Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
0002 /*
0003  * hcd.h - DesignWare HS OTG Controller host-mode declarations
0004  *
0005  * Copyright (C) 2004-2013 Synopsys, Inc.
0006  *
0007  * Redistribution and use in source and binary forms, with or without
0008  * modification, are permitted provided that the following conditions
0009  * are met:
0010  * 1. Redistributions of source code must retain the above copyright
0011  *    notice, this list of conditions, and the following disclaimer,
0012  *    without modification.
0013  * 2. Redistributions in binary form must reproduce the above copyright
0014  *    notice, this list of conditions and the following disclaimer in the
0015  *    documentation and/or other materials provided with the distribution.
0016  * 3. The names of the above-listed copyright holders may not be used
0017  *    to endorse or promote products derived from this software without
0018  *    specific prior written permission.
0019  *
0020  * ALTERNATIVELY, this software may be distributed under the terms of the
0021  * GNU General Public License ("GPL") as published by the Free Software
0022  * Foundation; either version 2 of the License, or (at your option) any
0023  * later version.
0024  *
0025  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
0026  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
0027  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
0028  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
0029  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
0030  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
0031  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
0032  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
0033  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
0034  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
0035  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
0036  */
0037 #ifndef __DWC2_HCD_H__
0038 #define __DWC2_HCD_H__
0039 
0040 /*
0041  * This file contains the structures, constants, and interfaces for the
0042  * Host Contoller Driver (HCD)
0043  *
0044  * The Host Controller Driver (HCD) is responsible for translating requests
0045  * from the USB Driver into the appropriate actions on the DWC_otg controller.
0046  * It isolates the USBD from the specifics of the controller by providing an
0047  * API to the USBD.
0048  */
0049 
0050 struct dwc2_qh;
0051 
0052 /**
0053  * struct dwc2_host_chan - Software host channel descriptor
0054  *
0055  * @hc_num:             Host channel number, used for register address lookup
0056  * @dev_addr:           Address of the device
0057  * @ep_num:             Endpoint of the device
0058  * @ep_is_in:           Endpoint direction
0059  * @speed:              Device speed. One of the following values:
0060  *                       - USB_SPEED_LOW
0061  *                       - USB_SPEED_FULL
0062  *                       - USB_SPEED_HIGH
0063  * @ep_type:            Endpoint type. One of the following values:
0064  *                       - USB_ENDPOINT_XFER_CONTROL: 0
0065  *                       - USB_ENDPOINT_XFER_ISOC:    1
0066  *                       - USB_ENDPOINT_XFER_BULK:    2
0067  *                       - USB_ENDPOINT_XFER_INTR:    3
0068  * @max_packet:         Max packet size in bytes
0069  * @data_pid_start:     PID for initial transaction.
0070  *                       0: DATA0
0071  *                       1: DATA2
0072  *                       2: DATA1
0073  *                       3: MDATA (non-Control EP),
0074  *                          SETUP (Control EP)
0075  * @multi_count:        Number of additional periodic transactions per
0076  *                      (micro)frame
0077  * @xfer_buf:           Pointer to current transfer buffer position
0078  * @xfer_dma:           DMA address of xfer_buf
0079  * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
0080  *                      DWORD aligned
0081  * @xfer_len:           Total number of bytes to transfer
0082  * @xfer_count:         Number of bytes transferred so far
0083  * @start_pkt_count:    Packet count at start of transfer
0084  * @xfer_started:       True if the transfer has been started
0085  * @do_ping:            True if a PING request should be issued on this channel
0086  * @error_state:        True if the error count for this transaction is non-zero
0087  * @halt_on_queue:      True if this channel should be halted the next time a
0088  *                      request is queued for the channel. This is necessary in
0089  *                      slave mode if no request queue space is available when
0090  *                      an attempt is made to halt the channel.
