![]() |
|
|||
0001 /* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */ 0002 /* 0003 * core.h - DesignWare HS OTG Controller common declarations 0004 * 0005 * Copyright (C) 2004-2013 Synopsys, Inc. 0006 * 0007 * Redistribution and use in source and binary forms, with or without 0008 * modification, are permitted provided that the following conditions 0009 * are met: 0010 * 1. Redistributions of source code must retain the above copyright 0011 * notice, this list of conditions, and the following disclaimer, 0012 * without modification. 0013 * 2. Redistributions in binary form must reproduce the above copyright 0014 * notice, this list of conditions and the following disclaimer in the 0015 * documentation and/or other materials provided with the distribution. 0016 * 3. The names of the above-listed copyright holders may not be used 0017 * to endorse or promote products derived from this software without 0018 * specific prior written permission. 0019 * 0020 * ALTERNATIVELY, this software may be distributed under the terms of the 0021 * GNU General Public License ("GPL") as published by the Free Software 0022 * Foundation; either version 2 of the License, or (at your option) any 0023 * later version. 0024 * 0025 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 0026 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 0027 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 0028 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 0029 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 0030 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 0031 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 0032 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 0033 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 0034 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 0035 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 0036 */ 0037 0038 #ifndef __DWC2_CORE_H__ 0039 #define __DWC2_CORE_H__ 0040 0041 #include <linux/acpi.h> 0042 #include <linux/phy/phy.h> 0043 #include <linux/regulator/consumer.h> 0044 #include <linux/usb/gadget.h> 0045 #include <linux/usb/otg.h> 0046 #include <linux/usb/phy.h> 0047 #include "hw.h" 0048 0049 /* 0050 * Suggested defines for tracers: 0051 * - no_printk: Disable tracing 0052 * - pr_info: Print this info to the console 0053 * - trace_printk: Print this info to trace buffer (good for verbose logging) 0054 */ 0055 0056 #define DWC2_TRACE_SCHEDULER no_printk 0057 #define DWC2_TRACE_SCHEDULER_VB no_printk 0058 0059 /* Detailed scheduler tracing, but won't overwhelm console */ 0060 #define dwc2_sch_dbg(hsotg, fmt, ...) \ 0061 DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt), \ 0062 dev_name(hsotg->dev), ##__VA_ARGS__) 0063 0064 /* Verbose scheduler tracing */ 0065 #define dwc2_sch_vdbg(hsotg, fmt, ...) \ 0066 DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt), \ 0067 dev_name(hsotg->dev), ##__VA_ARGS__) 0068 0069 /* Maximum number of Endpoints/HostChannels */ 0070 #define MAX_EPS_CHANNELS 16 0071 0072 /* dwc2-hsotg declarations */ 0073 static const char * const dwc2_hsotg_supply_names[] = { 0074 "vusb_d", /* digital USB supply, 1.2V */ 0075 "vusb_a", /* analog USB supply, 1.1V */ 0076 }; 0077 0078 #define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names) 0079 0080 /* 0081 * EP0_MPS_LIMIT 0082 * 0083 * Unfortunately there seems to be a limit of the amount of data that can 0084 * be transferred by IN transactions on EP0. This is either 127 bytes or 3 0085 * packets (which practically means 1 packet and 63 bytes of data) when the 0086 * MPS is set to 64. 0087 * 0088 * This means if we are wanting to move >127 bytes of data, we need to 0089 * split the transactions up, but just doing one packet at a time does 0090 * not work (this may be an implicit DATA0 PID on first packet of the 0091 * transaction) and doing 2 packets is outside the controller's limits. 0092 * 0093 * If we try to lower the MPS size for EP0, then no transfers work properly 0094 * for EP0, and the system will fail basic enumeration. As no cause for this 0095 * has currently been found, we cannot support any large IN transfers for 0096 * EP0. 0097 */ 0098 #define EP0_MPS_LIMIT 64 0099 0100 struct dwc2_hsotg; 0101 struct dwc2_hsotg_req; 0102 0103 /** 0104 * struct dwc2_hsotg_ep - driver endpoint definition. 0105 * @ep: The gadget layer representation of the endpoint. 0106 * @name: The driver generated name for the endpoint. 0107 * @queue: Queue of requests for this endpoint. 0108 * @parent: Reference back to the parent device structure. 0109 * @req: The current request that the endpoint is processing. This is 0110 * used to indicate an request has been loaded onto the endpoint 0111 * and has yet to be completed (maybe due to data move, or simply 0112 * awaiting an ack from the core all the data has been completed). 0113 * @debugfs: File entry for debugfs file for this endpoint. 0114 * @dir_in: Set to true if this endpoint is of the IN direction, which 0115 * means that it is sending data to the Host. 0116 * @map_dir: Set to the value of dir_in when the DMA buffer is mapped. 0117 * @index: The index for the endpoint registers. 0118 * @mc: Multi Count - number of transactions per microframe 0119 * @interval: Interval for periodic endpoints, in frames or microframes. 0120 * @name: The name array passed to the USB core. 0121 * @halted: Set if the endpoint has been halted. 0122 * @periodic: Set if this is a periodic ep, such as Interrupt 0123 * @isochronous: Set if this is a isochronous ep 0124 * @send_zlp: Set if we need to send a zero-length packet. 0125 * @wedged: Set if ep is wedged. 0126 * @desc_list_dma: The DMA address of descriptor chain currently in use. 0127 * @desc_list: Pointer to descriptor DMA chain head currently in use. 0128 * @desc_count: Count of entries within the DMA descriptor chain of EP. 0129 * @next_desc: index of next free descriptor in the ISOC chain under SW control. 0130 * @compl_desc: index of next descriptor to be completed by xFerComplete 0131 * @total_data: The total number of data bytes done. 0132 * @fifo_size: The size of the FIFO (for periodic IN endpoints) 0133 * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0. 0134 * @fifo_load: The amount of data loaded into the FIFO (periodic IN) 0135 * @last_load: The offset of data for the last start of request. 0136 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN 0137 * @target_frame: Targeted frame num to setup next ISOC transfer 0138 * @frame_overrun: Indicates SOF number overrun in DSTS 0139 * 0140 * This is the driver's state for each registered endpoint, allowing it 0141 * to keep track of transactions that need doing. Each endpoint has a 0142 * lock to protect the state, to try and avoid using an overall lock 0143 * for the host controller as much as possible. 