Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * message.c - synchronous message handling
0004  *
0005  * Released under the GPLv2 only.
0006  */
0007 
0008 #include <linux/acpi.h>
0009 #include <linux/pci.h>  /* for scatterlist macros */
0010 #include <linux/usb.h>
0011 #include <linux/module.h>
0012 #include <linux/slab.h>
0013 #include <linux/mm.h>
0014 #include <linux/timer.h>
0015 #include <linux/ctype.h>
0016 #include <linux/nls.h>
0017 #include <linux/device.h>
0018 #include <linux/scatterlist.h>
0019 #include <linux/usb/cdc.h>
0020 #include <linux/usb/quirks.h>
0021 #include <linux/usb/hcd.h>  /* for usbcore internals */
0022 #include <linux/usb/of.h>
0023 #include <asm/byteorder.h>
0024 
0025 #include "usb.h"
0026 
0027 static void cancel_async_set_config(struct usb_device *udev);
0028 
0029 struct api_context {
0030     struct completion   done;
0031     int         status;
0032 };
0033 
0034 static void usb_api_blocking_completion(struct urb *urb)
0035 {
0036     struct api_context *ctx = urb->context;
0037 
0038     ctx->status = urb->status;
0039     complete(&ctx->done);
0040 }
0041 
0042 
0043 /*
0044  * Starts urb and waits for completion or timeout. Note that this call
0045  * is NOT interruptible. Many device driver i/o requests should be
0046  * interruptible and therefore these drivers should implement their
0047  * own interruptible routines.
0048  */
0049 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
0050 {
0051     struct api_context ctx;
0052     unsigned long expire;
0053     int retval;
0054 
0055     init_completion(&ctx.done);
0056     urb->context = &ctx;
0057     urb->actual_length = 0;
0058     retval = usb_submit_urb(urb, GFP_NOIO);
0059     if (unlikely(retval))
0060         goto out;
0061 
0062     expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
0063     if (!wait_for_completion_timeout(&ctx.done, expire)) {
0064         usb_kill_urb(urb);
0065         retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
0066 
0067         dev_dbg(&urb->dev->dev,
0068             "%s timed out on ep%d%s len=%u/%u\n",
0069             current->comm,
0070             usb_endpoint_num(&urb->ep->desc),
0071             usb_urb_dir_in(urb) ? "in" : "out",
0072             urb->actual_length,
0073             urb->transfer_buffer_length);
0074     } else
0075         retval = ctx.status;
0076 out:
0077     if (actual_length)
0078         *actual_length = urb->actual_length;
0079 
0080     usb_free_urb(urb);
0081     return retval;
0082 }
0083 
0084 /*-------------------------------------------------------------------*/
0085 /* returns status (negative) or length (positive) */
0086 static int usb_internal_control_msg(struct usb_device *usb_dev,
0087                     unsigned int pipe,
0088                     struct usb_ctrlrequest *cmd,
0089                     void *data, int len, int timeout)
0090 {
0091     struct urb *urb;
0092     int retv;
0093     int length;
0094 
0095     urb = usb_alloc_urb(0, GFP_NOIO);
0096     if (!urb)
0097         return -ENOMEM;
0098 
0099     usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
0100                  len, usb_api_blocking_completion, NULL);
0101 
0102     retv = usb_start_wait_urb(urb, timeout, &length);
0103     if (retv < 0)
0104         return retv;
0105     else
0106         return length;
0107 }
0108 
0109 /**
0110  * usb_control_msg - Builds a control urb, sends it off and waits for completion
0111  * @dev: pointer to the usb device to send the message to
0112  * @pipe: endpoint "pipe" to send the message to
0113  * @request: USB message request value
0114  * @requesttype: USB message request type value
0115  * @value: USB message value
0116  * @index: USB message index value
0117  * @data: pointer to the data to send
0118  * @size: length in bytes of the data to send
0119  * @timeout: time in msecs to wait for the message to complete before timing
0120  *  out (if 0 the wait is forever)
0121  *
0122  * Context: task context, might sleep.
