Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
0002 /*
0003  * core.h - DesignWare HS OTG Controller common declarations
0004  *
0005  * Copyright (C) 2004-2013 Synopsys, Inc.
0006  *
0007  * Redistribution and use in source and binary forms, with or without
0008  * modification, are permitted provided that the following conditions
0009  * are met:
0010  * 1. Redistributions of source code must retain the above copyright
0011  *    notice, this list of conditions, and the following disclaimer,
0012  *    without modification.
0013  * 2. Redistributions in binary form must reproduce the above copyright
0014  *    notice, this list of conditions and the following disclaimer in the
0015  *    documentation and/or other materials provided with the distribution.
0016  * 3. The names of the above-listed copyright holders may not be used
0017  *    to endorse or promote products derived from this software without
0018  *    specific prior written permission.
0019  *
0020  * ALTERNATIVELY, this software may be distributed under the terms of the
0021  * GNU General Public License ("GPL") as published by the Free Software
0022  * Foundation; either version 2 of the License, or (at your option) any
0023  * later version.
0024  *
0025  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
0026  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
0027  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
0028  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
0029  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
0030  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
0031  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
0032  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
0033  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
0034  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
0035  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
0036  */
0037 
0038 #ifndef __DWC2_CORE_H__
0039 #define __DWC2_CORE_H__
0040 
0041 #include <linux/acpi.h>
0042 #include <linux/phy/phy.h>
0043 #include <linux/regulator/consumer.h>
0044 #include <linux/usb/gadget.h>
0045 #include <linux/usb/otg.h>
0046 #include <linux/usb/phy.h>
0047 #include "hw.h"
0048 
0049 /*
0050  * Suggested defines for tracers:
0051  * - no_printk:    Disable tracing
0052  * - pr_info:      Print this info to the console
0053  * - trace_printk: Print this info to trace buffer (good for verbose logging)
0054  */
0055 
0056 #define DWC2_TRACE_SCHEDULER        no_printk
0057 #define DWC2_TRACE_SCHEDULER_VB     no_printk
0058 
0059 /* Detailed scheduler tracing, but won't overwhelm console */
0060 #define dwc2_sch_dbg(hsotg, fmt, ...)                   \
0061     DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),           \
0062                  dev_name(hsotg->dev), ##__VA_ARGS__)
0063 
0064 /* Verbose scheduler tracing */
0065 #define dwc2_sch_vdbg(hsotg, fmt, ...)                  \
0066     DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),        \
0067                 dev_name(hsotg->dev), ##__VA_ARGS__)
0068 
0069 /* Maximum number of Endpoints/HostChannels */
0070 #define MAX_EPS_CHANNELS    16
0071 
0072 /* dwc2-hsotg declarations */
0073 static const char * const dwc2_hsotg_supply_names[] = {
0074     "vusb_d",               /* digital USB supply, 1.2V */
0075     "vusb_a",               /* analog USB supply, 1.1V */
0076 };
0077 
0078 #define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
0079 
0080 /*
0081  * EP0_MPS_LIMIT
0082  *
0083  * Unfortunately there seems to be a limit of the amount of data that can
0084  * be transferred by IN transactions on EP0. This is either 127 bytes or 3
0085  * packets (which practically means 1 packet and 63 bytes of data) when the
0086  * MPS is set to 64.
0087  *
0088  * This means if we are wanting to move >127 bytes of data, we need to
0089  * split the transactions up, but just doing one packet at a time does
0090  * not work (this may be an implicit DATA0 PID on first packet of the
0091  * transaction) and doing 2 packets is outside the controller's limits.
0092  *
0093  * If we try to lower the MPS size for EP0, then no transfers work properly
0094  * for EP0, and the system will fail basic enumeration. As no cause for this
0095  * has currently been found, we cannot support any large IN transfers for
0096  * EP0.
0097  */
0098 #define EP0_MPS_LIMIT   64
0099 
0100 struct dwc2_hsotg;
0101 struct dwc2_hsotg_req;
0102 
0103 /**
0104  * struct dwc2_hsotg_ep - driver endpoint definition.
0105  * @ep: The gadget layer representation of the endpoint.
0106  * @name: The driver generated name for the endpoint.
0107  * @queue: Queue of requests for this endpoint.
0108  * @parent: Reference back to the parent device structure.
0109  * @req: The current request that the endpoint is processing. This is
0110  *       used to indicate an request has been loaded onto the endpoint
0111  *       and has yet to be completed (maybe due to data move, or simply
0112  *       awaiting an ack from the core all the data has been completed).
0113  * @debugfs: File entry for debugfs file for this endpoint.
0114  * @dir_in: Set to true if this endpoint is of the IN direction, which
0115  *          means that it is sending data to the Host.
0116  * @map_dir: Set to the value of dir_in when the DMA buffer is mapped.
0117  * @index: The index for the endpoint registers.
0118  * @mc: Multi Count - number of transactions per microframe
0119  * @interval: Interval for periodic endpoints, in frames or microframes.
0120  * @name: The name array passed to the USB core.
0121  * @halted: Set if the endpoint has been halted.
0122  * @periodic: Set if this is a periodic ep, such as Interrupt
0123  * @isochronous: Set if this is a isochronous ep
0124  * @send_zlp: Set if we need to send a zero-length packet.
0125  * @wedged: Set if ep is wedged.
0126  * @desc_list_dma: The DMA address of descriptor chain currently in use.
0127  * @desc_list: Pointer to descriptor DMA chain head currently in use.
0128  * @desc_count: Count of entries within the DMA descriptor chain of EP.
0129  * @next_desc: index of next free descriptor in the ISOC chain under SW control.
0130  * @compl_desc: index of next descriptor to be completed by xFerComplete
0131  * @total_data: The total number of data bytes done.
0132  * @fifo_size: The size of the FIFO (for periodic IN endpoints)
0133  * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0.
0134  * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
0135  * @last_load: The offset of data for the last start of request.
0136  * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
0137  * @target_frame: Targeted frame num to setup next ISOC transfer
0138  * @frame_overrun: Indicates SOF number overrun in DSTS
0139  *
0140  * This is the driver's state for each registered endpoint, allowing it
0141  * to keep track of transactions that need doing. Each endpoint has a
0142  * lock to protect the state, to try and avoid using an overall lock
0143  * for the host controller as much as possible.
0144  *
0145  * For periodic IN endpoints, we have fifo_size and fifo_load to try
0146  * and keep track of the amount of data in the periodic FIFO for each
0147  * of these as we don't have a status register that tells us how much
0148  * is in each of them. (note, this may actually be useless information
0149  * as in shared-fifo mode periodic in acts like a single-frame packet
0150  * buffer than a fifo)
0151  */
0152 struct dwc2_hsotg_ep {
0153     struct usb_ep           ep;
0154     struct list_head        queue;
0155     struct dwc2_hsotg       *parent;
0156     struct dwc2_hsotg_req    *req;
0157     struct dentry           *debugfs;
0158 
0159     unsigned long           total_data;
0160     unsigned int            size_loaded;
0161     unsigned int            last_load;
0162     unsigned int            fifo_load;
0163     unsigned short          fifo_size;
0164     unsigned short      fifo_index;
0165 
0166     unsigned char           dir_in;
0167     unsigned char           map_dir;
0168     unsigned char           index;
0169     unsigned char           mc;
0170     u16                     interval;
0171 
0172     unsigned int            halted:1;
0173     unsigned int            periodic:1;
0174     unsigned int            isochronous:1;
0175     unsigned int            send_zlp:1;
0176     unsigned int            wedged:1;
0177     unsigned int            target_frame;
0178 #define TARGET_FRAME_INITIAL   0xFFFFFFFF
0179     bool            frame_overrun;
0180 
0181     dma_addr_t      desc_list_dma;
0182     struct dwc2_dma_desc    *desc_list;
0183     u8          desc_count;
0184 
0185     unsigned int        next_desc;
0186     unsigned int        compl_desc;
0187 
0188     char                    name[10];
0189 };
0190 
0191 /**
0192  * struct dwc2_hsotg_req - data transfer request
0193  * @req: The USB gadget request
0194  * @queue: The list of requests for the endpoint this is queued for.
