Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Released under the GPLv2 only.
0004  */
0005 
0006 #include <linux/module.h>
0007 #include <linux/string.h>
0008 #include <linux/bitops.h>
0009 #include <linux/slab.h>
0010 #include <linux/log2.h>
0011 #include <linux/usb.h>
0012 #include <linux/wait.h>
0013 #include <linux/usb/hcd.h>
0014 #include <linux/scatterlist.h>
0015 
0016 #define to_urb(d) container_of(d, struct urb, kref)
0017 
0018 
0019 static void urb_destroy(struct kref *kref)
0020 {
0021     struct urb *urb = to_urb(kref);
0022 
0023     if (urb->transfer_flags & URB_FREE_BUFFER)
0024         kfree(urb->transfer_buffer);
0025 
0026     kfree(urb);
0027 }
0028 
0029 /**
0030  * usb_init_urb - initializes a urb so that it can be used by a USB driver
0031  * @urb: pointer to the urb to initialize
0032  *
0033  * Initializes a urb so that the USB subsystem can use it properly.
0034  *
0035  * If a urb is created with a call to usb_alloc_urb() it is not
0036  * necessary to call this function.  Only use this if you allocate the
0037  * space for a struct urb on your own.  If you call this function, be
0038  * careful when freeing the memory for your urb that it is no longer in
0039  * use by the USB core.
0040  *
0041  * Only use this function if you _really_ understand what you are doing.
0042  */
0043 void usb_init_urb(struct urb *urb)
0044 {
0045     if (urb) {
0046         memset(urb, 0, sizeof(*urb));
0047         kref_init(&urb->kref);
0048         INIT_LIST_HEAD(&urb->urb_list);
0049         INIT_LIST_HEAD(&urb->anchor_list);
0050     }
0051 }
0052 EXPORT_SYMBOL_GPL(usb_init_urb);
0053 
0054 /**
0055  * usb_alloc_urb - creates a new urb for a USB driver to use
0056  * @iso_packets: number of iso packets for this urb
0057  * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
0058  *  valid options for this.
0059  *
0060  * Creates an urb for the USB driver to use, initializes a few internal
0061  * structures, increments the usage counter, and returns a pointer to it.
0062  *
0063  * If the driver want to use this urb for interrupt, control, or bulk
0064  * endpoints, pass '0' as the number of iso packets.
0065  *
0066  * The driver must call usb_free_urb() when it is finished with the urb.
0067  *
0068  * Return: A pointer to the new urb, or %NULL if no memory is available.
0069  */
0070 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
0071 {
0072     struct urb *urb;
0073 
0074     urb = kmalloc(struct_size(urb, iso_frame_desc, iso_packets),
0075               mem_flags);
0076     if (!urb)
0077         return NULL;
0078     usb_init_urb(urb);
0079     return urb;
0080 }
0081 EXPORT_SYMBOL_GPL(usb_alloc_urb);
0082 
0083 /**
0084  * usb_free_urb - frees the memory used by a urb when all users of it are finished
0085  * @urb: pointer to the urb to free, may be NULL
0086  *
0087  * Must be called when a user of a urb is finished with it.  When the last user
0088  * of the urb calls this function, the memory of the urb is freed.
0089  *
0090  * Note: The transfer buffer associated with the urb is not freed unless the
0091  * URB_FREE_BUFFER transfer flag is set.
0092  */
0093 void usb_free_urb(struct urb *urb)
0094 {
0095     if (urb)
0096         kref_put(&urb->kref, urb_destroy);
0097 }
0098 EXPORT_SYMBOL_GPL(usb_free_urb);
0099 
0100 /**
0101  * usb_get_urb - increments the reference count of the urb
0102  * @urb: pointer to the urb to modify, may be NULL
0103  *
0104  * This must be  called whenever a urb is transferred from a device driver to a
0105  * host controller driver.  This allows proper reference counting to happen
0106  * for urbs.
0107  *
0108  * Return: A pointer to the urb with the incremented reference counter.
