Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
0002 /*
0003  * hcd_queue.c - DesignWare HS OTG Controller host queuing routines
0004  *
0005  * Copyright (C) 2004-2013 Synopsys, Inc.
0006  *
0007  * Redistribution and use in source and binary forms, with or without
0008  * modification, are permitted provided that the following conditions
0009  * are met:
0010  * 1. Redistributions of source code must retain the above copyright
0011  *    notice, this list of conditions, and the following disclaimer,
0012  *    without modification.
0013  * 2. Redistributions in binary form must reproduce the above copyright
0014  *    notice, this list of conditions and the following disclaimer in the
0015  *    documentation and/or other materials provided with the distribution.
0016  * 3. The names of the above-listed copyright holders may not be used
0017  *    to endorse or promote products derived from this software without
0018  *    specific prior written permission.
0019  *
0020  * ALTERNATIVELY, this software may be distributed under the terms of the
0021  * GNU General Public License ("GPL") as published by the Free Software
0022  * Foundation; either version 2 of the License, or (at your option) any
0023  * later version.
0024  *
0025  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
0026  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
0027  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
0028  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
0029  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
0030  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
0031  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
0032  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
0033  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
0034  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
0035  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
0036  */
0037 
0038 /*
0039  * This file contains the functions to manage Queue Heads and Queue
0040  * Transfer Descriptors for Host mode
0041  */
0042 #include <linux/gcd.h>
0043 #include <linux/kernel.h>
0044 #include <linux/module.h>
0045 #include <linux/spinlock.h>
0046 #include <linux/interrupt.h>
0047 #include <linux/dma-mapping.h>
0048 #include <linux/io.h>
0049 #include <linux/slab.h>
0050 #include <linux/usb.h>
0051 
0052 #include <linux/usb/hcd.h>
0053 #include <linux/usb/ch11.h>
0054 
0055 #include "core.h"
0056 #include "hcd.h"
0057 
0058 /* Wait this long before releasing periodic reservation */
0059 #define DWC2_UNRESERVE_DELAY (msecs_to_jiffies(5))
0060 
0061 /* If we get a NAK, wait this long before retrying */
0062 #define DWC2_RETRY_WAIT_DELAY (1 * NSEC_PER_MSEC)
0063 
0064 /**
0065  * dwc2_periodic_channel_available() - Checks that a channel is available for a
0066  * periodic transfer
0067  *
0068  * @hsotg: The HCD state structure for the DWC OTG controller
0069  *
0070  * Return: 0 if successful, negative error code otherwise
0071  */
0072 static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg)
0073 {
0074     /*
0075      * Currently assuming that there is a dedicated host channel for
0076      * each periodic transaction plus at least one host channel for
0077      * non-periodic transactions
0078      */
0079     int status;
0080     int num_channels;
0081 
0082     num_channels = hsotg->params.host_channels;
0083     if ((hsotg->periodic_channels + hsotg->non_periodic_channels <
0084          num_channels) && (hsotg->periodic_channels < num_channels - 1)) {
0085         status = 0;
0086     } else {
0087         dev_dbg(hsotg->dev,
0088             "%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
0089             __func__, num_channels,
0090             hsotg->periodic_channels, hsotg->non_periodic_channels);
0091         status = -ENOSPC;
0092     }
0093 
0094     return status;
0095 }
0096 
0097 /**
0098  * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
0099  * for the specified QH in the periodic schedule
0100  *
0101  * @hsotg: The HCD state structure for the DWC OTG controller
0102  * @qh:    QH containing periodic bandwidth required
0103  *
0104  * Return: 0 if successful, negative error code otherwise
0105  *
0106  * For simplicity, this calculation assumes that all the transfers in the
0107  * periodic schedule may occur in the same (micro)frame
0108  */
0109 static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg,
0110                      struct dwc2_qh *qh)
0111 {
0112     int status;
0113     s16 max_claimed_usecs;
0114 
0115     status = 0;
0116 
0117     if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
0118         /*
0119          * High speed mode
0120          * Max periodic usecs is 80% x 125 usec = 100 usec
0121          */
0122         max_claimed_usecs = 100 - qh->host_us;
0123     } else {
0124         /*
0125          * Full speed mode
0126          * Max periodic usecs is 90% x 1000 usec = 900 usec
0127          */
0128         max_claimed_usecs = 900 - qh->host_us;
0129     }
0130 
0131     if (hsotg->periodic_usecs > max_claimed_usecs) {
0132         dev_err(hsotg->dev,
0133             "%s: already claimed usecs %d, required usecs %d\n",
0134             __func__, hsotg->periodic_usecs, qh->host_us);
0135         status = -ENOSPC;
0136     }
0137 
0138     return status;
0139 }
0140 
0141 /**
0142  * pmap_schedule() - Schedule time in a periodic bitmap (pmap).
0143  *
0144  * @map:             The bitmap representing the schedule; will be updated
0145  *                   upon success.
0146  * @bits_per_period: The schedule represents several periods.  This is how many
0147  *                   bits are in each period.  It's assumed that the beginning
0148  *                   of the schedule will repeat after its end.
0149  * @periods_in_map:  The number of periods in the schedule.
0150  * @num_bits:        The number of bits we need per period we want to reserve
0151  *                   in this function call.
0152  * @interval:        How often we need to be scheduled for the reservation this
0153  *                   time.  1 means every period.  2 means every other period.
0154  *                   ...you get the picture?
0155  * @start:           The bit number to start at.  Normally 0.  Must be within
0156  *                   the interval or we return failure right away.
0157  * @only_one_period: Normally we'll allow picking a start anywhere within the
0158  *                   first interval, since we can still make all repetition
0159  *                   requirements by doing that.  However, if you pass true
0160  *                   here then we'll return failure if we can't fit within
0161  *                   the period that "start" is in.
0162  *
0163  * The idea here is that we want to schedule time for repeating events that all
0164  * want the same resource.  The resource is divided into fixed-sized periods
0165  * and the events want to repeat every "interval" periods.  The schedule
0166  * granularity is one bit.
0167  *
0168  * To keep things "simple", we'll represent our schedule with a bitmap that
0169  * contains a fixed number of periods.  This gets rid of a lot of complexity
0170  * but does mean that we need to handle things specially (and non-ideally) if
0171  * the number of the periods in the schedule doesn't match well with the
0172  * intervals that we're trying to schedule.
0173  *
0174  * Here's an explanation of the scheme we'll implement, assuming 8 periods.
0175  * - If interval is 1, we need to take up space in each of the 8
0176  *   periods we're scheduling.  Easy.
0177  * - If interval is 2, we need to take up space in half of the
0178  *   periods.  Again, easy.
0179  * - If interval is 3, we actually need to fall back to interval 1.
0180  *   Why?  Because we might need time in any period.  AKA for the
0181  *   first 8 periods, we'll be in slot 0, 3, 6.  Then we'll be
0182  *   in slot 1, 4, 7.  Then we'll be in 2, 5.  Then we'll be back to
0183  *   0, 3, and 6.  Since we could be in any frame we need to reserve
0184  *   for all of them.  Sucks, but that's what you gotta do.  Note that
0185  *   if we were instead scheduling 8 * 3 = 24 we'd do much better, but
0186  *   then we need more memory and time to do scheduling.
0187  * - If interval is 4, easy.
0188  * - If interval is 5, we again need interval 1.  The schedule will be
0189  *   0, 5, 2, 7, 4, 1, 6, 3, 0
0190  * - If interval is 6, we need interval 2.  0, 6, 4, 2.
0191  * - If interval is 7, we need interval 1.
0192  * - If interval is 8, we need interval 8.
0193  *
0194  * If you do the math, you'll see that we need to pretend that interval is
0195  * equal to the greatest_common_divisor(interval, periods_in_map).
0196  *
0197  * Note that at the moment this function tends to front-pack the schedule.
0198  * In some cases that's really non-ideal (it's hard to schedule things that
0199  * need to repeat every period).  In other cases it's perfect (you can easily
0200  * schedule bigger, less often repeating things).
0201  *
0202  * Here's the algorithm in action (8 periods, 5 bits per period):
0203  *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
0204  *  |*****|  ***|*****|  ***|*****|  ***|*****|  ***|   OK 3 bits, intv 3 at 2
0205  *  |*****|* ***|*****|  ***|*****|* ***|*****|  ***|   OK 1 bits, intv 4 at 5
0206  *  |**   |*    |**   |     |**   |*    |**   |     | Remv 3 bits, intv 3 at 2
0207  *  |***  |*    |***  |     |***  |*    |***  |     |   OK 1 bits, intv 6 at 2
0208  *  |**** |*  * |**** |   * |**** |*  * |**** |   * |   OK 1 bits, intv 1 at 3
0209  *  |**** |**** |**** | *** |**** |**** |**** | *** |   OK 2 bits, intv 2 at 6
0210  *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 1 at 4
0211  *  |*****|*****|*****| ****|*****|*****|*****| ****| FAIL 1 bits, intv 1
0212  *  |  ***|*****|  ***| ****|  ***|*****|  ***| ****| Remv 2 bits, intv 2 at 0
0213  *  |  ***| ****|  ***| ****|  ***| ****|  ***| ****| Remv 1 bits, intv 4 at 5
0214  *  |   **| ****|   **| ****|   **| ****|   **| ****| Remv 1 bits, intv 6 at 2
0215  *  |    *| ** *|    *| ** *|    *| ** *|    *| ** *| Remv 1 bits, intv 1 at 3
0216  *  |    *|    *|    *|    *|    *|    *|    *|    *| Remv 2 bits, intv 2 at 6
0217  *  |     |     |     |     |     |     |     |     | Remv 1 bits, intv 1 at 4
0218  *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
0219  *  |***  |     |**   |     |***  |     |**   |     |   OK 1 bits, intv 4 at 2
0220  *  |*****|     |** **|     |*****|     |** **|     |   OK 2 bits, intv 2 at 3
0221  *  |*****|*    |** **|     |*****|*    |** **|     |   OK 1 bits, intv 4 at 5
0222  *  |*****|***  |** **| **  |*****|***  |** **| **  |   OK 2 bits, intv 2 at 6
0223  *  |*****|*****|** **| ****|*****|*****|** **| ****|   OK 2 bits, intv 2 at 8
0224  *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 4 at 12
0225  *
0226  * This function is pretty generic and could be easily abstracted if anything
0227  * needed similar scheduling.
