Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0+
0002 /*
0003  * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
0004  * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
0005  *
0006  * This code is *strongly* based on EHCI-HCD code by David Brownell since
0007  * the chip is a quasi-EHCI compatible.
0008  */
0009 
0010 #include <linux/module.h>
0011 #include <linux/pci.h>
0012 #include <linux/dmapool.h>
0013 #include <linux/kernel.h>
0014 #include <linux/delay.h>
0015 #include <linux/ioport.h>
0016 #include <linux/sched.h>
0017 #include <linux/slab.h>
0018 #include <linux/errno.h>
0019 #include <linux/timer.h>
0020 #include <linux/list.h>
0021 #include <linux/interrupt.h>
0022 #include <linux/usb.h>
0023 #include <linux/usb/hcd.h>
0024 #include <linux/moduleparam.h>
0025 #include <linux/dma-mapping.h>
0026 #include <linux/io.h>
0027 #include <linux/iopoll.h>
0028 
0029 #include <asm/irq.h>
0030 #include <asm/unaligned.h>
0031 
0032 #include <linux/irq.h>
0033 #include <linux/platform_device.h>
0034 
0035 #define DRIVER_VERSION "0.0.50"
0036 
0037 #define OXU_DEVICEID            0x00
0038     #define OXU_REV_MASK        0xffff0000
0039     #define OXU_REV_SHIFT       16
0040     #define OXU_REV_2100        0x2100
0041     #define OXU_BO_SHIFT        8
0042     #define OXU_BO_MASK     (0x3 << OXU_BO_SHIFT)
0043     #define OXU_MAJ_REV_SHIFT   4
0044     #define OXU_MAJ_REV_MASK    (0xf << OXU_MAJ_REV_SHIFT)
0045     #define OXU_MIN_REV_SHIFT   0
0046     #define OXU_MIN_REV_MASK    (0xf << OXU_MIN_REV_SHIFT)
0047 #define OXU_HOSTIFCONFIG        0x04
0048 #define OXU_SOFTRESET           0x08
0049     #define OXU_SRESET      (1 << 0)
0050 
0051 #define OXU_PIOBURSTREADCTRL        0x0C
0052 
0053 #define OXU_CHIPIRQSTATUS       0x10
0054 #define OXU_CHIPIRQEN_SET       0x14
0055 #define OXU_CHIPIRQEN_CLR       0x18
0056     #define OXU_USBSPHLPWUI     0x00000080
0057     #define OXU_USBOTGLPWUI     0x00000040
0058     #define OXU_USBSPHI     0x00000002
0059     #define OXU_USBOTGI     0x00000001
0060 
0061 #define OXU_CLKCTRL_SET         0x1C
0062     #define OXU_SYSCLKEN        0x00000008
0063     #define OXU_USBSPHCLKEN     0x00000002
0064     #define OXU_USBOTGCLKEN     0x00000001
0065 
0066 #define OXU_ASO             0x68
0067     #define OXU_SPHPOEN     0x00000100
0068     #define OXU_OVRCCURPUPDEN   0x00000800
0069     #define OXU_ASO_OP      (1 << 10)
0070     #define OXU_COMPARATOR      0x000004000
0071 
0072 #define OXU_USBMODE         0x1A8
0073     #define OXU_VBPS        0x00000020
0074     #define OXU_ES_LITTLE       0x00000000
0075     #define OXU_CM_HOST_ONLY    0x00000003
0076 
0077 /*
0078  * Proper EHCI structs & defines
0079  */
0080 
0081 /* Magic numbers that can affect system performance */
0082 #define EHCI_TUNE_CERR      3   /* 0-3 qtd retries; 0 == don't stop */
0083 #define EHCI_TUNE_RL_HS     4   /* nak throttle; see 4.9 */
0084 #define EHCI_TUNE_RL_TT     0
0085 #define EHCI_TUNE_MULT_HS   1   /* 1-3 transactions/uframe; 4.10.3 */
0086 #define EHCI_TUNE_MULT_TT   1
0087 #define EHCI_TUNE_FLS       2   /* (small) 256 frame schedule */
0088 
0089 struct oxu_hcd;
0090 
0091 /* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
0092 
0093 /* Section 2.2 Host Controller Capability Registers */
0094 struct ehci_caps {
0095     /* these fields are specified as 8 and 16 bit registers,
0096      * but some hosts can't perform 8 or 16 bit PCI accesses.
0097      */
0098     u32     hc_capbase;
0099 #define HC_LENGTH(p)        (((p)>>00)&0x00ff)  /* bits 7:0 */
0100 #define HC_VERSION(p)       (((p)>>16)&0xffff)  /* bits 31:16 */
0101     u32     hcs_params;     /* HCSPARAMS - offset 0x4 */
0102 #define HCS_DEBUG_PORT(p)   (((p)>>20)&0xf) /* bits 23:20, debug port? */
0103 #define HCS_INDICATOR(p)    ((p)&(1 << 16)) /* true: has port indicators */
0104 #define HCS_N_CC(p)     (((p)>>12)&0xf) /* bits 15:12, #companion HCs */
0105 #define HCS_N_PCC(p)        (((p)>>8)&0xf)  /* bits 11:8, ports per CC */
0106 #define HCS_PORTROUTED(p)   ((p)&(1 << 7))  /* true: port routing */
0107 #define HCS_PPC(p)      ((p)&(1 << 4))  /* true: port power control */
0108 #define HCS_N_PORTS(p)      (((p)>>0)&0xf)  /* bits 3:0, ports on HC */
0109 
0110     u32     hcc_params;      /* HCCPARAMS - offset 0x8 */
0111 #define HCC_EXT_CAPS(p)     (((p)>>8)&0xff) /* for pci extended caps */
0112 #define HCC_ISOC_CACHE(p)       ((p)&(1 << 7))  /* true: can cache isoc frame */
0113 #define HCC_ISOC_THRES(p)       (((p)>>4)&0x7)  /* bits 6:4, uframes cached */
0114 #define HCC_CANPARK(p)      ((p)&(1 << 2))  /* true: can park on async qh */
0115 #define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1))  /* true: periodic_size changes*/
0116 #define HCC_64BIT_ADDR(p)       ((p)&(1))       /* true: can use 64-bit addr */
0117     u8      portroute[8];    /* nibbles for routing - offset 0xC */
0118 } __packed;
0119 
0120 
0121 /* Section 2.3 Host Controller Operational Registers */
0122 struct ehci_regs {
0123     /* USBCMD: offset 0x00 */
0124     u32     command;
0125 /* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
0126 #define CMD_PARK    (1<<11)     /* enable "park" on async qh */
0127 #define CMD_PARK_CNT(c) (((c)>>8)&3)    /* how many transfers to park for */
0128 #define CMD_LRESET  (1<<7)      /* partial reset (no ports, etc) */
0129 #define CMD_IAAD    (1<<6)      /* "doorbell" interrupt async advance */
0130 #define CMD_ASE     (1<<5)      /* async schedule enable */
0131 #define CMD_PSE     (1<<4)      /* periodic schedule enable */
0132 /* 3:2 is periodic frame list size */
0133 #define CMD_RESET   (1<<1)      /* reset HC not bus */
0134 #define CMD_RUN     (1<<0)      /* start/stop HC */
0135 
0136     /* USBSTS: offset 0x04 */
0137     u32     status;
0138 #define STS_ASS     (1<<15)     /* Async Schedule Status */
0139 #define STS_PSS     (1<<14)     /* Periodic Schedule Status */
0140 #define STS_RECL    (1<<13)     /* Reclamation */
0141 #define STS_HALT    (1<<12)     /* Not running (any reason) */
0142 /* some bits reserved */
0143     /* these STS_* flags are also intr_enable bits (USBINTR) */
0144 #define STS_IAA     (1<<5)      /* Interrupted on async advance */
0145 #define STS_FATAL   (1<<4)      /* such as some PCI access errors */
0146 #define STS_FLR     (1<<3)      /* frame list rolled over */
0147 #define STS_PCD     (1<<2)      /* port change detect */
0148 #define STS_ERR     (1<<1)      /* "error" completion (overflow, ...) */
0149 #define STS_INT     (1<<0)      /* "normal" completion (short, ...) */
0150 
0151 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
0152 
0153     /* USBINTR: offset 0x08 */
0154     u32     intr_enable;
0155 
0156     /* FRINDEX: offset 0x0C */
0157     u32     frame_index;    /* current microframe number */
0158     /* CTRLDSSEGMENT: offset 0x10 */
0159     u32     segment;    /* address bits 63:32 if needed */
0160     /* PERIODICLISTBASE: offset 0x14 */
0161     u32     frame_list; /* points to periodic list */
0162     /* ASYNCLISTADDR: offset 0x18 */
0163     u32     async_next; /* address of next async queue head */
0164 
0165     u32     reserved[9];
0166 
0167     /* CONFIGFLAG: offset 0x40 */
0168     u32     configured_flag;
0169 #define FLAG_CF     (1<<0)      /* true: we'll support "high speed" */
0170 
0171     /* PORTSC: offset 0x44 */
0172     u32     port_status[0]; /* up to N_PORTS */
0173 /* 31:23 reserved */
0174 #define PORT_WKOC_E (1<<22)     /* wake on overcurrent (enable) */
0175 #define PORT_WKDISC_E   (1<<21)     /* wake on disconnect (enable) */
0176 #define PORT_WKCONN_E   (1<<20)     /* wake on connect (enable) */
0177 /* 19:16 for port testing */
0178 #define PORT_LED_OFF    (0<<14)
0179 #define PORT_LED_AMBER  (1<<14)
0180 #define PORT_LED_GREEN  (2<<14)
0181 #define PORT_LED_MASK   (3<<14)
0182 #define PORT_OWNER  (1<<13)     /* true: companion hc owns this port */
0183 #define PORT_POWER  (1<<12)     /* true: has power (see PPC) */
0184 #define PORT_USB11(x) (((x)&(3<<10)) == (1<<10))    /* USB 1.1 device */
0185 /* 11:10 for detecting lowspeed devices (reset vs release ownership) */
0186 /* 9 reserved */
0187 #define PORT_RESET  (1<<8)      /* reset port */
0188 #define PORT_SUSPEND    (1<<7)      /* suspend port */
0189 #define PORT_RESUME (1<<6)      /* resume it */
0190 #define PORT_OCC    (1<<5)      /* over current change */
0191 #define PORT_OC     (1<<4)      /* over current active */
0192 #define PORT_PEC    (1<<3)      /* port enable change */
0193 #define PORT_PE     (1<<2)      /* port enable */
0194 #define PORT_CSC    (1<<1)      /* connect status change */
0195 #define PORT_CONNECT    (1<<0)      /* device connected */
0196 #define PORT_RWC_BITS   (PORT_CSC | PORT_PEC | PORT_OCC)
0197 } __packed;
0198 
0199 /* Appendix C, Debug port ... intended for use with special "debug devices"
0200  * that can help if there's no serial console.  (nonstandard enumeration.)
0201  */
0202 struct ehci_dbg_port {
0203     u32 control;
0204 #define DBGP_OWNER  (1<<30)
0205 #define DBGP_ENABLED    (1<<28)
0206 #define DBGP_DONE   (1<<16)
0207 #define DBGP_INUSE  (1<<10)
0208 #define DBGP_ERRCODE(x) (((x)>>7)&0x07)
0209 #   define DBGP_ERR_BAD 1
0210 #   define DBGP_ERR_SIGNAL  2
0211 #define DBGP_ERROR  (1<<6)
0212 #define DBGP_GO     (1<<5)
0213 #define DBGP_OUT    (1<<4)
0214 #define DBGP_LEN(x) (((x)>>0)&0x0f)
0215     u32 pids;
0216 #define DBGP_PID_GET(x)     (((x)>>16)&0xff)
0217 #define DBGP_PID_SET(data, tok) (((data)<<8)|(tok))
0218     u32 data03;
0219     u32 data47;
0220     u32 address;
0221 #define DBGP_EPADDR(dev, ep)    (((dev)<<8)|(ep))
0222 } __packed;
0223 
0224 #define QTD_NEXT(dma)   cpu_to_le32((u32)dma)
0225 
0226 /*
0227  * EHCI Specification 0.95 Section 3.5
0228  * QTD: describe data transfer components (buffer, direction, ...)
0229  * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
0230  *
0231  * These are associated only with "QH" (Queue Head) structures,
0232  * used with control, bulk, and interrupt transfers.
0233  */
0234 struct ehci_qtd {
0235     /* first part defined by EHCI spec */
0236     __le32          hw_next;        /* see EHCI 3.5.1 */
0237     __le32          hw_alt_next;        /* see EHCI 3.5.2 */
0238     __le32          hw_token;       /* see EHCI 3.5.3 */
0239 #define QTD_TOGGLE  (1 << 31)   /* data toggle */
0240 #define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff)
0241 #define QTD_IOC     (1 << 15)   /* interrupt on complete */
0242 #define QTD_CERR(tok)   (((tok)>>10) & 0x3)
0243 #define QTD_PID(tok)    (((tok)>>8) & 0x3)
0244 #define QTD_STS_ACTIVE  (1 << 7)    /* HC may execute this */
0245 #define QTD_STS_HALT    (1 << 6)    /* halted on error */
0246 #define QTD_STS_DBE (1 << 5)    /* data buffer error (in HC) */
0247 #define QTD_STS_BABBLE  (1 << 4)    /* device was babbling (qtd halted) */
0248 #define QTD_STS_XACT    (1 << 3)    /* device gave illegal response */
0249 #define QTD_STS_MMF (1 << 2)    /* incomplete split transaction */
0250 #define QTD_STS_STS (1 << 1)    /* split transaction state */
0251 #define QTD_STS_PING    (1 << 0)    /* issue PING? */
0252     __le32          hw_buf[5];      /* see EHCI 3.5.4 */
0253     __le32          hw_buf_hi[5];       /* Appendix B */
0254 
0255     /* the rest is HCD-private */
0256     dma_addr_t      qtd_dma;        /* qtd address */
0257     struct list_head    qtd_list;       /* sw qtd list */
0258     struct urb      *urb;           /* qtd's urb */
0259     size_t          length;         /* length of buffer */
0260 
0261     u32         qtd_buffer_len;
0262     void            *buffer;
0263     dma_addr_t      buffer_dma;
0264     void            *transfer_buffer;
0265     void            *transfer_dma;
0266 } __aligned(32);
0267 
0268 /* mask NakCnt+T in qh->hw_alt_next */
0269 #define QTD_MASK cpu_to_le32 (~0x1f)
0270 
0271 #define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
0272 
0273 /* Type tag from {qh, itd, sitd, fstn}->hw_next */
0274 #define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1))
0275 
0276 /* values for that type tag */
0277 #define Q_TYPE_QH   cpu_to_le32 (1 << 1)
0278 
0279 /* next async queue entry, or pointer to interrupt/periodic QH */
0280 #define QH_NEXT(dma)    (cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH)
0281 
0282 /* for periodic/async schedules and qtd lists, mark end of list */
0283 #define EHCI_LIST_END   cpu_to_le32(1) /* "null pointer" to hw */
0284 
0285 /*
0286  * Entries in periodic shadow table are pointers to one of four kinds
0287  * of data structure.  That's dictated by the hardware; a type tag is
0288  * encoded in the low bits of the hardware's periodic schedule.  Use
0289  * Q_NEXT_TYPE to get the tag.
0290  *
0291  * For entries in the async schedule, the type tag always says "qh".
0292  */
0293 union ehci_shadow {
0294     struct ehci_qh      *qh;        /* Q_TYPE_QH */
0295     __le32          *hw_next;   /* (all types) */
0296     void            *ptr;
0297 };
0298 
0299 /*
0300  * EHCI Specification 0.95 Section 3.6
0301  * QH: describes control/bulk/interrupt endpoints
0302  * See Fig 3-7 "Queue Head Structure Layout".
0303  *
0304  * These appear in both the async and (for interrupt) periodic schedules.
