Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * xHCI host controller driver
0004  *
0005  * Copyright (C) 2008 Intel Corp.
0006  *
0007  * Author: Sarah Sharp
0008  * Some code borrowed from the Linux EHCI driver.
0009  */
0010 
0011 #include <linux/usb.h>
0012 #include <linux/pci.h>
0013 #include <linux/slab.h>
0014 #include <linux/dmapool.h>
0015 #include <linux/dma-mapping.h>
0016 
0017 #include "xhci.h"
0018 #include "xhci-trace.h"
0019 #include "xhci-debugfs.h"
0020 
0021 /*
0022  * Allocates a generic ring segment from the ring pool, sets the dma address,
0023  * initializes the segment to zero, and sets the private next pointer to NULL.
0024  *
0025  * Section 4.11.1.1:
0026  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
0027  */
0028 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
0029                            unsigned int cycle_state,
0030                            unsigned int max_packet,
0031                            gfp_t flags)
0032 {
0033     struct xhci_segment *seg;
0034     dma_addr_t  dma;
0035     int     i;
0036     struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
0037 
0038     seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
0039     if (!seg)
0040         return NULL;
0041 
0042     seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
0043     if (!seg->trbs) {
0044         kfree(seg);
0045         return NULL;
0046     }
0047 
0048     if (max_packet) {
0049         seg->bounce_buf = kzalloc_node(max_packet, flags,
0050                     dev_to_node(dev));
0051         if (!seg->bounce_buf) {
0052             dma_pool_free(xhci->segment_pool, seg->trbs, dma);
0053             kfree(seg);
0054             return NULL;
0055         }
0056     }
0057     /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
0058     if (cycle_state == 0) {
0059         for (i = 0; i < TRBS_PER_SEGMENT; i++)
0060             seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
0061     }
0062     seg->dma = dma;
0063     seg->next = NULL;
0064 
0065     return seg;
0066 }
0067 
0068 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
0069 {
0070     if (seg->trbs) {
0071         dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
0072         seg->trbs = NULL;
0073     }
0074     kfree(seg->bounce_buf);
0075     kfree(seg);
0076 }
0077 
0078 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
0079                 struct xhci_segment *first)
0080 {
0081     struct xhci_segment *seg;
0082 
0083     seg = first->next;
0084     while (seg != first) {
0085         struct xhci_segment *next = seg->next;
0086         xhci_segment_free(xhci, seg);
0087         seg = next;
0088     }
0089     xhci_segment_free(xhci, first);
0090 }
0091 
0092 /*
0093  * Make the prev segment point to the next segment.
0094  *
0095  * Change the last TRB in the prev segment to be a Link TRB which points to the
0096  * DMA address of the next segment.  The caller needs to set any Link TRB
0097  * related flags, such as End TRB, Toggle Cycle, and no snoop.
0098  */
0099 static void xhci_link_segments(struct xhci_segment *prev,
0100                    struct xhci_segment *next,
0101                    enum xhci_ring_type type, bool chain_links)
0102 {
0103     u32 val;
0104 
0105     if (!prev || !next)
0106         return;
0107     prev->next = next;
0108     if (type != TYPE_EVENT) {
0109         prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
0110             cpu_to_le64(next->dma);
0111 
0112         /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
0113         val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
0114         val &= ~TRB_TYPE_BITMASK;
0115         val |= TRB_TYPE(TRB_LINK);
0116         if (chain_links)
0117             val |= TRB_CHAIN;
0118         prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
0119     }
0120 }
0121 
0122 /*
0123  * Link the ring to the new segments.
0124  * Set Toggle Cycle for the new ring if needed.
0125  */
0126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
0127         struct xhci_segment *first, struct xhci_segment *last,
0128         unsigned int num_segs)
0129 {
0130     struct xhci_segment *next;
0131     bool chain_links;
0132 
0133     if (!ring || !first || !last)
0134         return;
0135 
0136     /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
0137     chain_links = !!(xhci_link_trb_quirk(xhci) ||
0138              (ring->type == TYPE_ISOC &&
0139               (xhci->quirks & XHCI_AMD_0x96_HOST)));
0140 
0141     next = ring->enq_seg->next;
0142     xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
0143     xhci_link_segments(last, next, ring->type, chain_links);
0144     ring->num_segs += num_segs;
0145     ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
0146 
0147     if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
0148         ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
0149             &= ~cpu_to_le32(LINK_TOGGLE);
0150         last->trbs[TRBS_PER_SEGMENT-1].link.control
0151             |= cpu_to_le32(LINK_TOGGLE);
0152         ring->last_seg = last;
0153     }
0154 }
0155 
0156 /*
0157  * We need a radix tree for mapping physical addresses of TRBs to which stream
0158  * ID they belong to.  We need to do this because the host controller won't tell
0159  * us which stream ring the TRB came from.  We could store the stream ID in an
0160  * event data TRB, but that doesn't help us for the cancellation case, since the
0161  * endpoint may stop before it reaches that event data TRB.
0162  *
0163  * The radix tree maps the upper portion of the TRB DMA address to a ring
0164  * segment that has the same upper portion of DMA addresses.  For example, say I
0165  * have segments of size 1KB, that are always 1KB aligned.  A segment may
0166  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
0167  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
0168  * pass the radix tree a key to get the right stream ID:
0169  *
0170  *  0x10c90fff >> 10 = 0x43243
0171  *  0x10c912c0 >> 10 = 0x43244
0172  *  0x10c91400 >> 10 = 0x43245
0173  *
0174  * Obviously, only those TRBs with DMA addresses that are within the segment
0175  * will make the radix tree return the stream ID for that ring.
0176  *
0177  * Caveats for the radix tree:
0178  *
0179  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
0180  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
0181  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
0182  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
0183  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
0184  * extended systems (where the DMA address can be bigger than 32-bits),
0185  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
0186  */
0187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
0188         struct xhci_ring *ring,
0189         struct xhci_segment *seg,
0190         gfp_t mem_flags)
0191 {
0192     unsigned long key;
0193     int ret;
0194 
0195     key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
0196     /* Skip any segments that were already added. */
0197     if (radix_tree_lookup(trb_address_map, key))
0198         return 0;
0199 
0200     ret = radix_tree_maybe_preload(mem_flags);
0201     if (ret)
0202         return ret;
0203     ret = radix_tree_insert(trb_address_map,
0204             key, ring);
0205     radix_tree_preload_end();
0206     return ret;
0207 }
0208 
0209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
0210         struct xhci_segment *seg)
0211 {
0212     unsigned long key;
0213 
0214     key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
0215     if (radix_tree_lookup(trb_address_map, key))
0216         radix_tree_delete(trb_address_map, key);
0217 }
0218 
0219 static int xhci_update_stream_segment_mapping(
0220         struct radix_tree_root *trb_address_map,
0221         struct xhci_ring *ring,
0222         struct xhci_segment *first_seg,
0223         struct xhci_segment *last_seg,
0224         gfp_t mem_flags)
0225 {
0226     struct xhci_segment *seg;
0227     struct xhci_segment *failed_seg;
0228     int ret;
0229 
0230     if (WARN_ON_ONCE(trb_address_map == NULL))
0231         return 0;
0232 
0233     seg = first_seg;
0234     do {
0235         ret = xhci_insert_segment_mapping(trb_address_map,
0236                 ring, seg, mem_flags);
0237         if (ret)
0238             goto remove_streams;
0239         if (seg == last_seg)
0240             return 0;
0241         seg = seg->next;
0242     } while (seg != first_seg);
0243 
0244     return 0;
0245 
0246 remove_streams:
0247     failed_seg = seg;
0248     seg = first_seg;
0249     do {
0250         xhci_remove_segment_mapping(trb_address_map, seg);
0251         if (seg == failed_seg)
0252             return ret;
0253         seg = seg->next;
0254     } while (seg != first_seg);
0255 
0256     return ret;
0257 }
0258 
0259 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
0260 {
0261     struct xhci_segment *seg;
0262 
0263     if (WARN_ON_ONCE(ring->trb_address_map == NULL))
0264         return;
0265 
0266     seg = ring->first_seg;
0267     do {
0268         xhci_remove_segment_mapping(ring->trb_address_map, seg);
0269         seg = seg->next;
0270     } while (seg != ring->first_seg);
0271 }
0272 
0273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
0274 {
0275     return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
0276             ring->first_seg, ring->last_seg, mem_flags);
0277 }
0278 
0279 /* XXX: Do we need the hcd structure in all these functions? */
0280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
0281 {
0282     if (!ring)
0283         return;
0284 
0285     trace_xhci_ring_free(ring);
0286 
0287     if (ring->first_seg) {
0288         if (ring->type == TYPE_STREAM)
0289             xhci_remove_stream_mapping(ring);
0290         xhci_free_segments_for_ring(xhci, ring->first_seg);
0291     }
0292 
0293     kfree(ring);
0294 }
0295 
0296 void xhci_initialize_ring_info(struct xhci_ring *ring,
0297                    unsigned int cycle_state)
0298 {
0299     /* The ring is empty, so the enqueue pointer == dequeue pointer */
0300     ring->enqueue = ring->first_seg->trbs;
0301     ring->enq_seg = ring->first_seg;
0302     ring->dequeue = ring->enqueue;
0303     ring->deq_seg = ring->first_seg;
0304     /* The ring is initialized to 0. The producer must write 1 to the cycle
0305      * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
0306      * compare CCS to the cycle bit to check ownership, so CCS = 1.
0307      *
0308      * New rings are initialized with cycle state equal to 1; if we are
0309      * handling ring expansion, set the cycle state equal to the old ring.
0310      */
0311     ring->cycle_state = cycle_state;
0312 
0313     /*
0314      * Each segment has a link TRB, and leave an extra TRB for SW
0315      * accounting purpose
0316      */
0317     ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
0318 }
0319 
0320 /* Allocate segments and link them for a ring */
0321 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
0322         struct xhci_segment **first, struct xhci_segment **last,
0323         unsigned int num_segs, unsigned int cycle_state,
0324         enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
0325 {
0326     struct xhci_segment *prev;
0327     bool chain_links;
0328 
0329     /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
0330     chain_links = !!(xhci_link_trb_quirk(xhci) ||
0331              (type == TYPE_ISOC &&
0332               (xhci->quirks & XHCI_AMD_0x96_HOST)));
0333 
0334     prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
0335     if (!prev)
0336         return -ENOMEM;
0337     num_segs--;
0338 
0339     *first = prev;
0340     while (num_segs > 0) {
0341         struct xhci_segment *next;
0342 
0343         next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
0344         if (!next) {
0345             prev = *first;
0346             while (prev) {
0347                 next = prev->next;
0348                 xhci_segment_free(xhci, prev);
0349                 prev = next;
0350             }
0351             return -ENOMEM;
0352         }
0353         xhci_link_segments(prev, next, type, chain_links);
0354 
0355         prev = next;
0356         num_segs--;
0357     }
0358     xhci_link_segments(prev, *first, type, chain_links);
0359     *last = prev;
0360 
0361     return 0;
0362 }
0363 
0364 /*
0365  * Create a new ring with zero or more segments.
