Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * VFIO PCI config space virtualization
0004  *
0005  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
0006  *     Author: Alex Williamson <alex.williamson@redhat.com>
0007  *
0008  * Derived from original vfio:
0009  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
0010  * Author: Tom Lyon, pugs@cisco.com
0011  */
0012 
0013 /*
0014  * This code handles reading and writing of PCI configuration registers.
0015  * This is hairy because we want to allow a lot of flexibility to the
0016  * user driver, but cannot trust it with all of the config fields.
0017  * Tables determine which fields can be read and written, as well as
0018  * which fields are 'virtualized' - special actions and translations to
0019  * make it appear to the user that he has control, when in fact things
0020  * must be negotiated with the underlying OS.
0021  */
0022 
0023 #include <linux/fs.h>
0024 #include <linux/pci.h>
0025 #include <linux/uaccess.h>
0026 #include <linux/vfio.h>
0027 #include <linux/slab.h>
0028 
0029 #include <linux/vfio_pci_core.h>
0030 
0031 /* Fake capability ID for standard config space */
0032 #define PCI_CAP_ID_BASIC    0
0033 
0034 #define is_bar(offset)  \
0035     ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
0036      (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
0037 
0038 /*
0039  * Lengths of PCI Config Capabilities
0040  *   0: Removed from the user visible capability list
0041  *   FF: Variable length
0042  */
0043 static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
0044     [PCI_CAP_ID_BASIC]  = PCI_STD_HEADER_SIZEOF, /* pci config header */
0045     [PCI_CAP_ID_PM]     = PCI_PM_SIZEOF,
0046     [PCI_CAP_ID_AGP]    = PCI_AGP_SIZEOF,
0047     [PCI_CAP_ID_VPD]    = PCI_CAP_VPD_SIZEOF,
0048     [PCI_CAP_ID_SLOTID] = 0,        /* bridge - don't care */
0049     [PCI_CAP_ID_MSI]    = 0xFF,     /* 10, 14, 20, or 24 */
0050     [PCI_CAP_ID_CHSWP]  = 0,        /* cpci - not yet */
0051     [PCI_CAP_ID_PCIX]   = 0xFF,     /* 8 or 24 */
0052     [PCI_CAP_ID_HT]     = 0xFF,     /* hypertransport */
0053     [PCI_CAP_ID_VNDR]   = 0xFF,     /* variable */
0054     [PCI_CAP_ID_DBG]    = 0,        /* debug - don't care */
0055     [PCI_CAP_ID_CCRC]   = 0,        /* cpci - not yet */
0056     [PCI_CAP_ID_SHPC]   = 0,        /* hotswap - not yet */
0057     [PCI_CAP_ID_SSVID]  = 0,        /* bridge - don't care */
0058     [PCI_CAP_ID_AGP3]   = 0,        /* AGP8x - not yet */
0059     [PCI_CAP_ID_SECDEV] = 0,        /* secure device not yet */
0060     [PCI_CAP_ID_EXP]    = 0xFF,     /* 20 or 44 */
0061     [PCI_CAP_ID_MSIX]   = PCI_CAP_MSIX_SIZEOF,
0062     [PCI_CAP_ID_SATA]   = 0xFF,
0063     [PCI_CAP_ID_AF]     = PCI_CAP_AF_SIZEOF,
0064 };
0065 
0066 /*
0067  * Lengths of PCIe/PCI-X Extended Config Capabilities
0068  *   0: Removed or masked from the user visible capability list
0069  *   FF: Variable length
0070  */
0071 static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
0072     [PCI_EXT_CAP_ID_ERR]    =   PCI_ERR_ROOT_COMMAND,
0073     [PCI_EXT_CAP_ID_VC] =   0xFF,
0074     [PCI_EXT_CAP_ID_DSN]    =   PCI_EXT_CAP_DSN_SIZEOF,
0075     [PCI_EXT_CAP_ID_PWR]    =   PCI_EXT_CAP_PWR_SIZEOF,
0076     [PCI_EXT_CAP_ID_RCLD]   =   0,  /* root only - don't care */
0077     [PCI_EXT_CAP_ID_RCILC]  =   0,  /* root only - don't care */
0078     [PCI_EXT_CAP_ID_RCEC]   =   0,  /* root only - don't care */
0079     [PCI_EXT_CAP_ID_MFVC]   =   0xFF,
0080     [PCI_EXT_CAP_ID_VC9]    =   0xFF,   /* same as CAP_ID_VC */
0081     [PCI_EXT_CAP_ID_RCRB]   =   0,  /* root only - don't care */
0082     [PCI_EXT_CAP_ID_VNDR]   =   0xFF,
0083     [PCI_EXT_CAP_ID_CAC]    =   0,  /* obsolete */
0084     [PCI_EXT_CAP_ID_ACS]    =   0xFF,
0085     [PCI_EXT_CAP_ID_ARI]    =   PCI_EXT_CAP_ARI_SIZEOF,
0086     [PCI_EXT_CAP_ID_ATS]    =   PCI_EXT_CAP_ATS_SIZEOF,
0087     [PCI_EXT_CAP_ID_SRIOV]  =   PCI_EXT_CAP_SRIOV_SIZEOF,
0088     [PCI_EXT_CAP_ID_MRIOV]  =   0,  /* not yet */
0089     [PCI_EXT_CAP_ID_MCAST]  =   PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
0090     [PCI_EXT_CAP_ID_PRI]    =   PCI_EXT_CAP_PRI_SIZEOF,
0091     [PCI_EXT_CAP_ID_AMD_XXX] =  0,  /* not yet */
0092     [PCI_EXT_CAP_ID_REBAR]  =   0xFF,
0093     [PCI_EXT_CAP_ID_DPA]    =   0xFF,
0094     [PCI_EXT_CAP_ID_TPH]    =   0xFF,
0095     [PCI_EXT_CAP_ID_LTR]    =   PCI_EXT_CAP_LTR_SIZEOF,
0096     [PCI_EXT_CAP_ID_SECPCI] =   0,  /* not yet */
0097     [PCI_EXT_CAP_ID_PMUX]   =   0,  /* not yet */
0098     [PCI_EXT_CAP_ID_PASID]  =   0,  /* not yet */
0099 };
0100 
0101 /*
0102  * Read/Write Permission Bits - one bit for each bit in capability
0103  * Any field can be read if it exists, but what is read depends on
0104  * whether the field is 'virtualized', or just pass through to the
0105  * hardware.  Any virtualized field is also virtualized for writes.
0106  * Writes are only permitted if they have a 1 bit here.