0195  * @saved_req_buf: variable to save req.buf when bounce buffers are used.
0196  */
0197 struct dwc2_hsotg_req {
0198     struct usb_request      req;
0199     struct list_head        queue;
0200     void *saved_req_buf;
0201 };
0202 
0203 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
0204     IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
0205 #define call_gadget(_hs, _entry) \
0206 do { \
0207     if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
0208         (_hs)->driver && (_hs)->driver->_entry) { \
0209         spin_unlock(&_hs->lock); \
0210         (_hs)->driver->_entry(&(_hs)->gadget); \
0211         spin_lock(&_hs->lock); \
0212     } \
0213 } while (0)
0214 #else
0215 #define call_gadget(_hs, _entry)    do {} while (0)
0216 #endif
0217 
0218 struct dwc2_hsotg;
0219 struct dwc2_host_chan;
0220 
0221 /* Device States */
0222 enum dwc2_lx_state {
0223     DWC2_L0,    /* On state */
0224     DWC2_L1,    /* LPM sleep state */
0225     DWC2_L2,    /* USB suspend state */
0226     DWC2_L3,    /* Off state */
0227 };
0228 
0229 /* Gadget ep0 states */
0230 enum dwc2_ep0_state {
0231     DWC2_EP0_SETUP,
0232     DWC2_EP0_DATA_IN,
0233     DWC2_EP0_DATA_OUT,
0234     DWC2_EP0_STATUS_IN,
0235     DWC2_EP0_STATUS_OUT,
0236 };
0237 
0238 /**
0239  * struct dwc2_core_params - Parameters for configuring the core
0240  *
0241  * @otg_caps:           Specifies the OTG capabilities. OTG caps from the platform parameters,
0242  *                      used to setup the:
0243  *                       - HNP and SRP capable
0244  *                       - SRP Only capable
0245  *                       - No HNP/SRP capable (always available)
0246  *                       Defaults to best available option
0247  *                       - OTG revision number the device is compliant with, in binary-coded
0248  *                         decimal (i.e. 2.0 is 0200H). (see struct usb_otg_caps)
0249  * @host_dma:           Specifies whether to use slave or DMA mode for accessing
0250  *                      the data FIFOs. The driver will automatically detect the
0251  *                      value for this parameter if none is specified.
0252  *                       0 - Slave (always available)
0253  *                       1 - DMA (default, if available)
0254  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
0255  *                      address DMA mode or descriptor DMA mode for accessing
0256  *                      the data FIFOs. The driver will automatically detect the
0257  *                      value for this if none is specified.
0258  *                       0 - Address DMA
0259  *                       1 - Descriptor DMA (default, if available)
0260  * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
0261  *                      address DMA mode or descriptor DMA mode for accessing
0262  *                      the data FIFOs in Full Speed mode only. The driver
0263  *                      will automatically detect the value for this if none is
0264  *                      specified.
0265  *                       0 - Address DMA
0266  *                       1 - Descriptor DMA in FS (default, if available)
0267  * @speed:              Specifies the maximum speed of operation in host and
0268  *                      device mode. The actual speed depends on the speed of
0269  *                      the attached device and the value of phy_type.
0270  *                       0 - High Speed
0271  *                           (default when phy_type is UTMI+ or ULPI)
0272  *                       1 - Full Speed
0273  *                           (default when phy_type is Full Speed)
0274  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
0275  *                       1 - Allow dynamic FIFO sizing (default, if available)
0276  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
0277  *                      are enabled for non-periodic IN endpoints in device
0278  *                      mode.
0279  * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
0280  *                      dynamic FIFO sizing is enabled
0281  *                       16 to 32768
0282  *                      Actual maximum value is autodetected and also
0283  *                      the default.
0284  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
0285  *                      in host mode when dynamic FIFO sizing is enabled
0286  *                       16 to 32768
0287  *                      Actual maximum value is autodetected and also
0288  *                      the default.
0289  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
0290  *                      host mode when dynamic FIFO sizing is enabled
0291  *                       16 to 32768
0292  *                      Actual maximum value is autodetected and also
0293  *                      the default.
0294  * @max_transfer_size:  The maximum transfer size supported, in bytes
0295  *                       2047 to 65,535
0296  *                      Actual maximum value is autodetected and also
0297  *                      the default.
0298  * @max_packet_count:   The maximum number of packets in a transfer
0299  *                       15 to 511
0300  *                      Actual maximum value is autodetected and also
0301  *                      the default.
0302  * @host_channels:      The number of host channel registers to use
0303  *                       1 to 16
0304  *                      Actual maximum value is autodetected and also
0305  *                      the default.
0306  * @phy_type:           Specifies the type of PHY interface to use. By default,
0307  *                      the driver will automatically detect the phy_type.
0308  *                       0 - Full Speed Phy
0309  *                       1 - UTMI+ Phy
0310  *                       2 - ULPI Phy
0311  *                      Defaults to best available option (2, 1, then 0)
0312  * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
0313  *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
0314  *                      ULPI phy_type, this parameter indicates the data width
0315  *                      between the MAC and the ULPI Wrapper.) Also, this
0316  *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
0317  *                      parameter was set to "8 and 16 bits", meaning that the
0318  *                      core has been configured to work at either data path
0319  *                      width.
0320  *                       8 or 16 (default 16 if available)
0321  * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
0322  *                      data rate. This parameter is only applicable if phy_type
0323  *                      is ULPI.
0324  *                       0 - single data rate ULPI interface with 8 bit wide
0325  *                           data bus (default)
0326  *                       1 - double data rate ULPI interface with 4 bit wide
0327  *                           data bus
0328  * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
0329  *                      external supply to drive the VBus
0330  *                       0 - Internal supply (default)
0331  *                       1 - External supply
0332  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
0333  *                      speed PHY. This parameter is only applicable if phy_type
0334  *                      is FS.
0335  *                       0 - No (default)
0336  *                       1 - Yes
0337  * @ipg_isoc_en:        Indicates the IPG supports is enabled or disabled.
0338  *                       0 - Disable (default)
0339  *                       1 - Enable
0340  * @acg_enable:     For enabling Active Clock Gating in the controller
0341  *                       0 - No
0342  *                       1 - Yes
0343  * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
0344  *                       0 - No (default)
0345  *                       1 - Yes
0346  * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
0347  *                      when attached to a Full Speed or Low Speed device in
0348  *                      host mode.
0349  *                       0 - Don't support low power mode (default)
0350  *                       1 - Support low power mode
0351  * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
0352  *                      when connected to a Low Speed device in host
0353  *                      mode. This parameter is applicable only if
0354  *                      host_support_fs_ls_low_power is enabled.
0355  *                       0 - 48 MHz
0356  *                           (default when phy_type is UTMI+ or ULPI)
0357  *                       1 - 6 MHz
0358  *                           (default when phy_type is Full Speed)
0359  * @oc_disable:     Flag to disable overcurrent condition.
0360  *          0 - Allow overcurrent condition to get detected
0361  *          1 - Disable overcurrent condtion to get detected
0362  * @ts_dline:           Enable Term Select Dline pulsing
0363  *                       0 - No (default)
0364  *                       1 - Yes
0365  * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
0366  *                       0 - No (default for core < 2.92a)
0367  *                       1 - Yes (default for core >= 2.92a)
0368  * @ahbcfg:             This field allows the default value of the GAHBCFG
0369  *                      register to be overridden
0370  *                       -1         - GAHBCFG value will be set to 0x06
0371  *                                    (INCR, default)
0372  *                       all others - GAHBCFG value will be overridden with
0373  *                                    this value
0374  *                      Not all bits can be controlled like this, the
0375  *                      bits defined by GAHBCFG_CTRL_MASK are controlled
0376  *                      by the driver and are ignored in this
0377  *                      configuration value.
