Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0+
0002 /*
0003  * Copyright (c) 2001-2004 by David Brownell
0004  * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
0005  */
0006 
0007 /* this file is part of ehci-hcd.c */
0008 
0009 /*-------------------------------------------------------------------------*/
0010 
0011 /*
0012  * EHCI scheduled transaction support:  interrupt, iso, split iso
0013  * These are called "periodic" transactions in the EHCI spec.
0014  *
0015  * Note that for interrupt transfers, the QH/QTD manipulation is shared
0016  * with the "asynchronous" transaction support (control/bulk transfers).
0017  * The only real difference is in how interrupt transfers are scheduled.
0018  *
0019  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
0020  * It keeps track of every ITD (or SITD) that's linked, and holds enough
0021  * pre-calculated schedule data to make appending to the queue be quick.
0022  */
0023 
0024 static int ehci_get_frame(struct usb_hcd *hcd);
0025 
0026 /*
0027  * periodic_next_shadow - return "next" pointer on shadow list
0028  * @periodic: host pointer to qh/itd/sitd
0029  * @tag: hardware tag for type of this record
0030  */
0031 static union ehci_shadow *
0032 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
0033         __hc32 tag)
0034 {
0035     switch (hc32_to_cpu(ehci, tag)) {
0036     case Q_TYPE_QH:
0037         return &periodic->qh->qh_next;
0038     case Q_TYPE_FSTN:
0039         return &periodic->fstn->fstn_next;
0040     case Q_TYPE_ITD:
0041         return &periodic->itd->itd_next;
0042     /* case Q_TYPE_SITD: */
0043     default:
0044         return &periodic->sitd->sitd_next;
0045     }
0046 }
0047 
0048 static __hc32 *
0049 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
0050         __hc32 tag)
0051 {
0052     switch (hc32_to_cpu(ehci, tag)) {
0053     /* our ehci_shadow.qh is actually software part */
0054     case Q_TYPE_QH:
0055         return &periodic->qh->hw->hw_next;
0056     /* others are hw parts */
0057     default:
0058         return periodic->hw_next;
0059     }
0060 }
0061 
0062 /* caller must hold ehci->lock */
0063 static void periodic_unlink(struct ehci_hcd *ehci, unsigned frame, void *ptr)
0064 {
0065     union ehci_shadow   *prev_p = &ehci->pshadow[frame];
0066     __hc32          *hw_p = &ehci->periodic[frame];
0067     union ehci_shadow   here = *prev_p;
0068 
0069     /* find predecessor of "ptr"; hw and shadow lists are in sync */
0070     while (here.ptr && here.ptr != ptr) {
0071         prev_p = periodic_next_shadow(ehci, prev_p,
0072                 Q_NEXT_TYPE(ehci, *hw_p));
0073         hw_p = shadow_next_periodic(ehci, &here,
0074                 Q_NEXT_TYPE(ehci, *hw_p));
0075         here = *prev_p;
0076     }
0077     /* an interrupt entry (at list end) could have been shared */
0078     if (!here.ptr)
0079         return;
0080 
0081     /* update shadow and hardware lists ... the old "next" pointers
0082      * from ptr may still be in use, the caller updates them.
0083      */
0084     *prev_p = *periodic_next_shadow(ehci, &here,
0085             Q_NEXT_TYPE(ehci, *hw_p));
0086 
0087     if (!ehci->use_dummy_qh ||
0088         *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
0089             != EHCI_LIST_END(ehci))
0090         *hw_p = *shadow_next_periodic(ehci, &here,
0091                 Q_NEXT_TYPE(ehci, *hw_p));
0092     else
0093         *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
0094 }
0095 
0096 /*-------------------------------------------------------------------------*/
0097 
0098 /* Bandwidth and TT management */
0099 
0100 /* Find the TT data structure for this device; create it if necessary */
0101 static struct ehci_tt *find_tt(struct usb_device *udev)
0102 {
0103     struct usb_tt       *utt = udev->tt;
0104     struct ehci_tt      *tt, **tt_index, **ptt;
0105     unsigned        port;
0106     bool            allocated_index = false;
0107 
0108     if (!utt)
0109         return NULL;        /* Not below a TT */
0110 
0111     /*
0112      * Find/create our data structure.
0113      * For hubs with a single TT, we get it directly.
0114      * For hubs with multiple TTs, there's an extra level of pointers.
0115      */
0116     tt_index = NULL;
0117     if (utt->multi) {
0118         tt_index = utt->hcpriv;
0119         if (!tt_index) {        /* Create the index array */
0120             tt_index = kcalloc(utt->hub->maxchild,
0121                        sizeof(*tt_index),
0122                        GFP_ATOMIC);
0123             if (!tt_index)
0124                 return ERR_PTR(-ENOMEM);
0125             utt->hcpriv = tt_index;
0126             allocated_index = true;
0127         }
0128         port = udev->ttport - 1;
0129         ptt = &tt_index[port];
0130     } else {
0131         port = 0;
0132         ptt = (struct ehci_tt **) &utt->hcpriv;
0133     }
0134 
0135     tt = *ptt;
0136     if (!tt) {              /* Create the ehci_tt */
0137         struct ehci_hcd     *ehci =
0138                 hcd_to_ehci(bus_to_hcd(udev->bus));
0139 
0140         tt = kzalloc(sizeof(*tt), GFP_ATOMIC);
0141         if (!tt) {
0142             if (allocated_index) {
0143                 utt->hcpriv = NULL;
0144                 kfree(tt_index);
0145             }
0146             return ERR_PTR(-ENOMEM);
0147         }
0148         list_add_tail(&tt->tt_list, &ehci->tt_list);
0149         INIT_LIST_HEAD(&tt->ps_list);
0150         tt->usb_tt = utt;
0151         tt->tt_port = port;
0152         *ptt = tt;
0153     }
0154 
0155     return tt;
0156 }
0157 
0158 /* Release the TT above udev, if it's not in use */
0159 static void drop_tt(struct usb_device *udev)
0160 {
0161     struct usb_tt       *utt = udev->tt;
0162     struct ehci_tt      *tt, **tt_index, **ptt;
0163     int         cnt, i;
0164 
0165     if (!utt || !utt->hcpriv)
0166         return;     /* Not below a TT, or never allocated */
0167 
0168     cnt = 0;
0169     if (utt->multi) {
0170         tt_index = utt->hcpriv;
0171         ptt = &tt_index[udev->ttport - 1];
0172 
0173         /* How many entries are left in tt_index? */
0174         for (i = 0; i < utt->hub->maxchild; ++i)
0175             cnt += !!tt_index[i];
0176     } else {
0177         tt_index = NULL;
0178         ptt = (struct ehci_tt **) &utt->hcpriv;
0179     }
0180 
0181     tt = *ptt;
0182     if (!tt || !list_empty(&tt->ps_list))
0183         return;     /* never allocated, or still in use */
0184 
0185     list_del(&tt->tt_list);
0186     *ptt = NULL;
0187     kfree(tt);
0188     if (cnt == 1) {
0189         utt->hcpriv = NULL;
0190         kfree(tt_index);
0191     }
0192 }
0193 
0194 static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type,
0195         struct ehci_per_sched *ps)
0196 {
0197     dev_dbg(&ps->udev->dev,
0198             "ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n",
0199             ps->ep->desc.bEndpointAddress,
0200             (sign >= 0 ? "reserve" : "release"), type,
0201             (ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod,
0202             ps->phase, ps->phase_uf, ps->period,
0203             ps->usecs, ps->c_usecs, ps->cs_mask);
0204 }
0205 
0206 static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci,
0207         struct ehci_qh *qh, int sign)
0208 {
0209     unsigned        start_uf;
0210     unsigned        i, j, m;
0211     int         usecs = qh->ps.usecs;
0212     int         c_usecs = qh->ps.c_usecs;
0213     int         tt_usecs = qh->ps.tt_usecs;
0214     struct ehci_tt      *tt;
0215 
0216     if (qh->ps.phase == NO_FRAME)   /* Bandwidth wasn't reserved */
0217         return;
0218     start_uf = qh->ps.bw_phase << 3;
0219 
0220     bandwidth_dbg(ehci, sign, "intr", &qh->ps);
0221 
0222     if (sign < 0) {     /* Release bandwidth */
0223         usecs = -usecs;
0224         c_usecs = -c_usecs;
0225         tt_usecs = -tt_usecs;
0226     }
0227 
0228     /* Entire transaction (high speed) or start-split (full/low speed) */
0229     for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
0230             i += qh->ps.bw_uperiod)
0231         ehci->bandwidth[i] += usecs;
0232 
0233     /* Complete-split (full/low speed) */
0234     if (qh->ps.c_usecs) {
0235         /* NOTE: adjustments needed for FSTN */
0236         for (i = start_uf; i < EHCI_BANDWIDTH_SIZE;
0237                 i += qh->ps.bw_uperiod) {
0238             for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) {
0239                 if (qh->ps.cs_mask & m)
0240                     ehci->bandwidth[i+j] += c_usecs;
0241             }
0242         }
0243     }
0244 
0245     /* FS/LS bus bandwidth */
0246     if (tt_usecs) {
0247         /*
0248          * find_tt() will not return any error here as we have
0249          * already called find_tt() before calling this function
0250          * and checked for any error return. The previous call
0251          * would have created the data structure.
0252          */
0253         tt = find_tt(qh->ps.udev);
0254         if (sign > 0)
0255             list_add_tail(&qh->ps.ps_list, &tt->ps_list);
0256         else
0257             list_del(&qh->ps.ps_list);
0258 
0259         for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES;
0260                 i += qh->ps.bw_period)
0261             tt->bandwidth[i] += tt_usecs;
0262     }
0263 }
0264 
0265 /*-------------------------------------------------------------------------*/
0266 
0267 static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE],
0268         struct ehci_tt *tt)
0269 {
0270     struct ehci_per_sched   *ps;
0271     unsigned        uframe, uf, x;
0272     u8          *budget_line;
0273 
0274     if (!tt)
0275         return;
0276     memset(budget_table, 0, EHCI_BANDWIDTH_SIZE);
0277 
0278     /* Add up the contributions from all the endpoints using this TT */
0279     list_for_each_entry(ps, &tt->ps_list, ps_list) {
0280         for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE;
0281                 uframe += ps->bw_uperiod) {
0282             budget_line = &budget_table[uframe];
0283             x = ps->tt_usecs;
0284 
0285             /* propagate the time forward */
0286             for (uf = ps->phase_uf; uf < 8; ++uf) {
0287                 x += budget_line[uf];
0288 
0289                 /* Each microframe lasts 125 us */
0290                 if (x <= 125) {
0291                     budget_line[uf] = x;
0292                     break;
0293                 }
0294                 budget_line[uf] = 125;
0295                 x -= 125;
0296             }
0297         }
0298     }
0299 }
0300 
0301 static int __maybe_unused same_tt(struct usb_device *dev1,
0302         struct usb_device *dev2)
0303 {
0304     if (!dev1->tt || !dev2->tt)
0305         return 0;
0306     if (dev1->tt != dev2->tt)
0307         return 0;
0308     if (dev1->tt->multi)
0309         return dev1->ttport == dev2->ttport;
0310     else
0311         return 1;
0312 }
0313 
0314 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
0315 
0316 static const unsigned char
0317 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
0318 
0319 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
0320 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
0321 {
0322     int i;
0323 
0324     for (i = 0; i < 7; i++) {
0325         if (max_tt_usecs[i] < tt_usecs[i]) {
0326             tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
0327             tt_usecs[i] = max_tt_usecs[i];
0328         }
0329     }
0330 }
0331 
0332 /*
0333  * Return true if the device's tt's downstream bus is available for a
0334  * periodic transfer of the specified length (usecs), starting at the
0335  * specified frame/uframe.  Note that (as summarized in section 11.19
0336  * of the usb 2.0 spec) TTs can buffer multiple transactions for each
0337  * uframe.