0107  */
0108 struct perm_bits {
0109     u8  *virt;      /* read/write virtual data, not hw */
0110     u8  *write;     /* writeable bits */
0111     int (*readfn)(struct vfio_pci_core_device *vdev, int pos, int count,
0112               struct perm_bits *perm, int offset, __le32 *val);
0113     int (*writefn)(struct vfio_pci_core_device *vdev, int pos, int count,
0114                struct perm_bits *perm, int offset, __le32 val);
0115 };
0116 
0117 #define NO_VIRT     0
0118 #define ALL_VIRT    0xFFFFFFFFU
0119 #define NO_WRITE    0
0120 #define ALL_WRITE   0xFFFFFFFFU
0121 
0122 static int vfio_user_config_read(struct pci_dev *pdev, int offset,
0123                  __le32 *val, int count)
0124 {
0125     int ret = -EINVAL;
0126     u32 tmp_val = 0;
0127 
0128     switch (count) {
0129     case 1:
0130     {
0131         u8 tmp;
0132         ret = pci_user_read_config_byte(pdev, offset, &tmp);
0133         tmp_val = tmp;
0134         break;
0135     }
0136     case 2:
0137     {
0138         u16 tmp;
0139         ret = pci_user_read_config_word(pdev, offset, &tmp);
0140         tmp_val = tmp;
0141         break;
0142     }
0143     case 4:
0144         ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
0145         break;
0146     }
0147 
0148     *val = cpu_to_le32(tmp_val);
0149 
0150     return ret;
0151 }
0152 
0153 static int vfio_user_config_write(struct pci_dev *pdev, int offset,
0154                   __le32 val, int count)
0155 {
0156     int ret = -EINVAL;
0157     u32 tmp_val = le32_to_cpu(val);
0158 
0159     switch (count) {
0160     case 1:
0161         ret = pci_user_write_config_byte(pdev, offset, tmp_val);
0162         break;
0163     case 2:
0164         ret = pci_user_write_config_word(pdev, offset, tmp_val);
0165         break;
0166     case 4:
0167         ret = pci_user_write_config_dword(pdev, offset, tmp_val);
0168         break;
0169     }
0170 
0171     return ret;
0172 }
0173 
0174 static int vfio_default_config_read(struct vfio_pci_core_device *vdev, int pos,
0175                     int count, struct perm_bits *perm,
0176                     int offset, __le32 *val)
0177 {
0178     __le32 virt = 0;
0179 
0180     memcpy(val, vdev->vconfig + pos, count);
0181 
0182     memcpy(&virt, perm->virt + offset, count);
0183 
0184     /* Any non-virtualized bits? */
0185     if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
0186         struct pci_dev *pdev = vdev->pdev;
0187         __le32 phys_val = 0;
0188         int ret;
0189 
0190         ret = vfio_user_config_read(pdev, pos, &phys_val, count);
0191         if (ret)
0192             return ret;
0193 
0194         *val = (phys_val & ~virt) | (*val & virt);
0195     }
0196 
0197     return count;
0198 }
0199 
0200 static int vfio_default_config_write(struct vfio_pci_core_device *vdev, int pos,
0201                      int count, struct perm_bits *perm,
0202                      int offset, __le32 val)
0203 {
0204     __le32 virt = 0, write = 0;
0205 
0206     memcpy(&write, perm->write + offset, count);
0207 
0208     if (!write)
0209         return count; /* drop, no writable bits */
0210 
0211     memcpy(&virt, perm->virt + offset, count);
0212 
0213     /* Virtualized and writable bits go to vconfig */
0214     if (write & virt) {
0215         __le32 virt_val = 0;
0216 
0217         memcpy(&virt_val, vdev->vconfig + pos, count);
0218 
0219         virt_val &= ~(write & virt);
0220         virt_val |= (val & (write & virt));
0221 
0222         memcpy(vdev->vconfig + pos, &virt_val, count);
0223     }
0224 
0225     /* Non-virtualized and writable bits go to hardware */
0226     if (write & ~virt) {
0227         struct pci_dev *pdev = vdev->pdev;
0228         __le32 phys_val = 0;
0229         int ret;
0230 
0231         ret = vfio_user_config_read(pdev, pos, &phys_val, count);
0232         if (ret)
0233             return ret;
0234 
0235         phys_val &= ~(write & ~virt);
0236         phys_val |= (val & (write & ~virt));
0237 
0238         ret = vfio_user_config_write(pdev, pos, phys_val, count);
0239         if (ret)
0240             return ret;
0241     }
0242 
0243     return count;
0244 }
0245 
0246 /* Allow direct read from hardware, except for capability next pointer */
0247 static int vfio_direct_config_read(struct vfio_pci_core_device *vdev, int pos,
0248                    int count, struct perm_bits *perm,
0249                    int offset, __le32 *val)
0250 {
0251     int ret;
0252 
0253     ret = vfio_user_config_read(vdev->pdev, pos, val, count);
0254     if (ret)
0255         return ret;
0256 
0257     if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
0258         if (offset < 4)
0259             memcpy(val, vdev->vconfig + pos, count);
0260     } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
0261         if (offset == PCI_CAP_LIST_ID && count > 1)
0262             memcpy(val, vdev->vconfig + pos,
0263                    min(PCI_CAP_FLAGS, count));
0264         else if (offset == PCI_CAP_LIST_NEXT)
0265             memcpy(val, vdev->vconfig + pos, 1);
0266     }
0267 
0268     return count;
0269 }
0270 
0271 /* Raw access skips any kind of virtualization */
0272 static int vfio_raw_config_write(struct vfio_pci_core_device *vdev, int pos,
0273                  int count, struct perm_bits *perm,
0274                  int offset, __le32 val)
0275 {
0276     int ret;
0277 
0278     ret = vfio_user_config_write(vdev->pdev, pos, val, count);
0279     if (ret)
0280         return ret;
0281 
0282     return count;
0283 }
0284 
0285 static int vfio_raw_config_read(struct vfio_pci_core_device *vdev, int pos,
0286                 int count, struct perm_bits *perm,
0287                 int offset, __le32 *val)
0288 {
0289     int ret;
0290 
0291     ret = vfio_user_config_read(vdev->pdev, pos, val, count);
0292     if (ret)
0293         return ret;
0294 
0295     return count;
0296 }
0297 
0298 /* Virt access uses only virtualization */
0299 static int vfio_virt_config_write(struct vfio_pci_core_device *vdev, int pos,
0300                   int count, struct perm_bits *perm,
0301                   int offset, __le32 val)
0302 {
0303     memcpy(vdev->vconfig + pos, &val, count);
0304     return count;
0305 }
0306 
0307 static int vfio_virt_config_read(struct vfio_pci_core_device *vdev, int pos,
0308                  int count, struct perm_bits *perm,
0309                  int offset, __le32 *val)
0310 {
0311     memcpy(val, vdev->vconfig + pos, count);
0312     return count;
0313 }
0314 
0315 /* Default capability regions to read-only, no-virtualization */
0316 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
0317     [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
0318 };
0319 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
0320     [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
0321 };
0322 /*
0323  * Default unassigned regions to raw read-write access.  Some devices
0324  * require this to function as they hide registers between the gaps in
0325  * config space (be2net).  Like MMIO and I/O port registers, we have
0326  * to trust the hardware isolation.
0327  */
0328 static struct perm_bits unassigned_perms = {
0329     .readfn = vfio_raw_config_read,
0330     .writefn = vfio_raw_config_write
0331 };
0332 
0333 static struct perm_bits virt_perms = {
0334     .readfn = vfio_virt_config_read,
0335     .writefn = vfio_virt_config_write
0336 };
0337 
0338 static void free_perm_bits(struct perm_bits *perm)
0339 {
0340     kfree(perm->virt);
0341     kfree(perm->write);
0342     perm->virt = NULL;
0343     perm->write = NULL;
0344 }
0345 
0346 static int alloc_perm_bits(struct perm_bits *perm, int size)
0347 {
0348     /*
0349      * Round up all permission bits to the next dword, this lets us
0350      * ignore whether a read/write exceeds the defined capability
0351      * structure.  We can do this because:
0352      *  - Standard config space is already dword aligned
0353      *  - Capabilities are all dword aligned (bits 0:1 of next reserved)
0354      *  - Express capabilities defined as dword aligned
0355      */
0356     size = round_up(size, 4);
0357 
0358     /*
0359      * Zero state is
0360      * - All Readable, None Writeable, None Virtualized
0361      */
0362     perm->virt = kzalloc(size, GFP_KERNEL);
0363     perm->write = kzalloc(size, GFP_KERNEL);
0364     if (!perm->virt || !perm->write) {
0365         free_perm_bits(perm);
0366         return -ENOMEM;
0367     }
0368 
0369     perm->readfn = vfio_default_config_read;
0370     perm->writefn = vfio_default_config_write;
0371 
0372     return 0;
0373 }
0374 
0375 /*
0376  * Helper functions for filling in permission tables
0377  */
0378 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
0379 {
0380     p->virt[off] = virt;
0381     p->write[off] = write;
0382 }
0383 
0384 /* Handle endian-ness - pci and tables are little-endian */
0385 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
0386 {
0387     *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
0388     *(__le16 *)(&p->write[off]) = cpu_to_le16(write);
0389 }
0390 
0391 /* Handle endian-ness - pci and tables are little-endian */
0392 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
0393 {
0394     *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
0395     *(__le32 *)(&p->write[off]) = cpu_to_le32(write);
0396 }
0397 
0398 /* Caller should hold memory_lock semaphore */
0399 bool __vfio_pci_memory_enabled(struct vfio_pci_core_device *vdev)
0400 {
0401     struct pci_dev *pdev = vdev->pdev;
0402     u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
0403 
0404     /*
0405      * Memory region cannot be accessed if device power state is D3.
0406      *
0407      * SR-IOV VF memory enable is handled by the MSE bit in the
0408      * PF SR-IOV capability, there's therefore no need to trigger
0409      * faults based on the virtual value.