0091  * @halt_pending:       True if the host channel has been halted, but the core
0092  *                      is not finished flushing queued requests
0093  * @do_split:           Enable split for the channel
0094  * @complete_split:     Enable complete split
0095  * @hub_addr:           Address of high speed hub for the split
0096  * @hub_port:           Port of the low/full speed device for the split
0097  * @xact_pos:           Split transaction position. One of the following values:
0098  *                       - DWC2_HCSPLT_XACTPOS_MID
0099  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
0100  *                       - DWC2_HCSPLT_XACTPOS_END
0101  *                       - DWC2_HCSPLT_XACTPOS_ALL
0102  * @requests:           Number of requests issued for this channel since it was
0103  *                      assigned to the current transfer (not counting PINGs)
0104  * @schinfo:            Scheduling micro-frame bitmap
0105  * @ntd:                Number of transfer descriptors for the transfer
0106  * @halt_status:        Reason for halting the host channel
0107  * @hcint:               Contents of the HCINT register when the interrupt came
0108  * @qh:                 QH for the transfer being processed by this channel
0109  * @hc_list_entry:      For linking to list of host channels
0110  * @desc_list_addr:     Current QH's descriptor list DMA address
0111  * @desc_list_sz:       Current QH's descriptor list size
0112  * @split_order_list_entry: List entry for keeping track of the order of splits
0113  *
0114  * This structure represents the state of a single host channel when acting in
0115  * host mode. It contains the data items needed to transfer packets to an
0116  * endpoint via a host channel.
0117  */
0118 struct dwc2_host_chan {
0119     u8 hc_num;
0120 
0121     unsigned dev_addr:7;
0122     unsigned ep_num:4;
0123     unsigned ep_is_in:1;
0124     unsigned speed:4;
0125     unsigned ep_type:2;
0126     unsigned max_packet:11;
0127     unsigned data_pid_start:2;
0128 #define DWC2_HC_PID_DATA0   TSIZ_SC_MC_PID_DATA0
0129 #define DWC2_HC_PID_DATA2   TSIZ_SC_MC_PID_DATA2
0130 #define DWC2_HC_PID_DATA1   TSIZ_SC_MC_PID_DATA1
0131 #define DWC2_HC_PID_MDATA   TSIZ_SC_MC_PID_MDATA
0132 #define DWC2_HC_PID_SETUP   TSIZ_SC_MC_PID_SETUP
0133 
0134     unsigned multi_count:2;
0135 
0136     u8 *xfer_buf;
0137     dma_addr_t xfer_dma;
0138     dma_addr_t align_buf;
0139     u32 xfer_len;
0140     u32 xfer_count;
0141     u16 start_pkt_count;
0142     u8 xfer_started;
0143     u8 do_ping;
0144     u8 error_state;
0145     u8 halt_on_queue;
0146     u8 halt_pending;
0147     u8 do_split;
0148     u8 complete_split;
0149     u8 hub_addr;
0150     u8 hub_port;
0151     u8 xact_pos;
0152 #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
0153 #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
0154 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
0155 #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
0156 
0157     u8 requests;
0158     u8 schinfo;
0159     u16 ntd;
0160     enum dwc2_halt_status halt_status;
0161     u32 hcint;
0162     struct dwc2_qh *qh;
0163     struct list_head hc_list_entry;
0164     dma_addr_t desc_list_addr;
0165     u32 desc_list_sz;
0166     struct list_head split_order_list_entry;
0167 };
0168 
0169 struct dwc2_hcd_pipe_info {
0170     u8 dev_addr;
0171     u8 ep_num;
0172     u8 pipe_type;
0173     u8 pipe_dir;
0174     u16 maxp;
0175     u16 maxp_mult;
0176 };
0177 
0178 struct dwc2_hcd_iso_packet_desc {
0179     u32 offset;
0180     u32 length;
0181     u32 actual_length;
0182     u32 status;
0183 };
0184 
0185 struct dwc2_qtd;
0186 
0187 struct dwc2_hcd_urb {
0188     void *priv;
0189     struct dwc2_qtd *qtd;
0190     void *buf;
0191     dma_addr_t dma;
0192     void *setup_packet;
0193     dma_addr_t setup_dma;
0194     u32 length;
0195     u32 actual_length;
0196     u32 status;
0197     u32 error_count;
0198     u32 packet_count;
0199     u32 flags;
0200     u16 interval;
0201     struct dwc2_hcd_pipe_info pipe_info;
0202     struct dwc2_hcd_iso_packet_desc iso_descs[];
0203 };
0204 
0205 /* Phases for control transfers */
0206 enum dwc2_control_phase {
0207     DWC2_CONTROL_SETUP,
0208     DWC2_CONTROL_DATA,
0209     DWC2_CONTROL_STATUS,
0210 };
0211 
0212 /* Transaction types */
0213 enum dwc2_transaction_type {
0214     DWC2_TRANSACTION_NONE,
0215     DWC2_TRANSACTION_PERIODIC,
0216     DWC2_TRANSACTION_NON_PERIODIC,
0217     DWC2_TRANSACTION_ALL,
0218 };
0219 
0220 /* The number of elements per LS bitmap (per port on multi_tt) */
0221 #define DWC2_ELEMENTS_PER_LS_BITMAP DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
0222                              BITS_PER_LONG)
0223 
0224 /**
0225  * struct dwc2_tt - dwc2 data associated with a usb_tt
0226  *
0227  * @refcount:           Number of Queue Heads (QHs) holding a reference.