0144 * 0145 * For periodic IN endpoints, we have fifo_size and fifo_load to try 0146 * and keep track of the amount of data in the periodic FIFO for each 0147 * of these as we don't have a status register that tells us how much 0148 * is in each of them. (note, this may actually be useless information 0149 * as in shared-fifo mode periodic in acts like a single-frame packet 0150 * buffer than a fifo) 0151 */ 0152 struct dwc2_hsotg_ep { 0153 struct usb_ep ep; 0154 struct list_head queue; 0155 struct dwc2_hsotg *parent; 0156 struct dwc2_hsotg_req *req; 0157 struct dentry *debugfs; 0158 0159 unsigned long total_data; 0160 unsigned int size_loaded; 0161 unsigned int last_load; 0162 unsigned int fifo_load; 0163 unsigned short fifo_size; 0164 unsigned short fifo_index; 0165 0166 unsigned char dir_in; 0167 unsigned char map_dir; 0168 unsigned char index; 0169 unsigned char mc; 0170 u16 interval; 0171 0172 unsigned int halted:1; 0173 unsigned int periodic:1; 0174 unsigned int isochronous:1; 0175 unsigned int send_zlp:1; 0176 unsigned int wedged:1; 0177 unsigned int target_frame; 0178 #define TARGET_FRAME_INITIAL 0xFFFFFFFF 0179 bool frame_overrun; 0180 0181 dma_addr_t desc_list_dma; 0182 struct dwc2_dma_desc *desc_list; 0183 u8 desc_count; 0184 0185 unsigned int next_desc; 0186 unsigned int compl_desc; 0187 0188 char name[10]; 0189 }; 0190 0191 /** 0192 * struct dwc2_hsotg_req - data transfer request 0193 * @req: The USB gadget request 0194 * @queue: The list of requests for the endpoint this is queued for. 0195 * @saved_req_buf: variable to save req.buf when bounce buffers are used. 0196 */ 0197 struct dwc2_hsotg_req { 0198 struct usb_request req; 0199 struct list_head queue; 0200 void *saved_req_buf; 0201 }; 0202 0203 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \ 0204 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) 0205 #define call_gadget(_hs, _entry) \ 0206 do { \ 0207 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \ 0208 (_hs)->driver && (_hs)->driver->_entry) { \ 0209 spin_unlock(&_hs->lock); \ 0210 (_hs)->driver->_entry(&(_hs)->gadget); \ 0211 spin_lock(&_hs->lock); \ 0212 } \ 0213 } while (0) 0214 #else 0215 #define call_gadget(_hs, _entry) do {} while (0) 0216 #endif 0217 0218 struct dwc2_hsotg; 0219 struct dwc2_host_chan; 0220 0221 /* Device States */ 0222 enum dwc2_lx_state { 0223 DWC2_L0, /* On state */ 0224 DWC2_L1, /* LPM sleep state */ 0225 DWC2_L2, /* USB suspend state */ 0226 DWC2_L3, /* Off state */ 0227 }; 0228 0229 /* Gadget ep0 states */ 0230 enum dwc2_ep0_state { 0231 DWC2_EP0_SETUP, 0232 DWC2_EP0_DATA_IN, 0233 DWC2_EP0_DATA_OUT, 0234 DWC2_EP0_STATUS_IN, 0235 DWC2_EP0_STATUS_OUT, 0236 }; 0237 0238 /** 0239 * struct dwc2_core_params - Parameters for configuring the core 0240 * 0241 * @otg_caps: Specifies the OTG capabilities. OTG caps from the platform parameters, 0242 * used to setup the: 0243 * - HNP and SRP capable 0244 * - SRP Only capable 0245 * - No HNP/SRP capable (always available) 0246 * Defaults to best available option 0247 * - OTG revision number the device is compliant with, in binary-coded 0248 * decimal (i.e. 2.0 is 0200H). (see struct usb_otg_caps) 0249 * @host_dma: Specifies whether to use slave or DMA mode for accessing 0250 * the data FIFOs. The driver will automatically detect the 0251 * value for this parameter if none is specified. 0252 * 0 - Slave (always available) 0253 * 1 - DMA (default, if available) 0254 * @dma_desc_enable: When DMA mode is enabled, specifies whether to use 0255 * address DMA mode or descriptor DMA mode for accessing 0256 * the data FIFOs. The driver will automatically detect the 0257 * value for this if none is specified. 0258 * 0 - Address DMA 0259 * 1 - Descriptor DMA (default, if available) 0260 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use 0261 * address DMA mode or descriptor DMA mode for accessing 0262 * the data FIFOs in Full Speed mode only. The driver 0263 * will automatically detect the value for this if none is 0264 * specified. 0265 * 0 - Address DMA 0266 * 1 - Descriptor DMA in FS (default, if available) 0267 * @speed: Specifies the maximum speed of operation in host and 0268 * device mode. The actual speed depends on the speed of 0269 * the attached device and the value of phy_type. 0270 * 0 - High Speed 0271 * (default when phy_type is UTMI+ or ULPI) 0272 * 1 - Full Speed 0273 * (default when phy_type is Full Speed) 0274 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters 0275 * 1 - Allow dynamic FIFO sizing (default, if available) 0276 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs 0277 * are enabled for non-periodic IN endpoints in device 0278 * mode. 0279 * @host_rx_fifo_size: Number of 4-byte words in the Rx FIFO in host mode when 0280 * dynamic FIFO sizing is enabled 0281 * 16 to 32768 0282 * Actual maximum value is autodetected and also 0283 * the default. 0284 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO 0285 * in host mode when dynamic FIFO sizing is enabled 0286 * 16 to 32768 0287 * Actual maximum value is autodetected and also 0288 * the default. 0289 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in 0290 * host mode when dynamic FIFO sizing is enabled 0291 * 16 to 32768 0292 * Actual maximum value is autodetected and also 0293 * the default. 0294 * @max_transfer_size: The maximum transfer size supported, in bytes 0295 * 2047 to 65,535 0296 * Actual maximum value is autodetected and also 0297 * the default. 0298 * @max_packet_count: The maximum number of packets in a transfer 0299 * 15 to 511 0300 * Actual maximum value is autodetected and also 0301 * the default. 0302 * @host_channels: The number of host channel registers to use 0303 * 1 to 16 0304 * Actual maximum value is autodetected and also 0305 * the default. 0306 * @phy_type: Specifies the type of PHY interface to use. By default, 0307 * the driver will automatically detect the phy_type. 0308 * 0 - Full Speed Phy 0309 * 1 - UTMI+ Phy 0310 * 2 - ULPI Phy 0311 * Defaults to best available option (2, 1, then 0) 0312 * @phy_utmi_width: Specifies the UTMI+ Data Width (in bits). This parameter 0313 * is applicable for a phy_type of UTMI+ or ULPI. (For a 0314 * ULPI phy_type, this parameter indicates the data width 0315 * between the MAC and the ULPI Wrapper.) Also, this 0316 * parameter is applicable only if the OTG_HSPHY_WIDTH cC 0317 * parameter was set to "8 and 16 bits", meaning that the 0318 * core has been configured to work at either data path 0319 * width. 0320 * 8 or 16 (default 16 if available) 0321 * @phy_ulpi_ddr: Specifies whether the ULPI operates at double or single 0322 * data rate. This parameter is only applicable if phy_type 0323 * is ULPI. 0324 * 0 - single data rate ULPI interface with 8 bit wide 0325 * data bus (default) 0326 * 1 - double data rate ULPI interface with 4 bit wide 0327 * data bus 0328 * @phy_ulpi_ext_vbus: For a ULPI phy, specifies whether to use the internal or 0329 * external supply to drive the VBus 0330 * 0 - Internal supply (default) 0331 * 1 - External supply 0332 * @i2c_enable: Specifies whether to use the I2Cinterface for a full 0333 * speed PHY. This parameter is only applicable if phy_type 0334 * is FS. 0335 * 0 - No (default) 0336 * 1 - Yes 0337 * @ipg_isoc_en: Indicates the IPG supports is enabled or disabled. 0338 * 0 - Disable (default) 0339 * 1 - Enable 0340 * @acg_enable: For enabling Active Clock Gating in the controller 0341 * 0 - No 0342 * 1 - Yes 0343 * @ulpi_fs_ls: Make ULPI phy operate in FS/LS mode only 0344 * 0 - No (default) 0345 * 1 - Yes 0346 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported 0347 * when attached to a Full Speed or Low Speed device in 0348 * host mode. 0349 * 0 - Don't support low power mode (default) 0350 * 1 - Support low power mode 0351 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode 0352 * when connected to a Low Speed device in host 0353 * mode. This parameter is applicable only if 0354 * host_support_fs_ls_low_power is enabled. 0355 * 0 - 48 MHz 0356 * (default when phy_type is UTMI+ or ULPI) 0357 * 1 - 6 MHz 0358 * (default when phy_type is Full Speed) 0359 * @oc_disable: Flag to disable overcurrent condition. 0360 * 0 - Allow overcurrent condition to get detected 0361 * 1 - Disable overcurrent condtion to get detected 0362 * @ts_dline: Enable Term Select Dline pulsing 0363 * 0 - No (default) 0364 * 1 - Yes 0365 * @reload_ctl: Allow dynamic reloading of HFIR register during runtime 0366 * 0 - No (default for core < 2.92a) 0367 * 1 - Yes (default for core >= 2.92a) 0368 * @ahbcfg: This field allows the default value of the GAHBCFG 0369 * register to be overridden 0370 * -1 - GAHBCFG value will be set to 0x06 0371 * (INCR, default) 0372 * all others - GAHBCFG value will be overridden with 0373 * this value 0374 * Not all bits can be controlled like this, the 0375 * bits defined by GAHBCFG_CTRL_MASK are controlled 0376 * by the driver and are ignored in this 0377 * configuration value. 