Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
0004  *      http://www.samsung.com
0005  *
0006  * Copyright 2008 Openmoko, Inc.
0007  * Copyright 2008 Simtec Electronics
0008  *      Ben Dooks <ben@simtec.co.uk>
0009  *      http://armlinux.simtec.co.uk/
0010  *
0011  * S3C USB2.0 High-speed / OtG driver
0012  */
0013 
0014 #include <linux/kernel.h>
0015 #include <linux/module.h>
0016 #include <linux/spinlock.h>
0017 #include <linux/interrupt.h>
0018 #include <linux/platform_device.h>
0019 #include <linux/dma-mapping.h>
0020 #include <linux/mutex.h>
0021 #include <linux/seq_file.h>
0022 #include <linux/delay.h>
0023 #include <linux/io.h>
0024 #include <linux/slab.h>
0025 #include <linux/of_platform.h>
0026 
0027 #include <linux/usb/ch9.h>
0028 #include <linux/usb/gadget.h>
0029 #include <linux/usb/phy.h>
0030 #include <linux/usb/composite.h>
0031 
0032 
0033 #include "core.h"
0034 #include "hw.h"
0035 
0036 /* conversion functions */
0037 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
0038 {
0039     return container_of(req, struct dwc2_hsotg_req, req);
0040 }
0041 
0042 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
0043 {
0044     return container_of(ep, struct dwc2_hsotg_ep, ep);
0045 }
0046 
0047 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
0048 {
0049     return container_of(gadget, struct dwc2_hsotg, gadget);
0050 }
0051 
0052 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
0053 {
0054     dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
0055 }
0056 
0057 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
0058 {
0059     dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
0060 }
0061 
0062 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
0063                         u32 ep_index, u32 dir_in)
0064 {
0065     if (dir_in)
0066         return hsotg->eps_in[ep_index];
0067     else
0068         return hsotg->eps_out[ep_index];
0069 }
0070 
0071 /* forward declaration of functions */
0072 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
0073 
0074 /**
0075  * using_dma - return the DMA status of the driver.
0076  * @hsotg: The driver state.
0077  *
0078  * Return true if we're using DMA.
0079  *
0080  * Currently, we have the DMA support code worked into everywhere
0081  * that needs it, but the AMBA DMA implementation in the hardware can
0082  * only DMA from 32bit aligned addresses. This means that gadgets such
0083  * as the CDC Ethernet cannot work as they often pass packets which are
0084  * not 32bit aligned.
0085  *
0086  * Unfortunately the choice to use DMA or not is global to the controller
0087  * and seems to be only settable when the controller is being put through
0088  * a core reset. This means we either need to fix the gadgets to take
0089  * account of DMA alignment, or add bounce buffers (yuerk).
0090  *
0091  * g_using_dma is set depending on dts flag.
0092  */
0093 static inline bool using_dma(struct dwc2_hsotg *hsotg)
0094 {
0095     return hsotg->params.g_dma;
0096 }
0097 
0098 /*
0099  * using_desc_dma - return the descriptor DMA status of the driver.
0100  * @hsotg: The driver state.
0101  *
0102  * Return true if we're using descriptor DMA.
0103  */
0104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
0105 {
0106     return hsotg->params.g_dma_desc;
0107 }
0108 
0109 /**
0110  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
0111  * @hs_ep: The endpoint
0112  *
0113  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
0114  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
0115  */
0116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
0117 {
0118     struct dwc2_hsotg *hsotg = hs_ep->parent;
0119     u16 limit = DSTS_SOFFN_LIMIT;
0120 
0121     if (hsotg->gadget.speed != USB_SPEED_HIGH)
0122         limit >>= 3;
0123 
0124     hs_ep->target_frame += hs_ep->interval;
0125     if (hs_ep->target_frame > limit) {
0126         hs_ep->frame_overrun = true;
0127         hs_ep->target_frame &= limit;
0128     } else {
0129         hs_ep->frame_overrun = false;
0130     }
0131 }
0132 
0133 /**
0134  * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
0135  *                                    by one.
0136  * @hs_ep: The endpoint.
0137  *
0138  * This function used in service interval based scheduling flow to calculate
0139  * descriptor frame number filed value. For service interval mode frame
0140  * number in descriptor should point to last (u)frame in the interval.
0141  *
0142  */
0143 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
0144 {
0145     struct dwc2_hsotg *hsotg = hs_ep->parent;
0146     u16 limit = DSTS_SOFFN_LIMIT;
0147 
0148     if (hsotg->gadget.speed != USB_SPEED_HIGH)
0149         limit >>= 3;
0150 
0151     if (hs_ep->target_frame)
0152         hs_ep->target_frame -= 1;
0153     else
0154         hs_ep->target_frame = limit;
0155 }
0156 
0157 /**
0158  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
0159  * @hsotg: The device state
0160  * @ints: A bitmask of the interrupts to enable
0161  */
0162 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
0163 {
0164     u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
0165     u32 new_gsintmsk;
0166 
0167     new_gsintmsk = gsintmsk | ints;
0168 
0169     if (new_gsintmsk != gsintmsk) {
0170         dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
0171         dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
0172     }
0173 }
0174 
0175 /**
0176  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
0177  * @hsotg: The device state
0178  * @ints: A bitmask of the interrupts to enable
0179  */
0180 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
0181 {
0182     u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
0183     u32 new_gsintmsk;
0184 
0185     new_gsintmsk = gsintmsk & ~ints;
0186 
0187     if (new_gsintmsk != gsintmsk)
0188         dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
0189 }
0190 
0191 /**
0192  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
0193  * @hsotg: The device state
0194  * @ep: The endpoint index
0195  * @dir_in: True if direction is in.
0196  * @en: The enable value, true to enable
0197  *
0198  * Set or clear the mask for an individual endpoint's interrupt
0199  * request.
0200  */
0201 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
0202                   unsigned int ep, unsigned int dir_in,
0203                  unsigned int en)
0204 {
0205     unsigned long flags;
0206     u32 bit = 1 << ep;
0207     u32 daint;
0208 
0209     if (!dir_in)
0210         bit <<= 16;
0211 
0212     local_irq_save(flags);
0213     daint = dwc2_readl(hsotg, DAINTMSK);
0214     if (en)
0215         daint |= bit;
0216     else
0217         daint &= ~bit;
0218     dwc2_writel(hsotg, daint, DAINTMSK);
0219     local_irq_restore(flags);
0220 }
0221 
0222 /**
0223  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
0224  *
0225  * @hsotg: Programming view of the DWC_otg controller
0226  */
0227 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
0228 {
0229     if (hsotg->hw_params.en_multiple_tx_fifo)
0230         /* In dedicated FIFO mode we need count of IN EPs */
0231         return hsotg->hw_params.num_dev_in_eps;
0232     else
0233         /* In shared FIFO mode we need count of Periodic IN EPs */
0234         return hsotg->hw_params.num_dev_perio_in_ep;
0235 }
0236 
0237 /**
0238  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
0239  * device mode TX FIFOs
0240  *
0241  * @hsotg: Programming view of the DWC_otg controller
0242  */
0243 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
0244 {
0245     int addr;
0246     int tx_addr_max;
0247     u32 np_tx_fifo_size;
0248 
0249     np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
0250                 hsotg->params.g_np_tx_fifo_size);
0251 
0252     /* Get Endpoint Info Control block size in DWORDs. */
0253     tx_addr_max = hsotg->hw_params.total_fifo_size;
0254 
0255     addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
0256     if (tx_addr_max <= addr)
0257         return 0;
0258 
0259     return tx_addr_max - addr;
0260 }
0261 
0262 /**
0263  * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
0264  *
0265  * @hsotg: Programming view of the DWC_otg controller
0266  *
0267  */
0268 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
0269 {
0270     u32 gintsts2;
0271     u32 gintmsk2;
0272 
0273     gintsts2 = dwc2_readl(hsotg, GINTSTS2);
0274     gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
0275     gintsts2 &= gintmsk2;
0276 
0277     if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
0278         dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
0279         dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
0280         dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
0281     }
0282 }
0283 
0284 /**
0285  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
0286  * TX FIFOs
0287  *
0288  * @hsotg: Programming view of the DWC_otg controller
0289  */
0290 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
0291 {
0292     int tx_fifo_count;
0293     int tx_fifo_depth;
0294 
0295     tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
0296 
0297     tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
0298 
0299     if (!tx_fifo_count)
0300         return tx_fifo_depth;
0301     else
0302         return tx_fifo_depth / tx_fifo_count;
0303 }
0304 
0305 /**
0306  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
0307  * @hsotg: The device instance.
0308  */
0309 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
0310 {
0311     unsigned int ep;
0312     unsigned int addr;
0313     int timeout;
0314 
0315     u32 val;
0316     u32 *txfsz = hsotg->params.g_tx_fifo_size;
0317 
0318     /* Reset fifo map if not correctly cleared during previous session */
0319     WARN_ON(hsotg->fifo_map);
0320     hsotg->fifo_map = 0;
0321 
0322     /* set RX/NPTX FIFO sizes */
0323     dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
0324     dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
0325             FIFOSIZE_STARTADDR_SHIFT) |
0326             (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
0327             GNPTXFSIZ);
0328 
0329     /*
0330      * arange all the rest of the TX FIFOs, as some versions of this
0331      * block have overlapping default addresses. This also ensures
0332      * that if the settings have been changed, then they are set to
0333      * known values.
0334      */
0335 
0336     /* start at the end of the GNPTXFSIZ, rounded up */
0337     addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
0338 
0339     /*
0340      * Configure fifos sizes from provided configuration and assign
0341      * them to endpoints dynamically according to maxpacket size value of
0342      * given endpoint.
0343      */
0344     for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
0345         if (!txfsz[ep])
0346             continue;
0347         val = addr;
0348         val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
0349         WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
0350               "insufficient fifo memory");
0351         addr += txfsz[ep];
0352 
0353         dwc2_writel(hsotg, val, DPTXFSIZN(ep));
0354         val = dwc2_readl(hsotg, DPTXFSIZN(ep));
0355     }
0356 
0357     dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
0358             addr << GDFIFOCFG_EPINFOBASE_SHIFT,
0359             GDFIFOCFG);
0360     /*
0361      * according to p428 of the design guide, we need to ensure that
0362      * all fifos are flushed before continuing
0363      */
0364 
0365     dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
0366            GRSTCTL_RXFFLSH, GRSTCTL);
0367 
0368     /* wait until the fifos are both flushed */
0369     timeout = 100;
0370     while (1) {
0371         val = dwc2_readl(hsotg, GRSTCTL);
0372 
0373         if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
0374             break;
0375 
0376         if (--timeout == 0) {
0377             dev_err(hsotg->dev,
0378                 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
0379                 __func__, val);
0380             break;
0381         }
0382 
0383         udelay(1);
0384     }
0385 
0386     dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
0387 }
0388 
0389 /**
0390  * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
0391  * @ep: USB endpoint to allocate request for.
0392  * @flags: Allocation flags
0393  *
0394  * Allocate a new USB request structure appropriate for the specified endpoint
0395  */
0396 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
0397                                gfp_t flags)
0398 {
0399     struct dwc2_hsotg_req *req;
0400 
0401     req = kzalloc(sizeof(*req), flags);
0402     if (!req)
0403         return NULL;
0404 
0405     INIT_LIST_HEAD(&req->queue);
0406 
0407     return &req->req;
0408 }
0409 
0410 /**
0411  * is_ep_periodic - return true if the endpoint is in periodic mode.
0412  * @hs_ep: The endpoint to query.
0413  *
0414  * Returns true if the endpoint is in periodic mode, meaning it is being
0415  * used for an Interrupt or ISO transfer.
0416  */
0417 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
0418 {
0419     return hs_ep->periodic;
0420 }
0421 
0422 /**
0423  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
0424  * @hsotg: The device state.
0425  * @hs_ep: The endpoint for the request
0426  * @hs_req: The request being processed.
0427  *
0428  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
0429  * of a request to ensure the buffer is ready for access by the caller.
0430  */
0431 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
0432                  struct dwc2_hsotg_ep *hs_ep,
0433                 struct dwc2_hsotg_req *hs_req)
0434 {
0435     struct usb_request *req = &hs_req->req;
0436 
0437     usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir);
0438 }
0439 
0440 /*
0441  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
0442  * for Control endpoint
0443  * @hsotg: The device state.
0444  *
0445  * This function will allocate 4 descriptor chains for EP 0: 2 for
0446  * Setup stage, per one for IN and OUT data/status transactions.
0447  */
0448 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
0449 {
0450     hsotg->setup_desc[0] =
0451         dmam_alloc_coherent(hsotg->dev,
0452                     sizeof(struct dwc2_dma_desc),
0453                     &hsotg->setup_desc_dma[0],
0454                     GFP_KERNEL);
0455     if (!hsotg->setup_desc[0])
0456         goto fail;
0457 
0458     hsotg->setup_desc[1] =
0459         dmam_alloc_coherent(hsotg->dev,
0460                     sizeof(struct dwc2_dma_desc),
0461                     &hsotg->setup_desc_dma[1],
0462                     GFP_KERNEL);
0463     if (!hsotg->setup_desc[1])
0464         goto fail;
0465 
0466     hsotg->ctrl_in_desc =
0467         dmam_alloc_coherent(hsotg->dev,
0468                     sizeof(struct dwc2_dma_desc),
0469                     &hsotg->ctrl_in_desc_dma,
0470                     GFP_KERNEL);
0471     if (!hsotg->ctrl_in_desc)
0472         goto fail;
0473 
0474     hsotg->ctrl_out_desc =
0475         dmam_alloc_coherent(hsotg->dev,
0476                     sizeof(struct dwc2_dma_desc),
0477                     &hsotg->ctrl_out_desc_dma,
0478                     GFP_KERNEL);
0479     if (!hsotg->ctrl_out_desc)
0480         goto fail;
0481 
0482     return 0;
0483 
0484 fail:
0485     return -ENOMEM;
0486 }
0487 
0488 /**
0489  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
0490  * @hsotg: The controller state.
0491  * @hs_ep: The endpoint we're going to write for.
0492  * @hs_req: The request to write data for.
0493  *
0494  * This is called when the TxFIFO has some space in it to hold a new
0495  * transmission and we have something to give it. The actual setup of
0496  * the data size is done elsewhere, so all we have to do is to actually
0497  * write the data.
0498  *
0499  * The return value is zero if there is more space (or nothing was done)
0500  * otherwise -ENOSPC is returned if the FIFO space was used up.
0501  *
0502  * This routine is only needed for PIO
0503  */
0504 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
0505                  struct dwc2_hsotg_ep *hs_ep,
0506                 struct dwc2_hsotg_req *hs_req)
0507 {
0508     bool periodic = is_ep_periodic(hs_ep);
0509     u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
0510     int buf_pos = hs_req->req.actual;
0511     int to_write = hs_ep->size_loaded;
0512     void *data;
0513     int can_write;
0514     int pkt_round;
0515     int max_transfer;
0516 
0517     to_write -= (buf_pos - hs_ep->last_load);
0518 
0519     /* if there's nothing to write, get out early */
0520     if (to_write == 0)
0521         return 0;
0522 
0523     if (periodic && !hsotg->dedicated_fifos) {
0524         u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
0525         int size_left;
0526         int size_done;
0527 
0528         /*
0529          * work out how much data was loaded so we can calculate
0530          * how much data is left in the fifo.
0531          */
0532 
0533         size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
0534 
0535         /*
0536          * if shared fifo, we cannot write anything until the
0537          * previous data has been completely sent.
0538          */
0539         if (hs_ep->fifo_load != 0) {
0540             dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
0541             return -ENOSPC;
0542         }
0543 
0544         dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
0545             __func__, size_left,
0546             hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
0547 
0548         /* how much of the data has moved */
0549         size_done = hs_ep->size_loaded - size_left;
0550 
0551         /* how much data is left in the fifo */
0552         can_write = hs_ep->fifo_load - size_done;
0553         dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
0554             __func__, can_write);
0555 
0556         can_write = hs_ep->fifo_size - can_write;
0557         dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
0558             __func__, can_write);
0559 
0560         if (can_write <= 0) {
0561             dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
0562             return -ENOSPC;
0563         }
0564     } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
0565         can_write = dwc2_readl(hsotg,
0566                        DTXFSTS(hs_ep->fifo_index));
0567 
0568         can_write &= 0xffff;
0569         can_write *= 4;
0570     } else {
0571         if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
0572             dev_dbg(hsotg->dev,
0573                 "%s: no queue slots available (0x%08x)\n",
0574                 __func__, gnptxsts);
0575 
0576             dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
0577             return -ENOSPC;
0578         }
0579 
0580         can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
0581         can_write *= 4; /* fifo size is in 32bit quantities. */
0582     }
0583 
0584     max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
0585 
0586     dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
0587         __func__, gnptxsts, can_write, to_write, max_transfer);
0588 
0589     /*
0590      * limit to 512 bytes of data, it seems at least on the non-periodic
0591      * FIFO, requests of >512 cause the endpoint to get stuck with a
0592      * fragment of the end of the transfer in it.
0593      */
0594     if (can_write > 512 && !periodic)
0595         can_write = 512;
0596 
0597     /*
0598      * limit the write to one max-packet size worth of data, but allow
0599      * the transfer to return that it did not run out of fifo space
0600      * doing it.
0601      */
0602     if (to_write > max_transfer) {
0603         to_write = max_transfer;
0604 
0605         /* it's needed only when we do not use dedicated fifos */
0606         if (!hsotg->dedicated_fifos)
0607             dwc2_hsotg_en_gsint(hsotg,
0608                         periodic ? GINTSTS_PTXFEMP :
0609                        GINTSTS_NPTXFEMP);
0610     }
0611 
0612     /* see if we can write data */
0613 
0614     if (to_write > can_write) {
0615         to_write = can_write;
0616         pkt_round = to_write % max_transfer;
0617 
0618         /*
0619          * Round the write down to an
0620          * exact number of packets.
0621          *
0622          * Note, we do not currently check to see if we can ever
0623          * write a full packet or not to the FIFO.
0624          */
0625 
0626         if (pkt_round)
0627             to_write -= pkt_round;
0628 
0629         /*
0630          * enable correct FIFO interrupt to alert us when there
0631          * is more room left.
0632          */
0633 
0634         /* it's needed only when we do not use dedicated fifos */
0635         if (!hsotg->dedicated_fifos)
0636             dwc2_hsotg_en_gsint(hsotg,
0637                         periodic ? GINTSTS_PTXFEMP :
0638                        GINTSTS_NPTXFEMP);
0639     }
0640 
0641     dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
0642         to_write, hs_req->req.length, can_write, buf_pos);
0643 
0644     if (to_write <= 0)
0645         return -ENOSPC;
0646 
0647     hs_req->req.actual = buf_pos + to_write;
0648     hs_ep->total_data += to_write;
0649 
0650     if (periodic)
0651         hs_ep->fifo_load += to_write;
0652 
0653     to_write = DIV_ROUND_UP(to_write, 4);
0654     data = hs_req->req.buf + buf_pos;
0655 
0656     dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
0657 
0658     return (to_write >= can_write) ? -ENOSPC : 0;
0659 }
0660 
0661 /**
0662  * get_ep_limit - get the maximum data legnth for this endpoint
0663  * @hs_ep: The endpoint
0664  *
0665  * Return the maximum data that can be queued in one go on a given endpoint
0666  * so that transfers that are too long can be split.
0667  */
0668 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
0669 {
0670     int index = hs_ep->index;
0671     unsigned int maxsize;
0672     unsigned int maxpkt;
0673 
0674     if (index != 0) {
0675         maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
0676         maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
0677     } else {
0678         maxsize = 64 + 64;
0679         if (hs_ep->dir_in)
0680             maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
0681         else
0682             maxpkt = 2;
0683     }
0684 
0685     /* we made the constant loading easier above by using +1 */
0686     maxpkt--;
0687     maxsize--;
0688 
0689     /*
0690      * constrain by packet count if maxpkts*pktsize is greater
0691      * than the length register size.
0692      */
0693 
0694     if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
0695         maxsize = maxpkt * hs_ep->ep.maxpacket;
0696 
0697     return maxsize;
0698 }
0699 
0700 /**
0701  * dwc2_hsotg_read_frameno - read current frame number
0702  * @hsotg: The device instance
0703  *
0704  * Return the current frame number
0705  */
0706 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
0707 {
0708     u32 dsts;
0709 
0710     dsts = dwc2_readl(hsotg, DSTS);
0711     dsts &= DSTS_SOFFN_MASK;
0712     dsts >>= DSTS_SOFFN_SHIFT;
0713 
0714     return dsts;
0715 }
0716 
0717 /**
0718  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
0719  * DMA descriptor chain prepared for specific endpoint
0720  * @hs_ep: The endpoint
0721  *
0722  * Return the maximum data that can be queued in one go on a given endpoint
0723  * depending on its descriptor chain capacity so that transfers that
0724  * are too long can be split.
0725  */
0726 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
0727 {
0728     const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
0729     int is_isoc = hs_ep->isochronous;
0730     unsigned int maxsize;
0731     u32 mps = hs_ep->ep.maxpacket;
0732     int dir_in = hs_ep->dir_in;
0733 
0734     if (is_isoc)
0735         maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
0736                        DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
0737                        MAX_DMA_DESC_NUM_HS_ISOC;
0738     else
0739         maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
0740 
0741     /* Interrupt OUT EP with mps not multiple of 4 */
0742     if (hs_ep->index)
0743         if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
0744             maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
0745 
0746     return maxsize;
0747 }
0748 
0749 /*
0750  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
0751  * @hs_ep: The endpoint
0752  * @mask: RX/TX bytes mask to be defined
0753  *
0754  * Returns maximum data payload for one descriptor after analyzing endpoint
0755  * characteristics.