0109  */
0110 struct urb *usb_get_urb(struct urb *urb)
0111 {
0112     if (urb)
0113         kref_get(&urb->kref);
0114     return urb;
0115 }
0116 EXPORT_SYMBOL_GPL(usb_get_urb);
0117 
0118 /**
0119  * usb_anchor_urb - anchors an URB while it is processed
0120  * @urb: pointer to the urb to anchor
0121  * @anchor: pointer to the anchor
0122  *
0123  * This can be called to have access to URBs which are to be executed
0124  * without bothering to track them
0125  */
0126 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
0127 {
0128     unsigned long flags;
0129 
0130     spin_lock_irqsave(&anchor->lock, flags);
0131     usb_get_urb(urb);
0132     list_add_tail(&urb->anchor_list, &anchor->urb_list);
0133     urb->anchor = anchor;
0134 
0135     if (unlikely(anchor->poisoned))
0136         atomic_inc(&urb->reject);
0137 
0138     spin_unlock_irqrestore(&anchor->lock, flags);
0139 }
0140 EXPORT_SYMBOL_GPL(usb_anchor_urb);
0141 
0142 static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
0143 {
0144     return atomic_read(&anchor->suspend_wakeups) == 0 &&
0145         list_empty(&anchor->urb_list);
0146 }
0147 
0148 /* Callers must hold anchor->lock */
0149 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
0150 {
0151     urb->anchor = NULL;
0152     list_del(&urb->anchor_list);
0153     usb_put_urb(urb);
0154     if (usb_anchor_check_wakeup(anchor))
0155         wake_up(&anchor->wait);
0156 }
0157 
0158 /**
0159  * usb_unanchor_urb - unanchors an URB
0160  * @urb: pointer to the urb to anchor
0161  *
0162  * Call this to stop the system keeping track of this URB
0163  */
0164 void usb_unanchor_urb(struct urb *urb)
0165 {
0166     unsigned long flags;
0167     struct usb_anchor *anchor;
0168 
0169     if (!urb)
0170         return;
0171 
0172     anchor = urb->anchor;
0173     if (!anchor)
0174         return;
0175 
0176     spin_lock_irqsave(&anchor->lock, flags);
0177     /*
0178      * At this point, we could be competing with another thread which
0179      * has the same intention. To protect the urb from being unanchored
0180      * twice, only the winner of the race gets the job.
0181      */
0182     if (likely(anchor == urb->anchor))
0183         __usb_unanchor_urb(urb, anchor);
0184     spin_unlock_irqrestore(&anchor->lock, flags);
0185 }
0186 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
0187 
0188 /*-------------------------------------------------------------------*/
0189 
0190 static const int pipetypes[4] = {
0191     PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
0192 };
0193 
0194 /**
0195  * usb_pipe_type_check - sanity check of a specific pipe for a usb device
0196  * @dev: struct usb_device to be checked
0197  * @pipe: pipe to check
0198  *
0199  * This performs a light-weight sanity check for the endpoint in the
0200  * given usb device.  It returns 0 if the pipe is valid for the specific usb
0201  * device, otherwise a negative error code.
0202  */
0203 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe)
0204 {
0205     const struct usb_host_endpoint *ep;
0206 
0207     ep = usb_pipe_endpoint(dev, pipe);
0208     if (!ep)
0209         return -EINVAL;
0210     if (usb_pipetype(pipe) != pipetypes[usb_endpoint_type(&ep->desc)])
0211         return -EINVAL;
0212     return 0;
0213 }
0214 EXPORT_SYMBOL_GPL(usb_pipe_type_check);
0215 
0216 /**
0217  * usb_urb_ep_type_check - sanity check of endpoint in the given urb
0218  * @urb: urb to be checked
0219  *
0220  * This performs a light-weight sanity check for the endpoint in the
0221  * given urb.  It returns 0 if the urb contains a valid endpoint, otherwise
0222  * a negative error code.
0223  */
0224 int usb_urb_ep_type_check(const struct urb *urb)
0225 {
0226     return usb_pipe_type_check(urb->dev, urb->pipe);
0227 }
0228 EXPORT_SYMBOL_GPL(usb_urb_ep_type_check);
0229 
0230 /**
0231  * usb_submit_urb - issue an asynchronous transfer request for an endpoint
0232  * @urb: pointer to the urb describing the request
0233  * @mem_flags: the type of memory to allocate, see kmalloc() for a list
0234  *  of valid options for this.
0235  *
0236  * This submits a transfer request, and transfers control of the URB
0237  * describing that request to the USB subsystem.  Request completion will
0238  * be indicated later, asynchronously, by calling the completion handler.
0239  * The three types of completion are success, error, and unlink
0240  * (a software-induced fault, also called "request cancellation").
0241  *
0242  * URBs may be submitted in interrupt context.
0243  *
0244  * The caller must have correctly initialized the URB before submitting
0245  * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
0246  * available to ensure that most fields are correctly initialized, for
0247  * the particular kind of transfer, although they will not initialize
0248  * any transfer flags.
0249  *
0250  * If the submission is successful, the complete() callback from the URB
0251  * will be called exactly once, when the USB core and Host Controller Driver
0252  * (HCD) are finished with the URB.  When the completion function is called,
0253  * control of the URB is returned to the device driver which issued the
0254  * request.  The completion handler may then immediately free or reuse that
0255  * URB.
0256  *
0257  * With few exceptions, USB device drivers should never access URB fields
0258  * provided by usbcore or the HCD until its complete() is called.
0259  * The exceptions relate to periodic transfer scheduling.  For both
0260  * interrupt and isochronous urbs, as part of successful URB submission
0261  * urb->interval is modified to reflect the actual transfer period used
0262  * (normally some power of two units).  And for isochronous urbs,
0263  * urb->start_frame is modified to reflect when the URB's transfers were
0264  * scheduled to start.