0378 * @uframe_sched: True to enable the microframe scheduler 0379 * @external_id_pin_ctl: Specifies whether ID pin is handled externally. 0380 * Disable CONIDSTSCHNG controller interrupt in such 0381 * case. 0382 * 0 - No (default) 0383 * 1 - Yes 0384 * @power_down: Specifies whether the controller support power_down. 0385 * If power_down is enabled, the controller will enter 0386 * power_down in both peripheral and host mode when 0387 * needed. 0388 * 0 - No (default) 0389 * 1 - Partial power down 0390 * 2 - Hibernation 0391 * @no_clock_gating: Specifies whether to avoid clock gating feature. 0392 * 0 - No (use clock gating) 0393 * 1 - Yes (avoid it) 0394 * @lpm: Enable LPM support. 0395 * 0 - No 0396 * 1 - Yes 0397 * @lpm_clock_gating: Enable core PHY clock gating. 0398 * 0 - No 0399 * 1 - Yes 0400 * @besl: Enable LPM Errata support. 0401 * 0 - No 0402 * 1 - Yes 0403 * @hird_threshold_en: HIRD or HIRD Threshold enable. 0404 * 0 - No 0405 * 1 - Yes 0406 * @hird_threshold: Value of BESL or HIRD Threshold. 0407 * @ref_clk_per: Indicates in terms of pico seconds the period 0408 * of ref_clk. 0409 * 62500 - 16MHz 0410 * 58823 - 17MHz 0411 * 52083 - 19.2MHz 0412 * 50000 - 20MHz 0413 * 41666 - 24MHz 0414 * 33333 - 30MHz (default) 0415 * 25000 - 40MHz 0416 * @sof_cnt_wkup_alert: Indicates in term of number of SOF's after which 0417 * the controller should generate an interrupt if the 0418 * device had been in L1 state until that period. 0419 * This is used by SW to initiate Remote WakeUp in the 0420 * controller so as to sync to the uF number from the host. 0421 * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO 0422 * register. 0423 * 0 - Deactivate the transceiver (default) 0424 * 1 - Activate the transceiver 0425 * @activate_stm_id_vb_detection: Activate external ID pin and Vbus level 0426 * detection using GGPIO register. 0427 * 0 - Deactivate the external level detection (default) 0428 * 1 - Activate the external level detection 0429 * @activate_ingenic_overcurrent_detection: Activate Ingenic overcurrent 0430 * detection. 0431 * 0 - Deactivate the overcurrent detection 0432 * 1 - Activate the overcurrent detection (default) 0433 * @g_dma: Enables gadget dma usage (default: autodetect). 0434 * @g_dma_desc: Enables gadget descriptor DMA (default: autodetect). 0435 * @g_rx_fifo_size: The periodic rx fifo size for the device, in 0436 * DWORDS from 16-32768 (default: 2048 if 0437 * possible, otherwise autodetect). 0438 * @g_np_tx_fifo_size: The non-periodic tx fifo size for the device in 0439 * DWORDS from 16-32768 (default: 1024 if 0440 * possible, otherwise autodetect). 0441 * @g_tx_fifo_size: An array of TX fifo sizes in dedicated fifo 0442 * mode. Each value corresponds to one EP 0443 * starting from EP1 (max 15 values). Sizes are 0444 * in DWORDS with possible values from 0445 * 16-32768 (default: 256, 256, 256, 256, 768, 0446 * 768, 768, 768, 0, 0, 0, 0, 0, 0, 0). 0447 * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL 0448 * while full&low speed device connect. And change speed 0449 * back to DWC2_SPEED_PARAM_HIGH while device is gone. 0450 * 0 - No (default) 0451 * 1 - Yes 0452 * @service_interval: Enable service interval based scheduling. 0453 * 0 - No 0454 * 1 - Yes 0455 * 0456 * The following parameters may be specified when starting the module. These 0457 * parameters define how the DWC_otg controller should be configured. A 0458 * value of -1 (or any other out of range value) for any parameter means 0459 * to read the value from hardware (if possible) or use the builtin 0460 * default described above. 0461 */ 0462 struct dwc2_core_params { 0463 struct usb_otg_caps otg_caps; 0464 u8 phy_type; 0465 #define DWC2_PHY_TYPE_PARAM_FS 0 0466 #define DWC2_PHY_TYPE_PARAM_UTMI 1 0467 #define DWC2_PHY_TYPE_PARAM_ULPI 2 0468 0469 u8 speed; 0470 #define DWC2_SPEED_PARAM_HIGH 0 0471 #define DWC2_SPEED_PARAM_FULL 1 0472 #define DWC2_SPEED_PARAM_LOW 2 0473 0474 u8 phy_utmi_width; 0475 bool phy_ulpi_ddr; 0476 bool phy_ulpi_ext_vbus; 0477 bool enable_dynamic_fifo; 0478 bool en_multiple_tx_fifo; 0479 bool i2c_enable; 0480 bool acg_enable; 0481 bool ulpi_fs_ls; 0482 bool ts_dline; 0483 bool reload_ctl; 0484 bool uframe_sched; 0485 bool external_id_pin_ctl; 0486 0487 int power_down; 0488 #define DWC2_POWER_DOWN_PARAM_NONE 0 0489 #define DWC2_POWER_DOWN_PARAM_PARTIAL 1 0490 #define DWC2_POWER_DOWN_PARAM_HIBERNATION 2 0491 bool no_clock_gating; 0492 0493 bool lpm; 0494 bool lpm_clock_gating; 0495 bool besl; 0496 bool hird_threshold_en; 0497 bool service_interval; 0498 u8 hird_threshold; 0499 bool activate_stm_fs_transceiver; 0500 bool activate_stm_id_vb_detection; 0501 bool activate_ingenic_overcurrent_detection; 0502 bool ipg_isoc_en; 0503 u16 max_packet_count; 0504 u32 max_transfer_size; 0505 u32 ahbcfg; 0506 0507 /* GREFCLK parameters */ 0508 u32 ref_clk_per; 0509 u16 sof_cnt_wkup_alert; 0510 0511 /* Host parameters */ 0512 bool host_dma; 0513 bool dma_desc_enable; 0514 bool dma_desc_fs_enable; 0515 bool host_support_fs_ls_low_power; 0516 bool host_ls_low_power_phy_clk; 0517 bool oc_disable; 0518 0519 u8 host_channels; 0520 u16 host_rx_fifo_size; 0521 u16 host_nperio_tx_fifo_size; 0522 u16 host_perio_tx_fifo_size; 0523 0524 /* Gadget parameters */ 0525 bool g_dma; 0526 bool g_dma_desc; 0527 u32 g_rx_fifo_size; 0528 u32 g_np_tx_fifo_size; 0529 u32 g_tx_fifo_size[MAX_EPS_CHANNELS]; 0530 0531 bool change_speed_quirk; 0532 }; 0533 0534 /** 0535 * struct dwc2_hw_params - Autodetected parameters. 0536 * 0537 * These parameters are the various parameters read from hardware 0538 * registers during initialization. They typically contain the best 0539 * supported or maximum value that can be configured in the 0540 * corresponding dwc2_core_params value. 0541 * 0542 * The values that are not in dwc2_core_params are documented below. 0543 * 0544 * @op_mode: Mode of Operation 0545 * 0 - HNP- and SRP-Capable OTG (Host & Device) 0546 * 1 - SRP-Capable OTG (Host & Device) 0547 * 2 - Non-HNP and Non-SRP Capable OTG (Host & Device) 0548 * 3 - SRP-Capable Device 0549 * 4 - Non-OTG Device 0550 * 5 - SRP-Capable Host 0551 * 6 - Non-OTG Host 0552 * @arch: Architecture 0553 * 0 - Slave only 0554 * 1 - External DMA 0555 * 2 - Internal DMA 0556 * @ipg_isoc_en: This feature indicates that the controller supports 0557 * the worst-case scenario of Rx followed by Rx 0558 * Interpacket Gap (IPG) (32 bitTimes) as per the utmi 0559 * specification for any token following ISOC OUT token. 0560 * 0 - Don't support 0561 * 1 - Support 0562 * @power_optimized: Are power optimizations enabled? 0563 * @num_dev_ep: Number of device endpoints available 0564 * @num_dev_in_eps: Number of device IN endpoints available 0565 * @num_dev_perio_in_ep: Number of device periodic IN endpoints 0566 * available 0567 * @dev_token_q_depth: Device Mode IN Token Sequence Learning Queue 0568 * Depth 0569 * 0 to 30 0570 * @host_perio_tx_q_depth: 0571 * Host Mode Periodic Request Queue Depth 0572 * 2, 4 or 8 0573 * @nperio_tx_q_depth: 0574 * Non-Periodic Request Queue Depth 0575 * 2, 4 or 8 0576 * @hs_phy_type: High-speed PHY interface type 0577 * 0 - High-speed interface not supported 0578 * 1 - UTMI+ 0579 * 2 - ULPI 0580 * 3 - UTMI+ and ULPI 0581 * @fs_phy_type: Full-speed PHY interface type 0582 * 0 - Full speed interface not supported 0583 * 1 - Dedicated full speed interface 0584 * 2 - FS pins shared with UTMI+ pins 0585 * 3 - FS pins shared with ULPI pins 0586 * @total_fifo_size: Total internal RAM for FIFOs (bytes) 0587 * @hibernation: Is hibernation enabled? 0588 * @utmi_phy_data_width: UTMI+ PHY data width 0589 * 0 - 8 bits 0590 * 1 - 16 bits 0591 * 2 - 8 or 16 bits 0592 * @snpsid: Value from SNPSID register 0593 * @dev_ep_dirs: Direction of device endpoints (GHWCFG1) 0594 * @g_tx_fifo_size: Power-on values of TxFIFO sizes 0595 * @dma_desc_enable: When DMA mode is enabled, specifies whether to use 0596 * address DMA mode or descriptor DMA mode for accessing 0597 * the data FIFOs. The driver will automatically detect the 0598 * value for this if none is specified. 