         ret = verify_bitmap_size(range.size >> pgshift,
2977                      range.bitmap.size);
2978         if (ret)
2979             return ret;
2980 
2981         mutex_lock(&iommu->lock);
2982 
2983         iommu_pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2984 
2985         /* allow only smallest supported pgsize */
2986         if (range.bitmap.pgsize != iommu_pgsize) {
2987             ret = -EINVAL;
2988             goto out_unlock;
2989         }
2990         if (range.iova & (iommu_pgsize - 1)) {
2991             ret = -EINVAL;
2992             goto out_unlock;
2993         }
2994         if (!range.size || range.size & (iommu_pgsize - 1)) {
2995             ret = -EINVAL;
2996             goto out_unlock;
2997         }
2998 
2999         if (iommu->dirty_page_tracking)
3000             ret = vfio_iova_dirty_bitmap(range.bitmap.data,
3001                              iommu, range.iova,
3002                              range.size,
3003                              range.bitmap.pgsize);
3004         else
3005             ret = -EINVAL;
3006 out_unlock:
3007         mutex_unlock(&iommu->lock);
3008 
3009         return ret;
3010     }
3011 
3012     return -EINVAL;
3013 }
3014 
3015 static long vfio_iommu_type1_ioctl(void *iommu_data,
3016                    unsigned int cmd, unsigned long arg)
3017 {
3018     struct vfio_iommu *iommu = iommu_data;
3019 
3020     switch (cmd) {
3021     case VFIO_CHECK_EXTENSION:
3022         return vfio_iommu_type1_check_extension(iommu, arg);
3023     case VFIO_IOMMU_GET_INFO:
3024         return vfio_iommu_type1_get_info(iommu, arg);
3025     case VFIO_IOMMU_MAP_DMA:
3026         return vfio_iommu_type1_map_dma(iommu, arg);
3027     case VFIO_IOMMU_UNMAP_DMA:
3028         return vfio_iommu_type1_unmap_dma(iommu, arg);
3029     case VFIO_IOMMU_DIRTY_PAGES:
3030         return vfio_iommu_type1_dirty_pages(iommu, arg);
3031     default:
3032         return -ENOTTY;
3033     }
3034 }
3035 
3036 static void vfio_iommu_type1_register_device(void *iommu_data,
3037                          struct vfio_device *vdev)
3038 {
3039     struct vfio_iommu *iommu = iommu_data;
3040 
3041     if (!vdev->ops->dma_unmap)
3042         return;
3043 
3044     /*
3045      * list_empty(&iommu->device_list) is tested under the iommu->lock while
3046      * iteration for dma_unmap must be done under the device_list_lock.
3047      * Holding both locks here allows avoiding the device_list_lock in
3048      * several fast paths. See vfio_notify_dma_unmap()
3049      */
3050     mutex_lock(&iommu->lock);
3051     mutex_lock(&iommu->device_list_lock);
3052     list_add(&vdev->iommu_entry, &iommu->device_list);
3053     mutex_unlock(&iommu->device_list_lock);
3054     mutex_unlock(&iommu->lock);
3055 }
3056 
3057 static void vfio_iommu_type1_unregister_device(void *iommu_data,
3058                            struct vfio_device *vdev)
3059 {
3060     struct vfio_iommu *iommu = iommu_data;
3061 
3062     if (!vdev->ops->dma_unmap)
3063         return;
3064 
3065     mutex_lock(&iommu->lock);
3066     mutex_lock(&iommu->device_list_lock);
3067     list_del(&vdev->iommu_entry);
3068     mutex_unlock(&iommu->device_list_lock);
3069     mutex_unlock(&iommu->lock);
3070 }
3071 
3072 static int vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu *iommu,
3073                      dma_addr_t user_iova, void *data,
3074                      size_t count, bool write,
3075                      size_t *copied)
3076 {
3077     struct mm_struct *mm;
3078     unsigned long vaddr;
3079     struct vfio_dma *dma;
3080     bool kthread = current->mm == NULL;
3081     size_t offset;
3082     int ret;
3083 
3084     *copied = 0;
3085 
3086     ret = vfio_find_dma_valid(iommu, user_iova, 1, &dma);
3087     if (ret < 0)
3088         return ret;
3089 
3090     if ((write && !(dma->prot & IOMMU_WRITE)) ||
3091             !(dma->prot & IOMMU_READ))
3092         return -EPERM;
3093 
3094     mm = get_task_mm(dma->task);
3095 
3096     if (!mm)
3097         return -EPERM;
3098 
3099     if (kthread)
3100         kthread_use_mm(mm);
3101     else if (current->mm != mm)
3102         goto out;
3103 