0123  *
0124  * This function sends a simple control message to a specified endpoint and
0125  * waits for the message to complete, or timeout.
0126  *
0127  * Don't use this function from within an interrupt context. If you need
0128  * an asynchronous message, or need to send a message from within interrupt
0129  * context, use usb_submit_urb(). If a thread in your driver uses this call,
0130  * make sure your disconnect() method can wait for it to complete. Since you
0131  * don't have a handle on the URB used, you can't cancel the request.
0132  *
0133  * Return: If successful, the number of bytes transferred. Otherwise, a negative
0134  * error number.
0135  */
0136 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
0137             __u8 requesttype, __u16 value, __u16 index, void *data,
0138             __u16 size, int timeout)
0139 {
0140     struct usb_ctrlrequest *dr;
0141     int ret;
0142 
0143     dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
0144     if (!dr)
0145         return -ENOMEM;
0146 
0147     dr->bRequestType = requesttype;
0148     dr->bRequest = request;
0149     dr->wValue = cpu_to_le16(value);
0150     dr->wIndex = cpu_to_le16(index);
0151     dr->wLength = cpu_to_le16(size);
0152 
0153     ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
0154 
0155     /* Linger a bit, prior to the next control message. */
0156     if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
0157         msleep(200);
0158 
0159     kfree(dr);
0160 
0161     return ret;
0162 }
0163 EXPORT_SYMBOL_GPL(usb_control_msg);
0164 
0165 /**
0166  * usb_control_msg_send - Builds a control "send" message, sends it off and waits for completion
0167  * @dev: pointer to the usb device to send the message to
0168  * @endpoint: endpoint to send the message to
0169  * @request: USB message request value
0170  * @requesttype: USB message request type value
0171  * @value: USB message value
0172  * @index: USB message index value
0173  * @driver_data: pointer to the data to send
0174  * @size: length in bytes of the data to send
0175  * @timeout: time in msecs to wait for the message to complete before timing
0176  *  out (if 0 the wait is forever)
0177  * @memflags: the flags for memory allocation for buffers
0178  *
0179  * Context: !in_interrupt ()
0180  *
0181  * This function sends a control message to a specified endpoint that is not
0182  * expected to fill in a response (i.e. a "send message") and waits for the
0183  * message to complete, or timeout.
0184  *
0185  * Do not use this function from within an interrupt context. If you need
0186  * an asynchronous message, or need to send a message from within interrupt
0187  * context, use usb_submit_urb(). If a thread in your driver uses this call,
0188  * make sure your disconnect() method can wait for it to complete. Since you
0189  * don't have a handle on the URB used, you can't cancel the request.
0190  *
0191  * The data pointer can be made to a reference on the stack, or anywhere else,
0192  * as it will not be modified at all.  This does not have the restriction that
0193  * usb_control_msg() has where the data pointer must be to dynamically allocated
0194  * memory (i.e. memory that can be successfully DMAed to a device).
0195  *
0196  * Return: If successful, 0 is returned, Otherwise, a negative error number.
0197  */
0198 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
0199              __u8 requesttype, __u16 value, __u16 index,
0200              const void *driver_data, __u16 size, int timeout,
0201              gfp_t memflags)
0202 {
0203     unsigned int pipe = usb_sndctrlpipe(dev, endpoint);
0204     int ret;
0205     u8 *data = NULL;
0206 
0207     if (size) {
0208         data = kmemdup(driver_data, size, memflags);
0209         if (!data)
0210             return -ENOMEM;
0211     }
0212 
0213     ret = usb_control_msg(dev, pipe, request, requesttype, value, index,
0214                   data, size, timeout);
0215     kfree(data);
0216 
0217     if (ret < 0)
0218         return ret;
0219 
0220     return 0;
0221 }
0222 EXPORT_SYMBOL_GPL(usb_control_msg_send);
0223 
0224 /**
0225  * usb_control_msg_recv - Builds a control "receive" message, sends it off and waits for completion
0226  * @dev: pointer to the usb device to send the message to
0227  * @endpoint: endpoint to send the message to
0228  * @request: USB message request value
0229  * @requesttype: USB message request type value
0230  * @value: USB message value
0231  * @index: USB message index value
0232  * @driver_data: pointer to the data to be filled in by the message
0233  * @size: length in bytes of the data to be received
0234  * @timeout: time in msecs to wait for the message to complete before timing
0235  *  out (if 0 the wait is forever)
0236  * @memflags: the flags for memory allocation for buffers
0237  *
0238  * Context: !in_interrupt ()
0239  *
0240  * This function sends a control message to a specified endpoint that is
0241  * expected to fill in a response (i.e. a "receive message") and waits for the
0242  * message to complete, or timeout.