0228  * @usb_tt:             Pointer back to the official usb_tt.
0229  * @periodic_bitmaps:   Bitmap for which parts of the 1ms frame are accounted
0230  *                      for already.  Each is DWC2_ELEMENTS_PER_LS_BITMAP
0231  *          elements (so sizeof(long) times that in bytes).
0232  *
0233  * This structure is stored in the hcpriv of the official usb_tt.
0234  */
0235 struct dwc2_tt {
0236     int refcount;
0237     struct usb_tt *usb_tt;
0238     unsigned long periodic_bitmaps[];
0239 };
0240 
0241 /**
0242  * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
0243  *
0244  * @start_schedule_us:  The start time on the main bus schedule.  Note that
0245  *                         the main bus schedule is tightly packed and this
0246  *             time should be interpreted as tightly packed (so
0247  *             uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
0248  *             instead of 125 us).
0249  * @duration_us:           How long this transfer goes.
0250  */
0251 
0252 struct dwc2_hs_transfer_time {
0253     u32 start_schedule_us;
0254     u16 duration_us;
0255 };
0256 
0257 /**
0258  * struct dwc2_qh - Software queue head structure
0259  *
0260  * @hsotg:              The HCD state structure for the DWC OTG controller
0261  * @ep_type:            Endpoint type. One of the following values:
0262  *                       - USB_ENDPOINT_XFER_CONTROL
0263  *                       - USB_ENDPOINT_XFER_BULK
0264  *                       - USB_ENDPOINT_XFER_INT
0265  *                       - USB_ENDPOINT_XFER_ISOC
0266  * @ep_is_in:           Endpoint direction
0267  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
0268  * @maxp_mult:          Multiplier for maxp
0269  * @dev_speed:          Device speed. One of the following values:
0270  *                       - USB_SPEED_LOW
0271  *                       - USB_SPEED_FULL
0272  *                       - USB_SPEED_HIGH
0273  * @data_toggle:        Determines the PID of the next data packet for
0274  *                      non-controltransfers. Ignored for control transfers.
0275  *                      One of the following values:
0276  *                       - DWC2_HC_PID_DATA0
0277  *                       - DWC2_HC_PID_DATA1
0278  * @ping_state:         Ping state
0279  * @do_split:           Full/low speed endpoint on high-speed hub requires split
0280  * @td_first:           Index of first activated isochronous transfer descriptor
0281  * @td_last:            Index of last activated isochronous transfer descriptor
0282  * @host_us:            Bandwidth in microseconds per transfer as seen by host
0283  * @device_us:          Bandwidth in microseconds per transfer as seen by device
0284  * @host_interval:      Interval between transfers as seen by the host.  If
0285  *                      the host is high speed and the device is low speed this
0286  *                      will be 8 times device interval.
0287  * @device_interval:    Interval between transfers as seen by the device.
0288  *                      interval.
0289  * @next_active_frame:  (Micro)frame _before_ we next need to put something on
0290  *                      the bus.  We'll move the qh to active here.  If the
0291  *                      host is in high speed mode this will be a uframe.  If
0292  *                      the host is in low speed mode this will be a full frame.
0293  * @start_active_frame: If we are partway through a split transfer, this will be
0294  *          what next_active_frame was when we started.  Otherwise
0295  *          it should always be the same as next_active_frame.