0756  * DMA descriptor transfer bytes limit depends on EP type:
0757  * Control out - MPS,
0758  * Isochronous - descriptor rx/tx bytes bitfield limit,
0759  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
0760  * have concatenations from various descriptors within one packet.
0761  * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
0762  * to a single descriptor.
0763  *
0764  * Selects corresponding mask for RX/TX bytes as well.
0765  */
0766 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
0767 {
0768     const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
0769     u32 mps = hs_ep->ep.maxpacket;
0770     int dir_in = hs_ep->dir_in;
0771     u32 desc_size = 0;
0772 
0773     if (!hs_ep->index && !dir_in) {
0774         desc_size = mps;
0775         *mask = DEV_DMA_NBYTES_MASK;
0776     } else if (hs_ep->isochronous) {
0777         if (dir_in) {
0778             desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
0779             *mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
0780         } else {
0781             desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
0782             *mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
0783         }
0784     } else {
0785         desc_size = DEV_DMA_NBYTES_LIMIT;
0786         *mask = DEV_DMA_NBYTES_MASK;
0787 
0788         /* Round down desc_size to be mps multiple */
0789         desc_size -= desc_size % mps;
0790     }
0791 
0792     /* Interrupt OUT EP with mps not multiple of 4 */
0793     if (hs_ep->index)
0794         if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
0795             desc_size = mps;
0796             *mask = DEV_DMA_NBYTES_MASK;
0797         }
0798 
0799     return desc_size;
0800 }
0801 
0802 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
0803                          struct dwc2_dma_desc **desc,
0804                          dma_addr_t dma_buff,
0805                          unsigned int len,
0806                          bool true_last)
0807 {
0808     int dir_in = hs_ep->dir_in;
0809     u32 mps = hs_ep->ep.maxpacket;
0810     u32 maxsize = 0;
0811     u32 offset = 0;
0812     u32 mask = 0;
0813     int i;
0814 
0815     maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
0816 
0817     hs_ep->desc_count = (len / maxsize) +
0818                 ((len % maxsize) ? 1 : 0);
0819     if (len == 0)
0820         hs_ep->desc_count = 1;
0821 
0822     for (i = 0; i < hs_ep->desc_count; ++i) {
0823         (*desc)->status = 0;
0824         (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
0825                  << DEV_DMA_BUFF_STS_SHIFT);
0826 
0827         if (len > maxsize) {
0828             if (!hs_ep->index && !dir_in)
0829                 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
0830 
0831             (*desc)->status |=
0832                 maxsize << DEV_DMA_NBYTES_SHIFT & mask;
0833             (*desc)->buf = dma_buff + offset;
0834 
0835             len -= maxsize;
0836             offset += maxsize;
0837         } else {
0838             if (true_last)
0839                 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
0840 
0841             if (dir_in)
0842                 (*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
0843                     ((hs_ep->send_zlp && true_last) ?
0844                     DEV_DMA_SHORT : 0);
0845 
0846             (*desc)->status |=
0847                 len << DEV_DMA_NBYTES_SHIFT & mask;
0848             (*desc)->buf = dma_buff + offset;
0849         }
0850 
0851         (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
0852         (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
0853                  << DEV_DMA_BUFF_STS_SHIFT);
0854         (*desc)++;
0855     }
0856 }
0857 
0858 /*
0859  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
0860  * @hs_ep: The endpoint
0861  * @ureq: Request to transfer
0862  * @offset: offset in bytes
0863  * @len: Length of the transfer
0864  *
0865  * This function will iterate over descriptor chain and fill its entries
0866  * with corresponding information based on transfer data.
0867  */
0868 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
0869                          dma_addr_t dma_buff,
0870                          unsigned int len)
0871 {
0872     struct usb_request *ureq = NULL;
0873     struct dwc2_dma_desc *desc = hs_ep->desc_list;
0874     struct scatterlist *sg;
0875     int i;
0876     u8 desc_count = 0;
0877 
0878     if (hs_ep->req)
0879         ureq = &hs_ep->req->req;
0880 
0881     /* non-DMA sg buffer */
0882     if (!ureq || !ureq->num_sgs) {
0883         dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
0884             dma_buff, len, true);
0885         return;
0886     }
0887 
0888     /* DMA sg buffer */
0889     for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
0890         dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
0891             sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
0892             sg_is_last(sg));
0893         desc_count += hs_ep->desc_count;
0894     }
0895 
0896     hs_ep->desc_count = desc_count;
0897 }
0898 
0899 /*
0900  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
0901  * @hs_ep: The isochronous endpoint.
0902  * @dma_buff: usb requests dma buffer.
0903  * @len: usb request transfer length.
0904  *
0905  * Fills next free descriptor with the data of the arrived usb request,
0906  * frame info, sets Last and IOC bits increments next_desc. If filled
0907  * descriptor is not the first one, removes L bit from the previous descriptor
0908  * status.
0909  */
0910 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
0911                       dma_addr_t dma_buff, unsigned int len)
0912 {
0913     struct dwc2_dma_desc *desc;
0914     struct dwc2_hsotg *hsotg = hs_ep->parent;
0915     u32 index;
0916     u32 mask = 0;
0917     u8 pid = 0;
0918 
0919     dwc2_gadget_get_desc_params(hs_ep, &mask);
0920 
0921     index = hs_ep->next_desc;
0922     desc = &hs_ep->desc_list[index];
0923 
0924     /* Check if descriptor chain full */
0925     if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
0926         DEV_DMA_BUFF_STS_HREADY) {
0927         dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
0928         return 1;
0929     }
0930 
0931     /* Clear L bit of previous desc if more than one entries in the chain */
0932     if (hs_ep->next_desc)
0933         hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
0934 
0935     dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
0936         __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
0937 
0938     desc->status = 0;
0939     desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT);
0940 
0941     desc->buf = dma_buff;
0942     desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
0943              ((len << DEV_DMA_NBYTES_SHIFT) & mask));
0944 
0945     if (hs_ep->dir_in) {
0946         if (len)
0947             pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
0948         else
0949             pid = 1;
0950         desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
0951                  DEV_DMA_ISOC_PID_MASK) |
0952                 ((len % hs_ep->ep.maxpacket) ?
0953                  DEV_DMA_SHORT : 0) |
0954                 ((hs_ep->target_frame <<
0955                   DEV_DMA_ISOC_FRNUM_SHIFT) &
0956                  DEV_DMA_ISOC_FRNUM_MASK);
0957     }
0958 
0959     desc->status &= ~DEV_DMA_BUFF_STS_MASK;
0960     desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
0961 
0962     /* Increment frame number by interval for IN */
0963     if (hs_ep->dir_in)
0964         dwc2_gadget_incr_frame_num(hs_ep);
0965 
0966     /* Update index of last configured entry in the chain */
0967     hs_ep->next_desc++;
0968     if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
0969         hs_ep->next_desc = 0;
0970 
0971     return 0;
0972 }
0973 
0974 /*
0975  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
0976  * @hs_ep: The isochronous endpoint.
0977  *
0978  * Prepare descriptor chain for isochronous endpoints. Afterwards
0979  * write DMA address to HW and enable the endpoint.
0980  */
0981 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
0982 {
0983     struct dwc2_hsotg *hsotg = hs_ep->parent;
0984     struct dwc2_hsotg_req *hs_req, *treq;
0985     int index = hs_ep->index;
0986     int ret;
0987     int i;
0988     u32 dma_reg;
0989     u32 depctl;
0990     u32 ctrl;
0991     struct dwc2_dma_desc *desc;
0992 
0993     if (list_empty(&hs_ep->queue)) {
0994         hs_ep->target_frame = TARGET_FRAME_INITIAL;
0995         dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
0996         return;
0997     }
0998 
0999     /* Initialize descriptor chain by Host Busy status */
1000     for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
1001         desc = &hs_ep->desc_list[i];
1002         desc->status = 0;
1003         desc->status |= (DEV_DMA_BUFF_STS_HBUSY
1004                     << DEV_DMA_BUFF_STS_SHIFT);
1005     }
1006 
1007     hs_ep->next_desc = 0;
1008     list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
1009         dma_addr_t dma_addr = hs_req->req.dma;
1010 
1011         if (hs_req->req.num_sgs) {
1012             WARN_ON(hs_req->req.num_sgs > 1);
1013             dma_addr = sg_dma_address(hs_req->req.sg);
1014         }
1015         ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1016                          hs_req->req.length);
1017         if (ret)
1018             break;
1019     }
1020 
1021     hs_ep->compl_desc = 0;
1022     depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1023     dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1024 
1025     /* write descriptor chain address to control register */
1026     dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1027 
1028     ctrl = dwc2_readl(hsotg, depctl);
1029     ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1030     dwc2_writel(hsotg, ctrl, depctl);
1031 }
1032 
1033 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep);
1034 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1035                     struct dwc2_hsotg_ep *hs_ep,
1036                        struct dwc2_hsotg_req *hs_req,
1037                        int result);
1038 
1039 /**
1040  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1041  * @hsotg: The controller state.
1042  * @hs_ep: The endpoint to process a request for
1043  * @hs_req: The request to start.
1044  * @continuing: True if we are doing more for the current request.
1045  *
1046  * Start the given request running by setting the endpoint registers
1047  * appropriately, and writing any data to the FIFOs.
1048  */
1049 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1050                  struct dwc2_hsotg_ep *hs_ep,
1051                 struct dwc2_hsotg_req *hs_req,
1052                 bool continuing)
1053 {
1054     struct usb_request *ureq = &hs_req->req;
1055     int index = hs_ep->index;
1056     int dir_in = hs_ep->dir_in;
1057     u32 epctrl_reg;
1058     u32 epsize_reg;
1059     u32 epsize;
1060     u32 ctrl;
1061     unsigned int length;
1062     unsigned int packets;
1063     unsigned int maxreq;
1064     unsigned int dma_reg;
1065 
1066     if (index != 0) {
1067         if (hs_ep->req && !continuing) {
1068             dev_err(hsotg->dev, "%s: active request\n", __func__);
1069             WARN_ON(1);
1070             return;
1071         } else if (hs_ep->req != hs_req && continuing) {
1072             dev_err(hsotg->dev,
1073                 "%s: continue different req\n", __func__);
1074             WARN_ON(1);
1075             return;
1076         }
1077     }
1078 
1079     dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1080     epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1081     epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1082 
1083     dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1084         __func__, dwc2_readl(hsotg, epctrl_reg), index,
1085         hs_ep->dir_in ? "in" : "out");
1086 
1087     /* If endpoint is stalled, we will restart request later */
1088     ctrl = dwc2_readl(hsotg, epctrl_reg);
1089 
1090     if (index && ctrl & DXEPCTL_STALL) {
1091         dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1092         return;
1093     }
1094 
1095     length = ureq->length - ureq->actual;
1096     dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1097         ureq->length, ureq->actual);
1098 
1099     if (!using_desc_dma(hsotg))
1100         maxreq = get_ep_limit(hs_ep);
1101     else
1102         maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1103 
1104     if (length > maxreq) {
1105         int round = maxreq % hs_ep->ep.maxpacket;
1106 
1107         dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1108             __func__, length, maxreq, round);
1109 
1110         /* round down to multiple of packets */
1111         if (round)
1112             maxreq -= round;
1113 
1114         length = maxreq;
1115     }
1116 
1117     if (length)
1118         packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1119     else
1120         packets = 1;    /* send one packet if length is zero. */
1121 
1122     if (dir_in && index != 0)
1123         if (hs_ep->isochronous)
1124             epsize = DXEPTSIZ_MC(packets);
1125         else
1126             epsize = DXEPTSIZ_MC(1);
1127     else
1128         epsize = 0;
1129 
1130     /*
1131      * zero length packet should be programmed on its own and should not
1132      * be counted in DIEPTSIZ.PktCnt with other packets.
1133      */
1134     if (dir_in && ureq->zero && !continuing) {
1135         /* Test if zlp is actually required. */
1136         if ((ureq->length >= hs_ep->ep.maxpacket) &&
1137             !(ureq->length % hs_ep->ep.maxpacket))
1138             hs_ep->send_zlp = 1;
1139     }
1140 
1141     epsize |= DXEPTSIZ_PKTCNT(packets);
1142     epsize |= DXEPTSIZ_XFERSIZE(length);
1143 
1144     dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1145         __func__, packets, length, ureq->length, epsize, epsize_reg);
1146 
1147     /* store the request as the current one we're doing */
1148     hs_ep->req = hs_req;
1149 
1150     if (using_desc_dma(hsotg)) {
1151         u32 offset = 0;
1152         u32 mps = hs_ep->ep.maxpacket;
1153 
1154         /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1155         if (!dir_in) {
1156             if (!index)
1157                 length = mps;
1158             else if (length % mps)
1159                 length += (mps - (length % mps));
1160         }
1161 
1162         if (continuing)
1163             offset = ureq->actual;
1164 
1165         /* Fill DDMA chain entries */
1166         dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1167                              length);
1168 
1169         /* write descriptor chain address to control register */
1170         dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1171 
1172         dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1173             __func__, (u32)hs_ep->desc_list_dma, dma_reg);
1174     } else {
1175         /* write size / packets */
1176         dwc2_writel(hsotg, epsize, epsize_reg);
1177 
1178         if (using_dma(hsotg) && !continuing && (length != 0)) {
1179             /*
1180              * write DMA address to control register, buffer
1181              * already synced by dwc2_hsotg_ep_queue().
1182              */
1183 
1184             dwc2_writel(hsotg, ureq->dma, dma_reg);
1185 
1186             dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1187                 __func__, &ureq->dma, dma_reg);
1188         }
1189     }
1190 
1191     if (hs_ep->isochronous) {
1192         if (!dwc2_gadget_target_frame_elapsed(hs_ep)) {
1193             if (hs_ep->interval == 1) {
1194                 if (hs_ep->target_frame & 0x1)
1195                     ctrl |= DXEPCTL_SETODDFR;
1196                 else
1197                     ctrl |= DXEPCTL_SETEVENFR;
1198             }
1199             ctrl |= DXEPCTL_CNAK;
1200         } else {
1201             hs_req->req.frame_number = hs_ep->target_frame;
1202             hs_req->req.actual = 0;
1203             dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
1204             return;
1205         }
1206     }
1207 
1208     ctrl |= DXEPCTL_EPENA;  /* ensure ep enabled */
1209 
1210     dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1211 
1212     /* For Setup request do not clear NAK */
1213     if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1214         ctrl |= DXEPCTL_CNAK;   /* clear NAK set by core */
1215 
1216     dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1217     dwc2_writel(hsotg, ctrl, epctrl_reg);
1218 
1219     /*
1220      * set these, it seems that DMA support increments past the end
1221      * of the packet buffer so we need to calculate the length from
1222      * this information.
1223      */
1224     hs_ep->size_loaded = length;
1225     hs_ep->last_load = ureq->actual;
1226 
1227     if (dir_in && !using_dma(hsotg)) {
1228         /* set these anyway, we may need them for non-periodic in */
1229         hs_ep->fifo_load = 0;
1230 
1231         dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1232     }
1233 
1234     /*
1235      * Note, trying to clear the NAK here causes problems with transmit
1236      * on the S3C6400 ending up with the TXFIFO becoming full.
1237      */
1238 
1239     /* check ep is enabled */
1240     if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1241         dev_dbg(hsotg->dev,
1242             "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1243              index, dwc2_readl(hsotg, epctrl_reg));
1244 
1245     dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1246         __func__, dwc2_readl(hsotg, epctrl_reg));
1247 
1248     /* enable ep interrupts */
1249     dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1250 }
1251 
1252 /**
1253  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1254  * @hsotg: The device state.
1255  * @hs_ep: The endpoint the request is on.
1256  * @req: The request being processed.
1257  *
1258  * We've been asked to queue a request, so ensure that the memory buffer
1259  * is correctly setup for DMA. If we've been passed an extant DMA address
1260  * then ensure the buffer has been synced to memory. If our buffer has no
1261  * DMA memory, then we map the memory and mark our request to allow us to
1262  * cleanup on completion.
1263  */
1264 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1265                   struct dwc2_hsotg_ep *hs_ep,
1266                  struct usb_request *req)
1267 {
1268     int ret;
1269 
1270     hs_ep->map_dir = hs_ep->dir_in;
1271     ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1272     if (ret)
1273         goto dma_error;
1274 
1275     return 0;
1276 
1277 dma_error:
1278     dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1279         __func__, req->buf, req->length);
1280 
1281     return -EIO;
1282 }
1283 
1284 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1285                          struct dwc2_hsotg_ep *hs_ep,
1286                          struct dwc2_hsotg_req *hs_req)
1287 {
1288     void *req_buf = hs_req->req.buf;
1289 
1290     /* If dma is not being used or buffer is aligned */
1291     if (!using_dma(hsotg) || !((long)req_buf & 3))
1292         return 0;
1293 
1294     WARN_ON(hs_req->saved_req_buf);
1295 
1296     dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1297         hs_ep->ep.name, req_buf, hs_req->req.length);
1298 
1299     hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1300     if (!hs_req->req.buf) {
1301         hs_req->req.buf = req_buf;
1302         dev_err(hsotg->dev,
1303             "%s: unable to allocate memory for bounce buffer\n",
1304             __func__);
1305         return -ENOMEM;
1306     }
1307 
1308     /* Save actual buffer */
1309     hs_req->saved_req_buf = req_buf;
1310 
1311     if (hs_ep->dir_in)
1312         memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1313     return 0;
1314 }
1315 
1316 static void
1317 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1318                      struct dwc2_hsotg_ep *hs_ep,
1319                      struct dwc2_hsotg_req *hs_req)
1320 {
1321     /* If dma is not being used or buffer was aligned */
1322     if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1323         return;
1324 
1325     dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1326         hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1327 
1328     /* Copy data from bounce buffer on successful out transfer */
1329     if (!hs_ep->dir_in && !hs_req->req.status)
1330         memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1331                hs_req->req.actual);
1332 
1333     /* Free bounce buffer */
1334     kfree(hs_req->req.buf);
1335 
1336     hs_req->req.buf = hs_req->saved_req_buf;
1337     hs_req->saved_req_buf = NULL;
1338 }
1339 
1340 /**
1341  * dwc2_gadget_target_frame_elapsed - Checks target frame
1342  * @hs_ep: The driver endpoint to check
1343  *
1344  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1345  * corresponding transfer.
1346  */
1347 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1348 {
1349     struct dwc2_hsotg *hsotg = hs_ep->parent;
1350     u32 target_frame = hs_ep->target_frame;
1351     u32 current_frame = hsotg->frame_number;
1352     bool frame_overrun = hs_ep->frame_overrun;
1353     u16 limit = DSTS_SOFFN_LIMIT;
1354 
1355     if (hsotg->gadget.speed != USB_SPEED_HIGH)
1356         limit >>= 3;
1357 
1358     if (!frame_overrun && current_frame >= target_frame)
1359         return true;
1360 
1361     if (frame_overrun && current_frame >= target_frame &&
1362         ((current_frame - target_frame) < limit / 2))
1363         return true;
1364 
1365     return false;
1366 }
1367 
1368 /*
1369  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1370  * @hsotg: The driver state
1371  * @hs_ep: the ep descriptor chain is for
1372  *
1373  * Called to update EP0 structure's pointers depend on stage of
1374  * control transfer.
1375  */
1376 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1377                       struct dwc2_hsotg_ep *hs_ep)
1378 {
1379     switch (hsotg->ep0_state) {
1380     case DWC2_EP0_SETUP:
1381     case DWC2_EP0_STATUS_OUT:
1382         hs_ep->desc_list = hsotg->setup_desc[0];
1383         hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1384         break;
1385     case DWC2_EP0_DATA_IN:
1386     case DWC2_EP0_STATUS_IN:
1387         hs_ep->desc_list = hsotg->ctrl_in_desc;
1388         hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1389         break;
1390     case DWC2_EP0_DATA_OUT:
1391         hs_ep->desc_list = hsotg->ctrl_out_desc;
1392         hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1393         break;
1394     default:
1395         dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1396             hsotg->ep0_state);
1397         return -EINVAL;
1398     }
1399 
1400     return 0;
1401 }
1402 
1403 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1404                    gfp_t gfp_flags)
1405 {
1406     struct dwc2_hsotg_req *hs_req = our_req(req);
1407     struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1408     struct dwc2_hsotg *hs = hs_ep->parent;
1409     bool first;
1410     int ret;
1411     u32 maxsize = 0;
1412     u32 mask = 0;
1413 
1414 
1415     dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1416         ep->name, req, req->length, req->buf, req->no_interrupt,
1417         req->zero, req->short_not_ok);
1418 
1419     /* Prevent new request submission when controller is suspended */
1420     if (hs->lx_state != DWC2_L0) {
1421         dev_dbg(hs->dev, "%s: submit request only in active state\n",
1422             __func__);
1423         return -EAGAIN;
1424     }
1425 
1426     /* initialise status of the request */
1427     INIT_LIST_HEAD(&hs_req->queue);
1428     req->actual = 0;
1429     req->status = -EINPROGRESS;
1430 
1431     /* Don't queue ISOC request if length greater than mps*mc */
1432     if (hs_ep->isochronous &&
1433         req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1434         dev_err(hs->dev, "req length > maxpacket*mc\n");
1435         return -EINVAL;
1436     }
1437 
1438     /* In DDMA mode for ISOC's don't queue request if length greater
1439      * than descriptor limits.