0228  *
0229  * Returns either -ENOSPC or a >= 0 start bit which should be passed to the
0230  * unschedule routine.  The map bitmap will be updated on a non-error result.
0231  */
0232 static int pmap_schedule(unsigned long *map, int bits_per_period,
0233              int periods_in_map, int num_bits,
0234              int interval, int start, bool only_one_period)
0235 {
0236     int interval_bits;
0237     int to_reserve;
0238     int first_end;
0239     int i;
0240 
0241     if (num_bits > bits_per_period)
0242         return -ENOSPC;
0243 
0244     /* Adjust interval as per description */
0245     interval = gcd(interval, periods_in_map);
0246 
0247     interval_bits = bits_per_period * interval;
0248     to_reserve = periods_in_map / interval;
0249 
0250     /* If start has gotten us past interval then we can't schedule */
0251     if (start >= interval_bits)
0252         return -ENOSPC;
0253 
0254     if (only_one_period)
0255         /* Must fit within same period as start; end at begin of next */
0256         first_end = (start / bits_per_period + 1) * bits_per_period;
0257     else
0258         /* Can fit anywhere in the first interval */
0259         first_end = interval_bits;
0260 
0261     /*
0262      * We'll try to pick the first repetition, then see if that time
0263      * is free for each of the subsequent repetitions.  If it's not
0264      * we'll adjust the start time for the next search of the first
0265      * repetition.
0266      */
0267     while (start + num_bits <= first_end) {
0268         int end;
0269 
0270         /* Need to stay within this period */
0271         end = (start / bits_per_period + 1) * bits_per_period;
0272 
0273         /* Look for num_bits us in this microframe starting at start */
0274         start = bitmap_find_next_zero_area(map, end, start, num_bits,
0275                            0);
0276 
0277         /*
0278          * We should get start >= end if we fail.  We might be
0279          * able to check the next microframe depending on the
0280          * interval, so continue on (start already updated).
0281          */
0282         if (start >= end) {
0283             start = end;
0284             continue;
0285         }
0286 
0287         /* At this point we have a valid point for first one */
0288         for (i = 1; i < to_reserve; i++) {
0289             int ith_start = start + interval_bits * i;
0290             int ith_end = end + interval_bits * i;
0291             int ret;
0292 
0293             /* Use this as a dumb "check if bits are 0" */
0294             ret = bitmap_find_next_zero_area(
0295                 map, ith_start + num_bits, ith_start, num_bits,
0296                 0);
0297 
0298             /* We got the right place, continue checking */
0299             if (ret == ith_start)
0300                 continue;
0301 
0302             /* Move start up for next time and exit for loop */
0303             ith_start = bitmap_find_next_zero_area(
0304                 map, ith_end, ith_start, num_bits, 0);
0305             if (ith_start >= ith_end)
0306                 /* Need a while new period next time */
0307                 start = end;
0308             else
0309                 start = ith_start - interval_bits * i;
0310             break;
0311         }
0312 
0313         /* If didn't exit the for loop with a break, we have success */
0314         if (i == to_reserve)
0315             break;
0316     }
0317 
0318     if (start + num_bits > first_end)
0319         return -ENOSPC;
0320 
0321     for (i = 0; i < to_reserve; i++) {
0322         int ith_start = start + interval_bits * i;
0323 
0324         bitmap_set(map, ith_start, num_bits);
0325     }
0326 
0327     return start;
0328 }
0329 
0330 /**
0331  * pmap_unschedule() - Undo work done by pmap_schedule()
0332  *
0333  * @map:             See pmap_schedule().
0334  * @bits_per_period: See pmap_schedule().
0335  * @periods_in_map:  See pmap_schedule().
0336  * @num_bits:        The number of bits that was passed to schedule.
0337  * @interval:        The interval that was passed to schedule.
0338  * @start:           The return value from pmap_schedule().
0339  */
0340 static void pmap_unschedule(unsigned long *map, int bits_per_period,
0341                 int periods_in_map, int num_bits,
0342                 int interval, int start)
0343 {
0344     int interval_bits;
0345     int to_release;
0346     int i;
0347 
0348     /* Adjust interval as per description in pmap_schedule() */
0349     interval = gcd(interval, periods_in_map);
0350 
0351     interval_bits = bits_per_period * interval;
0352     to_release = periods_in_map / interval;
0353 
0354     for (i = 0; i < to_release; i++) {
0355         int ith_start = start + interval_bits * i;
0356 
0357         bitmap_clear(map, ith_start, num_bits);
0358     }
0359 }
0360 
0361 /**
0362  * dwc2_get_ls_map() - Get the map used for the given qh
0363  *
0364  * @hsotg: The HCD state structure for the DWC OTG controller.
0365  * @qh:    QH for the periodic transfer.
0366  *
0367  * We'll always get the periodic map out of our TT.  Note that even if we're
0368  * running the host straight in low speed / full speed mode it appears as if
0369  * a TT is allocated for us, so we'll use it.  If that ever changes we can
0370  * add logic here to get a map out of "hsotg" if !qh->do_split.
0371  *
0372  * Returns: the map or NULL if a map couldn't be found.
0373  */
0374 static unsigned long *dwc2_get_ls_map(struct dwc2_hsotg *hsotg,
0375                       struct dwc2_qh *qh)
0376 {
0377     unsigned long *map;
0378 
0379     /* Don't expect to be missing a TT and be doing low speed scheduling */
0380     if (WARN_ON(!qh->dwc_tt))
0381         return NULL;
0382 
0383     /* Get the map and adjust if this is a multi_tt hub */
0384     map = qh->dwc_tt->periodic_bitmaps;
0385     if (qh->dwc_tt->usb_tt->multi)
0386         map += DWC2_ELEMENTS_PER_LS_BITMAP * (qh->ttport - 1);
0387 
0388     return map;
0389 }
0390 
0391 #ifdef DWC2_PRINT_SCHEDULE
0392 /*
0393  * cat_printf() - A printf() + strcat() helper
0394  *
0395  * This is useful for concatenating a bunch of strings where each string is
0396  * constructed using printf.
0397  *
0398  * @buf:   The destination buffer; will be updated to point after the printed
0399  *         data.
0400  * @size:  The number of bytes in the buffer (includes space for '\0').
0401  * @fmt:   The format for printf.
0402  * @...:   The args for printf.
0403  */
0404 static __printf(3, 4)
0405 void cat_printf(char **buf, size_t *size, const char *fmt, ...)
0406 {
0407     va_list args;
0408     int i;
0409 
0410     if (*size == 0)
0411         return;
0412 
0413     va_start(args, fmt);
0414     i = vsnprintf(*buf, *size, fmt, args);
0415     va_end(args);
0416 
0417     if (i >= *size) {
0418         (*buf)[*size - 1] = '\0';
0419         *buf += *size;
0420         *size = 0;
0421     } else {
0422         *buf += i;
0423         *size -= i;
0424     }
0425 }
0426 
0427 /*
0428  * pmap_print() - Print the given periodic map
0429  *
0430  * Will attempt to print out the periodic schedule.
0431  *
0432  * @map:             See pmap_schedule().
0433  * @bits_per_period: See pmap_schedule().
0434  * @periods_in_map:  See pmap_schedule().
0435  * @period_name:     The name of 1 period, like "uFrame"
0436  * @units:           The name of the units, like "us".
0437  * @print_fn:        The function to call for printing.
0438  * @print_data:      Opaque data to pass to the print function.
0439  */
0440 static void pmap_print(unsigned long *map, int bits_per_period,
0441                int periods_in_map, const char *period_name,
0442                const char *units,
0443                void (*print_fn)(const char *str, void *data),
0444                void *print_data)
0445 {
0446     int period;
0447 
0448     for (period = 0; period < periods_in_map; period++) {
0449         char tmp[64];
0450         char *buf = tmp;
0451         size_t buf_size = sizeof(tmp);
0452         int period_start = period * bits_per_period;
0453         int period_end = period_start + bits_per_period;
0454         int start = 0;
0455         int count = 0;
0456         bool printed = false;
0457         int i;
0458 
0459         for (i = period_start; i < period_end + 1; i++) {
0460             /* Handle case when ith bit is set */
0461             if (i < period_end &&
0462                 bitmap_find_next_zero_area(map, i + 1,
0463                                i, 1, 0) != i) {
0464                 if (count == 0)
0465                     start = i - period_start;
0466                 count++;
0467                 continue;
0468             }
0469 
0470             /* ith bit isn't set; don't care if count == 0 */
0471             if (count == 0)
0472                 continue;
0473 
0474             if (!printed)
0475                 cat_printf(&buf, &buf_size, "%s %d: ",
0476                        period_name, period);
0477             else
0478                 cat_printf(&buf, &buf_size, ", ");
0479             printed = true;
0480 
0481             cat_printf(&buf, &buf_size, "%d %s -%3d %s", start,
0482                    units, start + count - 1, units);
0483             count = 0;
0484         }
0485 
0486         if (printed)
0487             print_fn(tmp, print_data);
0488     }
0489 }
0490 
0491 struct dwc2_qh_print_data {
0492     struct dwc2_hsotg *hsotg;
0493     struct dwc2_qh *qh;
0494 };
0495 
0496 /**
0497  * dwc2_qh_print() - Helper function for dwc2_qh_schedule_print()
0498  *
0499  * @str:  The string to print
0500  * @data: A pointer to a struct dwc2_qh_print_data
0501  */
0502 static void dwc2_qh_print(const char *str, void *data)
0503 {
0504     struct dwc2_qh_print_data *print_data = data;
0505 
0506     dwc2_sch_dbg(print_data->hsotg, "QH=%p ...%s\n", print_data->qh, str);
0507 }
0508 
0509 /**
0510  * dwc2_qh_schedule_print() - Print the periodic schedule
0511  *
0512  * @hsotg: The HCD state structure for the DWC OTG controller.
0513  * @qh:    QH to print.
0514  */
0515 static void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
0516                    struct dwc2_qh *qh)
0517 {
0518     struct dwc2_qh_print_data print_data = { hsotg, qh };
0519     int i;
0520 
0521     /*
0522      * The printing functions are quite slow and inefficient.
0523      * If we don't have tracing turned on, don't run unless the special
0524      * define is turned on.