0305  */
0306 
0307 struct ehci_qh {
0308     /* first part defined by EHCI spec */
0309     __le32          hw_next;     /* see EHCI 3.6.1 */
0310     __le32          hw_info1;   /* see EHCI 3.6.2 */
0311 #define QH_HEAD     0x00008000
0312     __le32          hw_info2;   /* see EHCI 3.6.2 */
0313 #define QH_SMASK    0x000000ff
0314 #define QH_CMASK    0x0000ff00
0315 #define QH_HUBADDR  0x007f0000
0316 #define QH_HUBPORT  0x3f800000
0317 #define QH_MULT     0xc0000000
0318     __le32          hw_current;  /* qtd list - see EHCI 3.6.4 */
0319 
0320     /* qtd overlay (hardware parts of a struct ehci_qtd) */
0321     __le32          hw_qtd_next;
0322     __le32          hw_alt_next;
0323     __le32          hw_token;
0324     __le32          hw_buf[5];
0325     __le32          hw_buf_hi[5];
0326 
0327     /* the rest is HCD-private */
0328     dma_addr_t      qh_dma;     /* address of qh */
0329     union ehci_shadow   qh_next;    /* ptr to qh; or periodic */
0330     struct list_head    qtd_list;   /* sw qtd list */
0331     struct ehci_qtd     *dummy;
0332     struct ehci_qh      *reclaim;   /* next to reclaim */
0333 
0334     struct oxu_hcd      *oxu;
0335     struct kref     kref;
0336     unsigned int        stamp;
0337 
0338     u8          qh_state;
0339 #define QH_STATE_LINKED     1       /* HC sees this */
0340 #define QH_STATE_UNLINK     2       /* HC may still see this */
0341 #define QH_STATE_IDLE       3       /* HC doesn't see this */
0342 #define QH_STATE_UNLINK_WAIT    4       /* LINKED and on reclaim q */
0343 #define QH_STATE_COMPLETING 5       /* don't touch token.HALT */
0344 
0345     /* periodic schedule info */
0346     u8          usecs;      /* intr bandwidth */
0347     u8          gap_uf;     /* uframes split/csplit gap */
0348     u8          c_usecs;    /* ... split completion bw */
0349     u16         tt_usecs;   /* tt downstream bandwidth */
0350     unsigned short      period;     /* polling interval */
0351     unsigned short      start;      /* where polling starts */
0352 #define NO_FRAME ((unsigned short)~0)           /* pick new start */
0353     struct usb_device   *dev;       /* access to TT */
0354 } __aligned(32);
0355 
0356 /*
0357  * Proper OXU210HP structs
0358  */
0359 
0360 #define OXU_OTG_CORE_OFFSET 0x00400
0361 #define OXU_OTG_CAP_OFFSET  (OXU_OTG_CORE_OFFSET + 0x100)
0362 #define OXU_SPH_CORE_OFFSET 0x00800
0363 #define OXU_SPH_CAP_OFFSET  (OXU_SPH_CORE_OFFSET + 0x100)
0364 
0365 #define OXU_OTG_MEM     0xE000
0366 #define OXU_SPH_MEM     0x16000
0367 
0368 /* Only how many elements & element structure are specifies here. */
0369 /* 2 host controllers are enabled - total size <= 28 kbytes */
0370 #define DEFAULT_I_TDPS      1024
0371 #define QHEAD_NUM       16
0372 #define QTD_NUM         32
0373 #define SITD_NUM        8
0374 #define MURB_NUM        8
0375 
0376 #define BUFFER_NUM      8
0377 #define BUFFER_SIZE     512
0378 
0379 struct oxu_info {
0380     struct usb_hcd *hcd[2];
0381 };
0382 
0383 struct oxu_buf {
0384     u8          buffer[BUFFER_SIZE];
0385 } __aligned(BUFFER_SIZE);
0386 
0387 struct oxu_onchip_mem {
0388     struct oxu_buf      db_pool[BUFFER_NUM];
0389 
0390     u32         frame_list[DEFAULT_I_TDPS];
0391     struct ehci_qh      qh_pool[QHEAD_NUM];
0392     struct ehci_qtd     qtd_pool[QTD_NUM];
0393 } __aligned(4 << 10);
0394 
0395 #define EHCI_MAX_ROOT_PORTS 15      /* see HCS_N_PORTS */
0396 
0397 struct oxu_murb {
0398     struct urb      urb;
0399     struct urb      *main;
0400     u8          last;
0401 };
0402 
0403 struct oxu_hcd {                /* one per controller */
0404     unsigned int        is_otg:1;
0405 
0406     u8          qh_used[QHEAD_NUM];
0407     u8          qtd_used[QTD_NUM];
0408     u8          db_used[BUFFER_NUM];
0409     u8          murb_used[MURB_NUM];
0410 
0411     struct oxu_onchip_mem   __iomem *mem;
0412     spinlock_t      mem_lock;
0413 
0414     struct timer_list   urb_timer;
0415 
0416     struct ehci_caps __iomem *caps;
0417     struct ehci_regs __iomem *regs;
0418 
0419     u32         hcs_params; /* cached register copy */
0420     spinlock_t      lock;
0421 
0422     /* async schedule support */
0423     struct ehci_qh      *async;
0424     struct ehci_qh      *reclaim;
0425     unsigned int        reclaim_ready:1;
0426     unsigned int        scanning:1;
0427 
0428     /* periodic schedule support */
0429     unsigned int        periodic_size;
0430     __le32          *periodic;  /* hw periodic table */
0431     dma_addr_t      periodic_dma;
0432     unsigned int        i_thresh;   /* uframes HC might cache */
0433 
0434     union ehci_shadow   *pshadow;   /* mirror hw periodic table */
0435     int         next_uframe;    /* scan periodic, start here */
0436     unsigned int        periodic_sched; /* periodic activity count */
0437 
0438     /* per root hub port */
0439     unsigned long       reset_done[EHCI_MAX_ROOT_PORTS];
0440     /* bit vectors (one bit per port) */
0441     unsigned long       bus_suspended;  /* which ports were
0442                          * already suspended at the
0443                          * start of a bus suspend
0444                          */
0445     unsigned long       companion_ports;/* which ports are dedicated
0446                          * to the companion controller
0447                          */
0448 
0449     struct timer_list   watchdog;
0450     unsigned long       actions;
0451     unsigned int        stamp;
0452     unsigned long       next_statechange;
0453     u32         command;
0454 
0455     /* SILICON QUIRKS */
0456     struct list_head    urb_list;   /* this is the head to urb
0457                          * queue that didn't get enough
0458                          * resources
0459                          */
0460     struct oxu_murb     *murb_pool; /* murb per split big urb */
0461     unsigned int        urb_len;
0462 
0463     u8          sbrn;       /* packed release number */
0464 };
0465 
0466 #define EHCI_IAA_JIFFIES    (HZ/100)    /* arbitrary; ~10 msec */
0467 #define EHCI_IO_JIFFIES     (HZ/10)     /* io watchdog > irq_thresh */
0468 #define EHCI_ASYNC_JIFFIES      (HZ/20)     /* async idle timeout */
0469 #define EHCI_SHRINK_JIFFIES     (HZ/200)    /* async qh unlink delay */
0470 
0471 enum ehci_timer_action {
0472     TIMER_IO_WATCHDOG,
0473     TIMER_IAA_WATCHDOG,
0474     TIMER_ASYNC_SHRINK,
0475     TIMER_ASYNC_OFF,
0476 };
0477 
0478 /*
0479  * Main defines
0480  */
0481 
0482 #define oxu_dbg(oxu, fmt, args...) \
0483         dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
0484 #define oxu_err(oxu, fmt, args...) \
0485         dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
0486 #define oxu_info(oxu, fmt, args...) \
0487         dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
0488 
0489 #ifdef CONFIG_DYNAMIC_DEBUG
0490 #define DEBUG
0491 #endif
0492 
0493 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
0494 {
0495     return container_of((void *) oxu, struct usb_hcd, hcd_priv);
0496 }
0497 
0498 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
0499 {
0500     return (struct oxu_hcd *) (hcd->hcd_priv);
0501 }
0502 
0503 /*
0504  * Debug stuff
0505  */
0506 
0507 #undef OXU_URB_TRACE
0508 #undef OXU_VERBOSE_DEBUG
0509 
0510 #ifdef OXU_VERBOSE_DEBUG
0511 #define oxu_vdbg            oxu_dbg
0512 #else
0513 #define oxu_vdbg(oxu, fmt, args...) /* Nop */
0514 #endif
0515 
0516 #ifdef DEBUG
0517 
0518 static int __attribute__((__unused__))
0519 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
0520 {
0521     return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
0522         label, label[0] ? " " : "", status,
0523         (status & STS_ASS) ? " Async" : "",
0524         (status & STS_PSS) ? " Periodic" : "",
0525         (status & STS_RECL) ? " Recl" : "",
0526         (status & STS_HALT) ? " Halt" : "",
0527         (status & STS_IAA) ? " IAA" : "",
0528         (status & STS_FATAL) ? " FATAL" : "",
0529         (status & STS_FLR) ? " FLR" : "",
0530         (status & STS_PCD) ? " PCD" : "",
0531         (status & STS_ERR) ? " ERR" : "",
0532         (status & STS_INT) ? " INT" : ""
0533         );
0534 }
0535 
0536 static int __attribute__((__unused__))
0537 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
0538 {
0539     return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
0540         label, label[0] ? " " : "", enable,
0541         (enable & STS_IAA) ? " IAA" : "",
0542         (enable & STS_FATAL) ? " FATAL" : "",
0543         (enable & STS_FLR) ? " FLR" : "",
0544         (enable & STS_PCD) ? " PCD" : "",
0545         (enable & STS_ERR) ? " ERR" : "",
0546         (enable & STS_INT) ? " INT" : ""
0547         );
0548 }
0549 
0550 static const char *const fls_strings[] =
0551     { "1024", "512", "256", "??" };
0552 
0553 static int dbg_command_buf(char *buf, unsigned len,
0554                 const char *label, u32 command)
0555 {
0556     return scnprintf(buf, len,
0557         "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
0558         label, label[0] ? " " : "", command,
0559         (command & CMD_PARK) ? "park" : "(park)",
0560         CMD_PARK_CNT(command),
0561         (command >> 16) & 0x3f,
0562         (command & CMD_LRESET) ? " LReset" : "",
0563         (command & CMD_IAAD) ? " IAAD" : "",
0564         (command & CMD_ASE) ? " Async" : "",
0565         (command & CMD_PSE) ? " Periodic" : "",
0566         fls_strings[(command >> 2) & 0x3],
0567         (command & CMD_RESET) ? " Reset" : "",
0568         (command & CMD_RUN) ? "RUN" : "HALT"
0569         );
0570 }
0571 
0572 static int dbg_port_buf(char *buf, unsigned len, const char *label,
0573                 int port, u32 status)
0574 {
0575     char    *sig;
0576 
0577     /* signaling state */
0578     switch (status & (3 << 10)) {
0579     case 0 << 10:
0580         sig = "se0";
0581         break;
0582     case 1 << 10:
0583         sig = "k";  /* low speed */
0584         break;
0585     case 2 << 10:
0586         sig = "j";
0587         break;
0588     default:
0589         sig = "?";
0590         break;
0591     }
0592 
0593     return scnprintf(buf, len,
0594         "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
0595         label, label[0] ? " " : "", port, status,
0596         (status & PORT_POWER) ? " POWER" : "",
0597         (status & PORT_OWNER) ? " OWNER" : "",
0598         sig,
0599         (status & PORT_RESET) ? " RESET" : "",
0600         (status & PORT_SUSPEND) ? " SUSPEND" : "",
0601         (status & PORT_RESUME) ? " RESUME" : "",
0602         (status & PORT_OCC) ? " OCC" : "",
0603         (status & PORT_OC) ? " OC" : "",
0604         (status & PORT_PEC) ? " PEC" : "",
0605         (status & PORT_PE) ? " PE" : "",
0606         (status & PORT_CSC) ? " CSC" : "",
0607         (status & PORT_CONNECT) ? " CONNECT" : ""
0608         );
0609 }
0610 
0611 #else
0612 
0613 static inline int __attribute__((__unused__))
0614 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
0615 { return 0; }
0616 
0617 static inline int __attribute__((__unused__))
0618 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
0619 { return 0; }
0620 
0621 static inline int __attribute__((__unused__))
0622 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
0623 { return 0; }
0624 
0625 static inline int __attribute__((__unused__))
0626 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
0627 { return 0; }
0628 
0629 #endif /* DEBUG */
0630 
0631 /* functions have the "wrong" filename when they're output... */
0632 #define dbg_status(oxu, label, status) { \
0633     char _buf[80]; \
0634     dbg_status_buf(_buf, sizeof _buf, label, status); \
0635     oxu_dbg(oxu, "%s\n", _buf); \
0636 }
0637 
0638 #define dbg_cmd(oxu, label, command) { \
0639     char _buf[80]; \
0640     dbg_command_buf(_buf, sizeof _buf, label, command); \
0641     oxu_dbg(oxu, "%s\n", _buf); \
0642 }
0643 
0644 #define dbg_port(oxu, label, port, status) { \
0645     char _buf[80]; \
0646     dbg_port_buf(_buf, sizeof _buf, label, port, status); \
0647     oxu_dbg(oxu, "%s\n", _buf); \
0648 }
0649 
0650 /*
0651  * Module parameters
0652  */
0653 
0654 /* Initial IRQ latency: faster than hw default */
0655 static int log2_irq_thresh;         /* 0 to 6 */
0656 module_param(log2_irq_thresh, int, S_IRUGO);
0657 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
0658 
0659 /* Initial park setting: slower than hw default */
0660 static unsigned park;
0661 module_param(park, uint, S_IRUGO);
0662 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
0663 
0664 /* For flakey hardware, ignore overcurrent indicators */
0665 static bool ignore_oc;
0666 module_param(ignore_oc, bool, S_IRUGO);
0667 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
0668 
0669 
0670 static void ehci_work(struct oxu_hcd *oxu);
0671 static int oxu_hub_control(struct usb_hcd *hcd,
0672                 u16 typeReq, u16 wValue, u16 wIndex,
0673                 char *buf, u16 wLength);
0674 
0675 /*
0676  * Local functions
0677  */
0678 
0679 /* Low level read/write registers functions */
0680 static inline u32 oxu_readl(void __iomem *base, u32 reg)
0681 {
0682     return readl(base + reg);
0683 }
0684 
0685 static inline void oxu_writel(void __iomem *base, u32 reg, u32 val)
0686 {
0687     writel(val, base + reg);
0688 }
0689 
0690 static inline void timer_action_done(struct oxu_hcd *oxu,
0691                     enum ehci_timer_action action)
0692 {
0693     clear_bit(action, &oxu->actions);
0694 }
0695 
0696 static inline void timer_action(struct oxu_hcd *oxu,
0697                     enum ehci_timer_action action)
0698 {
0699     if (!test_and_set_bit(action, &oxu->actions)) {
0700         unsigned long t;
0701 
0702         switch (action) {
0703         case TIMER_IAA_WATCHDOG:
0704             t = EHCI_IAA_JIFFIES;
0705             break;
0706         case TIMER_IO_WATCHDOG:
0707             t = EHCI_IO_JIFFIES;
0708             break;
0709         case TIMER_ASYNC_OFF:
0710             t = EHCI_ASYNC_JIFFIES;
0711             break;
0712         case TIMER_ASYNC_SHRINK:
0713         default:
0714             t = EHCI_SHRINK_JIFFIES;
0715             break;
0716         }
0717         t += jiffies;
0718         /* all timings except IAA watchdog can be overridden.
0719          * async queue SHRINK often precedes IAA.  while it's ready
0720          * to go OFF neither can matter, and afterwards the IO
0721          * watchdog stops unless there's still periodic traffic.
0722          */
0723         if (action != TIMER_IAA_WATCHDOG
0724                 && t > oxu->watchdog.expires
0725                 && timer_pending(&oxu->watchdog))
0726             return;
0727         mod_timer(&oxu->watchdog, t);
0728     }
0729 }
0730 
0731 /*
0732  * handshake - spin reading hc until handshake completes or fails
0733  * @ptr: address of hc register to be read
0734  * @mask: bits to look at in result of read
0735  * @done: value of those bits when handshake succeeds
0736  * @usec: timeout in microseconds
0737  *
0738  * Returns negative errno, or zero on success
0739  *
0740  * Success happens when the "mask" bits have the specified value (hardware
0741  * handshake done).  There are two failure modes:  "usec" have passed (major
0742  * hardware flakeout), or the register reads as all-ones (hardware removed).
0743  *
0744  * That last failure should_only happen in cases like physical cardbus eject
0745  * before driver shutdown. But it also seems to be caused by bugs in cardbus
0746  * bridge shutdown:  shutting down the bridge before the devices using it.
0747  */
0748 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
0749                     u32 mask, u32 done, int usec)
0750 {
0751     u32 result;
0752     int ret;
0753 
0754     ret = readl_poll_timeout_atomic(ptr, result,
0755                     ((result & mask) == done ||
0756                      result == U32_MAX),
0757                     1, usec);
0758     if (result == U32_MAX)      /* card removed */
0759         return -ENODEV;
0760 
0761     return ret;
0762 }
0763 
0764 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
0765 static int ehci_halt(struct oxu_hcd *oxu)
0766 {
0767     u32 temp = readl(&oxu->regs->status);
0768 
0769     /* disable any irqs left enabled by previous code */
0770     writel(0, &oxu->regs->intr_enable);
0771 
0772     if ((temp & STS_HALT) != 0)
0773         return 0;
0774 
0775     temp = readl(&oxu->regs->command);
0776     temp &= ~CMD_RUN;
0777     writel(temp, &oxu->regs->command);
0778     return handshake(oxu, &oxu->regs->status,
0779               STS_HALT, STS_HALT, 16 * 125);
0780 }
0781 
0782 /* Put TDI/ARC silicon into EHCI mode */
0783 static void tdi_reset(struct oxu_hcd *oxu)
0784 {
0785     u32 __iomem *reg_ptr;
0786     u32 tmp;
0787 
0788     reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
0789     tmp = readl(reg_ptr);
0790     tmp |= 0x3;
0791     writel(tmp, reg_ptr);
0792 }
0793 
0794 /* Reset a non-running (STS_HALT == 1) controller */
0795 static int ehci_reset(struct oxu_hcd *oxu)
0796 {
0797     int retval;
0798     u32 command = readl(&oxu->regs->command);
0799 
0800     command |= CMD_RESET;
0801     dbg_cmd(oxu, "reset", command);
0802     writel(command, &oxu->regs->command);
0803     oxu_to_hcd(oxu)->state = HC_STATE_HALT;
0804     oxu->next_statechange = jiffies;
0805     retval = handshake(oxu, &oxu->regs->command,
0806                 CMD_RESET, 0, 250 * 1000);
0807 
0808     if (retval)
0809         return retval;
0810 
0811     tdi_reset(oxu);
0812 
0813     return retval;
0814 }
0815 
0816 /* Idle the controller (from running) */
0817 static void ehci_quiesce(struct oxu_hcd *oxu)
0818 {
0819     u32 temp;
0820 
0821 #ifdef DEBUG
0822     BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state));
0823 #endif
0824 
0825     /* wait for any schedule enables/disables to take effect */
0826     temp = readl(&oxu->regs->command) << 10;
0827     temp &= STS_ASS | STS_PSS;
0828     if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
0829                 temp, 16 * 125) != 0) {
0830         oxu_to_hcd(oxu)->state = HC_STATE_HALT;
0831         return;
0832     }
0833 
0834     /* then disable anything that's still active */
0835     temp = readl(&oxu->regs->command);
0836     temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
0837     writel(temp, &oxu->regs->command);
0838 
0839     /* hardware can take 16 microframes to turn off ... */
0840     if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
0841                 0, 16 * 125) != 0) {
0842         oxu_to_hcd(oxu)->state = HC_STATE_HALT;
0843         return;
0844     }
0845 }
0846 
0847 static int check_reset_complete(struct oxu_hcd *oxu, int index,
0848                 u32 __iomem *status_reg, int port_status)
0849 {
0850     if (!(port_status & PORT_CONNECT)) {
0851         oxu->reset_done[index] = 0;
0852         return port_status;
0853     }
0854 
0855     /* if reset finished and it's still not enabled -- handoff */
0856     if (!(port_status & PORT_PE)) {
0857         oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
0858                 index+1);
0859         return port_status;
0860     } else
0861         oxu_dbg(oxu, "port %d high speed\n", index + 1);
0862 
0863     return port_status;
0864 }
0865 
0866 static void ehci_hub_descriptor(struct oxu_hcd *oxu,
0867                 struct usb_hub_descriptor *desc)
0868 {
0869     int ports = HCS_N_PORTS(oxu->hcs_params);
0870     u16 temp;
0871 
0872     desc->bDescriptorType = USB_DT_HUB;
0873     desc->bPwrOn2PwrGood = 10;  /* oxu 1.0, 2.3.9 says 20ms max */
0874     desc->bHubContrCurrent = 0;
0875 
0876     desc->bNbrPorts = ports;
0877     temp = 1 + (ports / 8);
0878     desc->bDescLength = 7 + 2 * temp;
0879 
0880     /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
0881     memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
0882     memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
0883 
0884     temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
0885     if (HCS_PPC(oxu->hcs_params))
0886         temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */
0887     else
0888         temp |= HUB_CHAR_NO_LPSM; /* no power switching */
0889     desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
0890 }
0891 
0892 
0893 /* Allocate an OXU210HP on-chip memory data buffer
0894  *
0895  * An on-chip memory data buffer is required for each OXU210HP USB transfer.
0896  * Each transfer descriptor has one or more on-chip memory data buffers.
0897  *
0898  * Data buffers are allocated from a fix sized pool of data blocks.
0899  * To minimise fragmentation and give reasonable memory utlisation,
0900  * data buffers are allocated with sizes the power of 2 multiples of
0901  * the block size, starting on an address a multiple of the allocated size.
0902  *
0903  * FIXME: callers of this function require a buffer to be allocated for
0904  * len=0. This is a waste of on-chip memory and should be fix. Then this
0905  * function should be changed to not allocate a buffer for len=0.