1440      */
1441     if (using_desc_dma(hs) && hs_ep->isochronous) {
1442         maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1443         if (hs_ep->dir_in && req->length > maxsize) {
1444             dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1445                 req->length, maxsize);
1446             return -EINVAL;
1447         }
1448 
1449         if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1450             dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1451                 req->length, hs_ep->ep.maxpacket);
1452             return -EINVAL;
1453         }
1454     }
1455 
1456     ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1457     if (ret)
1458         return ret;
1459 
1460     /* if we're using DMA, sync the buffers as necessary */
1461     if (using_dma(hs)) {
1462         ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1463         if (ret)
1464             return ret;
1465     }
1466     /* If using descriptor DMA configure EP0 descriptor chain pointers */
1467     if (using_desc_dma(hs) && !hs_ep->index) {
1468         ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1469         if (ret)
1470             return ret;
1471     }
1472 
1473     first = list_empty(&hs_ep->queue);
1474     list_add_tail(&hs_req->queue, &hs_ep->queue);
1475 
1476     /*
1477      * Handle DDMA isochronous transfers separately - just add new entry
1478      * to the descriptor chain.
1479      * Transfer will be started once SW gets either one of NAK or
1480      * OutTknEpDis interrupts.
1481      */
1482     if (using_desc_dma(hs) && hs_ep->isochronous) {
1483         if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1484             dma_addr_t dma_addr = hs_req->req.dma;
1485 
1486             if (hs_req->req.num_sgs) {
1487                 WARN_ON(hs_req->req.num_sgs > 1);
1488                 dma_addr = sg_dma_address(hs_req->req.sg);
1489             }
1490             dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1491                            hs_req->req.length);
1492         }
1493         return 0;
1494     }
1495 
1496     /* Change EP direction if status phase request is after data out */
1497     if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1498         hs->ep0_state == DWC2_EP0_DATA_OUT)
1499         hs_ep->dir_in = 1;
1500 
1501     if (first) {
1502         if (!hs_ep->isochronous) {
1503             dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1504             return 0;
1505         }
1506 
1507         /* Update current frame number value. */
1508         hs->frame_number = dwc2_hsotg_read_frameno(hs);
1509         while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1510             dwc2_gadget_incr_frame_num(hs_ep);
1511             /* Update current frame number value once more as it
1512              * changes here.
1513              */
1514             hs->frame_number = dwc2_hsotg_read_frameno(hs);
1515         }
1516 
1517         if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1518             dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1519     }
1520     return 0;
1521 }
1522 
1523 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1524                     gfp_t gfp_flags)
1525 {
1526     struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1527     struct dwc2_hsotg *hs = hs_ep->parent;
1528     unsigned long flags;
1529     int ret;
1530 
1531     spin_lock_irqsave(&hs->lock, flags);
1532     ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1533     spin_unlock_irqrestore(&hs->lock, flags);
1534 
1535     return ret;
1536 }
1537 
1538 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1539                        struct usb_request *req)
1540 {
1541     struct dwc2_hsotg_req *hs_req = our_req(req);
1542 
1543     kfree(hs_req);
1544 }
1545 
1546 /**
1547  * dwc2_hsotg_complete_oursetup - setup completion callback
1548  * @ep: The endpoint the request was on.
1549  * @req: The request completed.
1550  *
1551  * Called on completion of any requests the driver itself
1552  * submitted that need cleaning up.
1553  */
1554 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1555                      struct usb_request *req)
1556 {
1557     struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1558     struct dwc2_hsotg *hsotg = hs_ep->parent;
1559 
1560     dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1561 
1562     dwc2_hsotg_ep_free_request(ep, req);
1563 }
1564 
1565 /**
1566  * ep_from_windex - convert control wIndex value to endpoint
1567  * @hsotg: The driver state.
1568  * @windex: The control request wIndex field (in host order).
1569  *
1570  * Convert the given wIndex into a pointer to an driver endpoint
1571  * structure, or return NULL if it is not a valid endpoint.
1572  */
1573 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1574                         u32 windex)
1575 {
1576     int dir = (windex & USB_DIR_IN) ? 1 : 0;
1577     int idx = windex & 0x7F;
1578 
1579     if (windex >= 0x100)
1580         return NULL;
1581 
1582     if (idx > hsotg->num_of_eps)
1583         return NULL;
1584 
1585     return index_to_ep(hsotg, idx, dir);
1586 }
1587 
1588 /**
1589  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1590  * @hsotg: The driver state.
1591  * @testmode: requested usb test mode
1592  * Enable usb Test Mode requested by the Host.
1593  */
1594 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1595 {
1596     int dctl = dwc2_readl(hsotg, DCTL);
1597 
1598     dctl &= ~DCTL_TSTCTL_MASK;
1599     switch (testmode) {
1600     case USB_TEST_J:
1601     case USB_TEST_K:
1602     case USB_TEST_SE0_NAK:
1603     case USB_TEST_PACKET:
1604     case USB_TEST_FORCE_ENABLE:
1605         dctl |= testmode << DCTL_TSTCTL_SHIFT;
1606         break;
1607     default:
1608         return -EINVAL;
1609     }
1610     dwc2_writel(hsotg, dctl, DCTL);
1611     return 0;
1612 }
1613 
1614 /**
1615  * dwc2_hsotg_send_reply - send reply to control request
1616  * @hsotg: The device state
1617  * @ep: Endpoint 0
1618  * @buff: Buffer for request
1619  * @length: Length of reply.
1620  *
1621  * Create a request and queue it on the given endpoint. This is useful as
1622  * an internal method of sending replies to certain control requests, etc.
1623  */
1624 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1625                  struct dwc2_hsotg_ep *ep,
1626                 void *buff,
1627                 int length)
1628 {
1629     struct usb_request *req;
1630     int ret;
1631 
1632     dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1633 
1634     req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1635     hsotg->ep0_reply = req;
1636     if (!req) {
1637         dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1638         return -ENOMEM;
1639     }
1640 
1641     req->buf = hsotg->ep0_buff;
1642     req->length = length;
1643     /*
1644      * zero flag is for sending zlp in DATA IN stage. It has no impact on
1645      * STATUS stage.
1646      */
1647     req->zero = 0;
1648     req->complete = dwc2_hsotg_complete_oursetup;
1649 
1650     if (length)
1651         memcpy(req->buf, buff, length);
1652 
1653     ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1654     if (ret) {
1655         dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1656         return ret;
1657     }
1658 
1659     return 0;
1660 }
1661 
1662 /**
1663  * dwc2_hsotg_process_req_status - process request GET_STATUS
1664  * @hsotg: The device state
1665  * @ctrl: USB control request
1666  */
1667 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1668                      struct usb_ctrlrequest *ctrl)
1669 {
1670     struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1671     struct dwc2_hsotg_ep *ep;
1672     __le16 reply;
1673     u16 status;
1674     int ret;
1675 
1676     dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1677 
1678     if (!ep0->dir_in) {
1679         dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1680         return -EINVAL;
1681     }
1682 
1683     switch (ctrl->bRequestType & USB_RECIP_MASK) {
1684     case USB_RECIP_DEVICE:
1685         status = hsotg->gadget.is_selfpowered <<
1686              USB_DEVICE_SELF_POWERED;
1687         status |= hsotg->remote_wakeup_allowed <<
1688               USB_DEVICE_REMOTE_WAKEUP;
1689         reply = cpu_to_le16(status);
1690         break;
1691 
1692     case USB_RECIP_INTERFACE:
1693         /* currently, the data result should be zero */
1694         reply = cpu_to_le16(0);
1695         break;
1696 
1697     case USB_RECIP_ENDPOINT:
1698         ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1699         if (!ep)
1700             return -ENOENT;
1701 
1702         reply = cpu_to_le16(ep->halted ? 1 : 0);
1703         break;
1704 
1705     default:
1706         return 0;
1707     }
1708 
1709     if (le16_to_cpu(ctrl->wLength) != 2)
1710         return -EINVAL;
1711 
1712     ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1713     if (ret) {
1714         dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1715         return ret;
1716     }
1717 
1718     return 1;
1719 }
1720 
1721 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1722 
1723 /**
1724  * get_ep_head - return the first request on the endpoint
1725  * @hs_ep: The controller endpoint to get
1726  *
1727  * Get the first request on the endpoint.
1728  */
1729 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1730 {
1731     return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1732                     queue);
1733 }
1734 
1735 /**
1736  * dwc2_gadget_start_next_request - Starts next request from ep queue
1737  * @hs_ep: Endpoint structure
1738  *
1739  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1740  * in its handler. Hence we need to unmask it here to be able to do
1741  * resynchronization.
1742  */
1743 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1744 {
1745     struct dwc2_hsotg *hsotg = hs_ep->parent;
1746     int dir_in = hs_ep->dir_in;
1747     struct dwc2_hsotg_req *hs_req;
1748 
1749     if (!list_empty(&hs_ep->queue)) {
1750         hs_req = get_ep_head(hs_ep);
1751         dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1752         return;
1753     }
1754     if (!hs_ep->isochronous)
1755         return;
1756 
1757     if (dir_in) {
1758         dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1759             __func__);
1760     } else {
1761         dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1762             __func__);
1763     }
1764 }
1765 
1766 /**
1767  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1768  * @hsotg: The device state
1769  * @ctrl: USB control request
1770  */
1771 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1772                       struct usb_ctrlrequest *ctrl)
1773 {
1774     struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1775     struct dwc2_hsotg_req *hs_req;
1776     bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1777     struct dwc2_hsotg_ep *ep;
1778     int ret;
1779     bool halted;
1780     u32 recip;
1781     u32 wValue;
1782     u32 wIndex;
1783 
1784     dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1785         __func__, set ? "SET" : "CLEAR");
1786 
1787     wValue = le16_to_cpu(ctrl->wValue);
1788     wIndex = le16_to_cpu(ctrl->wIndex);
1789     recip = ctrl->bRequestType & USB_RECIP_MASK;
1790 
1791     switch (recip) {
1792     case USB_RECIP_DEVICE:
1793         switch (wValue) {
1794         case USB_DEVICE_REMOTE_WAKEUP:
1795             if (set)
1796                 hsotg->remote_wakeup_allowed = 1;
1797             else
1798                 hsotg->remote_wakeup_allowed = 0;
1799             break;
1800 
1801         case USB_DEVICE_TEST_MODE:
1802             if ((wIndex & 0xff) != 0)
1803                 return -EINVAL;
1804             if (!set)
1805                 return -EINVAL;
1806 
1807             hsotg->test_mode = wIndex >> 8;
1808             break;
1809         default:
1810             return -ENOENT;
1811         }
1812 
1813         ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1814         if (ret) {
1815             dev_err(hsotg->dev,
1816                 "%s: failed to send reply\n", __func__);
1817             return ret;
1818         }
1819         break;
1820 
1821     case USB_RECIP_ENDPOINT:
1822         ep = ep_from_windex(hsotg, wIndex);
1823         if (!ep) {
1824             dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1825                 __func__, wIndex);
1826             return -ENOENT;
1827         }
1828 
1829         switch (wValue) {
1830         case USB_ENDPOINT_HALT:
1831             halted = ep->halted;
1832 
1833             if (!ep->wedged)
1834                 dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1835 
1836             ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1837             if (ret) {
1838                 dev_err(hsotg->dev,
1839                     "%s: failed to send reply\n", __func__);
1840                 return ret;
1841             }
1842 
1843             /*
1844              * we have to complete all requests for ep if it was
1845              * halted, and the halt was cleared by CLEAR_FEATURE
1846              */
1847 
1848             if (!set && halted) {
1849                 /*
1850                  * If we have request in progress,
1851                  * then complete it
1852                  */
1853                 if (ep->req) {
1854                     hs_req = ep->req;
1855                     ep->req = NULL;
1856                     list_del_init(&hs_req->queue);
1857                     if (hs_req->req.complete) {
1858                         spin_unlock(&hsotg->lock);
1859                         usb_gadget_giveback_request(
1860                             &ep->ep, &hs_req->req);
1861                         spin_lock(&hsotg->lock);
1862                     }
1863                 }
1864 
1865                 /* If we have pending request, then start it */
1866                 if (!ep->req)
1867                     dwc2_gadget_start_next_request(ep);
1868             }
1869 
1870             break;
1871 
1872         default:
1873             return -ENOENT;
1874         }
1875         break;
1876     default:
1877         return -ENOENT;
1878     }
1879     return 1;
1880 }
1881 
1882 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1883 
1884 /**
1885  * dwc2_hsotg_stall_ep0 - stall ep0
1886  * @hsotg: The device state
1887  *
1888  * Set stall for ep0 as response for setup request.
1889  */
1890 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1891 {
1892     struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1893     u32 reg;
1894     u32 ctrl;
1895 
1896     dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1897     reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1898 
1899     /*
1900      * DxEPCTL_Stall will be cleared by EP once it has
1901      * taken effect, so no need to clear later.
1902      */
1903 
1904     ctrl = dwc2_readl(hsotg, reg);
1905     ctrl |= DXEPCTL_STALL;
1906     ctrl |= DXEPCTL_CNAK;
1907     dwc2_writel(hsotg, ctrl, reg);
1908 
1909     dev_dbg(hsotg->dev,
1910         "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1911         ctrl, reg, dwc2_readl(hsotg, reg));
1912 
1913      /*
1914       * complete won't be called, so we enqueue
1915       * setup request here
1916       */
1917      dwc2_hsotg_enqueue_setup(hsotg);
1918 }
1919 
1920 /**
1921  * dwc2_hsotg_process_control - process a control request
1922  * @hsotg: The device state
1923  * @ctrl: The control request received
1924  *
1925  * The controller has received the SETUP phase of a control request, and
1926  * needs to work out what to do next (and whether to pass it on to the
1927  * gadget driver).
1928  */
1929 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1930                        struct usb_ctrlrequest *ctrl)
1931 {
1932     struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1933     int ret = 0;
1934     u32 dcfg;
1935 
1936     dev_dbg(hsotg->dev,
1937         "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1938         ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1939         ctrl->wIndex, ctrl->wLength);
1940 
1941     if (ctrl->wLength == 0) {
1942         ep0->dir_in = 1;
1943         hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1944     } else if (ctrl->bRequestType & USB_DIR_IN) {
1945         ep0->dir_in = 1;
1946         hsotg->ep0_state = DWC2_EP0_DATA_IN;
1947     } else {
1948         ep0->dir_in = 0;
1949         hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1950     }
1951 
1952     if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1953         switch (ctrl->bRequest) {
1954         case USB_REQ_SET_ADDRESS:
1955             hsotg->connected = 1;
1956             dcfg = dwc2_readl(hsotg, DCFG);
1957             dcfg &= ~DCFG_DEVADDR_MASK;
1958             dcfg |= (le16_to_cpu(ctrl->wValue) <<
1959                  DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1960             dwc2_writel(hsotg, dcfg, DCFG);
1961 
1962             dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1963 
1964             ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1965             return;
1966 
1967         case USB_REQ_GET_STATUS:
1968             ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1969             break;
1970 
1971         case USB_REQ_CLEAR_FEATURE:
1972         case USB_REQ_SET_FEATURE:
1973             ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1974             break;
1975         }
1976     }
1977 
1978     /* as a fallback, try delivering it to the driver to deal with */
1979 
1980     if (ret == 0 && hsotg->driver) {
1981         spin_unlock(&hsotg->lock);
1982         ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1983         spin_lock(&hsotg->lock);
1984         if (ret < 0)
1985             dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1986     }
1987 
1988     hsotg->delayed_status = false;
1989     if (ret == USB_GADGET_DELAYED_STATUS)
1990         hsotg->delayed_status = true;
1991 
1992     /*
1993      * the request is either unhandlable, or is not formatted correctly
1994      * so respond with a STALL for the status stage to indicate failure.
1995      */
1996 
1997     if (ret < 0)
1998         dwc2_hsotg_stall_ep0(hsotg);
1999 }
2000 
2001 /**
2002  * dwc2_hsotg_complete_setup - completion of a setup transfer
2003  * @ep: The endpoint the request was on.
2004  * @req: The request completed.
2005  *
2006  * Called on completion of any requests the driver itself submitted for
2007  * EP0 setup packets
2008  */
2009 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
2010                       struct usb_request *req)
2011 {
2012     struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2013     struct dwc2_hsotg *hsotg = hs_ep->parent;
2014 
2015     if (req->status < 0) {
2016         dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
2017         return;
2018     }
2019 
2020     spin_lock(&hsotg->lock);
2021     if (req->actual == 0)
2022         dwc2_hsotg_enqueue_setup(hsotg);
2023     else
2024         dwc2_hsotg_process_control(hsotg, req->buf);
2025     spin_unlock(&hsotg->lock);
2026 }
2027 
2028 /**
2029  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2030  * @hsotg: The device state.
2031  *
2032  * Enqueue a request on EP0 if necessary to received any SETUP packets
2033  * received from the host.
2034  */
2035 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2036 {
2037     struct usb_request *req = hsotg->ctrl_req;
2038     struct dwc2_hsotg_req *hs_req = our_req(req);
2039     int ret;
2040 
2041     dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2042 
2043     req->zero = 0;
2044     req->length = 8;
2045     req->buf = hsotg->ctrl_buff;
2046     req->complete = dwc2_hsotg_complete_setup;
2047 
2048     if (!list_empty(&hs_req->queue)) {
2049         dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2050         return;
2051     }
2052 
2053     hsotg->eps_out[0]->dir_in = 0;
2054     hsotg->eps_out[0]->send_zlp = 0;
2055     hsotg->ep0_state = DWC2_EP0_SETUP;
2056 
2057     ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2058     if (ret < 0) {
2059         dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2060         /*
2061          * Don't think there's much we can do other than watch the
2062          * driver fail.
2063          */
2064     }
2065 }
2066 
2067 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2068                    struct dwc2_hsotg_ep *hs_ep)
2069 {
2070     u32 ctrl;
2071     u8 index = hs_ep->index;
2072     u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2073     u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2074 
2075     if (hs_ep->dir_in)
2076         dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2077             index);
2078     else
2079         dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2080             index);
2081     if (using_desc_dma(hsotg)) {
2082         /* Not specific buffer needed for ep0 ZLP */
2083         dma_addr_t dma = hs_ep->desc_list_dma;
2084 
2085         if (!index)
2086             dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2087 
2088         dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2089     } else {
2090         dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2091                 DXEPTSIZ_XFERSIZE(0),
2092                 epsiz_reg);
2093     }
2094 
2095     ctrl = dwc2_readl(hsotg, epctl_reg);
2096     ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2097     ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2098     ctrl |= DXEPCTL_USBACTEP;
2099     dwc2_writel(hsotg, ctrl, epctl_reg);
2100 }
2101 
2102 /**
2103  * dwc2_hsotg_complete_request - complete a request given to us
2104  * @hsotg: The device state.
2105  * @hs_ep: The endpoint the request was on.
2106  * @hs_req: The request to complete.
2107  * @result: The result code (0 => Ok, otherwise errno)
2108  *
2109  * The given request has finished, so call the necessary completion
2110  * if it has one and then look to see if we can start a new request
2111  * on the endpoint.
2112  *
2113  * Note, expects the ep to already be locked as appropriate.
2114  */
2115 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2116                     struct dwc2_hsotg_ep *hs_ep,
2117                        struct dwc2_hsotg_req *hs_req,
2118                        int result)
2119 {
2120     if (!hs_req) {
2121         dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2122         return;
2123     }
2124 
2125     dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2126         hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2127 
2128     /*
2129      * only replace the status if we've not already set an error
2130      * from a previous transaction
2131      */
2132 
2133     if (hs_req->req.status == -EINPROGRESS)
2134         hs_req->req.status = result;
2135 
2136     if (using_dma(hsotg))
2137         dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2138 
2139     dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2140 
2141     hs_ep->req = NULL;
2142     list_del_init(&hs_req->queue);
2143 
2144     /*
2145      * call the complete request with the locks off, just in case the
2146      * request tries to queue more work for this endpoint.
2147      */
2148 
2149     if (hs_req->req.complete) {
2150         spin_unlock(&hsotg->lock);
2151         usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2152         spin_lock(&hsotg->lock);
2153     }
2154 
2155     /* In DDMA don't need to proceed to starting of next ISOC request */
2156     if (using_desc_dma(hsotg) && hs_ep->isochronous)
2157         return;
2158 
2159     /*
2160      * Look to see if there is anything else to do. Note, the completion
2161      * of the previous request may have caused a new request to be started
2162      * so be careful when doing this.
2163      */
2164 
2165     if (!hs_ep->req && result >= 0)
2166         dwc2_gadget_start_next_request(hs_ep);
2167 }
2168 
2169 /*
2170  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2171  * @hs_ep: The endpoint the request was on.
2172  *
2173  * Get first request from the ep queue, determine descriptor on which complete
2174  * happened. SW discovers which descriptor currently in use by HW, adjusts
2175  * dma_address and calculates index of completed descriptor based on the value
2176  * of DEPDMA register. Update actual length of request, giveback to gadget.