0338  *
0339  * The uframe parameter is when the fullspeed/lowspeed transfer
0340  * should be executed in "B-frame" terms, which is the same as the
0341  * highspeed ssplit's uframe (which is in "H-frame" terms).  For example
0342  * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
0343  * See the EHCI spec sec 4.5 and fig 4.7.
0344  *
0345  * This checks if the full/lowspeed bus, at the specified starting uframe,
0346  * has the specified bandwidth available, according to rules listed
0347  * in USB 2.0 spec section 11.18.1 fig 11-60.
0348  *
0349  * This does not check if the transfer would exceed the max ssplit
0350  * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
0351  * since proper scheduling limits ssplits to less than 16 per uframe.
0352  */
0353 static int tt_available(
0354     struct ehci_hcd     *ehci,
0355     struct ehci_per_sched   *ps,
0356     struct ehci_tt      *tt,
0357     unsigned        frame,
0358     unsigned        uframe
0359 )
0360 {
0361     unsigned        period = ps->bw_period;
0362     unsigned        usecs = ps->tt_usecs;
0363 
0364     if ((period == 0) || (uframe >= 7)) /* error */
0365         return 0;
0366 
0367     for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES;
0368             frame += period) {
0369         unsigned    i, uf;
0370         unsigned short  tt_usecs[8];
0371 
0372         if (tt->bandwidth[frame] + usecs > 900)
0373             return 0;
0374 
0375         uf = frame << 3;
0376         for (i = 0; i < 8; (++i, ++uf))
0377             tt_usecs[i] = ehci->tt_budget[uf];
0378 
0379         if (max_tt_usecs[uframe] <= tt_usecs[uframe])
0380             return 0;
0381 
0382         /* special case for isoc transfers larger than 125us:
0383          * the first and each subsequent fully used uframe
0384          * must be empty, so as to not illegally delay
0385          * already scheduled transactions
0386          */
0387         if (usecs > 125) {
0388             int ufs = (usecs / 125);
0389 
0390             for (i = uframe; i < (uframe + ufs) && i < 8; i++)
0391                 if (tt_usecs[i] > 0)
0392                     return 0;
0393         }
0394 
0395         tt_usecs[uframe] += usecs;
0396 
0397         carryover_tt_bandwidth(tt_usecs);
0398 
0399         /* fail if the carryover pushed bw past the last uframe's limit */
0400         if (max_tt_usecs[7] < tt_usecs[7])
0401             return 0;
0402     }
0403 
0404     return 1;
0405 }
0406 
0407 #else
0408 
0409 /* return true iff the device's transaction translator is available
0410  * for a periodic transfer starting at the specified frame, using
0411  * all the uframes in the mask.
0412  */
0413 static int tt_no_collision(
0414     struct ehci_hcd     *ehci,
0415     unsigned        period,
0416     struct usb_device   *dev,
0417     unsigned        frame,
0418     u32         uf_mask
0419 )
0420 {
0421     if (period == 0)    /* error */
0422         return 0;
0423 
0424     /* note bandwidth wastage:  split never follows csplit
0425      * (different dev or endpoint) until the next uframe.
0426      * calling convention doesn't make that distinction.
0427      */
0428     for (; frame < ehci->periodic_size; frame += period) {
0429         union ehci_shadow   here;
0430         __hc32          type;
0431         struct ehci_qh_hw   *hw;
0432 
0433         here = ehci->pshadow[frame];
0434         type = Q_NEXT_TYPE(ehci, ehci->periodic[frame]);
0435         while (here.ptr) {
0436             switch (hc32_to_cpu(ehci, type)) {
0437             case Q_TYPE_ITD:
0438                 type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
0439                 here = here.itd->itd_next;
0440                 continue;
0441             case Q_TYPE_QH:
0442                 hw = here.qh->hw;
0443                 if (same_tt(dev, here.qh->ps.udev)) {
0444                     u32     mask;
0445 
0446                     mask = hc32_to_cpu(ehci,
0447                             hw->hw_info2);
0448                     /* "knows" no gap is needed */
0449                     mask |= mask >> 8;
0450                     if (mask & uf_mask)
0451                         break;
0452                 }
0453                 type = Q_NEXT_TYPE(ehci, hw->hw_next);
0454                 here = here.qh->qh_next;
0455                 continue;
0456             case Q_TYPE_SITD:
0457                 if (same_tt(dev, here.sitd->urb->dev)) {
0458                     u16     mask;
0459 
0460                     mask = hc32_to_cpu(ehci, here.sitd
0461                                 ->hw_uframe);
0462                     /* FIXME assumes no gap for IN! */
0463                     mask |= mask >> 8;
0464                     if (mask & uf_mask)
0465                         break;
0466                 }
0467                 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
0468                 here = here.sitd->sitd_next;
0469                 continue;
0470             /* case Q_TYPE_FSTN: */
0471             default:
0472                 ehci_dbg(ehci,
0473                     "periodic frame %d bogus type %d\n",
0474                     frame, type);
0475             }
0476 
0477             /* collision or error */
0478             return 0;
0479         }
0480     }
0481 
0482     /* no collision */
0483     return 1;
0484 }
0485 
0486 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
0487 
0488 /*-------------------------------------------------------------------------*/
0489 
0490 static void enable_periodic(struct ehci_hcd *ehci)
0491 {
0492     if (ehci->periodic_count++)
0493         return;
0494 
0495     /* Stop waiting to turn off the periodic schedule */
0496     ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
0497 
0498     /* Don't start the schedule until PSS is 0 */
0499     ehci_poll_PSS(ehci);
0500     turn_on_io_watchdog(ehci);
0501 }
0502 
0503 static void disable_periodic(struct ehci_hcd *ehci)
0504 {
0505     if (--ehci->periodic_count)
0506         return;
0507 
0508     /* Don't turn off the schedule until PSS is 1 */
0509     ehci_poll_PSS(ehci);
0510 }
0511 
0512 /*-------------------------------------------------------------------------*/
0513 
0514 /* periodic schedule slots have iso tds (normal or split) first, then a
0515  * sparse tree for active interrupt transfers.
0516  *
0517  * this just links in a qh; caller guarantees uframe masks are set right.
0518  * no FSTN support (yet; ehci 0.96+)
0519  */
0520 static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
0521 {
0522     unsigned    i;
0523     unsigned    period = qh->ps.period;
0524 
0525     dev_dbg(&qh->ps.udev->dev,
0526         "link qh%d-%04x/%p start %d [%d/%d us]\n",
0527         period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
0528             & (QH_CMASK | QH_SMASK),
0529         qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
0530 
0531     /* high bandwidth, or otherwise every microframe */
0532     if (period == 0)
0533         period = 1;
0534 
0535     for (i = qh->ps.phase; i < ehci->periodic_size; i += period) {
0536         union ehci_shadow   *prev = &ehci->pshadow[i];
0537         __hc32          *hw_p = &ehci->periodic[i];
0538         union ehci_shadow   here = *prev;
0539         __hc32          type = 0;
0540 
0541         /* skip the iso nodes at list head */
0542         while (here.ptr) {
0543             type = Q_NEXT_TYPE(ehci, *hw_p);
0544             if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
0545                 break;
0546             prev = periodic_next_shadow(ehci, prev, type);
0547             hw_p = shadow_next_periodic(ehci, &here, type);
0548             here = *prev;
0549         }
0550 
0551         /* sorting each branch by period (slow-->fast)
0552          * enables sharing interior tree nodes
0553          */
0554         while (here.ptr && qh != here.qh) {
0555             if (qh->ps.period > here.qh->ps.period)
0556                 break;
0557             prev = &here.qh->qh_next;
0558             hw_p = &here.qh->hw->hw_next;
0559             here = *prev;
0560         }
0561         /* link in this qh, unless some earlier pass did that */
0562         if (qh != here.qh) {
0563             qh->qh_next = here;
0564             if (here.qh)
0565                 qh->hw->hw_next = *hw_p;
0566             wmb();
0567             prev->qh = qh;
0568             *hw_p = QH_NEXT(ehci, qh->qh_dma);
0569         }
0570     }
0571     qh->qh_state = QH_STATE_LINKED;
0572     qh->xacterrs = 0;
0573     qh->unlink_reason = 0;
0574 
0575     /* update per-qh bandwidth for debugfs */
0576     ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period
0577         ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
0578         : (qh->ps.usecs * 8);
0579 
0580     list_add(&qh->intr_node, &ehci->intr_qh_list);
0581 
0582     /* maybe enable periodic schedule processing */
0583     ++ehci->intr_count;
0584     enable_periodic(ehci);
0585 }
0586 
0587 static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
0588 {
0589     unsigned    i;
0590     unsigned    period;
0591 
0592     /*
0593      * If qh is for a low/full-speed device, simply unlinking it
0594      * could interfere with an ongoing split transaction.  To unlink
0595      * it safely would require setting the QH_INACTIVATE bit and
0596      * waiting at least one frame, as described in EHCI 4.12.2.5.
0597      *
0598      * We won't bother with any of this.  Instead, we assume that the
0599      * only reason for unlinking an interrupt QH while the current URB
0600      * is still active is to dequeue all the URBs (flush the whole
0601      * endpoint queue).
0602      *
0603      * If rebalancing the periodic schedule is ever implemented, this
0604      * approach will no longer be valid.