0296  * @num_hs_transfers:   Number of transfers in hs_transfers.
0297  *                      Normally this is 1 but can be more than one for splits.
0298  *                      Always >= 1 unless the host is in low/full speed mode.
0299  * @hs_transfers:       Transfers that are scheduled as seen by the high speed
0300  *                      bus.  Not used if host is in low or full speed mode (but
0301  *                      note that it IS USED if the device is low or full speed
0302  *                      as long as the HOST is in high speed mode).
0303  * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
0304  *                           schedule that's being used by this device.  This
0305  *               will be on the periodic_bitmap in a
0306  *                           "struct dwc2_tt".  Not used if this device is high
0307  *                           speed.  Note that this is in "schedule slice" which
0308  *                           is tightly packed.
0309  * @ntd:                Actual number of transfer descriptors in a list
0310  * @dw_align_buf:       Used instead of original buffer if its physical address
0311  *                      is not dword-aligned
0312  * @dw_align_buf_dma:   DMA address for dw_align_buf
0313  * @qtd_list:           List of QTDs for this QH
0314  * @channel:            Host channel currently processing transfers for this QH
0315  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
0316  *                      schedule
0317  * @desc_list:          List of transfer descriptors
0318  * @desc_list_dma:      Physical address of desc_list
0319  * @desc_list_sz:       Size of descriptors list
0320  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
0321  *                      descriptor and indicates original XferSize value for the
0322  *                      descriptor
0323  * @unreserve_timer:    Timer for releasing periodic reservation.
0324  * @wait_timer:         Timer used to wait before re-queuing.
0325  * @dwc_tt:            Pointer to our tt info (or NULL if no tt).
0326  * @ttport:             Port number within our tt.
0327  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
0328  * @unreserve_pending:  True if we planned to unreserve but haven't yet.
0329  * @schedule_low_speed: True if we have a low/full speed component (either the
0330  *          host is in low/full speed mode or do_split).
0331  * @want_wait:          We should wait before re-queuing; only matters for non-
0332  *                      periodic transfers and is ignored for periodic ones.
0333  * @wait_timer_cancel:  Set to true to cancel the wait_timer.
0334  *
0335  * @tt_buffer_dirty:    True if EP's TT buffer is not clean.
0336  * A Queue Head (QH) holds the static characteristics of an endpoint and
0337  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
0338  * be entered in either the non-periodic or periodic schedule.
0339  */
0340 struct dwc2_qh {
0341     struct dwc2_hsotg *hsotg;
0342     u8 ep_type;
0343     u8 ep_is_in;
0344     u16 maxp;
0345     u16 maxp_mult;
0346     u8 dev_speed;
0347     u8 data_toggle;
0348     u8 ping_state;
0349     u8 do_split;
0350     u8 td_first;
0351     u8 td_last;
0352     u16 host_us;
0353     u16 device_us;
0354     u16 host_interval;
0355     u16 device_interval;
0356     u16 next_active_frame;
0357     u16 start_active_frame;
0358     s16 num_hs_transfers;
0359     struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
0360     u32 ls_start_schedule_slice;
0361     u16 ntd;
0362     u8 *dw_align_buf;
0363     dma_addr_t dw_align_buf_dma;
0364     struct list_head qtd_list;
0365     struct dwc2_host_chan *channel;
0366     struct list_head qh_list_entry;
0367     struct dwc2_dma_desc *desc_list;
0368     dma_addr_t desc_list_dma;
0369     u32 desc_list_sz;
0370     u32 *n_bytes;
0371     struct timer_list unreserve_timer;
0372     struct hrtimer wait_timer;
0373     struct dwc2_tt *dwc_tt;
0374     int ttport;
0375     unsigned tt_buffer_dirty:1;
0376     unsigned unreserve_pending:1;
0377     unsigned schedule_low_speed:1;
0378     unsigned want_wait:1;
0379     unsigned wait_timer_cancel:1;
0380 };
0381 
0382 /**
0383  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
0384  *
0385  * @control_phase:      Current phase for control transfers (Setup, Data, or
0386  *                      Status)
0387  * @in_process:         Indicates if this QTD is currently processed by HW
0388  * @data_toggle:        Determines the PID of the next data packet for the
0389  *                      data phase of control transfers. Ignored for other
0390  *                      transfer types. One of the following values:
0391  *                       - DWC2_HC_PID_DATA0
0392  *                       - DWC2_HC_PID_DATA1
0393  * @complete_split:     Keeps track of the current split type for FS/LS
0394  *                      endpoints on a HS Hub
0395  * @isoc_split_pos:     Position of the ISOC split in full/low speed
0396  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
0397  *                      transfer. A frame descriptor describes the buffer
0398  *                      position and length of the data to be transferred in the
0399  *                      next scheduled (micro)frame of an isochronous transfer.