0366  *
0367  * Link each segment together into a ring.
0368  * Set the end flag and the cycle toggle bit on the last segment.
0369  * See section 4.9.1 and figures 15 and 16.
0370  */
0371 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
0372         unsigned int num_segs, unsigned int cycle_state,
0373         enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
0374 {
0375     struct xhci_ring    *ring;
0376     int ret;
0377     struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
0378 
0379     ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
0380     if (!ring)
0381         return NULL;
0382 
0383     ring->num_segs = num_segs;
0384     ring->bounce_buf_len = max_packet;
0385     INIT_LIST_HEAD(&ring->td_list);
0386     ring->type = type;
0387     if (num_segs == 0)
0388         return ring;
0389 
0390     ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
0391             &ring->last_seg, num_segs, cycle_state, type,
0392             max_packet, flags);
0393     if (ret)
0394         goto fail;
0395 
0396     /* Only event ring does not use link TRB */
0397     if (type != TYPE_EVENT) {
0398         /* See section 4.9.2.1 and 6.4.4.1 */
0399         ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
0400             cpu_to_le32(LINK_TOGGLE);
0401     }
0402     xhci_initialize_ring_info(ring, cycle_state);
0403     trace_xhci_ring_alloc(ring);
0404     return ring;
0405 
0406 fail:
0407     kfree(ring);
0408     return NULL;
0409 }
0410 
0411 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
0412         struct xhci_virt_device *virt_dev,
0413         unsigned int ep_index)
0414 {
0415     xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
0416     virt_dev->eps[ep_index].ring = NULL;
0417 }
0418 
0419 /*
0420  * Expand an existing ring.
0421  * Allocate a new ring which has same segment numbers and link the two rings.
0422  */
0423 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
0424                 unsigned int num_trbs, gfp_t flags)
0425 {
0426     struct xhci_segment *first;
0427     struct xhci_segment *last;
0428     unsigned int        num_segs;
0429     unsigned int        num_segs_needed;
0430     int         ret;
0431 
0432     num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
0433                 (TRBS_PER_SEGMENT - 1);
0434 
0435     /* Allocate number of segments we needed, or double the ring size */
0436     num_segs = max(ring->num_segs, num_segs_needed);
0437 
0438     ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
0439             num_segs, ring->cycle_state, ring->type,
0440             ring->bounce_buf_len, flags);
0441     if (ret)
0442         return -ENOMEM;
0443 
0444     if (ring->type == TYPE_STREAM)
0445         ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
0446                         ring, first, last, flags);
0447     if (ret) {
0448         struct xhci_segment *next;
0449         do {
0450             next = first->next;
0451             xhci_segment_free(xhci, first);
0452             if (first == last)
0453                 break;
0454             first = next;
0455         } while (true);
0456         return ret;
0457     }
0458 
0459     xhci_link_rings(xhci, ring, first, last, num_segs);
0460     trace_xhci_ring_expansion(ring);
0461     xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
0462             "ring expansion succeed, now has %d segments",
0463             ring->num_segs);
0464 
0465     return 0;
0466 }
0467 
0468 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
0469                             int type, gfp_t flags)
0470 {
0471     struct xhci_container_ctx *ctx;
0472     struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
0473 
0474     if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
0475         return NULL;
0476 
0477     ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
0478     if (!ctx)
0479         return NULL;
0480 
0481     ctx->type = type;
0482     ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
0483     if (type == XHCI_CTX_TYPE_INPUT)
0484         ctx->size += CTX_SIZE(xhci->hcc_params);
0485 
0486     ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
0487     if (!ctx->bytes) {
0488         kfree(ctx);
0489         return NULL;
0490     }
0491     return ctx;
0492 }
0493 
0494 void xhci_free_container_ctx(struct xhci_hcd *xhci,
0495                  struct xhci_container_ctx *ctx)
0496 {
0497     if (!ctx)
0498         return;
0499     dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
0500     kfree(ctx);
0501 }
0502 
0503 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
0504                           struct xhci_container_ctx *ctx)
0505 {
0506     if (ctx->type != XHCI_CTX_TYPE_INPUT)
0507         return NULL;
0508 
0509     return (struct xhci_input_control_ctx *)ctx->bytes;
0510 }
0511 
0512 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
0513                     struct xhci_container_ctx *ctx)
0514 {
0515     if (ctx->type == XHCI_CTX_TYPE_DEVICE)
0516         return (struct xhci_slot_ctx *)ctx->bytes;
0517 
0518     return (struct xhci_slot_ctx *)
0519         (ctx->bytes + CTX_SIZE(xhci->hcc_params));
0520 }
0521 
0522 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
0523                     struct xhci_container_ctx *ctx,
0524                     unsigned int ep_index)
0525 {
0526     /* increment ep index by offset of start of ep ctx array */
0527     ep_index++;
0528     if (ctx->type == XHCI_CTX_TYPE_INPUT)
0529         ep_index++;
0530 
0531     return (struct xhci_ep_ctx *)
0532         (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
0533 }
0534 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
0535 
0536 /***************** Streams structures manipulation *************************/
0537 
0538 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
0539         unsigned int num_stream_ctxs,
0540         struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
0541 {
0542     struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
0543     size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
0544 
0545     if (size > MEDIUM_STREAM_ARRAY_SIZE)
0546         dma_free_coherent(dev, size,
0547                 stream_ctx, dma);
0548     else if (size <= SMALL_STREAM_ARRAY_SIZE)
0549         return dma_pool_free(xhci->small_streams_pool,
0550                 stream_ctx, dma);
0551     else
0552         return dma_pool_free(xhci->medium_streams_pool,
0553                 stream_ctx, dma);
0554 }
0555 
0556 /*
0557  * The stream context array for each endpoint with bulk streams enabled can
0558  * vary in size, based on:
0559  *  - how many streams the endpoint supports,
0560  *  - the maximum primary stream array size the host controller supports,
0561  *  - and how many streams the device driver asks for.
0562  *
0563  * The stream context array must be a power of 2, and can be as small as
0564  * 64 bytes or as large as 1MB.
0565  */
0566 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
0567         unsigned int num_stream_ctxs, dma_addr_t *dma,
0568         gfp_t mem_flags)
0569 {
0570     struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
0571     size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
0572 
0573     if (size > MEDIUM_STREAM_ARRAY_SIZE)
0574         return dma_alloc_coherent(dev, size,
0575                 dma, mem_flags);
0576     else if (size <= SMALL_STREAM_ARRAY_SIZE)
0577         return dma_pool_alloc(xhci->small_streams_pool,
0578                 mem_flags, dma);
0579     else
0580         return dma_pool_alloc(xhci->medium_streams_pool,
0581                 mem_flags, dma);
0582 }
0583 
0584 struct xhci_ring *xhci_dma_to_transfer_ring(
0585         struct xhci_virt_ep *ep,
0586         u64 address)
0587 {
0588     if (ep->ep_state & EP_HAS_STREAMS)
0589         return radix_tree_lookup(&ep->stream_info->trb_address_map,
0590                 address >> TRB_SEGMENT_SHIFT);
0591     return ep->ring;
0592 }
0593 
0594 /*
0595  * Change an endpoint's internal structure so it supports stream IDs.  The
0596  * number of requested streams includes stream 0, which cannot be used by device
0597  * drivers.
0598  *
0599  * The number of stream contexts in the stream context array may be bigger than
0600  * the number of streams the driver wants to use.  This is because the number of
0601  * stream context array entries must be a power of two.
0602  */
0603 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
0604         unsigned int num_stream_ctxs,
0605         unsigned int num_streams,
0606         unsigned int max_packet, gfp_t mem_flags)
0607 {
0608     struct xhci_stream_info *stream_info;
0609     u32 cur_stream;
0610     struct xhci_ring *cur_ring;
0611     u64 addr;
0612     int ret;
0613     struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
0614 
0615     xhci_dbg(xhci, "Allocating %u streams and %u "
0616             "stream context array entries.\n",
0617             num_streams, num_stream_ctxs);
0618     if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
0619         xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
0620         return NULL;
0621     }
0622     xhci->cmd_ring_reserved_trbs++;
0623 
0624     stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
0625             dev_to_node(dev));
0626     if (!stream_info)
0627         goto cleanup_trbs;
0628 
0629     stream_info->num_streams = num_streams;
0630     stream_info->num_stream_ctxs = num_stream_ctxs;
0631 
0632     /* Initialize the array of virtual pointers to stream rings. */
0633     stream_info->stream_rings = kcalloc_node(
0634             num_streams, sizeof(struct xhci_ring *), mem_flags,
0635             dev_to_node(dev));
0636     if (!stream_info->stream_rings)
0637         goto cleanup_info;
0638 
0639     /* Initialize the array of DMA addresses for stream rings for the HW. */
0640     stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
0641             num_stream_ctxs, &stream_info->ctx_array_dma,
0642             mem_flags);
0643     if (!stream_info->stream_ctx_array)
0644         goto cleanup_ctx;
0645     memset(stream_info->stream_ctx_array, 0,
0646             sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
0647 
0648     /* Allocate everything needed to free the stream rings later */
0649     stream_info->free_streams_command =
0650         xhci_alloc_command_with_ctx(xhci, true, mem_flags);
0651     if (!stream_info->free_streams_command)
0652         goto cleanup_ctx;
0653 
0654     INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
0655 
0656     /* Allocate rings for all the streams that the driver will use,
0657      * and add their segment DMA addresses to the radix tree.
0658      * Stream 0 is reserved.