2177  */
2178 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2179 {
2180     struct dwc2_hsotg *hsotg = hs_ep->parent;
2181     struct dwc2_hsotg_req *hs_req;
2182     struct usb_request *ureq;
2183     u32 desc_sts;
2184     u32 mask;
2185 
2186     desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2187 
2188     /* Process only descriptors with buffer status set to DMA done */
2189     while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2190         DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2191 
2192         hs_req = get_ep_head(hs_ep);
2193         if (!hs_req) {
2194             dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2195             return;
2196         }
2197         ureq = &hs_req->req;
2198 
2199         /* Check completion status */
2200         if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2201             DEV_DMA_STS_SUCC) {
2202             mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2203                 DEV_DMA_ISOC_RX_NBYTES_MASK;
2204             ureq->actual = ureq->length - ((desc_sts & mask) >>
2205                 DEV_DMA_ISOC_NBYTES_SHIFT);
2206 
2207             /* Adjust actual len for ISOC Out if len is
2208              * not align of 4
2209              */
2210             if (!hs_ep->dir_in && ureq->length & 0x3)
2211                 ureq->actual += 4 - (ureq->length & 0x3);
2212 
2213             /* Set actual frame number for completed transfers */
2214             ureq->frame_number =
2215                 (desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2216                 DEV_DMA_ISOC_FRNUM_SHIFT;
2217         }
2218 
2219         dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2220 
2221         hs_ep->compl_desc++;
2222         if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2223             hs_ep->compl_desc = 0;
2224         desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2225     }
2226 }
2227 
2228 /*
2229  * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2230  * @hs_ep: The isochronous endpoint.
2231  *
2232  * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2233  * interrupt. Reset target frame and next_desc to allow to start
2234  * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2235  * interrupt for OUT direction.
2236  */
2237 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2238 {
2239     struct dwc2_hsotg *hsotg = hs_ep->parent;
2240 
2241     if (!hs_ep->dir_in)
2242         dwc2_flush_rx_fifo(hsotg);
2243     dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2244 
2245     hs_ep->target_frame = TARGET_FRAME_INITIAL;
2246     hs_ep->next_desc = 0;
2247     hs_ep->compl_desc = 0;
2248 }
2249 
2250 /**
2251  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2252  * @hsotg: The device state.
2253  * @ep_idx: The endpoint index for the data
2254  * @size: The size of data in the fifo, in bytes
2255  *
2256  * The FIFO status shows there is data to read from the FIFO for a given
2257  * endpoint, so sort out whether we need to read the data into a request
2258  * that has been made for that endpoint.
2259  */
2260 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2261 {
2262     struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2263     struct dwc2_hsotg_req *hs_req = hs_ep->req;
2264     int to_read;
2265     int max_req;
2266     int read_ptr;
2267 
2268     if (!hs_req) {
2269         u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2270         int ptr;
2271 
2272         dev_dbg(hsotg->dev,
2273             "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2274              __func__, size, ep_idx, epctl);
2275 
2276         /* dump the data from the FIFO, we've nothing we can do */
2277         for (ptr = 0; ptr < size; ptr += 4)
2278             (void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2279 
2280         return;
2281     }
2282 
2283     to_read = size;
2284     read_ptr = hs_req->req.actual;
2285     max_req = hs_req->req.length - read_ptr;
2286 
2287     dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2288         __func__, to_read, max_req, read_ptr, hs_req->req.length);
2289 
2290     if (to_read > max_req) {
2291         /*
2292          * more data appeared than we where willing
2293          * to deal with in this request.
2294          */
2295 
2296         /* currently we don't deal this */
2297         WARN_ON_ONCE(1);
2298     }
2299 
2300     hs_ep->total_data += to_read;
2301     hs_req->req.actual += to_read;
2302     to_read = DIV_ROUND_UP(to_read, 4);
2303 
2304     /*
2305      * note, we might over-write the buffer end by 3 bytes depending on
2306      * alignment of the data.
2307      */
2308     dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2309                hs_req->req.buf + read_ptr, to_read);
2310 }
2311 
2312 /**
2313  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2314  * @hsotg: The device instance
2315  * @dir_in: If IN zlp
2316  *
2317  * Generate a zero-length IN packet request for terminating a SETUP
2318  * transaction.
2319  *
2320  * Note, since we don't write any data to the TxFIFO, then it is
2321  * currently believed that we do not need to wait for any space in
2322  * the TxFIFO.
2323  */
2324 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2325 {
2326     /* eps_out[0] is used in both directions */
2327     hsotg->eps_out[0]->dir_in = dir_in;
2328     hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2329 
2330     dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2331 }
2332 
2333 /*
2334  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2335  * @hs_ep - The endpoint on which transfer went
2336  *
2337  * Iterate over endpoints descriptor chain and get info on bytes remained
2338  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2339  */
2340 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2341 {
2342     const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2343     struct dwc2_hsotg *hsotg = hs_ep->parent;
2344     unsigned int bytes_rem = 0;
2345     unsigned int bytes_rem_correction = 0;
2346     struct dwc2_dma_desc *desc = hs_ep->desc_list;
2347     int i;
2348     u32 status;
2349     u32 mps = hs_ep->ep.maxpacket;
2350     int dir_in = hs_ep->dir_in;
2351 
2352     if (!desc)
2353         return -EINVAL;
2354 
2355     /* Interrupt OUT EP with mps not multiple of 4 */
2356     if (hs_ep->index)
2357         if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2358             bytes_rem_correction = 4 - (mps % 4);
2359 
2360     for (i = 0; i < hs_ep->desc_count; ++i) {
2361         status = desc->status;
2362         bytes_rem += status & DEV_DMA_NBYTES_MASK;
2363         bytes_rem -= bytes_rem_correction;
2364 
2365         if (status & DEV_DMA_STS_MASK)
2366             dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2367                 i, status & DEV_DMA_STS_MASK);
2368 
2369         if (status & DEV_DMA_L)
2370             break;
2371 
2372         desc++;
2373     }
2374 
2375     return bytes_rem;
2376 }
2377 
2378 /**
2379  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2380  * @hsotg: The device instance
2381  * @epnum: The endpoint received from
2382  *
2383  * The RXFIFO has delivered an OutDone event, which means that the data
2384  * transfer for an OUT endpoint has been completed, either by a short
2385  * packet or by the finish of a transfer.
2386  */
2387 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2388 {
2389     u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2390     struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2391     struct dwc2_hsotg_req *hs_req = hs_ep->req;
2392     struct usb_request *req = &hs_req->req;
2393     unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2394     int result = 0;
2395 
2396     if (!hs_req) {
2397         dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2398         return;
2399     }
2400 
2401     if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2402         dev_dbg(hsotg->dev, "zlp packet received\n");
2403         dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2404         dwc2_hsotg_enqueue_setup(hsotg);
2405         return;
2406     }
2407 
2408     if (using_desc_dma(hsotg))
2409         size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2410 
2411     if (using_dma(hsotg)) {
2412         unsigned int size_done;
2413 
2414         /*
2415          * Calculate the size of the transfer by checking how much
2416          * is left in the endpoint size register and then working it
2417          * out from the amount we loaded for the transfer.
2418          *
2419          * We need to do this as DMA pointers are always 32bit aligned
2420          * so may overshoot/undershoot the transfer.
2421          */
2422 
2423         size_done = hs_ep->size_loaded - size_left;
2424         size_done += hs_ep->last_load;
2425 
2426         req->actual = size_done;
2427     }
2428 
2429     /* if there is more request to do, schedule new transfer */
2430     if (req->actual < req->length && size_left == 0) {
2431         dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2432         return;
2433     }
2434 
2435     if (req->actual < req->length && req->short_not_ok) {
2436         dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2437             __func__, req->actual, req->length);
2438 
2439         /*
2440          * todo - what should we return here? there's no one else
2441          * even bothering to check the status.
2442          */
2443     }
2444 
2445     /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2446     if (!using_desc_dma(hsotg) && epnum == 0 &&
2447         hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2448         /* Move to STATUS IN */
2449         if (!hsotg->delayed_status)
2450             dwc2_hsotg_ep0_zlp(hsotg, true);
2451     }
2452 
2453     /* Set actual frame number for completed transfers */
2454     if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2455         req->frame_number = hs_ep->target_frame;
2456         dwc2_gadget_incr_frame_num(hs_ep);
2457     }
2458 
2459     dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2460 }
2461 
2462 /**
2463  * dwc2_hsotg_handle_rx - RX FIFO has data
2464  * @hsotg: The device instance
2465  *
2466  * The IRQ handler has detected that the RX FIFO has some data in it
2467  * that requires processing, so find out what is in there and do the
2468  * appropriate read.
2469  *
2470  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2471  * chunks, so if you have x packets received on an endpoint you'll get x
2472  * FIFO events delivered, each with a packet's worth of data in it.
2473  *
2474  * When using DMA, we should not be processing events from the RXFIFO
2475  * as the actual data should be sent to the memory directly and we turn
2476  * on the completion interrupts to get notifications of transfer completion.
2477  */
2478 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2479 {
2480     u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2481     u32 epnum, status, size;
2482 
2483     WARN_ON(using_dma(hsotg));
2484 
2485     epnum = grxstsr & GRXSTS_EPNUM_MASK;
2486     status = grxstsr & GRXSTS_PKTSTS_MASK;
2487 
2488     size = grxstsr & GRXSTS_BYTECNT_MASK;
2489     size >>= GRXSTS_BYTECNT_SHIFT;
2490 
2491     dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2492         __func__, grxstsr, size, epnum);
2493 
2494     switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2495     case GRXSTS_PKTSTS_GLOBALOUTNAK:
2496         dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2497         break;
2498 
2499     case GRXSTS_PKTSTS_OUTDONE:
2500         dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2501             dwc2_hsotg_read_frameno(hsotg));
2502 
2503         if (!using_dma(hsotg))
2504             dwc2_hsotg_handle_outdone(hsotg, epnum);
2505         break;
2506 
2507     case GRXSTS_PKTSTS_SETUPDONE:
2508         dev_dbg(hsotg->dev,
2509             "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2510             dwc2_hsotg_read_frameno(hsotg),
2511             dwc2_readl(hsotg, DOEPCTL(0)));
2512         /*
2513          * Call dwc2_hsotg_handle_outdone here if it was not called from
2514          * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2515          * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2516          */
2517         if (hsotg->ep0_state == DWC2_EP0_SETUP)
2518             dwc2_hsotg_handle_outdone(hsotg, epnum);
2519         break;
2520 
2521     case GRXSTS_PKTSTS_OUTRX:
2522         dwc2_hsotg_rx_data(hsotg, epnum, size);
2523         break;
2524 
2525     case GRXSTS_PKTSTS_SETUPRX:
2526         dev_dbg(hsotg->dev,
2527             "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2528             dwc2_hsotg_read_frameno(hsotg),
2529             dwc2_readl(hsotg, DOEPCTL(0)));
2530 
2531         WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2532 
2533         dwc2_hsotg_rx_data(hsotg, epnum, size);
2534         break;
2535 
2536     default:
2537         dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2538              __func__, grxstsr);
2539 
2540         dwc2_hsotg_dump(hsotg);
2541         break;
2542     }
2543 }
2544 
2545 /**
2546  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2547  * @mps: The maximum packet size in bytes.
2548  */
2549 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2550 {
2551     switch (mps) {
2552     case 64:
2553         return D0EPCTL_MPS_64;
2554     case 32:
2555         return D0EPCTL_MPS_32;
2556     case 16:
2557         return D0EPCTL_MPS_16;
2558     case 8:
2559         return D0EPCTL_MPS_8;
2560     }
2561 
2562     /* bad max packet size, warn and return invalid result */
2563     WARN_ON(1);
2564     return (u32)-1;
2565 }
2566 
2567 /**
2568  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2569  * @hsotg: The driver state.
2570  * @ep: The index number of the endpoint
2571  * @mps: The maximum packet size in bytes
2572  * @mc: The multicount value
2573  * @dir_in: True if direction is in.
2574  *
2575  * Configure the maximum packet size for the given endpoint, updating
2576  * the hardware control registers to reflect this.
2577  */
2578 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2579                     unsigned int ep, unsigned int mps,
2580                     unsigned int mc, unsigned int dir_in)
2581 {
2582     struct dwc2_hsotg_ep *hs_ep;
2583     u32 reg;
2584 
2585     hs_ep = index_to_ep(hsotg, ep, dir_in);
2586     if (!hs_ep)
2587         return;
2588 
2589     if (ep == 0) {
2590         u32 mps_bytes = mps;
2591 
2592         /* EP0 is a special case */
2593         mps = dwc2_hsotg_ep0_mps(mps_bytes);
2594         if (mps > 3)
2595             goto bad_mps;
2596         hs_ep->ep.maxpacket = mps_bytes;
2597         hs_ep->mc = 1;
2598     } else {
2599         if (mps > 1024)
2600             goto bad_mps;
2601         hs_ep->mc = mc;
2602         if (mc > 3)
2603             goto bad_mps;
2604         hs_ep->ep.maxpacket = mps;
2605     }
2606 
2607     if (dir_in) {
2608         reg = dwc2_readl(hsotg, DIEPCTL(ep));
2609         reg &= ~DXEPCTL_MPS_MASK;
2610         reg |= mps;
2611         dwc2_writel(hsotg, reg, DIEPCTL(ep));
2612     } else {
2613         reg = dwc2_readl(hsotg, DOEPCTL(ep));
2614         reg &= ~DXEPCTL_MPS_MASK;
2615         reg |= mps;
2616         dwc2_writel(hsotg, reg, DOEPCTL(ep));
2617     }
2618 
2619     return;
2620 
2621 bad_mps:
2622     dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2623 }
2624 
2625 /**
2626  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2627  * @hsotg: The driver state
2628  * @idx: The index for the endpoint (0..15)
2629  */
2630 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2631 {
2632     dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2633             GRSTCTL);
2634 
2635     /* wait until the fifo is flushed */
2636     if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2637         dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2638              __func__);
2639 }
2640 
2641 /**
2642  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2643  * @hsotg: The driver state
2644  * @hs_ep: The driver endpoint to check.
2645  *
2646  * Check to see if there is a request that has data to send, and if so
2647  * make an attempt to write data into the FIFO.
2648  */
2649 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2650                 struct dwc2_hsotg_ep *hs_ep)
2651 {
2652     struct dwc2_hsotg_req *hs_req = hs_ep->req;
2653 
2654     if (!hs_ep->dir_in || !hs_req) {
2655         /**
2656          * if request is not enqueued, we disable interrupts
2657          * for endpoints, excepting ep0
2658          */
2659         if (hs_ep->index != 0)
2660             dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2661                           hs_ep->dir_in, 0);
2662         return 0;
2663     }
2664 
2665     if (hs_req->req.actual < hs_req->req.length) {
2666         dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2667             hs_ep->index);
2668         return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2669     }
2670 
2671     return 0;
2672 }
2673 
2674 /**
2675  * dwc2_hsotg_complete_in - complete IN transfer
2676  * @hsotg: The device state.
2677  * @hs_ep: The endpoint that has just completed.
2678  *
2679  * An IN transfer has been completed, update the transfer's state and then
2680  * call the relevant completion routines.
2681  */
2682 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2683                    struct dwc2_hsotg_ep *hs_ep)
2684 {
2685     struct dwc2_hsotg_req *hs_req = hs_ep->req;
2686     u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2687     int size_left, size_done;
2688 
2689     if (!hs_req) {
2690         dev_dbg(hsotg->dev, "XferCompl but no req\n");
2691         return;
2692     }
2693 
2694     /* Finish ZLP handling for IN EP0 transactions */
2695     if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2696         dev_dbg(hsotg->dev, "zlp packet sent\n");
2697 
2698         /*
2699          * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2700          * changed to IN. Change back to complete OUT transfer request
2701          */
2702         hs_ep->dir_in = 0;
2703 
2704         dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2705         if (hsotg->test_mode) {
2706             int ret;
2707 
2708             ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2709             if (ret < 0) {
2710                 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2711                     hsotg->test_mode);
2712                 dwc2_hsotg_stall_ep0(hsotg);
2713                 return;
2714             }
2715         }
2716         dwc2_hsotg_enqueue_setup(hsotg);
2717         return;
2718     }
2719 
2720     /*
2721      * Calculate the size of the transfer by checking how much is left
2722      * in the endpoint size register and then working it out from
2723      * the amount we loaded for the transfer.
2724      *
2725      * We do this even for DMA, as the transfer may have incremented
2726      * past the end of the buffer (DMA transfers are always 32bit
2727      * aligned).
2728      */
2729     if (using_desc_dma(hsotg)) {
2730         size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2731         if (size_left < 0)
2732             dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2733                 size_left);
2734     } else {
2735         size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2736     }
2737 
2738     size_done = hs_ep->size_loaded - size_left;
2739     size_done += hs_ep->last_load;
2740 
2741     if (hs_req->req.actual != size_done)
2742         dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2743             __func__, hs_req->req.actual, size_done);
2744 
2745     hs_req->req.actual = size_done;
2746     dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2747         hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2748 
2749     if (!size_left && hs_req->req.actual < hs_req->req.length) {
2750         dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2751         dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2752         return;
2753     }
2754 
2755     /* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */
2756     if (hs_ep->send_zlp) {
2757         hs_ep->send_zlp = 0;
2758         if (!using_desc_dma(hsotg)) {
2759             dwc2_hsotg_program_zlp(hsotg, hs_ep);
2760             /* transfer will be completed on next complete interrupt */
2761             return;
2762         }
2763     }
2764 
2765     if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2766         /* Move to STATUS OUT */
2767         dwc2_hsotg_ep0_zlp(hsotg, false);
2768         return;
2769     }
2770 
2771     /* Set actual frame number for completed transfers */
2772     if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2773         hs_req->req.frame_number = hs_ep->target_frame;
2774         dwc2_gadget_incr_frame_num(hs_ep);
2775     }
2776 
2777     dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2778 }
2779 
2780 /**
2781  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2782  * @hsotg: The device state.
2783  * @idx: Index of ep.
2784  * @dir_in: Endpoint direction 1-in 0-out.
2785  *
2786  * Reads for endpoint with given index and direction, by masking
2787  * epint_reg with coresponding mask.
2788  */
2789 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2790                       unsigned int idx, int dir_in)
2791 {
2792     u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2793     u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2794     u32 ints;
2795     u32 mask;
2796     u32 diepempmsk;
2797 
2798     mask = dwc2_readl(hsotg, epmsk_reg);
2799     diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2800     mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2801     mask |= DXEPINT_SETUP_RCVD;
2802 
2803     ints = dwc2_readl(hsotg, epint_reg);
2804     ints &= mask;
2805     return ints;
2806 }
2807 
2808 /**
2809  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2810  * @hs_ep: The endpoint on which interrupt is asserted.
2811  *
2812  * This interrupt indicates that the endpoint has been disabled per the
2813  * application's request.
2814  *
2815  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2816  * in case of ISOC completes current request.
2817  *
2818  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2819  * request starts it.
2820  */
2821 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2822 {
2823     struct dwc2_hsotg *hsotg = hs_ep->parent;
2824     struct dwc2_hsotg_req *hs_req;
2825     unsigned char idx = hs_ep->index;
2826     int dir_in = hs_ep->dir_in;
2827     u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2828     int dctl = dwc2_readl(hsotg, DCTL);
2829 
2830     dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2831 
2832     if (dir_in) {
2833         int epctl = dwc2_readl(hsotg, epctl_reg);
2834 
2835         dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2836 
2837         if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2838             int dctl = dwc2_readl(hsotg, DCTL);
2839 
2840             dctl |= DCTL_CGNPINNAK;
2841             dwc2_writel(hsotg, dctl, DCTL);
2842         }
2843     } else {
2844 
2845         if (dctl & DCTL_GOUTNAKSTS) {
2846             dctl |= DCTL_CGOUTNAK;
2847             dwc2_writel(hsotg, dctl, DCTL);
2848         }
2849     }
2850 
2851     if (!hs_ep->isochronous)
2852         return;
2853 
2854     if (list_empty(&hs_ep->queue)) {
2855         dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2856             __func__, hs_ep);
2857         return;
2858     }
2859 
2860     do {
2861         hs_req = get_ep_head(hs_ep);
2862         if (hs_req) {
2863             hs_req->req.frame_number = hs_ep->target_frame;
2864             hs_req->req.actual = 0;
2865             dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2866                             -ENODATA);
2867         }
2868         dwc2_gadget_incr_frame_num(hs_ep);
2869         /* Update current frame number value. */
2870         hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2871     } while (dwc2_gadget_target_frame_elapsed(hs_ep));
2872 }
2873 
2874 /**
2875  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2876  * @ep: The endpoint on which interrupt is asserted.
2877  *
2878  * This is starting point for ISOC-OUT transfer, synchronization done with
2879  * first out token received from host while corresponding EP is disabled.
2880  *
2881  * Device does not know initial frame in which out token will come. For this
2882  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2883  * getting this interrupt SW starts calculation for next transfer frame.