0410      */
0411     return pdev->current_state < PCI_D3hot &&
0412            (pdev->no_command_memory || (cmd & PCI_COMMAND_MEMORY));
0413 }
0414 
0415 /*
0416  * Restore the *real* BARs after we detect a FLR or backdoor reset.
0417  * (backdoor = some device specific technique that we didn't catch)
0418  */
0419 static void vfio_bar_restore(struct vfio_pci_core_device *vdev)
0420 {
0421     struct pci_dev *pdev = vdev->pdev;
0422     u32 *rbar = vdev->rbar;
0423     u16 cmd;
0424     int i;
0425 
0426     if (pdev->is_virtfn)
0427         return;
0428 
0429     pci_info(pdev, "%s: reset recovery - restoring BARs\n", __func__);
0430 
0431     for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
0432         pci_user_write_config_dword(pdev, i, *rbar);
0433 
0434     pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
0435 
0436     if (vdev->nointx) {
0437         pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
0438         cmd |= PCI_COMMAND_INTX_DISABLE;
0439         pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
0440     }
0441 }
0442 
0443 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
0444 {
0445     unsigned long flags = pci_resource_flags(pdev, bar);
0446     u32 val;
0447 
0448     if (flags & IORESOURCE_IO)
0449         return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
0450 
0451     val = PCI_BASE_ADDRESS_SPACE_MEMORY;
0452 
0453     if (flags & IORESOURCE_PREFETCH)
0454         val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
0455 
0456     if (flags & IORESOURCE_MEM_64)
0457         val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
0458 
0459     return cpu_to_le32(val);
0460 }
0461 
0462 /*
0463  * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
0464  * to reflect the hardware capabilities.  This implements BAR sizing.
0465  */
0466 static void vfio_bar_fixup(struct vfio_pci_core_device *vdev)
0467 {
0468     struct pci_dev *pdev = vdev->pdev;
0469     int i;
0470     __le32 *vbar;
0471     u64 mask;
0472 
0473     if (!vdev->bardirty)
0474         return;
0475 
0476     vbar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
0477 
0478     for (i = 0; i < PCI_STD_NUM_BARS; i++, vbar++) {
0479         int bar = i + PCI_STD_RESOURCES;
0480 
0481         if (!pci_resource_start(pdev, bar)) {
0482             *vbar = 0; /* Unmapped by host = unimplemented to user */
0483             continue;
0484         }
0485 
0486         mask = ~(pci_resource_len(pdev, bar) - 1);
0487 
0488         *vbar &= cpu_to_le32((u32)mask);
0489         *vbar |= vfio_generate_bar_flags(pdev, bar);
0490 
0491         if (*vbar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
0492             vbar++;
0493             *vbar &= cpu_to_le32((u32)(mask >> 32));
0494             i++;
0495         }
0496     }
0497 
0498     vbar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
0499 
0500     /*
0501      * NB. REGION_INFO will have reported zero size if we weren't able
0502      * to read the ROM, but we still return the actual BAR size here if
0503      * it exists (or the shadow ROM space).
0504      */
0505     if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
0506         mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
0507         mask |= PCI_ROM_ADDRESS_ENABLE;
0508         *vbar &= cpu_to_le32((u32)mask);
0509     } else if (pdev->resource[PCI_ROM_RESOURCE].flags &
0510                     IORESOURCE_ROM_SHADOW) {
0511         mask = ~(0x20000 - 1);
0512         mask |= PCI_ROM_ADDRESS_ENABLE;
0513         *vbar &= cpu_to_le32((u32)mask);
0514     } else
0515         *vbar = 0;
0516 
0517     vdev->bardirty = false;
0518 }
0519 
0520 static int vfio_basic_config_read(struct vfio_pci_core_device *vdev, int pos,
0521                   int count, struct perm_bits *perm,
0522                   int offset, __le32 *val)
0523 {
0524     if (is_bar(offset)) /* pos == offset for basic config */
0525         vfio_bar_fixup(vdev);
0526 
0527     count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
0528 
0529     /* Mask in virtual memory enable */
0530     if (offset == PCI_COMMAND && vdev->pdev->no_command_memory) {
0531         u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
0532         u32 tmp_val = le32_to_cpu(*val);
0533 
0534         tmp_val |= cmd & PCI_COMMAND_MEMORY;
0535         *val = cpu_to_le32(tmp_val);
0536     }
0537 
0538     return count;
0539 }
0540 
0541 /* Test whether BARs match the value we think they should contain */
0542 static bool vfio_need_bar_restore(struct vfio_pci_core_device *vdev)
0543 {
0544     int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
0545     u32 bar;
0546 
0547     for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
0548         if (vdev->rbar[i]) {
0549             ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
0550             if (ret || vdev->rbar[i] != bar)
0551                 return true;
0552         }
0553     }
0554 
0555     return false;
0556 }
0557 
0558 static int vfio_basic_config_write(struct vfio_pci_core_device *vdev, int pos,
0559                    int count, struct perm_bits *perm,
0560                    int offset, __le32 val)
0561 {
0562     struct pci_dev *pdev = vdev->pdev;
0563     __le16 *virt_cmd;
0564     u16 new_cmd = 0;
0565     int ret;
0566 
0567     virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
0568 
0569     if (offset == PCI_COMMAND) {
0570         bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
0571         u16 phys_cmd;
0572 
0573         ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
0574         if (ret)
0575             return ret;
0576 
0577         new_cmd = le32_to_cpu(val);
0578 
0579         phys_io = !!(phys_cmd & PCI_COMMAND_IO);
0580         virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
0581         new_io = !!(new_cmd & PCI_COMMAND_IO);
0582 
0583         phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
0584         virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
0585         new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
0586 
0587         if (!new_mem)
0588             vfio_pci_zap_and_down_write_memory_lock(vdev);
0589         else
0590             down_write(&vdev->memory_lock);
0591 
0592         /*
0593          * If the user is writing mem/io enable (new_mem/io) and we
0594          * think it's already enabled (virt_mem/io), but the hardware
0595          * shows it disabled (phys_mem/io, then the device has
0596          * undergone some kind of backdoor reset and needs to be
0597          * restored before we allow it to enable the bars.
0598          * SR-IOV devices will trigger this - for mem enable let's
0599          * catch this now and for io enable it will be caught later
0600          */
0601         if ((new_mem && virt_mem && !phys_mem &&
0602              !pdev->no_command_memory) ||
0603             (new_io && virt_io && !phys_io) ||
0604             vfio_need_bar_restore(vdev))
0605             vfio_bar_restore(vdev);
0606     }
0607 
0608     count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
0609     if (count < 0) {
0610         if (offset == PCI_COMMAND)
0611             up_write(&vdev->memory_lock);
0612         return count;
0613     }
0614 
0615     /*
0616      * Save current memory/io enable bits in vconfig to allow for
0617      * the test above next time.
0618      */
0619     if (offset == PCI_COMMAND) {
0620         u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
0621 
0622         *virt_cmd &= cpu_to_le16(~mask);
0623         *virt_cmd |= cpu_to_le16(new_cmd & mask);
0624 
0625         up_write(&vdev->memory_lock);
0626     }
0627 
0628     /* Emulate INTx disable */
0629     if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
0630         bool virt_intx_disable;
0631 
0632         virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
0633                        PCI_COMMAND_INTX_DISABLE);
0634 
0635         if (virt_intx_disable && !vdev->virq_disabled) {
0636             vdev->virq_disabled = true;
0637             vfio_pci_intx_mask(vdev);
0638         } else if (!virt_intx_disable && vdev->virq_disabled) {
0639             vdev->virq_disabled = false;
0640             vfio_pci_intx_unmask(vdev);
0641         }
0642     }
0643 
0644     if (is_bar(offset))
0645         vdev->bardirty = true;
0646 
0647     return count;
0648 }
0649 
0650 /* Permissions for the Basic PCI Header */
0651 static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
0652 {
0653     if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
0654         return -ENOMEM;
0655 
0656     perm->readfn = vfio_basic_config_read;
0657     perm->writefn = vfio_basic_config_write;
0658 
0659     /* Virtualized for SR-IOV functions, which just have FFFF */
0660     p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
0661     p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
0662 
0663     /*
0664      * Virtualize INTx disable, we use it internally for interrupt
0665      * control and can emulate it for non-PCI 2.3 devices.