0525      */
0526 
0527     if (qh->schedule_low_speed) {
0528         unsigned long *map = dwc2_get_ls_map(hsotg, qh);
0529 
0530         dwc2_sch_dbg(hsotg, "QH=%p LS/FS trans: %d=>%d us @ %d us",
0531                  qh, qh->device_us,
0532                  DWC2_ROUND_US_TO_SLICE(qh->device_us),
0533                  DWC2_US_PER_SLICE * qh->ls_start_schedule_slice);
0534 
0535         if (map) {
0536             dwc2_sch_dbg(hsotg,
0537                      "QH=%p Whole low/full speed map %p now:\n",
0538                      qh, map);
0539             pmap_print(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
0540                    DWC2_LS_SCHEDULE_FRAMES, "Frame ", "slices",
0541                    dwc2_qh_print, &print_data);
0542         }
0543     }
0544 
0545     for (i = 0; i < qh->num_hs_transfers; i++) {
0546         struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + i;
0547         int uframe = trans_time->start_schedule_us /
0548                  DWC2_HS_PERIODIC_US_PER_UFRAME;
0549         int rel_us = trans_time->start_schedule_us %
0550                  DWC2_HS_PERIODIC_US_PER_UFRAME;
0551 
0552         dwc2_sch_dbg(hsotg,
0553                  "QH=%p HS trans #%d: %d us @ uFrame %d + %d us\n",
0554                  qh, i, trans_time->duration_us, uframe, rel_us);
0555     }
0556     if (qh->num_hs_transfers) {
0557         dwc2_sch_dbg(hsotg, "QH=%p Whole high speed map now:\n", qh);
0558         pmap_print(hsotg->hs_periodic_bitmap,
0559                DWC2_HS_PERIODIC_US_PER_UFRAME,
0560                DWC2_HS_SCHEDULE_UFRAMES, "uFrame", "us",
0561                dwc2_qh_print, &print_data);
0562     }
0563 }
0564 #else
0565 static inline void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
0566                       struct dwc2_qh *qh) {};
0567 #endif
0568 
0569 /**
0570  * dwc2_ls_pmap_schedule() - Schedule a low speed QH
0571  *
0572  * @hsotg:        The HCD state structure for the DWC OTG controller.
0573  * @qh:           QH for the periodic transfer.
0574  * @search_slice: We'll start trying to schedule at the passed slice.
0575  *                Remember that slices are the units of the low speed
0576  *                schedule (think 25us or so).
0577  *
0578  * Wraps pmap_schedule() with the right parameters for low speed scheduling.
0579  *
0580  * Normally we schedule low speed devices on the map associated with the TT.
0581  *
0582  * Returns: 0 for success or an error code.
0583  */
0584 static int dwc2_ls_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
0585                  int search_slice)
0586 {
0587     int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
0588     unsigned long *map = dwc2_get_ls_map(hsotg, qh);
0589     int slice;
0590 
0591     if (!map)
0592         return -EINVAL;
0593 
0594     /*
0595      * Schedule on the proper low speed map with our low speed scheduling
0596      * parameters.  Note that we use the "device_interval" here since
0597      * we want the low speed interval and the only way we'd be in this
0598      * function is if the device is low speed.
0599      *
0600      * If we happen to be doing low speed and high speed scheduling for the
0601      * same transaction (AKA we have a split) we always do low speed first.
0602      * That means we can always pass "false" for only_one_period (that
0603      * parameters is only useful when we're trying to get one schedule to
0604      * match what we already planned in the other schedule).
0605      */
0606     slice = pmap_schedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
0607                   DWC2_LS_SCHEDULE_FRAMES, slices,
0608                   qh->device_interval, search_slice, false);
0609 
0610     if (slice < 0)
0611         return slice;
0612 
0613     qh->ls_start_schedule_slice = slice;
0614     return 0;
0615 }
0616 
0617 /**
0618  * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_ls_pmap_schedule()
0619  *
0620  * @hsotg:       The HCD state structure for the DWC OTG controller.
0621  * @qh:          QH for the periodic transfer.
0622  */
0623 static void dwc2_ls_pmap_unschedule(struct dwc2_hsotg *hsotg,
0624                     struct dwc2_qh *qh)
0625 {
0626     int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
0627     unsigned long *map = dwc2_get_ls_map(hsotg, qh);
0628 
0629     /* Schedule should have failed, so no worries about no error code */
0630     if (!map)
0631         return;
0632 
0633     pmap_unschedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
0634             DWC2_LS_SCHEDULE_FRAMES, slices, qh->device_interval,
0635             qh->ls_start_schedule_slice);
0636 }
0637 
0638 /**
0639  * dwc2_hs_pmap_schedule - Schedule in the main high speed schedule
0640  *
0641  * This will schedule something on the main dwc2 schedule.
0642  *
0643  * We'll start looking in qh->hs_transfers[index].start_schedule_us.  We'll
0644  * update this with the result upon success.  We also use the duration from
0645  * the same structure.
0646  *
0647  * @hsotg:           The HCD state structure for the DWC OTG controller.
0648  * @qh:              QH for the periodic transfer.
0649  * @only_one_period: If true we will limit ourselves to just looking at
0650  *                   one period (aka one 100us chunk).  This is used if we have
0651  *                   already scheduled something on the low speed schedule and
0652  *                   need to find something that matches on the high speed one.
0653  * @index:           The index into qh->hs_transfers that we're working with.
0654  *
0655  * Returns: 0 for success or an error code.  Upon success the
0656  *          dwc2_hs_transfer_time specified by "index" will be updated.
0657  */
0658 static int dwc2_hs_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
0659                  bool only_one_period, int index)
0660 {
0661     struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
0662     int us;
0663 
0664     us = pmap_schedule(hsotg->hs_periodic_bitmap,
0665                DWC2_HS_PERIODIC_US_PER_UFRAME,
0666                DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
0667                qh->host_interval, trans_time->start_schedule_us,
0668                only_one_period);
0669 
0670     if (us < 0)
0671         return us;
0672 
0673     trans_time->start_schedule_us = us;
0674     return 0;
0675 }
0676 
0677 /**
0678  * dwc2_hs_pmap_unschedule() - Undo work done by dwc2_hs_pmap_schedule()
0679  *
0680  * @hsotg:       The HCD state structure for the DWC OTG controller.
0681  * @qh:          QH for the periodic transfer.
0682  * @index:       Transfer index
0683  */
0684 static void dwc2_hs_pmap_unschedule(struct dwc2_hsotg *hsotg,
0685                     struct dwc2_qh *qh, int index)
0686 {
0687     struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
0688 
0689     pmap_unschedule(hsotg->hs_periodic_bitmap,
0690             DWC2_HS_PERIODIC_US_PER_UFRAME,
0691             DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
0692             qh->host_interval, trans_time->start_schedule_us);
0693 }
0694 
0695 /**
0696  * dwc2_uframe_schedule_split - Schedule a QH for a periodic split xfer.
0697  *
0698  * This is the most complicated thing in USB.  We have to find matching time
0699  * in both the global high speed schedule for the port and the low speed
0700  * schedule for the TT associated with the given device.
0701  *
0702  * Being here means that the host must be running in high speed mode and the
0703  * device is in low or full speed mode (and behind a hub).
0704  *
0705  * @hsotg:       The HCD state structure for the DWC OTG controller.
0706  * @qh:          QH for the periodic transfer.
0707  */
0708 static int dwc2_uframe_schedule_split(struct dwc2_hsotg *hsotg,
0709                       struct dwc2_qh *qh)
0710 {
0711     int bytecount = qh->maxp_mult * qh->maxp;
0712     int ls_search_slice;
0713     int err = 0;
0714     int host_interval_in_sched;
0715 
0716     /*
0717      * The interval (how often to repeat) in the actual host schedule.
0718      * See pmap_schedule() for gcd() explanation.
0719      */
0720     host_interval_in_sched = gcd(qh->host_interval,
0721                      DWC2_HS_SCHEDULE_UFRAMES);
0722 
0723     /*
0724      * We always try to find space in the low speed schedule first, then
0725      * try to find high speed time that matches.  If we don't, we'll bump
0726      * up the place we start searching in the low speed schedule and try
0727      * again.  To start we'll look right at the beginning of the low speed
0728      * schedule.
0729      *
0730      * Note that this will tend to front-load the high speed schedule.
0731      * We may eventually want to try to avoid this by either considering
0732      * both schedules together or doing some sort of round robin.
0733      */
0734     ls_search_slice = 0;
0735 
0736     while (ls_search_slice < DWC2_LS_SCHEDULE_SLICES) {
0737         int start_s_uframe;
0738         int ssplit_s_uframe;
0739         int second_s_uframe;
0740         int rel_uframe;
0741         int first_count;
0742         int middle_count;
0743         int end_count;
0744         int first_data_bytes;
0745         int other_data_bytes;
0746         int i;
0747 
0748         if (qh->schedule_low_speed) {
0749             err = dwc2_ls_pmap_schedule(hsotg, qh, ls_search_slice);
0750 
0751             /*
0752              * If we got an error here there's no other magic we
0753              * can do, so bail.  All the looping above is only
0754              * helpful to redo things if we got a low speed slot
0755              * and then couldn't find a matching high speed slot.
0756              */
0757             if (err)
0758                 return err;
0759         } else {
0760             /* Must be missing the tt structure?  Why? */
0761             WARN_ON_ONCE(1);
0762         }
0763 
0764         /*
0765          * This will give us a number 0 - 7 if
0766          * DWC2_LS_SCHEDULE_FRAMES == 1, or 0 - 15 if == 2, or ...
0767          */
0768         start_s_uframe = qh->ls_start_schedule_slice /
0769                  DWC2_SLICES_PER_UFRAME;
0770 
0771         /* Get a number that's always 0 - 7 */
0772         rel_uframe = (start_s_uframe % 8);
0773 
0774         /*
0775          * If we were going to start in uframe 7 then we would need to
0776          * issue a start split in uframe 6, which spec says is not OK.
0777          * Move on to the next full frame (assuming there is one).
0778          *
0779          * See 11.18.4 Host Split Transaction Scheduling Requirements
0780          * bullet 1.