0378  * @uframe_sched:       True to enable the microframe scheduler
0379  * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
0380  *                      Disable CONIDSTSCHNG controller interrupt in such
0381  *                      case.
0382  *                      0 - No (default)
0383  *                      1 - Yes
0384  * @power_down:         Specifies whether the controller support power_down.
0385  *          If power_down is enabled, the controller will enter
0386  *          power_down in both peripheral and host mode when
0387  *          needed.
0388  *          0 - No (default)
0389  *          1 - Partial power down
0390  *          2 - Hibernation
0391  * @no_clock_gating:    Specifies whether to avoid clock gating feature.
0392  *          0 - No (use clock gating)
0393  *          1 - Yes (avoid it)
0394  * @lpm:        Enable LPM support.
0395  *          0 - No
0396  *          1 - Yes
0397  * @lpm_clock_gating:       Enable core PHY clock gating.
0398  *          0 - No
0399  *          1 - Yes
0400  * @besl:       Enable LPM Errata support.
0401  *          0 - No
0402  *          1 - Yes
0403  * @hird_threshold_en:  HIRD or HIRD Threshold enable.
0404  *          0 - No
0405  *          1 - Yes
0406  * @hird_threshold: Value of BESL or HIRD Threshold.
0407  * @ref_clk_per:        Indicates in terms of pico seconds the period
0408  *                      of ref_clk.
0409  *          62500 - 16MHz
0410  *                      58823 - 17MHz
0411  *                      52083 - 19.2MHz
0412  *          50000 - 20MHz
0413  *          41666 - 24MHz
0414  *          33333 - 30MHz (default)
0415  *          25000 - 40MHz
0416  * @sof_cnt_wkup_alert: Indicates in term of number of SOF's after which
0417  *                      the controller should generate an interrupt if the
0418  *                      device had been in L1 state until that period.
0419  *                      This is used by SW to initiate Remote WakeUp in the
0420  *                      controller so as to sync to the uF number from the host.
0421  * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
0422  *          register.
0423  *          0 - Deactivate the transceiver (default)
0424  *          1 - Activate the transceiver
0425  * @activate_stm_id_vb_detection: Activate external ID pin and Vbus level
0426  *          detection using GGPIO register.
0427  *          0 - Deactivate the external level detection (default)
0428  *          1 - Activate the external level detection
0429  * @activate_ingenic_overcurrent_detection: Activate Ingenic overcurrent
0430  *          detection.
0431  *          0 - Deactivate the overcurrent detection
0432  *          1 - Activate the overcurrent detection (default)
0433  * @g_dma:              Enables gadget dma usage (default: autodetect).
0434  * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
0435  * @g_rx_fifo_size: The periodic rx fifo size for the device, in
0436  *          DWORDS from 16-32768 (default: 2048 if
0437  *          possible, otherwise autodetect).
0438  * @g_np_tx_fifo_size:  The non-periodic tx fifo size for the device in
0439  *          DWORDS from 16-32768 (default: 1024 if
0440  *          possible, otherwise autodetect).
0441  * @g_tx_fifo_size: An array of TX fifo sizes in dedicated fifo
0442  *          mode. Each value corresponds to one EP
0443  *          starting from EP1 (max 15 values). Sizes are
0444  *          in DWORDS with possible values from
0445  *          16-32768 (default: 256, 256, 256, 256, 768,
0446  *          768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
0447  * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
0448  *                      while full&low speed device connect. And change speed
0449  *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
0450  *          0 - No (default)
0451  *          1 - Yes
0452  * @service_interval:   Enable service interval based scheduling.
0453  *                      0 - No
0454  *                      1 - Yes
0455  *
0456  * The following parameters may be specified when starting the module. These
0457  * parameters define how the DWC_otg controller should be configured. A
0458  * value of -1 (or any other out of range value) for any parameter means
0459  * to read the value from hardware (if possible) or use the builtin
0460  * default described above.
0461  */
0462 struct dwc2_core_params {
0463     struct usb_otg_caps otg_caps;
0464     u8 phy_type;
0465 #define DWC2_PHY_TYPE_PARAM_FS      0
0466 #define DWC2_PHY_TYPE_PARAM_UTMI    1
0467 #define DWC2_PHY_TYPE_PARAM_ULPI    2
0468 
0469     u8 speed;
0470 #define DWC2_SPEED_PARAM_HIGH   0
0471 #define DWC2_SPEED_PARAM_FULL   1
0472 #define DWC2_SPEED_PARAM_LOW    2
0473 
0474     u8 phy_utmi_width;
0475     bool phy_ulpi_ddr;
0476     bool phy_ulpi_ext_vbus;
0477     bool enable_dynamic_fifo;
0478     bool en_multiple_tx_fifo;
0479     bool i2c_enable;
0480     bool acg_enable;
0481     bool ulpi_fs_ls;
0482     bool ts_dline;
0483     bool reload_ctl;
0484     bool uframe_sched;
0485     bool external_id_pin_ctl;
0486 
0487     int power_down;
0488 #define DWC2_POWER_DOWN_PARAM_NONE      0
0489 #define DWC2_POWER_DOWN_PARAM_PARTIAL       1
0490 #define DWC2_POWER_DOWN_PARAM_HIBERNATION   2
0491     bool no_clock_gating;
0492 
0493     bool lpm;
0494     bool lpm_clock_gating;
0495     bool besl;
0496     bool hird_threshold_en;
0497     bool service_interval;
0498     u8 hird_threshold;
0499     bool activate_stm_fs_transceiver;
0500     bool activate_stm_id_vb_detection;
0501     bool activate_ingenic_overcurrent_detection;
0502     bool ipg_isoc_en;
0503     u16 max_packet_count;
0504     u32 max_transfer_size;
0505     u32 ahbcfg;
0506 
0507     /* GREFCLK parameters */
0508     u32 ref_clk_per;
0509     u16 sof_cnt_wkup_alert;
0510 
0511     /* Host parameters */
0512     bool host_dma;
0513     bool dma_desc_enable;
0514     bool dma_desc_fs_enable;
0515     bool host_support_fs_ls_low_power;
0516     bool host_ls_low_power_phy_clk;
0517     bool oc_disable;
0518 
0519     u8 host_channels;
0520     u16 host_rx_fifo_size;
0521     u16 host_nperio_tx_fifo_size;
0522     u16 host_perio_tx_fifo_size;
0523 
0524     /* Gadget parameters */
0525     bool g_dma;
0526     bool g_dma_desc;
0527     u32 g_rx_fifo_size;
0528     u32 g_np_tx_fifo_size;
0529     u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
0530 
0531     bool change_speed_quirk;
0532 };
0533 
0534 /**
0535  * struct dwc2_hw_params - Autodetected parameters.
0536  *
0537  * These parameters are the various parameters read from hardware
0538  * registers during initialization. They typically contain the best
0539  * supported or maximum value that can be configured in the
0540  * corresponding dwc2_core_params value.
0541  *
0542  * The values that are not in dwc2_core_params are documented below.
0543  *
0544  * @op_mode:             Mode of Operation
0545  *                       0 - HNP- and SRP-Capable OTG (Host & Device)
0546  *                       1 - SRP-Capable OTG (Host & Device)
0547  *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
0548  *                       3 - SRP-Capable Device
0549  *                       4 - Non-OTG Device
0550  *                       5 - SRP-Capable Host
0551  *                       6 - Non-OTG Host
0552  * @arch:                Architecture
0553  *                       0 - Slave only
0554  *                       1 - External DMA
0555  *                       2 - Internal DMA
0556  * @ipg_isoc_en:        This feature indicates that the controller supports
0557  *                      the worst-case scenario of Rx followed by Rx
0558  *                      Interpacket Gap (IPG) (32 bitTimes) as per the utmi
0559  *                      specification for any token following ISOC OUT token.