0265  *
0266  * Not all isochronous transfer scheduling policies will work, but most
0267  * host controller drivers should easily handle ISO queues going from now
0268  * until 10-200 msec into the future.  Drivers should try to keep at
0269  * least one or two msec of data in the queue; many controllers require
0270  * that new transfers start at least 1 msec in the future when they are
0271  * added.  If the driver is unable to keep up and the queue empties out,
0272  * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
0273  * If the flag is set, or if the queue is idle, then the URB is always
0274  * assigned to the first available (and not yet expired) slot in the
0275  * endpoint's schedule.  If the flag is not set and the queue is active
0276  * then the URB is always assigned to the next slot in the schedule
0277  * following the end of the endpoint's previous URB, even if that slot is
0278  * in the past.  When a packet is assigned in this way to a slot that has
0279  * already expired, the packet is not transmitted and the corresponding
0280  * usb_iso_packet_descriptor's status field will return -EXDEV.  If this
0281  * would happen to all the packets in the URB, submission fails with a
0282  * -EXDEV error code.
0283  *
0284  * For control endpoints, the synchronous usb_control_msg() call is
0285  * often used (in non-interrupt context) instead of this call.
0286  * That is often used through convenience wrappers, for the requests
0287  * that are standardized in the USB 2.0 specification.  For bulk
0288  * endpoints, a synchronous usb_bulk_msg() call is available.
0289  *
0290  * Return:
0291  * 0 on successful submissions. A negative error number otherwise.
0292  *
0293  * Request Queuing:
0294  *
0295  * URBs may be submitted to endpoints before previous ones complete, to
0296  * minimize the impact of interrupt latencies and system overhead on data
0297  * throughput.  With that queuing policy, an endpoint's queue would never
0298  * be empty.  This is required for continuous isochronous data streams,
0299  * and may also be required for some kinds of interrupt transfers. Such
0300  * queuing also maximizes bandwidth utilization by letting USB controllers
0301  * start work on later requests before driver software has finished the
0302  * completion processing for earlier (successful) requests.
0303  *
0304  * As of Linux 2.6, all USB endpoint transfer queues support depths greater
0305  * than one.  This was previously a HCD-specific behavior, except for ISO
0306  * transfers.  Non-isochronous endpoint queues are inactive during cleanup
0307  * after faults (transfer errors or cancellation).
0308  *
0309  * Reserved Bandwidth Transfers:
0310  *
0311  * Periodic transfers (interrupt or isochronous) are performed repeatedly,
0312  * using the interval specified in the urb.  Submitting the first urb to
0313  * the endpoint reserves the bandwidth necessary to make those transfers.
0314  * If the USB subsystem can't allocate sufficient bandwidth to perform
0315  * the periodic request, submitting such a periodic request should fail.
0316  *
0317  * For devices under xHCI, the bandwidth is reserved at configuration time, or
0318  * when the alt setting is selected.  If there is not enough bus bandwidth, the
0319  * configuration/alt setting request will fail.  Therefore, submissions to
0320  * periodic endpoints on devices under xHCI should never fail due to bandwidth
0321  * constraints.
0322  *
0323  * Device drivers must explicitly request that repetition, by ensuring that
0324  * some URB is always on the endpoint's queue (except possibly for short
0325  * periods during completion callbacks).  When there is no longer an urb
0326  * queued, the endpoint's bandwidth reservation is canceled.  This means
0327  * drivers can use their completion handlers to ensure they keep bandwidth
0328  * they need, by reinitializing and resubmitting the just-completed urb
0329  * until the driver longer needs that periodic bandwidth.
0330  *
0331  * Memory Flags:
0332  *
0333  * The general rules for how to decide which mem_flags to use
0334  * are the same as for kmalloc.  There are four
0335  * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
0336  * GFP_ATOMIC.
0337  *
0338  * GFP_NOFS is not ever used, as it has not been implemented yet.
0339  *
0340  * GFP_ATOMIC is used when
0341  *   (a) you are inside a completion handler, an interrupt, bottom half,
0342  *       tasklet or timer, or
0343  *   (b) you are holding a spinlock or rwlock (does not apply to
0344  *       semaphores), or
0345  *   (c) current->state != TASK_RUNNING, this is the case only after
0346  *       you've changed it.
0347  *
0348  * GFP_NOIO is used in the block io path and error handling of storage
0349  * devices.
0350  *
0351  * All other situations use GFP_KERNEL.
0352  *
0353  * Some more specific rules for mem_flags can be inferred, such as
0354  *  (1) start_xmit, timeout, and receive methods of network drivers must
0355  *      use GFP_ATOMIC (they are called with a spinlock held);
0356  *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
0357  *      called with a spinlock held);
0358  *  (3) If you use a kernel thread with a network driver you must use
0359  *      GFP_NOIO, unless (b) or (c) apply;
0360  *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
0361  *      apply or your are in a storage driver's block io path;
0362  *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
0363  *  (6) changing firmware on a running storage or net device uses
0364  *      GFP_NOIO, unless b) or c) apply
0365  *
0366  */
0367 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
0368 {
0369     int             xfertype, max;
0370     struct usb_device       *dev;
0371     struct usb_host_endpoint    *ep;
0372     int             is_out;
0373     unsigned int            allowed;
0374 
0375     if (!urb || !urb->complete)
0376         return -EINVAL;
0377     if (urb->hcpriv) {
0378         WARN_ONCE(1, "URB %pK submitted while active\n", urb);
0379         return -EBUSY;
0380     }
0381 
0382     dev = urb->dev;
0383     if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
0384         return -ENODEV;
0385 
0386     /* For now, get the endpoint from the pipe.  Eventually drivers
0387      * will be required to set urb->ep directly and we will eliminate
0388      * urb->pipe.