0666      */
0667     p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
0668 
0669     /* Virtualize capability list, we might want to skip/disable */
0670     p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
0671 
0672     /* No harm to write */
0673     p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
0674     p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
0675     p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
0676 
0677     /* Virtualize all bars, can't touch the real ones */
0678     p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
0679     p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
0680     p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
0681     p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
0682     p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
0683     p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
0684     p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
0685 
0686     /* Allow us to adjust capability chain */
0687     p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
0688 
0689     /* Sometimes used by sw, just virtualize */
0690     p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
0691 
0692     /* Virtualize interrupt pin to allow hiding INTx */
0693     p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
0694 
0695     return 0;
0696 }
0697 
0698 /*
0699  * It takes all the required locks to protect the access of power related
0700  * variables and then invokes vfio_pci_set_power_state().
0701  */
0702 static void vfio_lock_and_set_power_state(struct vfio_pci_core_device *vdev,
0703                       pci_power_t state)
0704 {
0705     if (state >= PCI_D3hot)
0706         vfio_pci_zap_and_down_write_memory_lock(vdev);
0707     else
0708         down_write(&vdev->memory_lock);
0709 
0710     vfio_pci_set_power_state(vdev, state);
0711     up_write(&vdev->memory_lock);
0712 }
0713 
0714 static int vfio_pm_config_write(struct vfio_pci_core_device *vdev, int pos,
0715                 int count, struct perm_bits *perm,
0716                 int offset, __le32 val)
0717 {
0718     count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
0719     if (count < 0)
0720         return count;
0721 
0722     if (offset == PCI_PM_CTRL) {
0723         pci_power_t state;
0724 
0725         switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
0726         case 0:
0727             state = PCI_D0;
0728             break;
0729         case 1:
0730             state = PCI_D1;
0731             break;
0732         case 2:
0733             state = PCI_D2;
0734             break;
0735         case 3:
0736             state = PCI_D3hot;
0737             break;
0738         }
0739 
0740         vfio_lock_and_set_power_state(vdev, state);
0741     }
0742 
0743     return count;
0744 }
0745 
0746 /* Permissions for the Power Management capability */
0747 static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
0748 {
0749     if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
0750         return -ENOMEM;
0751 
0752     perm->writefn = vfio_pm_config_write;
0753 
0754     /*
0755      * We always virtualize the next field so we can remove
0756      * capabilities from the chain if we want to.
0757      */
0758     p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
0759 
0760     /*
0761      * The guests can't process PME events. If any PME event will be
0762      * generated, then it will be mostly handled in the host and the
0763      * host will clear the PME_STATUS. So virtualize PME_Support bits.
0764      * The vconfig bits will be cleared during device capability
0765      * initialization.
0766      */
0767     p_setw(perm, PCI_PM_PMC, PCI_PM_CAP_PME_MASK, NO_WRITE);
0768 
0769     /*
0770      * Power management is defined *per function*, so we can let
0771      * the user change power state, but we trap and initiate the
0772      * change ourselves, so the state bits are read-only.
0773      *
0774      * The guest can't process PME from D3cold so virtualize PME_Status
0775      * and PME_En bits. The vconfig bits will be cleared during device
0776      * capability initialization.
0777      */
0778     p_setd(perm, PCI_PM_CTRL,
0779            PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS,
0780            ~(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS |
0781          PCI_PM_CTRL_STATE_MASK));
0782 
0783     return 0;
0784 }
0785 
0786 static int vfio_vpd_config_write(struct vfio_pci_core_device *vdev, int pos,
0787                  int count, struct perm_bits *perm,
0788                  int offset, __le32 val)
0789 {
0790     struct pci_dev *pdev = vdev->pdev;
0791     __le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
0792     __le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
0793     u16 addr;
0794     u32 data;
0795 
0796     /*
0797      * Write through to emulation.  If the write includes the upper byte
0798      * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
0799      * have work to do.
0800      */
0801     count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
0802     if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
0803         offset + count <= PCI_VPD_ADDR + 1)
0804         return count;
0805 
0806     addr = le16_to_cpu(*paddr);
0807 
0808     if (addr & PCI_VPD_ADDR_F) {
0809         data = le32_to_cpu(*pdata);
0810         if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
0811             return count;
0812     } else {
0813         data = 0;
0814         if (pci_read_vpd(pdev, addr, 4, &data) < 0)
0815             return count;
0816         *pdata = cpu_to_le32(data);
0817     }
0818 
0819     /*
0820      * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
0821      * signal completion.  If an error occurs above, we assume that not
0822      * toggling this bit will induce a driver timeout.
0823      */
0824     addr ^= PCI_VPD_ADDR_F;
0825     *paddr = cpu_to_le16(addr);
0826 
0827     return count;
0828 }
0829 
0830 /* Permissions for Vital Product Data capability */
0831 static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
0832 {
0833     if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
0834         return -ENOMEM;
0835 
0836     perm->writefn = vfio_vpd_config_write;
0837 
0838     /*
0839      * We always virtualize the next field so we can remove
0840      * capabilities from the chain if we want to.
0841      */
0842     p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
0843 
0844     /*
0845      * Both the address and data registers are virtualized to
0846      * enable access through the pci_vpd_read/write functions
0847      */
0848     p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
0849     p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
0850 
0851     return 0;
0852 }
0853 
0854 /* Permissions for PCI-X capability */
0855 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
0856 {
0857     /* Alloc 24, but only 8 are used in v0 */
0858     if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
0859         return -ENOMEM;
0860 
0861     p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
0862 
0863     p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
0864     p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
0865     return 0;
0866 }
0867 
0868 static int vfio_exp_config_write(struct vfio_pci_core_device *vdev, int pos,
0869                  int count, struct perm_bits *perm,
0870                  int offset, __le32 val)
0871 {
0872     __le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
0873                   offset + PCI_EXP_DEVCTL);
0874     int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ;
0875 
0876     count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
0877     if (count < 0)
0878         return count;
0879 
0880     /*
0881      * The FLR bit is virtualized, if set and the device supports PCIe
0882      * FLR, issue a reset_function.  Regardless, clear the bit, the spec
0883      * requires it to be always read as zero.  NB, reset_function might
0884      * not use a PCIe FLR, we don't have that level of granularity.
0885      */
0886     if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
0887         u32 cap;
0888         int ret;
0889 
0890         *ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);
0891 
0892         ret = pci_user_read_config_dword(vdev->pdev,
0893                          pos - offset + PCI_EXP_DEVCAP,
0894                          &cap);
0895 
0896         if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) {
0897             vfio_pci_zap_and_down_write_memory_lock(vdev);
0898             pci_try_reset_function(vdev->pdev);
0899             up_write(&vdev->memory_lock);
0900         }
0901     }
0902 
0903     /*
0904      * MPS is virtualized to the user, writes do not change the physical
0905      * register since determining a proper MPS value requires a system wide
0906      * device view.  The MRRS is largely independent of MPS, but since the
0907      * user does not have that system-wide view, they might set a safe, but
0908      * inefficiently low value.  Here we allow writes through to hardware,
0909      * but we set the floor to the physical device MPS setting, so that
0910      * we can at least use full TLPs, as defined by the MPS value.
0911      *
0912      * NB, if any devices actually depend on an artificially low MRRS
0913      * setting, this will need to be revisited, perhaps with a quirk
0914      * though pcie_set_readrq().
0915      */
0916     if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) {
0917         readrq = 128 <<
0918             ((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12);
0919         readrq = max(readrq, pcie_get_mps(vdev->pdev));
0920 
0921         pcie_set_readrq(vdev->pdev, readrq);
0922     }
0923 
0924     return count;
0925 }
0926 
0927 /* Permissions for PCI Express capability */
0928 static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
0929 {
0930     /* Alloc largest of possible sizes */
0931     if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
0932         return -ENOMEM;
0933 
0934     perm->writefn = vfio_exp_config_write;
0935 
0936     p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
0937 
0938     /*
0939      * Allow writes to device control fields, except devctl_phantom,
0940      * which could confuse IOMMU, MPS, which can break communication
0941      * with other physical devices, and the ARI bit in devctl2, which
0942      * is set at probe time.  FLR and MRRS get virtualized via our
0943      * writefn.