0560  *                       0 - Don't support
0561  *                       1 - Support
0562  * @power_optimized:    Are power optimizations enabled?
0563  * @num_dev_ep:         Number of device endpoints available
0564  * @num_dev_in_eps:     Number of device IN endpoints available
0565  * @num_dev_perio_in_ep: Number of device periodic IN endpoints
0566  *                       available
0567  * @dev_token_q_depth:  Device Mode IN Token Sequence Learning Queue
0568  *                      Depth
0569  *                       0 to 30
0570  * @host_perio_tx_q_depth:
0571  *                      Host Mode Periodic Request Queue Depth
0572  *                       2, 4 or 8
0573  * @nperio_tx_q_depth:
0574  *                      Non-Periodic Request Queue Depth
0575  *                       2, 4 or 8
0576  * @hs_phy_type:         High-speed PHY interface type
0577  *                       0 - High-speed interface not supported
0578  *                       1 - UTMI+
0579  *                       2 - ULPI
0580  *                       3 - UTMI+ and ULPI
0581  * @fs_phy_type:         Full-speed PHY interface type
0582  *                       0 - Full speed interface not supported
0583  *                       1 - Dedicated full speed interface
0584  *                       2 - FS pins shared with UTMI+ pins
0585  *                       3 - FS pins shared with ULPI pins
0586  * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
0587  * @hibernation:    Is hibernation enabled?
0588  * @utmi_phy_data_width: UTMI+ PHY data width
0589  *                       0 - 8 bits
0590  *                       1 - 16 bits
0591  *                       2 - 8 or 16 bits
0592  * @snpsid:             Value from SNPSID register
0593  * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
0594  * @g_tx_fifo_size: Power-on values of TxFIFO sizes
0595  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
0596  *                      address DMA mode or descriptor DMA mode for accessing
0597  *                      the data FIFOs. The driver will automatically detect the
0598  *                      value for this if none is specified.
0599  *                       0 - Address DMA
0600  *                       1 - Descriptor DMA (default, if available)
0601  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
0602  *                       1 - Allow dynamic FIFO sizing (default, if available)
0603  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
0604  *                      are enabled for non-periodic IN endpoints in device
0605  *                      mode.
0606  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
0607  *                      in host mode when dynamic FIFO sizing is enabled
0608  *                       16 to 32768
0609  *                      Actual maximum value is autodetected and also
0610  *                      the default.
0611  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
0612  *                      host mode when dynamic FIFO sizing is enabled
0613  *                       16 to 32768
0614  *                      Actual maximum value is autodetected and also
0615  *                      the default.
0616  * @max_transfer_size:  The maximum transfer size supported, in bytes
0617  *                       2047 to 65,535
0618  *                      Actual maximum value is autodetected and also
0619  *                      the default.
0620  * @max_packet_count:   The maximum number of packets in a transfer
0621  *                       15 to 511
0622  *                      Actual maximum value is autodetected and also
0623  *                      the default.
0624  * @host_channels:      The number of host channel registers to use
0625  *                       1 to 16
0626  *                      Actual maximum value is autodetected and also
0627  *                      the default.
0628  * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
0629  *               in device mode when dynamic FIFO sizing is enabled
0630  *               16 to 32768
0631  *               Actual maximum value is autodetected and also
0632  *               the default.
0633  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
0634  *                      speed PHY. This parameter is only applicable if phy_type
0635  *                      is FS.
0636  *                       0 - No (default)
0637  *                       1 - Yes
0638  * @acg_enable:     For enabling Active Clock Gating in the controller
0639  *                       0 - Disable
0640  *                       1 - Enable
0641  * @lpm_mode:       For enabling Link Power Management in the controller
0642  *                       0 - Disable
0643  *                       1 - Enable
0644  * @rx_fifo_size:   Number of 4-byte words in the  Rx FIFO when dynamic
0645  *          FIFO sizing is enabled 16 to 32768
0646  *          Actual maximum value is autodetected and also
0647  *          the default.
0648  * @service_interval_mode: For enabling service interval based scheduling in the
0649  *                         controller.
0650  *                           0 - Disable
0651  *                           1 - Enable
0652  */
0653 struct dwc2_hw_params {
0654     unsigned op_mode:3;
0655     unsigned arch:2;
0656     unsigned dma_desc_enable:1;
0657     unsigned enable_dynamic_fifo:1;
0658     unsigned en_multiple_tx_fifo:1;
0659     unsigned rx_fifo_size:16;
0660     unsigned host_nperio_tx_fifo_size:16;
0661     unsigned dev_nperio_tx_fifo_size:16;
0662     unsigned host_perio_tx_fifo_size:16;
0663     unsigned nperio_tx_q_depth:3;
0664     unsigned host_perio_tx_q_depth:3;
0665     unsigned dev_token_q_depth:5;
0666     unsigned max_transfer_size:26;
0667     unsigned max_packet_count:11;
0668     unsigned host_channels:5;
0669     unsigned hs_phy_type:2;
0670     unsigned fs_phy_type:2;
0671     unsigned i2c_enable:1;
0672     unsigned acg_enable:1;
0673     unsigned num_dev_ep:4;
0674     unsigned num_dev_in_eps : 4;
0675     unsigned num_dev_perio_in_ep:4;
0676     unsigned total_fifo_size:16;
0677     unsigned power_optimized:1;
0678     unsigned hibernation:1;
0679     unsigned utmi_phy_data_width:2;
0680     unsigned lpm_mode:1;
0681     unsigned ipg_isoc_en:1;
0682     unsigned service_interval_mode:1;
0683     u32 snpsid;
0684     u32 dev_ep_dirs;
0685     u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
0686 };
0687 
0688 /* Size of control and EP0 buffers */
0689 #define DWC2_CTRL_BUFF_SIZE 8
0690 
0691 /**
0692  * struct dwc2_gregs_backup - Holds global registers state before
0693  * entering partial power down
0694  * @gotgctl:        Backup of GOTGCTL register
0695  * @gintmsk:        Backup of GINTMSK register
0696  * @gahbcfg:        Backup of GAHBCFG register
0697  * @gusbcfg:        Backup of GUSBCFG register
0698  * @grxfsiz:        Backup of GRXFSIZ register
0699  * @gnptxfsiz:      Backup of GNPTXFSIZ register
0700  * @gi2cctl:        Backup of GI2CCTL register
0701  * @glpmcfg:        Backup of GLPMCFG register
0702  * @gdfifocfg:      Backup of GDFIFOCFG register
0703  * @pcgcctl:        Backup of PCGCCTL register
0704  * @pcgcctl1:       Backup of PCGCCTL1 register
0705  * @dtxfsiz:        Backup of DTXFSIZ registers for each endpoint
0706  * @gpwrdn:     Backup of GPWRDN register
0707  * @valid:      True if registers values backuped.
0708  */
0709 struct dwc2_gregs_backup {
0710     u32 gotgctl;
0711     u32 gintmsk;
0712     u32 gahbcfg;
0713     u32 gusbcfg;
0714     u32 grxfsiz;
0715     u32 gnptxfsiz;
0716     u32 gi2cctl;
0717     u32 glpmcfg;
0718     u32 pcgcctl;
0719     u32 pcgcctl1;
0720     u32 gdfifocfg;
0721     u32 gpwrdn;
0722     bool valid;
0723 };
0724 
0725 /**
0726  * struct dwc2_dregs_backup - Holds device registers state before
0727  * entering partial power down
0728  * @dcfg:       Backup of DCFG register
0729  * @dctl:       Backup of DCTL register
0730  * @daintmsk:       Backup of DAINTMSK register
0731  * @diepmsk:        Backup of DIEPMSK register
0732  * @doepmsk:        Backup of DOEPMSK register
0733  * @diepctl:        Backup of DIEPCTL register
0734  * @dieptsiz:       Backup of DIEPTSIZ register
0735  * @diepdma:        Backup of DIEPDMA register
0736  * @doepctl:        Backup of DOEPCTL register
0737  * @doeptsiz:       Backup of DOEPTSIZ register
0738  * @doepdma:        Backup of DOEPDMA register
0739  * @dtxfsiz:        Backup of DTXFSIZ registers for each endpoint
0740  * @valid:      True if registers values backuped.