0906  */
0907 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
0908 {
0909     int n_blocks;   /* minium blocks needed to hold len */
0910     int a_blocks;   /* blocks allocated */
0911     int i, j;
0912 
0913     /* Don't allocte bigger than supported */
0914     if (len > BUFFER_SIZE * BUFFER_NUM) {
0915         oxu_err(oxu, "buffer too big (%d)\n", len);
0916         return -ENOMEM;
0917     }
0918 
0919     spin_lock(&oxu->mem_lock);
0920 
0921     /* Number of blocks needed to hold len */
0922     n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
0923 
0924     /* Round the number of blocks up to the power of 2 */
0925     for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
0926         ;
0927 
0928     /* Find a suitable available data buffer */
0929     for (i = 0; i < BUFFER_NUM;
0930             i += max(a_blocks, (int)oxu->db_used[i])) {
0931 
0932         /* Check all the required blocks are available */
0933         for (j = 0; j < a_blocks; j++)
0934             if (oxu->db_used[i + j])
0935                 break;
0936 
0937         if (j != a_blocks)
0938             continue;
0939 
0940         /* Allocate blocks found! */
0941         qtd->buffer = (void *) &oxu->mem->db_pool[i];
0942         qtd->buffer_dma = virt_to_phys(qtd->buffer);
0943 
0944         qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
0945         oxu->db_used[i] = a_blocks;
0946 
0947         spin_unlock(&oxu->mem_lock);
0948 
0949         return 0;
0950     }
0951 
0952     /* Failed */
0953 
0954     spin_unlock(&oxu->mem_lock);
0955 
0956     return -ENOMEM;
0957 }
0958 
0959 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
0960 {
0961     int index;
0962 
0963     spin_lock(&oxu->mem_lock);
0964 
0965     index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
0966                              / BUFFER_SIZE;
0967     oxu->db_used[index] = 0;
0968     qtd->qtd_buffer_len = 0;
0969     qtd->buffer_dma = 0;
0970     qtd->buffer = NULL;
0971 
0972     spin_unlock(&oxu->mem_lock);
0973 }
0974 
0975 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
0976 {
0977     memset(qtd, 0, sizeof *qtd);
0978     qtd->qtd_dma = dma;
0979     qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
0980     qtd->hw_next = EHCI_LIST_END;
0981     qtd->hw_alt_next = EHCI_LIST_END;
0982     INIT_LIST_HEAD(&qtd->qtd_list);
0983 }
0984 
0985 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
0986 {
0987     int index;
0988 
0989     if (qtd->buffer)
0990         oxu_buf_free(oxu, qtd);
0991 
0992     spin_lock(&oxu->mem_lock);
0993 
0994     index = qtd - &oxu->mem->qtd_pool[0];
0995     oxu->qtd_used[index] = 0;
0996 
0997     spin_unlock(&oxu->mem_lock);
0998 }
0999 
1000 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
1001 {
1002     int i;
1003     struct ehci_qtd *qtd = NULL;
1004 
1005     spin_lock(&oxu->mem_lock);
1006 
1007     for (i = 0; i < QTD_NUM; i++)
1008         if (!oxu->qtd_used[i])
1009             break;
1010 
1011     if (i < QTD_NUM) {
1012         qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
1013         memset(qtd, 0, sizeof *qtd);
1014 
1015         qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
1016         qtd->hw_next = EHCI_LIST_END;
1017         qtd->hw_alt_next = EHCI_LIST_END;
1018         INIT_LIST_HEAD(&qtd->qtd_list);
1019 
1020         qtd->qtd_dma = virt_to_phys(qtd);
1021 
1022         oxu->qtd_used[i] = 1;
1023     }
1024 
1025     spin_unlock(&oxu->mem_lock);
1026 
1027     return qtd;
1028 }
1029 
1030 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
1031 {
1032     int index;
1033 
1034     spin_lock(&oxu->mem_lock);
1035 
1036     index = qh - &oxu->mem->qh_pool[0];
1037     oxu->qh_used[index] = 0;
1038 
1039     spin_unlock(&oxu->mem_lock);
1040 }
1041 
1042 static void qh_destroy(struct kref *kref)
1043 {
1044     struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
1045     struct oxu_hcd *oxu = qh->oxu;
1046 
1047     /* clean qtds first, and know this is not linked */
1048     if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1049         oxu_dbg(oxu, "unused qh not empty!\n");
1050         BUG();
1051     }
1052     if (qh->dummy)
1053         oxu_qtd_free(oxu, qh->dummy);
1054     oxu_qh_free(oxu, qh);
1055 }
1056 
1057 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
1058 {
1059     int i;
1060     struct ehci_qh *qh = NULL;
1061 
1062     spin_lock(&oxu->mem_lock);
1063 
1064     for (i = 0; i < QHEAD_NUM; i++)
1065         if (!oxu->qh_used[i])
1066             break;
1067 
1068     if (i < QHEAD_NUM) {
1069         qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
1070         memset(qh, 0, sizeof *qh);
1071 
1072         kref_init(&qh->kref);
1073         qh->oxu = oxu;
1074         qh->qh_dma = virt_to_phys(qh);
1075         INIT_LIST_HEAD(&qh->qtd_list);
1076 
1077         /* dummy td enables safe urb queuing */
1078         qh->dummy = ehci_qtd_alloc(oxu);
1079         if (qh->dummy == NULL) {
1080             oxu_dbg(oxu, "no dummy td\n");
1081             oxu->qh_used[i] = 0;
1082             qh = NULL;
1083             goto unlock;
1084         }
1085 
1086         oxu->qh_used[i] = 1;
1087     }
1088 unlock:
1089     spin_unlock(&oxu->mem_lock);
1090 
1091     return qh;
1092 }
1093 
1094 /* to share a qh (cpu threads, or hc) */
1095 static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
1096 {
1097     kref_get(&qh->kref);
1098     return qh;
1099 }
1100 
1101 static inline void qh_put(struct ehci_qh *qh)
1102 {
1103     kref_put(&qh->kref, qh_destroy);
1104 }
1105 
1106 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
1107 {
1108     int index;
1109 
1110     spin_lock(&oxu->mem_lock);
1111 
1112     index = murb - &oxu->murb_pool[0];
1113     oxu->murb_used[index] = 0;
1114 
1115     spin_unlock(&oxu->mem_lock);
1116 }
1117 
1118 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
1119 
1120 {
1121     int i;
1122     struct oxu_murb *murb = NULL;
1123 
1124     spin_lock(&oxu->mem_lock);
1125 
1126     for (i = 0; i < MURB_NUM; i++)
1127         if (!oxu->murb_used[i])
1128             break;
1129 
1130     if (i < MURB_NUM) {
1131         murb = &(oxu->murb_pool)[i];
1132 
1133         oxu->murb_used[i] = 1;
1134     }
1135 
1136     spin_unlock(&oxu->mem_lock);
1137 
1138     return murb;
1139 }
1140 
1141 /* The queue heads and transfer descriptors are managed from pools tied
1142  * to each of the "per device" structures.
1143  * This is the initialisation and cleanup code.
1144  */
1145 static void ehci_mem_cleanup(struct oxu_hcd *oxu)
1146 {
1147     kfree(oxu->murb_pool);
1148     oxu->murb_pool = NULL;
1149 
1150     if (oxu->async)
1151         qh_put(oxu->async);
1152     oxu->async = NULL;
1153 
1154     del_timer(&oxu->urb_timer);
1155 
1156     oxu->periodic = NULL;
1157 
1158     /* shadow periodic table */
1159     kfree(oxu->pshadow);
1160     oxu->pshadow = NULL;
1161 }
1162 
1163 /* Remember to add cleanup code (above) if you add anything here.
1164  */
1165 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
1166 {
1167     int i;
1168 
1169     for (i = 0; i < oxu->periodic_size; i++)
1170         oxu->mem->frame_list[i] = EHCI_LIST_END;
1171     for (i = 0; i < QHEAD_NUM; i++)
1172         oxu->qh_used[i] = 0;
1173     for (i = 0; i < QTD_NUM; i++)
1174         oxu->qtd_used[i] = 0;
1175 
1176     oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
1177     if (!oxu->murb_pool)
1178         goto fail;
1179 
1180     for (i = 0; i < MURB_NUM; i++)
1181         oxu->murb_used[i] = 0;
1182 
1183     oxu->async = oxu_qh_alloc(oxu);
1184     if (!oxu->async)
1185         goto fail;
1186 
1187     oxu->periodic = (__le32 *) &oxu->mem->frame_list;
1188     oxu->periodic_dma = virt_to_phys(oxu->periodic);
1189 
1190     for (i = 0; i < oxu->periodic_size; i++)
1191         oxu->periodic[i] = EHCI_LIST_END;
1192 
1193     /* software shadow of hardware table */
1194     oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
1195     if (oxu->pshadow != NULL)
1196         return 0;
1197 
1198 fail:
1199     oxu_dbg(oxu, "couldn't init memory\n");
1200     ehci_mem_cleanup(oxu);
1201     return -ENOMEM;
1202 }
1203 
1204 /* Fill a qtd, returning how much of the buffer we were able to queue up.
1205  */
1206 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
1207                 int token, int maxpacket)
1208 {
1209     int i, count;
1210     u64 addr = buf;
1211 
1212     /* one buffer entry per 4K ... first might be short or unaligned */
1213     qtd->hw_buf[0] = cpu_to_le32((u32)addr);
1214     qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
1215     count = 0x1000 - (buf & 0x0fff);    /* rest of that page */
1216     if (likely(len < count))        /* ... iff needed */
1217         count = len;
1218     else {
1219         buf +=  0x1000;
1220         buf &= ~0x0fff;
1221 
1222         /* per-qtd limit: from 16K to 20K (best alignment) */
1223         for (i = 1; count < len && i < 5; i++) {
1224             addr = buf;
1225             qtd->hw_buf[i] = cpu_to_le32((u32)addr);
1226             qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
1227             buf += 0x1000;
1228             if ((count + 0x1000) < len)
1229                 count += 0x1000;
1230             else
1231                 count = len;
1232         }
1233 
1234         /* short packets may only terminate transfers */
1235         if (count != len)
1236             count -= (count % maxpacket);
1237     }
1238     qtd->hw_token = cpu_to_le32((count << 16) | token);
1239     qtd->length = count;
1240 
1241     return count;
1242 }
1243 
1244 static inline void qh_update(struct oxu_hcd *oxu,
1245                 struct ehci_qh *qh, struct ehci_qtd *qtd)
1246 {
1247     /* writes to an active overlay are unsafe */
1248     BUG_ON(qh->qh_state != QH_STATE_IDLE);
1249 
1250     qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
1251     qh->hw_alt_next = EHCI_LIST_END;
1252 
1253     /* Except for control endpoints, we make hardware maintain data
1254      * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
1255      * and set the pseudo-toggle in udev. Only usb_clear_halt() will
1256      * ever clear it.
1257      */
1258     if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
1259         unsigned    is_out, epnum;
1260 
1261         is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
1262         epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
1263         if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
1264             qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
1265             usb_settoggle(qh->dev, epnum, is_out, 1);
1266         }
1267     }
1268 
1269     /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
1270     wmb();
1271     qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
1272 }
1273 
1274 /* If it weren't for a common silicon quirk (writing the dummy into the qh
1275  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
1276  * recovery (including urb dequeue) would need software changes to a QH...
1277  */
1278 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
1279 {
1280     struct ehci_qtd *qtd;
1281 
1282     if (list_empty(&qh->qtd_list))
1283         qtd = qh->dummy;
1284     else {
1285         qtd = list_entry(qh->qtd_list.next,
1286                 struct ehci_qtd, qtd_list);
1287         /* first qtd may already be partially processed */
1288         if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
1289             qtd = NULL;
1290     }
1291 
1292     if (qtd)
1293         qh_update(oxu, qh, qtd);
1294 }
1295 
1296 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
1297                 size_t length, u32 token)
1298 {
1299     /* count IN/OUT bytes, not SETUP (even short packets) */
1300     if (likely(QTD_PID(token) != 2))
1301         urb->actual_length += length - QTD_LENGTH(token);
1302 
1303     /* don't modify error codes */
1304     if (unlikely(urb->status != -EINPROGRESS))
1305         return;
1306 
1307     /* force cleanup after short read; not always an error */
1308     if (unlikely(IS_SHORT_READ(token)))
1309         urb->status = -EREMOTEIO;
1310 
1311     /* serious "can't proceed" faults reported by the hardware */
1312     if (token & QTD_STS_HALT) {
1313         if (token & QTD_STS_BABBLE) {
1314             /* FIXME "must" disable babbling device's port too */
1315             urb->status = -EOVERFLOW;
1316         } else if (token & QTD_STS_MMF) {
1317             /* fs/ls interrupt xfer missed the complete-split */
1318             urb->status = -EPROTO;
1319         } else if (token & QTD_STS_DBE) {
1320             urb->status = (QTD_PID(token) == 1) /* IN ? */
1321                 ? -ENOSR  /* hc couldn't read data */
1322                 : -ECOMM; /* hc couldn't write data */
1323         } else if (token & QTD_STS_XACT) {
1324             /* timeout, bad crc, wrong PID, etc; retried */
1325             if (QTD_CERR(token))
1326                 urb->status = -EPIPE;
1327             else {
1328                 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
1329                     urb->dev->devpath,
1330                     usb_pipeendpoint(urb->pipe),
1331                     usb_pipein(urb->pipe) ? "in" : "out");
1332                 urb->status = -EPROTO;
1333             }
1334         /* CERR nonzero + no errors + halt --> stall */
1335         } else if (QTD_CERR(token))
1336             urb->status = -EPIPE;
1337         else    /* unknown */
1338             urb->status = -EPROTO;
1339 
1340         oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
1341             usb_pipedevice(urb->pipe),
1342             usb_pipeendpoint(urb->pipe),
1343             usb_pipein(urb->pipe) ? "in" : "out",
1344             token, urb->status);
1345     }
1346 }
1347 
1348 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
1349 __releases(oxu->lock)
1350 __acquires(oxu->lock)
1351 {
1352     if (likely(urb->hcpriv != NULL)) {
1353         struct ehci_qh  *qh = (struct ehci_qh *) urb->hcpriv;
1354 
1355         /* S-mask in a QH means it's an interrupt urb */
1356         if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
1357 
1358             /* ... update hc-wide periodic stats (for usbfs) */
1359             oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
1360         }
1361         qh_put(qh);
1362     }
1363 
1364     urb->hcpriv = NULL;
1365     switch (urb->status) {
1366     case -EINPROGRESS:      /* success */
1367         urb->status = 0;
1368         break;
1369     default:            /* fault */
1370         break;
1371     case -EREMOTEIO:        /* fault or normal */
1372         if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
1373             urb->status = 0;
1374         break;
1375     case -ECONNRESET:       /* canceled */
1376     case -ENOENT:
1377         break;
1378     }
1379 
1380 #ifdef OXU_URB_TRACE
1381     oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
1382         __func__, urb->dev->devpath, urb,
1383         usb_pipeendpoint(urb->pipe),
1384         usb_pipein(urb->pipe) ? "in" : "out",
1385         urb->status,
1386         urb->actual_length, urb->transfer_buffer_length);
1387 #endif
1388 
1389     /* complete() can reenter this HCD */
1390     spin_unlock(&oxu->lock);
1391     usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
1392     spin_lock(&oxu->lock);
1393 }
1394 
1395 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1396 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1397 
1398 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1399 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1400 
1401 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
1402 
1403 /* Process and free completed qtds for a qh, returning URBs to drivers.
1404  * Chases up to qh->hw_current.  Returns number of completions called,
1405  * indicating how much "real" work we did.
1406  */
1407 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
1408 {
1409     struct ehci_qtd *last = NULL, *end = qh->dummy;
1410     struct ehci_qtd *qtd, *tmp;
1411     int stopped;
1412     unsigned count = 0;
1413     int do_status = 0;
1414     u8 state;
1415     struct oxu_murb *murb = NULL;
1416 
1417     if (unlikely(list_empty(&qh->qtd_list)))
1418         return count;
1419 
1420     /* completions (or tasks on other cpus) must never clobber HALT
1421      * till we've gone through and cleaned everything up, even when
1422      * they add urbs to this qh's queue or mark them for unlinking.
1423      *
1424      * NOTE:  unlinking expects to be done in queue order.
1425      */
1426     state = qh->qh_state;
1427     qh->qh_state = QH_STATE_COMPLETING;
1428     stopped = (state == QH_STATE_IDLE);
1429 
1430     /* remove de-activated QTDs from front of queue.
1431      * after faults (including short reads), cleanup this urb
1432      * then let the queue advance.
1433      * if queue is stopped, handles unlinks.
1434      */
1435     list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
1436         struct urb *urb;
1437         u32 token = 0;
1438 
1439         urb = qtd->urb;
1440 
1441         /* Clean up any state from previous QTD ...*/
1442         if (last) {
1443             if (likely(last->urb != urb)) {
1444                 if (last->urb->complete == NULL) {
1445                     murb = (struct oxu_murb *) last->urb;
1446                     last->urb = murb->main;
1447                     if (murb->last) {
1448                         ehci_urb_done(oxu, last->urb);
1449                         count++;
1450                     }
1451                     oxu_murb_free(oxu, murb);
1452                 } else {
1453                     ehci_urb_done(oxu, last->urb);
1454                     count++;
1455                 }
1456             }
1457             oxu_qtd_free(oxu, last);
1458             last = NULL;
1459         }
1460 
1461         /* ignore urbs submitted during completions we reported */
1462         if (qtd == end)
1463             break;
1464 
1465         /* hardware copies qtd out of qh overlay */
1466         rmb();
1467         token = le32_to_cpu(qtd->hw_token);
1468 
1469         /* always clean up qtds the hc de-activated */
1470         if ((token & QTD_STS_ACTIVE) == 0) {
1471 
1472             if ((token & QTD_STS_HALT) != 0) {
1473                 stopped = 1;
1474 
1475             /* magic dummy for some short reads; qh won't advance.
1476              * that silicon quirk can kick in with this dummy too.
1477              */
1478             } else if (IS_SHORT_READ(token) &&
1479                     !(qtd->hw_alt_next & EHCI_LIST_END)) {
1480                 stopped = 1;
1481                 goto halt;
1482             }
1483 
1484         /* stop scanning when we reach qtds the hc is using */
1485         } else if (likely(!stopped &&
1486                 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1487             break;
1488 
1489         } else {
1490             stopped = 1;
1491 
1492             if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1493                 urb->status = -ESHUTDOWN;
1494 
1495             /* ignore active urbs unless some previous qtd
1496              * for the urb faulted (including short read) or
1497              * its urb was canceled.  we may patch qh or qtds.