0243  *
0244  * Do not use this function from within an interrupt context. If you need
0245  * an asynchronous message, or need to send a message from within interrupt
0246  * context, use usb_submit_urb(). If a thread in your driver uses this call,
0247  * make sure your disconnect() method can wait for it to complete. Since you
0248  * don't have a handle on the URB used, you can't cancel the request.
0249  *
0250  * The data pointer can be made to a reference on the stack, or anywhere else
0251  * that can be successfully written to.  This function does not have the
0252  * restriction that usb_control_msg() has where the data pointer must be to
0253  * dynamically allocated memory (i.e. memory that can be successfully DMAed to a
0254  * device).
0255  *
0256  * The "whole" message must be properly received from the device in order for
0257  * this function to be successful.  If a device returns less than the expected
0258  * amount of data, then the function will fail.  Do not use this for messages
0259  * where a variable amount of data might be returned.
0260  *
0261  * Return: If successful, 0 is returned, Otherwise, a negative error number.
0262  */
0263 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
0264              __u8 requesttype, __u16 value, __u16 index,
0265              void *driver_data, __u16 size, int timeout,
0266              gfp_t memflags)
0267 {
0268     unsigned int pipe = usb_rcvctrlpipe(dev, endpoint);
0269     int ret;
0270     u8 *data;
0271 
0272     if (!size || !driver_data)
0273         return -EINVAL;
0274 
0275     data = kmalloc(size, memflags);
0276     if (!data)
0277         return -ENOMEM;
0278 
0279     ret = usb_control_msg(dev, pipe, request, requesttype, value, index,
0280                   data, size, timeout);
0281 
0282     if (ret < 0)
0283         goto exit;
0284 
0285     if (ret == size) {
0286         memcpy(driver_data, data, size);
0287         ret = 0;
0288     } else {
0289         ret = -EREMOTEIO;
0290     }
0291 
0292 exit:
0293     kfree(data);
0294     return ret;
0295 }
0296 EXPORT_SYMBOL_GPL(usb_control_msg_recv);
0297 
0298 /**
0299  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
0300  * @usb_dev: pointer to the usb device to send the message to
0301  * @pipe: endpoint "pipe" to send the message to
0302  * @data: pointer to the data to send
0303  * @len: length in bytes of the data to send
0304  * @actual_length: pointer to a location to put the actual length transferred
0305  *  in bytes
0306  * @timeout: time in msecs to wait for the message to complete before
0307  *  timing out (if 0 the wait is forever)
0308  *
0309  * Context: task context, might sleep.
0310  *
0311  * This function sends a simple interrupt message to a specified endpoint and
0312  * waits for the message to complete, or timeout.
0313  *
0314  * Don't use this function from within an interrupt context. If you need
0315  * an asynchronous message, or need to send a message from within interrupt
0316  * context, use usb_submit_urb() If a thread in your driver uses this call,
0317  * make sure your disconnect() method can wait for it to complete. Since you
0318  * don't have a handle on the URB used, you can't cancel the request.
0319  *
0320  * Return:
0321  * If successful, 0. Otherwise a negative error number. The number of actual
0322  * bytes transferred will be stored in the @actual_length parameter.
0323  */
0324 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
0325               void *data, int len, int *actual_length, int timeout)
0326 {
0327     return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
0328 }
0329 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
0330 
0331 /**
0332  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
0333  * @usb_dev: pointer to the usb device to send the message to
0334  * @pipe: endpoint "pipe" to send the message to
0335  * @data: pointer to the data to send
0336  * @len: length in bytes of the data to send
0337  * @actual_length: pointer to a location to put the actual length transferred
0338  *  in bytes
0339  * @timeout: time in msecs to wait for the message to complete before
0340  *  timing out (if 0 the wait is forever)
0341  *
0342  * Context: task context, might sleep.