0599 * 0 - Address DMA 0600 * 1 - Descriptor DMA (default, if available) 0601 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters 0602 * 1 - Allow dynamic FIFO sizing (default, if available) 0603 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs 0604 * are enabled for non-periodic IN endpoints in device 0605 * mode. 0606 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO 0607 * in host mode when dynamic FIFO sizing is enabled 0608 * 16 to 32768 0609 * Actual maximum value is autodetected and also 0610 * the default. 0611 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in 0612 * host mode when dynamic FIFO sizing is enabled 0613 * 16 to 32768 0614 * Actual maximum value is autodetected and also 0615 * the default. 0616 * @max_transfer_size: The maximum transfer size supported, in bytes 0617 * 2047 to 65,535 0618 * Actual maximum value is autodetected and also 0619 * the default. 0620 * @max_packet_count: The maximum number of packets in a transfer 0621 * 15 to 511 0622 * Actual maximum value is autodetected and also 0623 * the default. 0624 * @host_channels: The number of host channel registers to use 0625 * 1 to 16 0626 * Actual maximum value is autodetected and also 0627 * the default. 0628 * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO 0629 * in device mode when dynamic FIFO sizing is enabled 0630 * 16 to 32768 0631 * Actual maximum value is autodetected and also 0632 * the default. 0633 * @i2c_enable: Specifies whether to use the I2Cinterface for a full 0634 * speed PHY. This parameter is only applicable if phy_type 0635 * is FS. 0636 * 0 - No (default) 0637 * 1 - Yes 0638 * @acg_enable: For enabling Active Clock Gating in the controller 0639 * 0 - Disable 0640 * 1 - Enable 0641 * @lpm_mode: For enabling Link Power Management in the controller 0642 * 0 - Disable 0643 * 1 - Enable 0644 * @rx_fifo_size: Number of 4-byte words in the Rx FIFO when dynamic 0645 * FIFO sizing is enabled 16 to 32768 0646 * Actual maximum value is autodetected and also 0647 * the default. 0648 * @service_interval_mode: For enabling service interval based scheduling in the 0649 * controller. 0650 * 0 - Disable 0651 * 1 - Enable 0652 */ 0653 struct dwc2_hw_params { 0654 unsigned op_mode:3; 0655 unsigned arch:2; 0656 unsigned dma_desc_enable:1; 0657 unsigned enable_dynamic_fifo:1; 0658 unsigned en_multiple_tx_fifo:1; 0659 unsigned rx_fifo_size:16; 0660 unsigned host_nperio_tx_fifo_size:16; 0661 unsigned dev_nperio_tx_fifo_size:16; 0662 unsigned host_perio_tx_fifo_size:16; 0663 unsigned nperio_tx_q_depth:3; 0664 unsigned host_perio_tx_q_depth:3; 0665 unsigned dev_token_q_depth:5; 0666 unsigned max_transfer_size:26; 0667 unsigned max_packet_count:11; 0668 unsigned host_channels:5; 0669 unsigned hs_phy_type:2; 0670 unsigned fs_phy_type:2; 0671 unsigned i2c_enable:1; 0672 unsigned acg_enable:1; 0673 unsigned num_dev_ep:4; 0674 unsigned num_dev_in_eps : 4; 0675 unsigned num_dev_perio_in_ep:4; 0676 unsigned total_fifo_size:16; 0677 unsigned power_optimized:1; 0678 unsigned hibernation:1; 0679 unsigned utmi_phy_data_width:2; 0680 unsigned lpm_mode:1; 0681 unsigned ipg_isoc_en:1; 0682 unsigned service_interval_mode:1; 0683 u32 snpsid; 0684 u32 dev_ep_dirs; 0685 u32 g_tx_fifo_size[MAX_EPS_CHANNELS]; 0686 }; 0687 0688 /* Size of control and EP0 buffers */ 0689 #define DWC2_CTRL_BUFF_SIZE 8 0690 0691 /** 0692 * struct dwc2_gregs_backup - Holds global registers state before 0693 * entering partial power down 0694 * @gotgctl: Backup of GOTGCTL register 0695 * @gintmsk: Backup of GINTMSK register 0696 * @gahbcfg: Backup of GAHBCFG register 0697 * @gusbcfg: Backup of GUSBCFG register 0698 * @grxfsiz: Backup of GRXFSIZ register 0699 * @gnptxfsiz: Backup of GNPTXFSIZ register 0700 * @gi2cctl: Backup of GI2CCTL register 0701 * @glpmcfg: Backup of GLPMCFG register 0702 * @gdfifocfg: Backup of GDFIFOCFG register 0703 * @pcgcctl: Backup of PCGCCTL register 0704 * @pcgcctl1: Backup of PCGCCTL1 register 0705 * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint 0706 * @gpwrdn: Backup of GPWRDN register 0707 * @valid: True if registers values backuped. 0708 */ 0709 struct dwc2_gregs_backup { 0710 u32 gotgctl; 0711 u32 gintmsk; 0712 u32 gahbcfg; 0713 u32 gusbcfg; 0714 u32 grxfsiz; 0715 u32 gnptxfsiz; 0716 u32 gi2cctl; 0717 u32 glpmcfg; 0718 u32 pcgcctl; 0719 u32 pcgcctl1; 0720 u32 gdfifocfg; 0721 u32 gpwrdn; 0722 bool valid; 0723 }; 0724 0725 /** 0726 * struct dwc2_dregs_backup - Holds device registers state before 0727 * entering partial power down 0728 * @dcfg: Backup of DCFG register 0729 * @dctl: Backup of DCTL register 0730 * @daintmsk: Backup of DAINTMSK register 0731 * @diepmsk: Backup of DIEPMSK register 0732 * @doepmsk: Backup of DOEPMSK register 0733 * @diepctl: Backup of DIEPCTL register 0734 * @dieptsiz: Backup of DIEPTSIZ register 0735 * @diepdma: Backup of DIEPDMA register 0736 * @doepctl: Backup of DOEPCTL register 0737 * @doeptsiz: Backup of DOEPTSIZ register 0738 * @doepdma: Backup of DOEPDMA register 0739 * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint 0740 * @valid: True if registers values backuped. 0741 */ 0742 struct dwc2_dregs_backup { 0743 u32 dcfg; 0744 u32 dctl; 0745 u32 daintmsk; 0746 u32 diepmsk; 0747 u32 doepmsk; 0748 u32 diepctl[MAX_EPS_CHANNELS]; 0749 u32 dieptsiz[MAX_EPS_CHANNELS]; 0750 u32 diepdma[MAX_EPS_CHANNELS]; 0751 u32 doepctl[MAX_EPS_CHANNELS]; 0752 u32 doeptsiz[MAX_EPS_CHANNELS]; 0753 u32 doepdma[MAX_EPS_CHANNELS]; 0754 u32 dtxfsiz[MAX_EPS_CHANNELS]; 0755 bool valid; 0756 }; 0757 0758 /** 0759 * struct dwc2_hregs_backup - Holds host registers state before 0760 * entering partial power down 0761 * @hcfg: Backup of HCFG register 0762 * @haintmsk: Backup of HAINTMSK register 0763 * @hcintmsk: Backup of HCINTMSK register 0764 * @hprt0: Backup of HPTR0 register 0765 * @hfir: Backup of HFIR register 0766 * @hptxfsiz: Backup of HPTXFSIZ register 0767 * @valid: True if registers values backuped. 0768 */ 0769 struct dwc2_hregs_backup { 0770 u32 hcfg; 0771 u32 haintmsk; 0772 u32 hcintmsk[MAX_EPS_CHANNELS]; 0773 u32 hprt0; 0774 u32 hfir; 0775 u32 hptxfsiz; 0776 bool valid; 0777 }; 0778 0779 /* 0780 * Constants related to high speed periodic scheduling 0781 * 0782 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long. From a 0783 * reservation point of view it's assumed that the schedule goes right back to 0784 * the beginning after the end of the schedule. 0785 * 0786 * What does that mean for scheduling things with a long interval? It means 0787 * we'll reserve time for them in every possible microframe that they could 0788 * ever be scheduled in. ...but we'll still only actually schedule them as 0789 * often as they were requested. 0790 * 0791 * We keep our schedule in a "bitmap" structure. This simplifies having 0792 * to keep track of and merge intervals: we just let the bitmap code do most 0793 * of the heavy lifting. In a way scheduling is much like memory allocation. 0794 * 0795 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're 0796 * supposed to schedule for periodic transfers). That's according to spec. 0797 * 0798 * Note that though we only schedule 80% of each microframe, the bitmap that we 0799 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of 0800 * space for each uFrame). 0801 * 0802 * Requirements: 0803 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1) 0804 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably 0805 * could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might 0806 * be bugs). The 8 comes from the USB spec: number of microframes per frame. 