2884  */
2885 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2886 {
2887     struct dwc2_hsotg *hsotg = ep->parent;
2888     struct dwc2_hsotg_req *hs_req;
2889     int dir_in = ep->dir_in;
2890 
2891     if (dir_in || !ep->isochronous)
2892         return;
2893 
2894     if (using_desc_dma(hsotg)) {
2895         if (ep->target_frame == TARGET_FRAME_INITIAL) {
2896             /* Start first ISO Out */
2897             ep->target_frame = hsotg->frame_number;
2898             dwc2_gadget_start_isoc_ddma(ep);
2899         }
2900         return;
2901     }
2902 
2903     if (ep->target_frame == TARGET_FRAME_INITIAL) {
2904         u32 ctrl;
2905 
2906         ep->target_frame = hsotg->frame_number;
2907         if (ep->interval > 1) {
2908             ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2909             if (ep->target_frame & 0x1)
2910                 ctrl |= DXEPCTL_SETODDFR;
2911             else
2912                 ctrl |= DXEPCTL_SETEVENFR;
2913 
2914             dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2915         }
2916     }
2917 
2918     while (dwc2_gadget_target_frame_elapsed(ep)) {
2919         hs_req = get_ep_head(ep);
2920         if (hs_req) {
2921             hs_req->req.frame_number = ep->target_frame;
2922             hs_req->req.actual = 0;
2923             dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA);
2924         }
2925 
2926         dwc2_gadget_incr_frame_num(ep);
2927         /* Update current frame number value. */
2928         hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2929     }
2930 
2931     if (!ep->req)
2932         dwc2_gadget_start_next_request(ep);
2933 
2934 }
2935 
2936 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2937                    struct dwc2_hsotg_ep *hs_ep);
2938 
2939 /**
2940  * dwc2_gadget_handle_nak - handle NAK interrupt
2941  * @hs_ep: The endpoint on which interrupt is asserted.
2942  *
2943  * This is starting point for ISOC-IN transfer, synchronization done with
2944  * first IN token received from host while corresponding EP is disabled.
2945  *
2946  * Device does not know when first one token will arrive from host. On first
2947  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2948  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2949  * sent in response to that as there was no data in FIFO. SW is basing on this
2950  * interrupt to obtain frame in which token has come and then based on the
2951  * interval calculates next frame for transfer.
2952  */
2953 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2954 {
2955     struct dwc2_hsotg *hsotg = hs_ep->parent;
2956     struct dwc2_hsotg_req *hs_req;
2957     int dir_in = hs_ep->dir_in;
2958     u32 ctrl;
2959 
2960     if (!dir_in || !hs_ep->isochronous)
2961         return;
2962 
2963     if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2964 
2965         if (using_desc_dma(hsotg)) {
2966             hs_ep->target_frame = hsotg->frame_number;
2967             dwc2_gadget_incr_frame_num(hs_ep);
2968 
2969             /* In service interval mode target_frame must
2970              * be set to last (u)frame of the service interval.
2971              */
2972             if (hsotg->params.service_interval) {
2973                 /* Set target_frame to the first (u)frame of
2974                  * the service interval
2975                  */
2976                 hs_ep->target_frame &= ~hs_ep->interval + 1;
2977 
2978                 /* Set target_frame to the last (u)frame of
2979                  * the service interval
2980                  */
2981                 dwc2_gadget_incr_frame_num(hs_ep);
2982                 dwc2_gadget_dec_frame_num_by_one(hs_ep);
2983             }
2984 
2985             dwc2_gadget_start_isoc_ddma(hs_ep);
2986             return;
2987         }
2988 
2989         hs_ep->target_frame = hsotg->frame_number;
2990         if (hs_ep->interval > 1) {
2991             u32 ctrl = dwc2_readl(hsotg,
2992                           DIEPCTL(hs_ep->index));
2993             if (hs_ep->target_frame & 0x1)
2994                 ctrl |= DXEPCTL_SETODDFR;
2995             else
2996                 ctrl |= DXEPCTL_SETEVENFR;
2997 
2998             dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2999         }
3000     }
3001 
3002     if (using_desc_dma(hsotg))
3003         return;
3004 
3005     ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index));
3006     if (ctrl & DXEPCTL_EPENA)
3007         dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3008     else
3009         dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
3010 
3011     while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
3012         hs_req = get_ep_head(hs_ep);
3013         if (hs_req) {
3014             hs_req->req.frame_number = hs_ep->target_frame;
3015             hs_req->req.actual = 0;
3016             dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
3017         }
3018 
3019         dwc2_gadget_incr_frame_num(hs_ep);
3020         /* Update current frame number value. */
3021         hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
3022     }
3023 
3024     if (!hs_ep->req)
3025         dwc2_gadget_start_next_request(hs_ep);
3026 }
3027 
3028 /**
3029  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
3030  * @hsotg: The driver state
3031  * @idx: The index for the endpoint (0..15)
3032  * @dir_in: Set if this is an IN endpoint
3033  *
3034  * Process and clear any interrupt pending for an individual endpoint
3035  */
3036 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
3037                  int dir_in)
3038 {
3039     struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
3040     u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
3041     u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3042     u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3043     u32 ints;
3044 
3045     ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
3046 
3047     /* Clear endpoint interrupts */
3048     dwc2_writel(hsotg, ints, epint_reg);
3049 
3050     if (!hs_ep) {
3051         dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3052             __func__, idx, dir_in ? "in" : "out");
3053         return;
3054     }
3055 
3056     dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3057         __func__, idx, dir_in ? "in" : "out", ints);
3058 
3059     /* Don't process XferCompl interrupt if it is a setup packet */
3060     if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3061         ints &= ~DXEPINT_XFERCOMPL;
3062 
3063     /*
3064      * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3065      * stage and xfercomplete was generated without SETUP phase done
3066      * interrupt. SW should parse received setup packet only after host's
3067      * exit from setup phase of control transfer.
3068      */
3069     if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3070         hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3071         ints &= ~DXEPINT_XFERCOMPL;
3072 
3073     if (ints & DXEPINT_XFERCOMPL) {
3074         dev_dbg(hsotg->dev,
3075             "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3076             __func__, dwc2_readl(hsotg, epctl_reg),
3077             dwc2_readl(hsotg, epsiz_reg));
3078 
3079         /* In DDMA handle isochronous requests separately */
3080         if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3081             dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3082         } else if (dir_in) {
3083             /*
3084              * We get OutDone from the FIFO, so we only
3085              * need to look at completing IN requests here
3086              * if operating slave mode
3087              */
3088             if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT))
3089                 dwc2_hsotg_complete_in(hsotg, hs_ep);
3090 
3091             if (idx == 0 && !hs_ep->req)
3092                 dwc2_hsotg_enqueue_setup(hsotg);
3093         } else if (using_dma(hsotg)) {
3094             /*
3095              * We're using DMA, we need to fire an OutDone here
3096              * as we ignore the RXFIFO.
3097              */
3098             if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS))
3099                 dwc2_hsotg_handle_outdone(hsotg, idx);
3100         }
3101     }
3102 
3103     if (ints & DXEPINT_EPDISBLD)
3104         dwc2_gadget_handle_ep_disabled(hs_ep);
3105 
3106     if (ints & DXEPINT_OUTTKNEPDIS)
3107         dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3108 
3109     if (ints & DXEPINT_NAKINTRPT)
3110         dwc2_gadget_handle_nak(hs_ep);
3111 
3112     if (ints & DXEPINT_AHBERR)
3113         dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3114 
3115     if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3116         dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3117 
3118         if (using_dma(hsotg) && idx == 0) {
3119             /*
3120              * this is the notification we've received a
3121              * setup packet. In non-DMA mode we'd get this
3122              * from the RXFIFO, instead we need to process
3123              * the setup here.
3124              */
3125 
3126             if (dir_in)
3127                 WARN_ON_ONCE(1);
3128             else
3129                 dwc2_hsotg_handle_outdone(hsotg, 0);
3130         }
3131     }
3132 
3133     if (ints & DXEPINT_STSPHSERCVD) {
3134         dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3135 
3136         /* Safety check EP0 state when STSPHSERCVD asserted */
3137         if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3138             /* Move to STATUS IN for DDMA */
3139             if (using_desc_dma(hsotg)) {
3140                 if (!hsotg->delayed_status)
3141                     dwc2_hsotg_ep0_zlp(hsotg, true);
3142                 else
3143                 /* In case of 3 stage Control Write with delayed
3144                  * status, when Status IN transfer started
3145                  * before STSPHSERCVD asserted, NAKSTS bit not
3146                  * cleared by CNAK in dwc2_hsotg_start_req()
3147                  * function. Clear now NAKSTS to allow complete
3148                  * transfer.
3149                  */
3150                     dwc2_set_bit(hsotg, DIEPCTL(0),
3151                              DXEPCTL_CNAK);
3152             }
3153         }
3154 
3155     }
3156 
3157     if (ints & DXEPINT_BACK2BACKSETUP)
3158         dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3159 
3160     if (ints & DXEPINT_BNAINTR) {
3161         dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3162         if (hs_ep->isochronous)
3163             dwc2_gadget_handle_isoc_bna(hs_ep);
3164     }
3165 
3166     if (dir_in && !hs_ep->isochronous) {
3167         /* not sure if this is important, but we'll clear it anyway */
3168         if (ints & DXEPINT_INTKNTXFEMP) {
3169             dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3170                 __func__, idx);
3171         }
3172 
3173         /* this probably means something bad is happening */
3174         if (ints & DXEPINT_INTKNEPMIS) {
3175             dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3176                  __func__, idx);
3177         }
3178 
3179         /* FIFO has space or is empty (see GAHBCFG) */
3180         if (hsotg->dedicated_fifos &&
3181             ints & DXEPINT_TXFEMP) {
3182             dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3183                 __func__, idx);
3184             if (!using_dma(hsotg))
3185                 dwc2_hsotg_trytx(hsotg, hs_ep);
3186         }
3187     }
3188 }
3189 
3190 /**
3191  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3192  * @hsotg: The device state.
3193  *
3194  * Handle updating the device settings after the enumeration phase has
3195  * been completed.
3196  */
3197 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3198 {
3199     u32 dsts = dwc2_readl(hsotg, DSTS);
3200     int ep0_mps = 0, ep_mps = 8;
3201 
3202     /*
3203      * This should signal the finish of the enumeration phase
3204      * of the USB handshaking, so we should now know what rate
3205      * we connected at.
3206      */
3207 
3208     dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3209 
3210     /*
3211      * note, since we're limited by the size of transfer on EP0, and
3212      * it seems IN transfers must be a even number of packets we do
3213      * not advertise a 64byte MPS on EP0.
3214      */
3215 
3216     /* catch both EnumSpd_FS and EnumSpd_FS48 */
3217     switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3218     case DSTS_ENUMSPD_FS:
3219     case DSTS_ENUMSPD_FS48:
3220         hsotg->gadget.speed = USB_SPEED_FULL;
3221         ep0_mps = EP0_MPS_LIMIT;
3222         ep_mps = 1023;
3223         break;
3224 
3225     case DSTS_ENUMSPD_HS:
3226         hsotg->gadget.speed = USB_SPEED_HIGH;
3227         ep0_mps = EP0_MPS_LIMIT;
3228         ep_mps = 1024;
3229         break;
3230 
3231     case DSTS_ENUMSPD_LS:
3232         hsotg->gadget.speed = USB_SPEED_LOW;
3233         ep0_mps = 8;
3234         ep_mps = 8;
3235         /*
3236          * note, we don't actually support LS in this driver at the
3237          * moment, and the documentation seems to imply that it isn't
3238          * supported by the PHYs on some of the devices.
3239          */
3240         break;
3241     }
3242     dev_info(hsotg->dev, "new device is %s\n",
3243          usb_speed_string(hsotg->gadget.speed));
3244 
3245     /*
3246      * we should now know the maximum packet size for an
3247      * endpoint, so set the endpoints to a default value.
3248      */
3249 
3250     if (ep0_mps) {
3251         int i;
3252         /* Initialize ep0 for both in and out directions */
3253         dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3254         dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3255         for (i = 1; i < hsotg->num_of_eps; i++) {
3256             if (hsotg->eps_in[i])
3257                 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3258                                 0, 1);
3259             if (hsotg->eps_out[i])
3260                 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3261                                 0, 0);
3262         }
3263     }
3264 
3265     /* ensure after enumeration our EP0 is active */
3266 
3267     dwc2_hsotg_enqueue_setup(hsotg);
3268 
3269     dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3270         dwc2_readl(hsotg, DIEPCTL0),
3271         dwc2_readl(hsotg, DOEPCTL0));
3272 }
3273 
3274 /**
3275  * kill_all_requests - remove all requests from the endpoint's queue
3276  * @hsotg: The device state.
3277  * @ep: The endpoint the requests may be on.
3278  * @result: The result code to use.
3279  *
3280  * Go through the requests on the given endpoint and mark them
3281  * completed with the given result code.
3282  */
3283 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3284                   struct dwc2_hsotg_ep *ep,
3285                   int result)
3286 {
3287     unsigned int size;
3288 
3289     ep->req = NULL;
3290 
3291     while (!list_empty(&ep->queue)) {
3292         struct dwc2_hsotg_req *req = get_ep_head(ep);
3293 
3294         dwc2_hsotg_complete_request(hsotg, ep, req, result);
3295     }
3296 
3297     if (!hsotg->dedicated_fifos)
3298         return;
3299     size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3300     if (size < ep->fifo_size)
3301         dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3302 }
3303 
3304 /**
3305  * dwc2_hsotg_disconnect - disconnect service
3306  * @hsotg: The device state.
3307  *
3308  * The device has been disconnected. Remove all current
3309  * transactions and signal the gadget driver that this
3310  * has happened.
3311  */
3312 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3313 {
3314     unsigned int ep;
3315 
3316     if (!hsotg->connected)
3317         return;
3318 
3319     hsotg->connected = 0;
3320     hsotg->test_mode = 0;
3321 
3322     /* all endpoints should be shutdown */
3323     for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3324         if (hsotg->eps_in[ep])
3325             kill_all_requests(hsotg, hsotg->eps_in[ep],
3326                       -ESHUTDOWN);
3327         if (hsotg->eps_out[ep])
3328             kill_all_requests(hsotg, hsotg->eps_out[ep],
3329                       -ESHUTDOWN);
3330     }
3331 
3332     call_gadget(hsotg, disconnect);
3333     hsotg->lx_state = DWC2_L3;
3334 
3335     usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3336 }
3337 
3338 /**
3339  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3340  * @hsotg: The device state:
3341  * @periodic: True if this is a periodic FIFO interrupt
3342  */
3343 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3344 {
3345     struct dwc2_hsotg_ep *ep;
3346     int epno, ret;
3347 
3348     /* look through for any more data to transmit */
3349     for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3350         ep = index_to_ep(hsotg, epno, 1);
3351 
3352         if (!ep)
3353             continue;
3354 
3355         if (!ep->dir_in)
3356             continue;
3357 
3358         if ((periodic && !ep->periodic) ||
3359             (!periodic && ep->periodic))
3360             continue;
3361 
3362         ret = dwc2_hsotg_trytx(hsotg, ep);
3363         if (ret < 0)
3364             break;
3365     }
3366 }
3367 
3368 /* IRQ flags which will trigger a retry around the IRQ loop */
3369 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3370             GINTSTS_PTXFEMP |  \
3371             GINTSTS_RXFLVL)
3372 
3373 static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3374 /**
3375  * dwc2_hsotg_core_init_disconnected - issue softreset to the core
3376  * @hsotg: The device state
3377  * @is_usb_reset: Usb resetting flag
3378  *
3379  * Issue a soft reset to the core, and await the core finishing it.
3380  */
3381 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3382                        bool is_usb_reset)
3383 {
3384     u32 intmsk;
3385     u32 val;
3386     u32 usbcfg;
3387     u32 dcfg = 0;
3388     int ep;
3389 
3390     /* Kill any ep0 requests as controller will be reinitialized */
3391     kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3392 
3393     if (!is_usb_reset) {
3394         if (dwc2_core_reset(hsotg, true))
3395             return;
3396     } else {
3397         /* all endpoints should be shutdown */
3398         for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3399             if (hsotg->eps_in[ep])
3400                 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3401             if (hsotg->eps_out[ep])
3402                 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3403         }
3404     }
3405 
3406     /*
3407      * we must now enable ep0 ready for host detection and then
3408      * set configuration.
3409      */
3410 
3411     /* keep other bits untouched (so e.g. forced modes are not lost) */
3412     usbcfg = dwc2_readl(hsotg, GUSBCFG);
3413     usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3414     usbcfg |= GUSBCFG_TOUTCAL(7);
3415 
3416     /* remove the HNP/SRP and set the PHY */
3417     usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3418         dwc2_writel(hsotg, usbcfg, GUSBCFG);
3419 
3420     dwc2_phy_init(hsotg, true);
3421 
3422     dwc2_hsotg_init_fifo(hsotg);
3423 
3424     if (!is_usb_reset)
3425         dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3426 
3427     dcfg |= DCFG_EPMISCNT(1);
3428 
3429     switch (hsotg->params.speed) {
3430     case DWC2_SPEED_PARAM_LOW:
3431         dcfg |= DCFG_DEVSPD_LS;
3432         break;
3433     case DWC2_SPEED_PARAM_FULL:
3434         if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3435             dcfg |= DCFG_DEVSPD_FS48;
3436         else
3437             dcfg |= DCFG_DEVSPD_FS;
3438         break;
3439     default:
3440         dcfg |= DCFG_DEVSPD_HS;
3441     }
3442 
3443     if (hsotg->params.ipg_isoc_en)
3444         dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3445 
3446     dwc2_writel(hsotg, dcfg,  DCFG);
3447 
3448     /* Clear any pending OTG interrupts */
3449     dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3450 
3451     /* Clear any pending interrupts */
3452     dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3453     intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3454         GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3455         GINTSTS_USBRST | GINTSTS_RESETDET |
3456         GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3457         GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3458         GINTSTS_LPMTRANRCVD;
3459 
3460     if (!using_desc_dma(hsotg))
3461         intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3462 
3463     if (!hsotg->params.external_id_pin_ctl)
3464         intmsk |= GINTSTS_CONIDSTSCHNG;
3465 
3466     dwc2_writel(hsotg, intmsk, GINTMSK);
3467 
3468     if (using_dma(hsotg)) {
3469         dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3470                 hsotg->params.ahbcfg,
3471                 GAHBCFG);
3472 
3473         /* Set DDMA mode support in the core if needed */
3474         if (using_desc_dma(hsotg))
3475             dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3476 
3477     } else {
3478         dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3479                         (GAHBCFG_NP_TXF_EMP_LVL |
3480                          GAHBCFG_P_TXF_EMP_LVL) : 0) |
3481                 GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3482     }
3483 
3484     /*
3485      * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3486      * when we have no data to transfer. Otherwise we get being flooded by
3487      * interrupts.
3488      */
3489 
3490     dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3491         DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3492         DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3493         DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3494         DIEPMSK);
3495 
3496     /*
3497      * don't need XferCompl, we get that from RXFIFO in slave mode. In
3498      * DMA mode we may need this and StsPhseRcvd.
3499      */
3500     dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3501         DOEPMSK_STSPHSERCVDMSK) : 0) |
3502         DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3503         DOEPMSK_SETUPMSK,
3504         DOEPMSK);
3505 
3506     /* Enable BNA interrupt for DDMA */
3507     if (using_desc_dma(hsotg)) {
3508         dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3509         dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3510     }
3511 
3512     /* Enable Service Interval mode if supported */
3513     if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3514         dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3515 
3516     dwc2_writel(hsotg, 0, DAINTMSK);
3517 
3518     dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3519         dwc2_readl(hsotg, DIEPCTL0),
3520         dwc2_readl(hsotg, DOEPCTL0));
3521 
3522     /* enable in and out endpoint interrupts */
3523     dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3524 
3525     /*
3526      * Enable the RXFIFO when in slave mode, as this is how we collect
3527      * the data. In DMA mode, we get events from the FIFO but also
3528      * things we cannot process, so do not use it.
3529      */
3530     if (!using_dma(hsotg))
3531         dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3532 
3533     /* Enable interrupts for EP0 in and out */
3534     dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3535     dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3536 
3537     if (!is_usb_reset) {
3538         dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3539         udelay(10);  /* see openiboot */
3540         dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3541     }
3542 
3543     dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3544 
3545     /*
3546      * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3547      * writing to the EPCTL register..
3548      */
3549 
3550     /* set to read 1 8byte packet */
3551     dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3552            DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3553 
3554     dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3555            DXEPCTL_CNAK | DXEPCTL_EPENA |
3556            DXEPCTL_USBACTEP,
3557            DOEPCTL0);
3558 
3559     /* enable, but don't activate EP0in */
3560     dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3561            DXEPCTL_USBACTEP, DIEPCTL0);
3562 
3563     /* clear global NAKs */
3564     val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3565     if (!is_usb_reset)
3566         val |= DCTL_SFTDISCON;
3567     dwc2_set_bit(hsotg, DCTL, val);
3568 
3569     /* configure the core to support LPM */
3570     dwc2_gadget_init_lpm(hsotg);
3571 
3572     /* program GREFCLK register if needed */
3573     if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3574         dwc2_gadget_program_ref_clk(hsotg);
3575 
3576     /* must be at-least 3ms to allow bus to see disconnect */
3577     mdelay(3);
3578 
3579     hsotg->lx_state = DWC2_L0;
3580 
3581     dwc2_hsotg_enqueue_setup(hsotg);
3582 
3583     dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3584         dwc2_readl(hsotg, DIEPCTL0),
3585         dwc2_readl(hsotg, DOEPCTL0));
3586 }
3587 
3588 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3589 {
3590     /* set the soft-disconnect bit */
3591     dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3592 }
3593 
3594 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3595 {
3596     /* remove the soft-disconnect and let's go */
3597     if (!hsotg->role_sw || (dwc2_readl(hsotg, GOTGCTL) & GOTGCTL_BSESVLD))
3598         dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3599 }
3600 
3601 /**
3602  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3603  * @hsotg: The device state:
3604  *
3605  * This interrupt indicates one of the following conditions occurred while
3606  * transmitting an ISOC transaction.
