Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * xHCI host controller driver
0004  *
0005  * Copyright (C) 2008 Intel Corp.
0006  *
0007  * Author: Sarah Sharp
0008  * Some code borrowed from the Linux EHCI driver.
0009  */
0010 
0011 #include <linux/pci.h>
0012 #include <linux/iopoll.h>
0013 #include <linux/irq.h>
0014 #include <linux/log2.h>
0015 #include <linux/module.h>
0016 #include <linux/moduleparam.h>
0017 #include <linux/slab.h>
0018 #include <linux/dmi.h>
0019 #include <linux/dma-mapping.h>
0020 
0021 #include "xhci.h"
0022 #include "xhci-trace.h"
0023 #include "xhci-debugfs.h"
0024 #include "xhci-dbgcap.h"
0025 
0026 #define DRIVER_AUTHOR "Sarah Sharp"
0027 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
0028 
0029 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
0030 
0031 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
0032 static int link_quirk;
0033 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
0034 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
0035 
0036 static unsigned long long quirks;
0037 module_param(quirks, ullong, S_IRUGO);
0038 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
0039 
0040 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
0041 {
0042     struct xhci_segment *seg = ring->first_seg;
0043 
0044     if (!td || !td->start_seg)
0045         return false;
0046     do {
0047         if (seg == td->start_seg)
0048             return true;
0049         seg = seg->next;
0050     } while (seg && seg != ring->first_seg);
0051 
0052     return false;
0053 }
0054 
0055 /*
0056  * xhci_handshake - spin reading hc until handshake completes or fails
0057  * @ptr: address of hc register to be read
0058  * @mask: bits to look at in result of read
0059  * @done: value of those bits when handshake succeeds
0060  * @usec: timeout in microseconds
0061  *
0062  * Returns negative errno, or zero on success
0063  *
0064  * Success happens when the "mask" bits have the specified value (hardware
0065  * handshake done).  There are two failure modes:  "usec" have passed (major
0066  * hardware flakeout), or the register reads as all-ones (hardware removed).
0067  */
0068 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
0069 {
0070     u32 result;
0071     int ret;
0072 
0073     ret = readl_poll_timeout_atomic(ptr, result,
0074                     (result & mask) == done ||
0075                     result == U32_MAX,
0076                     1, timeout_us);
0077     if (result == U32_MAX)      /* card removed */
0078         return -ENODEV;
0079 
0080     return ret;
0081 }
0082 
0083 /*
0084  * Disable interrupts and begin the xHCI halting process.
0085  */
0086 void xhci_quiesce(struct xhci_hcd *xhci)
0087 {
0088     u32 halted;
0089     u32 cmd;
0090     u32 mask;
0091 
0092     mask = ~(XHCI_IRQS);
0093     halted = readl(&xhci->op_regs->status) & STS_HALT;
0094     if (!halted)
0095         mask &= ~CMD_RUN;
0096 
0097     cmd = readl(&xhci->op_regs->command);
0098     cmd &= mask;
0099     writel(cmd, &xhci->op_regs->command);
0100 }
0101 
0102 /*
0103  * Force HC into halt state.
0104  *
0105  * Disable any IRQs and clear the run/stop bit.
0106  * HC will complete any current and actively pipelined transactions, and
0107  * should halt within 16 ms of the run/stop bit being cleared.
0108  * Read HC Halted bit in the status register to see when the HC is finished.
0109  */
0110 int xhci_halt(struct xhci_hcd *xhci)
0111 {
0112     int ret;
0113 
0114     xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
0115     xhci_quiesce(xhci);
0116 
0117     ret = xhci_handshake(&xhci->op_regs->status,
0118             STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
0119     if (ret) {
0120         xhci_warn(xhci, "Host halt failed, %d\n", ret);
0121         return ret;
0122     }
0123 
0124     xhci->xhc_state |= XHCI_STATE_HALTED;
0125     xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
0126 
0127     return ret;
0128 }
0129 
0130 /*
0131  * Set the run bit and wait for the host to be running.
0132  */
0133 int xhci_start(struct xhci_hcd *xhci)
0134 {
0135     u32 temp;
0136     int ret;
0137 
0138     temp = readl(&xhci->op_regs->command);
0139     temp |= (CMD_RUN);
0140     xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
0141             temp);
0142     writel(temp, &xhci->op_regs->command);
0143 
0144     /*
0145      * Wait for the HCHalted Status bit to be 0 to indicate the host is
0146      * running.
0147      */
0148     ret = xhci_handshake(&xhci->op_regs->status,
0149             STS_HALT, 0, XHCI_MAX_HALT_USEC);
0150     if (ret == -ETIMEDOUT)
0151         xhci_err(xhci, "Host took too long to start, "
0152                 "waited %u microseconds.\n",
0153                 XHCI_MAX_HALT_USEC);
0154     if (!ret) {
0155         /* clear state flags. Including dying, halted or removing */
0156         xhci->xhc_state = 0;
0157         xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
0158     }
0159 
0160     return ret;
0161 }
0162 
0163 /*
0164  * Reset a halted HC.
0165  *
0166  * This resets pipelines, timers, counters, state machines, etc.
0167  * Transactions will be terminated immediately, and operational registers
0168  * will be set to their defaults.
0169  */
0170 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
0171 {
0172     u32 command;
0173     u32 state;
0174     int ret;
0175 
0176     state = readl(&xhci->op_regs->status);
0177 
0178     if (state == ~(u32)0) {
0179         xhci_warn(xhci, "Host not accessible, reset failed.\n");
0180         return -ENODEV;
0181     }
0182 
0183     if ((state & STS_HALT) == 0) {
0184         xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
0185         return 0;
0186     }
0187 
0188     xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
0189     command = readl(&xhci->op_regs->command);
0190     command |= CMD_RESET;
0191     writel(command, &xhci->op_regs->command);
0192 
0193     /* Existing Intel xHCI controllers require a delay of 1 mS,
0194      * after setting the CMD_RESET bit, and before accessing any
0195      * HC registers. This allows the HC to complete the
0196      * reset operation and be ready for HC register access.
0197      * Without this delay, the subsequent HC register access,
0198      * may result in a system hang very rarely.
0199      */
0200     if (xhci->quirks & XHCI_INTEL_HOST)
0201         udelay(1000);
0202 
0203     ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
0204     if (ret)
0205         return ret;
0206 
0207     if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
0208         usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
0209 
0210     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
0211              "Wait for controller to be ready for doorbell rings");
0212     /*
0213      * xHCI cannot write to any doorbells or operational registers other
0214      * than status until the "Controller Not Ready" flag is cleared.
0215      */
0216     ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
0217 
0218     xhci->usb2_rhub.bus_state.port_c_suspend = 0;
0219     xhci->usb2_rhub.bus_state.suspended_ports = 0;
0220     xhci->usb2_rhub.bus_state.resuming_ports = 0;
0221     xhci->usb3_rhub.bus_state.port_c_suspend = 0;
0222     xhci->usb3_rhub.bus_state.suspended_ports = 0;
0223     xhci->usb3_rhub.bus_state.resuming_ports = 0;
0224 
0225     return ret;
0226 }
0227 
0228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
0229 {
0230     struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
0231     int err, i;
0232     u64 val;
0233     u32 intrs;
0234 
0235     /*
0236      * Some Renesas controllers get into a weird state if they are
0237      * reset while programmed with 64bit addresses (they will preserve
0238      * the top half of the address in internal, non visible
0239      * registers). You end up with half the address coming from the
0240      * kernel, and the other half coming from the firmware. Also,
0241      * changing the programming leads to extra accesses even if the
0242      * controller is supposed to be halted. The controller ends up with
0243      * a fatal fault, and is then ripe for being properly reset.
0244      *
0245      * Special care is taken to only apply this if the device is behind
0246      * an iommu. Doing anything when there is no iommu is definitely
0247      * unsafe...
0248      */
0249     if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
0250         return;
0251 
0252     xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
0253 
0254     /* Clear HSEIE so that faults do not get signaled */
0255     val = readl(&xhci->op_regs->command);
0256     val &= ~CMD_HSEIE;
0257     writel(val, &xhci->op_regs->command);
0258 
0259     /* Clear HSE (aka FATAL) */
0260     val = readl(&xhci->op_regs->status);
0261     val |= STS_FATAL;
0262     writel(val, &xhci->op_regs->status);
0263 
0264     /* Now zero the registers, and brace for impact */
0265     val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
0266     if (upper_32_bits(val))
0267         xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
0268     val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
0269     if (upper_32_bits(val))
0270         xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
0271 
0272     intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
0273               ARRAY_SIZE(xhci->run_regs->ir_set));
0274 
0275     for (i = 0; i < intrs; i++) {
0276         struct xhci_intr_reg __iomem *ir;
0277 
0278         ir = &xhci->run_regs->ir_set[i];
0279         val = xhci_read_64(xhci, &ir->erst_base);
0280         if (upper_32_bits(val))
0281             xhci_write_64(xhci, 0, &ir->erst_base);
0282         val= xhci_read_64(xhci, &ir->erst_dequeue);
0283         if (upper_32_bits(val))
0284             xhci_write_64(xhci, 0, &ir->erst_dequeue);
0285     }
0286 
0287     /* Wait for the fault to appear. It will be cleared on reset */
0288     err = xhci_handshake(&xhci->op_regs->status,
0289                  STS_FATAL, STS_FATAL,
0290                  XHCI_MAX_HALT_USEC);
0291     if (!err)
0292         xhci_info(xhci, "Fault detected\n");
0293 }
0294 
0295 #ifdef CONFIG_USB_PCI
0296 /*
0297  * Set up MSI
0298  */
0299 static int xhci_setup_msi(struct xhci_hcd *xhci)
0300 {
0301     int ret;
0302     /*
0303      * TODO:Check with MSI Soc for sysdev
0304      */
0305     struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
0306 
0307     ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
0308     if (ret < 0) {
0309         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
0310                 "failed to allocate MSI entry");
0311         return ret;
0312     }
0313 
0314     ret = request_irq(pdev->irq, xhci_msi_irq,
0315                 0, "xhci_hcd", xhci_to_hcd(xhci));
0316     if (ret) {
0317         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
0318                 "disable MSI interrupt");
0319         pci_free_irq_vectors(pdev);
0320     }
0321 
0322     return ret;
0323 }
0324 
0325 /*
0326  * Set up MSI-X
0327  */
0328 static int xhci_setup_msix(struct xhci_hcd *xhci)
0329 {
0330     int i, ret;
0331     struct usb_hcd *hcd = xhci_to_hcd(xhci);
0332     struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
0333 
0334     /*
0335      * calculate number of msi-x vectors supported.
0336      * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
0337      *   with max number of interrupters based on the xhci HCSPARAMS1.
0338      * - num_online_cpus: maximum msi-x vectors per CPUs core.
0339      *   Add additional 1 vector to ensure always available interrupt.
0340      */
0341     xhci->msix_count = min(num_online_cpus() + 1,
0342                 HCS_MAX_INTRS(xhci->hcs_params1));
0343 
0344     ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
0345             PCI_IRQ_MSIX);
0346     if (ret < 0) {
0347         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
0348                 "Failed to enable MSI-X");
0349         return ret;
0350     }
0351 
0352     for (i = 0; i < xhci->msix_count; i++) {
0353         ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
0354                 "xhci_hcd", xhci_to_hcd(xhci));
0355         if (ret)
0356             goto disable_msix;
0357     }
0358 
0359     hcd->msix_enabled = 1;
0360     return ret;
0361 
0362 disable_msix:
0363     xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
0364     while (--i >= 0)
0365         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
0366     pci_free_irq_vectors(pdev);
0367     return ret;
0368 }
0369 
0370 /* Free any IRQs and disable MSI-X */
0371 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
0372 {
0373     struct usb_hcd *hcd = xhci_to_hcd(xhci);
0374     struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
0375 
0376     if (xhci->quirks & XHCI_PLAT)
0377         return;
0378 
0379     /* return if using legacy interrupt */
0380     if (hcd->irq > 0)
0381         return;
0382 
0383     if (hcd->msix_enabled) {
0384         int i;
0385 
0386         for (i = 0; i < xhci->msix_count; i++)
0387             free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
0388     } else {
0389         free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
0390     }
0391 
0392     pci_free_irq_vectors(pdev);
0393     hcd->msix_enabled = 0;
0394 }
0395 
0396 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
0397 {
0398     struct usb_hcd *hcd = xhci_to_hcd(xhci);
0399 
0400     if (hcd->msix_enabled) {
0401         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
0402         int i;
0403 
0404         for (i = 0; i < xhci->msix_count; i++)
0405             synchronize_irq(pci_irq_vector(pdev, i));
0406     }
0407 }
0408 
0409 static int xhci_try_enable_msi(struct usb_hcd *hcd)
0410 {
0411     struct xhci_hcd *xhci = hcd_to_xhci(hcd);
0412     struct pci_dev  *pdev;
0413     int ret;
0414 
0415     /* The xhci platform device has set up IRQs through usb_add_hcd. */
0416     if (xhci->quirks & XHCI_PLAT)
0417         return 0;
0418 
0419     pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
0420     /*
0421      * Some Fresco Logic host controllers advertise MSI, but fail to
0422      * generate interrupts.  Don't even try to enable MSI.
0423      */
0424     if (xhci->quirks & XHCI_BROKEN_MSI)
0425         goto legacy_irq;
0426 
0427     /* unregister the legacy interrupt */
0428     if (hcd->irq)
0429         free_irq(hcd->irq, hcd);
0430     hcd->irq = 0;
0431 
0432     ret = xhci_setup_msix(xhci);
0433     if (ret)
0434         /* fall back to msi*/
0435         ret = xhci_setup_msi(xhci);
0436 
0437     if (!ret) {
0438         hcd->msi_enabled = 1;
0439         return 0;
0440     }
0441 
0442     if (!pdev->irq) {
0443         xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
0444         return -EINVAL;
0445     }
0446 
0447  legacy_irq:
0448     if (!strlen(hcd->irq_descr))
0449         snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
0450              hcd->driver->description, hcd->self.busnum);
0451 
0452     /* fall back to legacy interrupt*/
0453     ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
0454             hcd->irq_descr, hcd);
0455     if (ret) {
0456         xhci_err(xhci, "request interrupt %d failed\n",
0457                 pdev->irq);
0458         return ret;
0459     }
0460     hcd->irq = pdev->irq;
0461     return 0;
0462 }
0463 
0464 #else
0465 
0466 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
0467 {
0468     return 0;
0469 }
0470 
0471 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
0472 {
0473 }
0474 
0475 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
0476 {
0477 }
0478 
0479 #endif
0480 
0481 static void compliance_mode_recovery(struct timer_list *t)
0482 {
0483     struct xhci_hcd *xhci;
0484     struct usb_hcd *hcd;
0485     struct xhci_hub *rhub;
0486     u32 temp;
0487     int i;
0488 
0489     xhci = from_timer(xhci, t, comp_mode_recovery_timer);
0490     rhub = &xhci->usb3_rhub;
0491     hcd = rhub->hcd;
0492 
0493     if (!hcd)
0494         return;
0495 
0496     for (i = 0; i < rhub->num_ports; i++) {
0497         temp = readl(rhub->ports[i]->addr);
0498         if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
0499             /*
0500              * Compliance Mode Detected. Letting USB Core
0501              * handle the Warm Reset
0502              */
0503             xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
0504                     "Compliance mode detected->port %d",
0505                     i + 1);
0506             xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
0507                     "Attempting compliance mode recovery");
0508 
0509             if (hcd->state == HC_STATE_SUSPENDED)
0510                 usb_hcd_resume_root_hub(hcd);
0511 
0512             usb_hcd_poll_rh_status(hcd);
0513         }
0514     }
0515 
0516     if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
0517         mod_timer(&xhci->comp_mode_recovery_timer,
0518             jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
0519 }
0520 
0521 /*
0522  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
0523  * that causes ports behind that hardware to enter compliance mode sometimes.
0524  * The quirk creates a timer that polls every 2 seconds the link state of
0525  * each host controller's port and recovers it by issuing a Warm reset
0526  * if Compliance mode is detected, otherwise the port will become "dead" (no
0527  * device connections or disconnections will be detected anymore). Becasue no
0528  * status event is generated when entering compliance mode (per xhci spec),
0529  * this quirk is needed on systems that have the failing hardware installed.
0530  */
0531 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
0532 {
0533     xhci->port_status_u0 = 0;
0534     timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
0535             0);
0536     xhci->comp_mode_recovery_timer.expires = jiffies +
0537             msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
0538 
0539     add_timer(&xhci->comp_mode_recovery_timer);
0540     xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
0541             "Compliance mode recovery timer initialized");
0542 }
0543 
0544 /*
0545  * This function identifies the systems that have installed the SN65LVPE502CP
0546  * USB3.0 re-driver and that need the Compliance Mode Quirk.
0547  * Systems:
0548  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
0549  */
0550 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
0551 {
0552     const char *dmi_product_name, *dmi_sys_vendor;
0553 
0554     dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
0555     dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
0556     if (!dmi_product_name || !dmi_sys_vendor)
0557         return false;
0558 
0559     if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
0560         return false;
0561 
0562     if (strstr(dmi_product_name, "Z420") ||
0563             strstr(dmi_product_name, "Z620") ||
0564             strstr(dmi_product_name, "Z820") ||
0565             strstr(dmi_product_name, "Z1 Workstation"))
0566         return true;
0567 
0568     return false;
0569 }
0570 
0571 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
0572 {
0573     return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
0574 }
0575 
0576 
0577 /*
0578  * Initialize memory for HCD and xHC (one-time init).
0579  *
0580  * Program the PAGESIZE register, initialize the device context array, create
0581  * device contexts (?), set up a command ring segment (or two?), create event
0582  * ring (one for now).
0583  */
0584 static int xhci_init(struct usb_hcd *hcd)
0585 {
0586     struct xhci_hcd *xhci = hcd_to_xhci(hcd);
0587     int retval;
0588 
0589     xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
0590     spin_lock_init(&xhci->lock);
0591     if (xhci->hci_version == 0x95 && link_quirk) {
0592         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
0593                 "QUIRK: Not clearing Link TRB chain bits.");
0594         xhci->quirks |= XHCI_LINK_TRB_QUIRK;
0595     } else {
0596         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
0597                 "xHCI doesn't need link TRB QUIRK");
0598     }
0599     retval = xhci_mem_init(xhci, GFP_KERNEL);
0600     xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
0601 
0602     /* Initializing Compliance Mode Recovery Data If Needed */
0603     if (xhci_compliance_mode_recovery_timer_quirk_check()) {
0604         xhci->quirks |= XHCI_COMP_MODE_QUIRK;
0605         compliance_mode_recovery_timer_init(xhci);
0606     }
0607 
0608     return retval;
0609 }
0610 
0611 /*-------------------------------------------------------------------------*/
0612 
0613 
0614 static int xhci_run_finished(struct xhci_hcd *xhci)
0615 {
0616     unsigned long   flags;
0617     u32     temp;
0618 
0619     /*
0620      * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
0621      * Protect the short window before host is running with a lock
0622      */
0623     spin_lock_irqsave(&xhci->lock, flags);
0624 
0625     xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
0626     temp = readl(&xhci->op_regs->command);
0627     temp |= (CMD_EIE);
0628     writel(temp, &xhci->op_regs->command);
0629 
0630     xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
0631     temp = readl(&xhci->ir_set->irq_pending);
0632     writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
0633 
0634     if (xhci_start(xhci)) {
0635         xhci_halt(xhci);
0636         spin_unlock_irqrestore(&xhci->lock, flags);
0637         return -ENODEV;
0638     }
0639 
0640     xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
0641 
0642     if (xhci->quirks & XHCI_NEC_HOST)
0643         xhci_ring_cmd_db(xhci);
0644 
0645     spin_unlock_irqrestore(&xhci->lock, flags);
0646 
0647     return 0;
0648 }
0649 
0650 /*
0651  * Start the HC after it was halted.
0652  *
0653  * This function is called by the USB core when the HC driver is added.
0654  * Its opposite is xhci_stop().
0655  *
0656  * xhci_init() must be called once before this function can be called.
0657  * Reset the HC, enable device slot contexts, program DCBAAP, and
0658  * set command ring pointer and event ring pointer.
0659  *
0660  * Setup MSI-X vectors and enable interrupts.
0661  */
0662 int xhci_run(struct usb_hcd *hcd)
0663 {
0664     u32 temp;
0665     u64 temp_64;
0666     int ret;
0667     struct xhci_hcd *xhci = hcd_to_xhci(hcd);
0668 
0669     /* Start the xHCI host controller running only after the USB 2.0 roothub
0670      * is setup.
0671      */
0672 
0673     hcd->uses_new_polling = 1;
0674     if (!usb_hcd_is_primary_hcd(hcd))
0675         return xhci_run_finished(xhci);
0676 
0677     xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
0678 
0679     ret = xhci_try_enable_msi(hcd);
0680     if (ret)
0681         return ret;
0682 
0683     temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
0684     temp_64 &= ~ERST_PTR_MASK;
0685     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
0686             "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
0687 
0688     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
0689             "// Set the interrupt modulation register");
0690     temp = readl(&xhci->ir_set->irq_control);
0691     temp &= ~ER_IRQ_INTERVAL_MASK;
0692     temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
0693     writel(temp, &xhci->ir_set->irq_control);
0694 
0695     if (xhci->quirks & XHCI_NEC_HOST) {
0696         struct xhci_command *command;
0697 
0698         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
0699         if (!command)
0700             return -ENOMEM;
0701 
0702         ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
0703                 TRB_TYPE(TRB_NEC_GET_FW));
0704         if (ret)
0705             xhci_free_command(xhci, command);
0706     }
0707     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
0708             "Finished %s for main hcd", __func__);
0709 
0710     xhci_create_dbc_dev(xhci);
0711 
0712     xhci_debugfs_init(xhci);
0713 
0714     if (xhci_has_one_roothub(xhci))
0715         return xhci_run_finished(xhci);
0716 
0717     set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
0718 
0719     return 0;
0720 }
0721 EXPORT_SYMBOL_GPL(xhci_run);
0722 
0723 /*
0724  * Stop xHCI driver.