0659      */
0660 
0661     for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
0662         stream_info->stream_rings[cur_stream] =
0663             xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
0664                     mem_flags);
0665         cur_ring = stream_info->stream_rings[cur_stream];
0666         if (!cur_ring)
0667             goto cleanup_rings;
0668         cur_ring->stream_id = cur_stream;
0669         cur_ring->trb_address_map = &stream_info->trb_address_map;
0670         /* Set deq ptr, cycle bit, and stream context type */
0671         addr = cur_ring->first_seg->dma |
0672             SCT_FOR_CTX(SCT_PRI_TR) |
0673             cur_ring->cycle_state;
0674         stream_info->stream_ctx_array[cur_stream].stream_ring =
0675             cpu_to_le64(addr);
0676         xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
0677                 cur_stream, (unsigned long long) addr);
0678 
0679         ret = xhci_update_stream_mapping(cur_ring, mem_flags);
0680         if (ret) {
0681             xhci_ring_free(xhci, cur_ring);
0682             stream_info->stream_rings[cur_stream] = NULL;
0683             goto cleanup_rings;
0684         }
0685     }
0686     /* Leave the other unused stream ring pointers in the stream context
0687      * array initialized to zero.  This will cause the xHC to give us an
0688      * error if the device asks for a stream ID we don't have setup (if it
0689      * was any other way, the host controller would assume the ring is
0690      * "empty" and wait forever for data to be queued to that stream ID).
0691      */
0692 
0693     return stream_info;
0694 
0695 cleanup_rings:
0696     for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
0697         cur_ring = stream_info->stream_rings[cur_stream];
0698         if (cur_ring) {
0699             xhci_ring_free(xhci, cur_ring);
0700             stream_info->stream_rings[cur_stream] = NULL;
0701         }
0702     }
0703     xhci_free_command(xhci, stream_info->free_streams_command);
0704 cleanup_ctx:
0705     kfree(stream_info->stream_rings);
0706 cleanup_info:
0707     kfree(stream_info);
0708 cleanup_trbs:
0709     xhci->cmd_ring_reserved_trbs--;
0710     return NULL;
0711 }
0712 /*
0713  * Sets the MaxPStreams field and the Linear Stream Array field.
0714  * Sets the dequeue pointer to the stream context array.
0715  */
0716 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
0717         struct xhci_ep_ctx *ep_ctx,
0718         struct xhci_stream_info *stream_info)
0719 {
0720     u32 max_primary_streams;
0721     /* MaxPStreams is the number of stream context array entries, not the
0722      * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
0723      * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
0724      */
0725     max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
0726     xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
0727             "Setting number of stream ctx array entries to %u",
0728             1 << (max_primary_streams + 1));
0729     ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
0730     ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
0731                        | EP_HAS_LSA);
0732     ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
0733 }
0734 
0735 /*
0736  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
0737  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
0738  * not at the beginning of the ring).
0739  */
0740 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
0741         struct xhci_virt_ep *ep)
0742 {
0743     dma_addr_t addr;
0744     ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
0745     addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
0746     ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
0747 }
0748 
0749 /* Frees all stream contexts associated with the endpoint,
0750  *
0751  * Caller should fix the endpoint context streams fields.
0752  */
0753 void xhci_free_stream_info(struct xhci_hcd *xhci,
0754         struct xhci_stream_info *stream_info)
0755 {
0756     int cur_stream;
0757     struct xhci_ring *cur_ring;
0758 
0759     if (!stream_info)
0760         return;
0761 
0762     for (cur_stream = 1; cur_stream < stream_info->num_streams;
0763             cur_stream++) {
0764         cur_ring = stream_info->stream_rings[cur_stream];
0765         if (cur_ring) {
0766             xhci_ring_free(xhci, cur_ring);
0767             stream_info->stream_rings[cur_stream] = NULL;
0768         }
0769     }
0770     xhci_free_command(xhci, stream_info->free_streams_command);
0771     xhci->cmd_ring_reserved_trbs--;
0772     if (stream_info->stream_ctx_array)
0773         xhci_free_stream_ctx(xhci,
0774                 stream_info->num_stream_ctxs,
0775                 stream_info->stream_ctx_array,
0776                 stream_info->ctx_array_dma);
0777 
0778     kfree(stream_info->stream_rings);
0779     kfree(stream_info);
0780 }
0781 
0782 
0783 /***************** Device context manipulation *************************/
0784 
0785 static void xhci_free_tt_info(struct xhci_hcd *xhci,
0786         struct xhci_virt_device *virt_dev,
0787         int slot_id)
0788 {
0789     struct list_head *tt_list_head;
0790     struct xhci_tt_bw_info *tt_info, *next;
0791     bool slot_found = false;
0792 
0793     /* If the device never made it past the Set Address stage,
0794      * it may not have the real_port set correctly.
0795      */
0796     if (virt_dev->real_port == 0 ||
0797             virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
0798         xhci_dbg(xhci, "Bad real port.\n");
0799         return;
0800     }
0801 
0802     tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
0803     list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
0804         /* Multi-TT hubs will have more than one entry */
0805         if (tt_info->slot_id == slot_id) {
0806             slot_found = true;
0807             list_del(&tt_info->tt_list);
0808             kfree(tt_info);
0809         } else if (slot_found) {
0810             break;
0811         }
0812     }
0813 }
0814 
0815 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
0816         struct xhci_virt_device *virt_dev,
0817         struct usb_device *hdev,
0818         struct usb_tt *tt, gfp_t mem_flags)
0819 {
0820     struct xhci_tt_bw_info      *tt_info;
0821     unsigned int            num_ports;
0822     int             i, j;
0823     struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
0824 
0825     if (!tt->multi)
0826         num_ports = 1;
0827     else
0828         num_ports = hdev->maxchild;
0829 
0830     for (i = 0; i < num_ports; i++, tt_info++) {
0831         struct xhci_interval_bw_table *bw_table;
0832 
0833         tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
0834                 dev_to_node(dev));
0835         if (!tt_info)
0836             goto free_tts;
0837         INIT_LIST_HEAD(&tt_info->tt_list);
0838         list_add(&tt_info->tt_list,
0839                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
0840         tt_info->slot_id = virt_dev->udev->slot_id;
0841         if (tt->multi)
0842             tt_info->ttport = i+1;
0843         bw_table = &tt_info->bw_table;
0844         for (j = 0; j < XHCI_MAX_INTERVAL; j++)
0845             INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
0846     }
0847     return 0;
0848 
0849 free_tts:
0850     xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
0851     return -ENOMEM;
0852 }
0853 
0854 
0855 /* All the xhci_tds in the ring's TD list should be freed at this point.
0856  * Should be called with xhci->lock held if there is any chance the TT lists
0857  * will be manipulated by the configure endpoint, allocate device, or update
0858  * hub functions while this function is removing the TT entries from the list.
0859  */
0860 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
0861 {
0862     struct xhci_virt_device *dev;
0863     int i;
0864     int old_active_eps = 0;
0865 
0866     /* Slot ID 0 is reserved */
0867     if (slot_id == 0 || !xhci->devs[slot_id])
0868         return;
0869 
0870     dev = xhci->devs[slot_id];
0871 
0872     xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
0873     if (!dev)
0874         return;
0875 
0876     trace_xhci_free_virt_device(dev);
0877 
0878     if (dev->tt_info)
0879         old_active_eps = dev->tt_info->active_eps;
0880 
0881     for (i = 0; i < 31; i++) {
0882         if (dev->eps[i].ring)
0883             xhci_ring_free(xhci, dev->eps[i].ring);
0884         if (dev->eps[i].stream_info)
0885             xhci_free_stream_info(xhci,
0886                     dev->eps[i].stream_info);
0887         /* Endpoints on the TT/root port lists should have been removed
0888          * when usb_disable_device() was called for the device.
0889          * We can't drop them anyway, because the udev might have gone
0890          * away by this point, and we can't tell what speed it was.
0891          */
0892         if (!list_empty(&dev->eps[i].bw_endpoint_list))
0893             xhci_warn(xhci, "Slot %u endpoint %u "
0894                     "not removed from BW list!\n",
0895                     slot_id, i);
0896     }
0897     /* If this is a hub, free the TT(s) from the TT list */
0898     xhci_free_tt_info(xhci, dev, slot_id);
0899     /* If necessary, update the number of active TTs on this root port */
0900     xhci_update_tt_active_eps(xhci, dev, old_active_eps);
0901 
0902     if (dev->in_ctx)
0903         xhci_free_container_ctx(xhci, dev->in_ctx);
0904     if (dev->out_ctx)
0905         xhci_free_container_ctx(xhci, dev->out_ctx);
0906 
0907     if (dev->udev && dev->udev->slot_id)
0908         dev->udev->slot_id = 0;
0909     kfree(xhci->devs[slot_id]);
0910     xhci->devs[slot_id] = NULL;
0911 }
0912 
0913 /*
0914  * Free a virt_device structure.
0915  * If the virt_device added a tt_info (a hub) and has children pointing to
0916  * that tt_info, then free the child first. Recursive.
0917  * We can't rely on udev at this point to find child-parent relationships.