1498              */
1499             if (likely(urb->status == -EINPROGRESS))
1500                 continue;
1501 
1502             /* issue status after short control reads */
1503             if (unlikely(do_status != 0)
1504                     && QTD_PID(token) == 0 /* OUT */) {
1505                 do_status = 0;
1506                 continue;
1507             }
1508 
1509             /* token in overlay may be most current */
1510             if (state == QH_STATE_IDLE
1511                     && cpu_to_le32(qtd->qtd_dma)
1512                         == qh->hw_current)
1513                 token = le32_to_cpu(qh->hw_token);
1514 
1515             /* force halt for unlinked or blocked qh, so we'll
1516              * patch the qh later and so that completions can't
1517              * activate it while we "know" it's stopped.
1518              */
1519             if ((HALT_BIT & qh->hw_token) == 0) {
1520 halt:
1521                 qh->hw_token |= HALT_BIT;
1522                 wmb();
1523             }
1524         }
1525 
1526         /* Remove it from the queue */
1527         qtd_copy_status(oxu, urb->complete ?
1528                     urb : ((struct oxu_murb *) urb)->main,
1529                 qtd->length, token);
1530         if ((usb_pipein(qtd->urb->pipe)) &&
1531                 (NULL != qtd->transfer_buffer))
1532             memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1533         do_status = (urb->status == -EREMOTEIO)
1534                 && usb_pipecontrol(urb->pipe);
1535 
1536         if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1537             last = list_entry(qtd->qtd_list.prev,
1538                     struct ehci_qtd, qtd_list);
1539             last->hw_next = qtd->hw_next;
1540         }
1541         list_del(&qtd->qtd_list);
1542         last = qtd;
1543     }
1544 
1545     /* last urb's completion might still need calling */
1546     if (likely(last != NULL)) {
1547         if (last->urb->complete == NULL) {
1548             murb = (struct oxu_murb *) last->urb;
1549             last->urb = murb->main;
1550             if (murb->last) {
1551                 ehci_urb_done(oxu, last->urb);
1552                 count++;
1553             }
1554             oxu_murb_free(oxu, murb);
1555         } else {
1556             ehci_urb_done(oxu, last->urb);
1557             count++;
1558         }
1559         oxu_qtd_free(oxu, last);
1560     }
1561 
1562     /* restore original state; caller must unlink or relink */
1563     qh->qh_state = state;
1564 
1565     /* be sure the hardware's done with the qh before refreshing
1566      * it after fault cleanup, or recovering from silicon wrongly
1567      * overlaying the dummy qtd (which reduces DMA chatter).
1568      */
1569     if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1570         switch (state) {
1571         case QH_STATE_IDLE:
1572             qh_refresh(oxu, qh);
1573             break;
1574         case QH_STATE_LINKED:
1575             /* should be rare for periodic transfers,
1576              * except maybe high bandwidth ...
1577              */
1578             if ((cpu_to_le32(QH_SMASK)
1579                     & qh->hw_info2) != 0) {
1580                 intr_deschedule(oxu, qh);
1581                 (void) qh_schedule(oxu, qh);
1582             } else
1583                 unlink_async(oxu, qh);
1584             break;
1585         /* otherwise, unlink already started */
1586         }
1587     }
1588 
1589     return count;
1590 }
1591 
1592 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1593 #define hb_mult(wMaxPacketSize)     (1 + (((wMaxPacketSize) >> 11) & 0x03))
1594 /* ... and packet size, for any kind of endpoint descriptor */
1595 #define max_packet(wMaxPacketSize)  ((wMaxPacketSize) & 0x07ff)
1596 
1597 /* Reverse of qh_urb_transaction: free a list of TDs.
1598  * used for cleanup after errors, before HC sees an URB's TDs.
1599  */
1600 static void qtd_list_free(struct oxu_hcd *oxu,
1601                 struct urb *urb, struct list_head *head)
1602 {
1603     struct ehci_qtd *qtd, *temp;
1604 
1605     list_for_each_entry_safe(qtd, temp, head, qtd_list) {
1606         list_del(&qtd->qtd_list);
1607         oxu_qtd_free(oxu, qtd);
1608     }
1609 }
1610 
1611 /* Create a list of filled qtds for this URB; won't link into qh.
1612  */
1613 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1614                         struct urb *urb,
1615                         struct list_head *head,
1616                         gfp_t flags)
1617 {
1618     struct ehci_qtd *qtd, *qtd_prev;
1619     dma_addr_t buf;
1620     int len, maxpacket;
1621     int is_input;
1622     u32 token;
1623     void *transfer_buf = NULL;
1624     int ret;
1625 
1626     /*
1627      * URBs map to sequences of QTDs: one logical transaction
1628      */
1629     qtd = ehci_qtd_alloc(oxu);
1630     if (unlikely(!qtd))
1631         return NULL;
1632     list_add_tail(&qtd->qtd_list, head);
1633     qtd->urb = urb;
1634 
1635     token = QTD_STS_ACTIVE;
1636     token |= (EHCI_TUNE_CERR << 10);
1637     /* for split transactions, SplitXState initialized to zero */
1638 
1639     len = urb->transfer_buffer_length;
1640     is_input = usb_pipein(urb->pipe);
1641     if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1642         urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1643 
1644     if (usb_pipecontrol(urb->pipe)) {
1645         /* SETUP pid */
1646         ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1647         if (ret)
1648             goto cleanup;
1649 
1650         qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1651                 token | (2 /* "setup" */ << 8), 8);
1652         memcpy(qtd->buffer, qtd->urb->setup_packet,
1653                 sizeof(struct usb_ctrlrequest));
1654 
1655         /* ... and always at least one more pid */
1656         token ^= QTD_TOGGLE;
1657         qtd_prev = qtd;
1658         qtd = ehci_qtd_alloc(oxu);
1659         if (unlikely(!qtd))
1660             goto cleanup;
1661         qtd->urb = urb;
1662         qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1663         list_add_tail(&qtd->qtd_list, head);
1664 
1665         /* for zero length DATA stages, STATUS is always IN */
1666         if (len == 0)
1667             token |= (1 /* "in" */ << 8);
1668     }
1669 
1670     /*
1671      * Data transfer stage: buffer setup
1672      */
1673 
1674     ret = oxu_buf_alloc(oxu, qtd, len);
1675     if (ret)
1676         goto cleanup;
1677 
1678     buf = qtd->buffer_dma;
1679     transfer_buf = urb->transfer_buffer;
1680 
1681     if (!is_input)
1682         memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1683 
1684     if (is_input)
1685         token |= (1 /* "in" */ << 8);
1686     /* else it's already initted to "out" pid (0 << 8) */
1687 
1688     maxpacket = usb_maxpacket(urb->dev, urb->pipe);
1689 
1690     /*
1691      * buffer gets wrapped in one or more qtds;
1692      * last one may be "short" (including zero len)
1693      * and may serve as a control status ack
1694      */
1695     for (;;) {
1696         int this_qtd_len;
1697 
1698         this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1699         qtd->transfer_buffer = transfer_buf;
1700         len -= this_qtd_len;
1701         buf += this_qtd_len;
1702         transfer_buf += this_qtd_len;
1703         if (is_input)
1704             qtd->hw_alt_next = oxu->async->hw_alt_next;
1705 
1706         /* qh makes control packets use qtd toggle; maybe switch it */
1707         if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1708             token ^= QTD_TOGGLE;
1709 
1710         if (likely(len <= 0))
1711             break;
1712 
1713         qtd_prev = qtd;
1714         qtd = ehci_qtd_alloc(oxu);
1715         if (unlikely(!qtd))
1716             goto cleanup;
1717         if (likely(len > 0)) {
1718             ret = oxu_buf_alloc(oxu, qtd, len);
1719             if (ret)
1720                 goto cleanup;
1721         }
1722         qtd->urb = urb;
1723         qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1724         list_add_tail(&qtd->qtd_list, head);
1725     }
1726 
1727     /* unless the bulk/interrupt caller wants a chance to clean
1728      * up after short reads, hc should advance qh past this urb
1729      */
1730     if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1731                 || usb_pipecontrol(urb->pipe)))
1732         qtd->hw_alt_next = EHCI_LIST_END;
1733 
1734     /*
1735      * control requests may need a terminating data "status" ack;
1736      * bulk ones may need a terminating short packet (zero length).
1737      */
1738     if (likely(urb->transfer_buffer_length != 0)) {
1739         int one_more = 0;
1740 
1741         if (usb_pipecontrol(urb->pipe)) {
1742             one_more = 1;
1743             token ^= 0x0100;    /* "in" <--> "out"  */
1744             token |= QTD_TOGGLE;    /* force DATA1 */
1745         } else if (usb_pipebulk(urb->pipe)
1746                 && (urb->transfer_flags & URB_ZERO_PACKET)
1747                 && !(urb->transfer_buffer_length % maxpacket)) {
1748             one_more = 1;
1749         }
1750         if (one_more) {
1751             qtd_prev = qtd;
1752             qtd = ehci_qtd_alloc(oxu);
1753             if (unlikely(!qtd))
1754                 goto cleanup;
1755             qtd->urb = urb;
1756             qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1757             list_add_tail(&qtd->qtd_list, head);
1758 
1759             /* never any data in such packets */
1760             qtd_fill(qtd, 0, 0, token, 0);
1761         }
1762     }
1763 
1764     /* by default, enable interrupt on urb completion */
1765     qtd->hw_token |= cpu_to_le32(QTD_IOC);
1766     return head;
1767 
1768 cleanup:
1769     qtd_list_free(oxu, urb, head);
1770     return NULL;
1771 }
1772 
1773 /* Each QH holds a qtd list; a QH is used for everything except iso.
1774  *
1775  * For interrupt urbs, the scheduler must set the microframe scheduling
1776  * mask(s) each time the QH gets scheduled.  For highspeed, that's
1777  * just one microframe in the s-mask.  For split interrupt transactions
1778  * there are additional complications: c-mask, maybe FSTNs.
1779  */
1780 static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1781                 struct urb *urb, gfp_t flags)
1782 {
1783     struct ehci_qh *qh = oxu_qh_alloc(oxu);
1784     u32 info1 = 0, info2 = 0;
1785     int is_input, type;
1786     int maxp = 0;
1787 
1788     if (!qh)
1789         return qh;
1790 
1791     /*
1792      * init endpoint/device data for this QH
1793      */
1794     info1 |= usb_pipeendpoint(urb->pipe) << 8;
1795     info1 |= usb_pipedevice(urb->pipe) << 0;
1796 
1797     is_input = usb_pipein(urb->pipe);
1798     type = usb_pipetype(urb->pipe);
1799     maxp = usb_maxpacket(urb->dev, urb->pipe);
1800 
1801     /* Compute interrupt scheduling parameters just once, and save.
1802      * - allowing for high bandwidth, how many nsec/uframe are used?
1803      * - split transactions need a second CSPLIT uframe; same question
1804      * - splits also need a schedule gap (for full/low speed I/O)
1805      * - qh has a polling interval
1806      *
1807      * For control/bulk requests, the HC or TT handles these.
1808      */
1809     if (type == PIPE_INTERRUPT) {
1810         qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1811                                 is_input, 0,
1812                 hb_mult(maxp) * max_packet(maxp)));
1813         qh->start = NO_FRAME;
1814 
1815         if (urb->dev->speed == USB_SPEED_HIGH) {
1816             qh->c_usecs = 0;
1817             qh->gap_uf = 0;
1818 
1819             qh->period = urb->interval >> 3;
1820             if (qh->period == 0 && urb->interval != 1) {
1821                 /* NOTE interval 2 or 4 uframes could work.
1822                  * But interval 1 scheduling is simpler, and
1823                  * includes high bandwidth.
1824                  */
1825                 oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1826                     urb->interval);
1827                 goto done;
1828             }
1829         } else {
1830             struct usb_tt   *tt = urb->dev->tt;
1831             int     think_time;
1832 
1833             /* gap is f(FS/LS transfer times) */
1834             qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1835                     is_input, 0, maxp) / (125 * 1000);
1836 
1837             /* FIXME this just approximates SPLIT/CSPLIT times */
1838             if (is_input) {     /* SPLIT, gap, CSPLIT+DATA */
1839                 qh->c_usecs = qh->usecs + HS_USECS(0);
1840                 qh->usecs = HS_USECS(1);
1841             } else {        /* SPLIT+DATA, gap, CSPLIT */
1842                 qh->usecs += HS_USECS(1);
1843                 qh->c_usecs = HS_USECS(0);
1844             }
1845 
1846             think_time = tt ? tt->think_time : 0;
1847             qh->tt_usecs = NS_TO_US(think_time +
1848                     usb_calc_bus_time(urb->dev->speed,
1849                     is_input, 0, max_packet(maxp)));
1850             qh->period = urb->interval;
1851         }
1852     }
1853 
1854     /* support for tt scheduling, and access to toggles */
1855     qh->dev = urb->dev;
1856 
1857     /* using TT? */
1858     switch (urb->dev->speed) {
1859     case USB_SPEED_LOW:
1860         info1 |= (1 << 12); /* EPS "low" */
1861         fallthrough;
1862 
1863     case USB_SPEED_FULL:
1864         /* EPS 0 means "full" */
1865         if (type != PIPE_INTERRUPT)
1866             info1 |= (EHCI_TUNE_RL_TT << 28);
1867         if (type == PIPE_CONTROL) {
1868             info1 |= (1 << 27); /* for TT */
1869             info1 |= 1 << 14;   /* toggle from qtd */
1870         }
1871         info1 |= maxp << 16;
1872 
1873         info2 |= (EHCI_TUNE_MULT_TT << 30);
1874         info2 |= urb->dev->ttport << 23;
1875 
1876         /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1877 
1878         break;
1879 
1880     case USB_SPEED_HIGH:        /* no TT involved */
1881         info1 |= (2 << 12); /* EPS "high" */
1882         if (type == PIPE_CONTROL) {
1883             info1 |= (EHCI_TUNE_RL_HS << 28);
1884             info1 |= 64 << 16;  /* usb2 fixed maxpacket */
1885             info1 |= 1 << 14;   /* toggle from qtd */
1886             info2 |= (EHCI_TUNE_MULT_HS << 30);
1887         } else if (type == PIPE_BULK) {
1888             info1 |= (EHCI_TUNE_RL_HS << 28);
1889             info1 |= 512 << 16; /* usb2 fixed maxpacket */
1890             info2 |= (EHCI_TUNE_MULT_HS << 30);
1891         } else {        /* PIPE_INTERRUPT */
1892             info1 |= max_packet(maxp) << 16;
1893             info2 |= hb_mult(maxp) << 30;
1894         }
1895         break;
1896     default:
1897         oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1898 done:
1899         qh_put(qh);
1900         return NULL;
1901     }
1902 
1903     /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1904 
1905     /* init as live, toggle clear, advance to dummy */
1906     qh->qh_state = QH_STATE_IDLE;
1907     qh->hw_info1 = cpu_to_le32(info1);
1908     qh->hw_info2 = cpu_to_le32(info2);
1909     usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1910     qh_refresh(oxu, qh);
1911     return qh;
1912 }
1913 
1914 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1915  */
1916 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1917 {
1918     __le32 dma = QH_NEXT(qh->qh_dma);
1919     struct ehci_qh *head;
1920 
1921     /* (re)start the async schedule? */
1922     head = oxu->async;
1923     timer_action_done(oxu, TIMER_ASYNC_OFF);
1924     if (!head->qh_next.qh) {
1925         u32 cmd = readl(&oxu->regs->command);
1926 
1927         if (!(cmd & CMD_ASE)) {
1928             /* in case a clear of CMD_ASE didn't take yet */
1929             (void)handshake(oxu, &oxu->regs->status,
1930                     STS_ASS, 0, 150);
1931             cmd |= CMD_ASE | CMD_RUN;
1932             writel(cmd, &oxu->regs->command);
1933             oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1934             /* posted write need not be known to HC yet ... */
1935         }
1936     }
1937 
1938     /* clear halt and/or toggle; and maybe recover from silicon quirk */
1939     if (qh->qh_state == QH_STATE_IDLE)
1940         qh_refresh(oxu, qh);
1941 
1942     /* splice right after start */
1943     qh->qh_next = head->qh_next;
1944     qh->hw_next = head->hw_next;
1945     wmb();
1946 
1947     head->qh_next.qh = qh;
1948     head->hw_next = dma;
1949 
1950     qh->qh_state = QH_STATE_LINKED;
1951     /* qtd completions reported later by interrupt */
1952 }
1953 
1954 #define QH_ADDR_MASK    cpu_to_le32(0x7f)
1955 
1956 /*
1957  * For control/bulk/interrupt, return QH with these TDs appended.
1958  * Allocates and initializes the QH if necessary.
1959  * Returns null if it can't allocate a QH it needs to.
1960  * If the QH has TDs (urbs) already, that's great.
1961  */
1962 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1963                 struct urb *urb, struct list_head *qtd_list,
1964                 int epnum, void **ptr)
1965 {
1966     struct ehci_qh *qh = NULL;
1967 
1968     qh = (struct ehci_qh *) *ptr;
1969     if (unlikely(qh == NULL)) {
1970         /* can't sleep here, we have oxu->lock... */
1971         qh = qh_make(oxu, urb, GFP_ATOMIC);
1972         *ptr = qh;
1973     }
1974     if (likely(qh != NULL)) {
1975         struct ehci_qtd *qtd;
1976 
1977         if (unlikely(list_empty(qtd_list)))
1978             qtd = NULL;
1979         else
1980             qtd = list_entry(qtd_list->next, struct ehci_qtd,
1981                     qtd_list);
1982 
1983         /* control qh may need patching ... */
1984         if (unlikely(epnum == 0)) {
1985 
1986             /* usb_reset_device() briefly reverts to address 0 */
1987             if (usb_pipedevice(urb->pipe) == 0)
1988                 qh->hw_info1 &= ~QH_ADDR_MASK;
1989         }
1990 
1991         /* just one way to queue requests: swap with the dummy qtd.
1992          * only hc or qh_refresh() ever modify the overlay.
1993          */
1994         if (likely(qtd != NULL)) {
1995             struct ehci_qtd *dummy;
1996             dma_addr_t dma;
1997             __le32 token;
1998 
1999             /* to avoid racing the HC, use the dummy td instead of
2000              * the first td of our list (becomes new dummy).  both
2001              * tds stay deactivated until we're done, when the
2002              * HC is allowed to fetch the old dummy (4.10.2).