0725  *
0726  * This function is called by the USB core when the HC driver is removed.
0727  * Its opposite is xhci_run().
0728  *
0729  * Disable device contexts, disable IRQs, and quiesce the HC.
0730  * Reset the HC, finish any completed transactions, and cleanup memory.
0731  */
0732 static void xhci_stop(struct usb_hcd *hcd)
0733 {
0734     u32 temp;
0735     struct xhci_hcd *xhci = hcd_to_xhci(hcd);
0736 
0737     mutex_lock(&xhci->mutex);
0738 
0739     /* Only halt host and free memory after both hcds are removed */
0740     if (!usb_hcd_is_primary_hcd(hcd)) {
0741         mutex_unlock(&xhci->mutex);
0742         return;
0743     }
0744 
0745     xhci_remove_dbc_dev(xhci);
0746 
0747     spin_lock_irq(&xhci->lock);
0748     xhci->xhc_state |= XHCI_STATE_HALTED;
0749     xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
0750     xhci_halt(xhci);
0751     xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
0752     spin_unlock_irq(&xhci->lock);
0753 
0754     xhci_cleanup_msix(xhci);
0755 
0756     /* Deleting Compliance Mode Recovery Timer */
0757     if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
0758             (!(xhci_all_ports_seen_u0(xhci)))) {
0759         del_timer_sync(&xhci->comp_mode_recovery_timer);
0760         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
0761                 "%s: compliance mode recovery timer deleted",
0762                 __func__);
0763     }
0764 
0765     if (xhci->quirks & XHCI_AMD_PLL_FIX)
0766         usb_amd_dev_put();
0767 
0768     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
0769             "// Disabling event ring interrupts");
0770     temp = readl(&xhci->op_regs->status);
0771     writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
0772     temp = readl(&xhci->ir_set->irq_pending);
0773     writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
0774 
0775     xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
0776     xhci_mem_cleanup(xhci);
0777     xhci_debugfs_exit(xhci);
0778     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
0779             "xhci_stop completed - status = %x",
0780             readl(&xhci->op_regs->status));
0781     mutex_unlock(&xhci->mutex);
0782 }
0783 
0784 /*
0785  * Shutdown HC (not bus-specific)
0786  *
0787  * This is called when the machine is rebooting or halting.  We assume that the
0788  * machine will be powered off, and the HC's internal state will be reset.
0789  * Don't bother to free memory.
0790  *
0791  * This will only ever be called with the main usb_hcd (the USB3 roothub).
0792  */
0793 void xhci_shutdown(struct usb_hcd *hcd)
0794 {
0795     struct xhci_hcd *xhci = hcd_to_xhci(hcd);
0796 
0797     if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
0798         usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
0799 
0800     /* Don't poll the roothubs after shutdown. */
0801     xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
0802             __func__, hcd->self.busnum);
0803     clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
0804     del_timer_sync(&hcd->rh_timer);
0805 
0806     if (xhci->shared_hcd) {
0807         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
0808         del_timer_sync(&xhci->shared_hcd->rh_timer);
0809     }
0810 
0811     spin_lock_irq(&xhci->lock);
0812     xhci_halt(xhci);
0813     /* Workaround for spurious wakeups at shutdown with HSW */
0814     if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
0815         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
0816     spin_unlock_irq(&xhci->lock);
0817 
0818     xhci_cleanup_msix(xhci);
0819 
0820     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
0821             "xhci_shutdown completed - status = %x",
0822             readl(&xhci->op_regs->status));
0823 }
0824 EXPORT_SYMBOL_GPL(xhci_shutdown);
0825 
0826 #ifdef CONFIG_PM
0827 static void xhci_save_registers(struct xhci_hcd *xhci)
0828 {
0829     xhci->s3.command = readl(&xhci->op_regs->command);
0830     xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
0831     xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
0832     xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
0833     xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
0834     xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
0835     xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
0836     xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
0837     xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
0838 }
0839 
0840 static void xhci_restore_registers(struct xhci_hcd *xhci)
0841 {
0842     writel(xhci->s3.command, &xhci->op_regs->command);
0843     writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
0844     xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
0845     writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
0846     writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
0847     xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
0848     xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
0849     writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
0850     writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
0851 }
0852 
0853 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
0854 {
0855     u64 val_64;
0856 
0857     /* step 2: initialize command ring buffer */
0858     val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
0859     val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
0860         (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
0861                       xhci->cmd_ring->dequeue) &
0862          (u64) ~CMD_RING_RSVD_BITS) |
0863         xhci->cmd_ring->cycle_state;
0864     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
0865             "// Setting command ring address to 0x%llx",
0866             (long unsigned long) val_64);
0867     xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
0868 }
0869 
0870 /*
0871  * The whole command ring must be cleared to zero when we suspend the host.
0872  *
0873  * The host doesn't save the command ring pointer in the suspend well, so we
0874  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
0875  * aligned, because of the reserved bits in the command ring dequeue pointer
0876  * register.  Therefore, we can't just set the dequeue pointer back in the
0877  * middle of the ring (TRBs are 16-byte aligned).
0878  */
0879 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
0880 {
0881     struct xhci_ring *ring;
0882     struct xhci_segment *seg;
0883 
0884     ring = xhci->cmd_ring;
0885     seg = ring->deq_seg;
0886     do {
0887         memset(seg->trbs, 0,
0888             sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
0889         seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
0890             cpu_to_le32(~TRB_CYCLE);
0891         seg = seg->next;
0892     } while (seg != ring->deq_seg);
0893 
0894     /* Reset the software enqueue and dequeue pointers */
0895     ring->deq_seg = ring->first_seg;
0896     ring->dequeue = ring->first_seg->trbs;
0897     ring->enq_seg = ring->deq_seg;
0898     ring->enqueue = ring->dequeue;
0899 
0900     ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
0901     /*
0902      * Ring is now zeroed, so the HW should look for change of ownership
0903      * when the cycle bit is set to 1.
0904      */
0905     ring->cycle_state = 1;
0906 
0907     /*
0908      * Reset the hardware dequeue pointer.
0909      * Yes, this will need to be re-written after resume, but we're paranoid
0910      * and want to make sure the hardware doesn't access bogus memory
0911      * because, say, the BIOS or an SMI started the host without changing
0912      * the command ring pointers.
0913      */
0914     xhci_set_cmd_ring_deq(xhci);
0915 }
0916 
0917 /*
0918  * Disable port wake bits if do_wakeup is not set.
0919  *
0920  * Also clear a possible internal port wake state left hanging for ports that
0921  * detected termination but never successfully enumerated (trained to 0U).
0922  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
0923  * at enumeration clears this wake, force one here as well for unconnected ports
0924  */
0925 
0926 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
0927                        struct xhci_hub *rhub,
0928                        bool do_wakeup)
0929 {
0930     unsigned long flags;
0931     u32 t1, t2, portsc;
0932     int i;
0933 
0934     spin_lock_irqsave(&xhci->lock, flags);
0935 
0936     for (i = 0; i < rhub->num_ports; i++) {
0937         portsc = readl(rhub->ports[i]->addr);
0938         t1 = xhci_port_state_to_neutral(portsc);
0939         t2 = t1;
0940 
0941         /* clear wake bits if do_wake is not set */
0942         if (!do_wakeup)
0943             t2 &= ~PORT_WAKE_BITS;
0944 
0945         /* Don't touch csc bit if connected or connect change is set */
0946         if (!(portsc & (PORT_CSC | PORT_CONNECT)))
0947             t2 |= PORT_CSC;
0948 
0949         if (t1 != t2) {
0950             writel(t2, rhub->ports[i]->addr);
0951             xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
0952                  rhub->hcd->self.busnum, i + 1, portsc, t2);
0953         }
0954     }
0955     spin_unlock_irqrestore(&xhci->lock, flags);
0956 }
0957 
0958 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
0959 {
0960     struct xhci_port    **ports;
0961     int         port_index;
0962     u32         status;
0963     u32         portsc;
0964 
0965     status = readl(&xhci->op_regs->status);
0966     if (status & STS_EINT)
0967         return true;
0968     /*
0969      * Checking STS_EINT is not enough as there is a lag between a change
0970      * bit being set and the Port Status Change Event that it generated
0971      * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
0972      */
0973 
0974     port_index = xhci->usb2_rhub.num_ports;
0975     ports = xhci->usb2_rhub.ports;
0976     while (port_index--) {
0977         portsc = readl(ports[port_index]->addr);
0978         if (portsc & PORT_CHANGE_MASK ||
0979             (portsc & PORT_PLS_MASK) == XDEV_RESUME)
0980             return true;
0981     }
0982     port_index = xhci->usb3_rhub.num_ports;
0983     ports = xhci->usb3_rhub.ports;
0984     while (port_index--) {
0985         portsc = readl(ports[port_index]->addr);
0986         if (portsc & PORT_CHANGE_MASK ||
0987             (portsc & PORT_PLS_MASK) == XDEV_RESUME)
0988             return true;
0989     }
0990     return false;
0991 }
0992 
0993 /*
0994  * Stop HC (not bus-specific)
0995  *
0996  * This is called when the machine transition into S3/S4 mode.
0997  *
0998  */
0999 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
1000 {
1001     int         rc = 0;
1002     unsigned int        delay = XHCI_MAX_HALT_USEC * 2;
1003     struct usb_hcd      *hcd = xhci_to_hcd(xhci);
1004     u32         command;
1005     u32         res;
1006 
1007     if (!hcd->state)
1008         return 0;
1009 
1010     if (hcd->state != HC_STATE_SUSPENDED ||
1011         (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
1012         return -EINVAL;
1013 
1014     /* Clear root port wake on bits if wakeup not allowed. */
1015     xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1016     xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1017 
1018     if (!HCD_HW_ACCESSIBLE(hcd))
1019         return 0;
1020 
1021     xhci_dbc_suspend(xhci);
1022 
1023     /* Don't poll the roothubs on bus suspend. */
1024     xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1025          __func__, hcd->self.busnum);
1026     clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1027     del_timer_sync(&hcd->rh_timer);
1028     if (xhci->shared_hcd) {
1029         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1030         del_timer_sync(&xhci->shared_hcd->rh_timer);
1031     }
1032 
1033     if (xhci->quirks & XHCI_SUSPEND_DELAY)
1034         usleep_range(1000, 1500);
1035 
1036     spin_lock_irq(&xhci->lock);
1037     clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1038     if (xhci->shared_hcd)
1039         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1040     /* step 1: stop endpoint */
1041     /* skipped assuming that port suspend has done */
1042 
1043     /* step 2: clear Run/Stop bit */
1044     command = readl(&xhci->op_regs->command);
1045     command &= ~CMD_RUN;
1046     writel(command, &xhci->op_regs->command);
1047 
1048     /* Some chips from Fresco Logic need an extraordinary delay */
1049     delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1050 
1051     if (xhci_handshake(&xhci->op_regs->status,
1052               STS_HALT, STS_HALT, delay)) {
1053         xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1054         spin_unlock_irq(&xhci->lock);
1055         return -ETIMEDOUT;
1056     }
1057     xhci_clear_command_ring(xhci);
1058 
1059     /* step 3: save registers */
1060     xhci_save_registers(xhci);
1061 
1062     /* step 4: set CSS flag */
1063     command = readl(&xhci->op_regs->command);
1064     command |= CMD_CSS;
1065     writel(command, &xhci->op_regs->command);
1066     xhci->broken_suspend = 0;
1067     if (xhci_handshake(&xhci->op_regs->status,
1068                 STS_SAVE, 0, 20 * 1000)) {
1069     /*
1070      * AMD SNPS xHC 3.0 occasionally does not clear the
1071      * SSS bit of USBSTS and when driver tries to poll
1072      * to see if the xHC clears BIT(8) which never happens
1073      * and driver assumes that controller is not responding
1074      * and times out. To workaround this, its good to check
1075      * if SRE and HCE bits are not set (as per xhci
1076      * Section 5.4.2) and bypass the timeout.
1077      */
1078         res = readl(&xhci->op_regs->status);
1079         if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1080             (((res & STS_SRE) == 0) &&
1081                 ((res & STS_HCE) == 0))) {
1082             xhci->broken_suspend = 1;
1083         } else {
1084             xhci_warn(xhci, "WARN: xHC save state timeout\n");
1085             spin_unlock_irq(&xhci->lock);
1086             return -ETIMEDOUT;
1087         }
1088     }
1089     spin_unlock_irq(&xhci->lock);
1090 
1091     /*
1092      * Deleting Compliance Mode Recovery Timer because the xHCI Host
1093      * is about to be suspended.
1094      */
1095     if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1096             (!(xhci_all_ports_seen_u0(xhci)))) {
1097         del_timer_sync(&xhci->comp_mode_recovery_timer);
1098         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1099                 "%s: compliance mode recovery timer deleted",
1100                 __func__);
1101     }
1102 
1103     /* step 5: remove core well power */
1104     /* synchronize irq when using MSI-X */
1105     xhci_msix_sync_irqs(xhci);
1106 
1107     return rc;
1108 }
1109 EXPORT_SYMBOL_GPL(xhci_suspend);
1110 
1111 /*
1112  * start xHC (not bus-specific)
1113  *
1114  * This is called when the machine transition from S3/S4 mode.
1115  *
1116  */
1117 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1118 {
1119     u32         command, temp = 0;
1120     struct usb_hcd      *hcd = xhci_to_hcd(xhci);
1121     int         retval = 0;
1122     bool            comp_timer_running = false;
1123     bool            pending_portevent = false;
1124     bool            reinit_xhc = false;
1125 
1126     if (!hcd->state)
1127         return 0;
1128 
1129     /* Wait a bit if either of the roothubs need to settle from the
1130      * transition into bus suspend.
1131      */
1132 
1133     if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1134         time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1135         msleep(100);
1136 
1137     set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1138     if (xhci->shared_hcd)
1139         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1140 
1141     spin_lock_irq(&xhci->lock);
1142 
1143     if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1144         reinit_xhc = true;
1145 
1146     if (!reinit_xhc) {
1147         /*
1148          * Some controllers might lose power during suspend, so wait
1149          * for controller not ready bit to clear, just as in xHC init.
1150          */
1151         retval = xhci_handshake(&xhci->op_regs->status,
1152                     STS_CNR, 0, 10 * 1000 * 1000);
1153         if (retval) {
1154             xhci_warn(xhci, "Controller not ready at resume %d\n",
1155                   retval);
1156             spin_unlock_irq(&xhci->lock);
1157             return retval;
1158         }
1159         /* step 1: restore register */
1160         xhci_restore_registers(xhci);
1161         /* step 2: initialize command ring buffer */
1162         xhci_set_cmd_ring_deq(xhci);
1163         /* step 3: restore state and start state*/
1164         /* step 3: set CRS flag */
1165         command = readl(&xhci->op_regs->command);
1166         command |= CMD_CRS;
1167         writel(command, &xhci->op_regs->command);
1168         /*
1169          * Some controllers take up to 55+ ms to complete the controller
1170          * restore so setting the timeout to 100ms. Xhci specification
1171          * doesn't mention any timeout value.
1172          */
1173         if (xhci_handshake(&xhci->op_regs->status,
1174                   STS_RESTORE, 0, 100 * 1000)) {
1175             xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1176             spin_unlock_irq(&xhci->lock);
1177             return -ETIMEDOUT;
1178         }
1179     }
1180 
1181     temp = readl(&xhci->op_regs->status);
1182 
1183     /* re-initialize the HC on Restore Error, or Host Controller Error */
1184     if (temp & (STS_SRE | STS_HCE)) {
1185         reinit_xhc = true;
1186         xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1187     }
1188 
1189     if (reinit_xhc) {
1190         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1191                 !(xhci_all_ports_seen_u0(xhci))) {
1192             del_timer_sync(&xhci->comp_mode_recovery_timer);
1193             xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1194                 "Compliance Mode Recovery Timer deleted!");
1195         }
1196 
1197         /* Let the USB core know _both_ roothubs lost power. */
1198         usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1199         if (xhci->shared_hcd)
1200             usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1201 
1202         xhci_dbg(xhci, "Stop HCD\n");
1203         xhci_halt(xhci);
1204         xhci_zero_64b_regs(xhci);
1205         retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1206         spin_unlock_irq(&xhci->lock);
1207         if (retval)
1208             return retval;
1209         xhci_cleanup_msix(xhci);
1210 
1211         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1212         temp = readl(&xhci->op_regs->status);
1213         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1214         temp = readl(&xhci->ir_set->irq_pending);
1215         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1216 
1217         xhci_dbg(xhci, "cleaning up memory\n");
1218         xhci_mem_cleanup(xhci);
1219         xhci_debugfs_exit(xhci);
1220         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1221                 readl(&xhci->op_regs->status));
1222 
1223         /* USB core calls the PCI reinit and start functions twice:
1224          * first with the primary HCD, and then with the secondary HCD.
1225          * If we don't do the same, the host will never be started.
1226          */
1227         xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1228         retval = xhci_init(hcd);
1229         if (retval)
1230             return retval;
1231         comp_timer_running = true;
1232 
1233         xhci_dbg(xhci, "Start the primary HCD\n");
1234         retval = xhci_run(hcd);
1235         if (!retval && xhci->shared_hcd) {
1236             xhci_dbg(xhci, "Start the secondary HCD\n");
1237             retval = xhci_run(xhci->shared_hcd);
1238         }
1239 
1240         hcd->state = HC_STATE_SUSPENDED;
1241         if (xhci->shared_hcd)
1242             xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1243         goto done;
1244     }
1245 
1246     /* step 4: set Run/Stop bit */
1247     command = readl(&xhci->op_regs->command);
1248     command |= CMD_RUN;
1249     writel(command, &xhci->op_regs->command);
1250     xhci_handshake(&xhci->op_regs->status, STS_HALT,
1251           0, 250 * 1000);
1252 
1253     /* step 5: walk topology and initialize portsc,
1254      * portpmsc and portli
1255      */
1256     /* this is done in bus_resume */
1257 
1258     /* step 6: restart each of the previously
1259      * Running endpoints by ringing their doorbells
1260      */
1261 
1262     spin_unlock_irq(&xhci->lock);
1263 
1264     xhci_dbc_resume(xhci);
1265 
1266  done:
1267     if (retval == 0) {
1268         /*
1269          * Resume roothubs only if there are pending events.
1270          * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1271          * the first wake signalling failed, give it that chance.
1272          */
1273         pending_portevent = xhci_pending_portevent(xhci);
1274         if (!pending_portevent) {
1275             msleep(120);
1276             pending_portevent = xhci_pending_portevent(xhci);
1277         }
1278 
1279         if (pending_portevent) {
1280             if (xhci->shared_hcd)
1281                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1282             usb_hcd_resume_root_hub(hcd);
1283         }
1284     }
1285     /*
1286      * If system is subject to the Quirk, Compliance Mode Timer needs to
1287      * be re-initialized Always after a system resume. Ports are subject
1288      * to suffer the Compliance Mode issue again. It doesn't matter if
1289      * ports have entered previously to U0 before system's suspension.
1290      */
1291     if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1292         compliance_mode_recovery_timer_init(xhci);
1293 
1294     if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1295         usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1296 
1297     /* Re-enable port polling. */
1298     xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1299          __func__, hcd->self.busnum);
1300     if (xhci->shared_hcd) {
1301         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1302         usb_hcd_poll_rh_status(xhci->shared_hcd);
1303     }
1304     set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1305     usb_hcd_poll_rh_status(hcd);
1306 
1307     return retval;
1308 }
1309 EXPORT_SYMBOL_GPL(xhci_resume);
1310 #endif  /* CONFIG_PM */
1311 
1312 /*-------------------------------------------------------------------------*/
1313 
1314 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1315 {
1316     void *temp;
1317     int ret = 0;
1318     unsigned int buf_len;
1319     enum dma_data_direction dir;
1320 
1321     dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1322     buf_len = urb->transfer_buffer_length;
1323 
1324     temp = kzalloc_node(buf_len, GFP_ATOMIC,
1325                 dev_to_node(hcd->self.sysdev));
1326 
1327     if (usb_urb_dir_out(urb))
1328         sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1329                    temp, buf_len, 0);
1330 
1331     urb->transfer_buffer = temp;
1332     urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1333                        urb->transfer_buffer,
1334                        urb->transfer_buffer_length,
1335                        dir);
1336 
1337     if (dma_mapping_error(hcd->self.sysdev,
1338                   urb->transfer_dma)) {
1339         ret = -EAGAIN;
1340         kfree(temp);
1341     } else {
1342         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1343     }
1344 
1345     return ret;
1346 }
1347 
1348 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1349                       struct urb *urb)
1350 {
1351     bool ret = false;
1352     unsigned int i;
1353     unsigned int len = 0;
1354     unsigned int trb_size;
1355     unsigned int max_pkt;
1356     struct scatterlist *sg;
1357     struct scatterlist *tail_sg;
1358 
1359     tail_sg = urb->sg;
1360     max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1361 
1362     if (!urb->num_sgs)
1363         return ret;
1364 
1365     if (urb->dev->speed >= USB_SPEED_SUPER)
1366         trb_size = TRB_CACHE_SIZE_SS;
1367     else
1368         trb_size = TRB_CACHE_SIZE_HS;
1369 
1370     if (urb->transfer_buffer_length != 0 &&
1371         !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1372         for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1373             len = len + sg->length;
1374             if (i > trb_size - 2) {
1375                 len = len - tail_sg->length;
1376                 if (len < max_pkt) {
1377                     ret = true;
1378                     break;
1379                 }
1380 
1381                 tail_sg = sg_next(tail_sg);
1382             }
1383         }
1384     }
1385     return ret;
1386 }
1387 
1388 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1389 {
1390     unsigned int len;
1391     unsigned int buf_len;
1392     enum dma_data_direction dir;
1393 
1394     dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1395 
1396     buf_len = urb->transfer_buffer_length;
1397 
1398     if (IS_ENABLED(CONFIG_HAS_DMA) &&
1399         (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1400         dma_unmap_single(hcd->self.sysdev,
1401                  urb->transfer_dma,
1402                  urb->transfer_buffer_length,
1403                  dir);
1404 
1405     if (usb_urb_dir_in(urb)) {
1406         len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1407                        urb->transfer_buffer,
1408                        buf_len,
1409                        0);
1410         if (len != buf_len) {
1411             xhci_dbg(hcd_to_xhci(hcd),
1412                  "Copy from tmp buf to urb sg list failed\n");
1413             urb->actual_length = len;
1414         }
1415     }
1416     urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1417     kfree(urb->transfer_buffer);
1418     urb->transfer_buffer = NULL;
1419 }
1420 
1421 /*
1422  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1423  * we'll copy the actual data into the TRB address register. This is limited to
1424  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1425  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1426  */
1427 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1428                 gfp_t mem_flags)
1429 {
1430     struct xhci_hcd *xhci;
1431 
1432     xhci = hcd_to_xhci(hcd);
1433 
1434     if (xhci_urb_suitable_for_idt(urb))
1435         return 0;
1436 
1437     if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1438         if (xhci_urb_temp_buffer_required(hcd, urb))
1439             return xhci_map_temp_buffer(hcd, urb);
1440     }
1441     return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1442 }
1443 
1444 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1445 {
1446     struct xhci_hcd *xhci;
1447     bool unmap_temp_buf = false;
1448 
1449     xhci = hcd_to_xhci(hcd);
1450 
1451     if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1452         unmap_temp_buf = true;
1453 
1454     if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1455         xhci_unmap_temp_buf(hcd, urb);
1456     else
1457         usb_hcd_unmap_urb_for_dma(hcd, urb);
1458 }
1459 
1460 /**
1461  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1462  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1463  * value to right shift 1 for the bitmask.