0918  */
0919 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
0920 {
0921     struct xhci_virt_device *vdev;
0922     struct list_head *tt_list_head;
0923     struct xhci_tt_bw_info *tt_info, *next;
0924     int i;
0925 
0926     vdev = xhci->devs[slot_id];
0927     if (!vdev)
0928         return;
0929 
0930     if (vdev->real_port == 0 ||
0931             vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
0932         xhci_dbg(xhci, "Bad vdev->real_port.\n");
0933         goto out;
0934     }
0935 
0936     tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
0937     list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
0938         /* is this a hub device that added a tt_info to the tts list */
0939         if (tt_info->slot_id == slot_id) {
0940             /* are any devices using this tt_info? */
0941             for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
0942                 vdev = xhci->devs[i];
0943                 if (vdev && (vdev->tt_info == tt_info))
0944                     xhci_free_virt_devices_depth_first(
0945                         xhci, i);
0946             }
0947         }
0948     }
0949 out:
0950     /* we are now at a leaf device */
0951     xhci_debugfs_remove_slot(xhci, slot_id);
0952     xhci_free_virt_device(xhci, slot_id);
0953 }
0954 
0955 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
0956         struct usb_device *udev, gfp_t flags)
0957 {
0958     struct xhci_virt_device *dev;
0959     int i;
0960 
0961     /* Slot ID 0 is reserved */
0962     if (slot_id == 0 || xhci->devs[slot_id]) {
0963         xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
0964         return 0;
0965     }
0966 
0967     dev = kzalloc(sizeof(*dev), flags);
0968     if (!dev)
0969         return 0;
0970 
0971     dev->slot_id = slot_id;
0972 
0973     /* Allocate the (output) device context that will be used in the HC. */
0974     dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
0975     if (!dev->out_ctx)
0976         goto fail;
0977 
0978     xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
0979             (unsigned long long)dev->out_ctx->dma);
0980 
0981     /* Allocate the (input) device context for address device command */
0982     dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
0983     if (!dev->in_ctx)
0984         goto fail;
0985 
0986     xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
0987             (unsigned long long)dev->in_ctx->dma);
0988 
0989     /* Initialize the cancellation and bandwidth list for each ep */
0990     for (i = 0; i < 31; i++) {
0991         dev->eps[i].ep_index = i;
0992         dev->eps[i].vdev = dev;
0993         dev->eps[i].xhci = xhci;
0994         INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
0995         INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
0996     }
0997 
0998     /* Allocate endpoint 0 ring */
0999     dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1000     if (!dev->eps[0].ring)
1001         goto fail;
1002 
1003     dev->udev = udev;
1004 
1005     /* Point to output device context in dcbaa. */
1006     xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1007     xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1008          slot_id,
1009          &xhci->dcbaa->dev_context_ptrs[slot_id],
1010          le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1011 
1012     trace_xhci_alloc_virt_device(dev);
1013 
1014     xhci->devs[slot_id] = dev;
1015 
1016     return 1;
1017 fail:
1018 
1019     if (dev->in_ctx)
1020         xhci_free_container_ctx(xhci, dev->in_ctx);
1021     if (dev->out_ctx)
1022         xhci_free_container_ctx(xhci, dev->out_ctx);
1023     kfree(dev);
1024 
1025     return 0;
1026 }
1027 
1028 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1029         struct usb_device *udev)
1030 {
1031     struct xhci_virt_device *virt_dev;
1032     struct xhci_ep_ctx  *ep0_ctx;
1033     struct xhci_ring    *ep_ring;
1034 
1035     virt_dev = xhci->devs[udev->slot_id];
1036     ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1037     ep_ring = virt_dev->eps[0].ring;
1038     /*
1039      * FIXME we don't keep track of the dequeue pointer very well after a
1040      * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1041      * host to our enqueue pointer.  This should only be called after a
1042      * configured device has reset, so all control transfers should have
1043      * been completed or cancelled before the reset.
1044      */
1045     ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1046                             ep_ring->enqueue)
1047                    | ep_ring->cycle_state);
1048 }
1049 
1050 /*
1051  * The xHCI roothub may have ports of differing speeds in any order in the port
1052  * status registers.
1053  *
1054  * The xHCI hardware wants to know the roothub port number that the USB device
1055  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1056  * know is the index of that port under either the USB 2.0 or the USB 3.0
1057  * roothub, but that doesn't give us the real index into the HW port status
1058  * registers. Call xhci_find_raw_port_number() to get real index.
1059  */
1060 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1061         struct usb_device *udev)
1062 {
1063     struct usb_device *top_dev;
1064     struct usb_hcd *hcd;
1065 
1066     if (udev->speed >= USB_SPEED_SUPER)
1067         hcd = xhci_get_usb3_hcd(xhci);
1068     else
1069         hcd = xhci->main_hcd;
1070 
1071     for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1072             top_dev = top_dev->parent)
1073         /* Found device below root hub */;
1074 
1075     return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1076 }
1077 
1078 /* Setup an xHCI virtual device for a Set Address command */
1079 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1080 {
1081     struct xhci_virt_device *dev;
1082     struct xhci_ep_ctx  *ep0_ctx;
1083     struct xhci_slot_ctx    *slot_ctx;
1084     u32         port_num;
1085     u32         max_packets;
1086     struct usb_device *top_dev;
1087 
1088     dev = xhci->devs[udev->slot_id];
1089     /* Slot ID 0 is reserved */
1090     if (udev->slot_id == 0 || !dev) {
1091         xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1092                 udev->slot_id);
1093         return -EINVAL;
1094     }
1095     ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1096     slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1097 
1098     /* 3) Only the control endpoint is valid - one endpoint context */
1099     slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1100     switch (udev->speed) {
1101     case USB_SPEED_SUPER_PLUS:
1102         slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1103         max_packets = MAX_PACKET(512);
1104         break;
1105     case USB_SPEED_SUPER:
1106         slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1107         max_packets = MAX_PACKET(512);
1108         break;
1109     case USB_SPEED_HIGH:
1110         slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1111         max_packets = MAX_PACKET(64);
1112         break;
1113     /* USB core guesses at a 64-byte max packet first for FS devices */
1114     case USB_SPEED_FULL:
1115         slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1116         max_packets = MAX_PACKET(64);
1117         break;
1118     case USB_SPEED_LOW:
1119         slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1120         max_packets = MAX_PACKET(8);
1121         break;
1122     case USB_SPEED_WIRELESS:
1123         xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1124         return -EINVAL;
1125     default:
1126         /* Speed was set earlier, this shouldn't happen. */
1127         return -EINVAL;
1128     }
1129     /* Find the root hub port this device is under */
1130     port_num = xhci_find_real_port_number(xhci, udev);
1131     if (!port_num)
1132         return -EINVAL;
1133     slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1134     /* Set the port number in the virtual_device to the faked port number */
1135     for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1136             top_dev = top_dev->parent)
1137         /* Found device below root hub */;
1138     dev->fake_port = top_dev->portnum;
1139     dev->real_port = port_num;
1140     xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1141     xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1142 
1143     /* Find the right bandwidth table that this device will be a part of.
1144      * If this is a full speed device attached directly to a root port (or a
1145      * decendent of one), it counts as a primary bandwidth domain, not a
1146      * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1147      * will never be created for the HS root hub.
1148      */
1149     if (!udev->tt || !udev->tt->hub->parent) {
1150         dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1151     } else {
1152         struct xhci_root_port_bw_info *rh_bw;
1153         struct xhci_tt_bw_info *tt_bw;
1154 
1155         rh_bw = &xhci->rh_bw[port_num - 1];
1156         /* Find the right TT. */
1157         list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1158             if (tt_bw->slot_id != udev->tt->hub->slot_id)
1159                 continue;
1160 
1161             if (!dev->udev->tt->multi ||
1162                     (udev->tt->multi &&
1163                      tt_bw->ttport == dev->udev->ttport)) {
1164                 dev->bw_table = &tt_bw->bw_table;
1165                 dev->tt_info = tt_bw;
1166                 break;
1167             }
1168         }
1169         if (!dev->tt_info)
1170             xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1171     }
1172 
1173     /* Is this a LS/FS device under an external HS hub? */
1174     if (udev->tt && udev->tt->hub->parent) {
1175         slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1176                         (udev->ttport << 8));
1177         if (udev->tt->multi)
1178             slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1179     }
1180     xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1181     xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1182 
1183     /* Step 4 - ring already allocated */
1184     /* Step 5 */
1185     ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1186 
1187     /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1188     ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1189                      max_packets);
1190 
1191     ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1192                    dev->eps[0].ring->cycle_state);
1193 
1194     trace_xhci_setup_addressable_virt_device(dev);
1195 
1196     /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1197 
1198     return 0;
1199 }
1200 
1201 /*
1202  * Convert interval expressed as 2^(bInterval - 1) == interval into
1203  * straight exponent value 2^n == interval.
1204  *
1205  */
1206 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1207         struct usb_host_endpoint *ep)
1208 {
1209     unsigned int interval;
1210 
1211     interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1212     if (interval != ep->desc.bInterval - 1)
1213         dev_warn(&udev->dev,
1214              "ep %#x - rounding interval to %d %sframes\n",
1215              ep->desc.bEndpointAddress,
1216              1 << interval,
1217              udev->speed == USB_SPEED_FULL ? "" : "micro");
1218 
1219     if (udev->speed == USB_SPEED_FULL) {
1220         /*
1221          * Full speed isoc endpoints specify interval in frames,
1222          * not microframes. We are using microframes everywhere,
1223          * so adjust accordingly.
1224          */
1225         interval += 3;  /* 1 frame = 2^3 uframes */
1226     }
1227 
1228     return interval;
1229 }
1230 
1231 /*
1232  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1233  * microframes, rounded down to nearest power of 2.
1234  */
1235 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1236         struct usb_host_endpoint *ep, unsigned int desc_interval,
1237         unsigned int min_exponent, unsigned int max_exponent)
1238 {
1239     unsigned int interval;
1240 
1241     interval = fls(desc_interval) - 1;
1242     interval = clamp_val(interval, min_exponent, max_exponent);
1243     if ((1 << interval) != desc_interval)
1244         dev_dbg(&udev->dev,
1245              "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1246              ep->desc.bEndpointAddress,
1247              1 << interval,
1248              desc_interval);
1249 
1250     return interval;
1251 }
1252 
1253 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1254         struct usb_host_endpoint *ep)
1255 {
1256     if (ep->desc.bInterval == 0)
1257         return 0;
1258     return xhci_microframes_to_exponent(udev, ep,
1259             ep->desc.bInterval, 0, 15);
1260 }
1261 
1262 
1263 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1264         struct usb_host_endpoint *ep)
1265 {
1266     return xhci_microframes_to_exponent(udev, ep,
1267             ep->desc.bInterval * 8, 3, 10);
1268 }
1269 
1270 /* Return the polling or NAK interval.
1271  *
1272  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1273  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1274  *
1275  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1276  * is set to 0.
1277  */
1278 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1279         struct usb_host_endpoint *ep)
1280 {
1281     unsigned int interval = 0;
1282 
1283     switch (udev->speed) {
1284     case USB_SPEED_HIGH:
1285         /* Max NAK rate */
1286         if (usb_endpoint_xfer_control(&ep->desc) ||
1287             usb_endpoint_xfer_bulk(&ep->desc)) {
1288             interval = xhci_parse_microframe_interval(udev, ep);
1289             break;
1290         }
1291         fallthrough;    /* SS and HS isoc/int have same decoding */
1292 
1293     case USB_SPEED_SUPER_PLUS:
1294     case USB_SPEED_SUPER:
1295         if (usb_endpoint_xfer_int(&ep->desc) ||
1296             usb_endpoint_xfer_isoc(&ep->desc)) {
1297             interval = xhci_parse_exponent_interval(udev, ep);
1298         }
1299         break;
1300 
1301     case USB_SPEED_FULL:
1302         if (usb_endpoint_xfer_isoc(&ep->desc)) {
1303             interval = xhci_parse_exponent_interval(udev, ep);
1304             break;
1305         }
1306         /*
1307          * Fall through for interrupt endpoint interval decoding
1308          * since it uses the same rules as low speed interrupt
1309          * endpoints.