0389      */
0390     ep = usb_pipe_endpoint(dev, urb->pipe);
0391     if (!ep)
0392         return -ENOENT;
0393 
0394     urb->ep = ep;
0395     urb->status = -EINPROGRESS;
0396     urb->actual_length = 0;
0397 
0398     /* Lots of sanity checks, so HCDs can rely on clean data
0399      * and don't need to duplicate tests
0400      */
0401     xfertype = usb_endpoint_type(&ep->desc);
0402     if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
0403         struct usb_ctrlrequest *setup =
0404                 (struct usb_ctrlrequest *) urb->setup_packet;
0405 
0406         if (!setup)
0407             return -ENOEXEC;
0408         is_out = !(setup->bRequestType & USB_DIR_IN) ||
0409                 !setup->wLength;
0410         dev_WARN_ONCE(&dev->dev, (usb_pipeout(urb->pipe) != is_out),
0411                 "BOGUS control dir, pipe %x doesn't match bRequestType %x\n",
0412                 urb->pipe, setup->bRequestType);
0413         if (le16_to_cpu(setup->wLength) != urb->transfer_buffer_length) {
0414             dev_dbg(&dev->dev, "BOGUS control len %d doesn't match transfer length %d\n",
0415                     le16_to_cpu(setup->wLength),
0416                     urb->transfer_buffer_length);
0417             return -EBADR;
0418         }
0419     } else {
0420         is_out = usb_endpoint_dir_out(&ep->desc);
0421     }
0422 
0423     /* Clear the internal flags and cache the direction for later use */
0424     urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
0425             URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
0426             URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
0427             URB_DMA_SG_COMBINED);
0428     urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
0429 
0430     if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
0431             dev->state < USB_STATE_CONFIGURED)
0432         return -ENODEV;
0433 
0434     max = usb_endpoint_maxp(&ep->desc);
0435     if (max <= 0) {
0436         dev_dbg(&dev->dev,
0437             "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
0438             usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
0439             __func__, max);
0440         return -EMSGSIZE;
0441     }
0442 
0443     /* periodic transfers limit size per frame/uframe,
0444      * but drivers only control those sizes for ISO.
0445      * while we're checking, initialize return status.
0446      */
0447     if (xfertype == USB_ENDPOINT_XFER_ISOC) {
0448         int n, len;
0449 
0450         /* SuperSpeed isoc endpoints have up to 16 bursts of up to
0451          * 3 packets each
0452          */
0453         if (dev->speed >= USB_SPEED_SUPER) {
0454             int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
0455             int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
0456             max *= burst;
0457             max *= mult;
0458         }
0459 
0460         if (dev->speed == USB_SPEED_SUPER_PLUS &&
0461             USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) {
0462             struct usb_ssp_isoc_ep_comp_descriptor *isoc_ep_comp;
0463 
0464             isoc_ep_comp = &ep->ssp_isoc_ep_comp;
0465             max = le32_to_cpu(isoc_ep_comp->dwBytesPerInterval);
0466         }
0467 
0468         /* "high bandwidth" mode, 1-3 packets/uframe? */
0469         if (dev->speed == USB_SPEED_HIGH)
0470             max *= usb_endpoint_maxp_mult(&ep->desc);
0471 
0472         if (urb->number_of_packets <= 0)
0473             return -EINVAL;
0474         for (n = 0; n < urb->number_of_packets; n++) {
0475             len = urb->iso_frame_desc[n].length;
0476             if (len < 0 || len > max)
0477                 return -EMSGSIZE;
0478             urb->iso_frame_desc[n].status = -EXDEV;
0479             urb->iso_frame_desc[n].actual_length = 0;
0480         }
0481     } else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
0482             dev->speed != USB_SPEED_WIRELESS) {
0483         struct scatterlist *sg;
0484         int i;
0485 
0486         for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
0487             if (sg->length % max)
0488                 return -EINVAL;
0489     }
0490 
0491     /* the I/O buffer must be mapped/unmapped, except when length=0 */
0492     if (urb->transfer_buffer_length > INT_MAX)
0493         return -EMSGSIZE;
0494 
0495     /*
0496      * stuff that drivers shouldn't do, but which shouldn't
0497      * cause problems in HCDs if they get it wrong.