0807 */ 0808 #define DWC2_US_PER_UFRAME 125 0809 #define DWC2_HS_PERIODIC_US_PER_UFRAME 100 0810 0811 #define DWC2_HS_SCHEDULE_UFRAMES 8 0812 #define DWC2_HS_SCHEDULE_US (DWC2_HS_SCHEDULE_UFRAMES * \ 0813 DWC2_HS_PERIODIC_US_PER_UFRAME) 0814 0815 /* 0816 * Constants related to low speed scheduling 0817 * 0818 * For high speed we schedule every 1us. For low speed that's a bit overkill, 0819 * so we make up a unit called a "slice" that's worth 25us. There are 40 0820 * slices in a full frame and we can schedule 36 of those (90%) for periodic 0821 * transfers. 0822 * 0823 * Our low speed schedule can be as short as 1 frame or could be longer. When 0824 * we only schedule 1 frame it means that we'll need to reserve a time every 0825 * frame even for things that only transfer very rarely, so something that runs 0826 * every 2048 frames will get time reserved in every frame. Our low speed 0827 * schedule can be longer and we'll be able to handle more overlap, but that 0828 * will come at increased memory cost and increased time to schedule. 0829 * 0830 * Note: one other advantage of a short low speed schedule is that if we mess 0831 * up and miss scheduling we can jump in and use any of the slots that we 0832 * happened to reserve. 0833 * 0834 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for 0835 * the schedule. There will be one schedule per TT. 0836 * 0837 * Requirements: 0838 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME. 0839 */ 0840 #define DWC2_US_PER_SLICE 25 0841 #define DWC2_SLICES_PER_UFRAME (DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE) 0842 0843 #define DWC2_ROUND_US_TO_SLICE(us) \ 0844 (DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \ 0845 DWC2_US_PER_SLICE) 0846 0847 #define DWC2_LS_PERIODIC_US_PER_FRAME \ 0848 900 0849 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \ 0850 (DWC2_LS_PERIODIC_US_PER_FRAME / \ 0851 DWC2_US_PER_SLICE) 0852 0853 #define DWC2_LS_SCHEDULE_FRAMES 1 0854 #define DWC2_LS_SCHEDULE_SLICES (DWC2_LS_SCHEDULE_FRAMES * \ 0855 DWC2_LS_PERIODIC_SLICES_PER_FRAME) 0856 0857 /** 0858 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic 0859 * and periodic schedules 0860 * 0861 * These are common for both host and peripheral modes: 0862 * 0863 * @dev: The struct device pointer 0864 * @regs: Pointer to controller regs 0865 * @hw_params: Parameters that were autodetected from the 0866 * hardware registers 0867 * @params: Parameters that define how the core should be configured 0868 * @op_state: The operational State, during transitions (a_host=> 0869 * a_peripheral and b_device=>b_host) this may not match 0870 * the core, but allows the software to determine 0871 * transitions 0872 * @dr_mode: Requested mode of operation, one of following: 0873 * - USB_DR_MODE_PERIPHERAL 0874 * - USB_DR_MODE_HOST 0875 * - USB_DR_MODE_OTG 0876 * @role_sw: usb_role_switch handle 0877 * @role_sw_default_mode: default operation mode of controller while usb role 0878 * is USB_ROLE_NONE 0879 * @hcd_enabled: Host mode sub-driver initialization indicator. 0880 * @gadget_enabled: Peripheral mode sub-driver initialization indicator. 0881 * @ll_hw_enabled: Status of low-level hardware resources. 0882 * @hibernated: True if core is hibernated 0883 * @in_ppd: True if core is partial power down mode. 0884 * @bus_suspended: True if bus is suspended 0885 * @reset_phy_on_wake: Quirk saying that we should assert PHY reset on a 0886 * remote wakeup. 0887 * @phy_off_for_suspend: Status of whether we turned the PHY off at suspend. 0888 * @need_phy_for_wake: Quirk saying that we should keep the PHY on at 0889 * suspend if we need USB to wake us up. 0890 * @frame_number: Frame number read from the core. For both device 0891 * and host modes. The value ranges are from 0 0892 * to HFNUM_MAX_FRNUM. 0893 * @phy: The otg phy transceiver structure for phy control. 0894 * @uphy: The otg phy transceiver structure for old USB phy 0895 * control. 0896 * @plat: The platform specific configuration data. This can be 0897 * removed once all SoCs support usb transceiver. 0898 * @supplies: Definition of USB power supplies 0899 * @vbus_supply: Regulator supplying vbus. 0900 * @usb33d: Optional 3.3v regulator used on some stm32 devices to 0901 * supply ID and VBUS detection hardware. 0902 * @lock: Spinlock that protects all the driver data structures 0903 * @priv: Stores a pointer to the struct usb_hcd 0904 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth 0905 * transfer are in process of being queued 0906 * @srp_success: Stores status of SRP request in the case of a FS PHY 0907 * with an I2C interface 0908 * @wq_otg: Workqueue object used for handling of some interrupts 0909 * @wf_otg: Work object for handling Connector ID Status Change 0910 * interrupt 0911 * @wkp_timer: Timer object for handling Wakeup Detected interrupt 0912 * @lx_state: Lx state of connected device 0913 * @gr_backup: Backup of global registers during suspend 0914 * @dr_backup: Backup of device registers during suspend 0915 * @hr_backup: Backup of host registers during suspend 0916 * @needs_byte_swap: Specifies whether the opposite endianness. 0917 * 0918 * These are for host mode: 0919 * 0920 * @flags: Flags for handling root port state changes 0921 * @flags.d32: Contain all root port flags 0922 * @flags.b: Separate root port flags from each other 0923 * @flags.b.port_connect_status_change: True if root port connect status 0924 * changed 0925 * @flags.b.port_connect_status: True if device connected to root port 0926 * @flags.b.port_reset_change: True if root port reset status changed 0927 * @flags.b.port_enable_change: True if root port enable status changed 0928 * @flags.b.port_suspend_change: True if root port suspend status changed 0929 * @flags.b.port_over_current_change: True if root port over current state 0930 * changed. 0931 * @flags.b.port_l1_change: True if root port l1 status changed 0932 * @flags.b.reserved: Reserved bits of root port register 0933 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule. 0934 * Transfers associated with these QHs are not currently 0935 * assigned to a host channel. 0936 * @non_periodic_sched_active: Active QHs in the non-periodic schedule. 0937 * Transfers associated with these QHs are currently 0938 * assigned to a host channel. 0939 * @non_periodic_qh_ptr: Pointer to next QH to process in the active 0940 * non-periodic schedule 0941 * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule. 0942 * Transfers associated with these QHs are not currently 0943 * assigned to a host channel. 0944 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a 0945 * list of QHs for periodic transfers that are _not_ 0946 * scheduled for the next frame. Each QH in the list has an 0947 * interval counter that determines when it needs to be 0948 * scheduled for execution. This scheduling mechanism 0949 * allows only a simple calculation for periodic bandwidth 0950 * used (i.e. must assume that all periodic transfers may 0951 * need to execute in the same frame). However, it greatly 0952 * simplifies scheduling and should be sufficient for the 0953 * vast majority of OTG hosts, which need to connect to a 0954 * small number of peripherals at one time. Items move from 0955 * this list to periodic_sched_ready when the QH interval 0956 * counter is 0 at SOF. 0957 * @periodic_sched_ready: List of periodic QHs that are ready for execution in 0958 * the next frame, but have not yet been assigned to host 0959 * channels. Items move from this list to 0960 * periodic_sched_assigned as host channels become 0961 * available during the current frame. 0962 * @periodic_sched_assigned: List of periodic QHs to be executed in the next 0963 * frame that are assigned to host channels. Items move 0964 * from this list to periodic_sched_queued as the 0965 * transactions for the QH are queued to the DWC_otg 0966 * controller. 0967 * @periodic_sched_queued: List of periodic QHs that have been queued for 0968 * execution. Items move from this list to either 0969 * periodic_sched_inactive or periodic_sched_ready when the 0970 * channel associated with the transfer is released. If the 0971 * interval for the QH is 1, the item moves to 0972 * periodic_sched_ready because it must be rescheduled for 0973 * the next frame. Otherwise, the item moves to 0974 * periodic_sched_inactive. 