0605      */
0606 
0607     /* high bandwidth, or otherwise part of every microframe */
0608     period = qh->ps.period ? : 1;
0609 
0610     for (i = qh->ps.phase; i < ehci->periodic_size; i += period)
0611         periodic_unlink(ehci, i, qh);
0612 
0613     /* update per-qh bandwidth for debugfs */
0614     ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period
0615         ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
0616         : (qh->ps.usecs * 8);
0617 
0618     dev_dbg(&qh->ps.udev->dev,
0619         "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
0620         qh->ps.period,
0621         hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
0622         qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
0623 
0624     /* qh->qh_next still "live" to HC */
0625     qh->qh_state = QH_STATE_UNLINK;
0626     qh->qh_next.ptr = NULL;
0627 
0628     if (ehci->qh_scan_next == qh)
0629         ehci->qh_scan_next = list_entry(qh->intr_node.next,
0630                 struct ehci_qh, intr_node);
0631     list_del(&qh->intr_node);
0632 }
0633 
0634 static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
0635 {
0636     if (qh->qh_state != QH_STATE_LINKED ||
0637             list_empty(&qh->unlink_node))
0638         return;
0639 
0640     list_del_init(&qh->unlink_node);
0641 
0642     /*
0643      * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for
0644      * avoiding unnecessary CPU wakeup
0645      */
0646 }
0647 
0648 static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
0649 {
0650     /* If the QH isn't linked then there's nothing we can do. */
0651     if (qh->qh_state != QH_STATE_LINKED)
0652         return;
0653 
0654     /* if the qh is waiting for unlink, cancel it now */
0655     cancel_unlink_wait_intr(ehci, qh);
0656 
0657     qh_unlink_periodic(ehci, qh);
0658 
0659     /* Make sure the unlinks are visible before starting the timer */
0660     wmb();
0661 
0662     /*
0663      * The EHCI spec doesn't say how long it takes the controller to
0664      * stop accessing an unlinked interrupt QH.  The timer delay is
0665      * 9 uframes; presumably that will be long enough.
0666      */
0667     qh->unlink_cycle = ehci->intr_unlink_cycle;
0668 
0669     /* New entries go at the end of the intr_unlink list */
0670     list_add_tail(&qh->unlink_node, &ehci->intr_unlink);
0671 
0672     if (ehci->intr_unlinking)
0673         ;   /* Avoid recursive calls */
0674     else if (ehci->rh_state < EHCI_RH_RUNNING)
0675         ehci_handle_intr_unlinks(ehci);
0676     else if (ehci->intr_unlink.next == &qh->unlink_node) {
0677         ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
0678         ++ehci->intr_unlink_cycle;
0679     }
0680 }
0681 
0682 /*
0683  * It is common only one intr URB is scheduled on one qh, and
0684  * given complete() is run in tasklet context, introduce a bit
0685  * delay to avoid unlink qh too early.
0686  */
0687 static void start_unlink_intr_wait(struct ehci_hcd *ehci,
0688                    struct ehci_qh *qh)
0689 {
0690     qh->unlink_cycle = ehci->intr_unlink_wait_cycle;
0691 
0692     /* New entries go at the end of the intr_unlink_wait list */
0693     list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait);
0694 
0695     if (ehci->rh_state < EHCI_RH_RUNNING)
0696         ehci_handle_start_intr_unlinks(ehci);
0697     else if (ehci->intr_unlink_wait.next == &qh->unlink_node) {
0698         ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true);
0699         ++ehci->intr_unlink_wait_cycle;
0700     }
0701 }
0702 
0703 static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
0704 {
0705     struct ehci_qh_hw   *hw = qh->hw;
0706     int         rc;
0707 
0708     qh->qh_state = QH_STATE_IDLE;
0709     hw->hw_next = EHCI_LIST_END(ehci);
0710 
0711     if (!list_empty(&qh->qtd_list))
0712         qh_completions(ehci, qh);
0713 
0714     /* reschedule QH iff another request is queued */
0715     if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
0716         rc = qh_schedule(ehci, qh);
0717         if (rc == 0) {
0718             qh_refresh(ehci, qh);
0719             qh_link_periodic(ehci, qh);
0720         }
0721 
0722         /* An error here likely indicates handshake failure
0723          * or no space left in the schedule.  Neither fault
0724          * should happen often ...
0725          *
0726          * FIXME kill the now-dysfunctional queued urbs
0727          */
0728         else {
0729             ehci_err(ehci, "can't reschedule qh %p, err %d\n",
0730                     qh, rc);
0731         }
0732     }
0733 
0734     /* maybe turn off periodic schedule */
0735     --ehci->intr_count;
0736     disable_periodic(ehci);
0737 }
0738 
0739 /*-------------------------------------------------------------------------*/
0740 
0741 static int check_period(
0742     struct ehci_hcd *ehci,
0743     unsigned    frame,
0744     unsigned    uframe,
0745     unsigned    uperiod,
0746     unsigned    usecs
0747 ) {
0748     /* complete split running into next frame?
0749      * given FSTN support, we could sometimes check...
0750      */
0751     if (uframe >= 8)
0752         return 0;
0753 
0754     /* convert "usecs we need" to "max already claimed" */
0755     usecs = ehci->uframe_periodic_max - usecs;
0756 
0757     for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE;
0758             uframe += uperiod) {
0759         if (ehci->bandwidth[uframe] > usecs)
0760             return 0;
0761     }
0762 
0763     /* success! */
0764     return 1;
0765 }
0766 
0767 static int check_intr_schedule(
0768     struct ehci_hcd     *ehci,
0769     unsigned        frame,
0770     unsigned        uframe,
0771     struct ehci_qh      *qh,
0772     unsigned        *c_maskp,
0773     struct ehci_tt      *tt
0774 )
0775 {
0776     int     retval = -ENOSPC;
0777     u8      mask = 0;
0778 
0779     if (qh->ps.c_usecs && uframe >= 6)  /* FSTN territory? */
0780         goto done;
0781 
0782     if (!check_period(ehci, frame, uframe, qh->ps.bw_uperiod, qh->ps.usecs))
0783         goto done;
0784     if (!qh->ps.c_usecs) {
0785         retval = 0;
0786         *c_maskp = 0;
0787         goto done;
0788     }
0789 
0790 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
0791     if (tt_available(ehci, &qh->ps, tt, frame, uframe)) {
0792         unsigned i;
0793 
0794         /* TODO : this may need FSTN for SSPLIT in uframe 5. */
0795         for (i = uframe+2; i < 8 && i <= uframe+4; i++)
0796             if (!check_period(ehci, frame, i,
0797                     qh->ps.bw_uperiod, qh->ps.c_usecs))
0798                 goto done;
0799             else
0800                 mask |= 1 << i;
0801 
0802         retval = 0;
0803 
0804         *c_maskp = mask;
0805     }
0806 #else
0807     /* Make sure this tt's buffer is also available for CSPLITs.
0808      * We pessimize a bit; probably the typical full speed case
0809      * doesn't need the second CSPLIT.
0810      *
0811      * NOTE:  both SPLIT and CSPLIT could be checked in just
0812      * one smart pass...
0813      */
0814     mask = 0x03 << (uframe + qh->gap_uf);
0815     *c_maskp = mask;
0816 
0817     mask |= 1 << uframe;
0818     if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) {
0819         if (!check_period(ehci, frame, uframe + qh->gap_uf + 1,
0820                 qh->ps.bw_uperiod, qh->ps.c_usecs))
0821             goto done;
0822         if (!check_period(ehci, frame, uframe + qh->gap_uf,
0823                 qh->ps.bw_uperiod, qh->ps.c_usecs))
0824             goto done;
0825         retval = 0;
0826     }
0827 #endif
0828 done:
0829     return retval;
0830 }
0831 
0832 /* "first fit" scheduling policy used the first time through,
0833  * or when the previous schedule slot can't be re-used.
0834  */
0835 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
0836 {
0837     int     status = 0;
0838     unsigned    uframe;
0839     unsigned    c_mask;
0840     struct ehci_qh_hw   *hw = qh->hw;
0841     struct ehci_tt      *tt;
0842 
0843     hw->hw_next = EHCI_LIST_END(ehci);
0844 
0845     /* reuse the previous schedule slots, if we can */
0846     if (qh->ps.phase != NO_FRAME) {
0847         ehci_dbg(ehci, "reused qh %p schedule\n", qh);
0848         return 0;
0849     }
0850 
0851     uframe = 0;
0852     c_mask = 0;
0853     tt = find_tt(qh->ps.udev);
0854     if (IS_ERR(tt)) {
0855         status = PTR_ERR(tt);
0856         goto done;
0857     }
0858     compute_tt_budget(ehci->tt_budget, tt);
0859 
0860     /* else scan the schedule to find a group of slots such that all
0861      * uframes have enough periodic bandwidth available.
0862      */
0863     /* "normal" case, uframing flexible except with splits */
0864     if (qh->ps.bw_period) {
0865         int     i;
0866         unsigned    frame;
0867 
0868         for (i = qh->ps.bw_period; i > 0; --i) {
0869             frame = ++ehci->random_frame & (qh->ps.bw_period - 1);
0870             for (uframe = 0; uframe < 8; uframe++) {
0871                 status = check_intr_schedule(ehci,
0872                         frame, uframe, qh, &c_mask, tt);
0873                 if (status == 0)
0874                     goto got_it;
0875             }
0876         }
0877 
0878     /* qh->ps.bw_period == 0 means every uframe */
0879     } else {
0880         status = check_intr_schedule(ehci, 0, 0, qh, &c_mask, tt);
0881     }
0882     if (status)
0883         goto done;
0884 
0885  got_it:
0886     qh->ps.phase = (qh->ps.period ? ehci->random_frame &
0887             (qh->ps.period - 1) : 0);
0888     qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1);
0889     qh->ps.phase_uf = uframe;
0890     qh->ps.cs_mask = qh->ps.period ?
0891             (c_mask << 8) | (1 << uframe) :
0892             QH_SMASK;
0893 
0894     /* reset S-frame and (maybe) C-frame masks */
0895     hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
0896     hw->hw_info2 |= cpu_to_hc32(ehci, qh->ps.cs_mask);
0897     reserve_release_intr_bandwidth(ehci, qh, 1);
0898 
0899 done:
0900     return status;
0901 }
0902 
0903 static int intr_submit(
0904     struct ehci_hcd     *ehci,
0905     struct urb      *urb,
0906     struct list_head    *qtd_list,
0907     gfp_t           mem_flags
0908 ) {
0909     unsigned        epnum;
0910     unsigned long       flags;
0911     struct ehci_qh      *qh;
0912     int         status;
0913     struct list_head    empty;
0914 
0915     /* get endpoint and transfer/schedule data */
0916     epnum = urb->ep->desc.bEndpointAddress;
0917 
0918     spin_lock_irqsave(&ehci->lock, flags);
0919 
0920     if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
0921         status = -ESHUTDOWN;
0922         goto done_not_linked;
0923     }
0924     status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
0925     if (unlikely(status))
0926         goto done_not_linked;
0927 
0928     /* get qh and force any scheduling errors */
0929     INIT_LIST_HEAD(&empty);
0930     qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
0931     if (qh == NULL) {
0932         status = -ENOMEM;
0933         goto done;
0934     }
0935     if (qh->qh_state == QH_STATE_IDLE) {
0936         status = qh_schedule(ehci, qh);
0937         if (status)
0938             goto done;
0939     }
0940 
0941     /* then queue the urb's tds to the qh */
0942     qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
0943     BUG_ON(qh == NULL);
0944 
0945     /* stuff into the periodic schedule */
0946     if (qh->qh_state == QH_STATE_IDLE) {
0947         qh_refresh(ehci, qh);
0948         qh_link_periodic(ehci, qh);
0949     } else {
0950         /* cancel unlink wait for the qh */
0951         cancel_unlink_wait_intr(ehci, qh);
0952     }
0953 
0954     /* ... update usbfs periodic stats */
0955     ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
0956 
0957 done:
0958     if (unlikely(status))
0959         usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
0960 done_not_linked:
0961     spin_unlock_irqrestore(&ehci->lock, flags);
0962     if (status)
0963         qtd_list_free(ehci, urb, qtd_list);
0964 
0965     return status;
0966 }
0967 
0968 static void scan_intr(struct ehci_hcd *ehci)
0969 {
0970     struct ehci_qh      *qh;
0971 
0972     list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
0973             intr_node) {
0974 
0975         /* clean any finished work for this qh */
0976         if (!list_empty(&qh->qtd_list)) {
0977             int temp;
0978 
0979             /*
0980              * Unlinks could happen here; completion reporting
0981              * drops the lock.  That's why ehci->qh_scan_next
0982              * always holds the next qh to scan; if the next qh
0983              * gets unlinked then ehci->qh_scan_next is adjusted
0984              * in qh_unlink_periodic().