1464  *
1465  * Index  = (epnum * 2) + direction - 1,
1466  * where direction = 0 for OUT, 1 for IN.
1467  * For control endpoints, the IN index is used (OUT index is unused), so
1468  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1469  */
1470 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1471 {
1472     unsigned int index;
1473     if (usb_endpoint_xfer_control(desc))
1474         index = (unsigned int) (usb_endpoint_num(desc)*2);
1475     else
1476         index = (unsigned int) (usb_endpoint_num(desc)*2) +
1477             (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1478     return index;
1479 }
1480 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1481 
1482 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1483  * address from the XHCI endpoint index.
1484  */
1485 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1486 {
1487     unsigned int number = DIV_ROUND_UP(ep_index, 2);
1488     unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1489     return direction | number;
1490 }
1491 
1492 /* Find the flag for this endpoint (for use in the control context).  Use the
1493  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1494  * bit 1, etc.
1495  */
1496 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1497 {
1498     return 1 << (xhci_get_endpoint_index(desc) + 1);
1499 }
1500 
1501 /* Compute the last valid endpoint context index.  Basically, this is the
1502  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1503  * we find the most significant bit set in the added contexts flags.
1504  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1505  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1506  */
1507 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1508 {
1509     return fls(added_ctxs) - 1;
1510 }
1511 
1512 /* Returns 1 if the arguments are OK;
1513  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1514  */
1515 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1516         struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1517         const char *func) {
1518     struct xhci_hcd *xhci;
1519     struct xhci_virt_device *virt_dev;
1520 
1521     if (!hcd || (check_ep && !ep) || !udev) {
1522         pr_debug("xHCI %s called with invalid args\n", func);
1523         return -EINVAL;
1524     }
1525     if (!udev->parent) {
1526         pr_debug("xHCI %s called for root hub\n", func);
1527         return 0;
1528     }
1529 
1530     xhci = hcd_to_xhci(hcd);
1531     if (check_virt_dev) {
1532         if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1533             xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1534                     func);
1535             return -EINVAL;
1536         }
1537 
1538         virt_dev = xhci->devs[udev->slot_id];
1539         if (virt_dev->udev != udev) {
1540             xhci_dbg(xhci, "xHCI %s called with udev and "
1541                       "virt_dev does not match\n", func);
1542             return -EINVAL;
1543         }
1544     }
1545 
1546     if (xhci->xhc_state & XHCI_STATE_HALTED)
1547         return -ENODEV;
1548 
1549     return 1;
1550 }
1551 
1552 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1553         struct usb_device *udev, struct xhci_command *command,
1554         bool ctx_change, bool must_succeed);
1555 
1556 /*
1557  * Full speed devices may have a max packet size greater than 8 bytes, but the
1558  * USB core doesn't know that until it reads the first 8 bytes of the
1559  * descriptor.  If the usb_device's max packet size changes after that point,
1560  * we need to issue an evaluate context command and wait on it.
1561  */
1562 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1563         unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1564 {
1565     struct xhci_container_ctx *out_ctx;
1566     struct xhci_input_control_ctx *ctrl_ctx;
1567     struct xhci_ep_ctx *ep_ctx;
1568     struct xhci_command *command;
1569     int max_packet_size;
1570     int hw_max_packet_size;
1571     int ret = 0;
1572 
1573     out_ctx = xhci->devs[slot_id]->out_ctx;
1574     ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1575     hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1576     max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1577     if (hw_max_packet_size != max_packet_size) {
1578         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1579                 "Max Packet Size for ep 0 changed.");
1580         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1581                 "Max packet size in usb_device = %d",
1582                 max_packet_size);
1583         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1584                 "Max packet size in xHCI HW = %d",
1585                 hw_max_packet_size);
1586         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1587                 "Issuing evaluate context command.");
1588 
1589         /* Set up the input context flags for the command */
1590         /* FIXME: This won't work if a non-default control endpoint
1591          * changes max packet sizes.
1592          */
1593 
1594         command = xhci_alloc_command(xhci, true, mem_flags);
1595         if (!command)
1596             return -ENOMEM;
1597 
1598         command->in_ctx = xhci->devs[slot_id]->in_ctx;
1599         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1600         if (!ctrl_ctx) {
1601             xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1602                     __func__);
1603             ret = -ENOMEM;
1604             goto command_cleanup;
1605         }
1606         /* Set up the modified control endpoint 0 */
1607         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1608                 xhci->devs[slot_id]->out_ctx, ep_index);
1609 
1610         ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1611         ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1612         ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1613         ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1614 
1615         ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1616         ctrl_ctx->drop_flags = 0;
1617 
1618         ret = xhci_configure_endpoint(xhci, urb->dev, command,
1619                 true, false);
1620 
1621         /* Clean up the input context for later use by bandwidth
1622          * functions.
1623          */
1624         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1625 command_cleanup:
1626         kfree(command->completion);
1627         kfree(command);
1628     }
1629     return ret;
1630 }
1631 
1632 /*
1633  * non-error returns are a promise to giveback() the urb later
1634  * we drop ownership so next owner (or urb unlink) can get it
1635  */
1636 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1637 {
1638     struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1639     unsigned long flags;
1640     int ret = 0;
1641     unsigned int slot_id, ep_index;
1642     unsigned int *ep_state;
1643     struct urb_priv *urb_priv;
1644     int num_tds;
1645 
1646     if (!urb)
1647         return -EINVAL;
1648     ret = xhci_check_args(hcd, urb->dev, urb->ep,
1649                     true, true, __func__);
1650     if (ret <= 0)
1651         return ret ? ret : -EINVAL;
1652 
1653     slot_id = urb->dev->slot_id;
1654     ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1655     ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1656 
1657     if (!HCD_HW_ACCESSIBLE(hcd))
1658         return -ESHUTDOWN;
1659 
1660     if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1661         xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1662         return -ENODEV;
1663     }
1664 
1665     if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1666         num_tds = urb->number_of_packets;
1667     else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1668         urb->transfer_buffer_length > 0 &&
1669         urb->transfer_flags & URB_ZERO_PACKET &&
1670         !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1671         num_tds = 2;
1672     else
1673         num_tds = 1;
1674 
1675     urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1676     if (!urb_priv)
1677         return -ENOMEM;
1678 
1679     urb_priv->num_tds = num_tds;
1680     urb_priv->num_tds_done = 0;
1681     urb->hcpriv = urb_priv;
1682 
1683     trace_xhci_urb_enqueue(urb);
1684 
1685     if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1686         /* Check to see if the max packet size for the default control
1687          * endpoint changed during FS device enumeration
1688          */
1689         if (urb->dev->speed == USB_SPEED_FULL) {
1690             ret = xhci_check_maxpacket(xhci, slot_id,
1691                     ep_index, urb, mem_flags);
1692             if (ret < 0) {
1693                 xhci_urb_free_priv(urb_priv);
1694                 urb->hcpriv = NULL;
1695                 return ret;
1696             }
1697         }
1698     }
1699 
1700     spin_lock_irqsave(&xhci->lock, flags);
1701 
1702     if (xhci->xhc_state & XHCI_STATE_DYING) {
1703         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1704              urb->ep->desc.bEndpointAddress, urb);
1705         ret = -ESHUTDOWN;
1706         goto free_priv;
1707     }
1708     if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1709         xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1710               *ep_state);
1711         ret = -EINVAL;
1712         goto free_priv;
1713     }
1714     if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1715         xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1716         ret = -EINVAL;
1717         goto free_priv;
1718     }
1719 
1720     switch (usb_endpoint_type(&urb->ep->desc)) {
1721 
1722     case USB_ENDPOINT_XFER_CONTROL:
1723         ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1724                      slot_id, ep_index);
1725         break;
1726     case USB_ENDPOINT_XFER_BULK:
1727         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1728                      slot_id, ep_index);
1729         break;
1730     case USB_ENDPOINT_XFER_INT:
1731         ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1732                 slot_id, ep_index);
1733         break;
1734     case USB_ENDPOINT_XFER_ISOC:
1735         ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1736                 slot_id, ep_index);
1737     }
1738 
1739     if (ret) {
1740 free_priv:
1741         xhci_urb_free_priv(urb_priv);
1742         urb->hcpriv = NULL;
1743     }
1744     spin_unlock_irqrestore(&xhci->lock, flags);
1745     return ret;
1746 }
1747 
1748 /*
1749  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1750  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1751  * should pick up where it left off in the TD, unless a Set Transfer Ring
1752  * Dequeue Pointer is issued.
1753  *
1754  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1755  * the ring.  Since the ring is a contiguous structure, they can't be physically
1756  * removed.  Instead, there are two options:
1757  *
1758  *  1) If the HC is in the middle of processing the URB to be canceled, we
1759  *     simply move the ring's dequeue pointer past those TRBs using the Set
1760  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1761  *     when drivers timeout on the last submitted URB and attempt to cancel.
1762  *
1763  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1764  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1765  *     HC will need to invalidate the any TRBs it has cached after the stop
1766  *     endpoint command, as noted in the xHCI 0.95 errata.
1767  *
1768  *  3) The TD may have completed by the time the Stop Endpoint Command
1769  *     completes, so software needs to handle that case too.
1770  *
1771  * This function should protect against the TD enqueueing code ringing the
1772  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1773  * It also needs to account for multiple cancellations on happening at the same
1774  * time for the same endpoint.
1775  *
1776  * Note that this function can be called in any context, or so says
1777  * usb_hcd_unlink_urb()
1778  */
1779 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1780 {
1781     unsigned long flags;
1782     int ret, i;
1783     u32 temp;
1784     struct xhci_hcd *xhci;
1785     struct urb_priv *urb_priv;
1786     struct xhci_td *td;
1787     unsigned int ep_index;
1788     struct xhci_ring *ep_ring;
1789     struct xhci_virt_ep *ep;
1790     struct xhci_command *command;
1791     struct xhci_virt_device *vdev;
1792 
1793     xhci = hcd_to_xhci(hcd);
1794     spin_lock_irqsave(&xhci->lock, flags);
1795 
1796     trace_xhci_urb_dequeue(urb);
1797 
1798     /* Make sure the URB hasn't completed or been unlinked already */
1799     ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1800     if (ret)
1801         goto done;
1802 
1803     /* give back URB now if we can't queue it for cancel */
1804     vdev = xhci->devs[urb->dev->slot_id];
1805     urb_priv = urb->hcpriv;
1806     if (!vdev || !urb_priv)
1807         goto err_giveback;
1808 
1809     ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1810     ep = &vdev->eps[ep_index];
1811     ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1812     if (!ep || !ep_ring)
1813         goto err_giveback;
1814 
1815     /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1816     temp = readl(&xhci->op_regs->status);
1817     if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1818         xhci_hc_died(xhci);
1819         goto done;
1820     }
1821 
1822     /*
1823      * check ring is not re-allocated since URB was enqueued. If it is, then
1824      * make sure none of the ring related pointers in this URB private data
1825      * are touched, such as td_list, otherwise we overwrite freed data
1826      */
1827     if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1828         xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1829         for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1830             td = &urb_priv->td[i];
1831             if (!list_empty(&td->cancelled_td_list))
1832                 list_del_init(&td->cancelled_td_list);
1833         }
1834         goto err_giveback;
1835     }
1836 
1837     if (xhci->xhc_state & XHCI_STATE_HALTED) {
1838         xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1839                 "HC halted, freeing TD manually.");
1840         for (i = urb_priv->num_tds_done;
1841              i < urb_priv->num_tds;
1842              i++) {
1843             td = &urb_priv->td[i];
1844             if (!list_empty(&td->td_list))
1845                 list_del_init(&td->td_list);
1846             if (!list_empty(&td->cancelled_td_list))
1847                 list_del_init(&td->cancelled_td_list);
1848         }
1849         goto err_giveback;
1850     }
1851 
1852     i = urb_priv->num_tds_done;
1853     if (i < urb_priv->num_tds)
1854         xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1855                 "Cancel URB %p, dev %s, ep 0x%x, "
1856                 "starting at offset 0x%llx",
1857                 urb, urb->dev->devpath,
1858                 urb->ep->desc.bEndpointAddress,
1859                 (unsigned long long) xhci_trb_virt_to_dma(
1860                     urb_priv->td[i].start_seg,
1861                     urb_priv->td[i].first_trb));
1862 
1863     for (; i < urb_priv->num_tds; i++) {
1864         td = &urb_priv->td[i];
1865         /* TD can already be on cancelled list if ep halted on it */
1866         if (list_empty(&td->cancelled_td_list)) {
1867             td->cancel_status = TD_DIRTY;
1868             list_add_tail(&td->cancelled_td_list,
1869                       &ep->cancelled_td_list);
1870         }
1871     }
1872 
1873     /* Queue a stop endpoint command, but only if this is
1874      * the first cancellation to be handled.
1875      */
1876     if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1877         command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1878         if (!command) {
1879             ret = -ENOMEM;
1880             goto done;
1881         }
1882         ep->ep_state |= EP_STOP_CMD_PENDING;
1883         xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1884                      ep_index, 0);
1885         xhci_ring_cmd_db(xhci);
1886     }
1887 done:
1888     spin_unlock_irqrestore(&xhci->lock, flags);
1889     return ret;
1890 
1891 err_giveback:
1892     if (urb_priv)
1893         xhci_urb_free_priv(urb_priv);
1894     usb_hcd_unlink_urb_from_ep(hcd, urb);
1895     spin_unlock_irqrestore(&xhci->lock, flags);
1896     usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1897     return ret;
1898 }
1899 
1900 /* Drop an endpoint from a new bandwidth configuration for this device.
1901  * Only one call to this function is allowed per endpoint before
1902  * check_bandwidth() or reset_bandwidth() must be called.
1903  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1904  * add the endpoint to the schedule with possibly new parameters denoted by a
1905  * different endpoint descriptor in usb_host_endpoint.
1906  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1907  * not allowed.
1908  *
1909  * The USB core will not allow URBs to be queued to an endpoint that is being
1910  * disabled, so there's no need for mutual exclusion to protect
1911  * the xhci->devs[slot_id] structure.
1912  */
1913 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1914                struct usb_host_endpoint *ep)
1915 {
1916     struct xhci_hcd *xhci;
1917     struct xhci_container_ctx *in_ctx, *out_ctx;
1918     struct xhci_input_control_ctx *ctrl_ctx;
1919     unsigned int ep_index;
1920     struct xhci_ep_ctx *ep_ctx;
1921     u32 drop_flag;
1922     u32 new_add_flags, new_drop_flags;
1923     int ret;
1924 
1925     ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1926     if (ret <= 0)
1927         return ret;
1928     xhci = hcd_to_xhci(hcd);
1929     if (xhci->xhc_state & XHCI_STATE_DYING)
1930         return -ENODEV;
1931 
1932     xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1933     drop_flag = xhci_get_endpoint_flag(&ep->desc);
1934     if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1935         xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1936                 __func__, drop_flag);
1937         return 0;
1938     }
1939 
1940     in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1941     out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1942     ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1943     if (!ctrl_ctx) {
1944         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1945                 __func__);
1946         return 0;
1947     }
1948 
1949     ep_index = xhci_get_endpoint_index(&ep->desc);
1950     ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1951     /* If the HC already knows the endpoint is disabled,
1952      * or the HCD has noted it is disabled, ignore this request
1953      */
1954     if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1955         le32_to_cpu(ctrl_ctx->drop_flags) &
1956         xhci_get_endpoint_flag(&ep->desc)) {
1957         /* Do not warn when called after a usb_device_reset */
1958         if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1959             xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1960                   __func__, ep);
1961         return 0;
1962     }
1963 
1964     ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1965     new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1966 
1967     ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1968     new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1969 
1970     xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1971 
1972     xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1973 
1974     xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1975             (unsigned int) ep->desc.bEndpointAddress,
1976             udev->slot_id,
1977             (unsigned int) new_drop_flags,
1978             (unsigned int) new_add_flags);
1979     return 0;
1980 }
1981 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1982 
1983 /* Add an endpoint to a new possible bandwidth configuration for this device.
1984  * Only one call to this function is allowed per endpoint before
1985  * check_bandwidth() or reset_bandwidth() must be called.
1986  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1987  * add the endpoint to the schedule with possibly new parameters denoted by a
1988  * different endpoint descriptor in usb_host_endpoint.
1989  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1990  * not allowed.
1991  *
1992  * The USB core will not allow URBs to be queued to an endpoint until the
1993  * configuration or alt setting is installed in the device, so there's no need
1994  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1995  */
1996 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1997               struct usb_host_endpoint *ep)
1998 {
1999     struct xhci_hcd *xhci;
2000     struct xhci_container_ctx *in_ctx;
2001     unsigned int ep_index;
2002     struct xhci_input_control_ctx *ctrl_ctx;
2003     struct xhci_ep_ctx *ep_ctx;
2004     u32 added_ctxs;
2005     u32 new_add_flags, new_drop_flags;
2006     struct xhci_virt_device *virt_dev;
2007     int ret = 0;
2008 
2009     ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2010     if (ret <= 0) {
2011         /* So we won't queue a reset ep command for a root hub */
2012         ep->hcpriv = NULL;
2013         return ret;
2014     }
2015     xhci = hcd_to_xhci(hcd);
2016     if (xhci->xhc_state & XHCI_STATE_DYING)
2017         return -ENODEV;
2018 
2019     added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2020     if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2021         /* FIXME when we have to issue an evaluate endpoint command to
2022          * deal with ep0 max packet size changing once we get the
2023          * descriptors
2024          */
2025         xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2026                 __func__, added_ctxs);
2027         return 0;
2028     }
2029 
2030     virt_dev = xhci->devs[udev->slot_id];
2031     in_ctx = virt_dev->in_ctx;
2032     ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2033     if (!ctrl_ctx) {
2034         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2035                 __func__);
2036         return 0;
2037     }
2038 
2039     ep_index = xhci_get_endpoint_index(&ep->desc);
2040     /* If this endpoint is already in use, and the upper layers are trying
2041      * to add it again without dropping it, reject the addition.
2042      */
2043     if (virt_dev->eps[ep_index].ring &&
2044             !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2045         xhci_warn(xhci, "Trying to add endpoint 0x%x "
2046                 "without dropping it.\n",
2047                 (unsigned int) ep->desc.bEndpointAddress);
2048         return -EINVAL;
2049     }
2050 
2051     /* If the HCD has already noted the endpoint is enabled,
2052      * ignore this request.
2053      */
2054     if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2055         xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2056                 __func__, ep);
2057         return 0;
2058     }
2059 
2060     /*
2061      * Configuration and alternate setting changes must be done in
2062      * process context, not interrupt context (or so documenation
2063      * for usb_set_interface() and usb_set_configuration() claim).
2064      */
2065     if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2066         dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2067                 __func__, ep->desc.bEndpointAddress);
2068         return -ENOMEM;
2069     }
2070 
2071     ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2072     new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2073 
2074     /* If xhci_endpoint_disable() was called for this endpoint, but the
2075      * xHC hasn't been notified yet through the check_bandwidth() call,
2076      * this re-adds a new state for the endpoint from the new endpoint
2077      * descriptors.  We must drop and re-add this endpoint, so we leave the
2078      * drop flags alone.
2079      */
2080     new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2081 
2082     /* Store the usb_device pointer for later use */
2083     ep->hcpriv = udev;
2084 
2085     ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2086     trace_xhci_add_endpoint(ep_ctx);
2087 
2088     xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2089             (unsigned int) ep->desc.bEndpointAddress,
2090             udev->slot_id,
2091             (unsigned int) new_drop_flags,
2092             (unsigned int) new_add_flags);
2093     return 0;
2094 }
2095 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2096 
2097 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2098 {
2099     struct xhci_input_control_ctx *ctrl_ctx;
2100     struct xhci_ep_ctx *ep_ctx;
2101     struct xhci_slot_ctx *slot_ctx;
2102     int i;
2103 
2104     ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2105     if (!ctrl_ctx) {
2106         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2107                 __func__);
2108         return;
2109     }
2110 
2111     /* When a device's add flag and drop flag are zero, any subsequent
2112      * configure endpoint command will leave that endpoint's state
2113      * untouched.  Make sure we don't leave any old state in the input
2114      * endpoint contexts.