0741  */
0742 struct dwc2_dregs_backup {
0743     u32 dcfg;
0744     u32 dctl;
0745     u32 daintmsk;
0746     u32 diepmsk;
0747     u32 doepmsk;
0748     u32 diepctl[MAX_EPS_CHANNELS];
0749     u32 dieptsiz[MAX_EPS_CHANNELS];
0750     u32 diepdma[MAX_EPS_CHANNELS];
0751     u32 doepctl[MAX_EPS_CHANNELS];
0752     u32 doeptsiz[MAX_EPS_CHANNELS];
0753     u32 doepdma[MAX_EPS_CHANNELS];
0754     u32 dtxfsiz[MAX_EPS_CHANNELS];
0755     bool valid;
0756 };
0757 
0758 /**
0759  * struct dwc2_hregs_backup - Holds host registers state before
0760  * entering partial power down
0761  * @hcfg:       Backup of HCFG register
0762  * @haintmsk:       Backup of HAINTMSK register
0763  * @hcintmsk:       Backup of HCINTMSK register
0764  * @hprt0:      Backup of HPTR0 register
0765  * @hfir:       Backup of HFIR register
0766  * @hptxfsiz:       Backup of HPTXFSIZ register
0767  * @valid:      True if registers values backuped.
0768  */
0769 struct dwc2_hregs_backup {
0770     u32 hcfg;
0771     u32 haintmsk;
0772     u32 hcintmsk[MAX_EPS_CHANNELS];
0773     u32 hprt0;
0774     u32 hfir;
0775     u32 hptxfsiz;
0776     bool valid;
0777 };
0778 
0779 /*
0780  * Constants related to high speed periodic scheduling
0781  *
0782  * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
0783  * reservation point of view it's assumed that the schedule goes right back to
0784  * the beginning after the end of the schedule.
0785  *
0786  * What does that mean for scheduling things with a long interval?  It means
0787  * we'll reserve time for them in every possible microframe that they could
0788  * ever be scheduled in.  ...but we'll still only actually schedule them as
0789  * often as they were requested.
0790  *
0791  * We keep our schedule in a "bitmap" structure.  This simplifies having
0792  * to keep track of and merge intervals: we just let the bitmap code do most
0793  * of the heavy lifting.  In a way scheduling is much like memory allocation.
0794  *
0795  * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
0796  * supposed to schedule for periodic transfers).  That's according to spec.
0797  *
0798  * Note that though we only schedule 80% of each microframe, the bitmap that we
0799  * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
0800  * space for each uFrame).
0801  *
0802  * Requirements:
0803  * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
0804  * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
0805  *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
0806  *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
0807  */
0808 #define DWC2_US_PER_UFRAME      125
0809 #define DWC2_HS_PERIODIC_US_PER_UFRAME  100
0810 
0811 #define DWC2_HS_SCHEDULE_UFRAMES    8
0812 #define DWC2_HS_SCHEDULE_US     (DWC2_HS_SCHEDULE_UFRAMES * \
0813                      DWC2_HS_PERIODIC_US_PER_UFRAME)
0814 
0815 /*
0816  * Constants related to low speed scheduling
0817  *
0818  * For high speed we schedule every 1us.  For low speed that's a bit overkill,
0819  * so we make up a unit called a "slice" that's worth 25us.  There are 40
0820  * slices in a full frame and we can schedule 36 of those (90%) for periodic
0821  * transfers.
0822  *
0823  * Our low speed schedule can be as short as 1 frame or could be longer.  When
0824  * we only schedule 1 frame it means that we'll need to reserve a time every
0825  * frame even for things that only transfer very rarely, so something that runs
0826  * every 2048 frames will get time reserved in every frame.  Our low speed
0827  * schedule can be longer and we'll be able to handle more overlap, but that
0828  * will come at increased memory cost and increased time to schedule.
0829  *
0830  * Note: one other advantage of a short low speed schedule is that if we mess
0831  * up and miss scheduling we can jump in and use any of the slots that we
0832  * happened to reserve.
0833  *
0834  * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
0835  * the schedule.  There will be one schedule per TT.
0836  *
0837  * Requirements:
0838  * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
0839  */
0840 #define DWC2_US_PER_SLICE   25
0841 #define DWC2_SLICES_PER_UFRAME  (DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
0842 
0843 #define DWC2_ROUND_US_TO_SLICE(us) \
0844                 (DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
0845                  DWC2_US_PER_SLICE)
0846 
0847 #define DWC2_LS_PERIODIC_US_PER_FRAME \
0848                 900
0849 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
0850                 (DWC2_LS_PERIODIC_US_PER_FRAME / \
0851                  DWC2_US_PER_SLICE)
0852 
0853 #define DWC2_LS_SCHEDULE_FRAMES 1
0854 #define DWC2_LS_SCHEDULE_SLICES (DWC2_LS_SCHEDULE_FRAMES * \
0855                  DWC2_LS_PERIODIC_SLICES_PER_FRAME)
0856 
0857 /**
0858  * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
0859  * and periodic schedules
0860  *
0861  * These are common for both host and peripheral modes:
0862  *
0863  * @dev:                The struct device pointer
0864  * @regs:       Pointer to controller regs
0865  * @hw_params:          Parameters that were autodetected from the
0866  *                      hardware registers
0867  * @params: Parameters that define how the core should be configured
0868  * @op_state:           The operational State, during transitions (a_host=>
0869  *                      a_peripheral and b_device=>b_host) this may not match
0870  *                      the core, but allows the software to determine
0871  *                      transitions
0872  * @dr_mode:            Requested mode of operation, one of following:
0873  *                      - USB_DR_MODE_PERIPHERAL
0874  *                      - USB_DR_MODE_HOST
0875  *                      - USB_DR_MODE_OTG
0876  * @role_sw:        usb_role_switch handle
0877  * @role_sw_default_mode: default operation mode of controller while usb role
0878  *          is USB_ROLE_NONE
0879  * @hcd_enabled:    Host mode sub-driver initialization indicator.
0880  * @gadget_enabled: Peripheral mode sub-driver initialization indicator.
0881  * @ll_hw_enabled:  Status of low-level hardware resources.
0882  * @hibernated:     True if core is hibernated
0883  * @in_ppd:     True if core is partial power down mode.
0884  * @bus_suspended:  True if bus is suspended
0885  * @reset_phy_on_wake:  Quirk saying that we should assert PHY reset on a
0886  *          remote wakeup.
0887  * @phy_off_for_suspend: Status of whether we turned the PHY off at suspend.
0888  * @need_phy_for_wake:  Quirk saying that we should keep the PHY on at
0889  *          suspend if we need USB to wake us up.
0890  * @frame_number:       Frame number read from the core. For both device
0891  *          and host modes. The value ranges are from 0
0892  *          to HFNUM_MAX_FRNUM.
0893  * @phy:                The otg phy transceiver structure for phy control.
0894  * @uphy:               The otg phy transceiver structure for old USB phy
0895  *                      control.
0896  * @plat:               The platform specific configuration data. This can be
0897  *                      removed once all SoCs support usb transceiver.
0898  * @supplies:           Definition of USB power supplies
0899  * @vbus_supply:        Regulator supplying vbus.
0900  * @usb33d:     Optional 3.3v regulator used on some stm32 devices to
0901  *          supply ID and VBUS detection hardware.