0781          */
0782         if (rel_uframe == 7) {
0783             if (qh->schedule_low_speed)
0784                 dwc2_ls_pmap_unschedule(hsotg, qh);
0785             ls_search_slice =
0786                 (qh->ls_start_schedule_slice /
0787                  DWC2_LS_PERIODIC_SLICES_PER_FRAME + 1) *
0788                 DWC2_LS_PERIODIC_SLICES_PER_FRAME;
0789             continue;
0790         }
0791 
0792         /*
0793          * For ISOC in:
0794          * - start split            (frame -1)
0795          * - complete split w/ data (frame +1)
0796          * - complete split w/ data (frame +2)
0797          * - ...
0798          * - complete split w/ data (frame +num_data_packets)
0799          * - complete split w/ data (frame +num_data_packets+1)
0800          * - complete split w/ data (frame +num_data_packets+2, max 8)
0801          *   ...though if frame was "0" then max is 7...
0802          *
0803          * For ISOC out we might need to do:
0804          * - start split w/ data    (frame -1)
0805          * - start split w/ data    (frame +0)
0806          * - ...
0807          * - start split w/ data    (frame +num_data_packets-2)
0808          *
0809          * For INTERRUPT in we might need to do:
0810          * - start split            (frame -1)
0811          * - complete split w/ data (frame +1)
0812          * - complete split w/ data (frame +2)
0813          * - complete split w/ data (frame +3, max 8)
0814          *
0815          * For INTERRUPT out we might need to do:
0816          * - start split w/ data    (frame -1)
0817          * - complete split         (frame +1)
0818          * - complete split         (frame +2)
0819          * - complete split         (frame +3, max 8)
0820          *
0821          * Start adjusting!
0822          */
0823         ssplit_s_uframe = (start_s_uframe +
0824                    host_interval_in_sched - 1) %
0825                   host_interval_in_sched;
0826         if (qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in)
0827             second_s_uframe = start_s_uframe;
0828         else
0829             second_s_uframe = start_s_uframe + 1;
0830 
0831         /* First data transfer might not be all 188 bytes. */
0832         first_data_bytes = 188 -
0833             DIV_ROUND_UP(188 * (qh->ls_start_schedule_slice %
0834                         DWC2_SLICES_PER_UFRAME),
0835                      DWC2_SLICES_PER_UFRAME);
0836         if (first_data_bytes > bytecount)
0837             first_data_bytes = bytecount;
0838         other_data_bytes = bytecount - first_data_bytes;
0839 
0840         /*
0841          * For now, skip OUT xfers where first xfer is partial
0842          *
0843          * Main dwc2 code assumes:
0844          * - INT transfers never get split in two.
0845          * - ISOC transfers can always transfer 188 bytes the first
0846          *   time.
0847          *
0848          * Until that code is fixed, try again if the first transfer
0849          * couldn't transfer everything.
0850          *
0851          * This code can be removed if/when the rest of dwc2 handles
0852          * the above cases.  Until it's fixed we just won't be able
0853          * to schedule quite as tightly.
0854          */
0855         if (!qh->ep_is_in &&
0856             (first_data_bytes != min_t(int, 188, bytecount))) {
0857             dwc2_sch_dbg(hsotg,
0858                      "QH=%p avoiding broken 1st xfer (%d, %d)\n",
0859                      qh, first_data_bytes, bytecount);
0860             if (qh->schedule_low_speed)
0861                 dwc2_ls_pmap_unschedule(hsotg, qh);
0862             ls_search_slice = (start_s_uframe + 1) *
0863                 DWC2_SLICES_PER_UFRAME;
0864             continue;
0865         }
0866 
0867         /* Start by assuming transfers for the bytes */
0868         qh->num_hs_transfers = 1 + DIV_ROUND_UP(other_data_bytes, 188);
0869 
0870         /*
0871          * Everything except ISOC OUT has extra transfers.  Rules are
0872          * complicated.  See 11.18.4 Host Split Transaction Scheduling
0873          * Requirements bullet 3.
0874          */
0875         if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
0876             if (rel_uframe == 6)
0877                 qh->num_hs_transfers += 2;
0878             else
0879                 qh->num_hs_transfers += 3;
0880 
0881             if (qh->ep_is_in) {
0882                 /*
0883                  * First is start split, middle/end is data.
0884                  * Allocate full data bytes for all data.
0885                  */
0886                 first_count = 4;
0887                 middle_count = bytecount;
0888                 end_count = bytecount;
0889             } else {
0890                 /*
0891                  * First is data, middle/end is complete.
0892                  * First transfer and second can have data.
0893                  * Rest should just have complete split.
0894                  */
0895                 first_count = first_data_bytes;
0896                 middle_count = max_t(int, 4, other_data_bytes);
0897                 end_count = 4;
0898             }
0899         } else {
0900             if (qh->ep_is_in) {
0901                 int last;
0902 
0903                 /* Account for the start split */
0904                 qh->num_hs_transfers++;
0905 
0906                 /* Calculate "L" value from spec */
0907                 last = rel_uframe + qh->num_hs_transfers + 1;
0908 
0909                 /* Start with basic case */
0910                 if (last <= 6)
0911                     qh->num_hs_transfers += 2;
0912                 else
0913                     qh->num_hs_transfers += 1;
0914 
0915                 /* Adjust downwards */
0916                 if (last >= 6 && rel_uframe == 0)
0917                     qh->num_hs_transfers--;
0918 
0919                 /* 1st = start; rest can contain data */
0920                 first_count = 4;
0921                 middle_count = min_t(int, 188, bytecount);
0922                 end_count = middle_count;
0923             } else {
0924                 /* All contain data, last might be smaller */
0925                 first_count = first_data_bytes;
0926                 middle_count = min_t(int, 188,
0927                              other_data_bytes);
0928                 end_count = other_data_bytes % 188;
0929             }
0930         }
0931 
0932         /* Assign durations per uFrame */
0933         qh->hs_transfers[0].duration_us = HS_USECS_ISO(first_count);
0934         for (i = 1; i < qh->num_hs_transfers - 1; i++)
0935             qh->hs_transfers[i].duration_us =
0936                 HS_USECS_ISO(middle_count);
0937         if (qh->num_hs_transfers > 1)
0938             qh->hs_transfers[qh->num_hs_transfers - 1].duration_us =
0939                 HS_USECS_ISO(end_count);
0940 
0941         /*
0942          * Assign start us.  The call below to dwc2_hs_pmap_schedule()
0943          * will start with these numbers but may adjust within the same
0944          * microframe.
0945          */
0946         qh->hs_transfers[0].start_schedule_us =
0947             ssplit_s_uframe * DWC2_HS_PERIODIC_US_PER_UFRAME;
0948         for (i = 1; i < qh->num_hs_transfers; i++)
0949             qh->hs_transfers[i].start_schedule_us =
0950                 ((second_s_uframe + i - 1) %
0951                  DWC2_HS_SCHEDULE_UFRAMES) *
0952                 DWC2_HS_PERIODIC_US_PER_UFRAME;
0953 
0954         /* Try to schedule with filled in hs_transfers above */
0955         for (i = 0; i < qh->num_hs_transfers; i++) {
0956             err = dwc2_hs_pmap_schedule(hsotg, qh, true, i);
0957             if (err)
0958                 break;
0959         }
0960 
0961         /* If we scheduled all w/out breaking out then we're all good */
0962         if (i == qh->num_hs_transfers)
0963             break;
0964 
0965         for (; i >= 0; i--)
0966             dwc2_hs_pmap_unschedule(hsotg, qh, i);
0967 
0968         if (qh->schedule_low_speed)
0969             dwc2_ls_pmap_unschedule(hsotg, qh);
0970 
0971         /* Try again starting in the next microframe */
0972         ls_search_slice = (start_s_uframe + 1) * DWC2_SLICES_PER_UFRAME;
0973     }
0974 
0975     if (ls_search_slice >= DWC2_LS_SCHEDULE_SLICES)
0976         return -ENOSPC;
0977 
0978     return 0;
0979 }
0980 
0981 /**
0982  * dwc2_uframe_schedule_hs - Schedule a QH for a periodic high speed xfer.
0983  *
0984  * Basically this just wraps dwc2_hs_pmap_schedule() to provide a clean
0985  * interface.
0986  *
0987  * @hsotg:       The HCD state structure for the DWC OTG controller.
0988  * @qh:          QH for the periodic transfer.
0989  */
0990 static int dwc2_uframe_schedule_hs(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
0991 {
0992     /* In non-split host and device time are the same */
0993     WARN_ON(qh->host_us != qh->device_us);
0994     WARN_ON(qh->host_interval != qh->device_interval);
0995     WARN_ON(qh->num_hs_transfers != 1);
0996 
0997     /* We'll have one transfer; init start to 0 before calling scheduler */
0998     qh->hs_transfers[0].start_schedule_us = 0;
0999     qh->hs_transfers[0].duration_us = qh->host_us;
1000 
1001     return dwc2_hs_pmap_schedule(hsotg, qh, false, 0);
1002 }
1003 
1004 /**
1005  * dwc2_uframe_schedule_ls - Schedule a QH for a periodic low/full speed xfer.
1006  *
1007  * Basically this just wraps dwc2_ls_pmap_schedule() to provide a clean
1008  * interface.
1009  *
1010  * @hsotg:       The HCD state structure for the DWC OTG controller.
1011  * @qh:          QH for the periodic transfer.
1012  */
1013 static int dwc2_uframe_schedule_ls(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1014 {
1015     /* In non-split host and device time are the same */
1016     WARN_ON(qh->host_us != qh->device_us);
1017     WARN_ON(qh->host_interval != qh->device_interval);
1018     WARN_ON(!qh->schedule_low_speed);
1019 
1020     /* Run on the main low speed schedule (no split = no hub = no TT) */
1021     return dwc2_ls_pmap_schedule(hsotg, qh, 0);
1022 }
1023 
1024 /**
1025  * dwc2_uframe_schedule - Schedule a QH for a periodic xfer.
1026  *
1027  * Calls one of the 3 sub-function depending on what type of transfer this QH
1028  * is for.  Also adds some printing.
1029  *
1030  * @hsotg:       The HCD state structure for the DWC OTG controller.
1031  * @qh:          QH for the periodic transfer.