3104     offset = user_iova - dma->iova;
3105 
3106     if (count > dma->size - offset)
3107         count = dma->size - offset;
3108 
3109     vaddr = dma->vaddr + offset;
3110 
3111     if (write) {
3112         *copied = copy_to_user((void __user *)vaddr, data,
3113                      count) ? 0 : count;
3114         if (*copied && iommu->dirty_page_tracking) {
3115             unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
3116             /*
3117              * Bitmap populated with the smallest supported page
3118              * size
3119              */
3120             bitmap_set(dma->bitmap, offset >> pgshift,
3121                    ((offset + *copied - 1) >> pgshift) -
3122                    (offset >> pgshift) + 1);
3123         }
3124     } else
3125         *copied = copy_from_user(data, (void __user *)vaddr,
3126                        count) ? 0 : count;
3127     if (kthread)
3128         kthread_unuse_mm(mm);
3129 out:
3130     mmput(mm);
3131     return *copied ? 0 : -EFAULT;
3132 }
3133 
3134 static int vfio_iommu_type1_dma_rw(void *iommu_data, dma_addr_t user_iova,
3135                    void *data, size_t count, bool write)
3136 {
3137     struct vfio_iommu *iommu = iommu_data;
3138     int ret = 0;
3139     size_t done;
3140 
3141     mutex_lock(&iommu->lock);
3142     while (count > 0) {
3143         ret = vfio_iommu_type1_dma_rw_chunk(iommu, user_iova, data,
3144                             count, write, &done);
3145         if (ret)
3146             break;
3147 
3148         count -= done;
3149         data += done;
3150         user_iova += done;
3151     }
3152 
3153     mutex_unlock(&iommu->lock);
3154     return ret;
3155 }
3156 
3157 static struct iommu_domain *
3158 vfio_iommu_type1_group_iommu_domain(void *iommu_data,
3159                     struct iommu_group *iommu_group)
3160 {
3161     struct iommu_domain *domain = ERR_PTR(-ENODEV);
3162     struct vfio_iommu *iommu = iommu_data;
3163     struct vfio_domain *d;
3164 
3165     if (!iommu || !iommu_group)
3166         return ERR_PTR(-EINVAL);
3167 
3168     mutex_lock(&iommu->lock);
3169     list_for_each_entry(d, &iommu->domain_list, next) {
3170         if (find_iommu_group(d, iommu_group)) {
3171             domain = d->domain;
3172             break;
3173         }
3174     }
3175     mutex_unlock(&iommu->lock);
3176 
3177     return domain;
3178 }
3179 
3180 static void vfio_iommu_type1_notify(void *iommu_data,
3181                     enum vfio_iommu_notify_type event)
3182 {
3183     struct vfio_iommu *iommu = iommu_data;
3184 
3185     if (event != VFIO_IOMMU_CONTAINER_CLOSE)
3186         return;
3187     mutex_lock(&iommu->lock);
3188     iommu->container_open = false;
3189     mutex_unlock(&iommu->lock);
3190     wake_up_all(&iommu->vaddr_wait);
3191 }
3192 
3193 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
3194     .name           = "vfio-iommu-type1",
3195     .owner          = THIS_MODULE,
3196     .open           = vfio_iommu_type1_open,
3197     .release        = vfio_iommu_type1_release,
3198     .ioctl          = vfio_iommu_type1_ioctl,
3199     .attach_group       = vfio_iommu_type1_attach_group,
3200     .detach_group       = vfio_iommu_type1_detach_group,
3201     .pin_pages      = vfio_iommu_type1_pin_pages,
3202     .unpin_pages        = vfio_iommu_type1_unpin_pages,
3203     .register_device    = vfio_iommu_type1_register_device,
3204     .unregister_device  = vfio_iommu_type1_unregister_device,
3205     .dma_rw         = vfio_iommu_type1_dma_rw,
3206     .group_iommu_domain = vfio_iommu_type1_group_iommu_domain,
3207     .notify         = vfio_iommu_type1_notify,
3208 };
3209 
3210 static int __init vfio_iommu_type1_init(void)
3211 {
3212     return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
3213 }
3214 
3215 static void __exit vfio_iommu_type1_cleanup(void)
3216 {
3217     vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
3218 }
3219 
3220 module_init(vfio_iommu_type1_init);
3221 module_exit(vfio_iommu_type1_cleanup);
3222 
3223 MODULE_VERSION(DRIVER_VERSION);
3224 MODULE_LICENSE("GPL v2");
3225 MODULE_AUTHOR(DRIVER_AUTHOR);
3226 MODULE_DESCRIPTION(DRIVER_DESC);