0343  *
0344  * This function sends a simple bulk message to a specified endpoint
0345  * and waits for the message to complete, or timeout.
0346  *
0347  * Don't use this function from within an interrupt context. If you need
0348  * an asynchronous message, or need to send a message from within interrupt
0349  * context, use usb_submit_urb() If a thread in your driver uses this call,
0350  * make sure your disconnect() method can wait for it to complete. Since you
0351  * don't have a handle on the URB used, you can't cancel the request.
0352  *
0353  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
0354  * users are forced to abuse this routine by using it to submit URBs for
0355  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
0356  * (with the default interval) if the target is an interrupt endpoint.
0357  *
0358  * Return:
0359  * If successful, 0. Otherwise a negative error number. The number of actual
0360  * bytes transferred will be stored in the @actual_length parameter.
0361  *
0362  */
0363 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
0364          void *data, int len, int *actual_length, int timeout)
0365 {
0366     struct urb *urb;
0367     struct usb_host_endpoint *ep;
0368 
0369     ep = usb_pipe_endpoint(usb_dev, pipe);
0370     if (!ep || len < 0)
0371         return -EINVAL;
0372 
0373     urb = usb_alloc_urb(0, GFP_KERNEL);
0374     if (!urb)
0375         return -ENOMEM;
0376 
0377     if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
0378             USB_ENDPOINT_XFER_INT) {
0379         pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
0380         usb_fill_int_urb(urb, usb_dev, pipe, data, len,
0381                 usb_api_blocking_completion, NULL,
0382                 ep->desc.bInterval);
0383     } else
0384         usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
0385                 usb_api_blocking_completion, NULL);
0386 
0387     return usb_start_wait_urb(urb, timeout, actual_length);
0388 }
0389 EXPORT_SYMBOL_GPL(usb_bulk_msg);
0390 
0391 /*-------------------------------------------------------------------*/
0392 
0393 static void sg_clean(struct usb_sg_request *io)
0394 {
0395     if (io->urbs) {
0396         while (io->entries--)
0397             usb_free_urb(io->urbs[io->entries]);
0398         kfree(io->urbs);
0399         io->urbs = NULL;
0400     }
0401     io->dev = NULL;
0402 }
0403 
0404 static void sg_complete(struct urb *urb)
0405 {
0406     unsigned long flags;
0407     struct usb_sg_request *io = urb->context;
0408     int status = urb->status;
0409 
0410     spin_lock_irqsave(&io->lock, flags);
0411 
0412     /* In 2.5 we require hcds' endpoint queues not to progress after fault
0413      * reports, until the completion callback (this!) returns.  That lets
0414      * device driver code (like this routine) unlink queued urbs first,
0415      * if it needs to, since the HC won't work on them at all.  So it's
0416      * not possible for page N+1 to overwrite page N, and so on.
0417      *
0418      * That's only for "hard" faults; "soft" faults (unlinks) sometimes
0419      * complete before the HCD can get requests away from hardware,
0420      * though never during cleanup after a hard fault.
0421      */
0422     if (io->status
0423             && (io->status != -ECONNRESET
0424                 || status != -ECONNRESET)
0425             && urb->actual_length) {
0426         dev_err(io->dev->bus->controller,
0427             "dev %s ep%d%s scatterlist error %d/%d\n",
0428             io->dev->devpath,
0429             usb_endpoint_num(&urb->ep->desc),
0430             usb_urb_dir_in(urb) ? "in" : "out",
0431             status, io->status);
0432         /* BUG (); */
0433     }
0434 
0435     if (io->status == 0 && status && status != -ECONNRESET) {
0436         int i, found, retval;
0437 
0438         io->status = status;
0439 
0440         /* the previous urbs, and this one, completed already.
0441          * unlink pending urbs so they won't rx/tx bad data.