2003              */
2004             token = qtd->hw_token;
2005             qtd->hw_token = HALT_BIT;
2006             wmb();
2007             dummy = qh->dummy;
2008 
2009             dma = dummy->qtd_dma;
2010             *dummy = *qtd;
2011             dummy->qtd_dma = dma;
2012 
2013             list_del(&qtd->qtd_list);
2014             list_add(&dummy->qtd_list, qtd_list);
2015             list_splice(qtd_list, qh->qtd_list.prev);
2016 
2017             ehci_qtd_init(qtd, qtd->qtd_dma);
2018             qh->dummy = qtd;
2019 
2020             /* hc must see the new dummy at list end */
2021             dma = qtd->qtd_dma;
2022             qtd = list_entry(qh->qtd_list.prev,
2023                     struct ehci_qtd, qtd_list);
2024             qtd->hw_next = QTD_NEXT(dma);
2025 
2026             /* let the hc process these next qtds */
2027             dummy->hw_token = (token & ~(0x80));
2028             wmb();
2029             dummy->hw_token = token;
2030 
2031             urb->hcpriv = qh_get(qh);
2032         }
2033     }
2034     return qh;
2035 }
2036 
2037 static int submit_async(struct oxu_hcd  *oxu, struct urb *urb,
2038             struct list_head *qtd_list, gfp_t mem_flags)
2039 {
2040     int epnum = urb->ep->desc.bEndpointAddress;
2041     unsigned long flags;
2042     struct ehci_qh *qh = NULL;
2043     int rc = 0;
2044 #ifdef OXU_URB_TRACE
2045     struct ehci_qtd *qtd;
2046 
2047     qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
2048 
2049     oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2050         __func__, urb->dev->devpath, urb,
2051         epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
2052         urb->transfer_buffer_length,
2053         qtd, urb->ep->hcpriv);
2054 #endif
2055 
2056     spin_lock_irqsave(&oxu->lock, flags);
2057     if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2058         rc = -ESHUTDOWN;
2059         goto done;
2060     }
2061 
2062     qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2063     if (unlikely(qh == NULL)) {
2064         rc = -ENOMEM;
2065         goto done;
2066     }
2067 
2068     /* Control/bulk operations through TTs don't need scheduling,
2069      * the HC and TT handle it when the TT has a buffer ready.
2070      */
2071     if (likely(qh->qh_state == QH_STATE_IDLE))
2072         qh_link_async(oxu, qh_get(qh));
2073 done:
2074     spin_unlock_irqrestore(&oxu->lock, flags);
2075     if (unlikely(qh == NULL))
2076         qtd_list_free(oxu, urb, qtd_list);
2077     return rc;
2078 }
2079 
2080 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
2081 
2082 static void end_unlink_async(struct oxu_hcd *oxu)
2083 {
2084     struct ehci_qh *qh = oxu->reclaim;
2085     struct ehci_qh *next;
2086 
2087     timer_action_done(oxu, TIMER_IAA_WATCHDOG);
2088 
2089     qh->qh_state = QH_STATE_IDLE;
2090     qh->qh_next.qh = NULL;
2091     qh_put(qh);         /* refcount from reclaim */
2092 
2093     /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
2094     next = qh->reclaim;
2095     oxu->reclaim = next;
2096     oxu->reclaim_ready = 0;
2097     qh->reclaim = NULL;
2098 
2099     qh_completions(oxu, qh);
2100 
2101     if (!list_empty(&qh->qtd_list)
2102             && HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2103         qh_link_async(oxu, qh);
2104     else {
2105         qh_put(qh);     /* refcount from async list */
2106 
2107         /* it's not free to turn the async schedule on/off; leave it
2108          * active but idle for a while once it empties.
2109          */
2110         if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
2111                 && oxu->async->qh_next.qh == NULL)
2112             timer_action(oxu, TIMER_ASYNC_OFF);
2113     }
2114 
2115     if (next) {
2116         oxu->reclaim = NULL;
2117         start_unlink_async(oxu, next);
2118     }
2119 }
2120 
2121 /* makes sure the async qh will become idle */
2122 /* caller must own oxu->lock */
2123 
2124 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2125 {
2126     int cmd = readl(&oxu->regs->command);
2127     struct ehci_qh *prev;
2128 
2129 #ifdef DEBUG
2130     assert_spin_locked(&oxu->lock);
2131     BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
2132                 && qh->qh_state != QH_STATE_UNLINK_WAIT));
2133 #endif
2134 
2135     /* stop async schedule right now? */
2136     if (unlikely(qh == oxu->async)) {
2137         /* can't get here without STS_ASS set */
2138         if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
2139                 && !oxu->reclaim) {
2140             /* ... and CMD_IAAD clear */
2141             writel(cmd & ~CMD_ASE, &oxu->regs->command);
2142             wmb();
2143             /* handshake later, if we need to */
2144             timer_action_done(oxu, TIMER_ASYNC_OFF);
2145         }
2146         return;
2147     }
2148 
2149     qh->qh_state = QH_STATE_UNLINK;
2150     oxu->reclaim = qh = qh_get(qh);
2151 
2152     prev = oxu->async;
2153     while (prev->qh_next.qh != qh)
2154         prev = prev->qh_next.qh;
2155 
2156     prev->hw_next = qh->hw_next;
2157     prev->qh_next = qh->qh_next;
2158     wmb();
2159 
2160     if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
2161         /* if (unlikely(qh->reclaim != 0))
2162          *  this will recurse, probably not much
2163          */
2164         end_unlink_async(oxu);
2165         return;
2166     }
2167 
2168     oxu->reclaim_ready = 0;
2169     cmd |= CMD_IAAD;
2170     writel(cmd, &oxu->regs->command);
2171     (void) readl(&oxu->regs->command);
2172     timer_action(oxu, TIMER_IAA_WATCHDOG);
2173 }
2174 
2175 static void scan_async(struct oxu_hcd *oxu)
2176 {
2177     struct ehci_qh *qh;
2178     enum ehci_timer_action action = TIMER_IO_WATCHDOG;
2179 
2180     if (!++(oxu->stamp))
2181         oxu->stamp++;
2182     timer_action_done(oxu, TIMER_ASYNC_SHRINK);
2183 rescan:
2184     qh = oxu->async->qh_next.qh;
2185     if (likely(qh != NULL)) {
2186         do {
2187             /* clean any finished work for this qh */
2188             if (!list_empty(&qh->qtd_list)
2189                     && qh->stamp != oxu->stamp) {
2190                 int temp;
2191 
2192                 /* unlinks could happen here; completion
2193                  * reporting drops the lock.  rescan using
2194                  * the latest schedule, but don't rescan
2195                  * qhs we already finished (no looping).
2196                  */
2197                 qh = qh_get(qh);
2198                 qh->stamp = oxu->stamp;
2199                 temp = qh_completions(oxu, qh);
2200                 qh_put(qh);
2201                 if (temp != 0)
2202                     goto rescan;
2203             }
2204 
2205             /* unlink idle entries, reducing HC PCI usage as well
2206              * as HCD schedule-scanning costs.  delay for any qh
2207              * we just scanned, there's a not-unusual case that it
2208              * doesn't stay idle for long.
2209              * (plus, avoids some kind of re-activation race.)
2210              */
2211             if (list_empty(&qh->qtd_list)) {
2212                 if (qh->stamp == oxu->stamp)
2213                     action = TIMER_ASYNC_SHRINK;
2214                 else if (!oxu->reclaim
2215                         && qh->qh_state == QH_STATE_LINKED)
2216                     start_unlink_async(oxu, qh);
2217             }
2218 
2219             qh = qh->qh_next.qh;
2220         } while (qh);
2221     }
2222     if (action == TIMER_ASYNC_SHRINK)
2223         timer_action(oxu, TIMER_ASYNC_SHRINK);
2224 }
2225 
2226 /*
2227  * periodic_next_shadow - return "next" pointer on shadow list
2228  * @periodic: host pointer to qh/itd/sitd
2229  * @tag: hardware tag for type of this record
2230  */
2231 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
2232                         __le32 tag)
2233 {
2234     switch (tag) {
2235     default:
2236     case Q_TYPE_QH:
2237         return &periodic->qh->qh_next;
2238     }
2239 }
2240 
2241 /* caller must hold oxu->lock */
2242 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
2243 {
2244     union ehci_shadow *prev_p = &oxu->pshadow[frame];
2245     __le32 *hw_p = &oxu->periodic[frame];
2246     union ehci_shadow here = *prev_p;
2247 
2248     /* find predecessor of "ptr"; hw and shadow lists are in sync */
2249     while (here.ptr && here.ptr != ptr) {
2250         prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
2251         hw_p = here.hw_next;
2252         here = *prev_p;
2253     }
2254     /* an interrupt entry (at list end) could have been shared */
2255     if (!here.ptr)
2256         return;
2257 
2258     /* update shadow and hardware lists ... the old "next" pointers
2259      * from ptr may still be in use, the caller updates them.
2260      */
2261     *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
2262     *hw_p = *here.hw_next;
2263 }
2264 
2265 /* how many of the uframe's 125 usecs are allocated? */
2266 static unsigned short periodic_usecs(struct oxu_hcd *oxu,
2267                     unsigned frame, unsigned uframe)
2268 {
2269     __le32 *hw_p = &oxu->periodic[frame];
2270     union ehci_shadow *q = &oxu->pshadow[frame];
2271     unsigned usecs = 0;
2272 
2273     while (q->ptr) {
2274         switch (Q_NEXT_TYPE(*hw_p)) {
2275         case Q_TYPE_QH:
2276         default:
2277             /* is it in the S-mask? */
2278             if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
2279                 usecs += q->qh->usecs;
2280             /* ... or C-mask? */
2281             if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
2282                 usecs += q->qh->c_usecs;
2283             hw_p = &q->qh->hw_next;
2284             q = &q->qh->qh_next;
2285             break;
2286         }
2287     }
2288 #ifdef DEBUG
2289     if (usecs > 100)
2290         oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
2291                         frame * 8 + uframe, usecs);
2292 #endif
2293     return usecs;
2294 }
2295 
2296 static int enable_periodic(struct oxu_hcd *oxu)
2297 {
2298     u32 cmd;
2299     int status;
2300 
2301     /* did clearing PSE did take effect yet?
2302      * takes effect only at frame boundaries...
2303      */
2304     status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
2305     if (status != 0) {
2306         oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2307         usb_hc_died(oxu_to_hcd(oxu));
2308         return status;
2309     }
2310 
2311     cmd = readl(&oxu->regs->command) | CMD_PSE;
2312     writel(cmd, &oxu->regs->command);
2313     /* posted write ... PSS happens later */
2314     oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
2315 
2316     /* make sure ehci_work scans these */
2317     oxu->next_uframe = readl(&oxu->regs->frame_index)
2318         % (oxu->periodic_size << 3);
2319     return 0;
2320 }
2321 
2322 static int disable_periodic(struct oxu_hcd *oxu)
2323 {
2324     u32 cmd;
2325     int status;
2326 
2327     /* did setting PSE not take effect yet?
2328      * takes effect only at frame boundaries...
2329      */
2330     status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
2331     if (status != 0) {
2332         oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2333         usb_hc_died(oxu_to_hcd(oxu));
2334         return status;
2335     }
2336 
2337     cmd = readl(&oxu->regs->command) & ~CMD_PSE;
2338     writel(cmd, &oxu->regs->command);
2339     /* posted write ... */
2340 
2341     oxu->next_uframe = -1;
2342     return 0;
2343 }
2344 
2345 /* periodic schedule slots have iso tds (normal or split) first, then a
2346  * sparse tree for active interrupt transfers.
2347  *
2348  * this just links in a qh; caller guarantees uframe masks are set right.
2349  * no FSTN support (yet; oxu 0.96+)
2350  */
2351 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2352 {
2353     unsigned i;
2354     unsigned period = qh->period;
2355 
2356     dev_dbg(&qh->dev->dev,
2357         "link qh%d-%04x/%p start %d [%d/%d us]\n",
2358         period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2359         qh, qh->start, qh->usecs, qh->c_usecs);
2360 
2361     /* high bandwidth, or otherwise every microframe */
2362     if (period == 0)
2363         period = 1;
2364 
2365     for (i = qh->start; i < oxu->periodic_size; i += period) {
2366         union ehci_shadow   *prev = &oxu->pshadow[i];
2367         __le32          *hw_p = &oxu->periodic[i];
2368         union ehci_shadow   here = *prev;
2369         __le32          type = 0;
2370 
2371         /* skip the iso nodes at list head */
2372         while (here.ptr) {
2373             type = Q_NEXT_TYPE(*hw_p);
2374             if (type == Q_TYPE_QH)
2375                 break;
2376             prev = periodic_next_shadow(prev, type);
2377             hw_p = &here.qh->hw_next;
2378             here = *prev;
2379         }
2380 
2381         /* sorting each branch by period (slow-->fast)
2382          * enables sharing interior tree nodes
2383          */
2384         while (here.ptr && qh != here.qh) {
2385             if (qh->period > here.qh->period)
2386                 break;
2387             prev = &here.qh->qh_next;
2388             hw_p = &here.qh->hw_next;
2389             here = *prev;
2390         }
2391         /* link in this qh, unless some earlier pass did that */
2392         if (qh != here.qh) {
2393             qh->qh_next = here;
2394             if (here.qh)
2395                 qh->hw_next = *hw_p;
2396             wmb();
2397             prev->qh = qh;
2398             *hw_p = QH_NEXT(qh->qh_dma);
2399         }
2400     }
2401     qh->qh_state = QH_STATE_LINKED;
2402     qh_get(qh);
2403 
2404     /* update per-qh bandwidth for usbfs */
2405     oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
2406         ? ((qh->usecs + qh->c_usecs) / qh->period)
2407         : (qh->usecs * 8);
2408 
2409     /* maybe enable periodic schedule processing */
2410     if (!oxu->periodic_sched++)
2411         return enable_periodic(oxu);
2412 
2413     return 0;
2414 }
2415 
2416 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2417 {
2418     unsigned i;
2419     unsigned period;
2420 
2421     /* FIXME:
2422      *   IF this isn't high speed
2423      *   and this qh is active in the current uframe
2424      *   (and overlay token SplitXstate is false?)
2425      * THEN
2426      *   qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2427      */
2428 
2429     /* high bandwidth, or otherwise part of every microframe */
2430     period = qh->period;
2431     if (period == 0)
2432         period = 1;
2433 
2434     for (i = qh->start; i < oxu->periodic_size; i += period)
2435         periodic_unlink(oxu, i, qh);
2436 
2437     /* update per-qh bandwidth for usbfs */
2438     oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2439         ? ((qh->usecs + qh->c_usecs) / qh->period)
2440         : (qh->usecs * 8);
2441 
2442     dev_dbg(&qh->dev->dev,
2443         "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2444         qh->period,
2445         le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2446         qh, qh->start, qh->usecs, qh->c_usecs);
2447 
2448     /* qh->qh_next still "live" to HC */
2449     qh->qh_state = QH_STATE_UNLINK;
2450     qh->qh_next.ptr = NULL;
2451     qh_put(qh);
2452 
2453     /* maybe turn off periodic schedule */
2454     oxu->periodic_sched--;
2455     if (!oxu->periodic_sched)
2456         (void) disable_periodic(oxu);
2457 }
2458 
2459 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2460 {
2461     unsigned wait;
2462 
2463     qh_unlink_periodic(oxu, qh);
2464 
2465     /* simple/paranoid:  always delay, expecting the HC needs to read
2466      * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2467      * expect hub_wq to clean up after any CSPLITs we won't issue.
2468      * active high speed queues may need bigger delays...
2469      */
2470     if (list_empty(&qh->qtd_list)
2471         || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2472         wait = 2;
2473     else
2474         wait = 55;  /* worst case: 3 * 1024 */
2475 
2476     udelay(wait);
2477     qh->qh_state = QH_STATE_IDLE;
2478     qh->hw_next = EHCI_LIST_END;
2479     wmb();
2480 }
2481 
2482 static int check_period(struct oxu_hcd *oxu,
2483             unsigned frame, unsigned uframe,
2484             unsigned period, unsigned usecs)
2485 {
2486     int claimed;
2487 
2488     /* complete split running into next frame?
2489      * given FSTN support, we could sometimes check...
2490      */
2491     if (uframe >= 8)
2492         return 0;
2493 
2494     /*
2495      * 80% periodic == 100 usec/uframe available
2496      * convert "usecs we need" to "max already claimed"
2497      */
2498     usecs = 100 - usecs;
2499 
2500     /* we "know" 2 and 4 uframe intervals were rejected; so
2501      * for period 0, check _every_ microframe in the schedule.
2502      */
2503     if (unlikely(period == 0)) {
2504         do {
2505             for (uframe = 0; uframe < 7; uframe++) {
2506                 claimed = periodic_usecs(oxu, frame, uframe);
2507                 if (claimed > usecs)
2508                     return 0;
2509             }
2510         } while ((frame += 1) < oxu->periodic_size);
2511 
2512     /* just check the specified uframe, at that period */
2513     } else {
2514         do {
2515             claimed = periodic_usecs(oxu, frame, uframe);
2516             if (claimed > usecs)
2517                 return 0;
2518         } while ((frame += period) < oxu->periodic_size);
2519     }
2520 
2521     return 1;
2522 }
2523 
2524 static int check_intr_schedule(struct oxu_hcd   *oxu,
2525                 unsigned frame, unsigned uframe,
2526                 const struct ehci_qh *qh, __le32 *c_maskp)
2527 {
2528     int retval = -ENOSPC;
2529 
2530     if (qh->c_usecs && uframe >= 6)     /* FSTN territory? */
2531         goto done;
2532 
2533     if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2534         goto done;
2535     if (!qh->c_usecs) {
2536         retval = 0;
2537         *c_maskp = 0;
2538         goto done;
2539     }
2540 
2541 done:
2542     return retval;
2543 }
2544 
2545 /* "first fit" scheduling policy used the first time through,
2546  * or when the previous schedule slot can't be re-used.
2547  */
2548 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2549 {
2550     int     status;
2551     unsigned    uframe;
2552     __le32      c_mask;
2553     unsigned    frame;      /* 0..(qh->period - 1), or NO_FRAME */
2554 
2555     qh_refresh(oxu, qh);
2556     qh->hw_next = EHCI_LIST_END;
2557     frame = qh->start;
2558 
2559     /* reuse the previous schedule slots, if we can */
2560     if (frame < qh->period) {
2561         uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2562         status = check_intr_schedule(oxu, frame, --uframe,
2563                 qh, &c_mask);
2564     } else {
2565         uframe = 0;
2566         c_mask = 0;
2567         status = -ENOSPC;
2568     }
2569 
2570     /* else scan the schedule to find a group of slots such that all
2571      * uframes have enough periodic bandwidth available.