0400  *                      It also holds status for that transaction. The frame
0401  *                      index starts at 0.
0402  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
0403  *                      current frame
0404  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
0405  * @error_count:        Holds the number of bus errors that have occurred for
0406  *                      a transaction within this transfer
0407  * @n_desc:             Number of DMA descriptors for this QTD
0408  * @isoc_frame_index_last: Last activated frame (packet) index, used in
0409  *                      descriptor DMA mode only
0410  * @num_naks:           Number of NAKs received on this QTD.
0411  * @urb:                URB for this transfer
0412  * @qh:                 Queue head for this QTD
0413  * @qtd_list_entry:     For linking to the QH's list of QTDs
0414  * @isoc_td_first:  Index of first activated isochronous transfer
0415  *          descriptor in Descriptor DMA mode
0416  * @isoc_td_last:   Index of last activated isochronous transfer
0417  *          descriptor in Descriptor DMA mode
0418  *
0419  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
0420  * interrupt, or isochronous transfer. A single QTD is created for each URB
0421  * (of one of these types) submitted to the HCD. The transfer associated with
0422  * a QTD may require one or multiple transactions.
0423  *
0424  * A QTD is linked to a Queue Head, which is entered in either the
0425  * non-periodic or periodic schedule for execution. When a QTD is chosen for
0426  * execution, some or all of its transactions may be executed. After
0427  * execution, the state of the QTD is updated. The QTD may be retired if all
0428  * its transactions are complete or if an error occurred. Otherwise, it
0429  * remains in the schedule so more transactions can be executed later.
0430  */
0431 struct dwc2_qtd {
0432     enum dwc2_control_phase control_phase;
0433     u8 in_process;
0434     u8 data_toggle;
0435     u8 complete_split;
0436     u8 isoc_split_pos;
0437     u16 isoc_frame_index;
0438     u16 isoc_split_offset;
0439     u16 isoc_td_last;
0440     u16 isoc_td_first;
0441     u32 ssplit_out_xfer_count;
0442     u8 error_count;
0443     u8 n_desc;
0444     u16 isoc_frame_index_last;
0445     u16 num_naks;
0446     struct dwc2_hcd_urb *urb;
0447     struct dwc2_qh *qh;
0448     struct list_head qtd_list_entry;
0449 };
0450 
0451 #ifdef DEBUG
0452 struct hc_xfer_info {
0453     struct dwc2_hsotg *hsotg;
0454     struct dwc2_host_chan *chan;
0455 };
0456 #endif
0457 
0458 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
0459 
0460 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
0461 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
0462 {
0463     return (struct usb_hcd *)hsotg->priv;
0464 }
0465 
0466 /*
0467  * Inline used to disable one channel interrupt. Channel interrupts are
0468  * disabled when the channel is halted or released by the interrupt handler.
0469  * There is no need to handle further interrupts of that type until the
0470  * channel is re-assigned. In fact, subsequent handling may cause crashes
0471  * because the channel structures are cleaned up when the channel is released.
0472  */
0473 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
0474 {
0475     u32 mask = dwc2_readl(hsotg, HCINTMSK(chnum));
0476 
0477     mask &= ~intr;
0478     dwc2_writel(hsotg, mask, HCINTMSK(chnum));
0479 }
0480 
0481 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
0482 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
0483           enum dwc2_halt_status halt_status);
0484 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
0485                  struct dwc2_host_chan *chan);
0486 
0487 /*
0488  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
0489  * are read as 1, they won't clear when written back.