0442          * careful: unlink can sometimes be synchronous...
0443          */
0444         spin_unlock_irqrestore(&io->lock, flags);
0445         for (i = 0, found = 0; i < io->entries; i++) {
0446             if (!io->urbs[i])
0447                 continue;
0448             if (found) {
0449                 usb_block_urb(io->urbs[i]);
0450                 retval = usb_unlink_urb(io->urbs[i]);
0451                 if (retval != -EINPROGRESS &&
0452                     retval != -ENODEV &&
0453                     retval != -EBUSY &&
0454                     retval != -EIDRM)
0455                     dev_err(&io->dev->dev,
0456                         "%s, unlink --> %d\n",
0457                         __func__, retval);
0458             } else if (urb == io->urbs[i])
0459                 found = 1;
0460         }
0461         spin_lock_irqsave(&io->lock, flags);
0462     }
0463 
0464     /* on the last completion, signal usb_sg_wait() */
0465     io->bytes += urb->actual_length;
0466     io->count--;
0467     if (!io->count)
0468         complete(&io->complete);
0469 
0470     spin_unlock_irqrestore(&io->lock, flags);
0471 }
0472 
0473 
0474 /**
0475  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
0476  * @io: request block being initialized.  until usb_sg_wait() returns,
0477  *  treat this as a pointer to an opaque block of memory,
0478  * @dev: the usb device that will send or receive the data
0479  * @pipe: endpoint "pipe" used to transfer the data
0480  * @period: polling rate for interrupt endpoints, in frames or
0481  *  (for high speed endpoints) microframes; ignored for bulk
0482  * @sg: scatterlist entries
0483  * @nents: how many entries in the scatterlist
0484  * @length: how many bytes to send from the scatterlist, or zero to
0485  *  send every byte identified in the list.
0486  * @mem_flags: SLAB_* flags affecting memory allocations in this call
0487  *
0488  * This initializes a scatter/gather request, allocating resources such as
0489  * I/O mappings and urb memory (except maybe memory used by USB controller
0490  * drivers).
0491  *
0492  * The request must be issued using usb_sg_wait(), which waits for the I/O to
0493  * complete (or to be canceled) and then cleans up all resources allocated by
0494  * usb_sg_init().
0495  *
0496  * The request may be canceled with usb_sg_cancel(), either before or after
0497  * usb_sg_wait() is called.
0498  *
0499  * Return: Zero for success, else a negative errno value.
0500  */
0501 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
0502         unsigned pipe, unsigned period, struct scatterlist *sg,
0503         int nents, size_t length, gfp_t mem_flags)
0504 {
0505     int i;
0506     int urb_flags;
0507     int use_sg;
0508 
0509     if (!io || !dev || !sg
0510             || usb_pipecontrol(pipe)
0511             || usb_pipeisoc(pipe)
0512             || nents <= 0)
0513         return -EINVAL;
0514 
0515     spin_lock_init(&io->lock);
0516     io->dev = dev;
0517     io->pipe = pipe;
0518 
0519     if (dev->bus->sg_tablesize > 0) {
0520         use_sg = true;
0521         io->entries = 1;
0522     } else {
0523         use_sg = false;
0524         io->entries = nents;
0525     }
0526 
0527     /* initialize all the urbs we'll use */
0528     io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags);
0529     if (!io->urbs)
0530         goto nomem;
0531 
0532     urb_flags = URB_NO_INTERRUPT;
0533     if (usb_pipein(pipe))
0534         urb_flags |= URB_SHORT_NOT_OK;
0535 
0536     for_each_sg(sg, sg, io->entries, i) {
0537         struct urb *urb;
0538         unsigned len;
0539 
0540         urb = usb_alloc_urb(0, mem_flags);
0541         if (!urb) {
0542             io->entries = i;
0543             goto nomem;
0544         }
0545         io->urbs[i] = urb;
0546 
0547         urb->dev = NULL;
0548         urb->pipe = pipe;
0549         urb->interval = period;
0550         urb->transfer_flags = urb_flags;
0551         urb->complete = sg_complete;
0552         urb->context = io;
0553         urb->sg = sg;
0554 
0555         if (use_sg) {
0556             /* There is no single transfer buffer */
0557             urb->transfer_buffer = NULL;
0558             urb->num_sgs = nents;
0559 
0560             /* A length of zero means transfer the whole sg list */
0561             len = length;
0562             if (len == 0) {
0563                 struct scatterlist  *sg2;
0564                 int         j;
0565 
0566                 for_each_sg(sg, sg2, nents, j)
0567                     len += sg2->length;
0568             }
0569         } else {
0570             /*
0571              * Some systems can't use DMA; they use PIO instead.