0902  * @lock:       Spinlock that protects all the driver data structures
0903  * @priv:       Stores a pointer to the struct usb_hcd
0904  * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
0905  *                      transfer are in process of being queued
0906  * @srp_success:        Stores status of SRP request in the case of a FS PHY
0907  *                      with an I2C interface
0908  * @wq_otg:             Workqueue object used for handling of some interrupts
0909  * @wf_otg:             Work object for handling Connector ID Status Change
0910  *                      interrupt
0911  * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
0912  * @lx_state:           Lx state of connected device
0913  * @gr_backup: Backup of global registers during suspend
0914  * @dr_backup: Backup of device registers during suspend
0915  * @hr_backup: Backup of host registers during suspend
0916  * @needs_byte_swap:        Specifies whether the opposite endianness.
0917  *
0918  * These are for host mode:
0919  *
0920  * @flags:              Flags for handling root port state changes
0921  * @flags.d32:          Contain all root port flags
0922  * @flags.b:            Separate root port flags from each other
0923  * @flags.b.port_connect_status_change: True if root port connect status
0924  *                      changed
0925  * @flags.b.port_connect_status: True if device connected to root port
0926  * @flags.b.port_reset_change: True if root port reset status changed
0927  * @flags.b.port_enable_change: True if root port enable status changed
0928  * @flags.b.port_suspend_change: True if root port suspend status changed
0929  * @flags.b.port_over_current_change: True if root port over current state
0930  *                       changed.
0931  * @flags.b.port_l1_change: True if root port l1 status changed
0932  * @flags.b.reserved:   Reserved bits of root port register
0933  * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
0934  *                      Transfers associated with these QHs are not currently
0935  *                      assigned to a host channel.
0936  * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
0937  *                      Transfers associated with these QHs are currently
0938  *                      assigned to a host channel.
0939  * @non_periodic_qh_ptr: Pointer to next QH to process in the active
0940  *                      non-periodic schedule
0941  * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule.
0942  *                      Transfers associated with these QHs are not currently
0943  *                      assigned to a host channel.
0944  * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
0945  *                      list of QHs for periodic transfers that are _not_
0946  *                      scheduled for the next frame. Each QH in the list has an
0947  *                      interval counter that determines when it needs to be
0948  *                      scheduled for execution. This scheduling mechanism
0949  *                      allows only a simple calculation for periodic bandwidth
0950  *                      used (i.e. must assume that all periodic transfers may
0951  *                      need to execute in the same frame). However, it greatly
0952  *                      simplifies scheduling and should be sufficient for the
0953  *                      vast majority of OTG hosts, which need to connect to a
0954  *                      small number of peripherals at one time. Items move from
0955  *                      this list to periodic_sched_ready when the QH interval
0956  *                      counter is 0 at SOF.
0957  * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
0958  *                      the next frame, but have not yet been assigned to host
0959  *                      channels. Items move from this list to
0960  *                      periodic_sched_assigned as host channels become
0961  *                      available during the current frame.
0962  * @periodic_sched_assigned: List of periodic QHs to be executed in the next
0963  *                      frame that are assigned to host channels. Items move
0964  *                      from this list to periodic_sched_queued as the
0965  *                      transactions for the QH are queued to the DWC_otg
0966  *                      controller.
0967  * @periodic_sched_queued: List of periodic QHs that have been queued for
0968  *                      execution. Items move from this list to either
0969  *                      periodic_sched_inactive or periodic_sched_ready when the
0970  *                      channel associated with the transfer is released. If the
0971  *                      interval for the QH is 1, the item moves to
0972  *                      periodic_sched_ready because it must be rescheduled for
0973  *                      the next frame. Otherwise, the item moves to
0974  *                      periodic_sched_inactive.
0975  * @split_order:        List keeping track of channels doing splits, in order.
0976  * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
0977  *                      This value is in microseconds per (micro)frame. The
0978  *                      assumption is that all periodic transfers may occur in
0979  *                      the same (micro)frame.
0980  * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
0981  *                      host is in high speed mode; low speed schedules are
0982  *                      stored elsewhere since we need one per TT.
0983  * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
0984  *                      SOF enable/disable.
0985  * @free_hc_list:       Free host channels in the controller. This is a list of
0986  *                      struct dwc2_host_chan items.
0987  * @periodic_channels:  Number of host channels assigned to periodic transfers.
0988  *                      Currently assuming that there is a dedicated host
0989  *                      channel for each periodic transaction and at least one
0990  *                      host channel is available for non-periodic transactions.
0991  * @non_periodic_channels: Number of host channels assigned to non-periodic
0992  *                      transfers
0993  * @available_host_channels: Number of host channels available for the
0994  *               microframe scheduler to use
0995  * @hc_ptr_array:       Array of pointers to the host channel descriptors.
0996  *                      Allows accessing a host channel descriptor given the
0997  *                      host channel number. This is useful in interrupt
0998  *                      handlers.
0999  * @status_buf:         Buffer used for data received during the status phase of
1000  *                      a control transfer.
1001  * @status_buf_dma:     DMA address for status_buf
1002  * @start_work:         Delayed work for handling host A-cable connection
1003  * @reset_work:         Delayed work for handling a port reset
1004  * @phy_reset_work:     Work structure for doing a PHY reset
1005  * @otg_port:           OTG port number
1006  * @frame_list:         Frame list
1007  * @frame_list_dma:     Frame list DMA address
1008  * @frame_list_sz:      Frame list size
1009  * @desc_gen_cache:     Kmem cache for generic descriptors
1010  * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
1011  * @unaligned_cache:    Kmem cache for DMA mode to handle non-aligned buf
1012  *
1013  * These are for peripheral mode:
1014  *
1015  * @driver:             USB gadget driver
1016  * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
1017  * @num_of_eps:         Number of available EPs (excluding EP0)
1018  * @debug_root:         Root directrory for debugfs.
1019  * @ep0_reply:          Request used for ep0 reply.
1020  * @ep0_buff:           Buffer for EP0 reply data, if needed.
1021  * @ctrl_buff:          Buffer for EP0 control requests.
1022  * @ctrl_req:           Request for EP0 control packets.
1023  * @ep0_state:          EP0 control transfers state
1024  * @delayed_status:     true when gadget driver asks for delayed status
1025  * @test_mode:          USB test mode requested by the host
1026  * @remote_wakeup_allowed: True if device is allowed to wake-up host by
1027  *                      remote-wakeup signalling
1028  * @setup_desc_dma: EP0 setup stage desc chain DMA address
1029  * @setup_desc:     EP0 setup stage desc chain pointer
1030  * @ctrl_in_desc_dma:   EP0 IN data phase desc chain DMA address
1031  * @ctrl_in_desc:   EP0 IN data phase desc chain pointer
1032  * @ctrl_out_desc_dma:  EP0 OUT data phase desc chain DMA address
1033  * @ctrl_out_desc:  EP0 OUT data phase desc chain pointer
1034  * @irq:        Interrupt request line number
1035  * @clk:        Pointer to otg clock
1036  * @reset:      Pointer to dwc2 reset controller
1037  * @reset_ecc:          Pointer to dwc2 optional reset controller in Stratix10.
1038  * @regset:     A pointer to a struct debugfs_regset32, which contains
1039  *          a pointer to an array of register definitions, the
1040  *          array size and the base address where the register bank
1041  *          is to be found.
1042  * @last_frame_num: Number of last frame. Range from 0 to  32768
1043  * @frame_num_array:    Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1044  *          defined, for missed SOFs tracking. Array holds that
1045  *          frame numbers, which not equal to last_frame_num +1
1046  * @last_frame_num_array:   Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1047  *              defined, for missed SOFs tracking.