0975 * @split_order: List keeping track of channels doing splits, in order. 0976 * @periodic_usecs: Total bandwidth claimed so far for periodic transfers. 0977 * This value is in microseconds per (micro)frame. The 0978 * assumption is that all periodic transfers may occur in 0979 * the same (micro)frame. 0980 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the 0981 * host is in high speed mode; low speed schedules are 0982 * stored elsewhere since we need one per TT. 0983 * @periodic_qh_count: Count of periodic QHs, if using several eps. Used for 0984 * SOF enable/disable. 0985 * @free_hc_list: Free host channels in the controller. This is a list of 0986 * struct dwc2_host_chan items. 0987 * @periodic_channels: Number of host channels assigned to periodic transfers. 0988 * Currently assuming that there is a dedicated host 0989 * channel for each periodic transaction and at least one 0990 * host channel is available for non-periodic transactions. 0991 * @non_periodic_channels: Number of host channels assigned to non-periodic 0992 * transfers 0993 * @available_host_channels: Number of host channels available for the 0994 * microframe scheduler to use 0995 * @hc_ptr_array: Array of pointers to the host channel descriptors. 0996 * Allows accessing a host channel descriptor given the 0997 * host channel number. This is useful in interrupt 0998 * handlers. 0999 * @status_buf: Buffer used for data received during the status phase of 1000 * a control transfer. 1001 * @status_buf_dma: DMA address for status_buf 1002 * @start_work: Delayed work for handling host A-cable connection 1003 * @reset_work: Delayed work for handling a port reset 1004 * @phy_reset_work: Work structure for doing a PHY reset 1005 * @otg_port: OTG port number 1006 * @frame_list: Frame list 1007 * @frame_list_dma: Frame list DMA address 1008 * @frame_list_sz: Frame list size 1009 * @desc_gen_cache: Kmem cache for generic descriptors 1010 * @desc_hsisoc_cache: Kmem cache for hs isochronous descriptors 1011 * @unaligned_cache: Kmem cache for DMA mode to handle non-aligned buf 1012 * 1013 * These are for peripheral mode: 1014 * 1015 * @driver: USB gadget driver 1016 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos. 1017 * @num_of_eps: Number of available EPs (excluding EP0) 1018 * @debug_root: Root directrory for debugfs. 1019 * @ep0_reply: Request used for ep0 reply. 1020 * @ep0_buff: Buffer for EP0 reply data, if needed. 1021 * @ctrl_buff: Buffer for EP0 control requests. 1022 * @ctrl_req: Request for EP0 control packets. 1023 * @ep0_state: EP0 control transfers state 1024 * @delayed_status: true when gadget driver asks for delayed status 1025 * @test_mode: USB test mode requested by the host 1026 * @remote_wakeup_allowed: True if device is allowed to wake-up host by 1027 * remote-wakeup signalling 1028 * @setup_desc_dma: EP0 setup stage desc chain DMA address 1029 * @setup_desc: EP0 setup stage desc chain pointer 1030 * @ctrl_in_desc_dma: EP0 IN data phase desc chain DMA address 1031 * @ctrl_in_desc: EP0 IN data phase desc chain pointer 1032 * @ctrl_out_desc_dma: EP0 OUT data phase desc chain DMA address 1033 * @ctrl_out_desc: EP0 OUT data phase desc chain pointer 1034 * @irq: Interrupt request line number 1035 * @clk: Pointer to otg clock 1036 * @reset: Pointer to dwc2 reset controller 1037 * @reset_ecc: Pointer to dwc2 optional reset controller in Stratix10. 1038 * @regset: A pointer to a struct debugfs_regset32, which contains 1039 * a pointer to an array of register definitions, the 1040 * array size and the base address where the register bank 1041 * is to be found. 1042 * @last_frame_num: Number of last frame. Range from 0 to 32768 1043 * @frame_num_array: Used only if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is 1044 * defined, for missed SOFs tracking. Array holds that 1045 * frame numbers, which not equal to last_frame_num +1 1046 * @last_frame_num_array: Used only if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is 1047 * defined, for missed SOFs tracking. 1048 * If current_frame_number != last_frame_num+1 1049 * then last_frame_num added to this array 1050 * @frame_num_idx: Actual size of frame_num_array and last_frame_num_array 1051 * @dumped_frame_num_array: 1 - if missed SOFs frame numbers dumbed 1052 * 0 - if missed SOFs frame numbers not dumbed 1053 * @fifo_mem: Total internal RAM for FIFOs (bytes) 1054 * @fifo_map: Each bit intend for concrete fifo. If that bit is set, 1055 * then that fifo is used 1056 * @gadget: Represents a usb gadget device 1057 * @connected: Used in slave mode. True if device connected with host 1058 * @eps_in: The IN endpoints being supplied to the gadget framework 1059 * @eps_out: The OUT endpoints being supplied to the gadget framework 1060 * @new_connection: Used in host mode. True if there are new connected 1061 * device 1062 * @enabled: Indicates the enabling state of controller 1063 * 1064 */ 1065 struct dwc2_hsotg { 1066 struct device *dev; 1067 void __iomem *regs; 1068 /** Params detected from hardware */ 1069 struct dwc2_hw_params hw_params; 1070 /** Params to actually use */ 1071 struct dwc2_core_params params; 1072 enum usb_otg_state op_state; 1073 enum usb_dr_mode dr_mode; 1074 struct usb_role_switch *role_sw; 1075 enum usb_dr_mode role_sw_default_mode; 1076 unsigned int hcd_enabled:1; 1077 unsigned int gadget_enabled:1; 1078 unsigned int ll_hw_enabled:1; 1079 unsigned int hibernated:1; 1080 unsigned int in_ppd:1; 1081 bool bus_suspended; 1082 unsigned int reset_phy_on_wake:1; 1083 unsigned int need_phy_for_wake:1; 1084 unsigned int phy_off_for_suspend:1; 1085 u16 frame_number; 1086 1087 struct phy *phy; 1088 struct usb_phy *uphy; 1089 struct dwc2_hsotg_plat *plat; 1090 struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES]; 1091 struct regulator *vbus_supply; 1092 struct regulator *usb33d; 1093 1094 spinlock_t lock; 1095 void *priv; 1096 int irq; 1097 struct clk *clk; 1098 struct reset_control *reset; 1099 struct reset_control *reset_ecc; 1100 1101 unsigned int queuing_high_bandwidth:1; 1102 unsigned int srp_success:1; 1103 1104 struct workqueue_struct *wq_otg; 1105 struct work_struct wf_otg; 1106 struct timer_list wkp_timer; 1107 enum dwc2_lx_state lx_state; 1108 struct dwc2_gregs_backup gr_backup; 1109 struct dwc2_dregs_backup dr_backup; 1110 struct dwc2_hregs_backup hr_backup; 1111 1112 struct dentry *debug_root; 1113 struct debugfs_regset32 *regset; 1114 bool needs_byte_swap; 1115 1116 /* DWC OTG HW Release versions */ 1117 #define DWC2_CORE_REV_2_71a 0x4f54271a 1118 #define DWC2_CORE_REV_2_72a 0x4f54272a 1119 #define DWC2_CORE_REV_2_80a 0x4f54280a 1120 #define DWC2_CORE_REV_2_90a 0x4f54290a 1121 #define DWC2_CORE_REV_2_91a 0x4f54291a 1122 #define DWC2_CORE_REV_2_92a 0x4f54292a 1123 #define DWC2_CORE_REV_2_94a 0x4f54294a 1124 #define DWC2_CORE_REV_3_00a 0x4f54300a 1125 #define DWC2_CORE_REV_3_10a 0x4f54310a 1126 #define DWC2_CORE_REV_4_00a 0x4f54400a 1127 #define DWC2_CORE_REV_4_20a 0x4f54420a 1128 #define DWC2_FS_IOT_REV_1_00a 0x5531100a 1129 #define DWC2_HS_IOT_REV_1_00a 0x5532100a 1130 #define DWC2_CORE_REV_MASK 0x0000ffff 1131 1132 /* DWC OTG HW Core ID */ 1133 #define DWC2_OTG_ID 0x4f540000 1134 #define DWC2_FS_IOT_ID 0x55310000 1135 #define DWC2_HS_IOT_ID 0x55320000 1136 1137 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) 1138 union dwc2_hcd_internal_flags { 1139 u32 d32; 1140 struct { 1141 unsigned port_connect_status_change:1; 1142 unsigned port_connect_status:1; 1143 unsigned port_reset_change:1; 1144 unsigned port_enable_change:1; 1145 unsigned port_suspend_change:1; 1146 unsigned port_over_current_change:1; 1147 unsigned port_l1_change:1; 1148 unsigned reserved:25; 