2115      */
2116     ctrl_ctx->drop_flags = 0;
2117     ctrl_ctx->add_flags = 0;
2118     slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2119     slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2120     /* Endpoint 0 is always valid */
2121     slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2122     for (i = 1; i < 31; i++) {
2123         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2124         ep_ctx->ep_info = 0;
2125         ep_ctx->ep_info2 = 0;
2126         ep_ctx->deq = 0;
2127         ep_ctx->tx_info = 0;
2128     }
2129 }
2130 
2131 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2132         struct usb_device *udev, u32 *cmd_status)
2133 {
2134     int ret;
2135 
2136     switch (*cmd_status) {
2137     case COMP_COMMAND_ABORTED:
2138     case COMP_COMMAND_RING_STOPPED:
2139         xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2140         ret = -ETIME;
2141         break;
2142     case COMP_RESOURCE_ERROR:
2143         dev_warn(&udev->dev,
2144              "Not enough host controller resources for new device state.\n");
2145         ret = -ENOMEM;
2146         /* FIXME: can we allocate more resources for the HC? */
2147         break;
2148     case COMP_BANDWIDTH_ERROR:
2149     case COMP_SECONDARY_BANDWIDTH_ERROR:
2150         dev_warn(&udev->dev,
2151              "Not enough bandwidth for new device state.\n");
2152         ret = -ENOSPC;
2153         /* FIXME: can we go back to the old state? */
2154         break;
2155     case COMP_TRB_ERROR:
2156         /* the HCD set up something wrong */
2157         dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2158                 "add flag = 1, "
2159                 "and endpoint is not disabled.\n");
2160         ret = -EINVAL;
2161         break;
2162     case COMP_INCOMPATIBLE_DEVICE_ERROR:
2163         dev_warn(&udev->dev,
2164              "ERROR: Incompatible device for endpoint configure command.\n");
2165         ret = -ENODEV;
2166         break;
2167     case COMP_SUCCESS:
2168         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2169                 "Successful Endpoint Configure command");
2170         ret = 0;
2171         break;
2172     default:
2173         xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2174                 *cmd_status);
2175         ret = -EINVAL;
2176         break;
2177     }
2178     return ret;
2179 }
2180 
2181 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2182         struct usb_device *udev, u32 *cmd_status)
2183 {
2184     int ret;
2185 
2186     switch (*cmd_status) {
2187     case COMP_COMMAND_ABORTED:
2188     case COMP_COMMAND_RING_STOPPED:
2189         xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2190         ret = -ETIME;
2191         break;
2192     case COMP_PARAMETER_ERROR:
2193         dev_warn(&udev->dev,
2194              "WARN: xHCI driver setup invalid evaluate context command.\n");
2195         ret = -EINVAL;
2196         break;
2197     case COMP_SLOT_NOT_ENABLED_ERROR:
2198         dev_warn(&udev->dev,
2199             "WARN: slot not enabled for evaluate context command.\n");
2200         ret = -EINVAL;
2201         break;
2202     case COMP_CONTEXT_STATE_ERROR:
2203         dev_warn(&udev->dev,
2204             "WARN: invalid context state for evaluate context command.\n");
2205         ret = -EINVAL;
2206         break;
2207     case COMP_INCOMPATIBLE_DEVICE_ERROR:
2208         dev_warn(&udev->dev,
2209             "ERROR: Incompatible device for evaluate context command.\n");
2210         ret = -ENODEV;
2211         break;
2212     case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2213         /* Max Exit Latency too large error */
2214         dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2215         ret = -EINVAL;
2216         break;
2217     case COMP_SUCCESS:
2218         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2219                 "Successful evaluate context command");
2220         ret = 0;
2221         break;
2222     default:
2223         xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2224             *cmd_status);
2225         ret = -EINVAL;
2226         break;
2227     }
2228     return ret;
2229 }
2230 
2231 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2232         struct xhci_input_control_ctx *ctrl_ctx)
2233 {
2234     u32 valid_add_flags;
2235     u32 valid_drop_flags;
2236 
2237     /* Ignore the slot flag (bit 0), and the default control endpoint flag
2238      * (bit 1).  The default control endpoint is added during the Address
2239      * Device command and is never removed until the slot is disabled.
2240      */
2241     valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2242     valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2243 
2244     /* Use hweight32 to count the number of ones in the add flags, or
2245      * number of endpoints added.  Don't count endpoints that are changed
2246      * (both added and dropped).
2247      */
2248     return hweight32(valid_add_flags) -
2249         hweight32(valid_add_flags & valid_drop_flags);
2250 }
2251 
2252 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2253         struct xhci_input_control_ctx *ctrl_ctx)
2254 {
2255     u32 valid_add_flags;
2256     u32 valid_drop_flags;
2257 
2258     valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2259     valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2260 
2261     return hweight32(valid_drop_flags) -
2262         hweight32(valid_add_flags & valid_drop_flags);
2263 }
2264 
2265 /*
2266  * We need to reserve the new number of endpoints before the configure endpoint
2267  * command completes.  We can't subtract the dropped endpoints from the number
2268  * of active endpoints until the command completes because we can oversubscribe
2269  * the host in this case:
2270  *
2271  *  - the first configure endpoint command drops more endpoints than it adds
2272  *  - a second configure endpoint command that adds more endpoints is queued
2273  *  - the first configure endpoint command fails, so the config is unchanged
2274  *  - the second command may succeed, even though there isn't enough resources
2275  *
2276  * Must be called with xhci->lock held.
2277  */
2278 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2279         struct xhci_input_control_ctx *ctrl_ctx)
2280 {
2281     u32 added_eps;
2282 
2283     added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2284     if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2285         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2286                 "Not enough ep ctxs: "
2287                 "%u active, need to add %u, limit is %u.",
2288                 xhci->num_active_eps, added_eps,
2289                 xhci->limit_active_eps);
2290         return -ENOMEM;
2291     }
2292     xhci->num_active_eps += added_eps;
2293     xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2294             "Adding %u ep ctxs, %u now active.", added_eps,
2295             xhci->num_active_eps);
2296     return 0;
2297 }
2298 
2299 /*
2300  * The configure endpoint was failed by the xHC for some other reason, so we
2301  * need to revert the resources that failed configuration would have used.
2302  *
2303  * Must be called with xhci->lock held.
2304  */
2305 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2306         struct xhci_input_control_ctx *ctrl_ctx)
2307 {
2308     u32 num_failed_eps;
2309 
2310     num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2311     xhci->num_active_eps -= num_failed_eps;
2312     xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2313             "Removing %u failed ep ctxs, %u now active.",
2314             num_failed_eps,
2315             xhci->num_active_eps);
2316 }
2317 
2318 /*
2319  * Now that the command has completed, clean up the active endpoint count by
2320  * subtracting out the endpoints that were dropped (but not changed).
2321  *
2322  * Must be called with xhci->lock held.
2323  */
2324 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2325         struct xhci_input_control_ctx *ctrl_ctx)
2326 {
2327     u32 num_dropped_eps;
2328 
2329     num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2330     xhci->num_active_eps -= num_dropped_eps;
2331     if (num_dropped_eps)
2332         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2333                 "Removing %u dropped ep ctxs, %u now active.",
2334                 num_dropped_eps,
2335                 xhci->num_active_eps);
2336 }
2337 
2338 static unsigned int xhci_get_block_size(struct usb_device *udev)
2339 {
2340     switch (udev->speed) {
2341     case USB_SPEED_LOW:
2342     case USB_SPEED_FULL:
2343         return FS_BLOCK;
2344     case USB_SPEED_HIGH:
2345         return HS_BLOCK;
2346     case USB_SPEED_SUPER:
2347     case USB_SPEED_SUPER_PLUS:
2348         return SS_BLOCK;
2349     case USB_SPEED_UNKNOWN:
2350     case USB_SPEED_WIRELESS:
2351     default:
2352         /* Should never happen */
2353         return 1;
2354     }
2355 }
2356 
2357 static unsigned int
2358 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2359 {
2360     if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2361         return LS_OVERHEAD;
2362     if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2363         return FS_OVERHEAD;
2364     return HS_OVERHEAD;
2365 }
2366 
2367 /* If we are changing a LS/FS device under a HS hub,
2368  * make sure (if we are activating a new TT) that the HS bus has enough
2369  * bandwidth for this new TT.
2370  */
2371 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2372         struct xhci_virt_device *virt_dev,
2373         int old_active_eps)
2374 {
2375     struct xhci_interval_bw_table *bw_table;
2376     struct xhci_tt_bw_info *tt_info;
2377 
2378     /* Find the bandwidth table for the root port this TT is attached to. */
2379     bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2380     tt_info = virt_dev->tt_info;
2381     /* If this TT already had active endpoints, the bandwidth for this TT
2382      * has already been added.  Removing all periodic endpoints (and thus
2383      * making the TT enactive) will only decrease the bandwidth used.
2384      */
2385     if (old_active_eps)
2386         return 0;
2387     if (old_active_eps == 0 && tt_info->active_eps != 0) {
2388         if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2389             return -ENOMEM;
2390         return 0;
2391     }
2392     /* Not sure why we would have no new active endpoints...
2393      *
2394      * Maybe because of an Evaluate Context change for a hub update or a
2395      * control endpoint 0 max packet size change?
2396      * FIXME: skip the bandwidth calculation in that case.
2397      */
2398     return 0;
2399 }
2400 
2401 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2402         struct xhci_virt_device *virt_dev)
2403 {
2404     unsigned int bw_reserved;
2405 
2406     bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2407     if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2408         return -ENOMEM;
2409 
2410     bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2411     if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2412         return -ENOMEM;
2413 
2414     return 0;
2415 }
2416 
2417 /*
2418  * This algorithm is a very conservative estimate of the worst-case scheduling
2419  * scenario for any one interval.  The hardware dynamically schedules the
2420  * packets, so we can't tell which microframe could be the limiting factor in
2421  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2422  *
2423  * Obviously, we can't solve an NP complete problem to find the minimum worst
2424  * case scenario.  Instead, we come up with an estimate that is no less than
2425  * the worst case bandwidth used for any one microframe, but may be an
2426  * over-estimate.
2427  *
2428  * We walk the requirements for each endpoint by interval, starting with the
2429  * smallest interval, and place packets in the schedule where there is only one
2430  * possible way to schedule packets for that interval.  In order to simplify
2431  * this algorithm, we record the largest max packet size for each interval, and
2432  * assume all packets will be that size.
2433  *
2434  * For interval 0, we obviously must schedule all packets for each interval.
2435  * The bandwidth for interval 0 is just the amount of data to be transmitted
2436  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2437  * the number of packets).
2438  *
2439  * For interval 1, we have two possible microframes to schedule those packets
2440  * in.  For this algorithm, if we can schedule the same number of packets for
2441  * each possible scheduling opportunity (each microframe), we will do so.  The
2442  * remaining number of packets will be saved to be transmitted in the gaps in
2443  * the next interval's scheduling sequence.
2444  *
2445  * As we move those remaining packets to be scheduled with interval 2 packets,
2446  * we have to double the number of remaining packets to transmit.  This is
2447  * because the intervals are actually powers of 2, and we would be transmitting
2448  * the previous interval's packets twice in this interval.  We also have to be
2449  * sure that when we look at the largest max packet size for this interval, we
2450  * also look at the largest max packet size for the remaining packets and take
2451  * the greater of the two.
2452  *
2453  * The algorithm continues to evenly distribute packets in each scheduling
2454  * opportunity, and push the remaining packets out, until we get to the last
2455  * interval.  Then those packets and their associated overhead are just added
2456  * to the bandwidth used.
2457  */
2458 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2459         struct xhci_virt_device *virt_dev,
2460         int old_active_eps)
2461 {
2462     unsigned int bw_reserved;
2463     unsigned int max_bandwidth;
2464     unsigned int bw_used;
2465     unsigned int block_size;
2466     struct xhci_interval_bw_table *bw_table;
2467     unsigned int packet_size = 0;
2468     unsigned int overhead = 0;
2469     unsigned int packets_transmitted = 0;
2470     unsigned int packets_remaining = 0;
2471     unsigned int i;
2472 
2473     if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2474         return xhci_check_ss_bw(xhci, virt_dev);
2475 
2476     if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2477         max_bandwidth = HS_BW_LIMIT;
2478         /* Convert percent of bus BW reserved to blocks reserved */
2479         bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2480     } else {
2481         max_bandwidth = FS_BW_LIMIT;
2482         bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2483     }
2484 
2485     bw_table = virt_dev->bw_table;
2486     /* We need to translate the max packet size and max ESIT payloads into
2487      * the units the hardware uses.
2488      */
2489     block_size = xhci_get_block_size(virt_dev->udev);
2490 
2491     /* If we are manipulating a LS/FS device under a HS hub, double check
2492      * that the HS bus has enough bandwidth if we are activing a new TT.
2493      */
2494     if (virt_dev->tt_info) {
2495         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2496                 "Recalculating BW for rootport %u",
2497                 virt_dev->real_port);
2498         if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2499             xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2500                     "newly activated TT.\n");
2501             return -ENOMEM;
2502         }
2503         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2504                 "Recalculating BW for TT slot %u port %u",
2505                 virt_dev->tt_info->slot_id,
2506                 virt_dev->tt_info->ttport);
2507     } else {
2508         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2509                 "Recalculating BW for rootport %u",
2510                 virt_dev->real_port);
2511     }
2512 
2513     /* Add in how much bandwidth will be used for interval zero, or the
2514      * rounded max ESIT payload + number of packets * largest overhead.
2515      */
2516     bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2517         bw_table->interval_bw[0].num_packets *
2518         xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2519 
2520     for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2521         unsigned int bw_added;
2522         unsigned int largest_mps;
2523         unsigned int interval_overhead;
2524 
2525         /*
2526          * How many packets could we transmit in this interval?
2527          * If packets didn't fit in the previous interval, we will need
2528          * to transmit that many packets twice within this interval.
2529          */
2530         packets_remaining = 2 * packets_remaining +
2531             bw_table->interval_bw[i].num_packets;
2532 
2533         /* Find the largest max packet size of this or the previous
2534          * interval.
2535          */
2536         if (list_empty(&bw_table->interval_bw[i].endpoints))
2537             largest_mps = 0;
2538         else {
2539             struct xhci_virt_ep *virt_ep;
2540             struct list_head *ep_entry;
2541 
2542             ep_entry = bw_table->interval_bw[i].endpoints.next;
2543             virt_ep = list_entry(ep_entry,
2544                     struct xhci_virt_ep, bw_endpoint_list);
2545             /* Convert to blocks, rounding up */
2546             largest_mps = DIV_ROUND_UP(
2547                     virt_ep->bw_info.max_packet_size,
2548                     block_size);
2549         }
2550         if (largest_mps > packet_size)
2551             packet_size = largest_mps;
2552 
2553         /* Use the larger overhead of this or the previous interval. */
2554         interval_overhead = xhci_get_largest_overhead(
2555                 &bw_table->interval_bw[i]);
2556         if (interval_overhead > overhead)
2557             overhead = interval_overhead;
2558 
2559         /* How many packets can we evenly distribute across
2560          * (1 << (i + 1)) possible scheduling opportunities?
2561          */
2562         packets_transmitted = packets_remaining >> (i + 1);
2563 
2564         /* Add in the bandwidth used for those scheduled packets */
2565         bw_added = packets_transmitted * (overhead + packet_size);
2566 
2567         /* How many packets do we have remaining to transmit? */
2568         packets_remaining = packets_remaining % (1 << (i + 1));
2569 
2570         /* What largest max packet size should those packets have? */
2571         /* If we've transmitted all packets, don't carry over the
2572          * largest packet size.
2573          */
2574         if (packets_remaining == 0) {
2575             packet_size = 0;
2576             overhead = 0;
2577         } else if (packets_transmitted > 0) {
2578             /* Otherwise if we do have remaining packets, and we've
2579              * scheduled some packets in this interval, take the
2580              * largest max packet size from endpoints with this
2581              * interval.
2582              */
2583             packet_size = largest_mps;
2584             overhead = interval_overhead;
2585         }
2586         /* Otherwise carry over packet_size and overhead from the last
2587          * time we had a remainder.
2588          */
2589         bw_used += bw_added;
2590         if (bw_used > max_bandwidth) {
2591             xhci_warn(xhci, "Not enough bandwidth. "
2592                     "Proposed: %u, Max: %u\n",
2593                 bw_used, max_bandwidth);
2594             return -ENOMEM;
2595         }
2596     }
2597     /*
2598      * Ok, we know we have some packets left over after even-handedly
2599      * scheduling interval 15.  We don't know which microframes they will
2600      * fit into, so we over-schedule and say they will be scheduled every
2601      * microframe.
2602      */
2603     if (packets_remaining > 0)
2604         bw_used += overhead + packet_size;
2605 
2606     if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2607         unsigned int port_index = virt_dev->real_port - 1;
2608 
2609         /* OK, we're manipulating a HS device attached to a
2610          * root port bandwidth domain.  Include the number of active TTs
2611          * in the bandwidth used.
2612          */
2613         bw_used += TT_HS_OVERHEAD *
2614             xhci->rh_bw[port_index].num_active_tts;
2615     }
2616 
2617     xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2618         "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2619         "Available: %u " "percent",
2620         bw_used, max_bandwidth, bw_reserved,
2621         (max_bandwidth - bw_used - bw_reserved) * 100 /
2622         max_bandwidth);
2623 
2624     bw_used += bw_reserved;
2625     if (bw_used > max_bandwidth) {
2626         xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2627                 bw_used, max_bandwidth);
2628         return -ENOMEM;
2629     }
2630 
2631     bw_table->bw_used = bw_used;
2632     return 0;
2633 }
2634 
2635 static bool xhci_is_async_ep(unsigned int ep_type)
2636 {
2637     return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2638                     ep_type != ISOC_IN_EP &&
2639                     ep_type != INT_IN_EP);
2640 }
2641 
2642 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2643 {
2644     return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2645 }
2646 
2647 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2648 {
2649     unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2650 
2651     if (ep_bw->ep_interval == 0)
2652         return SS_OVERHEAD_BURST +
2653             (ep_bw->mult * ep_bw->num_packets *
2654                     (SS_OVERHEAD + mps));
2655     return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2656                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2657                 1 << ep_bw->ep_interval);
2658 
2659 }
2660 
2661 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2662         struct xhci_bw_info *ep_bw,
2663         struct xhci_interval_bw_table *bw_table,
2664         struct usb_device *udev,
2665         struct xhci_virt_ep *virt_ep,
2666         struct xhci_tt_bw_info *tt_info)
2667 {
2668     struct xhci_interval_bw *interval_bw;
2669     int normalized_interval;
2670 
2671     if (xhci_is_async_ep(ep_bw->type))
2672         return;
2673 
2674     if (udev->speed >= USB_SPEED_SUPER) {
2675         if (xhci_is_sync_in_ep(ep_bw->type))
2676             xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2677                 xhci_get_ss_bw_consumed(ep_bw);
2678         else
2679             xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2680                 xhci_get_ss_bw_consumed(ep_bw);
2681         return;
2682     }
2683 
2684     /* SuperSpeed endpoints never get added to intervals in the table, so
2685      * this check is only valid for HS/FS/LS devices.
2686      */
2687     if (list_empty(&virt_ep->bw_endpoint_list))
2688         return;
2689     /* For LS/FS devices, we need to translate the interval expressed in
2690      * microframes to frames.
2691      */
2692     if (udev->speed == USB_SPEED_HIGH)
2693         normalized_interval = ep_bw->ep_interval;
2694     else
2695         normalized_interval = ep_bw->ep_interval - 3;
2696 
2697     if (normalized_interval == 0)
2698         bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2699     interval_bw = &bw_table->interval_bw[normalized_interval];
2700     interval_bw->num_packets -= ep_bw->num_packets;
2701     switch (udev->speed) {
2702     case USB_SPEED_LOW:
2703         interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2704         break;
2705     case USB_SPEED_FULL:
2706         interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2707         break;
2708     case USB_SPEED_HIGH:
2709         interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2710         break;
2711     case USB_SPEED_SUPER:
2712     case USB_SPEED_SUPER_PLUS:
2713     case USB_SPEED_UNKNOWN:
2714     case USB_SPEED_WIRELESS:
2715         /* Should never happen because only LS/FS/HS endpoints will get
2716          * added to the endpoint list.
2717          */
2718         return;
2719     }
2720     if (tt_info)
2721         tt_info->active_eps -= 1;
2722     list_del_init(&virt_ep->bw_endpoint_list);
2723 }
2724 
2725 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2726         struct xhci_bw_info *ep_bw,
2727         struct xhci_interval_bw_table *bw_table,
2728         struct usb_device *udev,
2729         struct xhci_virt_ep *virt_ep,
2730         struct xhci_tt_bw_info *tt_info)
2731 {
2732     struct xhci_interval_bw *interval_bw;
2733     struct xhci_virt_ep *smaller_ep;
2734     int normalized_interval;
2735 
2736     if (xhci_is_async_ep(ep_bw->type))
2737         return;
2738 
2739     if (udev->speed == USB_SPEED_SUPER) {
2740         if (xhci_is_sync_in_ep(ep_bw->type))
2741             xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2742                 xhci_get_ss_bw_consumed(ep_bw);
2743         else
2744             xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2745                 xhci_get_ss_bw_consumed(ep_bw);
2746         return;
2747     }
2748 
2749     /* For LS/FS devices, we need to translate the interval expressed in
2750      * microframes to frames.
2751      */
2752     if (udev->speed == USB_SPEED_HIGH)
2753         normalized_interval = ep_bw->ep_interval;
2754     else
2755         normalized_interval = ep_bw->ep_interval - 3;
2756 
2757     if (normalized_interval == 0)
2758         bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2759     interval_bw = &bw_table->interval_bw[normalized_interval];
2760     interval_bw->num_packets += ep_bw->num_packets;
2761     switch (udev->speed) {
2762     case USB_SPEED_LOW:
2763         interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2764         break;
2765     case USB_SPEED_FULL:
2766         interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2767         break;
2768     case USB_SPEED_HIGH:
2769         interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2770         break;
2771     case USB_SPEED_SUPER:
2772     case USB_SPEED_SUPER_PLUS:
2773     case USB_SPEED_UNKNOWN:
2774     case USB_SPEED_WIRELESS:
2775         /* Should never happen because only LS/FS/HS endpoints will get
2776          * added to the endpoint list.