0944      */
0945     p_setw(perm, PCI_EXP_DEVCTL,
0946            PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD |
0947            PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM);
0948     p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
0949     return 0;
0950 }
0951 
0952 static int vfio_af_config_write(struct vfio_pci_core_device *vdev, int pos,
0953                 int count, struct perm_bits *perm,
0954                 int offset, __le32 val)
0955 {
0956     u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;
0957 
0958     count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
0959     if (count < 0)
0960         return count;
0961 
0962     /*
0963      * The FLR bit is virtualized, if set and the device supports AF
0964      * FLR, issue a reset_function.  Regardless, clear the bit, the spec
0965      * requires it to be always read as zero.  NB, reset_function might
0966      * not use an AF FLR, we don't have that level of granularity.
0967      */
0968     if (*ctrl & PCI_AF_CTRL_FLR) {
0969         u8 cap;
0970         int ret;
0971 
0972         *ctrl &= ~PCI_AF_CTRL_FLR;
0973 
0974         ret = pci_user_read_config_byte(vdev->pdev,
0975                         pos - offset + PCI_AF_CAP,
0976                         &cap);
0977 
0978         if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) {
0979             vfio_pci_zap_and_down_write_memory_lock(vdev);
0980             pci_try_reset_function(vdev->pdev);
0981             up_write(&vdev->memory_lock);
0982         }
0983     }
0984 
0985     return count;
0986 }
0987 
0988 /* Permissions for Advanced Function capability */
0989 static int __init init_pci_cap_af_perm(struct perm_bits *perm)
0990 {
0991     if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
0992         return -ENOMEM;
0993 
0994     perm->writefn = vfio_af_config_write;
0995 
0996     p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
0997     p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
0998     return 0;
0999 }
1000 
1001 /* Permissions for Advanced Error Reporting extended capability */
1002 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
1003 {
1004     u32 mask;
1005 
1006     if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
1007         return -ENOMEM;
1008 
1009     /*
1010      * Virtualize the first dword of all express capabilities
1011      * because it includes the next pointer.  This lets us later
1012      * remove capabilities from the chain if we need to.
1013      */
1014     p_setd(perm, 0, ALL_VIRT, NO_WRITE);
1015 
1016     /* Writable bits mask */
1017     mask =  PCI_ERR_UNC_UND |       /* Undefined */
1018         PCI_ERR_UNC_DLP |       /* Data Link Protocol */
1019         PCI_ERR_UNC_SURPDN |        /* Surprise Down */
1020         PCI_ERR_UNC_POISON_TLP |    /* Poisoned TLP */
1021         PCI_ERR_UNC_FCP |       /* Flow Control Protocol */
1022         PCI_ERR_UNC_COMP_TIME |     /* Completion Timeout */
1023         PCI_ERR_UNC_COMP_ABORT |    /* Completer Abort */
1024         PCI_ERR_UNC_UNX_COMP |      /* Unexpected Completion */
1025         PCI_ERR_UNC_RX_OVER |       /* Receiver Overflow */
1026         PCI_ERR_UNC_MALF_TLP |      /* Malformed TLP */
1027         PCI_ERR_UNC_ECRC |      /* ECRC Error Status */
1028         PCI_ERR_UNC_UNSUP |     /* Unsupported Request */
1029         PCI_ERR_UNC_ACSV |      /* ACS Violation */
1030         PCI_ERR_UNC_INTN |      /* internal error */
1031         PCI_ERR_UNC_MCBTLP |        /* MC blocked TLP */
1032         PCI_ERR_UNC_ATOMEG |        /* Atomic egress blocked */
1033         PCI_ERR_UNC_TLPPRE;     /* TLP prefix blocked */
1034     p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
1035     p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
1036     p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
1037 
1038     mask =  PCI_ERR_COR_RCVR |      /* Receiver Error Status */
1039         PCI_ERR_COR_BAD_TLP |       /* Bad TLP Status */
1040         PCI_ERR_COR_BAD_DLLP |      /* Bad DLLP Status */
1041         PCI_ERR_COR_REP_ROLL |      /* REPLAY_NUM Rollover */
1042         PCI_ERR_COR_REP_TIMER |     /* Replay Timer Timeout */
1043         PCI_ERR_COR_ADV_NFAT |      /* Advisory Non-Fatal */
1044         PCI_ERR_COR_INTERNAL |      /* Corrected Internal */
1045         PCI_ERR_COR_LOG_OVER;       /* Header Log Overflow */
1046     p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
1047     p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
1048 
1049     mask =  PCI_ERR_CAP_ECRC_GENE |     /* ECRC Generation Enable */
1050         PCI_ERR_CAP_ECRC_CHKE;      /* ECRC Check Enable */
1051     p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
1052     return 0;
1053 }
1054 
1055 /* Permissions for Power Budgeting extended capability */
1056 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
1057 {
1058     if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
1059         return -ENOMEM;
1060 
1061     p_setd(perm, 0, ALL_VIRT, NO_WRITE);
1062 
1063     /* Writing the data selector is OK, the info is still read-only */
1064     p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
1065     return 0;
1066 }
1067 
1068 /*
1069  * Initialize the shared permission tables
1070  */
1071 void vfio_pci_uninit_perm_bits(void)
1072 {
1073     free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
1074 
1075     free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
1076     free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
1077     free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
1078     free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
1079     free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
1080 
1081     free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1082     free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1083 }
1084 
1085 int __init vfio_pci_init_perm_bits(void)
1086 {
1087     int ret;
1088 
1089     /* Basic config space */
1090     ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
1091 
1092     /* Capabilities */
1093     ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
1094     ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
1095     ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
1096     cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1097     ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
1098     ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
1099 
1100     /* Extended capabilities */
1101     ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1102     ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1103     ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1104 
1105     if (ret)
1106         vfio_pci_uninit_perm_bits();
1107 
1108     return ret;
1109 }
1110 
1111 static int vfio_find_cap_start(struct vfio_pci_core_device *vdev, int pos)
1112 {
1113     u8 cap;
1114     int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
1115                          PCI_STD_HEADER_SIZEOF;
1116     cap = vdev->pci_config_map[pos];
1117 
1118     if (cap == PCI_CAP_ID_BASIC)
1119         return 0;
1120 
1121     /* XXX Can we have to abutting capabilities of the same type? */
1122     while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
1123         pos--;
1124 
1125     return pos;
1126 }
1127 
1128 static int vfio_msi_config_read(struct vfio_pci_core_device *vdev, int pos,
1129                 int count, struct perm_bits *perm,
1130                 int offset, __le32 *val)
1131 {
1132     /* Update max available queue size from msi_qmax */
1133     if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1134         __le16 *flags;
1135         int start;
1136 
1137         start = vfio_find_cap_start(vdev, pos);
1138 
1139         flags = (__le16 *)&vdev->vconfig[start];
1140 
1141         *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
1142         *flags |= cpu_to_le16(vdev->msi_qmax << 1);
1143     }
1144 
1145     return vfio_default_config_read(vdev, pos, count, perm, offset, val);
1146 }
1147 
1148 static int vfio_msi_config_write(struct vfio_pci_core_device *vdev, int pos,
1149                  int count, struct perm_bits *perm,
1150                  int offset, __le32 val)
1151 {
1152     count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
1153     if (count < 0)
1154         return count;
1155 
1156     /* Fixup and write configured queue size and enable to hardware */
1157     if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1158         __le16 *pflags;
1159         u16 flags;
1160         int start, ret;
1161 
1162         start = vfio_find_cap_start(vdev, pos);
1163 
1164         pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
1165 
1166         flags = le16_to_cpu(*pflags);
1167 
1168         /* MSI is enabled via ioctl */
1169         if  (!is_msi(vdev))
1170             flags &= ~PCI_MSI_FLAGS_ENABLE;
1171 
1172         /* Check queue size */
1173         if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
1174             flags &= ~PCI_MSI_FLAGS_QSIZE;
1175             flags |= vdev->msi_qmax << 4;
1176         }
1177 
1178         /* Write back to virt and to hardware */
1179         *pflags = cpu_to_le16(flags);
1180         ret = pci_user_write_config_word(vdev->pdev,
1181                          start + PCI_MSI_FLAGS,
1182                          flags);
1183         if (ret)
1184             return ret;
1185     }
1186 
1187     return count;
1188 }
1189 
1190 /*
1191  * MSI determination is per-device, so this routine gets used beyond
1192  * initialization time. Don't add __init
1193  */
1194 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
1195 {
1196     if (alloc_perm_bits(perm, len))
1197         return -ENOMEM;
1198 
1199     perm->readfn = vfio_msi_config_read;
1200     perm->writefn = vfio_msi_config_write;
1201 
1202     p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1203 
1204     /*
1205      * The upper byte of the control register is reserved,
1206      * just setup the lower byte.