0498      */
0499 
0500     /* Check that the pipe's type matches the endpoint's type */
0501     if (usb_pipe_type_check(urb->dev, urb->pipe))
0502         dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
0503             usb_pipetype(urb->pipe), pipetypes[xfertype]);
0504 
0505     /* Check against a simple/standard policy */
0506     allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
0507             URB_FREE_BUFFER);
0508     switch (xfertype) {
0509     case USB_ENDPOINT_XFER_BULK:
0510     case USB_ENDPOINT_XFER_INT:
0511         if (is_out)
0512             allowed |= URB_ZERO_PACKET;
0513         fallthrough;
0514     default:            /* all non-iso endpoints */
0515         if (!is_out)
0516             allowed |= URB_SHORT_NOT_OK;
0517         break;
0518     case USB_ENDPOINT_XFER_ISOC:
0519         allowed |= URB_ISO_ASAP;
0520         break;
0521     }
0522     allowed &= urb->transfer_flags;
0523 
0524     /* warn if submitter gave bogus flags */
0525     if (allowed != urb->transfer_flags)
0526         dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
0527             urb->transfer_flags, allowed);
0528 
0529     /*
0530      * Force periodic transfer intervals to be legal values that are
0531      * a power of two (so HCDs don't need to).
0532      *
0533      * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
0534      * supports different values... this uses EHCI/UHCI defaults (and
0535      * EHCI can use smaller non-default values).
0536      */
0537     switch (xfertype) {
0538     case USB_ENDPOINT_XFER_ISOC:
0539     case USB_ENDPOINT_XFER_INT:
0540         /* too small? */
0541         switch (dev->speed) {
0542         case USB_SPEED_WIRELESS:
0543             if ((urb->interval < 6)
0544                 && (xfertype == USB_ENDPOINT_XFER_INT))
0545                 return -EINVAL;
0546             fallthrough;
0547         default:
0548             if (urb->interval <= 0)
0549                 return -EINVAL;
0550             break;
0551         }
0552         /* too big? */
0553         switch (dev->speed) {
0554         case USB_SPEED_SUPER_PLUS:
0555         case USB_SPEED_SUPER:   /* units are 125us */
0556             /* Handle up to 2^(16-1) microframes */
0557             if (urb->interval > (1 << 15))
0558                 return -EINVAL;
0559             max = 1 << 15;
0560             break;
0561         case USB_SPEED_WIRELESS:
0562             if (urb->interval > 16)
0563                 return -EINVAL;
0564             break;
0565         case USB_SPEED_HIGH:    /* units are microframes */
0566             /* NOTE usb handles 2^15 */
0567             if (urb->interval > (1024 * 8))
0568                 urb->interval = 1024 * 8;
0569             max = 1024 * 8;
0570             break;
0571         case USB_SPEED_FULL:    /* units are frames/msec */
0572         case USB_SPEED_LOW:
0573             if (xfertype == USB_ENDPOINT_XFER_INT) {
0574                 if (urb->interval > 255)
0575                     return -EINVAL;
0576                 /* NOTE ohci only handles up to 32 */
0577                 max = 128;
0578             } else {
0579                 if (urb->interval > 1024)
0580                     urb->interval = 1024;
0581                 /* NOTE usb and ohci handle up to 2^15 */
0582                 max = 1024;
0583             }
0584             break;
0585         default:
0586             return -EINVAL;
0587         }
0588         if (dev->speed != USB_SPEED_WIRELESS) {
0589             /* Round down to a power of 2, no more than max */
0590             urb->interval = min(max, 1 << ilog2(urb->interval));
0591         }
0592     }
0593 
0594     return usb_hcd_submit_urb(urb, mem_flags);
0595 }
0596 EXPORT_SYMBOL_GPL(usb_submit_urb);
0597 
0598 /*-------------------------------------------------------------------*/
0599 
0600 /**
0601  * usb_unlink_urb - abort/cancel a transfer request for an endpoint
0602  * @urb: pointer to urb describing a previously submitted request,
0603  *  may be NULL
0604  *
0605  * This routine cancels an in-progress request.  URBs complete only once
0606  * per submission, and may be canceled only once per submission.
0607  * Successful cancellation means termination of @urb will be expedited
0608  * and the completion handler will be called with a status code
0609  * indicating that the request has been canceled (rather than any other
0610  * code).
0611  *
0612  * Drivers should not call this routine or related routines, such as
0613  * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
0614  * method has returned.  The disconnect function should synchronize with
0615  * a driver's I/O routines to insure that all URB-related activity has
0616  * completed before it returns.
0617  *
0618  * This request is asynchronous, however the HCD might call the ->complete()
0619  * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
0620  * must not hold any locks that may be taken by the completion function.
0621  * Success is indicated by returning -EINPROGRESS, at which time the URB will
0622  * probably not yet have been given back to the device driver. When it is
0623  * eventually called, the completion function will see @urb->status ==
0624  * -ECONNRESET.
0625  * Failure is indicated by usb_unlink_urb() returning any other value.
0626  * Unlinking will fail when @urb is not currently "linked" (i.e., it was
0627  * never submitted, or it was unlinked before, or the hardware is already
0628  * finished with it), even if the completion handler has not yet run.