2777          */
2778         return;
2779     }
2780 
2781     if (tt_info)
2782         tt_info->active_eps += 1;
2783     /* Insert the endpoint into the list, largest max packet size first. */
2784     list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2785             bw_endpoint_list) {
2786         if (ep_bw->max_packet_size >=
2787                 smaller_ep->bw_info.max_packet_size) {
2788             /* Add the new ep before the smaller endpoint */
2789             list_add_tail(&virt_ep->bw_endpoint_list,
2790                     &smaller_ep->bw_endpoint_list);
2791             return;
2792         }
2793     }
2794     /* Add the new endpoint at the end of the list. */
2795     list_add_tail(&virt_ep->bw_endpoint_list,
2796             &interval_bw->endpoints);
2797 }
2798 
2799 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2800         struct xhci_virt_device *virt_dev,
2801         int old_active_eps)
2802 {
2803     struct xhci_root_port_bw_info *rh_bw_info;
2804     if (!virt_dev->tt_info)
2805         return;
2806 
2807     rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2808     if (old_active_eps == 0 &&
2809                 virt_dev->tt_info->active_eps != 0) {
2810         rh_bw_info->num_active_tts += 1;
2811         rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2812     } else if (old_active_eps != 0 &&
2813                 virt_dev->tt_info->active_eps == 0) {
2814         rh_bw_info->num_active_tts -= 1;
2815         rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2816     }
2817 }
2818 
2819 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2820         struct xhci_virt_device *virt_dev,
2821         struct xhci_container_ctx *in_ctx)
2822 {
2823     struct xhci_bw_info ep_bw_info[31];
2824     int i;
2825     struct xhci_input_control_ctx *ctrl_ctx;
2826     int old_active_eps = 0;
2827 
2828     if (virt_dev->tt_info)
2829         old_active_eps = virt_dev->tt_info->active_eps;
2830 
2831     ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2832     if (!ctrl_ctx) {
2833         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2834                 __func__);
2835         return -ENOMEM;
2836     }
2837 
2838     for (i = 0; i < 31; i++) {
2839         if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2840             continue;
2841 
2842         /* Make a copy of the BW info in case we need to revert this */
2843         memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2844                 sizeof(ep_bw_info[i]));
2845         /* Drop the endpoint from the interval table if the endpoint is
2846          * being dropped or changed.
2847          */
2848         if (EP_IS_DROPPED(ctrl_ctx, i))
2849             xhci_drop_ep_from_interval_table(xhci,
2850                     &virt_dev->eps[i].bw_info,
2851                     virt_dev->bw_table,
2852                     virt_dev->udev,
2853                     &virt_dev->eps[i],
2854                     virt_dev->tt_info);
2855     }
2856     /* Overwrite the information stored in the endpoints' bw_info */
2857     xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2858     for (i = 0; i < 31; i++) {
2859         /* Add any changed or added endpoints to the interval table */
2860         if (EP_IS_ADDED(ctrl_ctx, i))
2861             xhci_add_ep_to_interval_table(xhci,
2862                     &virt_dev->eps[i].bw_info,
2863                     virt_dev->bw_table,
2864                     virt_dev->udev,
2865                     &virt_dev->eps[i],
2866                     virt_dev->tt_info);
2867     }
2868 
2869     if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2870         /* Ok, this fits in the bandwidth we have.
2871          * Update the number of active TTs.
2872          */
2873         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2874         return 0;
2875     }
2876 
2877     /* We don't have enough bandwidth for this, revert the stored info. */
2878     for (i = 0; i < 31; i++) {
2879         if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2880             continue;
2881 
2882         /* Drop the new copies of any added or changed endpoints from
2883          * the interval table.
2884          */
2885         if (EP_IS_ADDED(ctrl_ctx, i)) {
2886             xhci_drop_ep_from_interval_table(xhci,
2887                     &virt_dev->eps[i].bw_info,
2888                     virt_dev->bw_table,
2889                     virt_dev->udev,
2890                     &virt_dev->eps[i],
2891                     virt_dev->tt_info);
2892         }
2893         /* Revert the endpoint back to its old information */
2894         memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2895                 sizeof(ep_bw_info[i]));
2896         /* Add any changed or dropped endpoints back into the table */
2897         if (EP_IS_DROPPED(ctrl_ctx, i))
2898             xhci_add_ep_to_interval_table(xhci,
2899                     &virt_dev->eps[i].bw_info,
2900                     virt_dev->bw_table,
2901                     virt_dev->udev,
2902                     &virt_dev->eps[i],
2903                     virt_dev->tt_info);
2904     }
2905     return -ENOMEM;
2906 }
2907 
2908 
2909 /* Issue a configure endpoint command or evaluate context command
2910  * and wait for it to finish.
2911  */
2912 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2913         struct usb_device *udev,
2914         struct xhci_command *command,
2915         bool ctx_change, bool must_succeed)
2916 {
2917     int ret;
2918     unsigned long flags;
2919     struct xhci_input_control_ctx *ctrl_ctx;
2920     struct xhci_virt_device *virt_dev;
2921     struct xhci_slot_ctx *slot_ctx;
2922 
2923     if (!command)
2924         return -EINVAL;
2925 
2926     spin_lock_irqsave(&xhci->lock, flags);
2927 
2928     if (xhci->xhc_state & XHCI_STATE_DYING) {
2929         spin_unlock_irqrestore(&xhci->lock, flags);
2930         return -ESHUTDOWN;
2931     }
2932 
2933     virt_dev = xhci->devs[udev->slot_id];
2934 
2935     ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2936     if (!ctrl_ctx) {
2937         spin_unlock_irqrestore(&xhci->lock, flags);
2938         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2939                 __func__);
2940         return -ENOMEM;
2941     }
2942 
2943     if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2944             xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2945         spin_unlock_irqrestore(&xhci->lock, flags);
2946         xhci_warn(xhci, "Not enough host resources, "
2947                 "active endpoint contexts = %u\n",
2948                 xhci->num_active_eps);
2949         return -ENOMEM;
2950     }
2951     if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2952         xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2953         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2954             xhci_free_host_resources(xhci, ctrl_ctx);
2955         spin_unlock_irqrestore(&xhci->lock, flags);
2956         xhci_warn(xhci, "Not enough bandwidth\n");
2957         return -ENOMEM;
2958     }
2959 
2960     slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2961 
2962     trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2963     trace_xhci_configure_endpoint(slot_ctx);
2964 
2965     if (!ctx_change)
2966         ret = xhci_queue_configure_endpoint(xhci, command,
2967                 command->in_ctx->dma,
2968                 udev->slot_id, must_succeed);
2969     else
2970         ret = xhci_queue_evaluate_context(xhci, command,
2971                 command->in_ctx->dma,
2972                 udev->slot_id, must_succeed);
2973     if (ret < 0) {
2974         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2975             xhci_free_host_resources(xhci, ctrl_ctx);
2976         spin_unlock_irqrestore(&xhci->lock, flags);
2977         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2978                 "FIXME allocate a new ring segment");
2979         return -ENOMEM;
2980     }
2981     xhci_ring_cmd_db(xhci);
2982     spin_unlock_irqrestore(&xhci->lock, flags);
2983 
2984     /* Wait for the configure endpoint command to complete */
2985     wait_for_completion(command->completion);
2986 
2987     if (!ctx_change)
2988         ret = xhci_configure_endpoint_result(xhci, udev,
2989                              &command->status);
2990     else
2991         ret = xhci_evaluate_context_result(xhci, udev,
2992                            &command->status);
2993 
2994     if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2995         spin_lock_irqsave(&xhci->lock, flags);
2996         /* If the command failed, remove the reserved resources.
2997          * Otherwise, clean up the estimate to include dropped eps.
2998          */
2999         if (ret)
3000             xhci_free_host_resources(xhci, ctrl_ctx);
3001         else
3002             xhci_finish_resource_reservation(xhci, ctrl_ctx);
3003         spin_unlock_irqrestore(&xhci->lock, flags);
3004     }
3005     return ret;
3006 }
3007 
3008 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3009     struct xhci_virt_device *vdev, int i)
3010 {
3011     struct xhci_virt_ep *ep = &vdev->eps[i];
3012 
3013     if (ep->ep_state & EP_HAS_STREAMS) {
3014         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3015                 xhci_get_endpoint_address(i));
3016         xhci_free_stream_info(xhci, ep->stream_info);
3017         ep->stream_info = NULL;
3018         ep->ep_state &= ~EP_HAS_STREAMS;
3019     }
3020 }
3021 
3022 /* Called after one or more calls to xhci_add_endpoint() or
3023  * xhci_drop_endpoint().  If this call fails, the USB core is expected
3024  * to call xhci_reset_bandwidth().
3025  *
3026  * Since we are in the middle of changing either configuration or
3027  * installing a new alt setting, the USB core won't allow URBs to be
3028  * enqueued for any endpoint on the old config or interface.  Nothing
3029  * else should be touching the xhci->devs[slot_id] structure, so we
3030  * don't need to take the xhci->lock for manipulating that.
3031  */
3032 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3033 {
3034     int i;
3035     int ret = 0;
3036     struct xhci_hcd *xhci;
3037     struct xhci_virt_device *virt_dev;
3038     struct xhci_input_control_ctx *ctrl_ctx;
3039     struct xhci_slot_ctx *slot_ctx;
3040     struct xhci_command *command;
3041 
3042     ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3043     if (ret <= 0)
3044         return ret;
3045     xhci = hcd_to_xhci(hcd);
3046     if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3047         (xhci->xhc_state & XHCI_STATE_REMOVING))
3048         return -ENODEV;
3049 
3050     xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3051     virt_dev = xhci->devs[udev->slot_id];
3052 
3053     command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3054     if (!command)
3055         return -ENOMEM;
3056 
3057     command->in_ctx = virt_dev->in_ctx;
3058 
3059     /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3060     ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3061     if (!ctrl_ctx) {
3062         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3063                 __func__);
3064         ret = -ENOMEM;
3065         goto command_cleanup;
3066     }
3067     ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3068     ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3069     ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3070 
3071     /* Don't issue the command if there's no endpoints to update. */
3072     if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3073         ctrl_ctx->drop_flags == 0) {
3074         ret = 0;
3075         goto command_cleanup;
3076     }
3077     /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3078     slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3079     for (i = 31; i >= 1; i--) {
3080         __le32 le32 = cpu_to_le32(BIT(i));
3081 
3082         if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3083             || (ctrl_ctx->add_flags & le32) || i == 1) {
3084             slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3085             slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3086             break;
3087         }
3088     }
3089 
3090     ret = xhci_configure_endpoint(xhci, udev, command,
3091             false, false);
3092     if (ret)
3093         /* Callee should call reset_bandwidth() */
3094         goto command_cleanup;
3095 
3096     /* Free any rings that were dropped, but not changed. */
3097     for (i = 1; i < 31; i++) {
3098         if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3099             !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3100             xhci_free_endpoint_ring(xhci, virt_dev, i);
3101             xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3102         }
3103     }
3104     xhci_zero_in_ctx(xhci, virt_dev);
3105     /*
3106      * Install any rings for completely new endpoints or changed endpoints,
3107      * and free any old rings from changed endpoints.
3108      */
3109     for (i = 1; i < 31; i++) {
3110         if (!virt_dev->eps[i].new_ring)
3111             continue;
3112         /* Only free the old ring if it exists.
3113          * It may not if this is the first add of an endpoint.
3114          */
3115         if (virt_dev->eps[i].ring) {
3116             xhci_free_endpoint_ring(xhci, virt_dev, i);
3117         }
3118         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3119         virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3120         virt_dev->eps[i].new_ring = NULL;
3121         xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3122     }
3123 command_cleanup:
3124     kfree(command->completion);
3125     kfree(command);
3126 
3127     return ret;
3128 }
3129 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3130 
3131 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3132 {
3133     struct xhci_hcd *xhci;
3134     struct xhci_virt_device *virt_dev;
3135     int i, ret;
3136 
3137     ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3138     if (ret <= 0)
3139         return;
3140     xhci = hcd_to_xhci(hcd);
3141 
3142     xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3143     virt_dev = xhci->devs[udev->slot_id];
3144     /* Free any rings allocated for added endpoints */
3145     for (i = 0; i < 31; i++) {
3146         if (virt_dev->eps[i].new_ring) {
3147             xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3148             xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3149             virt_dev->eps[i].new_ring = NULL;
3150         }
3151     }
3152     xhci_zero_in_ctx(xhci, virt_dev);
3153 }
3154 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3155 
3156 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3157         struct xhci_container_ctx *in_ctx,
3158         struct xhci_container_ctx *out_ctx,
3159         struct xhci_input_control_ctx *ctrl_ctx,
3160         u32 add_flags, u32 drop_flags)
3161 {
3162     ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3163     ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3164     xhci_slot_copy(xhci, in_ctx, out_ctx);
3165     ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3166 }
3167 
3168 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3169                   struct usb_host_endpoint *host_ep)
3170 {
3171     struct xhci_hcd     *xhci;
3172     struct xhci_virt_device *vdev;
3173     struct xhci_virt_ep *ep;
3174     struct usb_device   *udev;
3175     unsigned long       flags;
3176     unsigned int        ep_index;
3177 
3178     xhci = hcd_to_xhci(hcd);
3179 rescan:
3180     spin_lock_irqsave(&xhci->lock, flags);
3181 
3182     udev = (struct usb_device *)host_ep->hcpriv;
3183     if (!udev || !udev->slot_id)
3184         goto done;
3185 
3186     vdev = xhci->devs[udev->slot_id];
3187     if (!vdev)
3188         goto done;
3189 
3190     ep_index = xhci_get_endpoint_index(&host_ep->desc);
3191     ep = &vdev->eps[ep_index];
3192 
3193     /* wait for hub_tt_work to finish clearing hub TT */
3194     if (ep->ep_state & EP_CLEARING_TT) {
3195         spin_unlock_irqrestore(&xhci->lock, flags);
3196         schedule_timeout_uninterruptible(1);
3197         goto rescan;
3198     }
3199 
3200     if (ep->ep_state)
3201         xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3202              ep->ep_state);
3203 done:
3204     host_ep->hcpriv = NULL;
3205     spin_unlock_irqrestore(&xhci->lock, flags);
3206 }
3207 
3208 /*
3209  * Called after usb core issues a clear halt control message.
3210  * The host side of the halt should already be cleared by a reset endpoint
3211  * command issued when the STALL event was received.
3212  *
3213  * The reset endpoint command may only be issued to endpoints in the halted
3214  * state. For software that wishes to reset the data toggle or sequence number
3215  * of an endpoint that isn't in the halted state this function will issue a
3216  * configure endpoint command with the Drop and Add bits set for the target
3217  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3218  */
3219 
3220 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3221         struct usb_host_endpoint *host_ep)
3222 {
3223     struct xhci_hcd *xhci;
3224     struct usb_device *udev;
3225     struct xhci_virt_device *vdev;
3226     struct xhci_virt_ep *ep;
3227     struct xhci_input_control_ctx *ctrl_ctx;
3228     struct xhci_command *stop_cmd, *cfg_cmd;
3229     unsigned int ep_index;
3230     unsigned long flags;
3231     u32 ep_flag;
3232     int err;
3233 
3234     xhci = hcd_to_xhci(hcd);
3235     if (!host_ep->hcpriv)
3236         return;
3237     udev = (struct usb_device *) host_ep->hcpriv;
3238     vdev = xhci->devs[udev->slot_id];
3239 
3240     /*
3241      * vdev may be lost due to xHC restore error and re-initialization
3242      * during S3/S4 resume. A new vdev will be allocated later by
3243      * xhci_discover_or_reset_device()
3244      */
3245     if (!udev->slot_id || !vdev)
3246         return;
3247     ep_index = xhci_get_endpoint_index(&host_ep->desc);
3248     ep = &vdev->eps[ep_index];
3249 
3250     /* Bail out if toggle is already being cleared by a endpoint reset */
3251     spin_lock_irqsave(&xhci->lock, flags);
3252     if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3253         ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3254         spin_unlock_irqrestore(&xhci->lock, flags);
3255         return;
3256     }
3257     spin_unlock_irqrestore(&xhci->lock, flags);
3258     /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3259     if (usb_endpoint_xfer_control(&host_ep->desc) ||
3260         usb_endpoint_xfer_isoc(&host_ep->desc))
3261         return;
3262 
3263     ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3264 
3265     if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3266         return;
3267 
3268     stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3269     if (!stop_cmd)
3270         return;
3271 
3272     cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3273     if (!cfg_cmd)
3274         goto cleanup;
3275 
3276     spin_lock_irqsave(&xhci->lock, flags);
3277 
3278     /* block queuing new trbs and ringing ep doorbell */
3279     ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3280 
3281     /*
3282      * Make sure endpoint ring is empty before resetting the toggle/seq.
3283      * Driver is required to synchronously cancel all transfer request.
3284      * Stop the endpoint to force xHC to update the output context
3285      */
3286 
3287     if (!list_empty(&ep->ring->td_list)) {
3288         dev_err(&udev->dev, "EP not empty, refuse reset\n");
3289         spin_unlock_irqrestore(&xhci->lock, flags);
3290         xhci_free_command(xhci, cfg_cmd);
3291         goto cleanup;
3292     }
3293 
3294     err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3295                     ep_index, 0);
3296     if (err < 0) {
3297         spin_unlock_irqrestore(&xhci->lock, flags);
3298         xhci_free_command(xhci, cfg_cmd);
3299         xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3300                 __func__, err);
3301         goto cleanup;
3302     }
3303 
3304     xhci_ring_cmd_db(xhci);
3305     spin_unlock_irqrestore(&xhci->lock, flags);
3306 
3307     wait_for_completion(stop_cmd->completion);
3308 
3309     spin_lock_irqsave(&xhci->lock, flags);
3310 
3311     /* config ep command clears toggle if add and drop ep flags are set */
3312     ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3313     if (!ctrl_ctx) {
3314         spin_unlock_irqrestore(&xhci->lock, flags);
3315         xhci_free_command(xhci, cfg_cmd);
3316         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3317                 __func__);
3318         goto cleanup;
3319     }
3320 
3321     xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3322                        ctrl_ctx, ep_flag, ep_flag);
3323     xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3324 
3325     err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3326                       udev->slot_id, false);
3327     if (err < 0) {
3328         spin_unlock_irqrestore(&xhci->lock, flags);
3329         xhci_free_command(xhci, cfg_cmd);
3330         xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3331                 __func__, err);
3332         goto cleanup;
3333     }
3334 
3335     xhci_ring_cmd_db(xhci);
3336     spin_unlock_irqrestore(&xhci->lock, flags);
3337 
3338     wait_for_completion(cfg_cmd->completion);
3339 
3340     xhci_free_command(xhci, cfg_cmd);
3341 cleanup:
3342     xhci_free_command(xhci, stop_cmd);
3343     spin_lock_irqsave(&xhci->lock, flags);
3344     if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3345         ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3346     spin_unlock_irqrestore(&xhci->lock, flags);
3347 }
3348 
3349 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3350         struct usb_device *udev, struct usb_host_endpoint *ep,
3351         unsigned int slot_id)
3352 {
3353     int ret;
3354     unsigned int ep_index;
3355     unsigned int ep_state;
3356 
3357     if (!ep)
3358         return -EINVAL;
3359     ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3360     if (ret <= 0)
3361         return ret ? ret : -EINVAL;
3362     if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3363         xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3364                 " descriptor for ep 0x%x does not support streams\n",
3365                 ep->desc.bEndpointAddress);
3366         return -EINVAL;
3367     }
3368 
3369     ep_index = xhci_get_endpoint_index(&ep->desc);
3370     ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3371     if (ep_state & EP_HAS_STREAMS ||
3372             ep_state & EP_GETTING_STREAMS) {
3373         xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3374                 "already has streams set up.\n",
3375                 ep->desc.bEndpointAddress);
3376         xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3377                 "dynamic stream context array reallocation.\n");
3378         return -EINVAL;
3379     }
3380     if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3381         xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3382                 "endpoint 0x%x; URBs are pending.\n",
3383                 ep->desc.bEndpointAddress);
3384         return -EINVAL;
3385     }
3386     return 0;
3387 }
3388 
3389 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3390         unsigned int *num_streams, unsigned int *num_stream_ctxs)
3391 {
3392     unsigned int max_streams;
3393 
3394     /* The stream context array size must be a power of two */
3395     *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3396     /*
3397      * Find out how many primary stream array entries the host controller
3398      * supports.  Later we may use secondary stream arrays (similar to 2nd
3399      * level page entries), but that's an optional feature for xHCI host
3400      * controllers. xHCs must support at least 4 stream IDs.
3401      */
3402     max_streams = HCC_MAX_PSA(xhci->hcc_params);
3403     if (*num_stream_ctxs > max_streams) {
3404         xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3405                 max_streams);
3406         *num_stream_ctxs = max_streams;
3407         *num_streams = max_streams;
3408     }
3409 }
3410 
3411 /* Returns an error code if one of the endpoint already has streams.
3412  * This does not change any data structures, it only checks and gathers
3413  * information.