0572              * For their sakes, transfer_buffer is set whenever
0573              * possible.
0574              */
0575             if (!PageHighMem(sg_page(sg)))
0576                 urb->transfer_buffer = sg_virt(sg);
0577             else
0578                 urb->transfer_buffer = NULL;
0579 
0580             len = sg->length;
0581             if (length) {
0582                 len = min_t(size_t, len, length);
0583                 length -= len;
0584                 if (length == 0)
0585                     io->entries = i + 1;
0586             }
0587         }
0588         urb->transfer_buffer_length = len;
0589     }
0590     io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
0591 
0592     /* transaction state */
0593     io->count = io->entries;
0594     io->status = 0;
0595     io->bytes = 0;
0596     init_completion(&io->complete);
0597     return 0;
0598 
0599 nomem:
0600     sg_clean(io);
0601     return -ENOMEM;
0602 }
0603 EXPORT_SYMBOL_GPL(usb_sg_init);
0604 
0605 /**
0606  * usb_sg_wait - synchronously execute scatter/gather request
0607  * @io: request block handle, as initialized with usb_sg_init().
0608  *  some fields become accessible when this call returns.
0609  *
0610  * Context: task context, might sleep.
0611  *
0612  * This function blocks until the specified I/O operation completes.  It
0613  * leverages the grouping of the related I/O requests to get good transfer
0614  * rates, by queueing the requests.  At higher speeds, such queuing can
0615  * significantly improve USB throughput.
0616  *
0617  * There are three kinds of completion for this function.
0618  *
0619  * (1) success, where io->status is zero.  The number of io->bytes
0620  *     transferred is as requested.
0621  * (2) error, where io->status is a negative errno value.  The number
0622  *     of io->bytes transferred before the error is usually less
0623  *     than requested, and can be nonzero.
0624  * (3) cancellation, a type of error with status -ECONNRESET that
0625  *     is initiated by usb_sg_cancel().
0626  *
0627  * When this function returns, all memory allocated through usb_sg_init() or
0628  * this call will have been freed.  The request block parameter may still be
0629  * passed to usb_sg_cancel(), or it may be freed.  It could also be
0630  * reinitialized and then reused.
0631  *
0632  * Data Transfer Rates:
0633  *
0634  * Bulk transfers are valid for full or high speed endpoints.
0635  * The best full speed data rate is 19 packets of 64 bytes each
0636  * per frame, or 1216 bytes per millisecond.
0637  * The best high speed data rate is 13 packets of 512 bytes each
0638  * per microframe, or 52 KBytes per millisecond.
0639  *
0640  * The reason to use interrupt transfers through this API would most likely
0641  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
0642  * could be transferred.  That capability is less useful for low or full
0643  * speed interrupt endpoints, which allow at most one packet per millisecond,
0644  * of at most 8 or 64 bytes (respectively).
0645  *
0646  * It is not necessary to call this function to reserve bandwidth for devices
0647  * under an xHCI host controller, as the bandwidth is reserved when the
0648  * configuration or interface alt setting is selected.
0649  */
0650 void usb_sg_wait(struct usb_sg_request *io)
0651 {
0652     int i;
0653     int entries = io->entries;
0654 
0655     /* queue the urbs.  */
0656     spin_lock_irq(&io->lock);
0657     i = 0;
0658     while (i < entries && !io->status) {
0659         int retval;
0660 
0661         io->urbs[i]->dev = io->dev;
0662         spin_unlock_irq(&io->lock);
0663 
0664         retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
0665 
0666         switch (retval) {
0667             /* maybe we retrying will recover */
0668         case -ENXIO:    /* hc didn't queue this one */
0669         case -EAGAIN:
0670         case -ENOMEM:
0671             retval = 0;
0672             yield();
0673             break;
0674 
0675             /* no error? continue immediately.