1032  */
1033 static int dwc2_uframe_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1034 {
1035     int ret;
1036 
1037     if (qh->dev_speed == USB_SPEED_HIGH)
1038         ret = dwc2_uframe_schedule_hs(hsotg, qh);
1039     else if (!qh->do_split)
1040         ret = dwc2_uframe_schedule_ls(hsotg, qh);
1041     else
1042         ret = dwc2_uframe_schedule_split(hsotg, qh);
1043 
1044     if (ret)
1045         dwc2_sch_dbg(hsotg, "QH=%p Failed to schedule %d\n", qh, ret);
1046     else
1047         dwc2_qh_schedule_print(hsotg, qh);
1048 
1049     return ret;
1050 }
1051 
1052 /**
1053  * dwc2_uframe_unschedule - Undoes dwc2_uframe_schedule().
1054  *
1055  * @hsotg:       The HCD state structure for the DWC OTG controller.
1056  * @qh:          QH for the periodic transfer.
1057  */
1058 static void dwc2_uframe_unschedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1059 {
1060     int i;
1061 
1062     for (i = 0; i < qh->num_hs_transfers; i++)
1063         dwc2_hs_pmap_unschedule(hsotg, qh, i);
1064 
1065     if (qh->schedule_low_speed)
1066         dwc2_ls_pmap_unschedule(hsotg, qh);
1067 
1068     dwc2_sch_dbg(hsotg, "QH=%p Unscheduled\n", qh);
1069 }
1070 
1071 /**
1072  * dwc2_pick_first_frame() - Choose 1st frame for qh that's already scheduled
1073  *
1074  * Takes a qh that has already been scheduled (which means we know we have the
1075  * bandwdith reserved for us) and set the next_active_frame and the
1076  * start_active_frame.
1077  *
1078  * This is expected to be called on qh's that weren't previously actively
1079  * running.  It just picks the next frame that we can fit into without any
1080  * thought about the past.
1081  *
1082  * @hsotg: The HCD state structure for the DWC OTG controller
1083  * @qh:    QH for a periodic endpoint
1084  *
1085  */
1086 static void dwc2_pick_first_frame(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1087 {
1088     u16 frame_number;
1089     u16 earliest_frame;
1090     u16 next_active_frame;
1091     u16 relative_frame;
1092     u16 interval;
1093 
1094     /*
1095      * Use the real frame number rather than the cached value as of the
1096      * last SOF to give us a little extra slop.
1097      */
1098     frame_number = dwc2_hcd_get_frame_number(hsotg);
1099 
1100     /*
1101      * We wouldn't want to start any earlier than the next frame just in
1102      * case the frame number ticks as we're doing this calculation.
1103      *
1104      * NOTE: if we could quantify how long till we actually get scheduled
1105      * we might be able to avoid the "+ 1" by looking at the upper part of
1106      * HFNUM (the FRREM field).  For now we'll just use the + 1 though.
1107      */
1108     earliest_frame = dwc2_frame_num_inc(frame_number, 1);
1109     next_active_frame = earliest_frame;
1110 
1111     /* Get the "no microframe schduler" out of the way... */
1112     if (!hsotg->params.uframe_sched) {
1113         if (qh->do_split)
1114             /* Splits are active at microframe 0 minus 1 */
1115             next_active_frame |= 0x7;
1116         goto exit;
1117     }
1118 
1119     if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
1120         /*
1121          * We're either at high speed or we're doing a split (which
1122          * means we're talking high speed to a hub).  In any case
1123          * the first frame should be based on when the first scheduled
1124          * event is.
1125          */
1126         WARN_ON(qh->num_hs_transfers < 1);
1127 
1128         relative_frame = qh->hs_transfers[0].start_schedule_us /
1129                  DWC2_HS_PERIODIC_US_PER_UFRAME;
1130 
1131         /* Adjust interval as per high speed schedule */
1132         interval = gcd(qh->host_interval, DWC2_HS_SCHEDULE_UFRAMES);
1133 
1134     } else {
1135         /*
1136          * Low or full speed directly on dwc2.  Just about the same
1137          * as high speed but on a different schedule and with slightly
1138          * different adjustments.  Note that this works because when
1139          * the host and device are both low speed then frames in the
1140          * controller tick at low speed.
1141          */
1142         relative_frame = qh->ls_start_schedule_slice /
1143                  DWC2_LS_PERIODIC_SLICES_PER_FRAME;
1144         interval = gcd(qh->host_interval, DWC2_LS_SCHEDULE_FRAMES);
1145     }
1146 
1147     /* Scheduler messed up if frame is past interval */
1148     WARN_ON(relative_frame >= interval);
1149 
1150     /*
1151      * We know interval must divide (HFNUM_MAX_FRNUM + 1) now that we've
1152      * done the gcd(), so it's safe to move to the beginning of the current
1153      * interval like this.
1154      *
1155      * After this we might be before earliest_frame, but don't worry,
1156      * we'll fix it...
1157      */
1158     next_active_frame = (next_active_frame / interval) * interval;
1159 
1160     /*
1161      * Actually choose to start at the frame number we've been
1162      * scheduled for.
1163      */
1164     next_active_frame = dwc2_frame_num_inc(next_active_frame,
1165                            relative_frame);
1166 
1167     /*
1168      * We actually need 1 frame before since the next_active_frame is
1169      * the frame number we'll be put on the ready list and we won't be on
1170      * the bus until 1 frame later.
1171      */
1172     next_active_frame = dwc2_frame_num_dec(next_active_frame, 1);
1173 
1174     /*
1175      * By now we might actually be before the earliest_frame.  Let's move
1176      * up intervals until we're not.
1177      */
1178     while (dwc2_frame_num_gt(earliest_frame, next_active_frame))
1179         next_active_frame = dwc2_frame_num_inc(next_active_frame,
1180                                interval);
1181 
1182 exit:
1183     qh->next_active_frame = next_active_frame;
1184     qh->start_active_frame = next_active_frame;
1185 
1186     dwc2_sch_vdbg(hsotg, "QH=%p First fn=%04x nxt=%04x\n",
1187               qh, frame_number, qh->next_active_frame);
1188 }
1189 
1190 /**
1191  * dwc2_do_reserve() - Make a periodic reservation
1192  *
1193  * Try to allocate space in the periodic schedule.  Depending on parameters
1194  * this might use the microframe scheduler or the dumb scheduler.
1195  *
1196  * @hsotg: The HCD state structure for the DWC OTG controller
1197  * @qh:    QH for the periodic transfer.
1198  *
1199  * Returns: 0 upon success; error upon failure.
1200  */
1201 static int dwc2_do_reserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1202 {
1203     int status;
1204 
1205     if (hsotg->params.uframe_sched) {
1206         status = dwc2_uframe_schedule(hsotg, qh);
1207     } else {
1208         status = dwc2_periodic_channel_available(hsotg);
1209         if (status) {
1210             dev_info(hsotg->dev,
1211                  "%s: No host channel available for periodic transfer\n",
1212                  __func__);
1213             return status;
1214         }
1215 
1216         status = dwc2_check_periodic_bandwidth(hsotg, qh);
1217     }
1218 
1219     if (status) {
1220         dev_dbg(hsotg->dev,
1221             "%s: Insufficient periodic bandwidth for periodic transfer\n",
1222             __func__);
1223         return status;
1224     }
1225 
1226     if (!hsotg->params.uframe_sched)
1227         /* Reserve periodic channel */
1228         hsotg->periodic_channels++;
1229 
1230     /* Update claimed usecs per (micro)frame */
1231     hsotg->periodic_usecs += qh->host_us;
1232 
1233     dwc2_pick_first_frame(hsotg, qh);
1234 
1235     return 0;
1236 }
1237 
1238 /**
1239  * dwc2_do_unreserve() - Actually release the periodic reservation
1240  *
1241  * This function actually releases the periodic bandwidth that was reserved
1242  * by the given qh.
1243  *
1244  * @hsotg: The HCD state structure for the DWC OTG controller
1245  * @qh:    QH for the periodic transfer.
1246  */
1247 static void dwc2_do_unreserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1248 {
1249     assert_spin_locked(&hsotg->lock);
1250 
1251     WARN_ON(!qh->unreserve_pending);
1252 
1253     /* No more unreserve pending--we're doing it */
1254     qh->unreserve_pending = false;
1255 
1256     if (WARN_ON(!list_empty(&qh->qh_list_entry)))
1257         list_del_init(&qh->qh_list_entry);
1258 
1259     /* Update claimed usecs per (micro)frame */
1260     hsotg->periodic_usecs -= qh->host_us;
1261 
1262     if (hsotg->params.uframe_sched) {
1263         dwc2_uframe_unschedule(hsotg, qh);
1264     } else {
1265         /* Release periodic channel reservation */
1266         hsotg->periodic_channels--;
1267     }
1268 }
1269 
1270 /**
1271  * dwc2_unreserve_timer_fn() - Timer function to release periodic reservation
1272  *
1273  * According to the kernel doc for usb_submit_urb() (specifically the part about
1274  * "Reserved Bandwidth Transfers"), we need to keep a reservation active as
1275  * long as a device driver keeps submitting.  Since we're using HCD_BH to give
1276  * back the URB we need to give the driver a little bit of time before we
1277  * release the reservation.  This worker is called after the appropriate
1278  * delay.
1279  *
1280  * @t: Address to a qh unreserve_work.
1281  */
1282 static void dwc2_unreserve_timer_fn(struct timer_list *t)
1283 {
1284     struct dwc2_qh *qh = from_timer(qh, t, unreserve_timer);
1285     struct dwc2_hsotg *hsotg = qh->hsotg;
1286     unsigned long flags;
1287 
1288     /*
1289      * Wait for the lock, or for us to be scheduled again.  We
1290      * could be scheduled again if:
1291      * - We started executing but didn't get the lock yet.
1292      * - A new reservation came in, but cancel didn't take effect
1293      *   because we already started executing.
1294      * - The timer has been kicked again.
1295      * In that case cancel and wait for the next call.
1296      */
1297     while (!spin_trylock_irqsave(&hsotg->lock, flags)) {
1298         if (timer_pending(&qh->unreserve_timer))
1299             return;
1300     }
1301 
1302     /*
1303      * Might be no more unreserve pending if:
1304      * - We started executing but didn't get the lock yet.
1305      * - A new reservation came in, but cancel didn't take effect
1306      *   because we already started executing.
1307      *
1308      * We can't put this in the loop above because unreserve_pending needs
1309      * to be accessed under lock, so we can only check it once we got the
1310      * lock.