3414  */
3415 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3416         struct usb_device *udev,
3417         struct usb_host_endpoint **eps, unsigned int num_eps,
3418         unsigned int *num_streams, u32 *changed_ep_bitmask)
3419 {
3420     unsigned int max_streams;
3421     unsigned int endpoint_flag;
3422     int i;
3423     int ret;
3424 
3425     for (i = 0; i < num_eps; i++) {
3426         ret = xhci_check_streams_endpoint(xhci, udev,
3427                 eps[i], udev->slot_id);
3428         if (ret < 0)
3429             return ret;
3430 
3431         max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3432         if (max_streams < (*num_streams - 1)) {
3433             xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3434                     eps[i]->desc.bEndpointAddress,
3435                     max_streams);
3436             *num_streams = max_streams+1;
3437         }
3438 
3439         endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3440         if (*changed_ep_bitmask & endpoint_flag)
3441             return -EINVAL;
3442         *changed_ep_bitmask |= endpoint_flag;
3443     }
3444     return 0;
3445 }
3446 
3447 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3448         struct usb_device *udev,
3449         struct usb_host_endpoint **eps, unsigned int num_eps)
3450 {
3451     u32 changed_ep_bitmask = 0;
3452     unsigned int slot_id;
3453     unsigned int ep_index;
3454     unsigned int ep_state;
3455     int i;
3456 
3457     slot_id = udev->slot_id;
3458     if (!xhci->devs[slot_id])
3459         return 0;
3460 
3461     for (i = 0; i < num_eps; i++) {
3462         ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3463         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3464         /* Are streams already being freed for the endpoint? */
3465         if (ep_state & EP_GETTING_NO_STREAMS) {
3466             xhci_warn(xhci, "WARN Can't disable streams for "
3467                     "endpoint 0x%x, "
3468                     "streams are being disabled already\n",
3469                     eps[i]->desc.bEndpointAddress);
3470             return 0;
3471         }
3472         /* Are there actually any streams to free? */
3473         if (!(ep_state & EP_HAS_STREAMS) &&
3474                 !(ep_state & EP_GETTING_STREAMS)) {
3475             xhci_warn(xhci, "WARN Can't disable streams for "
3476                     "endpoint 0x%x, "
3477                     "streams are already disabled!\n",
3478                     eps[i]->desc.bEndpointAddress);
3479             xhci_warn(xhci, "WARN xhci_free_streams() called "
3480                     "with non-streams endpoint\n");
3481             return 0;
3482         }
3483         changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3484     }
3485     return changed_ep_bitmask;
3486 }
3487 
3488 /*
3489  * The USB device drivers use this function (through the HCD interface in USB
3490  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3491  * coordinate mass storage command queueing across multiple endpoints (basically
3492  * a stream ID == a task ID).
3493  *
3494  * Setting up streams involves allocating the same size stream context array
3495  * for each endpoint and issuing a configure endpoint command for all endpoints.
3496  *
3497  * Don't allow the call to succeed if one endpoint only supports one stream
3498  * (which means it doesn't support streams at all).
3499  *
3500  * Drivers may get less stream IDs than they asked for, if the host controller
3501  * hardware or endpoints claim they can't support the number of requested
3502  * stream IDs.
3503  */
3504 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3505         struct usb_host_endpoint **eps, unsigned int num_eps,
3506         unsigned int num_streams, gfp_t mem_flags)
3507 {
3508     int i, ret;
3509     struct xhci_hcd *xhci;
3510     struct xhci_virt_device *vdev;
3511     struct xhci_command *config_cmd;
3512     struct xhci_input_control_ctx *ctrl_ctx;
3513     unsigned int ep_index;
3514     unsigned int num_stream_ctxs;
3515     unsigned int max_packet;
3516     unsigned long flags;
3517     u32 changed_ep_bitmask = 0;
3518 
3519     if (!eps)
3520         return -EINVAL;
3521 
3522     /* Add one to the number of streams requested to account for
3523      * stream 0 that is reserved for xHCI usage.
3524      */
3525     num_streams += 1;
3526     xhci = hcd_to_xhci(hcd);
3527     xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3528             num_streams);
3529 
3530     /* MaxPSASize value 0 (2 streams) means streams are not supported */
3531     if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3532             HCC_MAX_PSA(xhci->hcc_params) < 4) {
3533         xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3534         return -ENOSYS;
3535     }
3536 
3537     config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3538     if (!config_cmd)
3539         return -ENOMEM;
3540 
3541     ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3542     if (!ctrl_ctx) {
3543         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3544                 __func__);
3545         xhci_free_command(xhci, config_cmd);
3546         return -ENOMEM;
3547     }
3548 
3549     /* Check to make sure all endpoints are not already configured for
3550      * streams.  While we're at it, find the maximum number of streams that
3551      * all the endpoints will support and check for duplicate endpoints.
3552      */
3553     spin_lock_irqsave(&xhci->lock, flags);
3554     ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3555             num_eps, &num_streams, &changed_ep_bitmask);
3556     if (ret < 0) {
3557         xhci_free_command(xhci, config_cmd);
3558         spin_unlock_irqrestore(&xhci->lock, flags);
3559         return ret;
3560     }
3561     if (num_streams <= 1) {
3562         xhci_warn(xhci, "WARN: endpoints can't handle "
3563                 "more than one stream.\n");
3564         xhci_free_command(xhci, config_cmd);
3565         spin_unlock_irqrestore(&xhci->lock, flags);
3566         return -EINVAL;
3567     }
3568     vdev = xhci->devs[udev->slot_id];
3569     /* Mark each endpoint as being in transition, so
3570      * xhci_urb_enqueue() will reject all URBs.
3571      */
3572     for (i = 0; i < num_eps; i++) {
3573         ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3574         vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3575     }
3576     spin_unlock_irqrestore(&xhci->lock, flags);
3577 
3578     /* Setup internal data structures and allocate HW data structures for
3579      * streams (but don't install the HW structures in the input context
3580      * until we're sure all memory allocation succeeded).
3581      */
3582     xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3583     xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3584             num_stream_ctxs, num_streams);
3585 
3586     for (i = 0; i < num_eps; i++) {
3587         ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3588         max_packet = usb_endpoint_maxp(&eps[i]->desc);
3589         vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3590                 num_stream_ctxs,
3591                 num_streams,
3592                 max_packet, mem_flags);
3593         if (!vdev->eps[ep_index].stream_info)
3594             goto cleanup;
3595         /* Set maxPstreams in endpoint context and update deq ptr to
3596          * point to stream context array. FIXME
3597          */
3598     }
3599 
3600     /* Set up the input context for a configure endpoint command. */
3601     for (i = 0; i < num_eps; i++) {
3602         struct xhci_ep_ctx *ep_ctx;
3603 
3604         ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3605         ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3606 
3607         xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3608                 vdev->out_ctx, ep_index);
3609         xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3610                 vdev->eps[ep_index].stream_info);
3611     }
3612     /* Tell the HW to drop its old copy of the endpoint context info
3613      * and add the updated copy from the input context.
3614      */
3615     xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3616             vdev->out_ctx, ctrl_ctx,
3617             changed_ep_bitmask, changed_ep_bitmask);
3618 
3619     /* Issue and wait for the configure endpoint command */
3620     ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3621             false, false);
3622 
3623     /* xHC rejected the configure endpoint command for some reason, so we
3624      * leave the old ring intact and free our internal streams data
3625      * structure.
3626      */
3627     if (ret < 0)
3628         goto cleanup;
3629 
3630     spin_lock_irqsave(&xhci->lock, flags);
3631     for (i = 0; i < num_eps; i++) {
3632         ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3633         vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3634         xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3635              udev->slot_id, ep_index);
3636         vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3637     }
3638     xhci_free_command(xhci, config_cmd);
3639     spin_unlock_irqrestore(&xhci->lock, flags);
3640 
3641     for (i = 0; i < num_eps; i++) {
3642         ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3643         xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3644     }
3645     /* Subtract 1 for stream 0, which drivers can't use */
3646     return num_streams - 1;
3647 
3648 cleanup:
3649     /* If it didn't work, free the streams! */
3650     for (i = 0; i < num_eps; i++) {
3651         ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3652         xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3653         vdev->eps[ep_index].stream_info = NULL;
3654         /* FIXME Unset maxPstreams in endpoint context and
3655          * update deq ptr to point to normal string ring.
3656          */
3657         vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3658         vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3659         xhci_endpoint_zero(xhci, vdev, eps[i]);
3660     }
3661     xhci_free_command(xhci, config_cmd);
3662     return -ENOMEM;
3663 }
3664 
3665 /* Transition the endpoint from using streams to being a "normal" endpoint
3666  * without streams.
3667  *
3668  * Modify the endpoint context state, submit a configure endpoint command,
3669  * and free all endpoint rings for streams if that completes successfully.
3670  */
3671 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3672         struct usb_host_endpoint **eps, unsigned int num_eps,
3673         gfp_t mem_flags)
3674 {
3675     int i, ret;
3676     struct xhci_hcd *xhci;
3677     struct xhci_virt_device *vdev;
3678     struct xhci_command *command;
3679     struct xhci_input_control_ctx *ctrl_ctx;
3680     unsigned int ep_index;
3681     unsigned long flags;
3682     u32 changed_ep_bitmask;
3683 
3684     xhci = hcd_to_xhci(hcd);
3685     vdev = xhci->devs[udev->slot_id];
3686 
3687     /* Set up a configure endpoint command to remove the streams rings */
3688     spin_lock_irqsave(&xhci->lock, flags);
3689     changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3690             udev, eps, num_eps);
3691     if (changed_ep_bitmask == 0) {
3692         spin_unlock_irqrestore(&xhci->lock, flags);
3693         return -EINVAL;
3694     }
3695 
3696     /* Use the xhci_command structure from the first endpoint.  We may have
3697      * allocated too many, but the driver may call xhci_free_streams() for
3698      * each endpoint it grouped into one call to xhci_alloc_streams().
3699      */
3700     ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3701     command = vdev->eps[ep_index].stream_info->free_streams_command;
3702     ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3703     if (!ctrl_ctx) {
3704         spin_unlock_irqrestore(&xhci->lock, flags);
3705         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3706                 __func__);
3707         return -EINVAL;
3708     }
3709 
3710     for (i = 0; i < num_eps; i++) {
3711         struct xhci_ep_ctx *ep_ctx;
3712 
3713         ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3714         ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3715         xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3716             EP_GETTING_NO_STREAMS;
3717 
3718         xhci_endpoint_copy(xhci, command->in_ctx,
3719                 vdev->out_ctx, ep_index);
3720         xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3721                 &vdev->eps[ep_index]);
3722     }
3723     xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3724             vdev->out_ctx, ctrl_ctx,
3725             changed_ep_bitmask, changed_ep_bitmask);
3726     spin_unlock_irqrestore(&xhci->lock, flags);
3727 
3728     /* Issue and wait for the configure endpoint command,
3729      * which must succeed.
3730      */
3731     ret = xhci_configure_endpoint(xhci, udev, command,
3732             false, true);
3733 
3734     /* xHC rejected the configure endpoint command for some reason, so we
3735      * leave the streams rings intact.
3736      */
3737     if (ret < 0)
3738         return ret;
3739 
3740     spin_lock_irqsave(&xhci->lock, flags);
3741     for (i = 0; i < num_eps; i++) {
3742         ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3743         xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3744         vdev->eps[ep_index].stream_info = NULL;
3745         /* FIXME Unset maxPstreams in endpoint context and
3746          * update deq ptr to point to normal string ring.
3747          */
3748         vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3749         vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3750     }
3751     spin_unlock_irqrestore(&xhci->lock, flags);
3752 
3753     return 0;
3754 }
3755 
3756 /*
3757  * Deletes endpoint resources for endpoints that were active before a Reset
3758  * Device command, or a Disable Slot command.  The Reset Device command leaves
3759  * the control endpoint intact, whereas the Disable Slot command deletes it.
3760  *
3761  * Must be called with xhci->lock held.
3762  */
3763 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3764     struct xhci_virt_device *virt_dev, bool drop_control_ep)
3765 {
3766     int i;
3767     unsigned int num_dropped_eps = 0;
3768     unsigned int drop_flags = 0;
3769 
3770     for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3771         if (virt_dev->eps[i].ring) {
3772             drop_flags |= 1 << i;
3773             num_dropped_eps++;
3774         }
3775     }
3776     xhci->num_active_eps -= num_dropped_eps;
3777     if (num_dropped_eps)
3778         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3779                 "Dropped %u ep ctxs, flags = 0x%x, "
3780                 "%u now active.",
3781                 num_dropped_eps, drop_flags,
3782                 xhci->num_active_eps);
3783 }
3784 
3785 /*
3786  * This submits a Reset Device Command, which will set the device state to 0,
3787  * set the device address to 0, and disable all the endpoints except the default
3788  * control endpoint.  The USB core should come back and call
3789  * xhci_address_device(), and then re-set up the configuration.  If this is
3790  * called because of a usb_reset_and_verify_device(), then the old alternate
3791  * settings will be re-installed through the normal bandwidth allocation
3792  * functions.
3793  *
3794  * Wait for the Reset Device command to finish.  Remove all structures
3795  * associated with the endpoints that were disabled.  Clear the input device
3796  * structure? Reset the control endpoint 0 max packet size?
3797  *
3798  * If the virt_dev to be reset does not exist or does not match the udev,
3799  * it means the device is lost, possibly due to the xHC restore error and
3800  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3801  * re-allocate the device.
3802  */
3803 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3804         struct usb_device *udev)
3805 {
3806     int ret, i;
3807     unsigned long flags;
3808     struct xhci_hcd *xhci;
3809     unsigned int slot_id;
3810     struct xhci_virt_device *virt_dev;
3811     struct xhci_command *reset_device_cmd;
3812     struct xhci_slot_ctx *slot_ctx;
3813     int old_active_eps = 0;
3814 
3815     ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3816     if (ret <= 0)
3817         return ret;
3818     xhci = hcd_to_xhci(hcd);
3819     slot_id = udev->slot_id;
3820     virt_dev = xhci->devs[slot_id];
3821     if (!virt_dev) {
3822         xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3823                 "not exist. Re-allocate the device\n", slot_id);
3824         ret = xhci_alloc_dev(hcd, udev);
3825         if (ret == 1)
3826             return 0;
3827         else
3828             return -EINVAL;
3829     }
3830 
3831     if (virt_dev->tt_info)
3832         old_active_eps = virt_dev->tt_info->active_eps;
3833 
3834     if (virt_dev->udev != udev) {
3835         /* If the virt_dev and the udev does not match, this virt_dev
3836          * may belong to another udev.
3837          * Re-allocate the device.
3838          */
3839         xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3840                 "not match the udev. Re-allocate the device\n",
3841                 slot_id);
3842         ret = xhci_alloc_dev(hcd, udev);
3843         if (ret == 1)
3844             return 0;
3845         else
3846             return -EINVAL;
3847     }
3848 
3849     /* If device is not setup, there is no point in resetting it */
3850     slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3851     if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3852                         SLOT_STATE_DISABLED)
3853         return 0;
3854 
3855     trace_xhci_discover_or_reset_device(slot_ctx);
3856 
3857     xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3858     /* Allocate the command structure that holds the struct completion.
3859      * Assume we're in process context, since the normal device reset
3860      * process has to wait for the device anyway.  Storage devices are
3861      * reset as part of error handling, so use GFP_NOIO instead of
3862      * GFP_KERNEL.
3863      */
3864     reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3865     if (!reset_device_cmd) {
3866         xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3867         return -ENOMEM;
3868     }
3869 
3870     /* Attempt to submit the Reset Device command to the command ring */
3871     spin_lock_irqsave(&xhci->lock, flags);
3872 
3873     ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3874     if (ret) {
3875         xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3876         spin_unlock_irqrestore(&xhci->lock, flags);
3877         goto command_cleanup;
3878     }
3879     xhci_ring_cmd_db(xhci);
3880     spin_unlock_irqrestore(&xhci->lock, flags);
3881 
3882     /* Wait for the Reset Device command to finish */
3883     wait_for_completion(reset_device_cmd->completion);
3884 
3885     /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3886      * unless we tried to reset a slot ID that wasn't enabled,
3887      * or the device wasn't in the addressed or configured state.
3888      */
3889     ret = reset_device_cmd->status;
3890     switch (ret) {
3891     case COMP_COMMAND_ABORTED:
3892     case COMP_COMMAND_RING_STOPPED:
3893         xhci_warn(xhci, "Timeout waiting for reset device command\n");
3894         ret = -ETIME;
3895         goto command_cleanup;
3896     case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3897     case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3898         xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3899                 slot_id,
3900                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3901         xhci_dbg(xhci, "Not freeing device rings.\n");
3902         /* Don't treat this as an error.  May change my mind later. */
3903         ret = 0;
3904         goto command_cleanup;
3905     case COMP_SUCCESS:
3906         xhci_dbg(xhci, "Successful reset device command.\n");
3907         break;
3908     default:
3909         if (xhci_is_vendor_info_code(xhci, ret))
3910             break;
3911         xhci_warn(xhci, "Unknown completion code %u for "
3912                 "reset device command.\n", ret);
3913         ret = -EINVAL;
3914         goto command_cleanup;
3915     }
3916 
3917     /* Free up host controller endpoint resources */
3918     if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3919         spin_lock_irqsave(&xhci->lock, flags);
3920         /* Don't delete the default control endpoint resources */
3921         xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3922         spin_unlock_irqrestore(&xhci->lock, flags);
3923     }
3924 
3925     /* Everything but endpoint 0 is disabled, so free the rings. */
3926     for (i = 1; i < 31; i++) {
3927         struct xhci_virt_ep *ep = &virt_dev->eps[i];
3928 
3929         if (ep->ep_state & EP_HAS_STREAMS) {
3930             xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3931                     xhci_get_endpoint_address(i));
3932             xhci_free_stream_info(xhci, ep->stream_info);
3933             ep->stream_info = NULL;
3934             ep->ep_state &= ~EP_HAS_STREAMS;
3935         }
3936 
3937         if (ep->ring) {
3938             xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3939             xhci_free_endpoint_ring(xhci, virt_dev, i);
3940         }
3941         if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3942             xhci_drop_ep_from_interval_table(xhci,
3943                     &virt_dev->eps[i].bw_info,
3944                     virt_dev->bw_table,
3945                     udev,
3946                     &virt_dev->eps[i],
3947                     virt_dev->tt_info);
3948         xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3949     }
3950     /* If necessary, update the number of active TTs on this root port */
3951     xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3952     virt_dev->flags = 0;
3953     ret = 0;
3954 
3955 command_cleanup:
3956     xhci_free_command(xhci, reset_device_cmd);
3957     return ret;
3958 }
3959 
3960 /*
3961  * At this point, the struct usb_device is about to go away, the device has
3962  * disconnected, and all traffic has been stopped and the endpoints have been
3963  * disabled.  Free any HC data structures associated with that device.
3964  */
3965 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3966 {
3967     struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3968     struct xhci_virt_device *virt_dev;
3969     struct xhci_slot_ctx *slot_ctx;
3970     int i, ret;
3971 
3972     /*
3973      * We called pm_runtime_get_noresume when the device was attached.
3974      * Decrement the counter here to allow controller to runtime suspend
3975      * if no devices remain.
3976      */
3977     if (xhci->quirks & XHCI_RESET_ON_RESUME)
3978         pm_runtime_put_noidle(hcd->self.controller);
3979 
3980     ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3981     /* If the host is halted due to driver unload, we still need to free the
3982      * device.
3983      */
3984     if (ret <= 0 && ret != -ENODEV)
3985         return;
3986 
3987     virt_dev = xhci->devs[udev->slot_id];
3988     slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3989     trace_xhci_free_dev(slot_ctx);
3990 
3991     /* Stop any wayward timer functions (which may grab the lock) */
3992     for (i = 0; i < 31; i++)
3993         virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3994     virt_dev->udev = NULL;
3995     xhci_disable_slot(xhci, udev->slot_id);
3996     xhci_free_virt_device(xhci, udev->slot_id);
3997 }
3998 
3999 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4000 {
4001     struct xhci_command *command;
4002     unsigned long flags;
4003     u32 state;
4004     int ret;
4005 
4006     command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4007     if (!command)
4008         return -ENOMEM;
4009 
4010     xhci_debugfs_remove_slot(xhci, slot_id);
4011 
4012     spin_lock_irqsave(&xhci->lock, flags);
4013     /* Don't disable the slot if the host controller is dead. */
4014     state = readl(&xhci->op_regs->status);
4015     if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4016             (xhci->xhc_state & XHCI_STATE_HALTED)) {
4017         spin_unlock_irqrestore(&xhci->lock, flags);
4018         kfree(command);
4019         return -ENODEV;
4020     }
4021 
4022     ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4023                 slot_id);
4024     if (ret) {
4025         spin_unlock_irqrestore(&xhci->lock, flags);
4026         kfree(command);
4027         return ret;
4028     }
4029     xhci_ring_cmd_db(xhci);
4030     spin_unlock_irqrestore(&xhci->lock, flags);
4031 
4032     wait_for_completion(command->completion);
4033 
4034     if (command->status != COMP_SUCCESS)
4035         xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4036               slot_id, command->status);
4037 
4038     xhci_free_command(xhci, command);
4039 
4040     return 0;
4041 }
4042 
4043 /*
4044  * Checks if we have enough host controller resources for the default control
4045  * endpoint.
4046  *
4047  * Must be called with xhci->lock held.
4048  */
4049 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4050 {
4051     if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4052         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4053                 "Not enough ep ctxs: "
4054                 "%u active, need to add 1, limit is %u.",
4055                 xhci->num_active_eps, xhci->limit_active_eps);
4056         return -ENOMEM;
4057     }
4058     xhci->num_active_eps += 1;
4059     xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4060             "Adding 1 ep ctx, %u now active.",
4061             xhci->num_active_eps);
4062     return 0;
4063 }
4064 
4065 
4066 /*
4067  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4068  * timed out, or allocating memory failed.  Returns 1 on success.
4069  */
4070 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4071 {
4072     struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4073     struct xhci_virt_device *vdev;
4074     struct xhci_slot_ctx *slot_ctx;
4075     unsigned long flags;
4076     int ret, slot_id;
4077     struct xhci_command *command;
4078 
4079     command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4080     if (!command)
4081         return 0;
4082 
4083     spin_lock_irqsave(&xhci->lock, flags);
4084     ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4085     if (ret) {
4086         spin_unlock_irqrestore(&xhci->lock, flags);
4087         xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4088         xhci_free_command(xhci, command);
4089         return 0;
4090     }
4091     xhci_ring_cmd_db(xhci);
4092     spin_unlock_irqrestore(&xhci->lock, flags);
4093 
4094     wait_for_completion(command->completion);
4095     slot_id = command->slot_id;
4096 
4097     if (!slot_id || command->status != COMP_SUCCESS) {
4098         xhci_err(xhci, "Error while assigning device slot ID\n");
4099         xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4100                 HCS_MAX_SLOTS(
4101                     readl(&xhci->cap_regs->hcs_params1)));
4102         xhci_free_command(xhci, command);
4103         return 0;
4104     }
4105 
4106     xhci_free_command(xhci, command);
4107 
4108     if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4109         spin_lock_irqsave(&xhci->lock, flags);
4110         ret = xhci_reserve_host_control_ep_resources(xhci);
4111         if (ret) {
4112             spin_unlock_irqrestore(&xhci->lock, flags);
4113             xhci_warn(xhci, "Not enough host resources, "
4114                     "active endpoint contexts = %u\n",
4115                     xhci->num_active_eps);
4116             goto disable_slot;
4117         }
4118         spin_unlock_irqrestore(&xhci->lock, flags);
4119     }
4120     /* Use GFP_NOIO, since this function can be called from
4121      * xhci_discover_or_reset_device(), which may be called as part of
4122      * mass storage driver error handling.