2572      */
2573     if (status) {
2574         /* "normal" case, uframing flexible except with splits */
2575         if (qh->period) {
2576             frame = qh->period - 1;
2577             do {
2578                 for (uframe = 0; uframe < 8; uframe++) {
2579                     status = check_intr_schedule(oxu,
2580                             frame, uframe, qh,
2581                             &c_mask);
2582                     if (status == 0)
2583                         break;
2584                 }
2585             } while (status && frame--);
2586 
2587         /* qh->period == 0 means every uframe */
2588         } else {
2589             frame = 0;
2590             status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2591         }
2592         if (status)
2593             goto done;
2594         qh->start = frame;
2595 
2596         /* reset S-frame and (maybe) C-frame masks */
2597         qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2598         qh->hw_info2 |= qh->period
2599             ? cpu_to_le32(1 << uframe)
2600             : cpu_to_le32(QH_SMASK);
2601         qh->hw_info2 |= c_mask;
2602     } else
2603         oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2604 
2605     /* stuff into the periodic schedule */
2606     status = qh_link_periodic(oxu, qh);
2607 done:
2608     return status;
2609 }
2610 
2611 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2612             struct list_head *qtd_list, gfp_t mem_flags)
2613 {
2614     unsigned epnum;
2615     unsigned long flags;
2616     struct ehci_qh *qh;
2617     int status = 0;
2618     struct list_head    empty;
2619 
2620     /* get endpoint and transfer/schedule data */
2621     epnum = urb->ep->desc.bEndpointAddress;
2622 
2623     spin_lock_irqsave(&oxu->lock, flags);
2624 
2625     if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2626         status = -ESHUTDOWN;
2627         goto done;
2628     }
2629 
2630     /* get qh and force any scheduling errors */
2631     INIT_LIST_HEAD(&empty);
2632     qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2633     if (qh == NULL) {
2634         status = -ENOMEM;
2635         goto done;
2636     }
2637     if (qh->qh_state == QH_STATE_IDLE) {
2638         status = qh_schedule(oxu, qh);
2639         if (status != 0)
2640             goto done;
2641     }
2642 
2643     /* then queue the urb's tds to the qh */
2644     qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2645     BUG_ON(qh == NULL);
2646 
2647     /* ... update usbfs periodic stats */
2648     oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2649 
2650 done:
2651     spin_unlock_irqrestore(&oxu->lock, flags);
2652     if (status)
2653         qtd_list_free(oxu, urb, qtd_list);
2654 
2655     return status;
2656 }
2657 
2658 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2659                         gfp_t mem_flags)
2660 {
2661     oxu_dbg(oxu, "iso support is missing!\n");
2662     return -ENOSYS;
2663 }
2664 
2665 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2666                         gfp_t mem_flags)
2667 {
2668     oxu_dbg(oxu, "split iso support is missing!\n");
2669     return -ENOSYS;
2670 }
2671 
2672 static void scan_periodic(struct oxu_hcd *oxu)
2673 {
2674     unsigned frame, clock, now_uframe, mod;
2675     unsigned modified;
2676 
2677     mod = oxu->periodic_size << 3;
2678 
2679     /*
2680      * When running, scan from last scan point up to "now"
2681      * else clean up by scanning everything that's left.
2682      * Touches as few pages as possible:  cache-friendly.
2683      */
2684     now_uframe = oxu->next_uframe;
2685     if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2686         clock = readl(&oxu->regs->frame_index);
2687     else
2688         clock = now_uframe + mod - 1;
2689     clock %= mod;
2690 
2691     for (;;) {
2692         union ehci_shadow   q, *q_p;
2693         __le32          type, *hw_p;
2694 
2695         /* don't scan past the live uframe */
2696         frame = now_uframe >> 3;
2697         if (frame != (clock >> 3)) {
2698             /* safe to scan the whole frame at once */
2699             now_uframe |= 0x07;
2700         }
2701 
2702 restart:
2703         /* scan each element in frame's queue for completions */
2704         q_p = &oxu->pshadow[frame];
2705         hw_p = &oxu->periodic[frame];
2706         q.ptr = q_p->ptr;
2707         type = Q_NEXT_TYPE(*hw_p);
2708         modified = 0;
2709 
2710         while (q.ptr != NULL) {
2711             union ehci_shadow temp;
2712 
2713             switch (type) {
2714             case Q_TYPE_QH:
2715                 /* handle any completions */
2716                 temp.qh = qh_get(q.qh);
2717                 type = Q_NEXT_TYPE(q.qh->hw_next);
2718                 q = q.qh->qh_next;
2719                 modified = qh_completions(oxu, temp.qh);
2720                 if (unlikely(list_empty(&temp.qh->qtd_list)))
2721                     intr_deschedule(oxu, temp.qh);
2722                 qh_put(temp.qh);
2723                 break;
2724             default:
2725                 oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2726                     type, frame, q.ptr);
2727                 q.ptr = NULL;
2728             }
2729 
2730             /* assume completion callbacks modify the queue */
2731             if (unlikely(modified))
2732                 goto restart;
2733         }
2734 
2735         /* Stop when we catch up to the HC */
2736 
2737         /* FIXME:  this assumes we won't get lapped when
2738          * latencies climb; that should be rare, but...
2739          * detect it, and just go all the way around.
2740          * FLR might help detect this case, so long as latencies
2741          * don't exceed periodic_size msec (default 1.024 sec).
2742          */
2743 
2744         /* FIXME: likewise assumes HC doesn't halt mid-scan */
2745 
2746         if (now_uframe == clock) {
2747             unsigned    now;
2748 
2749             if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2750                 break;
2751             oxu->next_uframe = now_uframe;
2752             now = readl(&oxu->regs->frame_index) % mod;
2753             if (now_uframe == now)
2754                 break;
2755 
2756             /* rescan the rest of this frame, then ... */
2757             clock = now;
2758         } else {
2759             now_uframe++;
2760             now_uframe %= mod;
2761         }
2762     }
2763 }
2764 
2765 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2766  * The firmware seems to think that powering off is a wakeup event!
2767  * This routine turns off remote wakeup and everything else, on all ports.
2768  */
2769 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2770 {
2771     int port = HCS_N_PORTS(oxu->hcs_params);
2772 
2773     while (port--)
2774         writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2775 }
2776 
2777 static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2778 {
2779     unsigned port;
2780 
2781     if (!HCS_PPC(oxu->hcs_params))
2782         return;
2783 
2784     oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2785     for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) {
2786         if (is_on)
2787             oxu_hub_control(oxu_to_hcd(oxu), SetPortFeature,
2788                 USB_PORT_FEAT_POWER, port--, NULL, 0);
2789         else
2790             oxu_hub_control(oxu_to_hcd(oxu), ClearPortFeature,
2791                 USB_PORT_FEAT_POWER, port--, NULL, 0);
2792     }
2793 
2794     msleep(20);
2795 }
2796 
2797 /* Called from some interrupts, timers, and so on.
2798  * It calls driver completion functions, after dropping oxu->lock.
2799  */
2800 static void ehci_work(struct oxu_hcd *oxu)
2801 {
2802     timer_action_done(oxu, TIMER_IO_WATCHDOG);
2803     if (oxu->reclaim_ready)
2804         end_unlink_async(oxu);
2805 
2806     /* another CPU may drop oxu->lock during a schedule scan while
2807      * it reports urb completions.  this flag guards against bogus
2808      * attempts at re-entrant schedule scanning.
2809      */
2810     if (oxu->scanning)
2811         return;
2812     oxu->scanning = 1;
2813     scan_async(oxu);
2814     if (oxu->next_uframe != -1)
2815         scan_periodic(oxu);
2816     oxu->scanning = 0;
2817 
2818     /* the IO watchdog guards against hardware or driver bugs that
2819      * misplace IRQs, and should let us run completely without IRQs.
2820      * such lossage has been observed on both VT6202 and VT8235.
2821      */
2822     if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2823             (oxu->async->qh_next.ptr != NULL ||
2824              oxu->periodic_sched != 0))
2825         timer_action(oxu, TIMER_IO_WATCHDOG);
2826 }
2827 
2828 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2829 {
2830     /* if we need to use IAA and it's busy, defer */
2831     if (qh->qh_state == QH_STATE_LINKED
2832             && oxu->reclaim
2833             && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2834         struct ehci_qh      *last;
2835 
2836         for (last = oxu->reclaim;
2837                 last->reclaim;
2838                 last = last->reclaim)
2839             continue;
2840         qh->qh_state = QH_STATE_UNLINK_WAIT;
2841         last->reclaim = qh;
2842 
2843     /* bypass IAA if the hc can't care */
2844     } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2845         end_unlink_async(oxu);
2846 
2847     /* something else might have unlinked the qh by now */
2848     if (qh->qh_state == QH_STATE_LINKED)
2849         start_unlink_async(oxu, qh);
2850 }
2851 
2852 /*
2853  * USB host controller methods
2854  */
2855 
2856 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2857 {
2858     struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2859     u32 status, pcd_status = 0;
2860     int bh;
2861 
2862     spin_lock(&oxu->lock);
2863 
2864     status = readl(&oxu->regs->status);
2865 
2866     /* e.g. cardbus physical eject */
2867     if (status == ~(u32) 0) {
2868         oxu_dbg(oxu, "device removed\n");
2869         goto dead;
2870     }
2871 
2872     /* Shared IRQ? */
2873     status &= INTR_MASK;
2874     if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2875         spin_unlock(&oxu->lock);
2876         return IRQ_NONE;
2877     }
2878 
2879     /* clear (just) interrupts */
2880     writel(status, &oxu->regs->status);
2881     readl(&oxu->regs->command); /* unblock posted write */
2882     bh = 0;
2883 
2884 #ifdef OXU_VERBOSE_DEBUG
2885     /* unrequested/ignored: Frame List Rollover */
2886     dbg_status(oxu, "irq", status);
2887 #endif
2888 
2889     /* INT, ERR, and IAA interrupt rates can be throttled */
2890 
2891     /* normal [4.15.1.2] or error [4.15.1.1] completion */
2892     if (likely((status & (STS_INT|STS_ERR)) != 0))
2893         bh = 1;
2894 
2895     /* complete the unlinking of some qh [4.15.2.3] */
2896     if (status & STS_IAA) {
2897         oxu->reclaim_ready = 1;
2898         bh = 1;
2899     }
2900 
2901     /* remote wakeup [4.3.1] */
2902     if (status & STS_PCD) {
2903         unsigned i = HCS_N_PORTS(oxu->hcs_params);
2904         pcd_status = status;
2905 
2906         /* resume root hub? */
2907         if (!(readl(&oxu->regs->command) & CMD_RUN))
2908             usb_hcd_resume_root_hub(hcd);
2909 
2910         while (i--) {
2911             int pstatus = readl(&oxu->regs->port_status[i]);
2912 
2913             if (pstatus & PORT_OWNER)
2914                 continue;
2915             if (!(pstatus & PORT_RESUME)
2916                     || oxu->reset_done[i] != 0)
2917                 continue;
2918 
2919             /* start USB_RESUME_TIMEOUT resume signaling from this
2920              * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2921              * stop that signaling.
2922              */
2923             oxu->reset_done[i] = jiffies +
2924                 msecs_to_jiffies(USB_RESUME_TIMEOUT);
2925             oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2926             mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2927         }
2928     }
2929 
2930     /* PCI errors [4.15.2.4] */
2931     if (unlikely((status & STS_FATAL) != 0)) {
2932         /* bogus "fatal" IRQs appear on some chips... why?  */
2933         status = readl(&oxu->regs->status);
2934         dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2935         dbg_status(oxu, "fatal", status);
2936         if (status & STS_HALT) {
2937             oxu_err(oxu, "fatal error\n");
2938 dead:
2939             ehci_reset(oxu);
2940             writel(0, &oxu->regs->configured_flag);
2941             usb_hc_died(hcd);
2942             /* generic layer kills/unlinks all urbs, then
2943              * uses oxu_stop to clean up the rest
2944              */
2945             bh = 1;
2946         }
2947     }
2948 
2949     if (bh)
2950         ehci_work(oxu);
2951     spin_unlock(&oxu->lock);
2952     if (pcd_status & STS_PCD)
2953         usb_hcd_poll_rh_status(hcd);
2954     return IRQ_HANDLED;
2955 }
2956 
2957 static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2958 {
2959     struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2960     int ret = IRQ_HANDLED;
2961 
2962     u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2963     u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2964 
2965     /* Disable all interrupt */
2966     oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2967 
2968     if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2969         (!oxu->is_otg && (status & OXU_USBSPHI)))
2970         oxu210_hcd_irq(hcd);
2971     else
2972         ret = IRQ_NONE;
2973 
2974     /* Enable all interrupt back */
2975     oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2976 
2977     return ret;
2978 }
2979 
2980 static void oxu_watchdog(struct timer_list *t)
2981 {
2982     struct oxu_hcd  *oxu = from_timer(oxu, t, watchdog);
2983     unsigned long flags;
2984 
2985     spin_lock_irqsave(&oxu->lock, flags);
2986 
2987     /* lost IAA irqs wedge things badly; seen with a vt8235 */
2988     if (oxu->reclaim) {
2989         u32 status = readl(&oxu->regs->status);
2990         if (status & STS_IAA) {
2991             oxu_vdbg(oxu, "lost IAA\n");
2992             writel(STS_IAA, &oxu->regs->status);
2993             oxu->reclaim_ready = 1;
2994         }
2995     }
2996 
2997     /* stop async processing after it's idled a bit */
2998     if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2999         start_unlink_async(oxu, oxu->async);
3000 
3001     /* oxu could run by timer, without IRQs ... */
3002     ehci_work(oxu);
3003 
3004     spin_unlock_irqrestore(&oxu->lock, flags);
3005 }
3006 
3007 /* One-time init, only for memory state.
3008  */
3009 static int oxu_hcd_init(struct usb_hcd *hcd)
3010 {
3011     struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3012     u32 temp;
3013     int retval;
3014     u32 hcc_params;
3015 
3016     spin_lock_init(&oxu->lock);
3017 
3018     timer_setup(&oxu->watchdog, oxu_watchdog, 0);
3019 
3020     /*
3021      * hw default: 1K periodic list heads, one per frame.
3022      * periodic_size can shrink by USBCMD update if hcc_params allows.
3023      */
3024     oxu->periodic_size = DEFAULT_I_TDPS;
3025     retval = ehci_mem_init(oxu, GFP_KERNEL);
3026     if (retval < 0)
3027         return retval;
3028 
3029     /* controllers may cache some of the periodic schedule ... */
3030     hcc_params = readl(&oxu->caps->hcc_params);
3031     if (HCC_ISOC_CACHE(hcc_params))     /* full frame cache */
3032         oxu->i_thresh = 8;
3033     else                    /* N microframes cached */
3034         oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
3035 
3036     oxu->reclaim = NULL;
3037     oxu->reclaim_ready = 0;
3038     oxu->next_uframe = -1;
3039 
3040     /*
3041      * dedicate a qh for the async ring head, since we couldn't unlink
3042      * a 'real' qh without stopping the async schedule [4.8].  use it
3043      * as the 'reclamation list head' too.
3044      * its dummy is used in hw_alt_next of many tds, to prevent the qh
3045      * from automatically advancing to the next td after short reads.
3046      */
3047     oxu->async->qh_next.qh = NULL;
3048     oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
3049     oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
3050     oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
3051     oxu->async->hw_qtd_next = EHCI_LIST_END;
3052     oxu->async->qh_state = QH_STATE_LINKED;
3053     oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
3054 
3055     /* clear interrupt enables, set irq latency */
3056     if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
3057         log2_irq_thresh = 0;
3058     temp = 1 << (16 + log2_irq_thresh);
3059     if (HCC_CANPARK(hcc_params)) {
3060         /* HW default park == 3, on hardware that supports it (like
3061          * NVidia and ALI silicon), maximizes throughput on the async
3062          * schedule by avoiding QH fetches between transfers.
3063          *
3064          * With fast usb storage devices and NForce2, "park" seems to
3065          * make problems:  throughput reduction (!), data errors...
3066          */
3067         if (park) {
3068             park = min(park, (unsigned) 3);
3069             temp |= CMD_PARK;
3070             temp |= park << 8;
3071         }
3072         oxu_dbg(oxu, "park %d\n", park);
3073     }
3074     if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
3075         /* periodic schedule size can be smaller than default */
3076         temp &= ~(3 << 2);
3077         temp |= (EHCI_TUNE_FLS << 2);
3078     }
3079     oxu->command = temp;
3080 
3081     return 0;
3082 }
3083 
3084 /* Called during probe() after chip reset completes.
3085  */
3086 static int oxu_reset(struct usb_hcd *hcd)
3087 {
3088     struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3089 
3090     spin_lock_init(&oxu->mem_lock);
3091     INIT_LIST_HEAD(&oxu->urb_list);
3092     oxu->urb_len = 0;
3093 
3094     if (oxu->is_otg) {
3095         oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
3096         oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
3097             HC_LENGTH(readl(&oxu->caps->hc_capbase));
3098 
3099         oxu->mem = hcd->regs + OXU_SPH_MEM;
3100     } else {
3101         oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
3102         oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
3103             HC_LENGTH(readl(&oxu->caps->hc_capbase));
3104 
3105         oxu->mem = hcd->regs + OXU_OTG_MEM;
3106     }
3107 
3108     oxu->hcs_params = readl(&oxu->caps->hcs_params);
3109     oxu->sbrn = 0x20;
3110 
3111     return oxu_hcd_init(hcd);
3112 }
3113 
3114 static int oxu_run(struct usb_hcd *hcd)
3115 {
3116     struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3117     int retval;
3118     u32 temp, hcc_params;
3119 
3120     hcd->uses_new_polling = 1;
3121 
3122     /* EHCI spec section 4.1 */
3123     retval = ehci_reset(oxu);
3124     if (retval != 0) {
3125         ehci_mem_cleanup(oxu);
3126         return retval;
3127     }
3128     writel(oxu->periodic_dma, &oxu->regs->frame_list);
3129     writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3130 
3131     /* hcc_params controls whether oxu->regs->segment must (!!!)
3132      * be used; it constrains QH/ITD/SITD and QTD locations.
3133      * dma_pool consistent memory always uses segment zero.
3134      * streaming mappings for I/O buffers, like dma_map_single(),
3135      * can return segments above 4GB, if the device allows.
3136      *
3137      * NOTE:  the dma mask is visible through dev->dma_mask, so
3138      * drivers can pass this info along ... like NETIF_F_HIGHDMA,
3139      * Scsi_Host.highmem_io, and so forth.  It's readonly to all
3140      * host side drivers though.
3141      */
3142     hcc_params = readl(&oxu->caps->hcc_params);
3143     if (HCC_64BIT_ADDR(hcc_params))
3144         writel(0, &oxu->regs->segment);
3145 
3146     oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
3147                 CMD_ASE | CMD_RESET);
3148     oxu->command |= CMD_RUN;
3149     writel(oxu->command, &oxu->regs->command);
3150     dbg_cmd(oxu, "init", oxu->command);
3151 
3152     /*
3153      * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
3154      * are explicitly handed to companion controller(s), so no TT is
3155      * involved with the root hub.  (Except where one is integrated,
3156      * and there's no companion controller unless maybe for USB OTG.)
3157      */
3158     hcd->state = HC_STATE_RUNNING;
3159     writel(FLAG_CF, &oxu->regs->configured_flag);
3160     readl(&oxu->regs->command); /* unblock posted writes */
3161 
3162     temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
3163     oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
3164         ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
3165         temp >> 8, temp & 0xff, DRIVER_VERSION,
3166         ignore_oc ? ", overcurrent ignored" : "");
3167 
3168     writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
3169 
3170     return 0;
3171 }
3172 
3173 static void oxu_stop(struct usb_hcd *hcd)
3174 {
3175     struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3176 
3177     /* Turn off port power on all root hub ports. */
3178     ehci_port_power(oxu, 0);
3179 
3180     /* no more interrupts ... */
3181     del_timer_sync(&oxu->watchdog);
3182 
3183     spin_lock_irq(&oxu->lock);
3184     if (HC_IS_RUNNING(hcd->state))
3185         ehci_quiesce(oxu);
3186 
3187     ehci_reset(oxu);
3188     writel(0, &oxu->regs->intr_enable);
3189     spin_unlock_irq(&oxu->lock);
3190 
3191     /* let companion controllers work when we aren't */
3192     writel(0, &oxu->regs->configured_flag);
3193 
3194     /* root hub is shut down separately (first, when possible) */
3195     spin_lock_irq(&oxu->lock);
3196     if (oxu->async)
3197         ehci_work(oxu);
3198     spin_unlock_irq(&oxu->lock);
3199     ehci_mem_cleanup(oxu);
3200 
3201     dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
3202 }
3203 
3204 /* Kick in for silicon on any bus (not just pci, etc).