0629  *
0630  * The URB must not be deallocated while this routine is running.  In
0631  * particular, when a driver calls this routine, it must insure that the
0632  * completion handler cannot deallocate the URB.
0633  *
0634  * Return: -EINPROGRESS on success. See description for other values on
0635  * failure.
0636  *
0637  * Unlinking and Endpoint Queues:
0638  *
0639  * [The behaviors and guarantees described below do not apply to virtual
0640  * root hubs but only to endpoint queues for physical USB devices.]
0641  *
0642  * Host Controller Drivers (HCDs) place all the URBs for a particular
0643  * endpoint in a queue.  Normally the queue advances as the controller
0644  * hardware processes each request.  But when an URB terminates with an
0645  * error its queue generally stops (see below), at least until that URB's
0646  * completion routine returns.  It is guaranteed that a stopped queue
0647  * will not restart until all its unlinked URBs have been fully retired,
0648  * with their completion routines run, even if that's not until some time
0649  * after the original completion handler returns.  The same behavior and
0650  * guarantee apply when an URB terminates because it was unlinked.
0651  *
0652  * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
0653  * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
0654  * and -EREMOTEIO.  Control endpoint queues behave the same way except
0655  * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
0656  * for isochronous endpoints are treated differently, because they must
0657  * advance at fixed rates.  Such queues do not stop when an URB
0658  * encounters an error or is unlinked.  An unlinked isochronous URB may
0659  * leave a gap in the stream of packets; it is undefined whether such
0660  * gaps can be filled in.
0661  *
0662  * Note that early termination of an URB because a short packet was
0663  * received will generate a -EREMOTEIO error if and only if the
0664  * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
0665  * drivers can build deep queues for large or complex bulk transfers
0666  * and clean them up reliably after any sort of aborted transfer by
0667  * unlinking all pending URBs at the first fault.
0668  *
0669  * When a control URB terminates with an error other than -EREMOTEIO, it
0670  * is quite likely that the status stage of the transfer will not take
0671  * place.
0672  */
0673 int usb_unlink_urb(struct urb *urb)
0674 {
0675     if (!urb)
0676         return -EINVAL;
0677     if (!urb->dev)
0678         return -ENODEV;
0679     if (!urb->ep)
0680         return -EIDRM;
0681     return usb_hcd_unlink_urb(urb, -ECONNRESET);
0682 }
0683 EXPORT_SYMBOL_GPL(usb_unlink_urb);
0684 
0685 /**
0686  * usb_kill_urb - cancel a transfer request and wait for it to finish
0687  * @urb: pointer to URB describing a previously submitted request,
0688  *  may be NULL
0689  *
0690  * This routine cancels an in-progress request.  It is guaranteed that
0691  * upon return all completion handlers will have finished and the URB
0692  * will be totally idle and available for reuse.  These features make
0693  * this an ideal way to stop I/O in a disconnect() callback or close()
0694  * function.  If the request has not already finished or been unlinked
0695  * the completion handler will see urb->status == -ENOENT.
0696  *
0697  * While the routine is running, attempts to resubmit the URB will fail
0698  * with error -EPERM.  Thus even if the URB's completion handler always
0699  * tries to resubmit, it will not succeed and the URB will become idle.
0700  *
0701  * The URB must not be deallocated while this routine is running.  In
0702  * particular, when a driver calls this routine, it must insure that the
0703  * completion handler cannot deallocate the URB.
0704  *
0705  * This routine may not be used in an interrupt context (such as a bottom
0706  * half or a completion handler), or when holding a spinlock, or in other
0707  * situations where the caller can't schedule().
0708  *
0709  * This routine should not be called by a driver after its disconnect
0710  * method has returned.
0711  */
0712 void usb_kill_urb(struct urb *urb)
0713 {
0714     might_sleep();
0715     if (!(urb && urb->dev && urb->ep))
0716         return;
0717     atomic_inc(&urb->reject);
0718     /*
0719      * Order the write of urb->reject above before the read
0720      * of urb->use_count below.  Pairs with the barriers in
0721      * __usb_hcd_giveback_urb() and usb_hcd_submit_urb().
0722      */
0723     smp_mb__after_atomic();
0724 
0725     usb_hcd_unlink_urb(urb, -ENOENT);
0726     wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
0727 
0728     atomic_dec(&urb->reject);
0729 }
0730 EXPORT_SYMBOL_GPL(usb_kill_urb);
0731 
0732 /**
0733  * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
0734  * @urb: pointer to URB describing a previously submitted request,
0735  *  may be NULL
0736  *
0737  * This routine cancels an in-progress request.  It is guaranteed that
0738  * upon return all completion handlers will have finished and the URB
0739  * will be totally idle and cannot be reused.  These features make
0740  * this an ideal way to stop I/O in a disconnect() callback.
0741  * If the request has not already finished or been unlinked
0742  * the completion handler will see urb->status == -ENOENT.
0743  *
0744  * After and while the routine runs, attempts to resubmit the URB will fail
0745  * with error -EPERM.  Thus even if the URB's completion handler always
0746  * tries to resubmit, it will not succeed and the URB will become idle.