1311      */
1312     if (qh->unreserve_pending)
1313         dwc2_do_unreserve(hsotg, qh);
1314 
1315     spin_unlock_irqrestore(&hsotg->lock, flags);
1316 }
1317 
1318 /**
1319  * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
1320  * host channel is large enough to handle the maximum data transfer in a single
1321  * (micro)frame for a periodic transfer
1322  *
1323  * @hsotg: The HCD state structure for the DWC OTG controller
1324  * @qh:    QH for a periodic endpoint
1325  *
1326  * Return: 0 if successful, negative error code otherwise
1327  */
1328 static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg,
1329                     struct dwc2_qh *qh)
1330 {
1331     u32 max_xfer_size;
1332     u32 max_channel_xfer_size;
1333     int status = 0;
1334 
1335     max_xfer_size = qh->maxp * qh->maxp_mult;
1336     max_channel_xfer_size = hsotg->params.max_transfer_size;
1337 
1338     if (max_xfer_size > max_channel_xfer_size) {
1339         dev_err(hsotg->dev,
1340             "%s: Periodic xfer length %d > max xfer length for channel %d\n",
1341             __func__, max_xfer_size, max_channel_xfer_size);
1342         status = -ENOSPC;
1343     }
1344 
1345     return status;
1346 }
1347 
1348 /**
1349  * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
1350  * the periodic schedule
1351  *
1352  * @hsotg: The HCD state structure for the DWC OTG controller
1353  * @qh:    QH for the periodic transfer. The QH should already contain the
1354  *         scheduling information.
1355  *
1356  * Return: 0 if successful, negative error code otherwise
1357  */
1358 static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1359 {
1360     int status;
1361 
1362     status = dwc2_check_max_xfer_size(hsotg, qh);
1363     if (status) {
1364         dev_dbg(hsotg->dev,
1365             "%s: Channel max transfer size too small for periodic transfer\n",
1366             __func__);
1367         return status;
1368     }
1369 
1370     /* Cancel pending unreserve; if canceled OK, unreserve was pending */
1371     if (del_timer(&qh->unreserve_timer))
1372         WARN_ON(!qh->unreserve_pending);
1373 
1374     /*
1375      * Only need to reserve if there's not an unreserve pending, since if an
1376      * unreserve is pending then by definition our old reservation is still
1377      * valid.  Unreserve might still be pending even if we didn't cancel if
1378      * dwc2_unreserve_timer_fn() already started.  Code in the timer handles
1379      * that case.
1380      */
1381     if (!qh->unreserve_pending) {
1382         status = dwc2_do_reserve(hsotg, qh);
1383         if (status)
1384             return status;
1385     } else {
1386         /*
1387          * It might have been a while, so make sure that frame_number
1388          * is still good.  Note: we could also try to use the similar
1389          * dwc2_next_periodic_start() but that schedules much more
1390          * tightly and we might need to hurry and queue things up.
1391          */
1392         if (dwc2_frame_num_le(qh->next_active_frame,
1393                       hsotg->frame_number))
1394             dwc2_pick_first_frame(hsotg, qh);
1395     }
1396 
1397     qh->unreserve_pending = 0;
1398 
1399     if (hsotg->params.dma_desc_enable)
1400         /* Don't rely on SOF and start in ready schedule */
1401         list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
1402     else
1403         /* Always start in inactive schedule */
1404         list_add_tail(&qh->qh_list_entry,
1405                   &hsotg->periodic_sched_inactive);
1406 
1407     return 0;
1408 }
1409 
1410 /**
1411  * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
1412  * from the periodic schedule
1413  *
1414  * @hsotg: The HCD state structure for the DWC OTG controller
1415  * @qh:    QH for the periodic transfer
1416  */
1417 static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg,
1418                      struct dwc2_qh *qh)
1419 {
1420     bool did_modify;
1421 
1422     assert_spin_locked(&hsotg->lock);
1423 
1424     /*
1425      * Schedule the unreserve to happen in a little bit.  Cases here:
1426      * - Unreserve worker might be sitting there waiting to grab the lock.
1427      *   In this case it will notice it's been schedule again and will
1428      *   quit.
1429      * - Unreserve worker might not be scheduled.
1430      *
1431      * We should never already be scheduled since dwc2_schedule_periodic()
1432      * should have canceled the scheduled unreserve timer (hence the
1433      * warning on did_modify).
1434      *
1435      * We add + 1 to the timer to guarantee that at least 1 jiffy has
1436      * passed (otherwise if the jiffy counter might tick right after we
1437      * read it and we'll get no delay).
1438      */
1439     did_modify = mod_timer(&qh->unreserve_timer,
1440                    jiffies + DWC2_UNRESERVE_DELAY + 1);
1441     WARN_ON(did_modify);
1442     qh->unreserve_pending = 1;
1443 
1444     list_del_init(&qh->qh_list_entry);
1445 }
1446 
1447 /**
1448  * dwc2_wait_timer_fn() - Timer function to re-queue after waiting
1449  *
1450  * As per the spec, a NAK indicates that "a function is temporarily unable to
1451  * transmit or receive data, but will eventually be able to do so without need
1452  * of host intervention".
1453  *
1454  * That means that when we encounter a NAK we're supposed to retry.
1455  *
1456  * ...but if we retry right away (from the interrupt handler that saw the NAK)
1457  * then we can end up with an interrupt storm (if the other side keeps NAKing
1458  * us) because on slow enough CPUs it could take us longer to get out of the
1459  * interrupt routine than it takes for the device to send another NAK.  That
1460  * leads to a constant stream of NAK interrupts and the CPU locks.
1461  *
1462  * ...so instead of retrying right away in the case of a NAK we'll set a timer
1463  * to retry some time later.  This function handles that timer and moves the
1464  * qh back to the "inactive" list, then queues transactions.
1465  *
1466  * @t: Pointer to wait_timer in a qh.
1467  *
1468  * Return: HRTIMER_NORESTART to not automatically restart this timer.
1469  */
1470 static enum hrtimer_restart dwc2_wait_timer_fn(struct hrtimer *t)
1471 {
1472     struct dwc2_qh *qh = container_of(t, struct dwc2_qh, wait_timer);
1473     struct dwc2_hsotg *hsotg = qh->hsotg;
1474     unsigned long flags;
1475 
1476     spin_lock_irqsave(&hsotg->lock, flags);
1477 
1478     /*
1479      * We'll set wait_timer_cancel to true if we want to cancel this
1480      * operation in dwc2_hcd_qh_unlink().
1481      */
1482     if (!qh->wait_timer_cancel) {
1483         enum dwc2_transaction_type tr_type;
1484 
1485         qh->want_wait = false;
1486 
1487         list_move(&qh->qh_list_entry,
1488               &hsotg->non_periodic_sched_inactive);
1489 
1490         tr_type = dwc2_hcd_select_transactions(hsotg);
1491         if (tr_type != DWC2_TRANSACTION_NONE)
1492             dwc2_hcd_queue_transactions(hsotg, tr_type);
1493     }
1494 
1495     spin_unlock_irqrestore(&hsotg->lock, flags);
1496     return HRTIMER_NORESTART;
1497 }
1498 
1499 /**
1500  * dwc2_qh_init() - Initializes a QH structure
1501  *
1502  * @hsotg: The HCD state structure for the DWC OTG controller
1503  * @qh:    The QH to init
1504  * @urb:   Holds the information about the device/endpoint needed to initialize
1505  *         the QH
1506  * @mem_flags: Flags for allocating memory.
1507  */
1508 static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1509              struct dwc2_hcd_urb *urb, gfp_t mem_flags)
1510 {
1511     int dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1512     u8 ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info);
1513     bool ep_is_in = !!dwc2_hcd_is_pipe_in(&urb->pipe_info);
1514     bool ep_is_isoc = (ep_type == USB_ENDPOINT_XFER_ISOC);
1515     bool ep_is_int = (ep_type == USB_ENDPOINT_XFER_INT);
1516     u32 hprt = dwc2_readl(hsotg, HPRT0);
1517     u32 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1518     bool do_split = (prtspd == HPRT0_SPD_HIGH_SPEED &&
1519              dev_speed != USB_SPEED_HIGH);
1520     int maxp = dwc2_hcd_get_maxp(&urb->pipe_info);
1521     int maxp_mult = dwc2_hcd_get_maxp_mult(&urb->pipe_info);
1522     int bytecount = maxp_mult * maxp;
1523     char *speed, *type;
1524 
1525     /* Initialize QH */
1526     qh->hsotg = hsotg;
1527     timer_setup(&qh->unreserve_timer, dwc2_unreserve_timer_fn, 0);
1528     hrtimer_init(&qh->wait_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1529     qh->wait_timer.function = &dwc2_wait_timer_fn;
1530     qh->ep_type = ep_type;
1531     qh->ep_is_in = ep_is_in;
1532 
1533     qh->data_toggle = DWC2_HC_PID_DATA0;
1534     qh->maxp = maxp;
1535     qh->maxp_mult = maxp_mult;
1536     INIT_LIST_HEAD(&qh->qtd_list);
1537     INIT_LIST_HEAD(&qh->qh_list_entry);
1538 
1539     qh->do_split = do_split;
1540     qh->dev_speed = dev_speed;
1541 
1542     if (ep_is_int || ep_is_isoc) {
1543         /* Compute scheduling parameters once and save them */
1544         int host_speed = do_split ? USB_SPEED_HIGH : dev_speed;
1545         struct dwc2_tt *dwc_tt = dwc2_host_get_tt_info(hsotg, urb->priv,
1546                                    mem_flags,
1547                                    &qh->ttport);
1548         int device_ns;
1549 
1550         qh->dwc_tt = dwc_tt;
1551 
1552         qh->host_us = NS_TO_US(usb_calc_bus_time(host_speed, ep_is_in,
1553                        ep_is_isoc, bytecount));
1554         device_ns = usb_calc_bus_time(dev_speed, ep_is_in,
1555                           ep_is_isoc, bytecount);
1556 
1557         if (do_split && dwc_tt)
1558             device_ns += dwc_tt->usb_tt->think_time;
1559         qh->device_us = NS_TO_US(device_ns);
1560 
1561         qh->device_interval = urb->interval;
1562         qh->host_interval = urb->interval * (do_split ? 8 : 1);
1563 
1564         /*
1565          * Schedule low speed if we're running the host in low or
1566          * full speed OR if we've got a "TT" to deal with to access this
1567          * device.