1149 } b; 1150 } flags; 1151 1152 struct list_head non_periodic_sched_inactive; 1153 struct list_head non_periodic_sched_waiting; 1154 struct list_head non_periodic_sched_active; 1155 struct list_head *non_periodic_qh_ptr; 1156 struct list_head periodic_sched_inactive; 1157 struct list_head periodic_sched_ready; 1158 struct list_head periodic_sched_assigned; 1159 struct list_head periodic_sched_queued; 1160 struct list_head split_order; 1161 u16 periodic_usecs; 1162 DECLARE_BITMAP(hs_periodic_bitmap, DWC2_HS_SCHEDULE_US); 1163 u16 periodic_qh_count; 1164 bool new_connection; 1165 1166 u16 last_frame_num; 1167 1168 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS 1169 #define FRAME_NUM_ARRAY_SIZE 1000 1170 u16 *frame_num_array; 1171 u16 *last_frame_num_array; 1172 int frame_num_idx; 1173 int dumped_frame_num_array; 1174 #endif 1175 1176 struct list_head free_hc_list; 1177 int periodic_channels; 1178 int non_periodic_channels; 1179 int available_host_channels; 1180 struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS]; 1181 u8 *status_buf; 1182 dma_addr_t status_buf_dma; 1183 #define DWC2_HCD_STATUS_BUF_SIZE 64 1184 1185 struct delayed_work start_work; 1186 struct delayed_work reset_work; 1187 struct work_struct phy_reset_work; 1188 u8 otg_port; 1189 u32 *frame_list; 1190 dma_addr_t frame_list_dma; 1191 u32 frame_list_sz; 1192 struct kmem_cache *desc_gen_cache; 1193 struct kmem_cache *desc_hsisoc_cache; 1194 struct kmem_cache *unaligned_cache; 1195 #define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024 1196 1197 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */ 1198 1199 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \ 1200 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) 1201 /* Gadget structures */ 1202 struct usb_gadget_driver *driver; 1203 int fifo_mem; 1204 unsigned int dedicated_fifos:1; 1205 unsigned char num_of_eps; 1206 u32 fifo_map; 1207 1208 struct usb_request *ep0_reply; 1209 struct usb_request *ctrl_req; 1210 void *ep0_buff; 1211 void *ctrl_buff; 1212 enum dwc2_ep0_state ep0_state; 1213 unsigned delayed_status : 1; 1214 u8 test_mode; 1215 1216 dma_addr_t setup_desc_dma[2]; 1217 struct dwc2_dma_desc *setup_desc[2]; 1218 dma_addr_t ctrl_in_desc_dma; 1219 struct dwc2_dma_desc *ctrl_in_desc; 1220 dma_addr_t ctrl_out_desc_dma; 1221 struct dwc2_dma_desc *ctrl_out_desc; 1222 1223 struct usb_gadget gadget; 1224 unsigned int enabled:1; 1225 unsigned int connected:1; 1226 unsigned int remote_wakeup_allowed:1; 1227 struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS]; 1228 struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS]; 1229 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */ 1230 }; 1231 1232 /* Normal architectures just use readl/write */ 1233 static inline u32 dwc2_readl(struct dwc2_hsotg *hsotg, u32 offset) 1234 { 1235 u32 val; 1236 1237 val = readl(hsotg->regs + offset); 1238 if (hsotg->needs_byte_swap) 1239 return swab32(val); 1240 else 1241 return val; 1242 } 1243 1244 static inline void dwc2_writel(struct dwc2_hsotg *hsotg, u32 value, u32 offset) 1245 { 1246 if (hsotg->needs_byte_swap) 1247 writel(swab32(value), hsotg->regs + offset); 1248 else 1249 writel(value, hsotg->regs + offset); 1250 1251 #ifdef DWC2_LOG_WRITES 1252 pr_info("info:: wrote %08x to %p\n", value, hsotg->regs + offset); 1253 #endif 1254 } 1255 1256 static inline void dwc2_readl_rep(struct dwc2_hsotg *hsotg, u32 offset, 1257 void *buffer, unsigned int count) 1258 { 1259 if (count) { 1260 u32 *buf = buffer; 1261 1262 do { 1263 u32 x = dwc2_readl(hsotg, offset); 1264 *buf++ = x; 1265 } while (--count); 1266 } 1267 } 1268 1269 static inline void dwc2_writel_rep(struct dwc2_hsotg *hsotg, u32 offset, 1270 const void *buffer, unsigned int count) 1271 { 1272 if (count) { 1273 const u32 *buf = buffer; 1274 1275 do { 1276 dwc2_writel(hsotg, *buf++, offset); 1277 } while (--count); 1278 } 1279 } 1280 1281 /* Reasons for halting a host channel */ 1282 enum dwc2_halt_status { 1283 DWC2_HC_XFER_NO_HALT_STATUS, 1284 DWC2_HC_XFER_COMPLETE, 1285 DWC2_HC_XFER_URB_COMPLETE, 1286 DWC2_HC_XFER_ACK, 1287 DWC2_HC_XFER_NAK, 1288 DWC2_HC_XFER_NYET, 1289 DWC2_HC_XFER_STALL, 1290 DWC2_HC_XFER_XACT_ERR, 1291 DWC2_HC_XFER_FRAME_OVERRUN, 1292 DWC2_HC_XFER_BABBLE_ERR, 1293 DWC2_HC_XFER_DATA_TOGGLE_ERR, 1294 DWC2_HC_XFER_AHB_ERR, 1295 DWC2_HC_XFER_PERIODIC_INCOMPLETE, 1296 DWC2_HC_XFER_URB_DEQUEUE, 1297 }; 1298 1299 /* Core version information */ 1300 static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg) 1301 { 1302 return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000; 1303 } 1304 1305 static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg) 1306 { 1307 return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000; 1308 } 1309 1310 static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg) 1311 { 1312 return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000; 1313 } 1314 1315 /* 1316 * The following functions support initialization of the core driver component 1317 * and the DWC_otg controller 1318 */ 1319 int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait); 1320 int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg); 1321 int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, int rem_wakeup, 1322 bool restore); 1323 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host); 1324 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup, 1325 int reset, int is_host); 1326 void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg); 1327 int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy); 1328 1329 void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host); 1330 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg); 1331 1332 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg); 1333 1334 int dwc2_check_core_version(struct dwc2_hsotg *hsotg); 1335 1336 /* 1337 * Common core Functions. 1338 * The following functions support managing the DWC_otg controller in either 1339 * device or host mode. 1340 */ 1341 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes); 1342 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num); 1343 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg); 1344 1345 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd); 1346 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd); 1347 1348 void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup, 1349 int is_host); 1350 int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg); 1351 int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg); 1352 1353 void dwc2_enable_acg(struct dwc2_hsotg *hsotg); 1354 1355 /* This function should be called on every hardware interrupt. */ 1356 irqreturn_t dwc2_handle_common_intr(int irq, void *dev); 1357 1358 /* The device ID match table */ 1359 extern const struct of_device_id dwc2_of_match_table[]; 1360 extern const struct acpi_device_id dwc2_acpi_match[]; 1361 1362 int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg); 1363 int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg); 1364 1365 /* Common polling functions */ 1366 int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit, 1367 u32 timeout); 1368 int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit, 1369 u32 timeout); 1370 /* Parameters */ 1371 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg); 1372 int dwc2_init_params(struct dwc2_hsotg *hsotg); 1373 1374 /* 1375 * The following functions check the controller's OTG operation mode 1376 * capability (GHWCFG2.OTG_MODE). 1377 * 1378 * These functions can be used before the internal hsotg->hw_params 1379 * are read in and cached so they always read directly from the 1380 * GHWCFG2 register. 