0747  *
0748  * The URB must not be deallocated while this routine is running.  In
0749  * particular, when a driver calls this routine, it must insure that the
0750  * completion handler cannot deallocate the URB.
0751  *
0752  * This routine may not be used in an interrupt context (such as a bottom
0753  * half or a completion handler), or when holding a spinlock, or in other
0754  * situations where the caller can't schedule().
0755  *
0756  * This routine should not be called by a driver after its disconnect
0757  * method has returned.
0758  */
0759 void usb_poison_urb(struct urb *urb)
0760 {
0761     might_sleep();
0762     if (!urb)
0763         return;
0764     atomic_inc(&urb->reject);
0765     /*
0766      * Order the write of urb->reject above before the read
0767      * of urb->use_count below.  Pairs with the barriers in
0768      * __usb_hcd_giveback_urb() and usb_hcd_submit_urb().
0769      */
0770     smp_mb__after_atomic();
0771 
0772     if (!urb->dev || !urb->ep)
0773         return;
0774 
0775     usb_hcd_unlink_urb(urb, -ENOENT);
0776     wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
0777 }
0778 EXPORT_SYMBOL_GPL(usb_poison_urb);
0779 
0780 void usb_unpoison_urb(struct urb *urb)
0781 {
0782     if (!urb)
0783         return;
0784 
0785     atomic_dec(&urb->reject);
0786 }
0787 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
0788 
0789 /**
0790  * usb_block_urb - reliably prevent further use of an URB
0791  * @urb: pointer to URB to be blocked, may be NULL
0792  *
0793  * After the routine has run, attempts to resubmit the URB will fail
0794  * with error -EPERM.  Thus even if the URB's completion handler always
0795  * tries to resubmit, it will not succeed and the URB will become idle.
0796  *
0797  * The URB must not be deallocated while this routine is running.  In
0798  * particular, when a driver calls this routine, it must insure that the
0799  * completion handler cannot deallocate the URB.
0800  */
0801 void usb_block_urb(struct urb *urb)
0802 {
0803     if (!urb)
0804         return;
0805 
0806     atomic_inc(&urb->reject);
0807 }
0808 EXPORT_SYMBOL_GPL(usb_block_urb);
0809 
0810 /**
0811  * usb_kill_anchored_urbs - kill all URBs associated with an anchor
0812  * @anchor: anchor the requests are bound to
0813  *
0814  * This kills all outstanding URBs starting from the back of the queue,
0815  * with guarantee that no completer callbacks will take place from the
0816  * anchor after this function returns.
0817  *
0818  * This routine should not be called by a driver after its disconnect
0819  * method has returned.
0820  */
0821 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
0822 {
0823     struct urb *victim;
0824     int surely_empty;
0825 
0826     do {
0827         spin_lock_irq(&anchor->lock);
0828         while (!list_empty(&anchor->urb_list)) {
0829             victim = list_entry(anchor->urb_list.prev,
0830                         struct urb, anchor_list);
0831             /* make sure the URB isn't freed before we kill it */
0832             usb_get_urb(victim);
0833             spin_unlock_irq(&anchor->lock);
0834             /* this will unanchor the URB */
0835             usb_kill_urb(victim);
0836             usb_put_urb(victim);
0837             spin_lock_irq(&anchor->lock);
0838         }
0839         surely_empty = usb_anchor_check_wakeup(anchor);
0840 
0841         spin_unlock_irq(&anchor->lock);
0842         cpu_relax();
0843     } while (!surely_empty);
0844 }
0845 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
0846 
0847 
0848 /**
0849  * usb_poison_anchored_urbs - cease all traffic from an anchor
0850  * @anchor: anchor the requests are bound to
0851  *
0852  * this allows all outstanding URBs to be poisoned starting
0853  * from the back of the queue. Newly added URBs will also be
0854  * poisoned
0855  *
0856  * This routine should not be called by a driver after its disconnect
0857  * method has returned.
0858  */
0859 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
0860 {
0861     struct urb *victim;
0862     int surely_empty;
0863 
0864     do {
0865         spin_lock_irq(&anchor->lock);
0866         anchor->poisoned = 1;
0867         while (!list_empty(&anchor->urb_list)) {
0868             victim = list_entry(anchor->urb_list.prev,
0869                         struct urb, anchor_list);
0870             /* make sure the URB isn't freed before we kill it */
0871             usb_get_urb(victim);
0872             spin_unlock_irq(&anchor->lock);
0873             /* this will unanchor the URB */
0874             usb_poison_urb(victim);
0875             usb_put_urb(victim);
0876             spin_lock_irq(&anchor->lock);
0877         }
0878         surely_empty = usb_anchor_check_wakeup(anchor);
0879 
0880         spin_unlock_irq(&anchor->lock);
0881         cpu_relax();
0882     } while (!surely_empty);
0883 }
0884 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
0885 
0886 /**
0887  * usb_unpoison_anchored_urbs - let an anchor be used successfully again
0888  * @anchor: anchor the requests are bound to
0889  *
0890  * Reverses the effect of usb_poison_anchored_urbs
0891  * the anchor can be used normally after it returns
0892  */
0893 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
0894 {
0895     unsigned long flags;
0896     struct urb *lazarus;
0897 
0898     spin_lock_irqsave(&anchor->lock, flags);
0899     list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
0900         usb_unpoison_urb(lazarus);
0901     }
0902     anchor->poisoned = 0;
0903     spin_unlock_irqrestore(&anchor->lock, flags);
0904 }
0905 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
0906 /**
0907  * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
0908  * @anchor: anchor the requests are bound to
0909  *
0910  * this allows all outstanding URBs to be unlinked starting
0911  * from the back of the queue. This function is asynchronous.