1568          */
1569         qh->schedule_low_speed = prtspd != HPRT0_SPD_HIGH_SPEED ||
1570                      dwc_tt;
1571 
1572         if (do_split) {
1573             /* We won't know num transfers until we schedule */
1574             qh->num_hs_transfers = -1;
1575         } else if (dev_speed == USB_SPEED_HIGH) {
1576             qh->num_hs_transfers = 1;
1577         } else {
1578             qh->num_hs_transfers = 0;
1579         }
1580 
1581         /* We'll schedule later when we have something to do */
1582     }
1583 
1584     switch (dev_speed) {
1585     case USB_SPEED_LOW:
1586         speed = "low";
1587         break;
1588     case USB_SPEED_FULL:
1589         speed = "full";
1590         break;
1591     case USB_SPEED_HIGH:
1592         speed = "high";
1593         break;
1594     default:
1595         speed = "?";
1596         break;
1597     }
1598 
1599     switch (qh->ep_type) {
1600     case USB_ENDPOINT_XFER_ISOC:
1601         type = "isochronous";
1602         break;
1603     case USB_ENDPOINT_XFER_INT:
1604         type = "interrupt";
1605         break;
1606     case USB_ENDPOINT_XFER_CONTROL:
1607         type = "control";
1608         break;
1609     case USB_ENDPOINT_XFER_BULK:
1610         type = "bulk";
1611         break;
1612     default:
1613         type = "?";
1614         break;
1615     }
1616 
1617     dwc2_sch_dbg(hsotg, "QH=%p Init %s, %s speed, %d bytes:\n", qh, type,
1618              speed, bytecount);
1619     dwc2_sch_dbg(hsotg, "QH=%p ...addr=%d, ep=%d, %s\n", qh,
1620              dwc2_hcd_get_dev_addr(&urb->pipe_info),
1621              dwc2_hcd_get_ep_num(&urb->pipe_info),
1622              ep_is_in ? "IN" : "OUT");
1623     if (ep_is_int || ep_is_isoc) {
1624         dwc2_sch_dbg(hsotg,
1625                  "QH=%p ...duration: host=%d us, device=%d us\n",
1626                  qh, qh->host_us, qh->device_us);
1627         dwc2_sch_dbg(hsotg, "QH=%p ...interval: host=%d, device=%d\n",
1628                  qh, qh->host_interval, qh->device_interval);
1629         if (qh->schedule_low_speed)
1630             dwc2_sch_dbg(hsotg, "QH=%p ...low speed schedule=%p\n",
1631                      qh, dwc2_get_ls_map(hsotg, qh));
1632     }
1633 }
1634 
1635 /**
1636  * dwc2_hcd_qh_create() - Allocates and initializes a QH
1637  *
1638  * @hsotg:        The HCD state structure for the DWC OTG controller
1639  * @urb:          Holds the information about the device/endpoint needed
1640  *                to initialize the QH
1641  * @mem_flags:   Flags for allocating memory.
1642  *
1643  * Return: Pointer to the newly allocated QH, or NULL on error
1644  */
1645 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
1646                    struct dwc2_hcd_urb *urb,
1647                       gfp_t mem_flags)
1648 {
1649     struct dwc2_qh *qh;
1650 
1651     if (!urb->priv)
1652         return NULL;
1653 
1654     /* Allocate memory */
1655     qh = kzalloc(sizeof(*qh), mem_flags);
1656     if (!qh)
1657         return NULL;
1658 
1659     dwc2_qh_init(hsotg, qh, urb, mem_flags);
1660 
1661     if (hsotg->params.dma_desc_enable &&
1662         dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) {
1663         dwc2_hcd_qh_free(hsotg, qh);
1664         return NULL;
1665     }
1666 
1667     return qh;
1668 }
1669 
1670 /**
1671  * dwc2_hcd_qh_free() - Frees the QH
1672  *
1673  * @hsotg: HCD instance
1674  * @qh:    The QH to free
1675  *
1676  * QH should already be removed from the list. QTD list should already be empty
1677  * if called from URB Dequeue.
1678  *
1679  * Must NOT be called with interrupt disabled or spinlock held
1680  */
1681 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1682 {
1683     /* Make sure any unreserve work is finished. */
1684     if (del_timer_sync(&qh->unreserve_timer)) {
1685         unsigned long flags;
1686 
1687         spin_lock_irqsave(&hsotg->lock, flags);
1688         dwc2_do_unreserve(hsotg, qh);
1689         spin_unlock_irqrestore(&hsotg->lock, flags);
1690     }
1691 
1692     /*
1693      * We don't have the lock so we can safely wait until the wait timer
1694      * finishes.  Of course, at this point in time we'd better have set
1695      * wait_timer_active to false so if this timer was still pending it
1696      * won't do anything anyway, but we want it to finish before we free
1697      * memory.
1698      */
1699     hrtimer_cancel(&qh->wait_timer);
1700 
1701     dwc2_host_put_tt_info(hsotg, qh->dwc_tt);
1702 
1703     if (qh->desc_list)
1704         dwc2_hcd_qh_free_ddma(hsotg, qh);
1705     else if (hsotg->unaligned_cache && qh->dw_align_buf)
1706         kmem_cache_free(hsotg->unaligned_cache, qh->dw_align_buf);
1707 
1708     kfree(qh);
1709 }
1710 
1711 /**
1712  * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
1713  * schedule if it is not already in the schedule. If the QH is already in
1714  * the schedule, no action is taken.
1715  *
1716  * @hsotg: The HCD state structure for the DWC OTG controller
1717  * @qh:    The QH to add
1718  *
1719  * Return: 0 if successful, negative error code otherwise
1720  */
1721 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1722 {
1723     int status;
1724     u32 intr_mask;
1725     ktime_t delay;
1726 
1727     if (dbg_qh(qh))
1728         dev_vdbg(hsotg->dev, "%s()\n", __func__);
1729 
1730     if (!list_empty(&qh->qh_list_entry))
1731         /* QH already in a schedule */
1732         return 0;
1733 
1734     /* Add the new QH to the appropriate schedule */
1735     if (dwc2_qh_is_non_per(qh)) {
1736         /* Schedule right away */
1737         qh->start_active_frame = hsotg->frame_number;
1738         qh->next_active_frame = qh->start_active_frame;
1739 
1740         if (qh->want_wait) {
1741             list_add_tail(&qh->qh_list_entry,
1742                       &hsotg->non_periodic_sched_waiting);
1743             qh->wait_timer_cancel = false;
1744             delay = ktime_set(0, DWC2_RETRY_WAIT_DELAY);
1745             hrtimer_start(&qh->wait_timer, delay, HRTIMER_MODE_REL);
1746         } else {
1747             list_add_tail(&qh->qh_list_entry,
1748                       &hsotg->non_periodic_sched_inactive);
1749         }
1750         return 0;
1751     }
1752 
1753     status = dwc2_schedule_periodic(hsotg, qh);
1754     if (status)
1755         return status;
1756     if (!hsotg->periodic_qh_count) {
1757         intr_mask = dwc2_readl(hsotg, GINTMSK);
1758         intr_mask |= GINTSTS_SOF;
1759         dwc2_writel(hsotg, intr_mask, GINTMSK);
1760     }
1761     hsotg->periodic_qh_count++;
1762 
1763     return 0;
1764 }
1765 
1766 /**
1767  * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
1768  * schedule. Memory is not freed.
1769  *
1770  * @hsotg: The HCD state structure
1771  * @qh:    QH to remove from schedule
1772  */
1773 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1774 {
1775     u32 intr_mask;
1776 
1777     dev_vdbg(hsotg->dev, "%s()\n", __func__);
1778 
1779     /* If the wait_timer is pending, this will stop it from acting */
1780     qh->wait_timer_cancel = true;
1781 
1782     if (list_empty(&qh->qh_list_entry))
1783         /* QH is not in a schedule */
1784         return;
1785 
1786     if (dwc2_qh_is_non_per(qh)) {
1787         if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry)
1788             hsotg->non_periodic_qh_ptr =
1789                     hsotg->non_periodic_qh_ptr->next;
1790         list_del_init(&qh->qh_list_entry);
1791         return;
1792     }
1793 
1794     dwc2_deschedule_periodic(hsotg, qh);
1795     hsotg->periodic_qh_count--;
1796     if (!hsotg->periodic_qh_count &&
1797         !hsotg->params.dma_desc_enable) {
1798         intr_mask = dwc2_readl(hsotg, GINTMSK);
1799         intr_mask &= ~GINTSTS_SOF;
1800         dwc2_writel(hsotg, intr_mask, GINTMSK);
1801     }
1802 }
1803 
1804 /**
1805  * dwc2_next_for_periodic_split() - Set next_active_frame midway thru a split.
1806  *
1807  * This is called for setting next_active_frame for periodic splits for all but
1808  * the first packet of the split.  Confusing?  I thought so...
1809  *
1810  * Periodic splits are single low/full speed transfers that we end up splitting
1811  * up into several high speed transfers.  They always fit into one full (1 ms)
1812  * frame but might be split over several microframes (125 us each).  We to put
1813  * each of the parts on a very specific high speed frame.
1814  *
1815  * This function figures out where the next active uFrame needs to be.
1816  *
1817  * @hsotg:        The HCD state structure
1818  * @qh:           QH for the periodic transfer.
1819  * @frame_number: The current frame number.
1820  *
1821  * Return: number missed by (or 0 if we didn't miss).
1822  */
1823 static int dwc2_next_for_periodic_split(struct dwc2_hsotg *hsotg,
1824                     struct dwc2_qh *qh, u16 frame_number)
1825 {
1826     u16 old_frame = qh->next_active_frame;
1827     u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1828     int missed = 0;
1829     u16 incr;
1830 
1831     /*
1832      * See dwc2_uframe_schedule_split() for split scheduling.
1833      *
1834      * Basically: increment 1 normally, but 2 right after the start split
1835      * (except for ISOC out).