1048  *              If current_frame_number != last_frame_num+1
1049  *              then last_frame_num added to this array
1050  * @frame_num_idx:  Actual size of frame_num_array and last_frame_num_array
1051  * @dumped_frame_num_array: 1 - if missed SOFs frame numbers dumbed
1052  *              0 - if missed SOFs frame numbers not dumbed
1053  * @fifo_mem:           Total internal RAM for FIFOs (bytes)
1054  * @fifo_map:       Each bit intend for concrete fifo. If that bit is set,
1055  *          then that fifo is used
1056  * @gadget:     Represents a usb gadget device
1057  * @connected:      Used in slave mode. True if device connected with host
1058  * @eps_in:     The IN endpoints being supplied to the gadget framework
1059  * @eps_out:        The OUT endpoints being supplied to the gadget framework
1060  * @new_connection: Used in host mode. True if there are new connected
1061  *          device
1062  * @enabled:        Indicates the enabling state of controller
1063  *
1064  */
1065 struct dwc2_hsotg {
1066     struct device *dev;
1067     void __iomem *regs;
1068     /** Params detected from hardware */
1069     struct dwc2_hw_params hw_params;
1070     /** Params to actually use */
1071     struct dwc2_core_params params;
1072     enum usb_otg_state op_state;
1073     enum usb_dr_mode dr_mode;
1074     struct usb_role_switch *role_sw;
1075     enum usb_dr_mode role_sw_default_mode;
1076     unsigned int hcd_enabled:1;
1077     unsigned int gadget_enabled:1;
1078     unsigned int ll_hw_enabled:1;
1079     unsigned int hibernated:1;
1080     unsigned int in_ppd:1;
1081     bool bus_suspended;
1082     unsigned int reset_phy_on_wake:1;
1083     unsigned int need_phy_for_wake:1;
1084     unsigned int phy_off_for_suspend:1;
1085     u16 frame_number;
1086 
1087     struct phy *phy;
1088     struct usb_phy *uphy;
1089     struct dwc2_hsotg_plat *plat;
1090     struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
1091     struct regulator *vbus_supply;
1092     struct regulator *usb33d;
1093 
1094     spinlock_t lock;
1095     void *priv;
1096     int     irq;
1097     struct clk *clk;
1098     struct reset_control *reset;
1099     struct reset_control *reset_ecc;
1100 
1101     unsigned int queuing_high_bandwidth:1;
1102     unsigned int srp_success:1;
1103 
1104     struct workqueue_struct *wq_otg;
1105     struct work_struct wf_otg;
1106     struct timer_list wkp_timer;
1107     enum dwc2_lx_state lx_state;
1108     struct dwc2_gregs_backup gr_backup;
1109     struct dwc2_dregs_backup dr_backup;
1110     struct dwc2_hregs_backup hr_backup;
1111 
1112     struct dentry *debug_root;
1113     struct debugfs_regset32 *regset;
1114     bool needs_byte_swap;
1115 
1116     /* DWC OTG HW Release versions */
1117 #define DWC2_CORE_REV_2_71a 0x4f54271a
1118 #define DWC2_CORE_REV_2_72a     0x4f54272a
1119 #define DWC2_CORE_REV_2_80a 0x4f54280a
1120 #define DWC2_CORE_REV_2_90a 0x4f54290a
1121 #define DWC2_CORE_REV_2_91a 0x4f54291a
1122 #define DWC2_CORE_REV_2_92a 0x4f54292a
1123 #define DWC2_CORE_REV_2_94a 0x4f54294a
1124 #define DWC2_CORE_REV_3_00a 0x4f54300a
1125 #define DWC2_CORE_REV_3_10a 0x4f54310a
1126 #define DWC2_CORE_REV_4_00a 0x4f54400a
1127 #define DWC2_CORE_REV_4_20a 0x4f54420a
1128 #define DWC2_FS_IOT_REV_1_00a   0x5531100a
1129 #define DWC2_HS_IOT_REV_1_00a   0x5532100a
1130 #define DWC2_CORE_REV_MASK  0x0000ffff
1131 
1132     /* DWC OTG HW Core ID */
1133 #define DWC2_OTG_ID     0x4f540000
1134 #define DWC2_FS_IOT_ID      0x55310000
1135 #define DWC2_HS_IOT_ID      0x55320000
1136 
1137 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1138     union dwc2_hcd_internal_flags {
1139         u32 d32;
1140         struct {
1141             unsigned port_connect_status_change:1;
1142             unsigned port_connect_status:1;
1143             unsigned port_reset_change:1;
1144             unsigned port_enable_change:1;
1145             unsigned port_suspend_change:1;
1146             unsigned port_over_current_change:1;
1147             unsigned port_l1_change:1;
1148             unsigned reserved:25;
1149         } b;
1150     } flags;
1151 
1152     struct list_head non_periodic_sched_inactive;
1153     struct list_head non_periodic_sched_waiting;
1154     struct list_head non_periodic_sched_active;
1155     struct list_head *non_periodic_qh_ptr;
1156     struct list_head periodic_sched_inactive;
1157     struct list_head periodic_sched_ready;
1158     struct list_head periodic_sched_assigned;
1159     struct list_head periodic_sched_queued;
1160     struct list_head split_order;
1161     u16 periodic_usecs;
1162     DECLARE_BITMAP(hs_periodic_bitmap, DWC2_HS_SCHEDULE_US);
1163     u16 periodic_qh_count;
1164     bool new_connection;
1165 
1166     u16 last_frame_num;
1167 
1168 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
1169 #define FRAME_NUM_ARRAY_SIZE 1000
1170     u16 *frame_num_array;
1171     u16 *last_frame_num_array;
1172     int frame_num_idx;
1173     int dumped_frame_num_array;
1174 #endif
1175 
1176     struct list_head free_hc_list;
1177     int periodic_channels;
1178     int non_periodic_channels;
1179     int available_host_channels;
1180     struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1181     u8 *status_buf;
1182     dma_addr_t status_buf_dma;
1183 #define DWC2_HCD_STATUS_BUF_SIZE 64
1184 
1185     struct delayed_work start_work;
1186     struct delayed_work reset_work;
1187     struct work_struct phy_reset_work;
1188     u8 otg_port;
1189     u32 *frame_list;
1190     dma_addr_t frame_list_dma;
1191     u32 frame_list_sz;
1192     struct kmem_cache *desc_gen_cache;
1193     struct kmem_cache *desc_hsisoc_cache;
1194     struct kmem_cache *unaligned_cache;
1195 #define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024
1196 
1197 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1198 
1199 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1200     IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1201     /* Gadget structures */
1202     struct usb_gadget_driver *driver;
1203     int fifo_mem;
1204     unsigned int dedicated_fifos:1;
1205     unsigned char num_of_eps;
1206     u32 fifo_map;
1207 
1208     struct usb_request *ep0_reply;
1209     struct usb_request *ctrl_req;
1210     void *ep0_buff;
1211     void *ctrl_buff;
1212     enum dwc2_ep0_state ep0_state;
1213     unsigned delayed_status : 1;
1214     u8 test_mode;
1215 
1216     dma_addr_t setup_desc_dma[2];
1217     struct dwc2_dma_desc *setup_desc[2];
1218     dma_addr_t ctrl_in_desc_dma;
1219     struct dwc2_dma_desc *ctrl_in_desc;
1220     dma_addr_t ctrl_out_desc_dma;
1221     struct dwc2_dma_desc *ctrl_out_desc;
1222 
1223     struct usb_gadget gadget;
1224     unsigned int enabled:1;
1225     unsigned int connected:1;
1226     unsigned int remote_wakeup_allowed:1;
1227     struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1228     struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1229 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1230 };
1231 
1232 /* Normal architectures just use readl/write */
1233 static inline u32 dwc2_readl(struct dwc2_hsotg *hsotg, u32 offset)
1234 {
1235     u32 val;
1236 
1237     val = readl(hsotg->regs + offset);
1238     if (hsotg->needs_byte_swap)
1239         return swab32(val);
1240     else
1241         return val;
1242 }
1243 
1244 static inline void dwc2_writel(struct dwc2_hsotg *hsotg, u32 value, u32 offset)
1245 {
1246     if (hsotg->needs_byte_swap)
1247         writel(swab32(value), hsotg->regs + offset);
1248     else
1249         writel(value, hsotg->regs + offset);
1250 
1251 #ifdef DWC2_LOG_WRITES
1252     pr_info("info:: wrote %08x to %p\n", value, hsotg->regs + offset);
1253 #endif
1254 }
1255 
1256 static inline void dwc2_readl_rep(struct dwc2_hsotg *hsotg, u32 offset,
1257                   void *buffer, unsigned int count)
1258 {
1259     if (count) {
1260         u32 *buf = buffer;
1261 
1262         do {
1263             u32 x = dwc2_readl(hsotg, offset);
1264             *buf++ = x;
1265         } while (--count);
1266     }
1267 }
1268 
1269 static inline void dwc2_writel_rep(struct dwc2_hsotg *hsotg, u32 offset,
1270                    const void *buffer, unsigned int count)
1271 {
1272     if (count) {
1273         const u32 *buf = buffer;
1274 
1275         do {
1276             dwc2_writel(hsotg, *buf++, offset);
1277         } while (--count);
1278     }
1279 }
1280 
1281 /* Reasons for halting a host channel */
1282 enum dwc2_halt_status {
1283     DWC2_HC_XFER_NO_HALT_STATUS,
1284     DWC2_HC_XFER_COMPLETE,
1285     DWC2_HC_XFER_URB_COMPLETE,
1286     DWC2_HC_XFER_ACK,
1287     DWC2_HC_XFER_NAK,
1288     DWC2_HC_XFER_NYET,
1289     DWC2_HC_XFER_STALL,
1290     DWC2_HC_XFER_XACT_ERR,
1291     DWC2_HC_XFER_FRAME_OVERRUN,
1292     DWC2_HC_XFER_BABBLE_ERR,
1293     DWC2_HC_XFER_DATA_TOGGLE_ERR,
1294     DWC2_HC_XFER_AHB_ERR,
1295     DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1296     DWC2_HC_XFER_URB_DEQUEUE,
1297 };
1298 
1299 /* Core version information */
1300 static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1301 {
1302     return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1303 }
1304 
1305 static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1306 {
1307     return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1308 }
1309 
1310 static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1311 {
1312     return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1313 }
1314 
1315 /*
1316  * The following functions support initialization of the core driver component
1317  * and the DWC_otg controller
1318  */
1319 int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1320 int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1321 int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, int rem_wakeup,
1322                  bool restore);
1323 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host);
1324 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
1325         int reset, int is_host);
1326 void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg);
1327 int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy);
1328 
1329 void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host);