4123      */
4124     if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4125         xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4126         goto disable_slot;
4127     }
4128     vdev = xhci->devs[slot_id];
4129     slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4130     trace_xhci_alloc_dev(slot_ctx);
4131 
4132     udev->slot_id = slot_id;
4133 
4134     xhci_debugfs_create_slot(xhci, slot_id);
4135 
4136     /*
4137      * If resetting upon resume, we can't put the controller into runtime
4138      * suspend if there is a device attached.
4139      */
4140     if (xhci->quirks & XHCI_RESET_ON_RESUME)
4141         pm_runtime_get_noresume(hcd->self.controller);
4142 
4143     /* Is this a LS or FS device under a HS hub? */
4144     /* Hub or peripherial? */
4145     return 1;
4146 
4147 disable_slot:
4148     xhci_disable_slot(xhci, udev->slot_id);
4149     xhci_free_virt_device(xhci, udev->slot_id);
4150 
4151     return 0;
4152 }
4153 
4154 /*
4155  * Issue an Address Device command and optionally send a corresponding
4156  * SetAddress request to the device.
4157  */
4158 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4159                  enum xhci_setup_dev setup)
4160 {
4161     const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4162     unsigned long flags;
4163     struct xhci_virt_device *virt_dev;
4164     int ret = 0;
4165     struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4166     struct xhci_slot_ctx *slot_ctx;
4167     struct xhci_input_control_ctx *ctrl_ctx;
4168     u64 temp_64;
4169     struct xhci_command *command = NULL;
4170 
4171     mutex_lock(&xhci->mutex);
4172 
4173     if (xhci->xhc_state) {  /* dying, removing or halted */
4174         ret = -ESHUTDOWN;
4175         goto out;
4176     }
4177 
4178     if (!udev->slot_id) {
4179         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4180                 "Bad Slot ID %d", udev->slot_id);
4181         ret = -EINVAL;
4182         goto out;
4183     }
4184 
4185     virt_dev = xhci->devs[udev->slot_id];
4186 
4187     if (WARN_ON(!virt_dev)) {
4188         /*
4189          * In plug/unplug torture test with an NEC controller,
4190          * a zero-dereference was observed once due to virt_dev = 0.
4191          * Print useful debug rather than crash if it is observed again!
4192          */
4193         xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4194             udev->slot_id);
4195         ret = -EINVAL;
4196         goto out;
4197     }
4198     slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4199     trace_xhci_setup_device_slot(slot_ctx);
4200 
4201     if (setup == SETUP_CONTEXT_ONLY) {
4202         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4203             SLOT_STATE_DEFAULT) {
4204             xhci_dbg(xhci, "Slot already in default state\n");
4205             goto out;
4206         }
4207     }
4208 
4209     command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4210     if (!command) {
4211         ret = -ENOMEM;
4212         goto out;
4213     }
4214 
4215     command->in_ctx = virt_dev->in_ctx;
4216 
4217     slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4218     ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4219     if (!ctrl_ctx) {
4220         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4221                 __func__);
4222         ret = -EINVAL;
4223         goto out;
4224     }
4225     /*
4226      * If this is the first Set Address since device plug-in or
4227      * virt_device realloaction after a resume with an xHCI power loss,
4228      * then set up the slot context.
4229      */
4230     if (!slot_ctx->dev_info)
4231         xhci_setup_addressable_virt_dev(xhci, udev);
4232     /* Otherwise, update the control endpoint ring enqueue pointer. */
4233     else
4234         xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4235     ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4236     ctrl_ctx->drop_flags = 0;
4237 
4238     trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4239                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4240 
4241     trace_xhci_address_ctrl_ctx(ctrl_ctx);
4242     spin_lock_irqsave(&xhci->lock, flags);
4243     trace_xhci_setup_device(virt_dev);
4244     ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4245                     udev->slot_id, setup);
4246     if (ret) {
4247         spin_unlock_irqrestore(&xhci->lock, flags);
4248         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4249                 "FIXME: allocate a command ring segment");
4250         goto out;
4251     }
4252     xhci_ring_cmd_db(xhci);
4253     spin_unlock_irqrestore(&xhci->lock, flags);
4254 
4255     /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4256     wait_for_completion(command->completion);
4257 
4258     /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4259      * the SetAddress() "recovery interval" required by USB and aborting the
4260      * command on a timeout.
4261      */
4262     switch (command->status) {
4263     case COMP_COMMAND_ABORTED:
4264     case COMP_COMMAND_RING_STOPPED:
4265         xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4266         ret = -ETIME;
4267         break;
4268     case COMP_CONTEXT_STATE_ERROR:
4269     case COMP_SLOT_NOT_ENABLED_ERROR:
4270         xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4271              act, udev->slot_id);
4272         ret = -EINVAL;
4273         break;
4274     case COMP_USB_TRANSACTION_ERROR:
4275         dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4276 
4277         mutex_unlock(&xhci->mutex);
4278         ret = xhci_disable_slot(xhci, udev->slot_id);
4279         xhci_free_virt_device(xhci, udev->slot_id);
4280         if (!ret)
4281             xhci_alloc_dev(hcd, udev);
4282         kfree(command->completion);
4283         kfree(command);
4284         return -EPROTO;
4285     case COMP_INCOMPATIBLE_DEVICE_ERROR:
4286         dev_warn(&udev->dev,
4287              "ERROR: Incompatible device for setup %s command\n", act);
4288         ret = -ENODEV;
4289         break;
4290     case COMP_SUCCESS:
4291         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4292                    "Successful setup %s command", act);
4293         break;
4294     default:
4295         xhci_err(xhci,
4296              "ERROR: unexpected setup %s command completion code 0x%x.\n",
4297              act, command->status);
4298         trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4299         ret = -EINVAL;
4300         break;
4301     }
4302     if (ret)
4303         goto out;
4304     temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4305     xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4306             "Op regs DCBAA ptr = %#016llx", temp_64);
4307     xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4308         "Slot ID %d dcbaa entry @%p = %#016llx",
4309         udev->slot_id,
4310         &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4311         (unsigned long long)
4312         le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4313     xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4314             "Output Context DMA address = %#08llx",
4315             (unsigned long long)virt_dev->out_ctx->dma);
4316     trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4317                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4318     /*
4319      * USB core uses address 1 for the roothubs, so we add one to the
4320      * address given back to us by the HC.
4321      */
4322     trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4323                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4324     /* Zero the input context control for later use */
4325     ctrl_ctx->add_flags = 0;
4326     ctrl_ctx->drop_flags = 0;
4327     slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4328     udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4329 
4330     xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4331                "Internal device address = %d",
4332                le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4333 out:
4334     mutex_unlock(&xhci->mutex);
4335     if (command) {
4336         kfree(command->completion);
4337         kfree(command);
4338     }
4339     return ret;
4340 }
4341 
4342 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4343 {
4344     return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4345 }
4346 
4347 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4348 {
4349     return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4350 }
4351 
4352 /*
4353  * Transfer the port index into real index in the HW port status
4354  * registers. Caculate offset between the port's PORTSC register
4355  * and port status base. Divide the number of per port register
4356  * to get the real index. The raw port number bases 1.
4357  */
4358 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4359 {
4360     struct xhci_hub *rhub;
4361 
4362     rhub = xhci_get_rhub(hcd);
4363     return rhub->ports[port1 - 1]->hw_portnum + 1;
4364 }
4365 
4366 /*
4367  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4368  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4369  */
4370 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4371             struct usb_device *udev, u16 max_exit_latency)
4372 {
4373     struct xhci_virt_device *virt_dev;
4374     struct xhci_command *command;
4375     struct xhci_input_control_ctx *ctrl_ctx;
4376     struct xhci_slot_ctx *slot_ctx;
4377     unsigned long flags;
4378     int ret;
4379 
4380     command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4381     if (!command)
4382         return -ENOMEM;
4383 
4384     spin_lock_irqsave(&xhci->lock, flags);
4385 
4386     virt_dev = xhci->devs[udev->slot_id];
4387 
4388     /*
4389      * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4390      * xHC was re-initialized. Exit latency will be set later after
4391      * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4392      */
4393 
4394     if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4395         spin_unlock_irqrestore(&xhci->lock, flags);
4396         return 0;
4397     }
4398 
4399     /* Attempt to issue an Evaluate Context command to change the MEL. */
4400     ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4401     if (!ctrl_ctx) {
4402         spin_unlock_irqrestore(&xhci->lock, flags);
4403         xhci_free_command(xhci, command);
4404         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4405                 __func__);
4406         return -ENOMEM;
4407     }
4408 
4409     xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4410     spin_unlock_irqrestore(&xhci->lock, flags);
4411 
4412     ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4413     slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4414     slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4415     slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4416     slot_ctx->dev_state = 0;
4417 
4418     xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4419             "Set up evaluate context for LPM MEL change.");
4420 
4421     /* Issue and wait for the evaluate context command. */
4422     ret = xhci_configure_endpoint(xhci, udev, command,
4423             true, true);
4424 
4425     if (!ret) {
4426         spin_lock_irqsave(&xhci->lock, flags);
4427         virt_dev->current_mel = max_exit_latency;
4428         spin_unlock_irqrestore(&xhci->lock, flags);
4429     }
4430 
4431     xhci_free_command(xhci, command);
4432 
4433     return ret;
4434 }
4435 
4436 #ifdef CONFIG_PM
4437 
4438 /* BESL to HIRD Encoding array for USB2 LPM */
4439 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4440     3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4441 
4442 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4443 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4444                     struct usb_device *udev)
4445 {
4446     int u2del, besl, besl_host;
4447     int besl_device = 0;
4448     u32 field;
4449 
4450     u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4451     field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4452 
4453     if (field & USB_BESL_SUPPORT) {
4454         for (besl_host = 0; besl_host < 16; besl_host++) {
4455             if (xhci_besl_encoding[besl_host] >= u2del)
4456                 break;
4457         }
4458         /* Use baseline BESL value as default */
4459         if (field & USB_BESL_BASELINE_VALID)
4460             besl_device = USB_GET_BESL_BASELINE(field);
4461         else if (field & USB_BESL_DEEP_VALID)
4462             besl_device = USB_GET_BESL_DEEP(field);
4463     } else {
4464         if (u2del <= 50)
4465             besl_host = 0;
4466         else
4467             besl_host = (u2del - 51) / 75 + 1;
4468     }
4469 
4470     besl = besl_host + besl_device;
4471     if (besl > 15)
4472         besl = 15;
4473 
4474     return besl;
4475 }
4476 
4477 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4478 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4479 {
4480     u32 field;
4481     int l1;
4482     int besld = 0;
4483     int hirdm = 0;
4484 
4485     field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4486 
4487     /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4488     l1 = udev->l1_params.timeout / 256;
4489 
4490     /* device has preferred BESLD */
4491     if (field & USB_BESL_DEEP_VALID) {
4492         besld = USB_GET_BESL_DEEP(field);
4493         hirdm = 1;
4494     }
4495 
4496     return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4497 }
4498 
4499 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4500             struct usb_device *udev, int enable)
4501 {
4502     struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4503     struct xhci_port **ports;
4504     __le32 __iomem  *pm_addr, *hlpm_addr;
4505     u32     pm_val, hlpm_val, field;
4506     unsigned int    port_num;
4507     unsigned long   flags;
4508     int     hird, exit_latency;
4509     int     ret;
4510 
4511     if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4512         return -EPERM;
4513 
4514     if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4515             !udev->lpm_capable)
4516         return -EPERM;
4517 
4518     if (!udev->parent || udev->parent->parent ||
4519             udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4520         return -EPERM;
4521 
4522     if (udev->usb2_hw_lpm_capable != 1)
4523         return -EPERM;
4524 
4525     spin_lock_irqsave(&xhci->lock, flags);
4526 
4527     ports = xhci->usb2_rhub.ports;
4528     port_num = udev->portnum - 1;
4529     pm_addr = ports[port_num]->addr + PORTPMSC;
4530     pm_val = readl(pm_addr);
4531     hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4532 
4533     xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4534             enable ? "enable" : "disable", port_num + 1);
4535 
4536     if (enable) {
4537         /* Host supports BESL timeout instead of HIRD */
4538         if (udev->usb2_hw_lpm_besl_capable) {
4539             /* if device doesn't have a preferred BESL value use a
4540              * default one which works with mixed HIRD and BESL
4541              * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4542              */
4543             field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4544             if ((field & USB_BESL_SUPPORT) &&
4545                 (field & USB_BESL_BASELINE_VALID))
4546                 hird = USB_GET_BESL_BASELINE(field);
4547             else
4548                 hird = udev->l1_params.besl;
4549 
4550             exit_latency = xhci_besl_encoding[hird];
4551             spin_unlock_irqrestore(&xhci->lock, flags);
4552 
4553             ret = xhci_change_max_exit_latency(xhci, udev,
4554                                exit_latency);
4555             if (ret < 0)
4556                 return ret;
4557             spin_lock_irqsave(&xhci->lock, flags);
4558 
4559             hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4560             writel(hlpm_val, hlpm_addr);
4561             /* flush write */
4562             readl(hlpm_addr);
4563         } else {
4564             hird = xhci_calculate_hird_besl(xhci, udev);
4565         }
4566 
4567         pm_val &= ~PORT_HIRD_MASK;
4568         pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4569         writel(pm_val, pm_addr);
4570         pm_val = readl(pm_addr);
4571         pm_val |= PORT_HLE;
4572         writel(pm_val, pm_addr);
4573         /* flush write */
4574         readl(pm_addr);
4575     } else {
4576         pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4577         writel(pm_val, pm_addr);
4578         /* flush write */
4579         readl(pm_addr);
4580         if (udev->usb2_hw_lpm_besl_capable) {
4581             spin_unlock_irqrestore(&xhci->lock, flags);
4582             xhci_change_max_exit_latency(xhci, udev, 0);
4583             readl_poll_timeout(ports[port_num]->addr, pm_val,
4584                        (pm_val & PORT_PLS_MASK) == XDEV_U0,
4585                        100, 10000);
4586             return 0;
4587         }
4588     }
4589 
4590     spin_unlock_irqrestore(&xhci->lock, flags);
4591     return 0;
4592 }
4593 
4594 /* check if a usb2 port supports a given extened capability protocol
4595  * only USB2 ports extended protocol capability values are cached.
4596  * Return 1 if capability is supported
4597  */
4598 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4599                        unsigned capability)
4600 {
4601     u32 port_offset, port_count;
4602     int i;
4603 
4604     for (i = 0; i < xhci->num_ext_caps; i++) {
4605         if (xhci->ext_caps[i] & capability) {
4606             /* port offsets starts at 1 */
4607             port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4608             port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4609             if (port >= port_offset &&
4610                 port < port_offset + port_count)
4611                 return 1;
4612         }
4613     }
4614     return 0;
4615 }
4616 
4617 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4618 {
4619     struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4620     int     portnum = udev->portnum - 1;
4621 
4622     if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4623         return 0;
4624 
4625     /* we only support lpm for non-hub device connected to root hub yet */
4626     if (!udev->parent || udev->parent->parent ||
4627             udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4628         return 0;
4629 
4630     if (xhci->hw_lpm_support == 1 &&
4631             xhci_check_usb2_port_capability(
4632                 xhci, portnum, XHCI_HLC)) {
4633         udev->usb2_hw_lpm_capable = 1;
4634         udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4635         udev->l1_params.besl = XHCI_DEFAULT_BESL;
4636         if (xhci_check_usb2_port_capability(xhci, portnum,
4637                     XHCI_BLC))
4638             udev->usb2_hw_lpm_besl_capable = 1;
4639     }
4640 
4641     return 0;
4642 }
4643 
4644 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4645 
4646 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4647 static unsigned long long xhci_service_interval_to_ns(
4648         struct usb_endpoint_descriptor *desc)
4649 {
4650     return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4651 }
4652 
4653 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4654         enum usb3_link_state state)
4655 {
4656     unsigned long long sel;
4657     unsigned long long pel;
4658     unsigned int max_sel_pel;
4659     char *state_name;
4660 
4661     switch (state) {
4662     case USB3_LPM_U1:
4663         /* Convert SEL and PEL stored in nanoseconds to microseconds */
4664         sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4665         pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4666         max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4667         state_name = "U1";
4668         break;
4669     case USB3_LPM_U2:
4670         sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4671         pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4672         max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4673         state_name = "U2";
4674         break;
4675     default:
4676         dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4677                 __func__);
4678         return USB3_LPM_DISABLED;
4679     }
4680 
4681     if (sel <= max_sel_pel && pel <= max_sel_pel)
4682         return USB3_LPM_DEVICE_INITIATED;
4683 
4684     if (sel > max_sel_pel)
4685         dev_dbg(&udev->dev, "Device-initiated %s disabled "
4686                 "due to long SEL %llu ms\n",
4687                 state_name, sel);
4688     else
4689         dev_dbg(&udev->dev, "Device-initiated %s disabled "
4690                 "due to long PEL %llu ms\n",
4691                 state_name, pel);
4692     return USB3_LPM_DISABLED;
4693 }
4694 
4695 /* The U1 timeout should be the maximum of the following values:
4696  *  - For control endpoints, U1 system exit latency (SEL) * 3
4697  *  - For bulk endpoints, U1 SEL * 5
4698  *  - For interrupt endpoints:
4699  *    - Notification EPs, U1 SEL * 3
4700  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4701  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4702  */
4703 static unsigned long long xhci_calculate_intel_u1_timeout(
4704         struct usb_device *udev,
4705         struct usb_endpoint_descriptor *desc)
4706 {
4707     unsigned long long timeout_ns;
4708     int ep_type;
4709     int intr_type;
4710 
4711     ep_type = usb_endpoint_type(desc);
4712     switch (ep_type) {
4713     case USB_ENDPOINT_XFER_CONTROL:
4714         timeout_ns = udev->u1_params.sel * 3;
4715         break;
4716     case USB_ENDPOINT_XFER_BULK:
4717         timeout_ns = udev->u1_params.sel * 5;
4718         break;
4719     case USB_ENDPOINT_XFER_INT:
4720         intr_type = usb_endpoint_interrupt_type(desc);
4721         if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4722             timeout_ns = udev->u1_params.sel * 3;
4723             break;
4724         }
4725         /* Otherwise the calculation is the same as isoc eps */
4726         fallthrough;
4727     case USB_ENDPOINT_XFER_ISOC:
4728         timeout_ns = xhci_service_interval_to_ns(desc);
4729         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4730         if (timeout_ns < udev->u1_params.sel * 2)
4731             timeout_ns = udev->u1_params.sel * 2;
4732         break;
4733     default:
4734         return 0;
4735     }
4736 
4737     return timeout_ns;
4738 }
4739 
4740 /* Returns the hub-encoded U1 timeout value. */
4741 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4742         struct usb_device *udev,
4743         struct usb_endpoint_descriptor *desc)
4744 {
4745     unsigned long long timeout_ns;
4746 
4747     /* Prevent U1 if service interval is shorter than U1 exit latency */
4748     if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4749         if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4750             dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4751             return USB3_LPM_DISABLED;
4752         }
4753     }
4754 
4755     if (xhci->quirks & XHCI_INTEL_HOST)
4756         timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4757     else
4758         timeout_ns = udev->u1_params.sel;
4759 
4760     /* The U1 timeout is encoded in 1us intervals.
4761      * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4762      */
4763     if (timeout_ns == USB3_LPM_DISABLED)
4764         timeout_ns = 1;
4765     else
4766         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4767 
4768     /* If the necessary timeout value is bigger than what we can set in the
4769      * USB 3.0 hub, we have to disable hub-initiated U1.
4770      */
4771     if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4772         return timeout_ns;
4773     dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4774             "due to long timeout %llu ms\n", timeout_ns);
4775     return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4776 }
4777 
4778 /* The U2 timeout should be the maximum of:
4779  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4780  *  - largest bInterval of any active periodic endpoint (to avoid going
4781  *    into lower power link states between intervals).
4782  *  - the U2 Exit Latency of the device
4783  */
4784 static unsigned long long xhci_calculate_intel_u2_timeout(
4785         struct usb_device *udev,
4786         struct usb_endpoint_descriptor *desc)
4787 {
4788     unsigned long long timeout_ns;
4789     unsigned long long u2_del_ns;
4790 
4791     timeout_ns = 10 * 1000 * 1000;
4792 
4793     if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4794             (xhci_service_interval_to_ns(desc) > timeout_ns))
4795         timeout_ns = xhci_service_interval_to_ns(desc);
4796 
4797     u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4798     if (u2_del_ns > timeout_ns)
4799         timeout_ns = u2_del_ns;
4800 
4801     return timeout_ns;
4802 }
4803 
4804 /* Returns the hub-encoded U2 timeout value. */
4805 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4806         struct usb_device *udev,
4807         struct usb_endpoint_descriptor *desc)
4808 {
4809     unsigned long long timeout_ns;
4810 
4811     /* Prevent U2 if service interval is shorter than U2 exit latency */
4812     if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4813         if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4814             dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4815             return USB3_LPM_DISABLED;
4816         }
4817     }
4818 
4819     if (xhci->quirks & XHCI_INTEL_HOST)
4820         timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4821     else
4822         timeout_ns = udev->u2_params.sel;
4823 
4824     /* The U2 timeout is encoded in 256us intervals */
4825     timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4826     /* If the necessary timeout value is bigger than what we can set in the
4827      * USB 3.0 hub, we have to disable hub-initiated U2.