0985              */
0986             temp = qh_completions(ehci, qh);
0987             if (unlikely(temp))
0988                 start_unlink_intr(ehci, qh);
0989             else if (unlikely(list_empty(&qh->qtd_list) &&
0990                     qh->qh_state == QH_STATE_LINKED))
0991                 start_unlink_intr_wait(ehci, qh);
0992         }
0993     }
0994 }
0995 
0996 /*-------------------------------------------------------------------------*/
0997 
0998 /* ehci_iso_stream ops work with both ITD and SITD */
0999 
1000 static struct ehci_iso_stream *
1001 iso_stream_alloc(gfp_t mem_flags)
1002 {
1003     struct ehci_iso_stream *stream;
1004 
1005     stream = kzalloc(sizeof(*stream), mem_flags);
1006     if (likely(stream != NULL)) {
1007         INIT_LIST_HEAD(&stream->td_list);
1008         INIT_LIST_HEAD(&stream->free_list);
1009         stream->next_uframe = NO_FRAME;
1010         stream->ps.phase = NO_FRAME;
1011     }
1012     return stream;
1013 }
1014 
1015 static void
1016 iso_stream_init(
1017     struct ehci_hcd     *ehci,
1018     struct ehci_iso_stream  *stream,
1019     struct urb      *urb
1020 )
1021 {
1022     static const u8 smask_out[] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
1023 
1024     struct usb_device   *dev = urb->dev;
1025     u32         buf1;
1026     unsigned        epnum, maxp;
1027     int         is_input;
1028     unsigned        tmp;
1029 
1030     /*
1031      * this might be a "high bandwidth" highspeed endpoint,
1032      * as encoded in the ep descriptor's wMaxPacket field
1033      */
1034     epnum = usb_pipeendpoint(urb->pipe);
1035     is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0;
1036     maxp = usb_endpoint_maxp(&urb->ep->desc);
1037     buf1 = is_input ? 1 << 11 : 0;
1038 
1039     /* knows about ITD vs SITD */
1040     if (dev->speed == USB_SPEED_HIGH) {
1041         unsigned multi = usb_endpoint_maxp_mult(&urb->ep->desc);
1042 
1043         stream->highspeed = 1;
1044 
1045         buf1 |= maxp;
1046         maxp *= multi;
1047 
1048         stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
1049         stream->buf1 = cpu_to_hc32(ehci, buf1);
1050         stream->buf2 = cpu_to_hc32(ehci, multi);
1051 
1052         /* usbfs wants to report the average usecs per frame tied up
1053          * when transfers on this endpoint are scheduled ...
1054          */
1055         stream->ps.usecs = HS_USECS_ISO(maxp);
1056 
1057         /* period for bandwidth allocation */
1058         tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
1059                 1 << (urb->ep->desc.bInterval - 1));
1060 
1061         /* Allow urb->interval to override */
1062         stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
1063 
1064         stream->uperiod = urb->interval;
1065         stream->ps.period = urb->interval >> 3;
1066         stream->bandwidth = stream->ps.usecs * 8 /
1067                 stream->ps.bw_uperiod;
1068 
1069     } else {
1070         u32     addr;
1071         int     think_time;
1072         int     hs_transfers;
1073 
1074         addr = dev->ttport << 24;
1075         if (!ehci_is_TDI(ehci)
1076                 || (dev->tt->hub !=
1077                     ehci_to_hcd(ehci)->self.root_hub))
1078             addr |= dev->tt->hub->devnum << 16;
1079         addr |= epnum << 8;
1080         addr |= dev->devnum;
1081         stream->ps.usecs = HS_USECS_ISO(maxp);
1082         think_time = dev->tt->think_time;
1083         stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time(
1084                 dev->speed, is_input, 1, maxp));
1085         hs_transfers = max(1u, (maxp + 187) / 188);
1086         if (is_input) {
1087             u32 tmp;
1088 
1089             addr |= 1 << 31;
1090             stream->ps.c_usecs = stream->ps.usecs;
1091             stream->ps.usecs = HS_USECS_ISO(1);
1092             stream->ps.cs_mask = 1;
1093 
1094             /* c-mask as specified in USB 2.0 11.18.4 3.c */
1095             tmp = (1 << (hs_transfers + 2)) - 1;
1096             stream->ps.cs_mask |= tmp << (8 + 2);
1097         } else
1098             stream->ps.cs_mask = smask_out[hs_transfers - 1];
1099 
1100         /* period for bandwidth allocation */
1101         tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
1102                 1 << (urb->ep->desc.bInterval - 1));
1103 
1104         /* Allow urb->interval to override */
1105         stream->ps.bw_period = min_t(unsigned, tmp, urb->interval);
1106         stream->ps.bw_uperiod = stream->ps.bw_period << 3;
1107 
1108         stream->ps.period = urb->interval;
1109         stream->uperiod = urb->interval << 3;
1110         stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) /
1111                 stream->ps.bw_period;
1112 
1113         /* stream->splits gets created from cs_mask later */
1114         stream->address = cpu_to_hc32(ehci, addr);
1115     }
1116 
1117     stream->ps.udev = dev;
1118     stream->ps.ep = urb->ep;
1119 
1120     stream->bEndpointAddress = is_input | epnum;
1121     stream->maxp = maxp;
1122 }
1123 
1124 static struct ehci_iso_stream *
1125 iso_stream_find(struct ehci_hcd *ehci, struct urb *urb)
1126 {
1127     unsigned        epnum;
1128     struct ehci_iso_stream  *stream;
1129     struct usb_host_endpoint *ep;
1130     unsigned long       flags;
1131 
1132     epnum = usb_pipeendpoint (urb->pipe);
1133     if (usb_pipein(urb->pipe))
1134         ep = urb->dev->ep_in[epnum];
1135     else
1136         ep = urb->dev->ep_out[epnum];
1137 
1138     spin_lock_irqsave(&ehci->lock, flags);
1139     stream = ep->hcpriv;
1140 
1141     if (unlikely(stream == NULL)) {
1142         stream = iso_stream_alloc(GFP_ATOMIC);
1143         if (likely(stream != NULL)) {
1144             ep->hcpriv = stream;
1145             iso_stream_init(ehci, stream, urb);
1146         }
1147 
1148     /* if dev->ep [epnum] is a QH, hw is set */
1149     } else if (unlikely(stream->hw != NULL)) {
1150         ehci_dbg(ehci, "dev %s ep%d%s, not iso??\n",
1151             urb->dev->devpath, epnum,
1152             usb_pipein(urb->pipe) ? "in" : "out");
1153         stream = NULL;
1154     }
1155 
1156     spin_unlock_irqrestore(&ehci->lock, flags);
1157     return stream;
1158 }
1159 
1160 /*-------------------------------------------------------------------------*/
1161 
1162 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1163 
1164 static struct ehci_iso_sched *
1165 iso_sched_alloc(unsigned packets, gfp_t mem_flags)
1166 {
1167     struct ehci_iso_sched   *iso_sched;
1168 
1169     iso_sched = kzalloc(struct_size(iso_sched, packet, packets), mem_flags);
1170     if (likely(iso_sched != NULL))
1171         INIT_LIST_HEAD(&iso_sched->td_list);
1172 
1173     return iso_sched;
1174 }
1175 
1176 static inline void
1177 itd_sched_init(
1178     struct ehci_hcd     *ehci,
1179     struct ehci_iso_sched   *iso_sched,
1180     struct ehci_iso_stream  *stream,
1181     struct urb      *urb
1182 )
1183 {
1184     unsigned    i;
1185     dma_addr_t  dma = urb->transfer_dma;
1186 
1187     /* how many uframes are needed for these transfers */
1188     iso_sched->span = urb->number_of_packets * stream->uperiod;
1189 
1190     /* figure out per-uframe itd fields that we'll need later
1191      * when we fit new itds into the schedule.
1192      */
1193     for (i = 0; i < urb->number_of_packets; i++) {
1194         struct ehci_iso_packet  *uframe = &iso_sched->packet[i];
1195         unsigned        length;
1196         dma_addr_t      buf;
1197         u32         trans;
1198 
1199         length = urb->iso_frame_desc[i].length;
1200         buf = dma + urb->iso_frame_desc[i].offset;
1201 
1202         trans = EHCI_ISOC_ACTIVE;
1203         trans |= buf & 0x0fff;
1204         if (unlikely(((i + 1) == urb->number_of_packets))
1205                 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1206             trans |= EHCI_ITD_IOC;
1207         trans |= length << 16;
1208         uframe->transaction = cpu_to_hc32(ehci, trans);
1209 
1210         /* might need to cross a buffer page within a uframe */
1211         uframe->bufp = (buf & ~(u64)0x0fff);
1212         buf += length;
1213         if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
1214             uframe->cross = 1;
1215     }
1216 }
1217 
1218 static void
1219 iso_sched_free(
1220     struct ehci_iso_stream  *stream,
1221     struct ehci_iso_sched   *iso_sched
1222 )
1223 {
1224     if (!iso_sched)
1225         return;
1226     /* caller must hold ehci->lock! */
1227     list_splice(&iso_sched->td_list, &stream->free_list);
1228     kfree(iso_sched);
1229 }
1230 
1231 static int
1232 itd_urb_transaction(
1233     struct ehci_iso_stream  *stream,
1234     struct ehci_hcd     *ehci,
1235     struct urb      *urb,
1236     gfp_t           mem_flags
1237 )
1238 {
1239     struct ehci_itd     *itd;
1240     dma_addr_t      itd_dma;
1241     int         i;
1242     unsigned        num_itds;
1243     struct ehci_iso_sched   *sched;
1244     unsigned long       flags;
1245 
1246     sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
1247     if (unlikely(sched == NULL))
1248         return -ENOMEM;
1249 
1250     itd_sched_init(ehci, sched, stream, urb);
1251 
1252     if (urb->interval < 8)
1253         num_itds = 1 + (sched->span + 7) / 8;
1254     else
1255         num_itds = urb->number_of_packets;
1256 
1257     /* allocate/init ITDs */
1258     spin_lock_irqsave(&ehci->lock, flags);
1259     for (i = 0; i < num_itds; i++) {
1260 
1261         /*
1262          * Use iTDs from the free list, but not iTDs that may
1263          * still be in use by the hardware.