3205  * This forcibly disables dma and IRQs, helping kexec and other cases
3206  * where the next system software may expect clean state.
3207  */
3208 static void oxu_shutdown(struct usb_hcd *hcd)
3209 {
3210     struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3211 
3212     (void) ehci_halt(oxu);
3213     ehci_turn_off_all_ports(oxu);
3214 
3215     /* make BIOS/etc use companion controller during reboot */
3216     writel(0, &oxu->regs->configured_flag);
3217 
3218     /* unblock posted writes */
3219     readl(&oxu->regs->configured_flag);
3220 }
3221 
3222 /* Non-error returns are a promise to giveback() the urb later
3223  * we drop ownership so next owner (or urb unlink) can get it
3224  *
3225  * urb + dev is in hcd.self.controller.urb_list
3226  * we're queueing TDs onto software and hardware lists
3227  *
3228  * hcd-specific init for hcpriv hasn't been done yet
3229  *
3230  * NOTE:  control, bulk, and interrupt share the same code to append TDs
3231  * to a (possibly active) QH, and the same QH scanning code.
3232  */
3233 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3234                 gfp_t mem_flags)
3235 {
3236     struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3237     struct list_head qtd_list;
3238 
3239     INIT_LIST_HEAD(&qtd_list);
3240 
3241     switch (usb_pipetype(urb->pipe)) {
3242     case PIPE_CONTROL:
3243     case PIPE_BULK:
3244     default:
3245         if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3246             return -ENOMEM;
3247         return submit_async(oxu, urb, &qtd_list, mem_flags);
3248 
3249     case PIPE_INTERRUPT:
3250         if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3251             return -ENOMEM;
3252         return intr_submit(oxu, urb, &qtd_list, mem_flags);
3253 
3254     case PIPE_ISOCHRONOUS:
3255         if (urb->dev->speed == USB_SPEED_HIGH)
3256             return itd_submit(oxu, urb, mem_flags);
3257         else
3258             return sitd_submit(oxu, urb, mem_flags);
3259     }
3260 }
3261 
3262 /* This function is responsible for breaking URBs with big data size
3263  * into smaller size and processing small urbs in sequence.
3264  */
3265 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3266                 gfp_t mem_flags)
3267 {
3268     struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3269     int num, rem;
3270     void *transfer_buffer;
3271     struct urb *murb;
3272     int i, ret;
3273 
3274     /* If not bulk pipe just enqueue the URB */
3275     if (!usb_pipebulk(urb->pipe))
3276         return __oxu_urb_enqueue(hcd, urb, mem_flags);
3277 
3278     /* Otherwise we should verify the USB transfer buffer size! */
3279     transfer_buffer = urb->transfer_buffer;
3280 
3281     num = urb->transfer_buffer_length / 4096;
3282     rem = urb->transfer_buffer_length % 4096;
3283     if (rem != 0)
3284         num++;
3285 
3286     /* If URB is smaller than 4096 bytes just enqueue it! */
3287     if (num == 1)
3288         return __oxu_urb_enqueue(hcd, urb, mem_flags);
3289 
3290     /* Ok, we have more job to do! :) */
3291 
3292     for (i = 0; i < num - 1; i++) {
3293         /* Get free micro URB poll till a free urb is received */
3294 
3295         do {
3296             murb = (struct urb *) oxu_murb_alloc(oxu);
3297             if (!murb)
3298                 schedule();
3299         } while (!murb);
3300 
3301         /* Coping the urb */
3302         memcpy(murb, urb, sizeof(struct urb));
3303 
3304         murb->transfer_buffer_length = 4096;
3305         murb->transfer_buffer = transfer_buffer + i * 4096;
3306 
3307         /* Null pointer for the encodes that this is a micro urb */
3308         murb->complete = NULL;
3309 
3310         ((struct oxu_murb *) murb)->main = urb;
3311         ((struct oxu_murb *) murb)->last = 0;
3312 
3313         /* This loop is to guarantee urb to be processed when there's
3314          * not enough resources at a particular time by retrying.
3315          */
3316         do {
3317             ret  = __oxu_urb_enqueue(hcd, murb, mem_flags);
3318             if (ret)
3319                 schedule();
3320         } while (ret);
3321     }
3322 
3323     /* Last urb requires special handling  */
3324 
3325     /* Get free micro URB poll till a free urb is received */
3326     do {
3327         murb = (struct urb *) oxu_murb_alloc(oxu);
3328         if (!murb)
3329             schedule();
3330     } while (!murb);
3331 
3332     /* Coping the urb */
3333     memcpy(murb, urb, sizeof(struct urb));
3334 
3335     murb->transfer_buffer_length = rem > 0 ? rem : 4096;
3336     murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
3337 
3338     /* Null pointer for the encodes that this is a micro urb */
3339     murb->complete = NULL;
3340 
3341     ((struct oxu_murb *) murb)->main = urb;
3342     ((struct oxu_murb *) murb)->last = 1;
3343 
3344     do {
3345         ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
3346         if (ret)
3347             schedule();
3348     } while (ret);
3349 
3350     return ret;
3351 }
3352 
3353 /* Remove from hardware lists.
3354  * Completions normally happen asynchronously
3355  */
3356 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
3357 {
3358     struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3359     struct ehci_qh *qh;
3360     unsigned long flags;
3361 
3362     spin_lock_irqsave(&oxu->lock, flags);
3363     switch (usb_pipetype(urb->pipe)) {
3364     case PIPE_CONTROL:
3365     case PIPE_BULK:
3366     default:
3367         qh = (struct ehci_qh *) urb->hcpriv;
3368         if (!qh)
3369             break;
3370         unlink_async(oxu, qh);
3371         break;
3372 
3373     case PIPE_INTERRUPT:
3374         qh = (struct ehci_qh *) urb->hcpriv;
3375         if (!qh)
3376             break;
3377         switch (qh->qh_state) {
3378         case QH_STATE_LINKED:
3379             intr_deschedule(oxu, qh);
3380             fallthrough;
3381         case QH_STATE_IDLE:
3382             qh_completions(oxu, qh);
3383             break;
3384         default:
3385             oxu_dbg(oxu, "bogus qh %p state %d\n",
3386                     qh, qh->qh_state);
3387             goto done;
3388         }
3389 
3390         /* reschedule QH iff another request is queued */
3391         if (!list_empty(&qh->qtd_list)
3392                 && HC_IS_RUNNING(hcd->state)) {
3393             int status;
3394 
3395             status = qh_schedule(oxu, qh);
3396             spin_unlock_irqrestore(&oxu->lock, flags);
3397 
3398             if (status != 0) {
3399                 /* shouldn't happen often, but ...
3400                  * FIXME kill those tds' urbs
3401                  */
3402                 dev_err(hcd->self.controller,
3403                     "can't reschedule qh %p, err %d\n", qh,
3404                     status);
3405             }
3406             return status;
3407         }
3408         break;
3409     }
3410 done:
3411     spin_unlock_irqrestore(&oxu->lock, flags);
3412     return 0;
3413 }
3414 
3415 /* Bulk qh holds the data toggle */
3416 static void oxu_endpoint_disable(struct usb_hcd *hcd,
3417                     struct usb_host_endpoint *ep)
3418 {
3419     struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3420     unsigned long       flags;
3421     struct ehci_qh      *qh, *tmp;
3422 
3423     /* ASSERT:  any requests/urbs are being unlinked */
3424     /* ASSERT:  nobody can be submitting urbs for this any more */
3425 
3426 rescan:
3427     spin_lock_irqsave(&oxu->lock, flags);
3428     qh = ep->hcpriv;
3429     if (!qh)
3430         goto done;
3431 
3432     /* endpoints can be iso streams.  for now, we don't
3433      * accelerate iso completions ... so spin a while.
3434      */
3435     if (qh->hw_info1 == 0) {
3436         oxu_vdbg(oxu, "iso delay\n");
3437         goto idle_timeout;
3438     }
3439 
3440     if (!HC_IS_RUNNING(hcd->state))
3441         qh->qh_state = QH_STATE_IDLE;
3442     switch (qh->qh_state) {
3443     case QH_STATE_LINKED:
3444         for (tmp = oxu->async->qh_next.qh;
3445                 tmp && tmp != qh;
3446                 tmp = tmp->qh_next.qh)
3447             continue;
3448         /* periodic qh self-unlinks on empty */
3449         if (!tmp)
3450             goto nogood;
3451         unlink_async(oxu, qh);
3452         fallthrough;
3453     case QH_STATE_UNLINK:       /* wait for hw to finish? */
3454 idle_timeout:
3455         spin_unlock_irqrestore(&oxu->lock, flags);
3456         schedule_timeout_uninterruptible(1);
3457         goto rescan;
3458     case QH_STATE_IDLE:     /* fully unlinked */
3459         if (list_empty(&qh->qtd_list)) {
3460             qh_put(qh);
3461             break;
3462         }
3463         fallthrough;
3464     default:
3465 nogood:
3466         /* caller was supposed to have unlinked any requests;
3467          * that's not our job.  just leak this memory.
3468          */
3469         oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3470             qh, ep->desc.bEndpointAddress, qh->qh_state,
3471             list_empty(&qh->qtd_list) ? "" : "(has tds)");
3472         break;
3473     }
3474     ep->hcpriv = NULL;
3475 done:
3476     spin_unlock_irqrestore(&oxu->lock, flags);
3477 }
3478 
3479 static int oxu_get_frame(struct usb_hcd *hcd)
3480 {
3481     struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3482 
3483     return (readl(&oxu->regs->frame_index) >> 3) %
3484         oxu->periodic_size;
3485 }
3486 
3487 /* Build "status change" packet (one or two bytes) from HC registers */
3488 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3489 {
3490     struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3491     u32 temp, mask, status = 0;
3492     int ports, i, retval = 1;
3493     unsigned long flags;
3494 
3495     /* if !PM, root hub timers won't get shut down ... */
3496     if (!HC_IS_RUNNING(hcd->state))
3497         return 0;
3498 
3499     /* init status to no-changes */
3500     buf[0] = 0;
3501     ports = HCS_N_PORTS(oxu->hcs_params);
3502     if (ports > 7) {
3503         buf[1] = 0;
3504         retval++;
3505     }
3506 
3507     /* Some boards (mostly VIA?) report bogus overcurrent indications,
3508      * causing massive log spam unless we completely ignore them.  It
3509      * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3510      * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3511      * PORT_POWER; that's surprising, but maybe within-spec.
3512      */
3513     if (!ignore_oc)
3514         mask = PORT_CSC | PORT_PEC | PORT_OCC;
3515     else
3516         mask = PORT_CSC | PORT_PEC;
3517 
3518     /* no hub change reports (bit 0) for now (power, ...) */
3519 
3520     /* port N changes (bit N)? */
3521     spin_lock_irqsave(&oxu->lock, flags);
3522     for (i = 0; i < ports; i++) {
3523         temp = readl(&oxu->regs->port_status[i]);
3524 
3525         /*
3526          * Return status information even for ports with OWNER set.
3527          * Otherwise hub_wq wouldn't see the disconnect event when a
3528          * high-speed device is switched over to the companion
3529          * controller by the user.
3530          */
3531 
3532         if (!(temp & PORT_CONNECT))
3533             oxu->reset_done[i] = 0;
3534         if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3535                 time_after_eq(jiffies, oxu->reset_done[i]))) {
3536             if (i < 7)
3537                 buf[0] |= 1 << (i + 1);
3538             else
3539                 buf[1] |= 1 << (i - 7);
3540             status = STS_PCD;
3541         }
3542     }
3543     /* FIXME autosuspend idle root hubs */
3544     spin_unlock_irqrestore(&oxu->lock, flags);
3545     return status ? retval : 0;
3546 }
3547 
3548 /* Returns the speed of a device attached to a port on the root hub. */
3549 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3550                         unsigned int portsc)
3551 {
3552     switch ((portsc >> 26) & 3) {
3553     case 0:
3554         return 0;
3555     case 1:
3556         return USB_PORT_STAT_LOW_SPEED;
3557     case 2:
3558     default:
3559         return USB_PORT_STAT_HIGH_SPEED;
3560     }
3561 }
3562 
3563 #define PORT_WAKE_BITS  (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3564 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3565                 u16 wValue, u16 wIndex, char *buf, u16 wLength)
3566 {
3567     struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3568     int ports = HCS_N_PORTS(oxu->hcs_params);
3569     u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3570     u32 temp, status;
3571     unsigned long   flags;
3572     int retval = 0;
3573     unsigned selector;
3574 
3575     /*
3576      * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3577      * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3578      * (track current state ourselves) ... blink for diagnostics,
3579      * power, "this is the one", etc.  EHCI spec supports this.
3580      */
3581 
3582     spin_lock_irqsave(&oxu->lock, flags);
3583     switch (typeReq) {
3584     case ClearHubFeature:
3585         switch (wValue) {
3586         case C_HUB_LOCAL_POWER:
3587         case C_HUB_OVER_CURRENT:
3588             /* no hub-wide feature/status flags */
3589             break;
3590         default:
3591             goto error;
3592         }
3593         break;
3594     case ClearPortFeature:
3595         if (!wIndex || wIndex > ports)
3596             goto error;
3597         wIndex--;
3598         temp = readl(status_reg);
3599 
3600         /*
3601          * Even if OWNER is set, so the port is owned by the
3602          * companion controller, hub_wq needs to be able to clear
3603          * the port-change status bits (especially
3604          * USB_PORT_STAT_C_CONNECTION).
3605          */
3606 
3607         switch (wValue) {
3608         case USB_PORT_FEAT_ENABLE:
3609             writel(temp & ~PORT_PE, status_reg);
3610             break;
3611         case USB_PORT_FEAT_C_ENABLE:
3612             writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3613             break;
3614         case USB_PORT_FEAT_SUSPEND:
3615             if (temp & PORT_RESET)
3616                 goto error;
3617             if (temp & PORT_SUSPEND) {
3618                 if ((temp & PORT_PE) == 0)
3619                     goto error;
3620                 /* resume signaling for 20 msec */
3621                 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3622                 writel(temp | PORT_RESUME, status_reg);
3623                 oxu->reset_done[wIndex] = jiffies
3624                         + msecs_to_jiffies(20);
3625             }
3626             break;
3627         case USB_PORT_FEAT_C_SUSPEND:
3628             /* we auto-clear this feature */
3629             break;
3630         case USB_PORT_FEAT_POWER:
3631             if (HCS_PPC(oxu->hcs_params))
3632                 writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3633                       status_reg);
3634             break;
3635         case USB_PORT_FEAT_C_CONNECTION:
3636             writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3637             break;
3638         case USB_PORT_FEAT_C_OVER_CURRENT:
3639             writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3640             break;
3641         case USB_PORT_FEAT_C_RESET:
3642             /* GetPortStatus clears reset */
3643             break;
3644         default:
3645             goto error;
3646         }
3647         readl(&oxu->regs->command); /* unblock posted write */
3648         break;
3649     case GetHubDescriptor:
3650         ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3651             buf);
3652         break;
3653     case GetHubStatus:
3654         /* no hub-wide feature/status flags */
3655         memset(buf, 0, 4);
3656         break;
3657     case GetPortStatus:
3658         if (!wIndex || wIndex > ports)
3659             goto error;
3660         wIndex--;
3661         status = 0;
3662         temp = readl(status_reg);
3663 
3664         /* wPortChange bits */
3665         if (temp & PORT_CSC)
3666             status |= USB_PORT_STAT_C_CONNECTION << 16;
3667         if (temp & PORT_PEC)
3668             status |= USB_PORT_STAT_C_ENABLE << 16;
3669         if ((temp & PORT_OCC) && !ignore_oc)
3670             status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3671 
3672         /* whoever resumes must GetPortStatus to complete it!! */
3673         if (temp & PORT_RESUME) {
3674 
3675             /* Remote Wakeup received? */
3676             if (!oxu->reset_done[wIndex]) {
3677                 /* resume signaling for 20 msec */
3678                 oxu->reset_done[wIndex] = jiffies
3679                         + msecs_to_jiffies(20);
3680                 /* check the port again */
3681                 mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3682                         oxu->reset_done[wIndex]);
3683             }
3684 
3685             /* resume completed? */
3686             else if (time_after_eq(jiffies,
3687                     oxu->reset_done[wIndex])) {
3688                 status |= USB_PORT_STAT_C_SUSPEND << 16;
3689                 oxu->reset_done[wIndex] = 0;
3690 
3691                 /* stop resume signaling */
3692                 temp = readl(status_reg);
3693                 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3694                     status_reg);
3695                 retval = handshake(oxu, status_reg,
3696                        PORT_RESUME, 0, 2000 /* 2msec */);
3697                 if (retval != 0) {
3698                     oxu_err(oxu,
3699                         "port %d resume error %d\n",
3700                         wIndex + 1, retval);
3701                     goto error;
3702                 }
3703                 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3704             }
3705         }
3706 
3707         /* whoever resets must GetPortStatus to complete it!! */
3708         if ((temp & PORT_RESET)
3709                 && time_after_eq(jiffies,
3710                     oxu->reset_done[wIndex])) {
3711             status |= USB_PORT_STAT_C_RESET << 16;
3712             oxu->reset_done[wIndex] = 0;
3713 
3714             /* force reset to complete */
3715             writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3716                     status_reg);
3717             /* REVISIT:  some hardware needs 550+ usec to clear
3718              * this bit; seems too long to spin routinely...
3719              */
3720             retval = handshake(oxu, status_reg,
3721                     PORT_RESET, 0, 750);
3722             if (retval != 0) {
3723                 oxu_err(oxu, "port %d reset error %d\n",
3724                     wIndex + 1, retval);
3725                 goto error;
3726             }
3727 
3728             /* see what we found out */
3729             temp = check_reset_complete(oxu, wIndex, status_reg,
3730                     readl(status_reg));
3731         }
3732 
3733         /* transfer dedicated ports to the companion hc */
3734         if ((temp & PORT_CONNECT) &&
3735                 test_bit(wIndex, &oxu->companion_ports)) {
3736             temp &= ~PORT_RWC_BITS;
3737             temp |= PORT_OWNER;
3738             writel(temp, status_reg);
3739             oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3740             temp = readl(status_reg);
3741         }
3742 
3743         /*
3744          * Even if OWNER is set, there's no harm letting hub_wq
3745          * see the wPortStatus values (they should all be 0 except
3746          * for PORT_POWER anyway).