3607  * - Corrupted IN Token for ISOC EP.
3608  * - Packet not complete in FIFO.
3609  *
3610  * The following actions will be taken:
3611  * - Determine the EP
3612  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3613  */
3614 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3615 {
3616     struct dwc2_hsotg_ep *hs_ep;
3617     u32 epctrl;
3618     u32 daintmsk;
3619     u32 idx;
3620 
3621     dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3622 
3623     daintmsk = dwc2_readl(hsotg, DAINTMSK);
3624 
3625     for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3626         hs_ep = hsotg->eps_in[idx];
3627         /* Proceed only unmasked ISOC EPs */
3628         if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3629             continue;
3630 
3631         epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3632         if ((epctrl & DXEPCTL_EPENA) &&
3633             dwc2_gadget_target_frame_elapsed(hs_ep)) {
3634             epctrl |= DXEPCTL_SNAK;
3635             epctrl |= DXEPCTL_EPDIS;
3636             dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3637         }
3638     }
3639 
3640     /* Clear interrupt */
3641     dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3642 }
3643 
3644 /**
3645  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3646  * @hsotg: The device state:
3647  *
3648  * This interrupt indicates one of the following conditions occurred while
3649  * transmitting an ISOC transaction.
3650  * - Corrupted OUT Token for ISOC EP.
3651  * - Packet not complete in FIFO.
3652  *
3653  * The following actions will be taken:
3654  * - Determine the EP
3655  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3656  */
3657 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3658 {
3659     u32 gintsts;
3660     u32 gintmsk;
3661     u32 daintmsk;
3662     u32 epctrl;
3663     struct dwc2_hsotg_ep *hs_ep;
3664     int idx;
3665 
3666     dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3667 
3668     daintmsk = dwc2_readl(hsotg, DAINTMSK);
3669     daintmsk >>= DAINT_OUTEP_SHIFT;
3670 
3671     for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3672         hs_ep = hsotg->eps_out[idx];
3673         /* Proceed only unmasked ISOC EPs */
3674         if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3675             continue;
3676 
3677         epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3678         if ((epctrl & DXEPCTL_EPENA) &&
3679             dwc2_gadget_target_frame_elapsed(hs_ep)) {
3680             /* Unmask GOUTNAKEFF interrupt */
3681             gintmsk = dwc2_readl(hsotg, GINTMSK);
3682             gintmsk |= GINTSTS_GOUTNAKEFF;
3683             dwc2_writel(hsotg, gintmsk, GINTMSK);
3684 
3685             gintsts = dwc2_readl(hsotg, GINTSTS);
3686             if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3687                 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3688                 break;
3689             }
3690         }
3691     }
3692 
3693     /* Clear interrupt */
3694     dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3695 }
3696 
3697 /**
3698  * dwc2_hsotg_irq - handle device interrupt
3699  * @irq: The IRQ number triggered
3700  * @pw: The pw value when registered the handler.
3701  */
3702 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3703 {
3704     struct dwc2_hsotg *hsotg = pw;
3705     int retry_count = 8;
3706     u32 gintsts;
3707     u32 gintmsk;
3708 
3709     if (!dwc2_is_device_mode(hsotg))
3710         return IRQ_NONE;
3711 
3712     spin_lock(&hsotg->lock);
3713 irq_retry:
3714     gintsts = dwc2_readl(hsotg, GINTSTS);
3715     gintmsk = dwc2_readl(hsotg, GINTMSK);
3716 
3717     dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3718         __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3719 
3720     gintsts &= gintmsk;
3721 
3722     if (gintsts & GINTSTS_RESETDET) {
3723         dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3724 
3725         dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3726 
3727         /* This event must be used only if controller is suspended */
3728         if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3729             dwc2_exit_partial_power_down(hsotg, 0, true);
3730 
3731         hsotg->lx_state = DWC2_L0;
3732     }
3733 
3734     if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3735         u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3736         u32 connected = hsotg->connected;
3737 
3738         dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3739         dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3740             dwc2_readl(hsotg, GNPTXSTS));
3741 
3742         dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3743 
3744         /* Report disconnection if it is not already done. */
3745         dwc2_hsotg_disconnect(hsotg);
3746 
3747         /* Reset device address to zero */
3748         dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3749 
3750         if (usb_status & GOTGCTL_BSESVLD && connected)
3751             dwc2_hsotg_core_init_disconnected(hsotg, true);
3752     }
3753 
3754     if (gintsts & GINTSTS_ENUMDONE) {
3755         dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3756 
3757         dwc2_hsotg_irq_enumdone(hsotg);
3758     }
3759 
3760     if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3761         u32 daint = dwc2_readl(hsotg, DAINT);
3762         u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3763         u32 daint_out, daint_in;
3764         int ep;
3765 
3766         daint &= daintmsk;
3767         daint_out = daint >> DAINT_OUTEP_SHIFT;
3768         daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3769 
3770         dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3771 
3772         for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3773                         ep++, daint_out >>= 1) {
3774             if (daint_out & 1)
3775                 dwc2_hsotg_epint(hsotg, ep, 0);
3776         }
3777 
3778         for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3779                         ep++, daint_in >>= 1) {
3780             if (daint_in & 1)
3781                 dwc2_hsotg_epint(hsotg, ep, 1);
3782         }
3783     }
3784 
3785     /* check both FIFOs */
3786 
3787     if (gintsts & GINTSTS_NPTXFEMP) {
3788         dev_dbg(hsotg->dev, "NPTxFEmp\n");
3789 
3790         /*
3791          * Disable the interrupt to stop it happening again
3792          * unless one of these endpoint routines decides that
3793          * it needs re-enabling
3794          */
3795 
3796         dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3797         dwc2_hsotg_irq_fifoempty(hsotg, false);
3798     }
3799 
3800     if (gintsts & GINTSTS_PTXFEMP) {
3801         dev_dbg(hsotg->dev, "PTxFEmp\n");
3802 
3803         /* See note in GINTSTS_NPTxFEmp */
3804 
3805         dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3806         dwc2_hsotg_irq_fifoempty(hsotg, true);
3807     }
3808 
3809     if (gintsts & GINTSTS_RXFLVL) {
3810         /*
3811          * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3812          * we need to retry dwc2_hsotg_handle_rx if this is still
3813          * set.
3814          */
3815 
3816         dwc2_hsotg_handle_rx(hsotg);
3817     }
3818 
3819     if (gintsts & GINTSTS_ERLYSUSP) {
3820         dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3821         dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3822     }
3823 
3824     /*
3825      * these next two seem to crop-up occasionally causing the core
3826      * to shutdown the USB transfer, so try clearing them and logging
3827      * the occurrence.
3828      */
3829 
3830     if (gintsts & GINTSTS_GOUTNAKEFF) {
3831         u8 idx;
3832         u32 epctrl;
3833         u32 gintmsk;
3834         u32 daintmsk;
3835         struct dwc2_hsotg_ep *hs_ep;
3836 
3837         daintmsk = dwc2_readl(hsotg, DAINTMSK);
3838         daintmsk >>= DAINT_OUTEP_SHIFT;
3839         /* Mask this interrupt */
3840         gintmsk = dwc2_readl(hsotg, GINTMSK);
3841         gintmsk &= ~GINTSTS_GOUTNAKEFF;
3842         dwc2_writel(hsotg, gintmsk, GINTMSK);
3843 
3844         dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3845         for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3846             hs_ep = hsotg->eps_out[idx];
3847             /* Proceed only unmasked ISOC EPs */
3848             if (BIT(idx) & ~daintmsk)
3849                 continue;
3850 
3851             epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3852 
3853             //ISOC Ep's only
3854             if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3855                 epctrl |= DXEPCTL_SNAK;
3856                 epctrl |= DXEPCTL_EPDIS;
3857                 dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3858                 continue;
3859             }
3860 
3861             //Non-ISOC EP's
3862             if (hs_ep->halted) {
3863                 if (!(epctrl & DXEPCTL_EPENA))
3864                     epctrl |= DXEPCTL_EPENA;
3865                 epctrl |= DXEPCTL_EPDIS;
3866                 epctrl |= DXEPCTL_STALL;
3867                 dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3868             }
3869         }
3870 
3871         /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3872     }
3873 
3874     if (gintsts & GINTSTS_GINNAKEFF) {
3875         dev_info(hsotg->dev, "GINNakEff triggered\n");
3876 
3877         dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3878 
3879         dwc2_hsotg_dump(hsotg);
3880     }
3881 
3882     if (gintsts & GINTSTS_INCOMPL_SOIN)
3883         dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3884 
3885     if (gintsts & GINTSTS_INCOMPL_SOOUT)
3886         dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3887 
3888     /*
3889      * if we've had fifo events, we should try and go around the
3890      * loop again to see if there's any point in returning yet.
3891      */
3892 
3893     if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3894         goto irq_retry;
3895 
3896     /* Check WKUP_ALERT interrupt*/
3897     if (hsotg->params.service_interval)
3898         dwc2_gadget_wkup_alert_handler(hsotg);
3899 
3900     spin_unlock(&hsotg->lock);
3901 
3902     return IRQ_HANDLED;
3903 }
3904 
3905 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3906                    struct dwc2_hsotg_ep *hs_ep)
3907 {
3908     u32 epctrl_reg;
3909     u32 epint_reg;
3910 
3911     epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3912         DOEPCTL(hs_ep->index);
3913     epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3914         DOEPINT(hs_ep->index);
3915 
3916     dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3917         hs_ep->name);
3918 
3919     if (hs_ep->dir_in) {
3920         if (hsotg->dedicated_fifos || hs_ep->periodic) {
3921             dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3922             /* Wait for Nak effect */
3923             if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3924                             DXEPINT_INEPNAKEFF, 100))
3925                 dev_warn(hsotg->dev,
3926                      "%s: timeout DIEPINT.NAKEFF\n",
3927                      __func__);
3928         } else {
3929             dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3930             /* Wait for Nak effect */
3931             if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3932                             GINTSTS_GINNAKEFF, 100))
3933                 dev_warn(hsotg->dev,
3934                      "%s: timeout GINTSTS.GINNAKEFF\n",
3935                      __func__);
3936         }
3937     } else {
3938         /* Mask GINTSTS_GOUTNAKEFF interrupt */
3939         dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF);
3940 
3941         if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3942             dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3943 
3944         if (!using_dma(hsotg)) {
3945             /* Wait for GINTSTS_RXFLVL interrupt */
3946             if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3947                             GINTSTS_RXFLVL, 100)) {
3948                 dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n",
3949                      __func__);
3950             } else {
3951                 /*
3952                  * Pop GLOBAL OUT NAK status packet from RxFIFO
3953                  * to assert GOUTNAKEFF interrupt
3954                  */
3955                 dwc2_readl(hsotg, GRXSTSP);
3956             }
3957         }
3958 
3959         /* Wait for global nak to take effect */
3960         if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3961                         GINTSTS_GOUTNAKEFF, 100))
3962             dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3963                  __func__);
3964     }
3965 
3966     /* Disable ep */
3967     dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3968 
3969     /* Wait for ep to be disabled */
3970     if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3971         dev_warn(hsotg->dev,
3972              "%s: timeout DOEPCTL.EPDisable\n", __func__);
3973 
3974     /* Clear EPDISBLD interrupt */
3975     dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3976 
3977     if (hs_ep->dir_in) {
3978         unsigned short fifo_index;
3979 
3980         if (hsotg->dedicated_fifos || hs_ep->periodic)
3981             fifo_index = hs_ep->fifo_index;
3982         else
3983             fifo_index = 0;
3984 
3985         /* Flush TX FIFO */
3986         dwc2_flush_tx_fifo(hsotg, fifo_index);
3987 
3988         /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3989         if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3990             dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3991 
3992     } else {
3993         /* Remove global NAKs */
3994         dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3995     }
3996 }
3997 
3998 /**
3999  * dwc2_hsotg_ep_enable - enable the given endpoint
4000  * @ep: The USB endpint to configure
4001  * @desc: The USB endpoint descriptor to configure with.
4002  *
4003  * This is called from the USB gadget code's usb_ep_enable().
4004  */
4005 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
4006                 const struct usb_endpoint_descriptor *desc)
4007 {
4008     struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4009     struct dwc2_hsotg *hsotg = hs_ep->parent;
4010     unsigned long flags;
4011     unsigned int index = hs_ep->index;
4012     u32 epctrl_reg;
4013     u32 epctrl;
4014     u32 mps;
4015     u32 mc;
4016     u32 mask;
4017     unsigned int dir_in;
4018     unsigned int i, val, size;
4019     int ret = 0;
4020     unsigned char ep_type;
4021     int desc_num;
4022 
4023     dev_dbg(hsotg->dev,
4024         "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
4025         __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
4026         desc->wMaxPacketSize, desc->bInterval);
4027 
4028     /* not to be called for EP0 */
4029     if (index == 0) {
4030         dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
4031         return -EINVAL;
4032     }
4033 
4034     dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
4035     if (dir_in != hs_ep->dir_in) {
4036         dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
4037         return -EINVAL;
4038     }
4039 
4040     ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
4041     mps = usb_endpoint_maxp(desc);
4042     mc = usb_endpoint_maxp_mult(desc);
4043 
4044     /* ISOC IN in DDMA supported bInterval up to 10 */
4045     if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4046         dir_in && desc->bInterval > 10) {
4047         dev_err(hsotg->dev,
4048             "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
4049         return -EINVAL;
4050     }
4051 
4052     /* High bandwidth ISOC OUT in DDMA not supported */
4053     if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4054         !dir_in && mc > 1) {
4055         dev_err(hsotg->dev,
4056             "%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4057         return -EINVAL;
4058     }
4059 
4060     /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4061 
4062     epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4063     epctrl = dwc2_readl(hsotg, epctrl_reg);
4064 
4065     dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4066         __func__, epctrl, epctrl_reg);
4067 
4068     if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4069         desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4070     else
4071         desc_num = MAX_DMA_DESC_NUM_GENERIC;
4072 
4073     /* Allocate DMA descriptor chain for non-ctrl endpoints */
4074     if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4075         hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4076             desc_num * sizeof(struct dwc2_dma_desc),
4077             &hs_ep->desc_list_dma, GFP_ATOMIC);
4078         if (!hs_ep->desc_list) {
4079             ret = -ENOMEM;
4080             goto error2;
4081         }
4082     }
4083 
4084     spin_lock_irqsave(&hsotg->lock, flags);
4085 
4086     epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4087     epctrl |= DXEPCTL_MPS(mps);
4088 
4089     /*
4090      * mark the endpoint as active, otherwise the core may ignore
4091      * transactions entirely for this endpoint
4092      */
4093     epctrl |= DXEPCTL_USBACTEP;
4094 
4095     /* update the endpoint state */
4096     dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4097 
4098     /* default, set to non-periodic */
4099     hs_ep->isochronous = 0;
4100     hs_ep->periodic = 0;
4101     hs_ep->halted = 0;
4102     hs_ep->wedged = 0;
4103     hs_ep->interval = desc->bInterval;
4104 
4105     switch (ep_type) {
4106     case USB_ENDPOINT_XFER_ISOC:
4107         epctrl |= DXEPCTL_EPTYPE_ISO;
4108         epctrl |= DXEPCTL_SETEVENFR;
4109         hs_ep->isochronous = 1;
4110         hs_ep->interval = 1 << (desc->bInterval - 1);
4111         hs_ep->target_frame = TARGET_FRAME_INITIAL;
4112         hs_ep->next_desc = 0;
4113         hs_ep->compl_desc = 0;
4114         if (dir_in) {
4115             hs_ep->periodic = 1;
4116             mask = dwc2_readl(hsotg, DIEPMSK);
4117             mask |= DIEPMSK_NAKMSK;
4118             dwc2_writel(hsotg, mask, DIEPMSK);
4119         } else {
4120             epctrl |= DXEPCTL_SNAK;
4121             mask = dwc2_readl(hsotg, DOEPMSK);
4122             mask |= DOEPMSK_OUTTKNEPDISMSK;
4123             dwc2_writel(hsotg, mask, DOEPMSK);
4124         }
4125         break;
4126 
4127     case USB_ENDPOINT_XFER_BULK:
4128         epctrl |= DXEPCTL_EPTYPE_BULK;
4129         break;
4130 
4131     case USB_ENDPOINT_XFER_INT:
4132         if (dir_in)
4133             hs_ep->periodic = 1;
4134 
4135         if (hsotg->gadget.speed == USB_SPEED_HIGH)
4136             hs_ep->interval = 1 << (desc->bInterval - 1);
4137 
4138         epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4139         break;
4140 
4141     case USB_ENDPOINT_XFER_CONTROL:
4142         epctrl |= DXEPCTL_EPTYPE_CONTROL;
4143         break;
4144     }
4145 
4146     /*
4147      * if the hardware has dedicated fifos, we must give each IN EP
4148      * a unique tx-fifo even if it is non-periodic.
4149      */
4150     if (dir_in && hsotg->dedicated_fifos) {
4151         unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4152         u32 fifo_index = 0;
4153         u32 fifo_size = UINT_MAX;
4154 
4155         size = hs_ep->ep.maxpacket * hs_ep->mc;
4156         for (i = 1; i <= fifo_count; ++i) {
4157             if (hsotg->fifo_map & (1 << i))
4158                 continue;
4159             val = dwc2_readl(hsotg, DPTXFSIZN(i));
4160             val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4161             if (val < size)
4162                 continue;
4163             /* Search for smallest acceptable fifo */
4164             if (val < fifo_size) {
4165                 fifo_size = val;
4166                 fifo_index = i;
4167             }
4168         }
4169         if (!fifo_index) {
4170             dev_err(hsotg->dev,
4171                 "%s: No suitable fifo found\n", __func__);
4172             ret = -ENOMEM;
4173             goto error1;
4174         }
4175         epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4176         hsotg->fifo_map |= 1 << fifo_index;
4177         epctrl |= DXEPCTL_TXFNUM(fifo_index);
4178         hs_ep->fifo_index = fifo_index;
4179         hs_ep->fifo_size = fifo_size;
4180     }
4181 
4182     /* for non control endpoints, set PID to D0 */
4183     if (index && !hs_ep->isochronous)
4184         epctrl |= DXEPCTL_SETD0PID;
4185 
4186     /* WA for Full speed ISOC IN in DDMA mode.
4187      * By Clear NAK status of EP, core will send ZLP
4188      * to IN token and assert NAK interrupt relying
4189      * on TxFIFO status only
4190      */
4191 
4192     if (hsotg->gadget.speed == USB_SPEED_FULL &&
4193         hs_ep->isochronous && dir_in) {
4194         /* The WA applies only to core versions from 2.72a
4195          * to 4.00a (including both). Also for FS_IOT_1.00a
4196          * and HS_IOT_1.00a.
4197          */
4198         u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4199 
4200         if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4201              gsnpsid <= DWC2_CORE_REV_4_00a) ||
4202              gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4203              gsnpsid == DWC2_HS_IOT_REV_1_00a)
4204             epctrl |= DXEPCTL_CNAK;
4205     }
4206 
4207     dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4208         __func__, epctrl);
4209 
4210     dwc2_writel(hsotg, epctrl, epctrl_reg);
4211     dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4212         __func__, dwc2_readl(hsotg, epctrl_reg));
4213 
4214     /* enable the endpoint interrupt */
4215     dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4216 
4217 error1:
4218     spin_unlock_irqrestore(&hsotg->lock, flags);
4219 
4220 error2:
4221     if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4222         dmam_free_coherent(hsotg->dev, desc_num *
4223             sizeof(struct dwc2_dma_desc),
4224             hs_ep->desc_list, hs_ep->desc_list_dma);
4225         hs_ep->desc_list = NULL;
4226     }
4227 
4228     return ret;
4229 }
4230 
4231 /**
4232  * dwc2_hsotg_ep_disable - disable given endpoint
4233  * @ep: The endpoint to disable.
4234  */
4235 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4236 {
4237     struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4238     struct dwc2_hsotg *hsotg = hs_ep->parent;
4239     int dir_in = hs_ep->dir_in;
4240     int index = hs_ep->index;
4241     u32 epctrl_reg;
4242     u32 ctrl;
4243 
4244     dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4245 
4246     if (ep == &hsotg->eps_out[0]->ep) {
4247         dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4248         return -EINVAL;
4249     }
4250 
4251     if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4252         dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4253         return -EINVAL;
4254     }
4255 
4256     epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4257 
4258     ctrl = dwc2_readl(hsotg, epctrl_reg);
4259 
4260     if (ctrl & DXEPCTL_EPENA)
4261         dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4262 
4263     ctrl &= ~DXEPCTL_EPENA;
4264     ctrl &= ~DXEPCTL_USBACTEP;
4265     ctrl |= DXEPCTL_SNAK;
4266 
4267     dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4268     dwc2_writel(hsotg, ctrl, epctrl_reg);
4269 
4270     /* disable endpoint interrupts */
4271     dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4272 
4273     /* terminate all requests with shutdown */
4274     kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4275 
4276     hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4277     hs_ep->fifo_index = 0;
4278     hs_ep->fifo_size = 0;
4279 
4280     return 0;
4281 }
4282 
4283 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4284 {
4285     struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4286     struct dwc2_hsotg *hsotg = hs_ep->parent;
4287     unsigned long flags;
4288     int ret;
4289 
4290     spin_lock_irqsave(&hsotg->lock, flags);
4291     ret = dwc2_hsotg_ep_disable(ep);
4292     spin_unlock_irqrestore(&hsotg->lock, flags);
4293     return ret;
4294 }
4295 
4296 /**
4297  * on_list - check request is on the given endpoint
4298  * @ep: The endpoint to check.