1264          */
1265         if (likely(!list_empty(&stream->free_list))) {
1266             itd = list_first_entry(&stream->free_list,
1267                     struct ehci_itd, itd_list);
1268             if (itd->frame == ehci->now_frame)
1269                 goto alloc_itd;
1270             list_del(&itd->itd_list);
1271             itd_dma = itd->itd_dma;
1272         } else {
1273  alloc_itd:
1274             spin_unlock_irqrestore(&ehci->lock, flags);
1275             itd = dma_pool_alloc(ehci->itd_pool, mem_flags,
1276                     &itd_dma);
1277             spin_lock_irqsave(&ehci->lock, flags);
1278             if (!itd) {
1279                 iso_sched_free(stream, sched);
1280                 spin_unlock_irqrestore(&ehci->lock, flags);
1281                 return -ENOMEM;
1282             }
1283         }
1284 
1285         memset(itd, 0, sizeof(*itd));
1286         itd->itd_dma = itd_dma;
1287         itd->frame = NO_FRAME;
1288         list_add(&itd->itd_list, &sched->td_list);
1289     }
1290     spin_unlock_irqrestore(&ehci->lock, flags);
1291 
1292     /* temporarily store schedule info in hcpriv */
1293     urb->hcpriv = sched;
1294     urb->error_count = 0;
1295     return 0;
1296 }
1297 
1298 /*-------------------------------------------------------------------------*/
1299 
1300 static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci,
1301         struct ehci_iso_stream *stream, int sign)
1302 {
1303     unsigned        uframe;
1304     unsigned        i, j;
1305     unsigned        s_mask, c_mask, m;
1306     int         usecs = stream->ps.usecs;
1307     int         c_usecs = stream->ps.c_usecs;
1308     int         tt_usecs = stream->ps.tt_usecs;
1309     struct ehci_tt      *tt;
1310 
1311     if (stream->ps.phase == NO_FRAME)   /* Bandwidth wasn't reserved */
1312         return;
1313     uframe = stream->ps.bw_phase << 3;
1314 
1315     bandwidth_dbg(ehci, sign, "iso", &stream->ps);
1316 
1317     if (sign < 0) {     /* Release bandwidth */
1318         usecs = -usecs;
1319         c_usecs = -c_usecs;
1320         tt_usecs = -tt_usecs;
1321     }
1322 
1323     if (!stream->splits) {      /* High speed */
1324         for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
1325                 i += stream->ps.bw_uperiod)
1326             ehci->bandwidth[i] += usecs;
1327 
1328     } else {            /* Full speed */
1329         s_mask = stream->ps.cs_mask;
1330         c_mask = s_mask >> 8;
1331 
1332         /* NOTE: adjustment needed for frame overflow */
1333         for (i = uframe; i < EHCI_BANDWIDTH_SIZE;
1334                 i += stream->ps.bw_uperiod) {
1335             for ((j = stream->ps.phase_uf, m = 1 << j); j < 8;
1336                     (++j, m <<= 1)) {
1337                 if (s_mask & m)
1338                     ehci->bandwidth[i+j] += usecs;
1339                 else if (c_mask & m)
1340                     ehci->bandwidth[i+j] += c_usecs;
1341             }
1342         }
1343 
1344         /*
1345          * find_tt() will not return any error here as we have
1346          * already called find_tt() before calling this function
1347          * and checked for any error return. The previous call
1348          * would have created the data structure.
1349          */
1350         tt = find_tt(stream->ps.udev);
1351         if (sign > 0)
1352             list_add_tail(&stream->ps.ps_list, &tt->ps_list);
1353         else
1354             list_del(&stream->ps.ps_list);
1355 
1356         for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES;
1357                 i += stream->ps.bw_period)
1358             tt->bandwidth[i] += tt_usecs;
1359     }
1360 }
1361 
1362 static inline int
1363 itd_slot_ok(
1364     struct ehci_hcd     *ehci,
1365     struct ehci_iso_stream  *stream,
1366     unsigned        uframe
1367 )
1368 {
1369     unsigned        usecs;
1370 
1371     /* convert "usecs we need" to "max already claimed" */
1372     usecs = ehci->uframe_periodic_max - stream->ps.usecs;
1373 
1374     for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE;
1375             uframe += stream->ps.bw_uperiod) {
1376         if (ehci->bandwidth[uframe] > usecs)
1377             return 0;
1378     }
1379     return 1;
1380 }
1381 
1382 static inline int
1383 sitd_slot_ok(
1384     struct ehci_hcd     *ehci,
1385     struct ehci_iso_stream  *stream,
1386     unsigned        uframe,
1387     struct ehci_iso_sched   *sched,
1388     struct ehci_tt      *tt
1389 )
1390 {
1391     unsigned        mask, tmp;
1392     unsigned        frame, uf;
1393 
1394     mask = stream->ps.cs_mask << (uframe & 7);
1395 
1396     /* for OUT, don't wrap SSPLIT into H-microframe 7 */
1397     if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7))
1398         return 0;
1399 
1400     /* for IN, don't wrap CSPLIT into the next frame */
1401     if (mask & ~0xffff)
1402         return 0;
1403 
1404     /* check bandwidth */
1405     uframe &= stream->ps.bw_uperiod - 1;
1406     frame = uframe >> 3;
1407 
1408 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1409     /* The tt's fullspeed bus bandwidth must be available.
1410      * tt_available scheduling guarantees 10+% for control/bulk.
1411      */
1412     uf = uframe & 7;
1413     if (!tt_available(ehci, &stream->ps, tt, frame, uf))
1414         return 0;
1415 #else
1416     /* tt must be idle for start(s), any gap, and csplit.
1417      * assume scheduling slop leaves 10+% for control/bulk.
1418      */
1419     if (!tt_no_collision(ehci, stream->ps.bw_period,
1420             stream->ps.udev, frame, mask))
1421         return 0;
1422 #endif
1423 
1424     do {
1425         unsigned    max_used;
1426         unsigned    i;
1427 
1428         /* check starts (OUT uses more than one) */
1429         uf = uframe;
1430         max_used = ehci->uframe_periodic_max - stream->ps.usecs;
1431         for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) {
1432             if (ehci->bandwidth[uf] > max_used)
1433                 return 0;
1434         }
1435 
1436         /* for IN, check CSPLIT */
1437         if (stream->ps.c_usecs) {
1438             max_used = ehci->uframe_periodic_max -
1439                     stream->ps.c_usecs;
1440             uf = uframe & ~7;
1441             tmp = 1 << (2+8);
1442             for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) {
1443                 if ((stream->ps.cs_mask & tmp) == 0)
1444                     continue;
1445                 if (ehci->bandwidth[uf+i] > max_used)
1446                     return 0;
1447             }
1448         }
1449 
1450         uframe += stream->ps.bw_uperiod;
1451     } while (uframe < EHCI_BANDWIDTH_SIZE);
1452 
1453     stream->ps.cs_mask <<= uframe & 7;
1454     stream->splits = cpu_to_hc32(ehci, stream->ps.cs_mask);
1455     return 1;
1456 }
1457 
1458 /*
1459  * This scheduler plans almost as far into the future as it has actual
1460  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
1461  * "as small as possible" to be cache-friendlier.)  That limits the size
1462  * transfers you can stream reliably; avoid more than 64 msec per urb.
1463  * Also avoid queue depths of less than ehci's worst irq latency (affected
1464  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1465  * and other factors); or more than about 230 msec total (for portability,
1466  * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler!
1467  */
1468 
1469 static int
1470 iso_stream_schedule(
1471     struct ehci_hcd     *ehci,
1472     struct urb      *urb,
1473     struct ehci_iso_stream  *stream
1474 )
1475 {
1476     u32         now, base, next, start, period, span, now2;
1477     u32         wrap = 0, skip = 0;
1478     int         status = 0;
1479     unsigned        mod = ehci->periodic_size << 3;
1480     struct ehci_iso_sched   *sched = urb->hcpriv;
1481     bool            empty = list_empty(&stream->td_list);
1482     bool            new_stream = false;
1483 
1484     period = stream->uperiod;
1485     span = sched->span;
1486     if (!stream->highspeed)
1487         span <<= 3;
1488 
1489     /* Start a new isochronous stream? */
1490     if (unlikely(empty && !hcd_periodic_completion_in_progress(
1491             ehci_to_hcd(ehci), urb->ep))) {
1492 
1493         /* Schedule the endpoint */
1494         if (stream->ps.phase == NO_FRAME) {
1495             int     done = 0;
1496             struct ehci_tt  *tt = find_tt(stream->ps.udev);
1497 
1498             if (IS_ERR(tt)) {
1499                 status = PTR_ERR(tt);
1500                 goto fail;
1501             }
1502             compute_tt_budget(ehci->tt_budget, tt);
1503 
1504             start = ((-(++ehci->random_frame)) << 3) & (period - 1);
1505 
1506             /* find a uframe slot with enough bandwidth.
1507              * Early uframes are more precious because full-speed
1508              * iso IN transfers can't use late uframes,
1509              * and therefore they should be allocated last.
1510              */
1511             next = start;
1512             start += period;
1513             do {
1514                 start--;
1515                 /* check schedule: enough space? */
1516                 if (stream->highspeed) {
1517                     if (itd_slot_ok(ehci, stream, start))
1518                         done = 1;
1519                 } else {
1520                     if ((start % 8) >= 6)
1521                         continue;
1522                     if (sitd_slot_ok(ehci, stream, start,
1523                             sched, tt))
1524                         done = 1;
1525                 }
1526             } while (start > next && !done);
1527 
1528             /* no room in the schedule */
1529             if (!done) {
1530                 ehci_dbg(ehci, "iso sched full %p", urb);
1531                 status = -ENOSPC;
1532                 goto fail;
1533             }
1534             stream->ps.phase = (start >> 3) &
1535                     (stream->ps.period - 1);
1536             stream->ps.bw_phase = stream->ps.phase &
1537                     (stream->ps.bw_period - 1);
1538             stream->ps.phase_uf = start & 7;
1539             reserve_release_iso_bandwidth(ehci, stream, 1);
1540         }
1541 
1542         /* New stream is already scheduled; use the upcoming slot */
1543         else {
1544             start = (stream->ps.phase << 3) + stream->ps.phase_uf;
1545         }
1546 
1547         stream->next_uframe = start;
1548         new_stream = true;
1549     }
1550 
1551     now = ehci_read_frame_index(ehci) & (mod - 1);
1552 
1553     /* Take the isochronous scheduling threshold into account */
1554     if (ehci->i_thresh)
1555         next = now + ehci->i_thresh;    /* uframe cache */
1556     else
1557         next = (now + 2 + 7) & ~0x07;   /* full frame cache */
1558 
1559     /* If needed, initialize last_iso_frame so that this URB will be seen */
1560     if (ehci->isoc_count == 0)
1561         ehci->last_iso_frame = now >> 3;
1562 
1563     /*
1564      * Use ehci->last_iso_frame as the base.  There can't be any
1565      * TDs scheduled for earlier than that.