0912  * The unlinking is just triggered. It may happen after this
0913  * function has returned.
0914  *
0915  * This routine should not be called by a driver after its disconnect
0916  * method has returned.
0917  */
0918 void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
0919 {
0920     struct urb *victim;
0921 
0922     while ((victim = usb_get_from_anchor(anchor)) != NULL) {
0923         usb_unlink_urb(victim);
0924         usb_put_urb(victim);
0925     }
0926 }
0927 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
0928 
0929 /**
0930  * usb_anchor_suspend_wakeups
0931  * @anchor: the anchor you want to suspend wakeups on
0932  *
0933  * Call this to stop the last urb being unanchored from waking up any
0934  * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
0935  * back path to delay waking up until after the completion handler has run.
0936  */
0937 void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
0938 {
0939     if (anchor)
0940         atomic_inc(&anchor->suspend_wakeups);
0941 }
0942 EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
0943 
0944 /**
0945  * usb_anchor_resume_wakeups
0946  * @anchor: the anchor you want to resume wakeups on
0947  *
0948  * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
0949  * wake up any current waiters if the anchor is empty.
0950  */
0951 void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
0952 {
0953     if (!anchor)
0954         return;
0955 
0956     atomic_dec(&anchor->suspend_wakeups);
0957     if (usb_anchor_check_wakeup(anchor))
0958         wake_up(&anchor->wait);
0959 }
0960 EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
0961 
0962 /**
0963  * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
0964  * @anchor: the anchor you want to become unused
0965  * @timeout: how long you are willing to wait in milliseconds
0966  *
0967  * Call this is you want to be sure all an anchor's
0968  * URBs have finished
0969  *
0970  * Return: Non-zero if the anchor became unused. Zero on timeout.
0971  */
0972 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
0973                   unsigned int timeout)
0974 {
0975     return wait_event_timeout(anchor->wait,
0976                   usb_anchor_check_wakeup(anchor),
0977                   msecs_to_jiffies(timeout));
0978 }
0979 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
0980 
0981 /**
0982  * usb_get_from_anchor - get an anchor's oldest urb
0983  * @anchor: the anchor whose urb you want
0984  *
0985  * This will take the oldest urb from an anchor,
0986  * unanchor and return it
0987  *
0988  * Return: The oldest urb from @anchor, or %NULL if @anchor has no
0989  * urbs associated with it.
0990  */
0991 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
0992 {
0993     struct urb *victim;
0994     unsigned long flags;
0995 
0996     spin_lock_irqsave(&anchor->lock, flags);
0997     if (!list_empty(&anchor->urb_list)) {
0998         victim = list_entry(anchor->urb_list.next, struct urb,
0999                     anchor_list);
1000         usb_get_urb(victim);
1001         __usb_unanchor_urb(victim, anchor);
1002     } else {
1003         victim = NULL;
1004     }
1005     spin_unlock_irqrestore(&anchor->lock, flags);
1006 
1007     return victim;
1008 }
1009 
1010 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
1011 
1012 /**
1013  * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
1014  * @anchor: the anchor whose urbs you want to unanchor
1015  *
1016  * use this to get rid of all an anchor's urbs
1017  */
1018 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
1019 {
1020     struct urb *victim;
1021     unsigned long flags;
1022     int surely_empty;
1023 
1024     do {
1025         spin_lock_irqsave(&anchor->lock, flags);
1026         while (!list_empty(&anchor->urb_list)) {
1027             victim = list_entry(anchor->urb_list.prev,
1028                         struct urb, anchor_list);
1029             __usb_unanchor_urb(victim, anchor);
1030         }
1031         surely_empty = usb_anchor_check_wakeup(anchor);
1032 
1033         spin_unlock_irqrestore(&anchor->lock, flags);
1034         cpu_relax();
1035     } while (!surely_empty);
1036 }
1037 
1038 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
1039 
1040 /**
1041  * usb_anchor_empty - is an anchor empty
1042  * @anchor: the anchor you want to query
1043  *
1044  * Return: 1 if the anchor has no urbs associated with it.
1045  */
1046 int usb_anchor_empty(struct usb_anchor *anchor)
1047 {
1048     return list_empty(&anchor->urb_list);
1049 }
1050 
1051 EXPORT_SYMBOL_GPL(usb_anchor_empty);
1052