4299  * @test: The request to test if it is on the endpoint.
4300  */
4301 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4302 {
4303     struct dwc2_hsotg_req *req, *treq;
4304 
4305     list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4306         if (req == test)
4307             return true;
4308     }
4309 
4310     return false;
4311 }
4312 
4313 /**
4314  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4315  * @ep: The endpoint to dequeue.
4316  * @req: The request to be removed from a queue.
4317  */
4318 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4319 {
4320     struct dwc2_hsotg_req *hs_req = our_req(req);
4321     struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4322     struct dwc2_hsotg *hs = hs_ep->parent;
4323     unsigned long flags;
4324 
4325     dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4326 
4327     spin_lock_irqsave(&hs->lock, flags);
4328 
4329     if (!on_list(hs_ep, hs_req)) {
4330         spin_unlock_irqrestore(&hs->lock, flags);
4331         return -EINVAL;
4332     }
4333 
4334     /* Dequeue already started request */
4335     if (req == &hs_ep->req->req)
4336         dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4337 
4338     dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4339     spin_unlock_irqrestore(&hs->lock, flags);
4340 
4341     return 0;
4342 }
4343 
4344 /**
4345  * dwc2_gadget_ep_set_wedge - set wedge on a given endpoint
4346  * @ep: The endpoint to be wedged.
4347  *
4348  */
4349 static int dwc2_gadget_ep_set_wedge(struct usb_ep *ep)
4350 {
4351     struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4352     struct dwc2_hsotg *hs = hs_ep->parent;
4353 
4354     unsigned long   flags;
4355     int     ret;
4356 
4357     spin_lock_irqsave(&hs->lock, flags);
4358     hs_ep->wedged = 1;
4359     ret = dwc2_hsotg_ep_sethalt(ep, 1, false);
4360     spin_unlock_irqrestore(&hs->lock, flags);
4361 
4362     return ret;
4363 }
4364 
4365 /**
4366  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4367  * @ep: The endpoint to set halt.
4368  * @value: Set or unset the halt.
4369  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4370  *       the endpoint is busy processing requests.
4371  *
4372  * We need to stall the endpoint immediately if request comes from set_feature
4373  * protocol command handler.
4374  */
4375 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4376 {
4377     struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4378     struct dwc2_hsotg *hs = hs_ep->parent;
4379     int index = hs_ep->index;
4380     u32 epreg;
4381     u32 epctl;
4382     u32 xfertype;
4383 
4384     dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4385 
4386     if (index == 0) {
4387         if (value)
4388             dwc2_hsotg_stall_ep0(hs);
4389         else
4390             dev_warn(hs->dev,
4391                  "%s: can't clear halt on ep0\n", __func__);
4392         return 0;
4393     }
4394 
4395     if (hs_ep->isochronous) {
4396         dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4397         return -EINVAL;
4398     }
4399 
4400     if (!now && value && !list_empty(&hs_ep->queue)) {
4401         dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4402             ep->name);
4403         return -EAGAIN;
4404     }
4405 
4406     if (hs_ep->dir_in) {
4407         epreg = DIEPCTL(index);
4408         epctl = dwc2_readl(hs, epreg);
4409 
4410         if (value) {
4411             epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4412             if (epctl & DXEPCTL_EPENA)
4413                 epctl |= DXEPCTL_EPDIS;
4414         } else {
4415             epctl &= ~DXEPCTL_STALL;
4416             hs_ep->wedged = 0;
4417             xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4418             if (xfertype == DXEPCTL_EPTYPE_BULK ||
4419                 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4420                 epctl |= DXEPCTL_SETD0PID;
4421         }
4422         dwc2_writel(hs, epctl, epreg);
4423     } else {
4424         epreg = DOEPCTL(index);
4425         epctl = dwc2_readl(hs, epreg);
4426 
4427         if (value) {
4428             /* Unmask GOUTNAKEFF interrupt */
4429             dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF);
4430 
4431             if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4432                 dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4433             // STALL bit will be set in GOUTNAKEFF interrupt handler
4434         } else {
4435             epctl &= ~DXEPCTL_STALL;
4436             hs_ep->wedged = 0;
4437             xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4438             if (xfertype == DXEPCTL_EPTYPE_BULK ||
4439                 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4440                 epctl |= DXEPCTL_SETD0PID;
4441             dwc2_writel(hs, epctl, epreg);
4442         }
4443     }
4444 
4445     hs_ep->halted = value;
4446     return 0;
4447 }
4448 
4449 /**
4450  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4451  * @ep: The endpoint to set halt.
4452  * @value: Set or unset the halt.
4453  */
4454 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4455 {
4456     struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4457     struct dwc2_hsotg *hs = hs_ep->parent;
4458     unsigned long flags;
4459     int ret;
4460 
4461     spin_lock_irqsave(&hs->lock, flags);
4462     ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4463     spin_unlock_irqrestore(&hs->lock, flags);
4464 
4465     return ret;
4466 }
4467 
4468 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4469     .enable     = dwc2_hsotg_ep_enable,
4470     .disable    = dwc2_hsotg_ep_disable_lock,
4471     .alloc_request  = dwc2_hsotg_ep_alloc_request,
4472     .free_request   = dwc2_hsotg_ep_free_request,
4473     .queue      = dwc2_hsotg_ep_queue_lock,
4474     .dequeue    = dwc2_hsotg_ep_dequeue,
4475     .set_halt   = dwc2_hsotg_ep_sethalt_lock,
4476     .set_wedge  = dwc2_gadget_ep_set_wedge,
4477     /* note, don't believe we have any call for the fifo routines */
4478 };
4479 
4480 /**
4481  * dwc2_hsotg_init - initialize the usb core
4482  * @hsotg: The driver state
4483  */
4484 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4485 {
4486     /* unmask subset of endpoint interrupts */
4487 
4488     dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4489             DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4490             DIEPMSK);
4491 
4492     dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4493             DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4494             DOEPMSK);
4495 
4496     dwc2_writel(hsotg, 0, DAINTMSK);
4497 
4498     /* Be in disconnected state until gadget is registered */
4499     dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4500 
4501     /* setup fifos */
4502 
4503     dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4504         dwc2_readl(hsotg, GRXFSIZ),
4505         dwc2_readl(hsotg, GNPTXFSIZ));
4506 
4507     dwc2_hsotg_init_fifo(hsotg);
4508 
4509     if (using_dma(hsotg))
4510         dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4511 }
4512 
4513 /**
4514  * dwc2_hsotg_udc_start - prepare the udc for work
4515  * @gadget: The usb gadget state
4516  * @driver: The usb gadget driver
4517  *
4518  * Perform initialization to prepare udc device and driver
4519  * to work.
4520  */
4521 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4522                 struct usb_gadget_driver *driver)
4523 {
4524     struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4525     unsigned long flags;
4526     int ret;
4527 
4528     if (!hsotg) {
4529         pr_err("%s: called with no device\n", __func__);
4530         return -ENODEV;
4531     }
4532 
4533     if (!driver) {
4534         dev_err(hsotg->dev, "%s: no driver\n", __func__);
4535         return -EINVAL;
4536     }
4537 
4538     if (driver->max_speed < USB_SPEED_FULL)
4539         dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4540 
4541     if (!driver->setup) {
4542         dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4543         return -EINVAL;
4544     }
4545 
4546     WARN_ON(hsotg->driver);
4547 
4548     hsotg->driver = driver;
4549     hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4550     hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4551 
4552     if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4553         ret = dwc2_lowlevel_hw_enable(hsotg);
4554         if (ret)
4555             goto err;
4556     }
4557 
4558     if (!IS_ERR_OR_NULL(hsotg->uphy))
4559         otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4560 
4561     spin_lock_irqsave(&hsotg->lock, flags);
4562     if (dwc2_hw_is_device(hsotg)) {
4563         dwc2_hsotg_init(hsotg);
4564         dwc2_hsotg_core_init_disconnected(hsotg, false);
4565     }
4566 
4567     hsotg->enabled = 0;
4568     spin_unlock_irqrestore(&hsotg->lock, flags);
4569 
4570     gadget->sg_supported = using_desc_dma(hsotg);
4571     dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4572 
4573     return 0;
4574 
4575 err:
4576     hsotg->driver = NULL;
4577     return ret;
4578 }
4579 
4580 /**
4581  * dwc2_hsotg_udc_stop - stop the udc
4582  * @gadget: The usb gadget state
4583  *
4584  * Stop udc hw block and stay tunned for future transmissions
4585  */
4586 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4587 {
4588     struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4589     unsigned long flags;
4590     int ep;
4591 
4592     if (!hsotg)
4593         return -ENODEV;
4594 
4595     /* all endpoints should be shutdown */
4596     for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4597         if (hsotg->eps_in[ep])
4598             dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4599         if (hsotg->eps_out[ep])
4600             dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4601     }
4602 
4603     spin_lock_irqsave(&hsotg->lock, flags);
4604 
4605     hsotg->driver = NULL;
4606     hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4607     hsotg->enabled = 0;
4608 
4609     spin_unlock_irqrestore(&hsotg->lock, flags);
4610 
4611     if (!IS_ERR_OR_NULL(hsotg->uphy))
4612         otg_set_peripheral(hsotg->uphy->otg, NULL);
4613 
4614     if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4615         dwc2_lowlevel_hw_disable(hsotg);
4616 
4617     return 0;
4618 }
4619 
4620 /**
4621  * dwc2_hsotg_gadget_getframe - read the frame number
4622  * @gadget: The usb gadget state
4623  *
4624  * Read the {micro} frame number
4625  */
4626 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4627 {
4628     return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4629 }
4630 
4631 /**
4632  * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4633  * @gadget: The usb gadget state
4634  * @is_selfpowered: Whether the device is self-powered
4635  *
4636  * Set if the device is self or bus powered.
4637  */
4638 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4639                       int is_selfpowered)
4640 {
4641     struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4642     unsigned long flags;
4643 
4644     spin_lock_irqsave(&hsotg->lock, flags);
4645     gadget->is_selfpowered = !!is_selfpowered;
4646     spin_unlock_irqrestore(&hsotg->lock, flags);
4647 
4648     return 0;
4649 }
4650 
4651 /**
4652  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4653  * @gadget: The usb gadget state
4654  * @is_on: Current state of the USB PHY
4655  *
4656  * Connect/Disconnect the USB PHY pullup
4657  */
4658 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4659 {
4660     struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4661     unsigned long flags;
4662 
4663     dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4664         hsotg->op_state);
4665 
4666     /* Don't modify pullup state while in host mode */
4667     if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4668         hsotg->enabled = is_on;
4669         return 0;
4670     }
4671 
4672     spin_lock_irqsave(&hsotg->lock, flags);
4673     if (is_on) {
4674         hsotg->enabled = 1;
4675         dwc2_hsotg_core_init_disconnected(hsotg, false);
4676         /* Enable ACG feature in device mode,if supported */
4677         dwc2_enable_acg(hsotg);
4678         dwc2_hsotg_core_connect(hsotg);
4679     } else {
4680         dwc2_hsotg_core_disconnect(hsotg);
4681         dwc2_hsotg_disconnect(hsotg);
4682         hsotg->enabled = 0;
4683     }
4684 
4685     hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4686     spin_unlock_irqrestore(&hsotg->lock, flags);
4687 
4688     return 0;
4689 }
4690 
4691 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4692 {
4693     struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4694     unsigned long flags;
4695 
4696     dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4697     spin_lock_irqsave(&hsotg->lock, flags);
4698 
4699     /*
4700      * If controller is in partial power down state, it must exit from
4701      * that state before being initialized / de-initialized
4702      */
4703     if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd)
4704         /*
4705          * No need to check the return value as
4706          * registers are not being restored.
4707          */
4708         dwc2_exit_partial_power_down(hsotg, 0, false);
4709 
4710     if (is_active) {
4711         hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4712 
4713         dwc2_hsotg_core_init_disconnected(hsotg, false);
4714         if (hsotg->enabled) {
4715             /* Enable ACG feature in device mode,if supported */
4716             dwc2_enable_acg(hsotg);
4717             dwc2_hsotg_core_connect(hsotg);
4718         }
4719     } else {
4720         dwc2_hsotg_core_disconnect(hsotg);
4721         dwc2_hsotg_disconnect(hsotg);
4722     }
4723 
4724     spin_unlock_irqrestore(&hsotg->lock, flags);
4725     return 0;
4726 }
4727 
4728 /**
4729  * dwc2_hsotg_vbus_draw - report bMaxPower field
4730  * @gadget: The usb gadget state
4731  * @mA: Amount of current
4732  *
4733  * Report how much power the device may consume to the phy.
4734  */
4735 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4736 {
4737     struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4738 
4739     if (IS_ERR_OR_NULL(hsotg->uphy))
4740         return -ENOTSUPP;
4741     return usb_phy_set_power(hsotg->uphy, mA);
4742 }
4743 
4744 static void dwc2_gadget_set_speed(struct usb_gadget *g, enum usb_device_speed speed)
4745 {
4746     struct dwc2_hsotg *hsotg = to_hsotg(g);
4747     unsigned long       flags;
4748 
4749     spin_lock_irqsave(&hsotg->lock, flags);
4750     switch (speed) {
4751     case USB_SPEED_HIGH:
4752         hsotg->params.speed = DWC2_SPEED_PARAM_HIGH;
4753         break;
4754     case USB_SPEED_FULL:
4755         hsotg->params.speed = DWC2_SPEED_PARAM_FULL;
4756         break;
4757     case USB_SPEED_LOW:
4758         hsotg->params.speed = DWC2_SPEED_PARAM_LOW;
4759         break;
4760     default:
4761         dev_err(hsotg->dev, "invalid speed (%d)\n", speed);
4762     }
4763     spin_unlock_irqrestore(&hsotg->lock, flags);
4764 }
4765 
4766 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4767     .get_frame  = dwc2_hsotg_gadget_getframe,
4768     .set_selfpowered    = dwc2_hsotg_set_selfpowered,
4769     .udc_start      = dwc2_hsotg_udc_start,
4770     .udc_stop       = dwc2_hsotg_udc_stop,
4771     .pullup                 = dwc2_hsotg_pullup,
4772     .udc_set_speed      = dwc2_gadget_set_speed,
4773     .vbus_session       = dwc2_hsotg_vbus_session,
4774     .vbus_draw      = dwc2_hsotg_vbus_draw,
4775 };
4776 
4777 /**
4778  * dwc2_hsotg_initep - initialise a single endpoint
4779  * @hsotg: The device state.
4780  * @hs_ep: The endpoint to be initialised.
4781  * @epnum: The endpoint number
4782  * @dir_in: True if direction is in.
4783  *
4784  * Initialise the given endpoint (as part of the probe and device state
4785  * creation) to give to the gadget driver. Setup the endpoint name, any
4786  * direction information and other state that may be required.
4787  */
4788 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4789                   struct dwc2_hsotg_ep *hs_ep,
4790                        int epnum,
4791                        bool dir_in)
4792 {
4793     char *dir;
4794 
4795     if (epnum == 0)
4796         dir = "";
4797     else if (dir_in)
4798         dir = "in";
4799     else
4800         dir = "out";
4801 
4802     hs_ep->dir_in = dir_in;
4803     hs_ep->index = epnum;
4804 
4805     snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4806 
4807     INIT_LIST_HEAD(&hs_ep->queue);
4808     INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4809 
4810     /* add to the list of endpoints known by the gadget driver */
4811     if (epnum)
4812         list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4813 
4814     hs_ep->parent = hsotg;
4815     hs_ep->ep.name = hs_ep->name;
4816 
4817     if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4818         usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4819     else
4820         usb_ep_set_maxpacket_limit(&hs_ep->ep,
4821                        epnum ? 1024 : EP0_MPS_LIMIT);
4822     hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4823 
4824     if (epnum == 0) {
4825         hs_ep->ep.caps.type_control = true;
4826     } else {
4827         if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4828             hs_ep->ep.caps.type_iso = true;
4829             hs_ep->ep.caps.type_bulk = true;
4830         }
4831         hs_ep->ep.caps.type_int = true;
4832     }
4833 
4834     if (dir_in)
4835         hs_ep->ep.caps.dir_in = true;
4836     else
4837         hs_ep->ep.caps.dir_out = true;
4838 
4839     /*
4840      * if we're using dma, we need to set the next-endpoint pointer
4841      * to be something valid.
4842      */
4843 
4844     if (using_dma(hsotg)) {
4845         u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4846 
4847         if (dir_in)
4848             dwc2_writel(hsotg, next, DIEPCTL(epnum));
4849         else
4850             dwc2_writel(hsotg, next, DOEPCTL(epnum));
4851     }
4852 }
4853 
4854 /**
4855  * dwc2_hsotg_hw_cfg - read HW configuration registers
4856  * @hsotg: Programming view of the DWC_otg controller
4857  *
4858  * Read the USB core HW configuration registers
4859  */
4860 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4861 {
4862     u32 cfg;
4863     u32 ep_type;
4864     u32 i;
4865 
4866     /* check hardware configuration */
4867 
4868     hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4869 
4870     /* Add ep0 */
4871     hsotg->num_of_eps++;
4872 
4873     hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4874                     sizeof(struct dwc2_hsotg_ep),
4875                     GFP_KERNEL);
4876     if (!hsotg->eps_in[0])
4877         return -ENOMEM;
4878     /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4879     hsotg->eps_out[0] = hsotg->eps_in[0];
4880 
4881     cfg = hsotg->hw_params.dev_ep_dirs;
4882     for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4883         ep_type = cfg & 3;
4884         /* Direction in or both */
4885         if (!(ep_type & 2)) {
4886             hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4887                 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4888             if (!hsotg->eps_in[i])
4889                 return -ENOMEM;
4890         }
4891         /* Direction out or both */
4892         if (!(ep_type & 1)) {
4893             hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4894                 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4895             if (!hsotg->eps_out[i])
4896                 return -ENOMEM;
4897         }
4898     }
4899 
4900     hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4901     hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4902 
4903     dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4904          hsotg->num_of_eps,
4905          hsotg->dedicated_fifos ? "dedicated" : "shared",
4906          hsotg->fifo_mem);
4907     return 0;
4908 }
4909 
4910 /**
4911  * dwc2_hsotg_dump - dump state of the udc
4912  * @hsotg: Programming view of the DWC_otg controller
4913  *
4914  */
4915 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4916 {
4917 #ifdef DEBUG
4918     struct device *dev = hsotg->dev;
4919     u32 val;
4920     int idx;
4921 
4922     dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4923          dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4924          dwc2_readl(hsotg, DIEPMSK));
4925 
4926     dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4927          dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4928 
4929     dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4930          dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4931 
4932     /* show periodic fifo settings */
4933 
4934     for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4935         val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4936         dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4937              val >> FIFOSIZE_DEPTH_SHIFT,
4938              val & FIFOSIZE_STARTADDR_MASK);
4939     }
4940 
4941     for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4942         dev_info(dev,
4943              "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4944              dwc2_readl(hsotg, DIEPCTL(idx)),
4945              dwc2_readl(hsotg, DIEPTSIZ(idx)),
4946              dwc2_readl(hsotg, DIEPDMA(idx)));
4947 
4948         val = dwc2_readl(hsotg, DOEPCTL(idx));
4949         dev_info(dev,
4950              "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4951              idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4952              dwc2_readl(hsotg, DOEPTSIZ(idx)),
4953              dwc2_readl(hsotg, DOEPDMA(idx)));
4954     }
4955 
4956     dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4957          dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4958 #endif
4959 }
4960 
4961 /**
4962  * dwc2_gadget_init - init function for gadget
4963  * @hsotg: Programming view of the DWC_otg controller
4964  *
4965  */
4966 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4967 {
4968     struct device *dev = hsotg->dev;
4969     int epnum;
4970     int ret;
4971 
4972     /* Dump fifo information */
4973     dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4974         hsotg->params.g_np_tx_fifo_size);
4975     dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4976 
4977     switch (hsotg->params.speed) {
4978     case DWC2_SPEED_PARAM_LOW:
4979         hsotg->gadget.max_speed = USB_SPEED_LOW;
4980         break;
4981     case DWC2_SPEED_PARAM_FULL:
4982         hsotg->gadget.max_speed = USB_SPEED_FULL;
4983         break;
4984     default:
4985         hsotg->gadget.max_speed = USB_SPEED_HIGH;
4986         break;
4987     }
4988 
4989     hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4990     hsotg->gadget.name = dev_name(dev);
4991     hsotg->gadget.otg_caps = &hsotg->params.otg_caps;
4992     hsotg->remote_wakeup_allowed = 0;
4993 
4994     if (hsotg->params.lpm)
4995         hsotg->gadget.lpm_capable = true;
4996 
4997     if (hsotg->dr_mode == USB_DR_MODE_OTG)
4998         hsotg->gadget.is_otg = 1;
4999     else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
5000         hsotg->op_state = OTG_STATE_B_PERIPHERAL;
5001 
5002     ret = dwc2_hsotg_hw_cfg(hsotg);
5003     if (ret) {
5004         dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
5005         return ret;
5006     }
5007 
5008     hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
5009             DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5010     if (!hsotg->ctrl_buff)
5011         return -ENOMEM;
5012 
5013     hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
5014             DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5015     if (!hsotg->ep0_buff)
5016         return -ENOMEM;
5017 
5018     if (using_desc_dma(hsotg)) {
5019         ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
5020         if (ret < 0)
5021             return ret;
5022     }
5023 
5024     ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
5025                    IRQF_SHARED, dev_name(hsotg->dev), hsotg);
5026     if (ret < 0) {
5027         dev_err(dev, "cannot claim IRQ for gadget\n");
5028         return ret;
5029     }
5030 
5031     /* hsotg->num_of_eps holds number of EPs other than ep0 */
5032 
5033     if (hsotg->num_of_eps == 0) {
5034         dev_err(dev, "wrong number of EPs (zero)\n");
5035         return -EINVAL;
5036     }
5037 
5038     /* setup endpoint information */
5039 
5040     INIT_LIST_HEAD(&hsotg->gadget.ep_list);
5041     hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
5042 
5043     /* allocate EP0 request */
5044 
5045     hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
5046                              GFP_KERNEL);
5047     if (!hsotg->ctrl_req) {
5048         dev_err(dev, "failed to allocate ctrl req\n");
5049         return -ENOMEM;
5050     }
5051 
5052     /* initialise the endpoints now the core has been initialised */
5053     for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
5054         if (hsotg->eps_in[epnum])
5055             dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
5056                       epnum, 1);
5057         if (hsotg->eps_out[epnum])
5058             dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
5059                       epnum, 0);
5060     }
5061 
5062     dwc2_hsotg_dump(hsotg);
5063 
5064     return 0;
5065 }
5066 
5067 /**
5068  * dwc2_hsotg_remove - remove function for hsotg driver
5069  * @hsotg: Programming view of the DWC_otg controller
5070  *
5071  */
5072 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
5073 {
5074     usb_del_gadget_udc(&hsotg->gadget);
5075     dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
5076 
5077     return 0;
5078 }
5079 
5080 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
5081 {
5082     unsigned long flags;
5083 
5084     if (hsotg->lx_state != DWC2_L0)
5085         return 0;
5086 
5087     if (hsotg->driver) {
5088         int ep;
5089 
5090         dev_info(hsotg->dev, "suspending usb gadget %s\n",
5091              hsotg->driver->driver.name);
5092 
5093         spin_lock_irqsave(&hsotg->lock, flags);
5094         if (hsotg->enabled)
5095             dwc2_hsotg_core_disconnect(hsotg);
5096         dwc2_hsotg_disconnect(hsotg);
5097         hsotg->gadget.speed = USB_SPEED_UNKNOWN;
5098         spin_unlock_irqrestore(&hsotg->lock, flags);
5099 
5100         for (ep = 1; ep < hsotg->num_of_eps; ep++) {
5101             if (hsotg->eps_in[ep])
5102                 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
5103             if (hsotg->eps_out[ep])
5104                 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
5105         }
5106     }
5107 
5108     return 0;
5109 }
5110 
5111 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
5112 {
5113     unsigned long flags;
5114 
5115     if (hsotg->lx_state == DWC2_L2)
5116         return 0;
5117 
5118     if (hsotg->driver) {
5119         dev_info(hsotg->dev, "resuming usb gadget %s\n",
5120              hsotg->driver->driver.name);
5121 
5122         spin_lock_irqsave(&hsotg->lock, flags);
5123         dwc2_hsotg_core_init_disconnected(hsotg, false);
5124         if (hsotg->enabled) {
5125             /* Enable ACG feature in device mode,if supported */
5126             dwc2_enable_acg(hsotg);
5127             dwc2_hsotg_core_connect(hsotg);
5128         }
5129         spin_unlock_irqrestore(&hsotg->lock, flags);
5130     }
5131 
5132     return 0;
5133 }
5134 
5135 /**
5136  * dwc2_backup_device_registers() - Backup controller device registers.