1310          */
1311         fallthrough;
1312 
1313     case USB_SPEED_LOW:
1314         if (usb_endpoint_xfer_int(&ep->desc) ||
1315             usb_endpoint_xfer_isoc(&ep->desc)) {
1316 
1317             interval = xhci_parse_frame_interval(udev, ep);
1318         }
1319         break;
1320 
1321     default:
1322         BUG();
1323     }
1324     return interval;
1325 }
1326 
1327 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1328  * High speed endpoint descriptors can define "the number of additional
1329  * transaction opportunities per microframe", but that goes in the Max Burst
1330  * endpoint context field.
1331  */
1332 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1333         struct usb_host_endpoint *ep)
1334 {
1335     if (udev->speed < USB_SPEED_SUPER ||
1336             !usb_endpoint_xfer_isoc(&ep->desc))
1337         return 0;
1338     return ep->ss_ep_comp.bmAttributes;
1339 }
1340 
1341 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1342                        struct usb_host_endpoint *ep)
1343 {
1344     /* Super speed and Plus have max burst in ep companion desc */
1345     if (udev->speed >= USB_SPEED_SUPER)
1346         return ep->ss_ep_comp.bMaxBurst;
1347 
1348     if (udev->speed == USB_SPEED_HIGH &&
1349         (usb_endpoint_xfer_isoc(&ep->desc) ||
1350          usb_endpoint_xfer_int(&ep->desc)))
1351         return usb_endpoint_maxp_mult(&ep->desc) - 1;
1352 
1353     return 0;
1354 }
1355 
1356 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1357 {
1358     int in;
1359 
1360     in = usb_endpoint_dir_in(&ep->desc);
1361 
1362     switch (usb_endpoint_type(&ep->desc)) {
1363     case USB_ENDPOINT_XFER_CONTROL:
1364         return CTRL_EP;
1365     case USB_ENDPOINT_XFER_BULK:
1366         return in ? BULK_IN_EP : BULK_OUT_EP;
1367     case USB_ENDPOINT_XFER_ISOC:
1368         return in ? ISOC_IN_EP : ISOC_OUT_EP;
1369     case USB_ENDPOINT_XFER_INT:
1370         return in ? INT_IN_EP : INT_OUT_EP;
1371     }
1372     return 0;
1373 }
1374 
1375 /* Return the maximum endpoint service interval time (ESIT) payload.
1376  * Basically, this is the maxpacket size, multiplied by the burst size
1377  * and mult size.
1378  */
1379 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1380         struct usb_host_endpoint *ep)
1381 {
1382     int max_burst;
1383     int max_packet;
1384 
1385     /* Only applies for interrupt or isochronous endpoints */
1386     if (usb_endpoint_xfer_control(&ep->desc) ||
1387             usb_endpoint_xfer_bulk(&ep->desc))
1388         return 0;
1389 
1390     /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1391     if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1392         USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1393         return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1394     /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1395     else if (udev->speed >= USB_SPEED_SUPER)
1396         return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1397 
1398     max_packet = usb_endpoint_maxp(&ep->desc);
1399     max_burst = usb_endpoint_maxp_mult(&ep->desc);
1400     /* A 0 in max burst means 1 transfer per ESIT */
1401     return max_packet * max_burst;
1402 }
1403 
1404 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1405  * Drivers will have to call usb_alloc_streams() to do that.
1406  */
1407 int xhci_endpoint_init(struct xhci_hcd *xhci,
1408         struct xhci_virt_device *virt_dev,
1409         struct usb_device *udev,
1410         struct usb_host_endpoint *ep,
1411         gfp_t mem_flags)
1412 {
1413     unsigned int ep_index;
1414     struct xhci_ep_ctx *ep_ctx;
1415     struct xhci_ring *ep_ring;
1416     unsigned int max_packet;
1417     enum xhci_ring_type ring_type;
1418     u32 max_esit_payload;
1419     u32 endpoint_type;
1420     unsigned int max_burst;
1421     unsigned int interval;
1422     unsigned int mult;
1423     unsigned int avg_trb_len;
1424     unsigned int err_count = 0;
1425 
1426     ep_index = xhci_get_endpoint_index(&ep->desc);
1427     ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1428 
1429     endpoint_type = xhci_get_endpoint_type(ep);
1430     if (!endpoint_type)
1431         return -EINVAL;
1432 
1433     ring_type = usb_endpoint_type(&ep->desc);
1434 
1435     /*
1436      * Get values to fill the endpoint context, mostly from ep descriptor.
1437      * The average TRB buffer lengt for bulk endpoints is unclear as we
1438      * have no clue on scatter gather list entry size. For Isoc and Int,
1439      * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1440      */
1441     max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1442     interval = xhci_get_endpoint_interval(udev, ep);
1443 
1444     /* Periodic endpoint bInterval limit quirk */
1445     if (usb_endpoint_xfer_int(&ep->desc) ||
1446         usb_endpoint_xfer_isoc(&ep->desc)) {
1447         if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1448             udev->speed >= USB_SPEED_HIGH &&
1449             interval >= 7) {
1450             interval = 6;
1451         }
1452     }
1453 
1454     mult = xhci_get_endpoint_mult(udev, ep);
1455     max_packet = usb_endpoint_maxp(&ep->desc);
1456     max_burst = xhci_get_endpoint_max_burst(udev, ep);
1457     avg_trb_len = max_esit_payload;
1458 
1459     /* FIXME dig Mult and streams info out of ep companion desc */
1460 
1461     /* Allow 3 retries for everything but isoc, set CErr = 3 */
1462     if (!usb_endpoint_xfer_isoc(&ep->desc))
1463         err_count = 3;
1464     /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1465     if (usb_endpoint_xfer_bulk(&ep->desc)) {
1466         if (udev->speed == USB_SPEED_HIGH)
1467             max_packet = 512;
1468         if (udev->speed == USB_SPEED_FULL) {
1469             max_packet = rounddown_pow_of_two(max_packet);
1470             max_packet = clamp_val(max_packet, 8, 64);
1471         }
1472     }
1473     /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1474     if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1475         avg_trb_len = 8;
1476     /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1477     if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1478         mult = 0;
1479 
1480     /* Set up the endpoint ring */
1481     virt_dev->eps[ep_index].new_ring =
1482         xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1483     if (!virt_dev->eps[ep_index].new_ring)
1484         return -ENOMEM;
1485 
1486     virt_dev->eps[ep_index].skip = false;
1487     ep_ring = virt_dev->eps[ep_index].new_ring;
1488 
1489     /* Fill the endpoint context */
1490     ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1491                       EP_INTERVAL(interval) |
1492                       EP_MULT(mult));
1493     ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1494                        MAX_PACKET(max_packet) |
1495                        MAX_BURST(max_burst) |
1496                        ERROR_COUNT(err_count));
1497     ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1498                   ep_ring->cycle_state);
1499 
1500     ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1501                       EP_AVG_TRB_LENGTH(avg_trb_len));
1502 
1503     return 0;
1504 }
1505 
1506 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1507         struct xhci_virt_device *virt_dev,
1508         struct usb_host_endpoint *ep)
1509 {
1510     unsigned int ep_index;
1511     struct xhci_ep_ctx *ep_ctx;
1512 
1513     ep_index = xhci_get_endpoint_index(&ep->desc);
1514     ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1515 
1516     ep_ctx->ep_info = 0;
1517     ep_ctx->ep_info2 = 0;
1518     ep_ctx->deq = 0;
1519     ep_ctx->tx_info = 0;
1520     /* Don't free the endpoint ring until the set interface or configuration
1521      * request succeeds.
1522      */
1523 }
1524 
1525 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1526 {
1527     bw_info->ep_interval = 0;
1528     bw_info->mult = 0;
1529     bw_info->num_packets = 0;
1530     bw_info->max_packet_size = 0;
1531     bw_info->type = 0;
1532     bw_info->max_esit_payload = 0;
1533 }
1534 
1535 void xhci_update_bw_info(struct xhci_hcd *xhci,
1536         struct xhci_container_ctx *in_ctx,
1537         struct xhci_input_control_ctx *ctrl_ctx,
1538         struct xhci_virt_device *virt_dev)
1539 {
1540     struct xhci_bw_info *bw_info;
1541     struct xhci_ep_ctx *ep_ctx;
1542     unsigned int ep_type;
1543     int i;
1544 
1545     for (i = 1; i < 31; i++) {
1546         bw_info = &virt_dev->eps[i].bw_info;
1547 
1548         /* We can't tell what endpoint type is being dropped, but
1549          * unconditionally clearing the bandwidth info for non-periodic
1550          * endpoints should be harmless because the info will never be
1551          * set in the first place.
1552          */
1553         if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1554             /* Dropped endpoint */
1555             xhci_clear_endpoint_bw_info(bw_info);
1556             continue;
1557         }
1558 
1559         if (EP_IS_ADDED(ctrl_ctx, i)) {
1560             ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1561             ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1562 
1563             /* Ignore non-periodic endpoints */
1564             if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1565                     ep_type != ISOC_IN_EP &&
1566                     ep_type != INT_IN_EP)
1567                 continue;
1568 
1569             /* Added or changed endpoint */
1570             bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1571                     le32_to_cpu(ep_ctx->ep_info));
1572             /* Number of packets and mult are zero-based in the
1573              * input context, but we want one-based for the
1574              * interval table.
1575              */
1576             bw_info->mult = CTX_TO_EP_MULT(
1577                     le32_to_cpu(ep_ctx->ep_info)) + 1;
1578             bw_info->num_packets = CTX_TO_MAX_BURST(
1579                     le32_to_cpu(ep_ctx->ep_info2)) + 1;
1580             bw_info->max_packet_size = MAX_PACKET_DECODED(
1581                     le32_to_cpu(ep_ctx->ep_info2));
1582             bw_info->type = ep_type;
1583             bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1584                     le32_to_cpu(ep_ctx->tx_info));
1585         }
1586     }
1587 }
1588 
1589 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1590  * Useful when you want to change one particular aspect of the endpoint and then
1591  * issue a configure endpoint command.