4828      */
4829     if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4830         return timeout_ns;
4831     dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4832             "due to long timeout %llu ms\n", timeout_ns);
4833     return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4834 }
4835 
4836 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4837         struct usb_device *udev,
4838         struct usb_endpoint_descriptor *desc,
4839         enum usb3_link_state state,
4840         u16 *timeout)
4841 {
4842     if (state == USB3_LPM_U1)
4843         return xhci_calculate_u1_timeout(xhci, udev, desc);
4844     else if (state == USB3_LPM_U2)
4845         return xhci_calculate_u2_timeout(xhci, udev, desc);
4846 
4847     return USB3_LPM_DISABLED;
4848 }
4849 
4850 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4851         struct usb_device *udev,
4852         struct usb_endpoint_descriptor *desc,
4853         enum usb3_link_state state,
4854         u16 *timeout)
4855 {
4856     u16 alt_timeout;
4857 
4858     alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4859         desc, state, timeout);
4860 
4861     /* If we found we can't enable hub-initiated LPM, and
4862      * the U1 or U2 exit latency was too high to allow
4863      * device-initiated LPM as well, then we will disable LPM
4864      * for this device, so stop searching any further.
4865      */
4866     if (alt_timeout == USB3_LPM_DISABLED) {
4867         *timeout = alt_timeout;
4868         return -E2BIG;
4869     }
4870     if (alt_timeout > *timeout)
4871         *timeout = alt_timeout;
4872     return 0;
4873 }
4874 
4875 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4876         struct usb_device *udev,
4877         struct usb_host_interface *alt,
4878         enum usb3_link_state state,
4879         u16 *timeout)
4880 {
4881     int j;
4882 
4883     for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4884         if (xhci_update_timeout_for_endpoint(xhci, udev,
4885                     &alt->endpoint[j].desc, state, timeout))
4886             return -E2BIG;
4887     }
4888     return 0;
4889 }
4890 
4891 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4892         enum usb3_link_state state)
4893 {
4894     struct usb_device *parent;
4895     unsigned int num_hubs;
4896 
4897     /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4898     for (parent = udev->parent, num_hubs = 0; parent->parent;
4899             parent = parent->parent)
4900         num_hubs++;
4901 
4902     if (num_hubs < 2)
4903         return 0;
4904 
4905     dev_dbg(&udev->dev, "Disabling U1/U2 link state for device"
4906             " below second-tier hub.\n");
4907     dev_dbg(&udev->dev, "Plug device into first-tier hub "
4908             "to decrease power consumption.\n");
4909     return -E2BIG;
4910 }
4911 
4912 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4913         struct usb_device *udev,
4914         enum usb3_link_state state)
4915 {
4916     if (xhci->quirks & XHCI_INTEL_HOST)
4917         return xhci_check_intel_tier_policy(udev, state);
4918     else
4919         return 0;
4920 }
4921 
4922 /* Returns the U1 or U2 timeout that should be enabled.
4923  * If the tier check or timeout setting functions return with a non-zero exit
4924  * code, that means the timeout value has been finalized and we shouldn't look
4925  * at any more endpoints.
4926  */
4927 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4928             struct usb_device *udev, enum usb3_link_state state)
4929 {
4930     struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4931     struct usb_host_config *config;
4932     char *state_name;
4933     int i;
4934     u16 timeout = USB3_LPM_DISABLED;
4935 
4936     if (state == USB3_LPM_U1)
4937         state_name = "U1";
4938     else if (state == USB3_LPM_U2)
4939         state_name = "U2";
4940     else {
4941         dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4942                 state);
4943         return timeout;
4944     }
4945 
4946     /* Gather some information about the currently installed configuration
4947      * and alternate interface settings.
4948      */
4949     if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4950             state, &timeout))
4951         return timeout;
4952 
4953     config = udev->actconfig;
4954     if (!config)
4955         return timeout;
4956 
4957     for (i = 0; i < config->desc.bNumInterfaces; i++) {
4958         struct usb_driver *driver;
4959         struct usb_interface *intf = config->interface[i];
4960 
4961         if (!intf)
4962             continue;
4963 
4964         /* Check if any currently bound drivers want hub-initiated LPM
4965          * disabled.
4966          */
4967         if (intf->dev.driver) {
4968             driver = to_usb_driver(intf->dev.driver);
4969             if (driver && driver->disable_hub_initiated_lpm) {
4970                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4971                     state_name, driver->name);
4972                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4973                                       state);
4974                 if (timeout == USB3_LPM_DISABLED)
4975                     return timeout;
4976             }
4977         }
4978 
4979         /* Not sure how this could happen... */
4980         if (!intf->cur_altsetting)
4981             continue;
4982 
4983         if (xhci_update_timeout_for_interface(xhci, udev,
4984                     intf->cur_altsetting,
4985                     state, &timeout))
4986             return timeout;
4987     }
4988     return timeout;
4989 }
4990 
4991 static int calculate_max_exit_latency(struct usb_device *udev,
4992         enum usb3_link_state state_changed,
4993         u16 hub_encoded_timeout)
4994 {
4995     unsigned long long u1_mel_us = 0;
4996     unsigned long long u2_mel_us = 0;
4997     unsigned long long mel_us = 0;
4998     bool disabling_u1;
4999     bool disabling_u2;
5000     bool enabling_u1;
5001     bool enabling_u2;
5002 
5003     disabling_u1 = (state_changed == USB3_LPM_U1 &&
5004             hub_encoded_timeout == USB3_LPM_DISABLED);
5005     disabling_u2 = (state_changed == USB3_LPM_U2 &&
5006             hub_encoded_timeout == USB3_LPM_DISABLED);
5007 
5008     enabling_u1 = (state_changed == USB3_LPM_U1 &&
5009             hub_encoded_timeout != USB3_LPM_DISABLED);
5010     enabling_u2 = (state_changed == USB3_LPM_U2 &&
5011             hub_encoded_timeout != USB3_LPM_DISABLED);
5012 
5013     /* If U1 was already enabled and we're not disabling it,
5014      * or we're going to enable U1, account for the U1 max exit latency.
5015      */
5016     if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5017             enabling_u1)
5018         u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5019     if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5020             enabling_u2)
5021         u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5022 
5023     mel_us = max(u1_mel_us, u2_mel_us);
5024 
5025     /* xHCI host controller max exit latency field is only 16 bits wide. */
5026     if (mel_us > MAX_EXIT) {
5027         dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5028                 "is too big.\n", mel_us);
5029         return -E2BIG;
5030     }
5031     return mel_us;
5032 }
5033 
5034 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5035 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5036             struct usb_device *udev, enum usb3_link_state state)
5037 {
5038     struct xhci_hcd *xhci;
5039     u16 hub_encoded_timeout;
5040     int mel;
5041     int ret;
5042 
5043     xhci = hcd_to_xhci(hcd);
5044     /* The LPM timeout values are pretty host-controller specific, so don't
5045      * enable hub-initiated timeouts unless the vendor has provided
5046      * information about their timeout algorithm.
5047      */
5048     if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5049             !xhci->devs[udev->slot_id])
5050         return USB3_LPM_DISABLED;
5051 
5052     if (xhci_check_tier_policy(xhci, udev, state) < 0)
5053         return USB3_LPM_DISABLED;
5054 
5055     hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5056     mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5057     if (mel < 0) {
5058         /* Max Exit Latency is too big, disable LPM. */
5059         hub_encoded_timeout = USB3_LPM_DISABLED;
5060         mel = 0;
5061     }
5062 
5063     ret = xhci_change_max_exit_latency(xhci, udev, mel);
5064     if (ret)
5065         return ret;
5066     return hub_encoded_timeout;
5067 }
5068 
5069 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5070             struct usb_device *udev, enum usb3_link_state state)
5071 {
5072     struct xhci_hcd *xhci;
5073     u16 mel;
5074 
5075     xhci = hcd_to_xhci(hcd);
5076     if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5077             !xhci->devs[udev->slot_id])
5078         return 0;
5079 
5080     mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5081     return xhci_change_max_exit_latency(xhci, udev, mel);
5082 }
5083 #else /* CONFIG_PM */
5084 
5085 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5086                 struct usb_device *udev, int enable)
5087 {
5088     return 0;
5089 }
5090 
5091 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5092 {
5093     return 0;
5094 }
5095 
5096 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5097             struct usb_device *udev, enum usb3_link_state state)
5098 {
5099     return USB3_LPM_DISABLED;
5100 }
5101 
5102 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5103             struct usb_device *udev, enum usb3_link_state state)
5104 {
5105     return 0;
5106 }
5107 #endif  /* CONFIG_PM */
5108 
5109 /*-------------------------------------------------------------------------*/
5110 
5111 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5112  * internal data structures for the device.
5113  */
5114 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5115             struct usb_tt *tt, gfp_t mem_flags)
5116 {
5117     struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5118     struct xhci_virt_device *vdev;
5119     struct xhci_command *config_cmd;
5120     struct xhci_input_control_ctx *ctrl_ctx;
5121     struct xhci_slot_ctx *slot_ctx;
5122     unsigned long flags;
5123     unsigned think_time;
5124     int ret;
5125 
5126     /* Ignore root hubs */
5127     if (!hdev->parent)
5128         return 0;
5129 
5130     vdev = xhci->devs[hdev->slot_id];
5131     if (!vdev) {
5132         xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5133         return -EINVAL;
5134     }
5135 
5136     config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5137     if (!config_cmd)
5138         return -ENOMEM;
5139 
5140     ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5141     if (!ctrl_ctx) {
5142         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5143                 __func__);
5144         xhci_free_command(xhci, config_cmd);
5145         return -ENOMEM;
5146     }
5147 
5148     spin_lock_irqsave(&xhci->lock, flags);
5149     if (hdev->speed == USB_SPEED_HIGH &&
5150             xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5151         xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5152         xhci_free_command(xhci, config_cmd);
5153         spin_unlock_irqrestore(&xhci->lock, flags);
5154         return -ENOMEM;
5155     }
5156 
5157     xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5158     ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5159     slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5160     slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5161     /*
5162      * refer to section 6.2.2: MTT should be 0 for full speed hub,
5163      * but it may be already set to 1 when setup an xHCI virtual
5164      * device, so clear it anyway.
5165      */
5166     if (tt->multi)
5167         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5168     else if (hdev->speed == USB_SPEED_FULL)
5169         slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5170 
5171     if (xhci->hci_version > 0x95) {
5172         xhci_dbg(xhci, "xHCI version %x needs hub "
5173                 "TT think time and number of ports\n",
5174                 (unsigned int) xhci->hci_version);
5175         slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5176         /* Set TT think time - convert from ns to FS bit times.
5177          * 0 = 8 FS bit times, 1 = 16 FS bit times,
5178          * 2 = 24 FS bit times, 3 = 32 FS bit times.
5179          *
5180          * xHCI 1.0: this field shall be 0 if the device is not a
5181          * High-spped hub.
5182          */
5183         think_time = tt->think_time;
5184         if (think_time != 0)
5185             think_time = (think_time / 666) - 1;
5186         if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5187             slot_ctx->tt_info |=
5188                 cpu_to_le32(TT_THINK_TIME(think_time));
5189     } else {
5190         xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5191                 "TT think time or number of ports\n",
5192                 (unsigned int) xhci->hci_version);
5193     }
5194     slot_ctx->dev_state = 0;
5195     spin_unlock_irqrestore(&xhci->lock, flags);
5196 
5197     xhci_dbg(xhci, "Set up %s for hub device.\n",
5198             (xhci->hci_version > 0x95) ?
5199             "configure endpoint" : "evaluate context");
5200 
5201     /* Issue and wait for the configure endpoint or
5202      * evaluate context command.
5203      */
5204     if (xhci->hci_version > 0x95)
5205         ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5206                 false, false);
5207     else
5208         ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5209                 true, false);
5210 
5211     xhci_free_command(xhci, config_cmd);
5212     return ret;
5213 }
5214 
5215 static int xhci_get_frame(struct usb_hcd *hcd)
5216 {
5217     struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5218     /* EHCI mods by the periodic size.  Why? */
5219     return readl(&xhci->run_regs->microframe_index) >> 3;
5220 }
5221 
5222 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5223 {
5224     xhci->usb2_rhub.hcd = hcd;
5225     hcd->speed = HCD_USB2;
5226     hcd->self.root_hub->speed = USB_SPEED_HIGH;
5227     /*
5228      * USB 2.0 roothub under xHCI has an integrated TT,
5229      * (rate matching hub) as opposed to having an OHCI/UHCI
5230      * companion controller.
5231      */
5232     hcd->has_tt = 1;
5233 }
5234 
5235 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5236 {
5237     unsigned int minor_rev;
5238 
5239     /*
5240      * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5241      * should return 0x31 for sbrn, or that the minor revision
5242      * is a two digit BCD containig minor and sub-minor numbers.
5243      * This was later clarified in xHCI 1.2.
5244      *
5245      * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5246      * minor revision set to 0x1 instead of 0x10.
5247      */
5248     if (xhci->usb3_rhub.min_rev == 0x1)
5249         minor_rev = 1;
5250     else
5251         minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5252 
5253     switch (minor_rev) {
5254     case 2:
5255         hcd->speed = HCD_USB32;
5256         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5257         hcd->self.root_hub->rx_lanes = 2;
5258         hcd->self.root_hub->tx_lanes = 2;
5259         hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5260         break;
5261     case 1:
5262         hcd->speed = HCD_USB31;
5263         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5264         hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5265         break;
5266     }
5267     xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5268           minor_rev, minor_rev ? "Enhanced " : "");
5269 
5270     xhci->usb3_rhub.hcd = hcd;
5271 }
5272 
5273 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5274 {
5275     struct xhci_hcd     *xhci;
5276     /*
5277      * TODO: Check with DWC3 clients for sysdev according to
5278      * quirks
5279      */
5280     struct device       *dev = hcd->self.sysdev;
5281     int         retval;
5282 
5283     /* Accept arbitrarily long scatter-gather lists */
5284     hcd->self.sg_tablesize = ~0;
5285 
5286     /* support to build packet from discontinuous buffers */
5287     hcd->self.no_sg_constraint = 1;
5288 
5289     /* XHCI controllers don't stop the ep queue on short packets :| */
5290     hcd->self.no_stop_on_short = 1;
5291 
5292     xhci = hcd_to_xhci(hcd);
5293 
5294     if (!usb_hcd_is_primary_hcd(hcd)) {
5295         xhci_hcd_init_usb3_data(xhci, hcd);
5296         return 0;
5297     }
5298 
5299     mutex_init(&xhci->mutex);
5300     xhci->main_hcd = hcd;
5301     xhci->cap_regs = hcd->regs;
5302     xhci->op_regs = hcd->regs +
5303         HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5304     xhci->run_regs = hcd->regs +
5305         (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5306     /* Cache read-only capability registers */
5307     xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5308     xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5309     xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5310     xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5311     xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5312     if (xhci->hci_version > 0x100)
5313         xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5314 
5315     xhci->quirks |= quirks;
5316 
5317     get_quirks(dev, xhci);
5318 
5319     /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5320      * success event after a short transfer. This quirk will ignore such
5321      * spurious event.
5322      */
5323     if (xhci->hci_version > 0x96)
5324         xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5325 
5326     /* Make sure the HC is halted. */
5327     retval = xhci_halt(xhci);
5328     if (retval)
5329         return retval;
5330 
5331     xhci_zero_64b_regs(xhci);
5332 
5333     xhci_dbg(xhci, "Resetting HCD\n");
5334     /* Reset the internal HC memory state and registers. */
5335     retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5336     if (retval)
5337         return retval;
5338     xhci_dbg(xhci, "Reset complete\n");
5339 
5340     /*
5341      * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5342      * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5343      * address memory pointers actually. So, this driver clears the AC64
5344      * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5345      * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5346      */
5347     if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5348         xhci->hcc_params &= ~BIT(0);
5349 
5350     /* Set dma_mask and coherent_dma_mask to 64-bits,
5351      * if xHC supports 64-bit addressing */
5352     if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5353             !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5354         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5355         dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5356     } else {
5357         /*
5358          * This is to avoid error in cases where a 32-bit USB
5359          * controller is used on a 64-bit capable system.
5360          */
5361         retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5362         if (retval)
5363             return retval;
5364         xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5365         dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5366     }
5367 
5368     xhci_dbg(xhci, "Calling HCD init\n");
5369     /* Initialize HCD and host controller data structures. */
5370     retval = xhci_init(hcd);
5371     if (retval)
5372         return retval;
5373     xhci_dbg(xhci, "Called HCD init\n");
5374 
5375     if (xhci_hcd_is_usb3(hcd))
5376         xhci_hcd_init_usb3_data(xhci, hcd);
5377     else
5378         xhci_hcd_init_usb2_data(xhci, hcd);
5379 
5380     xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5381           xhci->hcc_params, xhci->hci_version, xhci->quirks);
5382 
5383     return 0;
5384 }
5385 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5386 
5387 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5388         struct usb_host_endpoint *ep)
5389 {
5390     struct xhci_hcd *xhci;
5391     struct usb_device *udev;
5392     unsigned int slot_id;
5393     unsigned int ep_index;
5394     unsigned long flags;
5395 
5396     xhci = hcd_to_xhci(hcd);
5397 
5398     spin_lock_irqsave(&xhci->lock, flags);
5399     udev = (struct usb_device *)ep->hcpriv;
5400     slot_id = udev->slot_id;
5401     ep_index = xhci_get_endpoint_index(&ep->desc);
5402 
5403     xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5404     xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5405     spin_unlock_irqrestore(&xhci->lock, flags);
5406 }
5407 
5408 static const struct hc_driver xhci_hc_driver = {
5409     .description =      "xhci-hcd",
5410     .product_desc =     "xHCI Host Controller",
5411     .hcd_priv_size =    sizeof(struct xhci_hcd),
5412 
5413     /*
5414      * generic hardware linkage
5415      */
5416     .irq =          xhci_irq,
5417     .flags =        HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5418                 HCD_BH,
5419 
5420     /*
5421      * basic lifecycle operations
5422      */
5423     .reset =        NULL, /* set in xhci_init_driver() */
5424     .start =        xhci_run,
5425     .stop =         xhci_stop,
5426     .shutdown =     xhci_shutdown,
5427 
5428     /*
5429      * managing i/o requests and associated device resources
5430      */
5431     .map_urb_for_dma =      xhci_map_urb_for_dma,
5432     .unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5433     .urb_enqueue =      xhci_urb_enqueue,
5434     .urb_dequeue =      xhci_urb_dequeue,
5435     .alloc_dev =        xhci_alloc_dev,
5436     .free_dev =     xhci_free_dev,
5437     .alloc_streams =    xhci_alloc_streams,
5438     .free_streams =     xhci_free_streams,
5439     .add_endpoint =     xhci_add_endpoint,
5440     .drop_endpoint =    xhci_drop_endpoint,
5441     .endpoint_disable = xhci_endpoint_disable,
5442     .endpoint_reset =   xhci_endpoint_reset,
5443     .check_bandwidth =  xhci_check_bandwidth,
5444     .reset_bandwidth =  xhci_reset_bandwidth,
5445     .address_device =   xhci_address_device,
5446     .enable_device =    xhci_enable_device,
5447     .update_hub_device =    xhci_update_hub_device,
5448     .reset_device =     xhci_discover_or_reset_device,
5449 
5450     /*
5451      * scheduling support
5452      */
5453     .get_frame_number = xhci_get_frame,
5454 
5455     /*
5456      * root hub support
5457      */
5458     .hub_control =      xhci_hub_control,
5459     .hub_status_data =  xhci_hub_status_data,
5460     .bus_suspend =      xhci_bus_suspend,
5461     .bus_resume =       xhci_bus_resume,
5462     .get_resuming_ports =   xhci_get_resuming_ports,
5463 
5464     /*
5465      * call back when device connected and addressed
5466      */
5467     .update_device =        xhci_update_device,
5468     .set_usb2_hw_lpm =  xhci_set_usb2_hardware_lpm,
5469     .enable_usb3_lpm_timeout =  xhci_enable_usb3_lpm_timeout,
5470     .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5471     .find_raw_port_number = xhci_find_raw_port_number,
5472     .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5473 };
5474 
5475 void xhci_init_driver(struct hc_driver *drv,
5476               const struct xhci_driver_overrides *over)
5477 {
5478     BUG_ON(!over);
5479 
5480     /* Copy the generic table to drv then apply the overrides */
5481     *drv = xhci_hc_driver;
5482 
5483     if (over) {
5484         drv->hcd_priv_size += over->extra_priv_size;
5485         if (over->reset)
5486             drv->reset = over->reset;
5487         if (over->start)
5488             drv->start = over->start;
5489         if (over->add_endpoint)
5490             drv->add_endpoint = over->add_endpoint;
5491         if (over->drop_endpoint)
5492             drv->drop_endpoint = over->drop_endpoint;
5493         if (over->check_bandwidth)
5494             drv->check_bandwidth = over->check_bandwidth;
5495         if (over->reset_bandwidth)
5496             drv->reset_bandwidth = over->reset_bandwidth;
5497     }
5498 }
5499 EXPORT_SYMBOL_GPL(xhci_init_driver);
5500 
5501 MODULE_DESCRIPTION(DRIVER_DESC);
5502 MODULE_AUTHOR(DRIVER_AUTHOR);
5503 MODULE_LICENSE("GPL");
5504 
5505 static int __init xhci_hcd_init(void)
5506 {
5507     /*
5508      * Check the compiler generated sizes of structures that must be laid
5509      * out in specific ways for hardware access.
5510      */
5511     BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5512     BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5513     BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5514     /* xhci_device_control has eight fields, and also
5515      * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5516      */
5517     BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5518     BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5519     BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5520     BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5521     BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5522     /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5523     BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5524 
5525     if (usb_disabled())
5526         return -ENODEV;
5527 
5528     xhci_debugfs_create_root();
5529     xhci_dbc_init();
5530 
5531     return 0;
5532 }
5533 
5534 /*
5535  * If an init function is provided, an exit function must also be provided
5536  * to allow module unload.
5537  */
5538 static void __exit xhci_hcd_fini(void)
5539 {
5540     xhci_debugfs_remove_root();
5541     xhci_dbc_exit();
5542 }
5543 
5544 module_init(xhci_hcd_init);
5545 module_exit(xhci_hcd_fini);