1566      */
1567     base = ehci->last_iso_frame << 3;
1568     next = (next - base) & (mod - 1);
1569     start = (stream->next_uframe - base) & (mod - 1);
1570 
1571     if (unlikely(new_stream))
1572         goto do_ASAP;
1573 
1574     /*
1575      * Typical case: reuse current schedule, stream may still be active.
1576      * Hopefully there are no gaps from the host falling behind
1577      * (irq delays etc).  If there are, the behavior depends on
1578      * whether URB_ISO_ASAP is set.
1579      */
1580     now2 = (now - base) & (mod - 1);
1581 
1582     /* Is the schedule about to wrap around? */
1583     if (unlikely(!empty && start < period)) {
1584         ehci_dbg(ehci, "request %p would overflow (%u-%u < %u mod %u)\n",
1585                 urb, stream->next_uframe, base, period, mod);
1586         status = -EFBIG;
1587         goto fail;
1588     }
1589 
1590     /* Is the next packet scheduled after the base time? */
1591     if (likely(!empty || start <= now2 + period)) {
1592 
1593         /* URB_ISO_ASAP: make sure that start >= next */
1594         if (unlikely(start < next &&
1595                 (urb->transfer_flags & URB_ISO_ASAP)))
1596             goto do_ASAP;
1597 
1598         /* Otherwise use start, if it's not in the past */
1599         if (likely(start >= now2))
1600             goto use_start;
1601 
1602     /* Otherwise we got an underrun while the queue was empty */
1603     } else {
1604         if (urb->transfer_flags & URB_ISO_ASAP)
1605             goto do_ASAP;
1606         wrap = mod;
1607         now2 += mod;
1608     }
1609 
1610     /* How many uframes and packets do we need to skip? */
1611     skip = (now2 - start + period - 1) & -period;
1612     if (skip >= span) {     /* Entirely in the past? */
1613         ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n",
1614                 urb, start + base, span - period, now2 + base,
1615                 base);
1616 
1617         /* Try to keep the last TD intact for scanning later */
1618         skip = span - period;
1619 
1620         /* Will it come before the current scan position? */
1621         if (empty) {
1622             skip = span;    /* Skip the entire URB */
1623             status = 1; /* and give it back immediately */
1624             iso_sched_free(stream, sched);
1625             sched = NULL;
1626         }
1627     }
1628     urb->error_count = skip / period;
1629     if (sched)
1630         sched->first_packet = urb->error_count;
1631     goto use_start;
1632 
1633  do_ASAP:
1634     /* Use the first slot after "next" */
1635     start = next + ((start - next) & (period - 1));
1636 
1637  use_start:
1638     /* Tried to schedule too far into the future? */
1639     if (unlikely(start + span - period >= mod + wrap)) {
1640         ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n",
1641                 urb, start, span - period, mod + wrap);
1642         status = -EFBIG;
1643         goto fail;
1644     }
1645 
1646     start += base;
1647     stream->next_uframe = (start + skip) & (mod - 1);
1648 
1649     /* report high speed start in uframes; full speed, in frames */
1650     urb->start_frame = start & (mod - 1);
1651     if (!stream->highspeed)
1652         urb->start_frame >>= 3;
1653     return status;
1654 
1655  fail:
1656     iso_sched_free(stream, sched);
1657     urb->hcpriv = NULL;
1658     return status;
1659 }
1660 
1661 /*-------------------------------------------------------------------------*/
1662 
1663 static inline void
1664 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1665         struct ehci_itd *itd)
1666 {
1667     int i;
1668 
1669     /* it's been recently zeroed */
1670     itd->hw_next = EHCI_LIST_END(ehci);
1671     itd->hw_bufp[0] = stream->buf0;
1672     itd->hw_bufp[1] = stream->buf1;
1673     itd->hw_bufp[2] = stream->buf2;
1674 
1675     for (i = 0; i < 8; i++)
1676         itd->index[i] = -1;
1677 
1678     /* All other fields are filled when scheduling */
1679 }
1680 
1681 static inline void
1682 itd_patch(
1683     struct ehci_hcd     *ehci,
1684     struct ehci_itd     *itd,
1685     struct ehci_iso_sched   *iso_sched,
1686     unsigned        index,
1687     u16         uframe
1688 )
1689 {
1690     struct ehci_iso_packet  *uf = &iso_sched->packet[index];
1691     unsigned        pg = itd->pg;
1692 
1693     /* BUG_ON(pg == 6 && uf->cross); */
1694 
1695     uframe &= 0x07;
1696     itd->index[uframe] = index;
1697 
1698     itd->hw_transaction[uframe] = uf->transaction;
1699     itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1700     itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1701     itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1702 
1703     /* iso_frame_desc[].offset must be strictly increasing */
1704     if (unlikely(uf->cross)) {
1705         u64 bufp = uf->bufp + 4096;
1706 
1707         itd->pg = ++pg;
1708         itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1709         itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1710     }
1711 }
1712 
1713 static inline void
1714 itd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1715 {
1716     union ehci_shadow   *prev = &ehci->pshadow[frame];
1717     __hc32          *hw_p = &ehci->periodic[frame];
1718     union ehci_shadow   here = *prev;
1719     __hc32          type = 0;
1720 
1721     /* skip any iso nodes which might belong to previous microframes */
1722     while (here.ptr) {
1723         type = Q_NEXT_TYPE(ehci, *hw_p);
1724         if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1725             break;
1726         prev = periodic_next_shadow(ehci, prev, type);
1727         hw_p = shadow_next_periodic(ehci, &here, type);
1728         here = *prev;
1729     }
1730 
1731     itd->itd_next = here;
1732     itd->hw_next = *hw_p;
1733     prev->itd = itd;
1734     itd->frame = frame;
1735     wmb();
1736     *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1737 }
1738 
1739 /* fit urb's itds into the selected schedule slot; activate as needed */
1740 static void itd_link_urb(
1741     struct ehci_hcd     *ehci,
1742     struct urb      *urb,
1743     unsigned        mod,
1744     struct ehci_iso_stream  *stream
1745 )
1746 {
1747     int         packet;
1748     unsigned        next_uframe, uframe, frame;
1749     struct ehci_iso_sched   *iso_sched = urb->hcpriv;
1750     struct ehci_itd     *itd;
1751 
1752     next_uframe = stream->next_uframe & (mod - 1);
1753 
1754     if (unlikely(list_empty(&stream->td_list)))
1755         ehci_to_hcd(ehci)->self.bandwidth_allocated
1756                 += stream->bandwidth;
1757 
1758     if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1759         if (ehci->amd_pll_fix == 1)
1760             usb_amd_quirk_pll_disable();
1761     }
1762 
1763     ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1764 
1765     /* fill iTDs uframe by uframe */
1766     for (packet = iso_sched->first_packet, itd = NULL;
1767             packet < urb->number_of_packets;) {
1768         if (itd == NULL) {
1769             /* ASSERT:  we have all necessary itds */
1770             /* BUG_ON(list_empty(&iso_sched->td_list)); */
1771 
1772             /* ASSERT:  no itds for this endpoint in this uframe */
1773 
1774             itd = list_entry(iso_sched->td_list.next,
1775                     struct ehci_itd, itd_list);
1776             list_move_tail(&itd->itd_list, &stream->td_list);
1777             itd->stream = stream;
1778             itd->urb = urb;
1779             itd_init(ehci, stream, itd);
1780         }
1781 
1782         uframe = next_uframe & 0x07;
1783         frame = next_uframe >> 3;
1784 
1785         itd_patch(ehci, itd, iso_sched, packet, uframe);
1786 
1787         next_uframe += stream->uperiod;
1788         next_uframe &= mod - 1;
1789         packet++;
1790 
1791         /* link completed itds into the schedule */
1792         if (((next_uframe >> 3) != frame)
1793                 || packet == urb->number_of_packets) {
1794             itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1795             itd = NULL;
1796         }
1797     }
1798     stream->next_uframe = next_uframe;
1799 
1800     /* don't need that schedule data any more */
1801     iso_sched_free(stream, iso_sched);
1802     urb->hcpriv = stream;
1803 
1804     ++ehci->isoc_count;
1805     enable_periodic(ehci);
1806 }
1807 
1808 #define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1809 
1810 /* Process and recycle a completed ITD.  Return true iff its urb completed,
1811  * and hence its completion callback probably added things to the hardware
1812  * schedule.
1813  *
1814  * Note that we carefully avoid recycling this descriptor until after any
1815  * completion callback runs, so that it won't be reused quickly.  That is,
1816  * assuming (a) no more than two urbs per frame on this endpoint, and also
1817  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1818  * corrupts things if you reuse completed descriptors very quickly...