3747          */
3748 
3749         if (temp & PORT_CONNECT) {
3750             status |= USB_PORT_STAT_CONNECTION;
3751             /* status may be from integrated TT */
3752             status |= oxu_port_speed(oxu, temp);
3753         }
3754         if (temp & PORT_PE)
3755             status |= USB_PORT_STAT_ENABLE;
3756         if (temp & (PORT_SUSPEND|PORT_RESUME))
3757             status |= USB_PORT_STAT_SUSPEND;
3758         if (temp & PORT_OC)
3759             status |= USB_PORT_STAT_OVERCURRENT;
3760         if (temp & PORT_RESET)
3761             status |= USB_PORT_STAT_RESET;
3762         if (temp & PORT_POWER)
3763             status |= USB_PORT_STAT_POWER;
3764 
3765 #ifndef OXU_VERBOSE_DEBUG
3766     if (status & ~0xffff)   /* only if wPortChange is interesting */
3767 #endif
3768         dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3769         put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3770         break;
3771     case SetHubFeature:
3772         switch (wValue) {
3773         case C_HUB_LOCAL_POWER:
3774         case C_HUB_OVER_CURRENT:
3775             /* no hub-wide feature/status flags */
3776             break;
3777         default:
3778             goto error;
3779         }
3780         break;
3781     case SetPortFeature:
3782         selector = wIndex >> 8;
3783         wIndex &= 0xff;
3784         if (!wIndex || wIndex > ports)
3785             goto error;
3786         wIndex--;
3787         temp = readl(status_reg);
3788         if (temp & PORT_OWNER)
3789             break;
3790 
3791         temp &= ~PORT_RWC_BITS;
3792         switch (wValue) {
3793         case USB_PORT_FEAT_SUSPEND:
3794             if ((temp & PORT_PE) == 0
3795                     || (temp & PORT_RESET) != 0)
3796                 goto error;
3797             if (device_may_wakeup(&hcd->self.root_hub->dev))
3798                 temp |= PORT_WAKE_BITS;
3799             writel(temp | PORT_SUSPEND, status_reg);
3800             break;
3801         case USB_PORT_FEAT_POWER:
3802             if (HCS_PPC(oxu->hcs_params))
3803                 writel(temp | PORT_POWER, status_reg);
3804             break;
3805         case USB_PORT_FEAT_RESET:
3806             if (temp & PORT_RESUME)
3807                 goto error;
3808             /* line status bits may report this as low speed,
3809              * which can be fine if this root hub has a
3810              * transaction translator built in.
3811              */
3812             oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3813             temp |= PORT_RESET;
3814             temp &= ~PORT_PE;
3815 
3816             /*
3817              * caller must wait, then call GetPortStatus
3818              * usb 2.0 spec says 50 ms resets on root
3819              */
3820             oxu->reset_done[wIndex] = jiffies
3821                     + msecs_to_jiffies(50);
3822             writel(temp, status_reg);
3823             break;
3824 
3825         /* For downstream facing ports (these):  one hub port is put
3826          * into test mode according to USB2 11.24.2.13, then the hub
3827          * must be reset (which for root hub now means rmmod+modprobe,
3828          * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
3829          * about the EHCI-specific stuff.
3830          */
3831         case USB_PORT_FEAT_TEST:
3832             if (!selector || selector > 5)
3833                 goto error;
3834             ehci_quiesce(oxu);
3835             ehci_halt(oxu);
3836             temp |= selector << 16;
3837             writel(temp, status_reg);
3838             break;
3839 
3840         default:
3841             goto error;
3842         }
3843         readl(&oxu->regs->command); /* unblock posted writes */
3844         break;
3845 
3846     default:
3847 error:
3848         /* "stall" on error */
3849         retval = -EPIPE;
3850     }
3851     spin_unlock_irqrestore(&oxu->lock, flags);
3852     return retval;
3853 }
3854 
3855 #ifdef CONFIG_PM
3856 
3857 static int oxu_bus_suspend(struct usb_hcd *hcd)
3858 {
3859     struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3860     int port;
3861     int mask;
3862 
3863     oxu_dbg(oxu, "suspend root hub\n");
3864 
3865     if (time_before(jiffies, oxu->next_statechange))
3866         msleep(5);
3867 
3868     port = HCS_N_PORTS(oxu->hcs_params);
3869     spin_lock_irq(&oxu->lock);
3870 
3871     /* stop schedules, clean any completed work */
3872     if (HC_IS_RUNNING(hcd->state)) {
3873         ehci_quiesce(oxu);
3874         hcd->state = HC_STATE_QUIESCING;
3875     }
3876     oxu->command = readl(&oxu->regs->command);
3877     if (oxu->reclaim)
3878         oxu->reclaim_ready = 1;
3879     ehci_work(oxu);
3880 
3881     /* Unlike other USB host controller types, EHCI doesn't have
3882      * any notion of "global" or bus-wide suspend.  The driver has
3883      * to manually suspend all the active unsuspended ports, and
3884      * then manually resume them in the bus_resume() routine.
3885      */
3886     oxu->bus_suspended = 0;
3887     while (port--) {
3888         u32 __iomem *reg = &oxu->regs->port_status[port];
3889         u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3890         u32 t2 = t1;
3891 
3892         /* keep track of which ports we suspend */
3893         if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3894                 !(t1 & PORT_SUSPEND)) {
3895             t2 |= PORT_SUSPEND;
3896             set_bit(port, &oxu->bus_suspended);
3897         }
3898 
3899         /* enable remote wakeup on all ports */
3900         if (device_may_wakeup(&hcd->self.root_hub->dev))
3901             t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3902         else
3903             t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3904 
3905         if (t1 != t2) {
3906             oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3907                 port + 1, t1, t2);
3908             writel(t2, reg);
3909         }
3910     }
3911 
3912     spin_unlock_irq(&oxu->lock);
3913     /* turn off now-idle HC */
3914     del_timer_sync(&oxu->watchdog);
3915     spin_lock_irq(&oxu->lock);
3916     ehci_halt(oxu);
3917     hcd->state = HC_STATE_SUSPENDED;
3918 
3919     /* allow remote wakeup */
3920     mask = INTR_MASK;
3921     if (!device_may_wakeup(&hcd->self.root_hub->dev))
3922         mask &= ~STS_PCD;
3923     writel(mask, &oxu->regs->intr_enable);
3924     readl(&oxu->regs->intr_enable);
3925 
3926     oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3927     spin_unlock_irq(&oxu->lock);
3928     return 0;
3929 }
3930 
3931 /* Caller has locked the root hub, and should reset/reinit on error */
3932 static int oxu_bus_resume(struct usb_hcd *hcd)
3933 {
3934     struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3935     u32 temp;
3936     int i;
3937 
3938     if (time_before(jiffies, oxu->next_statechange))
3939         msleep(5);
3940     spin_lock_irq(&oxu->lock);
3941 
3942     /* Ideally and we've got a real resume here, and no port's power
3943      * was lost.  (For PCI, that means Vaux was maintained.)  But we
3944      * could instead be restoring a swsusp snapshot -- so that BIOS was
3945      * the last user of the controller, not reset/pm hardware keeping
3946      * state we gave to it.
3947      */
3948     temp = readl(&oxu->regs->intr_enable);
3949     oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3950 
3951     /* at least some APM implementations will try to deliver
3952      * IRQs right away, so delay them until we're ready.
3953      */
3954     writel(0, &oxu->regs->intr_enable);
3955 
3956     /* re-init operational registers */
3957     writel(0, &oxu->regs->segment);
3958     writel(oxu->periodic_dma, &oxu->regs->frame_list);
3959     writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3960 
3961     /* restore CMD_RUN, framelist size, and irq threshold */
3962     writel(oxu->command, &oxu->regs->command);
3963 
3964     /* Some controller/firmware combinations need a delay during which
3965      * they set up the port statuses.  See Bugzilla #8190. */
3966     mdelay(8);
3967 
3968     /* manually resume the ports we suspended during bus_suspend() */
3969     i = HCS_N_PORTS(oxu->hcs_params);
3970     while (i--) {
3971         temp = readl(&oxu->regs->port_status[i]);
3972         temp &= ~(PORT_RWC_BITS
3973             | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3974         if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3975             oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3976             temp |= PORT_RESUME;
3977         }
3978         writel(temp, &oxu->regs->port_status[i]);
3979     }
3980     i = HCS_N_PORTS(oxu->hcs_params);
3981     mdelay(20);
3982     while (i--) {
3983         temp = readl(&oxu->regs->port_status[i]);
3984         if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3985             temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3986             writel(temp, &oxu->regs->port_status[i]);
3987             oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3988         }
3989     }
3990     (void) readl(&oxu->regs->command);
3991 
3992     /* maybe re-activate the schedule(s) */
3993     temp = 0;
3994     if (oxu->async->qh_next.qh)
3995         temp |= CMD_ASE;
3996     if (oxu->periodic_sched)
3997         temp |= CMD_PSE;
3998     if (temp) {
3999         oxu->command |= temp;
4000         writel(oxu->command, &oxu->regs->command);
4001     }
4002 
4003     oxu->next_statechange = jiffies + msecs_to_jiffies(5);
4004     hcd->state = HC_STATE_RUNNING;
4005 
4006     /* Now we can safely re-enable irqs */
4007     writel(INTR_MASK, &oxu->regs->intr_enable);
4008 
4009     spin_unlock_irq(&oxu->lock);
4010     return 0;
4011 }
4012 
4013 #else
4014 
4015 static int oxu_bus_suspend(struct usb_hcd *hcd)
4016 {
4017     return 0;
4018 }
4019 
4020 static int oxu_bus_resume(struct usb_hcd *hcd)
4021 {
4022     return 0;
4023 }
4024 
4025 #endif  /* CONFIG_PM */
4026 
4027 static const struct hc_driver oxu_hc_driver = {
4028     .description =      "oxu210hp_hcd",
4029     .product_desc =     "oxu210hp HCD",
4030     .hcd_priv_size =    sizeof(struct oxu_hcd),
4031 
4032     /*
4033      * Generic hardware linkage
4034      */
4035     .irq =          oxu_irq,
4036     .flags =        HCD_MEMORY | HCD_USB2,
4037 
4038     /*
4039      * Basic lifecycle operations
4040      */
4041     .reset =        oxu_reset,
4042     .start =        oxu_run,
4043     .stop =         oxu_stop,
4044     .shutdown =     oxu_shutdown,
4045 
4046     /*
4047      * Managing i/o requests and associated device resources
4048      */
4049     .urb_enqueue =      oxu_urb_enqueue,
4050     .urb_dequeue =      oxu_urb_dequeue,
4051     .endpoint_disable = oxu_endpoint_disable,
4052 
4053     /*
4054      * Scheduling support
4055      */
4056     .get_frame_number = oxu_get_frame,
4057 
4058     /*
4059      * Root hub support
4060      */
4061     .hub_status_data =  oxu_hub_status_data,
4062     .hub_control =      oxu_hub_control,
4063     .bus_suspend =      oxu_bus_suspend,
4064     .bus_resume =       oxu_bus_resume,
4065 };
4066 
4067 /*
4068  * Module stuff
4069  */
4070 
4071 static void oxu_configuration(struct platform_device *pdev, void __iomem *base)
4072 {
4073     u32 tmp;
4074 
4075     /* Initialize top level registers.
4076      * First write ever
4077      */
4078     oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4079     oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
4080     oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4081 
4082     tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
4083     oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
4084 
4085     oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
4086                     OXU_COMPARATOR | OXU_ASO_OP);
4087 
4088     tmp = oxu_readl(base, OXU_CLKCTRL_SET);
4089     oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
4090 
4091     /* Clear all top interrupt enable */
4092     oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
4093 
4094     /* Clear all top interrupt status */
4095     oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
4096 
4097     /* Enable all needed top interrupt except OTG SPH core */
4098     oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
4099 }
4100 
4101 static int oxu_verify_id(struct platform_device *pdev, void __iomem *base)
4102 {
4103     u32 id;
4104     static const char * const bo[] = {
4105         "reserved",
4106         "128-pin LQFP",
4107         "84-pin TFBGA",
4108         "reserved",
4109     };
4110 
4111     /* Read controller signature register to find a match */
4112     id = oxu_readl(base, OXU_DEVICEID);
4113     dev_info(&pdev->dev, "device ID %x\n", id);
4114     if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
4115         return -1;
4116 
4117     dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
4118         id >> OXU_REV_SHIFT,
4119         bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
4120         (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
4121         (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
4122 
4123     return 0;
4124 }
4125 
4126 static const struct hc_driver oxu_hc_driver;
4127 static struct usb_hcd *oxu_create(struct platform_device *pdev,
4128                 unsigned long memstart, unsigned long memlen,
4129                 void __iomem *base, int irq, int otg)
4130 {
4131     struct device *dev = &pdev->dev;
4132 
4133     struct usb_hcd *hcd;
4134     struct oxu_hcd *oxu;
4135     int ret;
4136 
4137     /* Set endian mode and host mode */
4138     oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
4139                 OXU_USBMODE,
4140                 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
4141 
4142     hcd = usb_create_hcd(&oxu_hc_driver, dev,
4143                 otg ? "oxu210hp_otg" : "oxu210hp_sph");
4144     if (!hcd)
4145         return ERR_PTR(-ENOMEM);
4146 
4147     hcd->rsrc_start = memstart;
4148     hcd->rsrc_len = memlen;
4149     hcd->regs = base;
4150     hcd->irq = irq;
4151     hcd->state = HC_STATE_HALT;
4152 
4153     oxu = hcd_to_oxu(hcd);
4154     oxu->is_otg = otg;
4155 
4156     ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
4157     if (ret < 0) {
4158         usb_put_hcd(hcd);
4159         return ERR_PTR(ret);
4160     }
4161 
4162     device_wakeup_enable(hcd->self.controller);
4163     return hcd;
4164 }
4165 
4166 static int oxu_init(struct platform_device *pdev,
4167                 unsigned long memstart, unsigned long memlen,
4168                 void __iomem *base, int irq)
4169 {
4170     struct oxu_info *info = platform_get_drvdata(pdev);
4171     struct usb_hcd *hcd;
4172     int ret;
4173 
4174     /* First time configuration at start up */
4175     oxu_configuration(pdev, base);
4176 
4177     ret = oxu_verify_id(pdev, base);
4178     if (ret) {
4179         dev_err(&pdev->dev, "no devices found!\n");
4180         return -ENODEV;
4181     }
4182 
4183     /* Create the OTG controller */
4184     hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
4185     if (IS_ERR(hcd)) {
4186         dev_err(&pdev->dev, "cannot create OTG controller!\n");
4187         ret = PTR_ERR(hcd);
4188         goto error_create_otg;
4189     }
4190     info->hcd[0] = hcd;
4191 
4192     /* Create the SPH host controller */
4193     hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
4194     if (IS_ERR(hcd)) {
4195         dev_err(&pdev->dev, "cannot create SPH controller!\n");
4196         ret = PTR_ERR(hcd);
4197         goto error_create_sph;
4198     }
4199     info->hcd[1] = hcd;
4200 
4201     oxu_writel(base, OXU_CHIPIRQEN_SET,
4202         oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
4203 
4204     return 0;
4205 
4206 error_create_sph:
4207     usb_remove_hcd(info->hcd[0]);
4208     usb_put_hcd(info->hcd[0]);
4209 
4210 error_create_otg:
4211     return ret;
4212 }
4213 
4214 static int oxu_drv_probe(struct platform_device *pdev)
4215 {
4216     struct resource *res;
4217     void __iomem *base;
4218     unsigned long memstart, memlen;
4219     int irq, ret;
4220     struct oxu_info *info;
4221 
4222     if (usb_disabled())
4223         return -ENODEV;
4224 
4225     /*
4226      * Get the platform resources
4227      */
4228     irq = platform_get_irq(pdev, 0);
4229     if (irq < 0)
4230         return irq;
4231     dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
4232 
4233     res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4234     base = devm_ioremap_resource(&pdev->dev, res);
4235     if (IS_ERR(base)) {
4236         ret = PTR_ERR(base);
4237         goto error;
4238     }
4239     memstart = res->start;
4240     memlen = resource_size(res);
4241 
4242     ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
4243     if (ret) {
4244         dev_err(&pdev->dev, "error setting irq type\n");
4245         ret = -EFAULT;
4246         goto error;
4247     }
4248 
4249     /* Allocate a driver data struct to hold useful info for both
4250      * SPH & OTG devices
4251      */
4252     info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL);
4253     if (!info) {
4254         ret = -EFAULT;
4255         goto error;
4256     }
4257     platform_set_drvdata(pdev, info);
4258 
4259     ret = oxu_init(pdev, memstart, memlen, base, irq);
4260     if (ret < 0) {
4261         dev_dbg(&pdev->dev, "cannot init USB devices\n");
4262         goto error;
4263     }
4264 
4265     dev_info(&pdev->dev, "devices enabled and running\n");
4266     platform_set_drvdata(pdev, info);
4267 
4268     return 0;
4269 
4270 error:
4271     dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
4272     return ret;
4273 }
4274 
4275 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
4276 {
4277     usb_remove_hcd(hcd);
4278     usb_put_hcd(hcd);
4279 }
4280 
4281 static int oxu_drv_remove(struct platform_device *pdev)
4282 {
4283     struct oxu_info *info = platform_get_drvdata(pdev);
4284 
4285     oxu_remove(pdev, info->hcd[0]);
4286     oxu_remove(pdev, info->hcd[1]);
4287 
4288     return 0;
4289 }
4290 
4291 static void oxu_drv_shutdown(struct platform_device *pdev)
4292 {
4293     oxu_drv_remove(pdev);
4294 }
4295 
4296 #if 0
4297 /* FIXME: TODO */
4298 static int oxu_drv_suspend(struct device *dev)
4299 {
4300     struct platform_device *pdev = to_platform_device(dev);
4301     struct usb_hcd *hcd = dev_get_drvdata(dev);
4302 
4303     return 0;
4304 }
4305 
4306 static int oxu_drv_resume(struct device *dev)
4307 {
4308     struct platform_device *pdev = to_platform_device(dev);
4309     struct usb_hcd *hcd = dev_get_drvdata(dev);
4310 
4311     return 0;
4312 }
4313 #else
4314 #define oxu_drv_suspend NULL
4315 #define oxu_drv_resume  NULL
4316 #endif
4317 
4318 static struct platform_driver oxu_driver = {
4319     .probe      = oxu_drv_probe,
4320     .remove     = oxu_drv_remove,
4321     .shutdown   = oxu_drv_shutdown,
4322     .suspend    = oxu_drv_suspend,
4323     .resume     = oxu_drv_resume,
4324     .driver = {
4325         .name = "oxu210hp-hcd",
4326         .bus = &platform_bus_type
4327     }
4328 };
4329 
4330 module_platform_driver(oxu_driver);
4331 
4332 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
4333 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
4334 MODULE_LICENSE("GPL");