1592  */
1593 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1594         struct xhci_container_ctx *in_ctx,
1595         struct xhci_container_ctx *out_ctx,
1596         unsigned int ep_index)
1597 {
1598     struct xhci_ep_ctx *out_ep_ctx;
1599     struct xhci_ep_ctx *in_ep_ctx;
1600 
1601     out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1602     in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1603 
1604     in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1605     in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1606     in_ep_ctx->deq = out_ep_ctx->deq;
1607     in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1608     if (xhci->quirks & XHCI_MTK_HOST) {
1609         in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1610         in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1611     }
1612 }
1613 
1614 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1615  * Useful when you want to change one particular aspect of the endpoint and then
1616  * issue a configure endpoint command.  Only the context entries field matters,
1617  * but we'll copy the whole thing anyway.
1618  */
1619 void xhci_slot_copy(struct xhci_hcd *xhci,
1620         struct xhci_container_ctx *in_ctx,
1621         struct xhci_container_ctx *out_ctx)
1622 {
1623     struct xhci_slot_ctx *in_slot_ctx;
1624     struct xhci_slot_ctx *out_slot_ctx;
1625 
1626     in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1627     out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1628 
1629     in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1630     in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1631     in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1632     in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1633 }
1634 
1635 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1636 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1637 {
1638     int i;
1639     struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1640     int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1641 
1642     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1643             "Allocating %d scratchpad buffers", num_sp);
1644 
1645     if (!num_sp)
1646         return 0;
1647 
1648     xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1649                 dev_to_node(dev));
1650     if (!xhci->scratchpad)
1651         goto fail_sp;
1652 
1653     xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1654                      num_sp * sizeof(u64),
1655                      &xhci->scratchpad->sp_dma, flags);
1656     if (!xhci->scratchpad->sp_array)
1657         goto fail_sp2;
1658 
1659     xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1660                     flags, dev_to_node(dev));
1661     if (!xhci->scratchpad->sp_buffers)
1662         goto fail_sp3;
1663 
1664     xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1665     for (i = 0; i < num_sp; i++) {
1666         dma_addr_t dma;
1667         void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1668                            flags);
1669         if (!buf)
1670             goto fail_sp4;
1671 
1672         xhci->scratchpad->sp_array[i] = dma;
1673         xhci->scratchpad->sp_buffers[i] = buf;
1674     }
1675 
1676     return 0;
1677 
1678  fail_sp4:
1679     for (i = i - 1; i >= 0; i--) {
1680         dma_free_coherent(dev, xhci->page_size,
1681                     xhci->scratchpad->sp_buffers[i],
1682                     xhci->scratchpad->sp_array[i]);
1683     }
1684 
1685     kfree(xhci->scratchpad->sp_buffers);
1686 
1687  fail_sp3:
1688     dma_free_coherent(dev, num_sp * sizeof(u64),
1689                 xhci->scratchpad->sp_array,
1690                 xhci->scratchpad->sp_dma);
1691 
1692  fail_sp2:
1693     kfree(xhci->scratchpad);
1694     xhci->scratchpad = NULL;
1695 
1696  fail_sp:
1697     return -ENOMEM;
1698 }
1699 
1700 static void scratchpad_free(struct xhci_hcd *xhci)
1701 {
1702     int num_sp;
1703     int i;
1704     struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1705 
1706     if (!xhci->scratchpad)
1707         return;
1708 
1709     num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1710 
1711     for (i = 0; i < num_sp; i++) {
1712         dma_free_coherent(dev, xhci->page_size,
1713                     xhci->scratchpad->sp_buffers[i],
1714                     xhci->scratchpad->sp_array[i]);
1715     }
1716     kfree(xhci->scratchpad->sp_buffers);
1717     dma_free_coherent(dev, num_sp * sizeof(u64),
1718                 xhci->scratchpad->sp_array,
1719                 xhci->scratchpad->sp_dma);
1720     kfree(xhci->scratchpad);
1721     xhci->scratchpad = NULL;
1722 }
1723 
1724 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1725         bool allocate_completion, gfp_t mem_flags)
1726 {
1727     struct xhci_command *command;
1728     struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1729 
1730     command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1731     if (!command)
1732         return NULL;
1733 
1734     if (allocate_completion) {
1735         command->completion =
1736             kzalloc_node(sizeof(struct completion), mem_flags,
1737                 dev_to_node(dev));
1738         if (!command->completion) {
1739             kfree(command);
1740             return NULL;
1741         }
1742         init_completion(command->completion);
1743     }
1744 
1745     command->status = 0;
1746     INIT_LIST_HEAD(&command->cmd_list);
1747     return command;
1748 }
1749 
1750 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1751         bool allocate_completion, gfp_t mem_flags)
1752 {
1753     struct xhci_command *command;
1754 
1755     command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1756     if (!command)
1757         return NULL;
1758 
1759     command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1760                            mem_flags);
1761     if (!command->in_ctx) {
1762         kfree(command->completion);
1763         kfree(command);
1764         return NULL;
1765     }
1766     return command;
1767 }
1768 
1769 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1770 {
1771     kfree(urb_priv);
1772 }
1773 
1774 void xhci_free_command(struct xhci_hcd *xhci,
1775         struct xhci_command *command)
1776 {
1777     xhci_free_container_ctx(xhci,
1778             command->in_ctx);
1779     kfree(command->completion);
1780     kfree(command);
1781 }
1782 
1783 int xhci_alloc_erst(struct xhci_hcd *xhci,
1784             struct xhci_ring *evt_ring,
1785             struct xhci_erst *erst,
1786             gfp_t flags)
1787 {
1788     size_t size;
1789     unsigned int val;
1790     struct xhci_segment *seg;
1791     struct xhci_erst_entry *entry;
1792 
1793     size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1794     erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1795                        size, &erst->erst_dma_addr, flags);
1796     if (!erst->entries)
1797         return -ENOMEM;
1798 
1799     erst->num_entries = evt_ring->num_segs;
1800 
1801     seg = evt_ring->first_seg;
1802     for (val = 0; val < evt_ring->num_segs; val++) {
1803         entry = &erst->entries[val];
1804         entry->seg_addr = cpu_to_le64(seg->dma);
1805         entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1806         entry->rsvd = 0;
1807         seg = seg->next;
1808     }
1809 
1810     return 0;
1811 }
1812 
1813 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1814 {
1815     size_t size;
1816     struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1817 
1818     size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1819     if (erst->entries)
1820         dma_free_coherent(dev, size,
1821                 erst->entries,
1822                 erst->erst_dma_addr);
1823     erst->entries = NULL;
1824 }
1825 
1826 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1827 {
1828     struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
1829     int i, j, num_ports;
1830 
1831     cancel_delayed_work_sync(&xhci->cmd_timer);
1832 
1833     xhci_free_erst(xhci, &xhci->erst);
1834 
1835     if (xhci->event_ring)
1836         xhci_ring_free(xhci, xhci->event_ring);
1837     xhci->event_ring = NULL;
1838     xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1839 
1840     if (xhci->cmd_ring)
1841         xhci_ring_free(xhci, xhci->cmd_ring);
1842     xhci->cmd_ring = NULL;
1843     xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1844     xhci_cleanup_command_queue(xhci);
1845 
1846     num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1847     for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1848         struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1849         for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1850             struct list_head *ep = &bwt->interval_bw[j].endpoints;
1851             while (!list_empty(ep))
1852                 list_del_init(ep->next);
1853         }
1854     }
1855 
1856     for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1857         xhci_free_virt_devices_depth_first(xhci, i);
1858 
1859     dma_pool_destroy(xhci->segment_pool);
1860     xhci->segment_pool = NULL;
1861     xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1862 
1863     dma_pool_destroy(xhci->device_pool);
1864     xhci->device_pool = NULL;
1865     xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1866 
1867     dma_pool_destroy(xhci->small_streams_pool);
1868     xhci->small_streams_pool = NULL;
1869     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1870             "Freed small stream array pool");
1871 
1872     dma_pool_destroy(xhci->medium_streams_pool);
1873     xhci->medium_streams_pool = NULL;
1874     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1875             "Freed medium stream array pool");
1876 
1877     if (xhci->dcbaa)
1878         dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1879                 xhci->dcbaa, xhci->dcbaa->dma);
1880     xhci->dcbaa = NULL;
1881 
1882     scratchpad_free(xhci);
1883 
1884     if (!xhci->rh_bw)
1885         goto no_bw;
1886 
1887     for (i = 0; i < num_ports; i++) {
1888         struct xhci_tt_bw_info *tt, *n;
1889         list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1890             list_del(&tt->tt_list);
1891             kfree(tt);
1892         }
1893     }
1894 
1895 no_bw:
1896     xhci->cmd_ring_reserved_trbs = 0;
1897     xhci->usb2_rhub.num_ports = 0;
1898     xhci->usb3_rhub.num_ports = 0;
1899     xhci->num_active_eps = 0;
1900     kfree(xhci->usb2_rhub.ports);
1901     kfree(xhci->usb3_rhub.ports);
1902     kfree(xhci->hw_ports);
1903     kfree(xhci->rh_bw);
1904     kfree(xhci->ext_caps);
1905     for (i = 0; i < xhci->num_port_caps; i++)
1906         kfree(xhci->port_caps[i].psi);
1907     kfree(xhci->port_caps);
1908     xhci->num_port_caps = 0;
1909 
1910     xhci->usb2_rhub.ports = NULL;
1911     xhci->usb3_rhub.ports = NULL;
1912     xhci->hw_ports = NULL;
1913     xhci->rh_bw = NULL;
1914     xhci->ext_caps = NULL;
1915     xhci->port_caps = NULL;
1916 
1917     xhci->page_size = 0;
1918     xhci->page_shift = 0;
1919     xhci->usb2_rhub.bus_state.bus_suspended = 0;
1920     xhci->usb3_rhub.bus_state.bus_suspended = 0;
1921 }
1922 
1923 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1924         struct xhci_segment *input_seg,
1925         union xhci_trb *start_trb,
1926         union xhci_trb *end_trb,
1927         dma_addr_t input_dma,
1928         struct xhci_segment *result_seg,
1929         char *test_name, int test_number)
1930 {
1931     unsigned long long start_dma;
1932     unsigned long long end_dma;
1933     struct xhci_segment *seg;
1934 
1935     start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1936     end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1937 
1938     seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1939     if (seg != result_seg) {
1940         xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1941                 test_name, test_number);
1942         xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1943                 "input DMA 0x%llx\n",
1944                 input_seg,
1945                 (unsigned long long) input_dma);
1946         xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1947                 "ending TRB %p (0x%llx DMA)\n",
1948                 start_trb, start_dma,
1949                 end_trb, end_dma);
1950         xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1951                 result_seg, seg);
1952         trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1953               true);
1954         return -1;
1955     }
1956     return 0;
1957 }
1958 
1959 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1960 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1961 {
1962     struct {
1963         dma_addr_t      input_dma;
1964         struct xhci_segment *result_seg;
1965     } simple_test_vector [] = {
1966         /* A zeroed DMA field should fail */
1967         { 0, NULL },
1968         /* One TRB before the ring start should fail */