5137  * When suspending usb bus, registers needs to be backuped
5138  * if controller power is disabled once suspended.
5139  *
5140  * @hsotg: Programming view of the DWC_otg controller
5141  */
5142 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5143 {
5144     struct dwc2_dregs_backup *dr;
5145     int i;
5146 
5147     dev_dbg(hsotg->dev, "%s\n", __func__);
5148 
5149     /* Backup dev regs */
5150     dr = &hsotg->dr_backup;
5151 
5152     dr->dcfg = dwc2_readl(hsotg, DCFG);
5153     dr->dctl = dwc2_readl(hsotg, DCTL);
5154     dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5155     dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5156     dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5157 
5158     for (i = 0; i < hsotg->num_of_eps; i++) {
5159         /* Backup IN EPs */
5160         dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5161 
5162         /* Ensure DATA PID is correctly configured */
5163         if (dr->diepctl[i] & DXEPCTL_DPID)
5164             dr->diepctl[i] |= DXEPCTL_SETD1PID;
5165         else
5166             dr->diepctl[i] |= DXEPCTL_SETD0PID;
5167 
5168         dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5169         dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5170 
5171         /* Backup OUT EPs */
5172         dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5173 
5174         /* Ensure DATA PID is correctly configured */
5175         if (dr->doepctl[i] & DXEPCTL_DPID)
5176             dr->doepctl[i] |= DXEPCTL_SETD1PID;
5177         else
5178             dr->doepctl[i] |= DXEPCTL_SETD0PID;
5179 
5180         dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5181         dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5182         dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5183     }
5184     dr->valid = true;
5185     return 0;
5186 }
5187 
5188 /**
5189  * dwc2_restore_device_registers() - Restore controller device registers.
5190  * When resuming usb bus, device registers needs to be restored
5191  * if controller power were disabled.
5192  *
5193  * @hsotg: Programming view of the DWC_otg controller
5194  * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5195  *
5196  * Return: 0 if successful, negative error code otherwise
5197  */
5198 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5199 {
5200     struct dwc2_dregs_backup *dr;
5201     int i;
5202 
5203     dev_dbg(hsotg->dev, "%s\n", __func__);
5204 
5205     /* Restore dev regs */
5206     dr = &hsotg->dr_backup;
5207     if (!dr->valid) {
5208         dev_err(hsotg->dev, "%s: no device registers to restore\n",
5209             __func__);
5210         return -EINVAL;
5211     }
5212     dr->valid = false;
5213 
5214     if (!remote_wakeup)
5215         dwc2_writel(hsotg, dr->dctl, DCTL);
5216 
5217     dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5218     dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5219     dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5220 
5221     for (i = 0; i < hsotg->num_of_eps; i++) {
5222         /* Restore IN EPs */
5223         dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5224         dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5225         dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5226         /** WA for enabled EPx's IN in DDMA mode. On entering to
5227          * hibernation wrong value read and saved from DIEPDMAx,
5228          * as result BNA interrupt asserted on hibernation exit
5229          * by restoring from saved area.
5230          */
5231         if (using_desc_dma(hsotg) &&
5232             (dr->diepctl[i] & DXEPCTL_EPENA))
5233             dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5234         dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5235         dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5236         /* Restore OUT EPs */
5237         dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5238         /* WA for enabled EPx's OUT in DDMA mode. On entering to
5239          * hibernation wrong value read and saved from DOEPDMAx,
5240          * as result BNA interrupt asserted on hibernation exit
5241          * by restoring from saved area.
5242          */
5243         if (using_desc_dma(hsotg) &&
5244             (dr->doepctl[i] & DXEPCTL_EPENA))
5245             dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5246         dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5247         dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5248     }
5249 
5250     return 0;
5251 }
5252 
5253 /**
5254  * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5255  *
5256  * @hsotg: Programming view of DWC_otg controller
5257  *
5258  */
5259 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5260 {
5261     u32 val;
5262 
5263     if (!hsotg->params.lpm)
5264         return;
5265 
5266     val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5267     val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5268     val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5269     val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5270     val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5271     val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5272     val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5273     dwc2_writel(hsotg, val, GLPMCFG);
5274     dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5275 
5276     /* Unmask WKUP_ALERT Interrupt */
5277     if (hsotg->params.service_interval)
5278         dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5279 }
5280 
5281 /**
5282  * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5283  *
5284  * @hsotg: Programming view of DWC_otg controller
5285  *
5286  */
5287 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5288 {
5289     u32 val = 0;
5290 
5291     val |= GREFCLK_REF_CLK_MODE;
5292     val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5293     val |= hsotg->params.sof_cnt_wkup_alert <<
5294            GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5295 
5296     dwc2_writel(hsotg, val, GREFCLK);
5297     dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5298 }
5299 
5300 /**
5301  * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5302  *
5303  * @hsotg: Programming view of the DWC_otg controller
5304  *
5305  * Return non-zero if failed to enter to hibernation.
5306  */
5307 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5308 {
5309     u32 gpwrdn;
5310     int ret = 0;
5311 
5312     /* Change to L2(suspend) state */
5313     hsotg->lx_state = DWC2_L2;
5314     dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5315     ret = dwc2_backup_global_registers(hsotg);
5316     if (ret) {
5317         dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5318             __func__);
5319         return ret;
5320     }
5321     ret = dwc2_backup_device_registers(hsotg);
5322     if (ret) {
5323         dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5324             __func__);
5325         return ret;
5326     }
5327 
5328     gpwrdn = GPWRDN_PWRDNRSTN;
5329     gpwrdn |= GPWRDN_PMUACTV;
5330     dwc2_writel(hsotg, gpwrdn, GPWRDN);
5331     udelay(10);
5332 
5333     /* Set flag to indicate that we are in hibernation */
5334     hsotg->hibernated = 1;
5335 
5336     /* Enable interrupts from wake up logic */
5337     gpwrdn = dwc2_readl(hsotg, GPWRDN);
5338     gpwrdn |= GPWRDN_PMUINTSEL;
5339     dwc2_writel(hsotg, gpwrdn, GPWRDN);
5340     udelay(10);
5341 
5342     /* Unmask device mode interrupts in GPWRDN */
5343     gpwrdn = dwc2_readl(hsotg, GPWRDN);
5344     gpwrdn |= GPWRDN_RST_DET_MSK;
5345     gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5346     gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5347     dwc2_writel(hsotg, gpwrdn, GPWRDN);
5348     udelay(10);
5349 
5350     /* Enable Power Down Clamp */
5351     gpwrdn = dwc2_readl(hsotg, GPWRDN);
5352     gpwrdn |= GPWRDN_PWRDNCLMP;
5353     dwc2_writel(hsotg, gpwrdn, GPWRDN);
5354     udelay(10);
5355 
5356     /* Switch off VDD */
5357     gpwrdn = dwc2_readl(hsotg, GPWRDN);
5358     gpwrdn |= GPWRDN_PWRDNSWTCH;
5359     dwc2_writel(hsotg, gpwrdn, GPWRDN);
5360     udelay(10);
5361 
5362     /* Save gpwrdn register for further usage if stschng interrupt */
5363     hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5364     dev_dbg(hsotg->dev, "Hibernation completed\n");
5365 
5366     return ret;
5367 }
5368 
5369 /**
5370  * dwc2_gadget_exit_hibernation()
5371  * This function is for exiting from Device mode hibernation by host initiated
5372  * resume/reset and device initiated remote-wakeup.
5373  *
5374  * @hsotg: Programming view of the DWC_otg controller
5375  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5376  * @reset: indicates whether resume is initiated by Reset.
5377  *
5378  * Return non-zero if failed to exit from hibernation.
5379  */
5380 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5381                  int rem_wakeup, int reset)
5382 {
5383     u32 pcgcctl;
5384     u32 gpwrdn;
5385     u32 dctl;
5386     int ret = 0;
5387     struct dwc2_gregs_backup *gr;
5388     struct dwc2_dregs_backup *dr;
5389 
5390     gr = &hsotg->gr_backup;
5391     dr = &hsotg->dr_backup;
5392 
5393     if (!hsotg->hibernated) {
5394         dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5395         return 1;
5396     }
5397     dev_dbg(hsotg->dev,
5398         "%s: called with rem_wakeup = %d reset = %d\n",
5399         __func__, rem_wakeup, reset);
5400 
5401     dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5402 
5403     if (!reset) {
5404         /* Clear all pending interupts */
5405         dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5406     }
5407 
5408     /* De-assert Restore */
5409     gpwrdn = dwc2_readl(hsotg, GPWRDN);
5410     gpwrdn &= ~GPWRDN_RESTORE;
5411     dwc2_writel(hsotg, gpwrdn, GPWRDN);
5412     udelay(10);
5413 
5414     if (!rem_wakeup) {
5415         pcgcctl = dwc2_readl(hsotg, PCGCTL);
5416         pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5417         dwc2_writel(hsotg, pcgcctl, PCGCTL);
5418     }
5419 
5420     /* Restore GUSBCFG, DCFG and DCTL */
5421     dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5422     dwc2_writel(hsotg, dr->dcfg, DCFG);
5423     dwc2_writel(hsotg, dr->dctl, DCTL);
5424 
5425     /* On USB Reset, reset device address to zero */
5426     if (reset)
5427         dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
5428 
5429     /* De-assert Wakeup Logic */
5430     gpwrdn = dwc2_readl(hsotg, GPWRDN);
5431     gpwrdn &= ~GPWRDN_PMUACTV;
5432     dwc2_writel(hsotg, gpwrdn, GPWRDN);
5433 
5434     if (rem_wakeup) {
5435         udelay(10);
5436         /* Start Remote Wakeup Signaling */
5437         dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5438     } else {
5439         udelay(50);
5440         /* Set Device programming done bit */
5441         dctl = dwc2_readl(hsotg, DCTL);
5442         dctl |= DCTL_PWRONPRGDONE;
5443         dwc2_writel(hsotg, dctl, DCTL);
5444     }
5445     /* Wait for interrupts which must be cleared */
5446     mdelay(2);
5447     /* Clear all pending interupts */
5448     dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5449 
5450     /* Restore global registers */
5451     ret = dwc2_restore_global_registers(hsotg);
5452     if (ret) {
5453         dev_err(hsotg->dev, "%s: failed to restore registers\n",
5454             __func__);
5455         return ret;
5456     }
5457 
5458     /* Restore device registers */
5459     ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5460     if (ret) {
5461         dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5462             __func__);
5463         return ret;
5464     }
5465 
5466     if (rem_wakeup) {
5467         mdelay(10);
5468         dctl = dwc2_readl(hsotg, DCTL);
5469         dctl &= ~DCTL_RMTWKUPSIG;
5470         dwc2_writel(hsotg, dctl, DCTL);
5471     }
5472 
5473     hsotg->hibernated = 0;
5474     hsotg->lx_state = DWC2_L0;
5475     dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5476 
5477     return ret;
5478 }
5479 
5480 /**
5481  * dwc2_gadget_enter_partial_power_down() - Put controller in partial
5482  * power down.
5483  *
5484  * @hsotg: Programming view of the DWC_otg controller
5485  *
5486  * Return: non-zero if failed to enter device partial power down.
5487  *
5488  * This function is for entering device mode partial power down.
5489  */
5490 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5491 {
5492     u32 pcgcctl;
5493     int ret = 0;
5494 
5495     dev_dbg(hsotg->dev, "Entering device partial power down started.\n");
5496 
5497     /* Backup all registers */
5498     ret = dwc2_backup_global_registers(hsotg);
5499     if (ret) {
5500         dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5501             __func__);
5502         return ret;
5503     }
5504 
5505     ret = dwc2_backup_device_registers(hsotg);
5506     if (ret) {
5507         dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5508             __func__);
5509         return ret;
5510     }
5511 
5512     /*
5513      * Clear any pending interrupts since dwc2 will not be able to
5514      * clear them after entering partial_power_down.
5515      */
5516     dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5517 
5518     /* Put the controller in low power state */
5519     pcgcctl = dwc2_readl(hsotg, PCGCTL);
5520 
5521     pcgcctl |= PCGCTL_PWRCLMP;
5522     dwc2_writel(hsotg, pcgcctl, PCGCTL);
5523     udelay(5);
5524 
5525     pcgcctl |= PCGCTL_RSTPDWNMODULE;
5526     dwc2_writel(hsotg, pcgcctl, PCGCTL);
5527     udelay(5);
5528 
5529     pcgcctl |= PCGCTL_STOPPCLK;
5530     dwc2_writel(hsotg, pcgcctl, PCGCTL);
5531 
5532     /* Set in_ppd flag to 1 as here core enters suspend. */
5533     hsotg->in_ppd = 1;
5534     hsotg->lx_state = DWC2_L2;
5535 
5536     dev_dbg(hsotg->dev, "Entering device partial power down completed.\n");
5537 
5538     return ret;
5539 }
5540 
5541 /*
5542  * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial
5543  * power down.
5544  *
5545  * @hsotg: Programming view of the DWC_otg controller
5546  * @restore: indicates whether need to restore the registers or not.
5547  *
5548  * Return: non-zero if failed to exit device partial power down.
5549  *
5550  * This function is for exiting from device mode partial power down.
5551  */
5552 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5553                     bool restore)
5554 {
5555     u32 pcgcctl;
5556     u32 dctl;
5557     struct dwc2_dregs_backup *dr;
5558     int ret = 0;
5559 
5560     dr = &hsotg->dr_backup;
5561 
5562     dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n");
5563 
5564     pcgcctl = dwc2_readl(hsotg, PCGCTL);
5565     pcgcctl &= ~PCGCTL_STOPPCLK;
5566     dwc2_writel(hsotg, pcgcctl, PCGCTL);
5567 
5568     pcgcctl = dwc2_readl(hsotg, PCGCTL);
5569     pcgcctl &= ~PCGCTL_PWRCLMP;
5570     dwc2_writel(hsotg, pcgcctl, PCGCTL);
5571 
5572     pcgcctl = dwc2_readl(hsotg, PCGCTL);
5573     pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5574     dwc2_writel(hsotg, pcgcctl, PCGCTL);
5575 
5576     udelay(100);
5577     if (restore) {
5578         ret = dwc2_restore_global_registers(hsotg);
5579         if (ret) {
5580             dev_err(hsotg->dev, "%s: failed to restore registers\n",
5581                 __func__);
5582             return ret;
5583         }
5584         /* Restore DCFG */
5585         dwc2_writel(hsotg, dr->dcfg, DCFG);
5586 
5587         ret = dwc2_restore_device_registers(hsotg, 0);
5588         if (ret) {
5589             dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5590                 __func__);
5591             return ret;
5592         }
5593     }
5594 
5595     /* Set the Power-On Programming done bit */
5596     dctl = dwc2_readl(hsotg, DCTL);
5597     dctl |= DCTL_PWRONPRGDONE;
5598     dwc2_writel(hsotg, dctl, DCTL);
5599 
5600     /* Set in_ppd flag to 0 as here core exits from suspend. */
5601     hsotg->in_ppd = 0;
5602     hsotg->lx_state = DWC2_L0;
5603 
5604     dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n");
5605     return ret;
5606 }
5607 
5608 /**
5609  * dwc2_gadget_enter_clock_gating() - Put controller in clock gating.
5610  *
5611  * @hsotg: Programming view of the DWC_otg controller
5612  *
5613  * Return: non-zero if failed to enter device partial power down.
5614  *
5615  * This function is for entering device mode clock gating.
5616  */
5617 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg)
5618 {
5619     u32 pcgctl;
5620 
5621     dev_dbg(hsotg->dev, "Entering device clock gating.\n");
5622 
5623     /* Set the Phy Clock bit as suspend is received. */
5624     pcgctl = dwc2_readl(hsotg, PCGCTL);
5625     pcgctl |= PCGCTL_STOPPCLK;
5626     dwc2_writel(hsotg, pcgctl, PCGCTL);
5627     udelay(5);
5628 
5629     /* Set the Gate hclk as suspend is received. */
5630     pcgctl = dwc2_readl(hsotg, PCGCTL);
5631     pcgctl |= PCGCTL_GATEHCLK;
5632     dwc2_writel(hsotg, pcgctl, PCGCTL);
5633     udelay(5);
5634 
5635     hsotg->lx_state = DWC2_L2;
5636     hsotg->bus_suspended = true;
5637 }
5638 
5639 /*
5640  * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating.
5641  *
5642  * @hsotg: Programming view of the DWC_otg controller
5643  * @rem_wakeup: indicates whether remote wake up is enabled.
5644  *
5645  * This function is for exiting from device mode clock gating.
5646  */
5647 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5648 {
5649     u32 pcgctl;
5650     u32 dctl;
5651 
5652     dev_dbg(hsotg->dev, "Exiting device clock gating.\n");
5653 
5654     /* Clear the Gate hclk. */
5655     pcgctl = dwc2_readl(hsotg, PCGCTL);
5656     pcgctl &= ~PCGCTL_GATEHCLK;
5657     dwc2_writel(hsotg, pcgctl, PCGCTL);
5658     udelay(5);
5659 
5660     /* Phy Clock bit. */
5661     pcgctl = dwc2_readl(hsotg, PCGCTL);
5662     pcgctl &= ~PCGCTL_STOPPCLK;
5663     dwc2_writel(hsotg, pcgctl, PCGCTL);
5664     udelay(5);
5665 
5666     if (rem_wakeup) {
5667         /* Set Remote Wakeup Signaling */
5668         dctl = dwc2_readl(hsotg, DCTL);
5669         dctl |= DCTL_RMTWKUPSIG;
5670         dwc2_writel(hsotg, dctl, DCTL);
5671     }
5672 
5673     /* Change to L0 state */
5674     call_gadget(hsotg, resume);
5675     hsotg->lx_state = DWC2_L0;
5676     hsotg->bus_suspended = false;
5677 }