1207      */
1208     p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
1209     p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
1210     if (flags & PCI_MSI_FLAGS_64BIT) {
1211         p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
1212         p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
1213         if (flags & PCI_MSI_FLAGS_MASKBIT) {
1214             p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
1215             p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1216         }
1217     } else {
1218         p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1219         if (flags & PCI_MSI_FLAGS_MASKBIT) {
1220             p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1221             p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1222         }
1223     }
1224     return 0;
1225 }
1226 
1227 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
1228 static int vfio_msi_cap_len(struct vfio_pci_core_device *vdev, u8 pos)
1229 {
1230     struct pci_dev *pdev = vdev->pdev;
1231     int len, ret;
1232     u16 flags;
1233 
1234     ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1235     if (ret)
1236         return pcibios_err_to_errno(ret);
1237 
1238     len = 10; /* Minimum size */
1239     if (flags & PCI_MSI_FLAGS_64BIT)
1240         len += 4;
1241     if (flags & PCI_MSI_FLAGS_MASKBIT)
1242         len += 10;
1243 
1244     if (vdev->msi_perm)
1245         return len;
1246 
1247     vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
1248     if (!vdev->msi_perm)
1249         return -ENOMEM;
1250 
1251     ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1252     if (ret) {
1253         kfree(vdev->msi_perm);
1254         return ret;
1255     }
1256 
1257     return len;
1258 }
1259 
1260 /* Determine extended capability length for VC (2 & 9) and MFVC */
1261 static int vfio_vc_cap_len(struct vfio_pci_core_device *vdev, u16 pos)
1262 {
1263     struct pci_dev *pdev = vdev->pdev;
1264     u32 tmp;
1265     int ret, evcc, phases, vc_arb;
1266     int len = PCI_CAP_VC_BASE_SIZEOF;
1267 
1268     ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1269     if (ret)
1270         return pcibios_err_to_errno(ret);
1271 
1272     evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1273     ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1274     if (ret)
1275         return pcibios_err_to_errno(ret);
1276 
1277     if (tmp & PCI_VC_CAP2_128_PHASE)
1278         phases = 128;
1279     else if (tmp & PCI_VC_CAP2_64_PHASE)
1280         phases = 64;
1281     else if (tmp & PCI_VC_CAP2_32_PHASE)
1282         phases = 32;
1283     else
1284         phases = 0;
1285 
1286     vc_arb = phases * 4;
1287 
1288     /*
1289      * Port arbitration tables are root & switch only;
1290      * function arbitration tables are function 0 only.
1291      * In either case, we'll never let user write them so
1292      * we don't care how big they are
1293      */
1294     len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1295     if (vc_arb) {
1296         len = round_up(len, 16);
1297         len += vc_arb / 8;
1298     }
1299     return len;
1300 }
1301 
1302 static int vfio_cap_len(struct vfio_pci_core_device *vdev, u8 cap, u8 pos)
1303 {
1304     struct pci_dev *pdev = vdev->pdev;
1305     u32 dword;
1306     u16 word;
1307     u8 byte;
1308     int ret;
1309 
1310     switch (cap) {
1311     case PCI_CAP_ID_MSI:
1312         return vfio_msi_cap_len(vdev, pos);
1313     case PCI_CAP_ID_PCIX:
1314         ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1315         if (ret)
1316             return pcibios_err_to_errno(ret);
1317 
1318         if (PCI_X_CMD_VERSION(word)) {
1319             if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1320                 /* Test for extended capabilities */
1321                 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
1322                               &dword);
1323                 vdev->extended_caps = (dword != 0);
1324             }
1325             return PCI_CAP_PCIX_SIZEOF_V2;
1326         } else
1327             return PCI_CAP_PCIX_SIZEOF_V0;
1328     case PCI_CAP_ID_VNDR:
1329         /* length follows next field */
1330         ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1331         if (ret)
1332             return pcibios_err_to_errno(ret);
1333 
1334         return byte;
1335     case PCI_CAP_ID_EXP:
1336         if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1337             /* Test for extended capabilities */
1338             pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1339             vdev->extended_caps = (dword != 0);
1340         }
1341 
1342         /* length based on version and type */
1343         if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) {
1344             if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1345                 return 0xc; /* "All Devices" only, no link */
1346             return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1347         } else {
1348             if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1349                 return 0x2c; /* No link */
1350             return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1351         }
1352     case PCI_CAP_ID_HT:
1353         ret = pci_read_config_byte(pdev, pos + 3, &byte);
1354         if (ret)
1355             return pcibios_err_to_errno(ret);
1356 
1357         return (byte & HT_3BIT_CAP_MASK) ?
1358             HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1359     case PCI_CAP_ID_SATA:
1360         ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1361         if (ret)
1362             return pcibios_err_to_errno(ret);
1363 
1364         byte &= PCI_SATA_REGS_MASK;
1365         if (byte == PCI_SATA_REGS_INLINE)
1366             return PCI_SATA_SIZEOF_LONG;
1367         else
1368             return PCI_SATA_SIZEOF_SHORT;
1369     default:
1370         pci_warn(pdev, "%s: unknown length for PCI cap %#x@%#x\n",
1371              __func__, cap, pos);
1372     }
1373 
1374     return 0;
1375 }
1376 
1377 static int vfio_ext_cap_len(struct vfio_pci_core_device *vdev, u16 ecap, u16 epos)
1378 {
1379     struct pci_dev *pdev = vdev->pdev;
1380     u8 byte;
1381     u32 dword;
1382     int ret;
1383 
1384     switch (ecap) {
1385     case PCI_EXT_CAP_ID_VNDR:
1386         ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1387         if (ret)
1388             return pcibios_err_to_errno(ret);
1389 
1390         return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1391     case PCI_EXT_CAP_ID_VC:
1392     case PCI_EXT_CAP_ID_VC9:
1393     case PCI_EXT_CAP_ID_MFVC:
1394         return vfio_vc_cap_len(vdev, epos);
1395     case PCI_EXT_CAP_ID_ACS:
1396         ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1397         if (ret)
1398             return pcibios_err_to_errno(ret);
1399 
1400         if (byte & PCI_ACS_EC) {
1401             int bits;
1402 
1403             ret = pci_read_config_byte(pdev,
1404                            epos + PCI_ACS_EGRESS_BITS,
1405                            &byte);
1406             if (ret)
1407                 return pcibios_err_to_errno(ret);
1408 
1409             bits = byte ? round_up(byte, 32) : 256;
1410             return 8 + (bits / 8);
1411         }
1412         return 8;
1413 
1414     case PCI_EXT_CAP_ID_REBAR:
1415         ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1416         if (ret)
1417             return pcibios_err_to_errno(ret);
1418 
1419         byte &= PCI_REBAR_CTRL_NBAR_MASK;
1420         byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1421 
1422         return 4 + (byte * 8);
1423     case PCI_EXT_CAP_ID_DPA:
1424         ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1425         if (ret)
1426             return pcibios_err_to_errno(ret);
1427 
1428         byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1429         return PCI_DPA_BASE_SIZEOF + byte + 1;
1430     case PCI_EXT_CAP_ID_TPH:
1431         ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1432         if (ret)
1433             return pcibios_err_to_errno(ret);
1434 
1435         if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1436             int sts;
1437 
1438             sts = dword & PCI_TPH_CAP_ST_MASK;
1439             sts >>= PCI_TPH_CAP_ST_SHIFT;
1440             return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1441         }
1442         return PCI_TPH_BASE_SIZEOF;
1443     default:
1444         pci_warn(pdev, "%s: unknown length for PCI ecap %#x@%#x\n",
1445              __func__, ecap, epos);
1446     }
1447 
1448     return 0;
1449 }
1450 
1451 static void vfio_update_pm_vconfig_bytes(struct vfio_pci_core_device *vdev,
1452                      int offset)
1453 {
1454     __le16 *pmc = (__le16 *)&vdev->vconfig[offset + PCI_PM_PMC];
1455     __le16 *ctrl = (__le16 *)&vdev->vconfig[offset + PCI_PM_CTRL];
1456 
1457     /* Clear vconfig PME_Support, PME_Status, and PME_En bits */
1458     *pmc &= ~cpu_to_le16(PCI_PM_CAP_PME_MASK);
1459     *ctrl &= ~cpu_to_le16(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS);
1460 }
1461 
1462 static int vfio_fill_vconfig_bytes(struct vfio_pci_core_device *vdev,
1463                    int offset, int size)
1464 {
1465     struct pci_dev *pdev = vdev->pdev;
1466     int ret = 0;
1467 
1468     /*
1469      * We try to read physical config space in the largest chunks
1470      * we can, assuming that all of the fields support dword access.