1819  */
1820 static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
1821 {
1822     struct urb              *urb = itd->urb;
1823     struct usb_iso_packet_descriptor    *desc;
1824     u32                 t;
1825     unsigned                uframe;
1826     int                 urb_index = -1;
1827     struct ehci_iso_stream          *stream = itd->stream;
1828     bool                    retval = false;
1829 
1830     /* for each uframe with a packet */
1831     for (uframe = 0; uframe < 8; uframe++) {
1832         if (likely(itd->index[uframe] == -1))
1833             continue;
1834         urb_index = itd->index[uframe];
1835         desc = &urb->iso_frame_desc[urb_index];
1836 
1837         t = hc32_to_cpup(ehci, &itd->hw_transaction[uframe]);
1838         itd->hw_transaction[uframe] = 0;
1839 
1840         /* report transfer status */
1841         if (unlikely(t & ISO_ERRS)) {
1842             urb->error_count++;
1843             if (t & EHCI_ISOC_BUF_ERR)
1844                 desc->status = usb_pipein(urb->pipe)
1845                     ? -ENOSR  /* hc couldn't read */
1846                     : -ECOMM; /* hc couldn't write */
1847             else if (t & EHCI_ISOC_BABBLE)
1848                 desc->status = -EOVERFLOW;
1849             else /* (t & EHCI_ISOC_XACTERR) */
1850                 desc->status = -EPROTO;
1851 
1852             /* HC need not update length with this error */
1853             if (!(t & EHCI_ISOC_BABBLE)) {
1854                 desc->actual_length = EHCI_ITD_LENGTH(t);
1855                 urb->actual_length += desc->actual_length;
1856             }
1857         } else if (likely((t & EHCI_ISOC_ACTIVE) == 0)) {
1858             desc->status = 0;
1859             desc->actual_length = EHCI_ITD_LENGTH(t);
1860             urb->actual_length += desc->actual_length;
1861         } else {
1862             /* URB was too late */
1863             urb->error_count++;
1864         }
1865     }
1866 
1867     /* handle completion now? */
1868     if (likely((urb_index + 1) != urb->number_of_packets))
1869         goto done;
1870 
1871     /*
1872      * ASSERT: it's really the last itd for this urb
1873      * list_for_each_entry (itd, &stream->td_list, itd_list)
1874      *   BUG_ON(itd->urb == urb);
1875      */
1876 
1877     /* give urb back to the driver; completion often (re)submits */
1878     ehci_urb_done(ehci, urb, 0);
1879     retval = true;
1880     urb = NULL;
1881 
1882     --ehci->isoc_count;
1883     disable_periodic(ehci);
1884 
1885     ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1886     if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1887         if (ehci->amd_pll_fix == 1)
1888             usb_amd_quirk_pll_enable();
1889     }
1890 
1891     if (unlikely(list_is_singular(&stream->td_list)))
1892         ehci_to_hcd(ehci)->self.bandwidth_allocated
1893                 -= stream->bandwidth;
1894 
1895 done:
1896     itd->urb = NULL;
1897 
1898     /* Add to the end of the free list for later reuse */
1899     list_move_tail(&itd->itd_list, &stream->free_list);
1900 
1901     /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
1902     if (list_empty(&stream->td_list)) {
1903         list_splice_tail_init(&stream->free_list,
1904                 &ehci->cached_itd_list);
1905         start_free_itds(ehci);
1906     }
1907 
1908     return retval;
1909 }
1910 
1911 /*-------------------------------------------------------------------------*/
1912 
1913 static int itd_submit(struct ehci_hcd *ehci, struct urb *urb,
1914     gfp_t mem_flags)
1915 {
1916     int         status = -EINVAL;
1917     unsigned long       flags;
1918     struct ehci_iso_stream  *stream;
1919 
1920     /* Get iso_stream head */
1921     stream = iso_stream_find(ehci, urb);
1922     if (unlikely(stream == NULL)) {
1923         ehci_dbg(ehci, "can't get iso stream\n");
1924         return -ENOMEM;
1925     }
1926     if (unlikely(urb->interval != stream->uperiod)) {
1927         ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
1928             stream->uperiod, urb->interval);
1929         goto done;
1930     }
1931 
1932 #ifdef EHCI_URB_TRACE
1933     ehci_dbg(ehci,
1934         "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1935         __func__, urb->dev->devpath, urb,
1936         usb_pipeendpoint(urb->pipe),
1937         usb_pipein(urb->pipe) ? "in" : "out",
1938         urb->transfer_buffer_length,
1939         urb->number_of_packets, urb->interval,
1940         stream);
1941 #endif
1942 
1943     /* allocate ITDs w/o locking anything */
1944     status = itd_urb_transaction(stream, ehci, urb, mem_flags);
1945     if (unlikely(status < 0)) {
1946         ehci_dbg(ehci, "can't init itds\n");
1947         goto done;
1948     }
1949 
1950     /* schedule ... need to lock */
1951     spin_lock_irqsave(&ehci->lock, flags);
1952     if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1953         status = -ESHUTDOWN;
1954         goto done_not_linked;
1955     }
1956     status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1957     if (unlikely(status))
1958         goto done_not_linked;
1959     status = iso_stream_schedule(ehci, urb, stream);
1960     if (likely(status == 0)) {
1961         itd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
1962     } else if (status > 0) {
1963         status = 0;
1964         ehci_urb_done(ehci, urb, 0);
1965     } else {
1966         usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1967     }
1968  done_not_linked:
1969     spin_unlock_irqrestore(&ehci->lock, flags);
1970  done:
1971     return status;
1972 }
1973 
1974 /*-------------------------------------------------------------------------*/
1975 
1976 /*
1977  * "Split ISO TDs" ... used for USB 1.1 devices going through the
1978  * TTs in USB 2.0 hubs.  These need microframe scheduling.
1979  */
1980 
1981 static inline void
1982 sitd_sched_init(
1983     struct ehci_hcd     *ehci,
1984     struct ehci_iso_sched   *iso_sched,
1985     struct ehci_iso_stream  *stream,
1986     struct urb      *urb
1987 )
1988 {
1989     unsigned    i;
1990     dma_addr_t  dma = urb->transfer_dma;
1991 
1992     /* how many frames are needed for these transfers */
1993     iso_sched->span = urb->number_of_packets * stream->ps.period;
1994 
1995     /* figure out per-frame sitd fields that we'll need later
1996      * when we fit new sitds into the schedule.
1997      */
1998     for (i = 0; i < urb->number_of_packets; i++) {
1999         struct ehci_iso_packet  *packet = &iso_sched->packet[i];
2000         unsigned        length;
2001         dma_addr_t      buf;
2002         u32         trans;
2003 
2004         length = urb->iso_frame_desc[i].length & 0x03ff;
2005         buf = dma + urb->iso_frame_desc[i].offset;
2006 
2007         trans = SITD_STS_ACTIVE;
2008         if (((i + 1) == urb->number_of_packets)
2009                 && !(urb->transfer_flags & URB_NO_INTERRUPT))
2010             trans |= SITD_IOC;
2011         trans |= length << 16;
2012         packet->transaction = cpu_to_hc32(ehci, trans);
2013 
2014         /* might need to cross a buffer page within a td */
2015         packet->bufp = buf;
2016         packet->buf1 = (buf + length) & ~0x0fff;
2017         if (packet->buf1 != (buf & ~(u64)0x0fff))
2018             packet->cross = 1;
2019 
2020         /* OUT uses multiple start-splits */
2021         if (stream->bEndpointAddress & USB_DIR_IN)
2022             continue;
2023         length = (length + 187) / 188;
2024         if (length > 1) /* BEGIN vs ALL */
2025             length |= 1 << 3;
2026         packet->buf1 |= length;
2027     }
2028 }
2029 
2030 static int
2031 sitd_urb_transaction(
2032     struct ehci_iso_stream  *stream,
2033     struct ehci_hcd     *ehci,
2034     struct urb      *urb,
2035     gfp_t           mem_flags
2036 )
2037 {
2038     struct ehci_sitd    *sitd;
2039     dma_addr_t      sitd_dma;
2040     int         i;
2041     struct ehci_iso_sched   *iso_sched;
2042     unsigned long       flags;
2043 
2044     iso_sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
2045     if (iso_sched == NULL)
2046         return -ENOMEM;
2047 
2048     sitd_sched_init(ehci, iso_sched, stream, urb);
2049 
2050     /* allocate/init sITDs */
2051     spin_lock_irqsave(&ehci->lock, flags);
2052     for (i = 0; i < urb->number_of_packets; i++) {
2053 
2054         /* NOTE:  for now, we don't try to handle wraparound cases
2055          * for IN (using sitd->hw_backpointer, like a FSTN), which
2056          * means we never need two sitds for full speed packets.
2057          */
2058 
2059         /*
2060          * Use siTDs from the free list, but not siTDs that may
2061          * still be in use by the hardware.
2062          */
2063         if (likely(!list_empty(&stream->free_list))) {
2064             sitd = list_first_entry(&stream->free_list,
2065                      struct ehci_sitd, sitd_list);
2066             if (sitd->frame == ehci->now_frame)
2067                 goto alloc_sitd;
2068             list_del(&sitd->sitd_list);
2069             sitd_dma = sitd->sitd_dma;
2070         } else {
2071  alloc_sitd:
2072             spin_unlock_irqrestore(&ehci->lock, flags);
2073             sitd = dma_pool_alloc(ehci->sitd_pool, mem_flags,
2074                     &sitd_dma);
2075             spin_lock_irqsave(&ehci->lock, flags);
2076             if (!sitd) {
2077                 iso_sched_free(stream, iso_sched);
2078                 spin_unlock_irqrestore(&ehci->lock, flags);
2079                 return -ENOMEM;
2080             }
2081         }
2082 
2083         memset(sitd, 0, sizeof(*sitd));
2084         sitd->sitd_dma = sitd_dma;
2085         sitd->frame = NO_FRAME;
2086         list_add(&sitd->sitd_list, &iso_sched->td_list);
2087     }
2088 
2089     /* temporarily store schedule info in hcpriv */
2090     urb->hcpriv = iso_sched;
2091     urb->error_count = 0;
2092 
2093     spin_unlock_irqrestore(&ehci->lock, flags);
2094     return 0;
2095 }
2096 
2097 /*-------------------------------------------------------------------------*/
2098 
2099 static inline void
2100 sitd_patch(
2101     struct ehci_hcd     *ehci,
2102     struct ehci_iso_stream  *stream,
2103     struct ehci_sitd    *sitd,
2104     struct ehci_iso_sched   *iso_sched,
2105     unsigned        index
2106 )
2107 {
2108     struct ehci_iso_packet  *uf = &iso_sched->packet[index];
2109     u64         bufp;
2110 
2111     sitd->hw_next = EHCI_LIST_END(ehci);
2112     sitd->hw_fullspeed_ep = stream->address;
2113     sitd->hw_uframe = stream->splits;
2114     sitd->hw_results = uf->transaction;
2115     sitd->hw_backpointer = EHCI_LIST_END(ehci);
2116 
2117     bufp = uf->bufp;
2118     sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
2119     sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
2120 
2121     sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
2122     if (uf->cross)
2123         bufp += 4096;
2124     sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
2125     sitd->index = index;
2126 }
2127 
2128 static inline void
2129 sitd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
2130 {
2131     /* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2132     sitd->sitd_next = ehci->pshadow[frame];
2133     sitd->hw_next = ehci->periodic[frame];
2134     ehci->pshadow[frame].sitd = sitd;
2135     sitd->frame = frame;
2136     wmb();
2137     ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2138 }
2139 
2140 /* fit urb's sitds into the selected schedule slot; activate as needed */
2141 static void sitd_link_urb(
2142     struct ehci_hcd     *ehci,
2143     struct urb      *urb,
2144     unsigned        mod,
2145     struct ehci_iso_stream  *stream
2146 )
2147 {
2148     int         packet;
2149     unsigned        next_uframe;
2150     struct ehci_iso_sched   *sched = urb->hcpriv;
2151     struct ehci_sitd    *sitd;
2152 
2153     next_uframe = stream->next_uframe;
2154 
2155     if (list_empty(&stream->td_list))
2156         /* usbfs ignores TT bandwidth */
2157         ehci_to_hcd(ehci)->self.bandwidth_allocated
2158                 += stream->bandwidth;
2159 
2160     if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2161         if (ehci->amd_pll_fix == 1)
2162             usb_amd_quirk_pll_disable();
2163     }
2164 
2165     ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2166 
2167     /* fill sITDs frame by frame */
2168     for (packet = sched->first_packet, sitd = NULL;
2169             packet < urb->number_of_packets;
2170             packet++) {
2171 
2172         /* ASSERT:  we have all necessary sitds */
2173         BUG_ON(list_empty(&sched->td_list));
2174 
2175         /* ASSERT:  no itds for this endpoint in this frame */
2176 
2177         sitd = list_entry(sched->td_list.next,
2178                 struct ehci_sitd, sitd_list);
2179         list_move_tail(&sitd->sitd_list, &stream->td_list);
2180         sitd->stream = stream;
2181         sitd->urb = urb;
2182 
2183         sitd_patch(ehci, stream, sitd, sched, packet);
2184         sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2185                 sitd);
2186 
2187         next_uframe += stream->uperiod;
2188     }
2189     stream->next_uframe = next_uframe & (mod - 1);
2190 
2191     /* don't need that schedule data any more */
2192     iso_sched_free(stream, sched);
2193     urb->hcpriv = stream;
2194 
2195     ++ehci->isoc_count;
2196     enable_periodic(ehci);
2197 }
2198 
2199 /*-------------------------------------------------------------------------*/
2200 
2201 #define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2202                 | SITD_STS_XACT | SITD_STS_MMF)
2203 
2204 /* Process and recycle a completed SITD.  Return true iff its urb completed,
2205  * and hence its completion callback probably added things to the hardware
2206  * schedule.