1836      */
1837     if (old_frame == qh->start_active_frame &&
1838         !(qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in))
1839         incr = 2;
1840     else
1841         incr = 1;
1842 
1843     qh->next_active_frame = dwc2_frame_num_inc(old_frame, incr);
1844 
1845     /*
1846      * Note that it's OK for frame_number to be 1 frame past
1847      * next_active_frame.  Remember that next_active_frame is supposed to
1848      * be 1 frame _before_ when we want to be scheduled.  If we're 1 frame
1849      * past it just means schedule ASAP.
1850      *
1851      * It's _not_ OK, however, if we're more than one frame past.
1852      */
1853     if (dwc2_frame_num_gt(prev_frame_number, qh->next_active_frame)) {
1854         /*
1855          * OOPS, we missed.  That's actually pretty bad since
1856          * the hub will be unhappy; try ASAP I guess.
1857          */
1858         missed = dwc2_frame_num_dec(prev_frame_number,
1859                         qh->next_active_frame);
1860         qh->next_active_frame = frame_number;
1861     }
1862 
1863     return missed;
1864 }
1865 
1866 /**
1867  * dwc2_next_periodic_start() - Set next_active_frame for next transfer start
1868  *
1869  * This is called for setting next_active_frame for a periodic transfer for
1870  * all cases other than midway through a periodic split.  This will also update
1871  * start_active_frame.
1872  *
1873  * Since we _always_ keep start_active_frame as the start of the previous
1874  * transfer this is normally pretty easy: we just add our interval to
1875  * start_active_frame and we've got our answer.
1876  *
1877  * The tricks come into play if we miss.  In that case we'll look for the next
1878  * slot we can fit into.
1879  *
1880  * @hsotg:        The HCD state structure
1881  * @qh:           QH for the periodic transfer.
1882  * @frame_number: The current frame number.
1883  *
1884  * Return: number missed by (or 0 if we didn't miss).
1885  */
1886 static int dwc2_next_periodic_start(struct dwc2_hsotg *hsotg,
1887                     struct dwc2_qh *qh, u16 frame_number)
1888 {
1889     int missed = 0;
1890     u16 interval = qh->host_interval;
1891     u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1892 
1893     qh->start_active_frame = dwc2_frame_num_inc(qh->start_active_frame,
1894                             interval);
1895 
1896     /*
1897      * The dwc2_frame_num_gt() function used below won't work terribly well
1898      * with if we just incremented by a really large intervals since the
1899      * frame counter only goes to 0x3fff.  It's terribly unlikely that we
1900      * will have missed in this case anyway.  Just go to exit.  If we want
1901      * to try to do better we'll need to keep track of a bigger counter
1902      * somewhere in the driver and handle overflows.
1903      */
1904     if (interval >= 0x1000)
1905         goto exit;
1906 
1907     /*
1908      * Test for misses, which is when it's too late to schedule.
1909      *
1910      * A few things to note:
1911      * - We compare against prev_frame_number since start_active_frame
1912      *   and next_active_frame are always 1 frame before we want things
1913      *   to be active and we assume we can still get scheduled in the
1914      *   current frame number.
1915      * - It's possible for start_active_frame (now incremented) to be
1916      *   next_active_frame if we got an EO MISS (even_odd miss) which
1917      *   basically means that we detected there wasn't enough time for
1918      *   the last packet and dwc2_hc_set_even_odd_frame() rescheduled us
1919      *   at the last second.  We want to make sure we don't schedule
1920      *   another transfer for the same frame.  My test webcam doesn't seem
1921      *   terribly upset by missing a transfer but really doesn't like when
1922      *   we do two transfers in the same frame.
1923      * - Some misses are expected.  Specifically, in order to work
1924      *   perfectly dwc2 really needs quite spectacular interrupt latency
1925      *   requirements.  It needs to be able to handle its interrupts
1926      *   completely within 125 us of them being asserted. That not only
1927      *   means that the dwc2 interrupt handler needs to be fast but it
1928      *   means that nothing else in the system has to block dwc2 for a long
1929      *   time.  We can help with the dwc2 parts of this, but it's hard to
1930      *   guarantee that a system will have interrupt latency < 125 us, so
1931      *   we have to be robust to some misses.
1932      */
1933     if (qh->start_active_frame == qh->next_active_frame ||
1934         dwc2_frame_num_gt(prev_frame_number, qh->start_active_frame)) {
1935         u16 ideal_start = qh->start_active_frame;
1936         int periods_in_map;
1937 
1938         /*
1939          * Adjust interval as per gcd with map size.
1940          * See pmap_schedule() for more details here.
1941          */
1942         if (qh->do_split || qh->dev_speed == USB_SPEED_HIGH)
1943             periods_in_map = DWC2_HS_SCHEDULE_UFRAMES;
1944         else
1945             periods_in_map = DWC2_LS_SCHEDULE_FRAMES;
1946         interval = gcd(interval, periods_in_map);
1947 
1948         do {
1949             qh->start_active_frame = dwc2_frame_num_inc(
1950                 qh->start_active_frame, interval);
1951         } while (dwc2_frame_num_gt(prev_frame_number,
1952                        qh->start_active_frame));
1953 
1954         missed = dwc2_frame_num_dec(qh->start_active_frame,
1955                         ideal_start);
1956     }
1957 
1958 exit:
1959     qh->next_active_frame = qh->start_active_frame;
1960 
1961     return missed;
1962 }
1963 
1964 /*
1965  * Deactivates a QH. For non-periodic QHs, removes the QH from the active
1966  * non-periodic schedule. The QH is added to the inactive non-periodic
1967  * schedule if any QTDs are still attached to the QH.
1968  *
1969  * For periodic QHs, the QH is removed from the periodic queued schedule. If
1970  * there are any QTDs still attached to the QH, the QH is added to either the
1971  * periodic inactive schedule or the periodic ready schedule and its next
1972  * scheduled frame is calculated. The QH is placed in the ready schedule if
1973  * the scheduled frame has been reached already. Otherwise it's placed in the
1974  * inactive schedule. If there are no QTDs attached to the QH, the QH is
1975  * completely removed from the periodic schedule.
1976  */
1977 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1978                 int sched_next_periodic_split)
1979 {
1980     u16 old_frame = qh->next_active_frame;
1981     u16 frame_number;
1982     int missed;
1983 
1984     if (dbg_qh(qh))
1985         dev_vdbg(hsotg->dev, "%s()\n", __func__);
1986 
1987     if (dwc2_qh_is_non_per(qh)) {
1988         dwc2_hcd_qh_unlink(hsotg, qh);
1989         if (!list_empty(&qh->qtd_list))
1990             /* Add back to inactive/waiting non-periodic schedule */
1991             dwc2_hcd_qh_add(hsotg, qh);
1992         return;
1993     }
1994 
1995     /*
1996      * Use the real frame number rather than the cached value as of the
1997      * last SOF just to get us a little closer to reality.  Note that
1998      * means we don't actually know if we've already handled the SOF
1999      * interrupt for this frame.
2000      */
2001     frame_number = dwc2_hcd_get_frame_number(hsotg);
2002 
2003     if (sched_next_periodic_split)
2004         missed = dwc2_next_for_periodic_split(hsotg, qh, frame_number);
2005     else
2006         missed = dwc2_next_periodic_start(hsotg, qh, frame_number);
2007 
2008     dwc2_sch_vdbg(hsotg,
2009               "QH=%p next(%d) fn=%04x, sch=%04x=>%04x (%+d) miss=%d %s\n",
2010              qh, sched_next_periodic_split, frame_number, old_frame,
2011              qh->next_active_frame,
2012              dwc2_frame_num_dec(qh->next_active_frame, old_frame),
2013         missed, missed ? "MISS" : "");
2014 
2015     if (list_empty(&qh->qtd_list)) {
2016         dwc2_hcd_qh_unlink(hsotg, qh);
2017         return;
2018     }
2019 
2020     /*
2021      * Remove from periodic_sched_queued and move to
2022      * appropriate queue
2023      *
2024      * Note: we purposely use the frame_number from the "hsotg" structure
2025      * since we know SOF interrupt will handle future frames.
2026      */
2027     if (dwc2_frame_num_le(qh->next_active_frame, hsotg->frame_number))
2028         list_move_tail(&qh->qh_list_entry,
2029                    &hsotg->periodic_sched_ready);
2030     else
2031         list_move_tail(&qh->qh_list_entry,
2032                    &hsotg->periodic_sched_inactive);
2033 }
2034 
2035 /**
2036  * dwc2_hcd_qtd_init() - Initializes a QTD structure
2037  *
2038  * @qtd: The QTD to initialize
2039  * @urb: The associated URB
2040  */
2041 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2042 {
2043     qtd->urb = urb;
2044     if (dwc2_hcd_get_pipe_type(&urb->pipe_info) ==
2045             USB_ENDPOINT_XFER_CONTROL) {
2046         /*
2047          * The only time the QTD data toggle is used is on the data
2048          * phase of control transfers. This phase always starts with
2049          * DATA1.
2050          */
2051         qtd->data_toggle = DWC2_HC_PID_DATA1;
2052         qtd->control_phase = DWC2_CONTROL_SETUP;
2053     }
2054 
2055     /* Start split */
2056     qtd->complete_split = 0;
2057     qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL;
2058     qtd->isoc_split_offset = 0;
2059     qtd->in_process = 0;
2060 
2061     /* Store the qtd ptr in the urb to reference the QTD */
2062     urb->qtd = qtd;
2063 }
2064 
2065 /**
2066  * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
2067  *          Caller must hold driver lock.
2068  *
2069  * @hsotg:        The DWC HCD structure
2070  * @qtd:          The QTD to add
2071  * @qh:           Queue head to add qtd to
2072  *
2073  * Return: 0 if successful, negative error code otherwise
2074  *
2075  * If the QH to which the QTD is added is not currently scheduled, it is placed
2076  * into the proper schedule based on its EP type.
2077  */
2078 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
2079              struct dwc2_qh *qh)
2080 {
2081     int retval;
2082 
2083     if (unlikely(!qh)) {
2084         dev_err(hsotg->dev, "%s: Invalid QH\n", __func__);
2085         retval = -EINVAL;
2086         goto fail;
2087     }
2088 
2089     retval = dwc2_hcd_qh_add(hsotg, qh);
2090     if (retval)
2091         goto fail;
2092 
2093     qtd->qh = qh;
2094     list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
2095 
2096     return 0;
2097 fail:
2098     return retval;
2099 }