1471      * pci_save_state() makes this same assumption and seems to do ok.
1472      */
1473     while (size) {
1474         int filled;
1475 
1476         if (size >= 4 && !(offset % 4)) {
1477             __le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1478             u32 dword;
1479 
1480             ret = pci_read_config_dword(pdev, offset, &dword);
1481             if (ret)
1482                 return ret;
1483             *dwordp = cpu_to_le32(dword);
1484             filled = 4;
1485         } else if (size >= 2 && !(offset % 2)) {
1486             __le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1487             u16 word;
1488 
1489             ret = pci_read_config_word(pdev, offset, &word);
1490             if (ret)
1491                 return ret;
1492             *wordp = cpu_to_le16(word);
1493             filled = 2;
1494         } else {
1495             u8 *byte = &vdev->vconfig[offset];
1496             ret = pci_read_config_byte(pdev, offset, byte);
1497             if (ret)
1498                 return ret;
1499             filled = 1;
1500         }
1501 
1502         offset += filled;
1503         size -= filled;
1504     }
1505 
1506     return ret;
1507 }
1508 
1509 static int vfio_cap_init(struct vfio_pci_core_device *vdev)
1510 {
1511     struct pci_dev *pdev = vdev->pdev;
1512     u8 *map = vdev->pci_config_map;
1513     u16 status;
1514     u8 pos, *prev, cap;
1515     int loops, ret, caps = 0;
1516 
1517     /* Any capabilities? */
1518     ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1519     if (ret)
1520         return ret;
1521 
1522     if (!(status & PCI_STATUS_CAP_LIST))
1523         return 0; /* Done */
1524 
1525     ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1526     if (ret)
1527         return ret;
1528 
1529     /* Mark the previous position in case we want to skip a capability */
1530     prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1531 
1532     /* We can bound our loop, capabilities are dword aligned */
1533     loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1534     while (pos && loops--) {
1535         u8 next;
1536         int i, len = 0;
1537 
1538         ret = pci_read_config_byte(pdev, pos, &cap);
1539         if (ret)
1540             return ret;
1541 
1542         ret = pci_read_config_byte(pdev,
1543                        pos + PCI_CAP_LIST_NEXT, &next);
1544         if (ret)
1545             return ret;
1546 
1547         /*
1548          * ID 0 is a NULL capability, conflicting with our fake
1549          * PCI_CAP_ID_BASIC.  As it has no content, consider it
1550          * hidden for now.
1551          */
1552         if (cap && cap <= PCI_CAP_ID_MAX) {
1553             len = pci_cap_length[cap];
1554             if (len == 0xFF) { /* Variable length */
1555                 len = vfio_cap_len(vdev, cap, pos);
1556                 if (len < 0)
1557                     return len;
1558             }
1559         }
1560 
1561         if (!len) {
1562             pci_info(pdev, "%s: hiding cap %#x@%#x\n", __func__,
1563                  cap, pos);
1564             *prev = next;
1565             pos = next;
1566             continue;
1567         }
1568 
1569         /* Sanity check, do we overlap other capabilities? */
1570         for (i = 0; i < len; i++) {
1571             if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1572                 continue;
1573 
1574             pci_warn(pdev, "%s: PCI config conflict @%#x, was cap %#x now cap %#x\n",
1575                  __func__, pos + i, map[pos + i], cap);
1576         }
1577 
1578         BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1579 
1580         memset(map + pos, cap, len);
1581         ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1582         if (ret)
1583             return ret;
1584 
1585         if (cap == PCI_CAP_ID_PM)
1586             vfio_update_pm_vconfig_bytes(vdev, pos);
1587 
1588         prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1589         pos = next;
1590         caps++;
1591     }
1592 
1593     /* If we didn't fill any capabilities, clear the status flag */
1594     if (!caps) {
1595         __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1596         *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1597     }
1598 
1599     return 0;
1600 }
1601 
1602 static int vfio_ecap_init(struct vfio_pci_core_device *vdev)
1603 {
1604     struct pci_dev *pdev = vdev->pdev;
1605     u8 *map = vdev->pci_config_map;
1606     u16 epos;
1607     __le32 *prev = NULL;
1608     int loops, ret, ecaps = 0;
1609 
1610     if (!vdev->extended_caps)
1611         return 0;
1612 
1613     epos = PCI_CFG_SPACE_SIZE;
1614 
1615     loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1616 
1617     while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1618         u32 header;
1619         u16 ecap;
1620         int i, len = 0;
1621         bool hidden = false;
1622 
1623         ret = pci_read_config_dword(pdev, epos, &header);
1624         if (ret)
1625             return ret;
1626 
1627         ecap = PCI_EXT_CAP_ID(header);
1628 
1629         if (ecap <= PCI_EXT_CAP_ID_MAX) {
1630             len = pci_ext_cap_length[ecap];
1631             if (len == 0xFF) {
1632                 len = vfio_ext_cap_len(vdev, ecap, epos);
1633                 if (len < 0)
1634                     return len;
1635             }
1636         }
1637 
1638         if (!len) {
1639             pci_info(pdev, "%s: hiding ecap %#x@%#x\n",
1640                  __func__, ecap, epos);
1641 
1642             /* If not the first in the chain, we can skip over it */
1643             if (prev) {
1644                 u32 val = epos = PCI_EXT_CAP_NEXT(header);
1645                 *prev &= cpu_to_le32(~(0xffcU << 20));
1646                 *prev |= cpu_to_le32(val << 20);
1647                 continue;
1648             }
1649 
1650             /*
1651              * Otherwise, fill in a placeholder, the direct
1652              * readfn will virtualize this automatically
1653              */
1654             len = PCI_CAP_SIZEOF;
1655             hidden = true;
1656         }
1657 
1658         for (i = 0; i < len; i++) {
1659             if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1660                 continue;
1661 
1662             pci_warn(pdev, "%s: PCI config conflict @%#x, was ecap %#x now ecap %#x\n",
1663                  __func__, epos + i, map[epos + i], ecap);
1664         }
1665 
1666         /*
1667          * Even though ecap is 2 bytes, we're currently a long way
1668          * from exceeding 1 byte capabilities.  If we ever make it
1669          * up to 0xFE we'll need to up this to a two-byte, byte map.
1670          */
1671         BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1672 
1673         memset(map + epos, ecap, len);
1674         ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1675         if (ret)
1676             return ret;
1677 
1678         /*
1679          * If we're just using this capability to anchor the list,
1680          * hide the real ID.  Only count real ecaps.  XXX PCI spec
1681          * indicates to use cap id = 0, version = 0, next = 0 if
1682          * ecaps are absent, hope users check all the way to next.
1683          */
1684         if (hidden)
1685             *(__le32 *)&vdev->vconfig[epos] &=
1686                 cpu_to_le32((0xffcU << 20));
1687         else
1688             ecaps++;
1689 
1690         prev = (__le32 *)&vdev->vconfig[epos];
1691         epos = PCI_EXT_CAP_NEXT(header);
1692     }
1693 
1694     if (!ecaps)
1695         *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1696 
1697     return 0;
1698 }
1699 
1700 /*
1701  * Nag about hardware bugs, hopefully to have vendors fix them, but at least
1702  * to collect a list of dependencies for the VF INTx pin quirk below.