2207  *
2208  * Note that we carefully avoid recycling this descriptor until after any
2209  * completion callback runs, so that it won't be reused quickly.  That is,
2210  * assuming (a) no more than two urbs per frame on this endpoint, and also
2211  * (b) only this endpoint's completions submit URBs.  It seems some silicon
2212  * corrupts things if you reuse completed descriptors very quickly...
2213  */
2214 static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
2215 {
2216     struct urb              *urb = sitd->urb;
2217     struct usb_iso_packet_descriptor    *desc;
2218     u32                 t;
2219     int                 urb_index;
2220     struct ehci_iso_stream          *stream = sitd->stream;
2221     bool                    retval = false;
2222 
2223     urb_index = sitd->index;
2224     desc = &urb->iso_frame_desc[urb_index];
2225     t = hc32_to_cpup(ehci, &sitd->hw_results);
2226 
2227     /* report transfer status */
2228     if (unlikely(t & SITD_ERRS)) {
2229         urb->error_count++;
2230         if (t & SITD_STS_DBE)
2231             desc->status = usb_pipein(urb->pipe)
2232                 ? -ENOSR  /* hc couldn't read */
2233                 : -ECOMM; /* hc couldn't write */
2234         else if (t & SITD_STS_BABBLE)
2235             desc->status = -EOVERFLOW;
2236         else /* XACT, MMF, etc */
2237             desc->status = -EPROTO;
2238     } else if (unlikely(t & SITD_STS_ACTIVE)) {
2239         /* URB was too late */
2240         urb->error_count++;
2241     } else {
2242         desc->status = 0;
2243         desc->actual_length = desc->length - SITD_LENGTH(t);
2244         urb->actual_length += desc->actual_length;
2245     }
2246 
2247     /* handle completion now? */
2248     if ((urb_index + 1) != urb->number_of_packets)
2249         goto done;
2250 
2251     /*
2252      * ASSERT: it's really the last sitd for this urb
2253      * list_for_each_entry (sitd, &stream->td_list, sitd_list)
2254      *   BUG_ON(sitd->urb == urb);
2255      */
2256 
2257     /* give urb back to the driver; completion often (re)submits */
2258     ehci_urb_done(ehci, urb, 0);
2259     retval = true;
2260     urb = NULL;
2261 
2262     --ehci->isoc_count;
2263     disable_periodic(ehci);
2264 
2265     ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2266     if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2267         if (ehci->amd_pll_fix == 1)
2268             usb_amd_quirk_pll_enable();
2269     }
2270 
2271     if (list_is_singular(&stream->td_list))
2272         ehci_to_hcd(ehci)->self.bandwidth_allocated
2273                 -= stream->bandwidth;
2274 
2275 done:
2276     sitd->urb = NULL;
2277 
2278     /* Add to the end of the free list for later reuse */
2279     list_move_tail(&sitd->sitd_list, &stream->free_list);
2280 
2281     /* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
2282     if (list_empty(&stream->td_list)) {
2283         list_splice_tail_init(&stream->free_list,
2284                 &ehci->cached_sitd_list);
2285         start_free_itds(ehci);
2286     }
2287 
2288     return retval;
2289 }
2290 
2291 
2292 static int sitd_submit(struct ehci_hcd *ehci, struct urb *urb,
2293     gfp_t mem_flags)
2294 {
2295     int         status = -EINVAL;
2296     unsigned long       flags;
2297     struct ehci_iso_stream  *stream;
2298 
2299     /* Get iso_stream head */
2300     stream = iso_stream_find(ehci, urb);
2301     if (stream == NULL) {
2302         ehci_dbg(ehci, "can't get iso stream\n");
2303         return -ENOMEM;
2304     }
2305     if (urb->interval != stream->ps.period) {
2306         ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
2307             stream->ps.period, urb->interval);
2308         goto done;
2309     }
2310 
2311 #ifdef EHCI_URB_TRACE
2312     ehci_dbg(ehci,
2313         "submit %p dev%s ep%d%s-iso len %d\n",
2314         urb, urb->dev->devpath,
2315         usb_pipeendpoint(urb->pipe),
2316         usb_pipein(urb->pipe) ? "in" : "out",
2317         urb->transfer_buffer_length);
2318 #endif
2319 
2320     /* allocate SITDs */
2321     status = sitd_urb_transaction(stream, ehci, urb, mem_flags);
2322     if (status < 0) {
2323         ehci_dbg(ehci, "can't init sitds\n");
2324         goto done;
2325     }
2326 
2327     /* schedule ... need to lock */
2328     spin_lock_irqsave(&ehci->lock, flags);
2329     if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2330         status = -ESHUTDOWN;
2331         goto done_not_linked;
2332     }
2333     status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2334     if (unlikely(status))
2335         goto done_not_linked;
2336     status = iso_stream_schedule(ehci, urb, stream);
2337     if (likely(status == 0)) {
2338         sitd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
2339     } else if (status > 0) {
2340         status = 0;
2341         ehci_urb_done(ehci, urb, 0);
2342     } else {
2343         usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2344     }
2345  done_not_linked:
2346     spin_unlock_irqrestore(&ehci->lock, flags);
2347  done:
2348     return status;
2349 }
2350 
2351 /*-------------------------------------------------------------------------*/
2352 
2353 static void scan_isoc(struct ehci_hcd *ehci)
2354 {
2355     unsigned        uf, now_frame, frame;
2356     unsigned        fmask = ehci->periodic_size - 1;
2357     bool            modified, live;
2358     union ehci_shadow   q, *q_p;
2359     __hc32          type, *hw_p;
2360 
2361     /*
2362      * When running, scan from last scan point up to "now"
2363      * else clean up by scanning everything that's left.
2364      * Touches as few pages as possible:  cache-friendly.
2365      */
2366     if (ehci->rh_state >= EHCI_RH_RUNNING) {
2367         uf = ehci_read_frame_index(ehci);
2368         now_frame = (uf >> 3) & fmask;
2369         live = true;
2370     } else  {
2371         now_frame = (ehci->last_iso_frame - 1) & fmask;
2372         live = false;
2373     }
2374     ehci->now_frame = now_frame;
2375 
2376     frame = ehci->last_iso_frame;
2377 
2378 restart:
2379     /* Scan each element in frame's queue for completions */
2380     q_p = &ehci->pshadow[frame];
2381     hw_p = &ehci->periodic[frame];
2382     q.ptr = q_p->ptr;
2383     type = Q_NEXT_TYPE(ehci, *hw_p);
2384     modified = false;
2385 
2386     while (q.ptr != NULL) {
2387         switch (hc32_to_cpu(ehci, type)) {
2388         case Q_TYPE_ITD:
2389             /*
2390              * If this ITD is still active, leave it for
2391              * later processing ... check the next entry.
2392              * No need to check for activity unless the
2393              * frame is current.
2394              */
2395             if (frame == now_frame && live) {
2396                 rmb();
2397                 for (uf = 0; uf < 8; uf++) {
2398                     if (q.itd->hw_transaction[uf] &
2399                             ITD_ACTIVE(ehci))
2400                         break;
2401                 }
2402                 if (uf < 8) {
2403                     q_p = &q.itd->itd_next;
2404                     hw_p = &q.itd->hw_next;
2405                     type = Q_NEXT_TYPE(ehci,
2406                             q.itd->hw_next);
2407                     q = *q_p;
2408                     break;
2409                 }
2410             }
2411 
2412             /*
2413              * Take finished ITDs out of the schedule
2414              * and process them:  recycle, maybe report
2415              * URB completion.  HC won't cache the
2416              * pointer for much longer, if at all.
2417              */
2418             *q_p = q.itd->itd_next;
2419             if (!ehci->use_dummy_qh ||
2420                     q.itd->hw_next != EHCI_LIST_END(ehci))
2421                 *hw_p = q.itd->hw_next;
2422             else
2423                 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2424             type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2425             wmb();
2426             modified = itd_complete(ehci, q.itd);
2427             q = *q_p;
2428             break;
2429         case Q_TYPE_SITD:
2430             /*
2431              * If this SITD is still active, leave it for
2432              * later processing ... check the next entry.
2433              * No need to check for activity unless the
2434              * frame is current.
2435              */
2436             if (((frame == now_frame) ||
2437                     (((frame + 1) & fmask) == now_frame))
2438                 && live
2439                 && (q.sitd->hw_results & SITD_ACTIVE(ehci))) {
2440 
2441                 q_p = &q.sitd->sitd_next;
2442                 hw_p = &q.sitd->hw_next;
2443                 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2444                 q = *q_p;
2445                 break;
2446             }
2447 
2448             /*
2449              * Take finished SITDs out of the schedule
2450              * and process them:  recycle, maybe report
2451              * URB completion.
2452              */
2453             *q_p = q.sitd->sitd_next;
2454             if (!ehci->use_dummy_qh ||
2455                     q.sitd->hw_next != EHCI_LIST_END(ehci))
2456                 *hw_p = q.sitd->hw_next;
2457             else
2458                 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2459             type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2460             wmb();
2461             modified = sitd_complete(ehci, q.sitd);
2462             q = *q_p;
2463             break;
2464         default:
2465             ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2466                     type, frame, q.ptr);
2467             /* BUG(); */
2468             fallthrough;
2469         case Q_TYPE_QH:
2470         case Q_TYPE_FSTN:
2471             /* End of the iTDs and siTDs */
2472             q.ptr = NULL;
2473             break;
2474         }
2475 
2476         /* Assume completion callbacks modify the queue */
2477         if (unlikely(modified && ehci->isoc_count > 0))
2478             goto restart;
2479     }
2480 
2481     /* Stop when we have reached the current frame */
2482     if (frame == now_frame)
2483         return;
2484 
2485     /* The last frame may still have active siTDs */
2486     ehci->last_iso_frame = frame;
2487     frame = (frame + 1) & fmask;
2488 
2489     goto restart;
2490 }