0490  */
0491 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
0492 {
0493     u32 hprt0 = dwc2_readl(hsotg, HPRT0);
0494 
0495     hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
0496     return hprt0;
0497 }
0498 
0499 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
0500 {
0501     return pipe->ep_num;
0502 }
0503 
0504 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
0505 {
0506     return pipe->pipe_type;
0507 }
0508 
0509 static inline u16 dwc2_hcd_get_maxp(struct dwc2_hcd_pipe_info *pipe)
0510 {
0511     return pipe->maxp;
0512 }
0513 
0514 static inline u16 dwc2_hcd_get_maxp_mult(struct dwc2_hcd_pipe_info *pipe)
0515 {
0516     return pipe->maxp_mult;
0517 }
0518 
0519 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
0520 {
0521     return pipe->dev_addr;
0522 }
0523 
0524 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
0525 {
0526     return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
0527 }
0528 
0529 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
0530 {
0531     return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
0532 }
0533 
0534 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
0535 {
0536     return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
0537 }
0538 
0539 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
0540 {
0541     return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
0542 }
0543 
0544 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
0545 {
0546     return pipe->pipe_dir == USB_DIR_IN;
0547 }
0548 
0549 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
0550 {
0551     return !dwc2_hcd_is_pipe_in(pipe);
0552 }
0553 
0554 int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
0555 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
0556 
0557 /* Transaction Execution Functions */
0558 enum dwc2_transaction_type dwc2_hcd_select_transactions(
0559                         struct dwc2_hsotg *hsotg);
0560 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
0561                  enum dwc2_transaction_type tr_type);
0562 
0563 /* Schedule Queue Functions */
0564 /* Implemented in hcd_queue.c */
0565 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
0566                    struct dwc2_hcd_urb *urb,
0567                       gfp_t mem_flags);
0568 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
0569 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
0570 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
0571 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
0572                 int sched_csplit);
0573 
0574 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
0575 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
0576              struct dwc2_qh *qh);
0577 
0578 /* Unlinks and frees a QTD */
0579 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
0580                         struct dwc2_qtd *qtd,
0581                         struct dwc2_qh *qh)
0582 {
0583     list_del(&qtd->qtd_list_entry);
0584     kfree(qtd);
0585 }
0586 
0587 /* Descriptor DMA support functions */
0588 void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
0589                   struct dwc2_qh *qh);
0590 void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
0591                  struct dwc2_host_chan *chan, int chnum,
0592                     enum dwc2_halt_status halt_status);
0593 
0594 int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
0595               gfp_t mem_flags);
0596 void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
0597 
0598 /* Check if QH is non-periodic */
0599 #define dwc2_qh_is_non_per(_qh_ptr_) \
0600     ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
0601      (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
0602 
0603 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
0604 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
0605 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
0606 static inline bool dbg_urb(struct urb *urb) { return true; }
0607 static inline bool dbg_perio(void) { return true; }
0608 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
0609 static inline bool dbg_hc(struct dwc2_host_chan *hc)
0610 {
0611     return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
0612            hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
0613 }
0614 
0615 static inline bool dbg_qh(struct dwc2_qh *qh)
0616 {
0617     return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
0618            qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
0619 }
0620 
0621 static inline bool dbg_urb(struct urb *urb)
0622 {
0623     return usb_pipetype(urb->pipe) == PIPE_BULK ||
0624            usb_pipetype(urb->pipe) == PIPE_CONTROL;
0625 }
0626 
0627 static inline bool dbg_perio(void) { return false; }
0628 #endif
0629 
0630 /*
0631  * Returns true if frame1 index is greater than frame2 index. The comparison
0632  * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
0633  * frame number when the max index frame number is reached.
0634  */
0635 static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
0636 {
0637     u16 diff = fr_idx1 - fr_idx2;
0638     u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
0639 
0640     return diff && !sign;
0641 }
0642 
0643 /*
0644  * Returns true if frame1 is less than or equal to frame2. The comparison is
0645  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
0646  * frame number when the max frame number is reached.
0647  */
0648 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
0649 {
0650     return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
0651 }
0652 
0653 /*
0654  * Returns true if frame1 is greater than frame2. The comparison is done
0655  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
0656  * number when the max frame number is reached.