1703  */
1704 static const struct pci_device_id known_bogus_vf_intx_pin[] = {
1705     { PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) },
1706     {}
1707 };
1708 
1709 /*
1710  * For each device we allocate a pci_config_map that indicates the
1711  * capability occupying each dword and thus the struct perm_bits we
1712  * use for read and write.  We also allocate a virtualized config
1713  * space which tracks reads and writes to bits that we emulate for
1714  * the user.  Initial values filled from device.
1715  *
1716  * Using shared struct perm_bits between all vfio-pci devices saves
1717  * us from allocating cfg_size buffers for virt and write for every
1718  * device.  We could remove vconfig and allocate individual buffers
1719  * for each area requiring emulated bits, but the array of pointers
1720  * would be comparable in size (at least for standard config space).
1721  */
1722 int vfio_config_init(struct vfio_pci_core_device *vdev)
1723 {
1724     struct pci_dev *pdev = vdev->pdev;
1725     u8 *map, *vconfig;
1726     int ret;
1727 
1728     /*
1729      * Config space, caps and ecaps are all dword aligned, so we could
1730      * use one byte per dword to record the type.  However, there are
1731      * no requirements on the length of a capability, so the gap between
1732      * capabilities needs byte granularity.
1733      */
1734     map = kmalloc(pdev->cfg_size, GFP_KERNEL);
1735     if (!map)
1736         return -ENOMEM;
1737 
1738     vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
1739     if (!vconfig) {
1740         kfree(map);
1741         return -ENOMEM;
1742     }
1743 
1744     vdev->pci_config_map = map;
1745     vdev->vconfig = vconfig;
1746 
1747     memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1748     memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1749            pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1750 
1751     ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1752     if (ret)
1753         goto out;
1754 
1755     vdev->bardirty = true;
1756 
1757     /*
1758      * XXX can we just pci_load_saved_state/pci_restore_state?
1759      * may need to rebuild vconfig after that
1760      */
1761 
1762     /* For restore after reset */
1763     vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1764     vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1765     vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1766     vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1767     vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1768     vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1769     vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1770 
1771     if (pdev->is_virtfn) {
1772         *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1773         *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1774 
1775         /*
1776          * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register
1777          * does not apply to VFs and VFs must implement this register
1778          * as read-only with value zero.  Userspace is not readily able
1779          * to identify whether a device is a VF and thus that the pin
1780          * definition on the device is bogus should it violate this
1781          * requirement.  We already virtualize the pin register for
1782          * other purposes, so we simply need to replace the bogus value
1783          * and consider VFs when we determine INTx IRQ count.
1784          */
1785         if (vconfig[PCI_INTERRUPT_PIN] &&
1786             !pci_match_id(known_bogus_vf_intx_pin, pdev))
1787             pci_warn(pdev,
1788                  "Hardware bug: VF reports bogus INTx pin %d\n",
1789                  vconfig[PCI_INTERRUPT_PIN]);
1790 
1791         vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */
1792     }
1793     if (pdev->no_command_memory) {
1794         /*
1795          * VFs and devices that set pdev->no_command_memory do not
1796          * implement the memory enable bit of the COMMAND register
1797          * therefore we'll not have it set in our initial copy of
1798          * config space after pci_enable_device().  For consistency
1799          * with PFs, set the virtual enable bit here.
1800          */
1801         *(__le16 *)&vconfig[PCI_COMMAND] |=
1802                     cpu_to_le16(PCI_COMMAND_MEMORY);
1803     }
1804 
1805     if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx)
1806         vconfig[PCI_INTERRUPT_PIN] = 0;
1807 
1808     ret = vfio_cap_init(vdev);
1809     if (ret)
1810         goto out;
1811 
1812     ret = vfio_ecap_init(vdev);
1813     if (ret)
1814         goto out;
1815 
1816     return 0;
1817 
1818 out:
1819     kfree(map);
1820     vdev->pci_config_map = NULL;
1821     kfree(vconfig);
1822     vdev->vconfig = NULL;
1823     return pcibios_err_to_errno(ret);
1824 }
1825 
1826 void vfio_config_free(struct vfio_pci_core_device *vdev)
1827 {
1828     kfree(vdev->vconfig);
1829     vdev->vconfig = NULL;
1830     kfree(vdev->pci_config_map);
1831     vdev->pci_config_map = NULL;
1832     if (vdev->msi_perm) {
1833         free_perm_bits(vdev->msi_perm);
1834         kfree(vdev->msi_perm);
1835         vdev->msi_perm = NULL;
1836     }
1837 }
1838 
1839 /*
1840  * Find the remaining number of bytes in a dword that match the given
1841  * position.  Stop at either the end of the capability or the dword boundary.
1842  */
1843 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_core_device *vdev,
1844                        loff_t pos)
1845 {
1846     u8 cap = vdev->pci_config_map[pos];
1847     size_t i;
1848 
1849     for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1850         /* nop */;
1851 
1852     return i;
1853 }
1854 
1855 static ssize_t vfio_config_do_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1856                  size_t count, loff_t *ppos, bool iswrite)
1857 {
1858     struct pci_dev *pdev = vdev->pdev;
1859     struct perm_bits *perm;
1860     __le32 val = 0;
1861     int cap_start = 0, offset;
1862     u8 cap_id;
1863     ssize_t ret;
1864 
1865     if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1866         *ppos + count > pdev->cfg_size)
1867         return -EFAULT;
1868 
1869     /*
1870      * Chop accesses into aligned chunks containing no more than a
1871      * single capability.  Caller increments to the next chunk.
1872      */
1873     count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1874     if (count >= 4 && !(*ppos % 4))
1875         count = 4;
1876     else if (count >= 2 && !(*ppos % 2))
1877         count = 2;
1878     else
1879         count = 1;
1880 
1881     ret = count;
1882 
1883     cap_id = vdev->pci_config_map[*ppos];
1884 
1885     if (cap_id == PCI_CAP_ID_INVALID) {
1886         perm = &unassigned_perms;
1887         cap_start = *ppos;
1888     } else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
1889         perm = &virt_perms;
1890         cap_start = *ppos;
1891     } else {
1892         if (*ppos >= PCI_CFG_SPACE_SIZE) {
1893             WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1894 
1895             perm = &ecap_perms[cap_id];
1896             cap_start = vfio_find_cap_start(vdev, *ppos);
1897         } else {
1898             WARN_ON(cap_id > PCI_CAP_ID_MAX);
1899 
1900             perm = &cap_perms[cap_id];
1901 
1902             if (cap_id == PCI_CAP_ID_MSI)
1903                 perm = vdev->msi_perm;
1904 
1905             if (cap_id > PCI_CAP_ID_BASIC)
1906                 cap_start = vfio_find_cap_start(vdev, *ppos);
1907         }
1908     }
1909 
1910     WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1911     WARN_ON(cap_start > *ppos);
1912 
1913     offset = *ppos - cap_start;
1914 
1915     if (iswrite) {
1916         if (!perm->writefn)
1917             return ret;
1918 
1919         if (copy_from_user(&val, buf, count))
1920             return -EFAULT;
1921 
1922         ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1923     } else {
1924         if (perm->readfn) {
1925             ret = perm->readfn(vdev, *ppos, count,
1926                        perm, offset, &val);
1927             if (ret < 0)
1928                 return ret;
1929         }
1930 
1931         if (copy_to_user(buf, &val, count))
1932             return -EFAULT;
1933     }
1934 
1935     return ret;
1936 }
1937 
1938 ssize_t vfio_pci_config_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1939                size_t count, loff_t *ppos, bool iswrite)
1940 {
1941     size_t done = 0;
1942     int ret = 0;
1943     loff_t pos = *ppos;
1944 
1945     pos &= VFIO_PCI_OFFSET_MASK;
1946 
1947     while (count) {
1948         ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1949         if (ret < 0)
1950             return ret;
1951 
1952         count -= ret;
1953         done += ret;
1954         buf += ret;
1955         pos += ret;
1956     }
1957 
1958     *ppos += done;
1959 
1960     return done;
1961 }