1969         { xhci->event_ring->first_seg->dma - 16, NULL },
1970         /* One byte before the ring start should fail */
1971         { xhci->event_ring->first_seg->dma - 1, NULL },
1972         /* Starting TRB should succeed */
1973         { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1974         /* Ending TRB should succeed */
1975         { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1976             xhci->event_ring->first_seg },
1977         /* One byte after the ring end should fail */
1978         { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1979         /* One TRB after the ring end should fail */
1980         { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1981         /* An address of all ones should fail */
1982         { (dma_addr_t) (~0), NULL },
1983     };
1984     struct {
1985         struct xhci_segment *input_seg;
1986         union xhci_trb      *start_trb;
1987         union xhci_trb      *end_trb;
1988         dma_addr_t      input_dma;
1989         struct xhci_segment *result_seg;
1990     } complex_test_vector [] = {
1991         /* Test feeding a valid DMA address from a different ring */
1992         {   .input_seg = xhci->event_ring->first_seg,
1993             .start_trb = xhci->event_ring->first_seg->trbs,
1994             .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1995             .input_dma = xhci->cmd_ring->first_seg->dma,
1996             .result_seg = NULL,
1997         },
1998         /* Test feeding a valid end TRB from a different ring */
1999         {   .input_seg = xhci->event_ring->first_seg,
2000             .start_trb = xhci->event_ring->first_seg->trbs,
2001             .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2002             .input_dma = xhci->cmd_ring->first_seg->dma,
2003             .result_seg = NULL,
2004         },
2005         /* Test feeding a valid start and end TRB from a different ring */
2006         {   .input_seg = xhci->event_ring->first_seg,
2007             .start_trb = xhci->cmd_ring->first_seg->trbs,
2008             .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2009             .input_dma = xhci->cmd_ring->first_seg->dma,
2010             .result_seg = NULL,
2011         },
2012         /* TRB in this ring, but after this TD */
2013         {   .input_seg = xhci->event_ring->first_seg,
2014             .start_trb = &xhci->event_ring->first_seg->trbs[0],
2015             .end_trb = &xhci->event_ring->first_seg->trbs[3],
2016             .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2017             .result_seg = NULL,
2018         },
2019         /* TRB in this ring, but before this TD */
2020         {   .input_seg = xhci->event_ring->first_seg,
2021             .start_trb = &xhci->event_ring->first_seg->trbs[3],
2022             .end_trb = &xhci->event_ring->first_seg->trbs[6],
2023             .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2024             .result_seg = NULL,
2025         },
2026         /* TRB in this ring, but after this wrapped TD */
2027         {   .input_seg = xhci->event_ring->first_seg,
2028             .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2029             .end_trb = &xhci->event_ring->first_seg->trbs[1],
2030             .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2031             .result_seg = NULL,
2032         },
2033         /* TRB in this ring, but before this wrapped TD */
2034         {   .input_seg = xhci->event_ring->first_seg,
2035             .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2036             .end_trb = &xhci->event_ring->first_seg->trbs[1],
2037             .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2038             .result_seg = NULL,
2039         },
2040         /* TRB not in this ring, and we have a wrapped TD */
2041         {   .input_seg = xhci->event_ring->first_seg,
2042             .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2043             .end_trb = &xhci->event_ring->first_seg->trbs[1],
2044             .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2045             .result_seg = NULL,
2046         },
2047     };
2048 
2049     unsigned int num_tests;
2050     int i, ret;
2051 
2052     num_tests = ARRAY_SIZE(simple_test_vector);
2053     for (i = 0; i < num_tests; i++) {
2054         ret = xhci_test_trb_in_td(xhci,
2055                 xhci->event_ring->first_seg,
2056                 xhci->event_ring->first_seg->trbs,
2057                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2058                 simple_test_vector[i].input_dma,
2059                 simple_test_vector[i].result_seg,
2060                 "Simple", i);
2061         if (ret < 0)
2062             return ret;
2063     }
2064 
2065     num_tests = ARRAY_SIZE(complex_test_vector);
2066     for (i = 0; i < num_tests; i++) {
2067         ret = xhci_test_trb_in_td(xhci,
2068                 complex_test_vector[i].input_seg,
2069                 complex_test_vector[i].start_trb,
2070                 complex_test_vector[i].end_trb,
2071                 complex_test_vector[i].input_dma,
2072                 complex_test_vector[i].result_seg,
2073                 "Complex", i);
2074         if (ret < 0)
2075             return ret;
2076     }
2077     xhci_dbg(xhci, "TRB math tests passed.\n");
2078     return 0;
2079 }
2080 
2081 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2082 {
2083     u64 temp;
2084     dma_addr_t deq;
2085 
2086     deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2087             xhci->event_ring->dequeue);
2088     if (!deq)
2089         xhci_warn(xhci, "WARN something wrong with SW event ring "
2090                 "dequeue ptr.\n");
2091     /* Update HC event ring dequeue pointer */
2092     temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2093     temp &= ERST_PTR_MASK;
2094     /* Don't clear the EHB bit (which is RW1C) because
2095      * there might be more events to service.
2096      */
2097     temp &= ~ERST_EHB;
2098     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2099             "// Write event ring dequeue pointer, "
2100             "preserving EHB bit");
2101     xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2102             &xhci->ir_set->erst_dequeue);
2103 }
2104 
2105 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2106         __le32 __iomem *addr, int max_caps)
2107 {
2108     u32 temp, port_offset, port_count;
2109     int i;
2110     u8 major_revision, minor_revision;
2111     struct xhci_hub *rhub;
2112     struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2113     struct xhci_port_cap *port_cap;
2114 
2115     temp = readl(addr);
2116     major_revision = XHCI_EXT_PORT_MAJOR(temp);
2117     minor_revision = XHCI_EXT_PORT_MINOR(temp);
2118 
2119     if (major_revision == 0x03) {
2120         rhub = &xhci->usb3_rhub;
2121         /*
2122          * Some hosts incorrectly use sub-minor version for minor
2123          * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2124          * for bcdUSB 0x310). Since there is no USB release with sub
2125          * minor version 0x301 to 0x309, we can assume that they are
2126          * incorrect and fix it here.
2127          */
2128         if (minor_revision > 0x00 && minor_revision < 0x10)
2129             minor_revision <<= 4;
2130     } else if (major_revision <= 0x02) {
2131         rhub = &xhci->usb2_rhub;
2132     } else {
2133         xhci_warn(xhci, "Ignoring unknown port speed, "
2134                 "Ext Cap %p, revision = 0x%x\n",
2135                 addr, major_revision);
2136         /* Ignoring port protocol we can't understand. FIXME */
2137         return;
2138     }
2139     rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2140 
2141     if (rhub->min_rev < minor_revision)
2142         rhub->min_rev = minor_revision;
2143 
2144     /* Port offset and count in the third dword, see section 7.2 */
2145     temp = readl(addr + 2);
2146     port_offset = XHCI_EXT_PORT_OFF(temp);
2147     port_count = XHCI_EXT_PORT_COUNT(temp);
2148     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2149             "Ext Cap %p, port offset = %u, "
2150             "count = %u, revision = 0x%x",
2151             addr, port_offset, port_count, major_revision);
2152     /* Port count includes the current port offset */
2153     if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2154         /* WTF? "Valid values are ‘1’ to MaxPorts" */
2155         return;
2156 
2157     port_cap = &xhci->port_caps[xhci->num_port_caps++];
2158     if (xhci->num_port_caps > max_caps)
2159         return;
2160 
2161     port_cap->maj_rev = major_revision;
2162     port_cap->min_rev = minor_revision;
2163     port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2164 
2165     if (port_cap->psi_count) {
2166         port_cap->psi = kcalloc_node(port_cap->psi_count,
2167                          sizeof(*port_cap->psi),
2168                          GFP_KERNEL, dev_to_node(dev));
2169         if (!port_cap->psi)
2170             port_cap->psi_count = 0;
2171 
2172         port_cap->psi_uid_count++;
2173         for (i = 0; i < port_cap->psi_count; i++) {
2174             port_cap->psi[i] = readl(addr + 4 + i);
2175 
2176             /* count unique ID values, two consecutive entries can
2177              * have the same ID if link is assymetric
2178              */
2179             if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2180                   XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2181                 port_cap->psi_uid_count++;
2182 
2183             xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2184                   XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2185                   XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2186                   XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2187                   XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2188                   XHCI_EXT_PORT_LP(port_cap->psi[i]),
2189                   XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2190         }
2191     }
2192     /* cache usb2 port capabilities */
2193     if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2194         xhci->ext_caps[xhci->num_ext_caps++] = temp;
2195 
2196     if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2197          (temp & XHCI_HLC)) {
2198         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2199                    "xHCI 1.0: support USB2 hardware lpm");
2200         xhci->hw_lpm_support = 1;
2201     }
2202 
2203     port_offset--;
2204     for (i = port_offset; i < (port_offset + port_count); i++) {
2205         struct xhci_port *hw_port = &xhci->hw_ports[i];
2206         /* Duplicate entry.  Ignore the port if the revisions differ. */
2207         if (hw_port->rhub) {
2208             xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2209                     " port %u\n", addr, i);
2210             xhci_warn(xhci, "Port was marked as USB %u, "
2211                     "duplicated as USB %u\n",
2212                     hw_port->rhub->maj_rev, major_revision);
2213             /* Only adjust the roothub port counts if we haven't
2214              * found a similar duplicate.
2215              */
2216             if (hw_port->rhub != rhub &&
2217                  hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2218                 hw_port->rhub->num_ports--;
2219                 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2220             }
2221             continue;
2222         }
2223         hw_port->rhub = rhub;
2224         hw_port->port_cap = port_cap;
2225         rhub->num_ports++;
2226     }
2227     /* FIXME: Should we disable ports not in the Extended Capabilities? */
2228 }
2229 
2230 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2231                     struct xhci_hub *rhub, gfp_t flags)
2232 {
2233     int port_index = 0;
2234     int i;
2235     struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2236 
2237     if (!rhub->num_ports)
2238         return;
2239     rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2240             flags, dev_to_node(dev));
2241     if (!rhub->ports)
2242         return;
2243 
2244     for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2245         if (xhci->hw_ports[i].rhub != rhub ||
2246             xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2247             continue;
2248         xhci->hw_ports[i].hcd_portnum = port_index;
2249         rhub->ports[port_index] = &xhci->hw_ports[i];
2250         port_index++;
2251         if (port_index == rhub->num_ports)
2252             break;
2253     }
2254 }
2255 
2256 /*
2257  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2258  * specify what speeds each port is supposed to be.  We can't count on the port
2259  * speed bits in the PORTSC register being correct until a device is connected,
2260  * but we need to set up the two fake roothubs with the correct number of USB
2261  * 3.0 and USB 2.0 ports at host controller initialization time.