1330 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1331 
1332 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1333 
1334 int dwc2_check_core_version(struct dwc2_hsotg *hsotg);
1335 
1336 /*
1337  * Common core Functions.
1338  * The following functions support managing the DWC_otg controller in either
1339  * device or host mode.
1340  */
1341 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1342 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1343 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1344 
1345 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1346 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1347 
1348 void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
1349                  int is_host);
1350 int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg);
1351 int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg);
1352 
1353 void dwc2_enable_acg(struct dwc2_hsotg *hsotg);
1354 
1355 /* This function should be called on every hardware interrupt. */
1356 irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1357 
1358 /* The device ID match table */
1359 extern const struct of_device_id dwc2_of_match_table[];
1360 extern const struct acpi_device_id dwc2_acpi_match[];
1361 
1362 int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1363 int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1364 
1365 /* Common polling functions */
1366 int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1367                 u32 timeout);
1368 int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1369                   u32 timeout);
1370 /* Parameters */
1371 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1372 int dwc2_init_params(struct dwc2_hsotg *hsotg);
1373 
1374 /*
1375  * The following functions check the controller's OTG operation mode
1376  * capability (GHWCFG2.OTG_MODE).
1377  *
1378  * These functions can be used before the internal hsotg->hw_params
1379  * are read in and cached so they always read directly from the
1380  * GHWCFG2 register.
1381  */
1382 unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1383 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1384 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1385 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1386 
1387 /*
1388  * Returns the mode of operation, host or device
1389  */
1390 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1391 {
1392     return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1393 }
1394 
1395 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1396 {
1397     return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1398 }
1399 
1400 int dwc2_drd_init(struct dwc2_hsotg *hsotg);
1401 void dwc2_drd_suspend(struct dwc2_hsotg *hsotg);
1402 void dwc2_drd_resume(struct dwc2_hsotg *hsotg);
1403 void dwc2_drd_exit(struct dwc2_hsotg *hsotg);
1404 
1405 /*
1406  * Dump core registers and SPRAM
1407  */
1408 void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1409 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1410 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1411 
1412 /* Gadget defines */
1413 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1414     IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1415 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1416 int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1417 int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1418 int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
1419 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1420                        bool reset);
1421 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg);
1422 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1423 void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1424 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1425 #define dwc2_is_device_connected(hsotg) (hsotg->connected)
1426 #define dwc2_is_device_enabled(hsotg) (hsotg->enabled)
1427 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1428 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup);
1429 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg);
1430 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1431                  int rem_wakeup, int reset);
1432 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1433 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1434                     bool restore);
1435 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg);
1436 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1437                    int rem_wakeup);
1438 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1439 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1440 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1441 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
1442 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg);
1443 static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg)
1444 { hsotg->fifo_map = 0; }
1445 #else
1446 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1447 { return 0; }
1448 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1449 { return 0; }
1450 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1451 { return 0; }
1452 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
1453 { return 0; }
1454 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1455                              bool reset) {}
1456 static inline void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) {}
1457 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1458 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1459 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1460                        int testmode)
1461 { return 0; }
1462 #define dwc2_is_device_connected(hsotg) (0)
1463 #define dwc2_is_device_enabled(hsotg) (0)
1464 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1465 { return 0; }
1466 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg,
1467                         int remote_wakeup)
1468 { return 0; }
1469 static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
1470 { return 0; }
1471 static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1472                            int rem_wakeup, int reset)
1473 { return 0; }
1474 static inline int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1475 { return 0; }
1476 static inline int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1477                               bool restore)
1478 { return 0; }
1479 static inline void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
1480 static inline void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1481                          int rem_wakeup) {}
1482 static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1483 { return 0; }
1484 static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1485 { return 0; }
1486 static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1487 { return 0; }
1488 static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
1489 static inline void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) {}
1490 static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg) {}
1491 #endif
1492 
1493 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1494 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1495 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1496 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1497 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1498 void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1499 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup);
1500 int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex);
1501 int dwc2_port_resume(struct dwc2_hsotg *hsotg);
1502 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1503 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1504 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg);
1505 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1506                    int rem_wakeup, int reset);
1507 int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1508 int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1509                       int rem_wakeup, bool restore);
1510 void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg);
1511 void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup);
1512 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2);
1513 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg)
1514 { schedule_work(&hsotg->phy_reset_work); }
1515 #else
1516 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1517 { return 0; }
1518 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1519                            int us)
1520 { return 0; }
1521 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1522 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1523 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1524 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1525 static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
1526 { return 0; }
1527 static inline int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
1528 { return 0; }
1529 static inline int dwc2_port_resume(struct dwc2_hsotg *hsotg)
1530 { return 0; }
1531 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1532 { return 0; }
1533 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1534 { return 0; }
1535 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1536 { return 0; }
1537 static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
1538 { return 0; }
1539 static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1540                          int rem_wakeup, int reset)
1541 { return 0; }
1542 static inline int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1543 { return 0; }
1544 static inline int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1545                             int rem_wakeup, bool restore)
1546 { return 0; }
1547 static inline void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
1548 static inline void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg,
1549                            int rem_wakeup) {}
1550 static inline bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
1551 { return false; }
1552 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) {}
1553 
1554 #endif
1555 
1556 #endif /* __DWC2_CORE_H__ */