0657  */
0658 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
0659 {
0660     return (frame1 != frame2) &&
0661            ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
0662 }
0663 
0664 /*
0665  * Increments frame by the amount specified by inc. The addition is done
0666  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
0667  */
0668 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
0669 {
0670     return (frame + inc) & HFNUM_MAX_FRNUM;
0671 }
0672 
0673 static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
0674 {
0675     return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
0676 }
0677 
0678 static inline u16 dwc2_full_frame_num(u16 frame)
0679 {
0680     return (frame & HFNUM_MAX_FRNUM) >> 3;
0681 }
0682 
0683 static inline u16 dwc2_micro_frame_num(u16 frame)
0684 {
0685     return frame & 0x7;
0686 }
0687 
0688 /*
0689  * Returns the Core Interrupt Status register contents, ANDed with the Core
0690  * Interrupt Mask register contents
0691  */
0692 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
0693 {
0694     return dwc2_readl(hsotg, GINTSTS) &
0695            dwc2_readl(hsotg, GINTMSK);
0696 }
0697 
0698 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
0699 {
0700     return dwc2_urb->status;
0701 }
0702 
0703 static inline u32 dwc2_hcd_urb_get_actual_length(
0704         struct dwc2_hcd_urb *dwc2_urb)
0705 {
0706     return dwc2_urb->actual_length;
0707 }
0708 
0709 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
0710 {
0711     return dwc2_urb->error_count;
0712 }
0713 
0714 static inline void dwc2_hcd_urb_set_iso_desc_params(
0715         struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
0716         u32 length)
0717 {
0718     dwc2_urb->iso_descs[desc_num].offset = offset;
0719     dwc2_urb->iso_descs[desc_num].length = length;
0720 }
0721 
0722 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
0723         struct dwc2_hcd_urb *dwc2_urb, int desc_num)
0724 {
0725     return dwc2_urb->iso_descs[desc_num].status;
0726 }
0727 
0728 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
0729         struct dwc2_hcd_urb *dwc2_urb, int desc_num)
0730 {
0731     return dwc2_urb->iso_descs[desc_num].actual_length;
0732 }
0733 
0734 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
0735                           struct usb_host_endpoint *ep)
0736 {
0737     struct dwc2_qh *qh = ep->hcpriv;
0738 
0739     if (qh && !list_empty(&qh->qh_list_entry))
0740         return 1;
0741 
0742     return 0;
0743 }
0744 
0745 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
0746                         struct usb_host_endpoint *ep)
0747 {
0748     struct dwc2_qh *qh = ep->hcpriv;
0749 
0750     if (!qh) {
0751         WARN_ON(1);
0752         return 0;
0753     }
0754 
0755     return qh->host_us;
0756 }
0757 
0758 void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
0759                    struct dwc2_host_chan *chan, int chnum,
0760                       struct dwc2_qtd *qtd);
0761 
0762 /* HCD Core API */
0763 
0764 /**
0765  * dwc2_handle_hcd_intr() - Called on every hardware interrupt
0766  *
0767  * @hsotg: The DWC2 HCD
0768  *
0769  * Returns IRQ_HANDLED if interrupt is handled
0770  * Return IRQ_NONE if interrupt is not handled
0771  */
0772 irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
0773 
0774 /**
0775  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
0776  *
0777  * @hsotg: The DWC2 HCD
0778  */
0779 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
0780 
0781 /**
0782  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
0783  * and 0 otherwise
0784  *
0785  * @hsotg: The DWC2 HCD
0786  */
0787 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
0788 
0789 /**
0790  * dwc2_hcd_dump_state() - Dumps hsotg state
0791  *
0792  * @hsotg: The DWC2 HCD
0793  *
0794  * NOTE: This function will be removed once the peripheral controller code
0795  * is integrated and the driver is stable
0796  */
0797 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
0798 
0799 /* URB interface */
0800 
0801 /* Transfer flags */
0802 #define URB_GIVEBACK_ASAP   0x1
0803 #define URB_SEND_ZERO_PACKET    0x2
0804 
0805 /* Host driver callbacks */
0806 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
0807                       void *context, gfp_t mem_flags,
0808                       int *ttport);
0809 
0810 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
0811                struct dwc2_tt *dwc_tt);
0812 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
0813 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
0814             int status);
0815 
0816 #endif /* __DWC2_HCD_H__ */