1381 */ 1382 unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg); 1383 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg); 1384 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg); 1385 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg); 1386 1387 /* 1388 * Returns the mode of operation, host or device 1389 */ 1390 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg) 1391 { 1392 return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0; 1393 } 1394 1395 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg) 1396 { 1397 return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0; 1398 } 1399 1400 int dwc2_drd_init(struct dwc2_hsotg *hsotg); 1401 void dwc2_drd_suspend(struct dwc2_hsotg *hsotg); 1402 void dwc2_drd_resume(struct dwc2_hsotg *hsotg); 1403 void dwc2_drd_exit(struct dwc2_hsotg *hsotg); 1404 1405 /* 1406 * Dump core registers and SPRAM 1407 */ 1408 void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg); 1409 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg); 1410 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg); 1411 1412 /* Gadget defines */ 1413 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \ 1414 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) 1415 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg); 1416 int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2); 1417 int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2); 1418 int dwc2_gadget_init(struct dwc2_hsotg *hsotg); 1419 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2, 1420 bool reset); 1421 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg); 1422 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg); 1423 void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2); 1424 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode); 1425 #define dwc2_is_device_connected(hsotg) (hsotg->connected) 1426 #define dwc2_is_device_enabled(hsotg) (hsotg->enabled) 1427 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg); 1428 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup); 1429 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg); 1430 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 1431 int rem_wakeup, int reset); 1432 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg); 1433 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg, 1434 bool restore); 1435 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg); 1436 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, 1437 int rem_wakeup); 1438 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg); 1439 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg); 1440 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg); 1441 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg); 1442 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg); 1443 static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg) 1444 { hsotg->fifo_map = 0; } 1445 #else 1446 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2) 1447 { return 0; } 1448 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2) 1449 { return 0; } 1450 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2) 1451 { return 0; } 1452 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg) 1453 { return 0; } 1454 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2, 1455 bool reset) {} 1456 static inline void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) {} 1457 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {} 1458 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {} 1459 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, 1460 int testmode) 1461 { return 0; } 1462 #define dwc2_is_device_connected(hsotg) (0) 1463 #define dwc2_is_device_enabled(hsotg) (0) 1464 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 1465 { return 0; } 1466 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, 1467 int remote_wakeup) 1468 { return 0; } 1469 static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg) 1470 { return 0; } 1471 static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 1472 int rem_wakeup, int reset) 1473 { return 0; } 1474 static inline int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg) 1475 { return 0; } 1476 static inline int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg, 1477 bool restore) 1478 { return 0; } 1479 static inline void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) {} 1480 static inline void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, 1481 int rem_wakeup) {} 1482 static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 1483 { return 0; } 1484 static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 1485 { return 0; } 1486 static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 1487 { return 0; } 1488 static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {} 1489 static inline void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) {} 1490 static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg) {} 1491 #endif 1492 1493 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) 1494 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg); 1495 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us); 1496 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg); 1497 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force); 1498 void dwc2_hcd_start(struct dwc2_hsotg *hsotg); 1499 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup); 1500 int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex); 1501 int dwc2_port_resume(struct dwc2_hsotg *hsotg); 1502 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg); 1503 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg); 1504 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg); 1505 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, 1506 int rem_wakeup, int reset); 1507 int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg); 1508 int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg, 1509 int rem_wakeup, bool restore); 1510 void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg); 1511 void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup); 1512 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2); 1513 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) 1514 { schedule_work(&hsotg->phy_reset_work); } 1515 #else 1516 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg) 1517 { return 0; } 1518 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, 1519 int us) 1520 { return 0; } 1521 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {} 1522 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {} 1523 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {} 1524 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {} 1525 static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup) 1526 { return 0; } 1527 static inline int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex) 1528 { return 0; } 1529 static inline int dwc2_port_resume(struct dwc2_hsotg *hsotg) 1530 { return 0; } 1531 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg) 1532 { return 0; } 1533 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg) 1534 { return 0; } 1535 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg) 1536 { return 0; } 1537 static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg) 1538 { return 0; } 1539 static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, 1540 int rem_wakeup, int reset) 1541 { return 0; } 1542 static inline int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg) 1543 { return 0; } 1544 static inline int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg, 1545 int rem_wakeup, bool restore) 1546 { return 0; } 1547 static inline void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg) {} 1548 static inline void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, 1549 int rem_wakeup) {} 1550 static inline bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2) 1551 { return false; } 1552 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) {} 1553 1554 #endif 1555 1556 #endif /* __DWC2_CORE_H__ */
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.1.0 LXR engine. The LXR team |
![]() ![]() |