2262  */
2263 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2264 {
2265     void __iomem *base;
2266     u32 offset;
2267     unsigned int num_ports;
2268     int i, j;
2269     int cap_count = 0;
2270     u32 cap_start;
2271     struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2272 
2273     num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2274     xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2275                 flags, dev_to_node(dev));
2276     if (!xhci->hw_ports)
2277         return -ENOMEM;
2278 
2279     for (i = 0; i < num_ports; i++) {
2280         xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2281             NUM_PORT_REGS * i;
2282         xhci->hw_ports[i].hw_portnum = i;
2283     }
2284 
2285     xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2286                    dev_to_node(dev));
2287     if (!xhci->rh_bw)
2288         return -ENOMEM;
2289     for (i = 0; i < num_ports; i++) {
2290         struct xhci_interval_bw_table *bw_table;
2291 
2292         INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2293         bw_table = &xhci->rh_bw[i].bw_table;
2294         for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2295             INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2296     }
2297     base = &xhci->cap_regs->hc_capbase;
2298 
2299     cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2300     if (!cap_start) {
2301         xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2302         return -ENODEV;
2303     }
2304 
2305     offset = cap_start;
2306     /* count extended protocol capability entries for later caching */
2307     while (offset) {
2308         cap_count++;
2309         offset = xhci_find_next_ext_cap(base, offset,
2310                               XHCI_EXT_CAPS_PROTOCOL);
2311     }
2312 
2313     xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2314                 flags, dev_to_node(dev));
2315     if (!xhci->ext_caps)
2316         return -ENOMEM;
2317 
2318     xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2319                 flags, dev_to_node(dev));
2320     if (!xhci->port_caps)
2321         return -ENOMEM;
2322 
2323     offset = cap_start;
2324 
2325     while (offset) {
2326         xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2327         if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2328             num_ports)
2329             break;
2330         offset = xhci_find_next_ext_cap(base, offset,
2331                         XHCI_EXT_CAPS_PROTOCOL);
2332     }
2333     if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2334         xhci_warn(xhci, "No ports on the roothubs?\n");
2335         return -ENODEV;
2336     }
2337     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2338                "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2339                xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2340 
2341     /* Place limits on the number of roothub ports so that the hub
2342      * descriptors aren't longer than the USB core will allocate.
2343      */
2344     if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2345         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2346                 "Limiting USB 3.0 roothub ports to %u.",
2347                 USB_SS_MAXPORTS);
2348         xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2349     }
2350     if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2351         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2352                 "Limiting USB 2.0 roothub ports to %u.",
2353                 USB_MAXCHILDREN);
2354         xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2355     }
2356 
2357     if (!xhci->usb2_rhub.num_ports)
2358         xhci_info(xhci, "USB2 root hub has no ports\n");
2359 
2360     if (!xhci->usb3_rhub.num_ports)
2361         xhci_info(xhci, "USB3 root hub has no ports\n");
2362 
2363     xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2364     xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2365 
2366     return 0;
2367 }
2368 
2369 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2370 {
2371     dma_addr_t  dma;
2372     struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
2373     unsigned int    val, val2;
2374     u64     val_64;
2375     u32     page_size, temp;
2376     int     i, ret;
2377 
2378     INIT_LIST_HEAD(&xhci->cmd_list);
2379 
2380     /* init command timeout work */
2381     INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2382     init_completion(&xhci->cmd_ring_stop_completion);
2383 
2384     page_size = readl(&xhci->op_regs->page_size);
2385     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2386             "Supported page size register = 0x%x", page_size);
2387     i = ffs(page_size);
2388     if (i < 16)
2389         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2390             "Supported page size of %iK", (1 << (i+12)) / 1024);
2391     else
2392         xhci_warn(xhci, "WARN: no supported page size\n");
2393     /* Use 4K pages, since that's common and the minimum the HC supports */
2394     xhci->page_shift = 12;
2395     xhci->page_size = 1 << xhci->page_shift;
2396     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2397             "HCD page size set to %iK", xhci->page_size / 1024);
2398 
2399     /*
2400      * Program the Number of Device Slots Enabled field in the CONFIG
2401      * register with the max value of slots the HC can handle.
2402      */
2403     val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2404     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2405             "// xHC can handle at most %d device slots.", val);
2406     val2 = readl(&xhci->op_regs->config_reg);
2407     val |= (val2 & ~HCS_SLOTS_MASK);
2408     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2409             "// Setting Max device slots reg = 0x%x.", val);
2410     writel(val, &xhci->op_regs->config_reg);
2411 
2412     /*
2413      * xHCI section 5.4.6 - Device Context array must be
2414      * "physically contiguous and 64-byte (cache line) aligned".
2415      */
2416     xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2417             flags);
2418     if (!xhci->dcbaa)
2419         goto fail;
2420     xhci->dcbaa->dma = dma;
2421     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2422             "// Device context base array address = 0x%llx (DMA), %p (virt)",
2423             (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2424     xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2425 
2426     /*
2427      * Initialize the ring segment pool.  The ring must be a contiguous
2428      * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2429      * however, the command ring segment needs 64-byte aligned segments
2430      * and our use of dma addresses in the trb_address_map radix tree needs
2431      * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2432      */
2433     xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2434             TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2435 
2436     /* See Table 46 and Note on Figure 55 */
2437     xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2438             2112, 64, xhci->page_size);
2439     if (!xhci->segment_pool || !xhci->device_pool)
2440         goto fail;
2441 
2442     /* Linear stream context arrays don't have any boundary restrictions,
2443      * and only need to be 16-byte aligned.
2444      */
2445     xhci->small_streams_pool =
2446         dma_pool_create("xHCI 256 byte stream ctx arrays",
2447             dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2448     xhci->medium_streams_pool =
2449         dma_pool_create("xHCI 1KB stream ctx arrays",
2450             dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2451     /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2452      * will be allocated with dma_alloc_coherent()
2453      */
2454 
2455     if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2456         goto fail;
2457 
2458     /* Set up the command ring to have one segments for now. */
2459     xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2460     if (!xhci->cmd_ring)
2461         goto fail;
2462     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2463             "Allocated command ring at %p", xhci->cmd_ring);
2464     xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2465             (unsigned long long)xhci->cmd_ring->first_seg->dma);
2466 
2467     /* Set the address in the Command Ring Control register */
2468     val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2469     val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2470         (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2471         xhci->cmd_ring->cycle_state;
2472     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2473             "// Setting command ring address to 0x%016llx", val_64);
2474     xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2475 
2476     /* Reserve one command ring TRB for disabling LPM.
2477      * Since the USB core grabs the shared usb_bus bandwidth mutex before
2478      * disabling LPM, we only need to reserve one TRB for all devices.
2479      */
2480     xhci->cmd_ring_reserved_trbs++;
2481 
2482     val = readl(&xhci->cap_regs->db_off);
2483     val &= DBOFF_MASK;
2484     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2485             "// Doorbell array is located at offset 0x%x"
2486             " from cap regs base addr", val);
2487     xhci->dba = (void __iomem *) xhci->cap_regs + val;
2488     /* Set ir_set to interrupt register set 0 */
2489     xhci->ir_set = &xhci->run_regs->ir_set[0];
2490 
2491     /*
2492      * Event ring setup: Allocate a normal ring, but also setup
2493      * the event ring segment table (ERST).  Section 4.9.3.
2494      */
2495     xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2496     xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2497                     0, flags);
2498     if (!xhci->event_ring)
2499         goto fail;
2500     if (xhci_check_trb_in_td_math(xhci) < 0)
2501         goto fail;
2502 
2503     ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2504     if (ret)
2505         goto fail;
2506 
2507     /* set ERST count with the number of entries in the segment table */
2508     val = readl(&xhci->ir_set->erst_size);
2509     val &= ERST_SIZE_MASK;
2510     val |= ERST_NUM_SEGS;
2511     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2512             "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2513             val);
2514     writel(val, &xhci->ir_set->erst_size);
2515 
2516     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2517             "// Set ERST entries to point to event ring.");
2518     /* set the segment table base address */
2519     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2520             "// Set ERST base address for ir_set 0 = 0x%llx",
2521             (unsigned long long)xhci->erst.erst_dma_addr);
2522     val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2523     val_64 &= ERST_PTR_MASK;
2524     val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2525     xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2526 
2527     /* Set the event ring dequeue address */
2528     xhci_set_hc_event_deq(xhci);
2529     xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2530             "Wrote ERST address to ir_set 0.");
2531 
2532     xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2533 
2534     /*
2535      * XXX: Might need to set the Interrupter Moderation Register to
2536      * something other than the default (~1ms minimum between interrupts).
2537      * See section 5.5.1.2.
2538      */
2539     for (i = 0; i < MAX_HC_SLOTS; i++)
2540         xhci->devs[i] = NULL;
2541     for (i = 0; i < USB_MAXCHILDREN; i++) {
2542         xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2543         xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2544         /* Only the USB 2.0 completions will ever be used. */
2545         init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2546         init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2547     }
2548 
2549     if (scratchpad_alloc(xhci, flags))
2550         goto fail;
2551     if (xhci_setup_port_arrays(xhci, flags))
2552         goto fail;
2553 
2554     /* Enable USB 3.0 device notifications for function remote wake, which
2555      * is necessary for allowing USB 3.0 devices to do remote wakeup from
2556      * U3 (device suspend).
2557      */
2558     temp = readl(&xhci->op_regs->dev_notification);
2559     temp &= ~DEV_NOTE_MASK;
2560     temp |= DEV_NOTE_FWAKE;
2561     writel(temp, &xhci->op_regs->dev_notification);
2562 
2563     return 0;
2564 
2565 fail:
2566     xhci_halt(xhci);
2567     xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2568     xhci_mem_cleanup(xhci);
2569     return -ENOMEM;
2570 }