0676              *
0677              * NOTE: to work better with UHCI (4K I/O buffer may
0678              * need 3K of TDs) it may be good to limit how many
0679              * URBs are queued at once; N milliseconds?
0680              */
0681         case 0:
0682             ++i;
0683             cpu_relax();
0684             break;
0685 
0686             /* fail any uncompleted urbs */
0687         default:
0688             io->urbs[i]->status = retval;
0689             dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
0690                 __func__, retval);
0691             usb_sg_cancel(io);
0692         }
0693         spin_lock_irq(&io->lock);
0694         if (retval && (io->status == 0 || io->status == -ECONNRESET))
0695             io->status = retval;
0696     }
0697     io->count -= entries - i;
0698     if (io->count == 0)
0699         complete(&io->complete);
0700     spin_unlock_irq(&io->lock);
0701 
0702     /* OK, yes, this could be packaged as non-blocking.
0703      * So could the submit loop above ... but it's easier to
0704      * solve neither problem than to solve both!
0705      */
0706     wait_for_completion(&io->complete);
0707 
0708     sg_clean(io);
0709 }
0710 EXPORT_SYMBOL_GPL(usb_sg_wait);
0711 
0712 /**
0713  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
0714  * @io: request block, initialized with usb_sg_init()
0715  *
0716  * This stops a request after it has been started by usb_sg_wait().
0717  * It can also prevents one initialized by usb_sg_init() from starting,
0718  * so that call just frees resources allocated to the request.
0719  */
0720 void usb_sg_cancel(struct usb_sg_request *io)
0721 {
0722     unsigned long flags;
0723     int i, retval;
0724 
0725     spin_lock_irqsave(&io->lock, flags);
0726     if (io->status || io->count == 0) {
0727         spin_unlock_irqrestore(&io->lock, flags);
0728         return;
0729     }
0730     /* shut everything down */
0731     io->status = -ECONNRESET;
0732     io->count++;        /* Keep the request alive until we're done */
0733     spin_unlock_irqrestore(&io->lock, flags);
0734 
0735     for (i = io->entries - 1; i >= 0; --i) {
0736         usb_block_urb(io->urbs[i]);
0737 
0738         retval = usb_unlink_urb(io->urbs[i]);
0739         if (retval != -EINPROGRESS
0740             && retval != -ENODEV
0741             && retval != -EBUSY
0742             && retval != -EIDRM)
0743             dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
0744                  __func__, retval);
0745     }
0746 
0747     spin_lock_irqsave(&io->lock, flags);
0748     io->count--;
0749     if (!io->count)
0750         complete(&io->complete);
0751     spin_unlock_irqrestore(&io->lock, flags);
0752 }
0753 EXPORT_SYMBOL_GPL(usb_sg_cancel);
0754 
0755 /*-------------------------------------------------------------------*/
0756 
0757 /**
0758  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
0759  * @dev: the device whose descriptor is being retrieved
0760  * @type: the descriptor type (USB_DT_*)
0761  * @index: the number of the descriptor
0762  * @buf: where to put the descriptor
0763  * @size: how big is "buf"?
0764  *
0765  * Context: task context, might sleep.
0766  *
0767  * Gets a USB descriptor.  Convenience functions exist to simplify
0768  * getting some types of descriptors.  Use
0769  * usb_get_string() or usb_string() for USB_DT_STRING.
0770  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
0771  * are part of the device structure.
0772  * In addition to a number of USB-standard descriptors, some
0773  * devices also use class-specific or vendor-specific descriptors.
0774  *
0775  * This call is synchronous, and may not be used in an interrupt context.
0776  *
0777  * Return: The number of bytes received on success, or else the status code
0778  * returned by the underlying usb_control_msg() call.
0779  */
0780 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
0781                unsigned char index, void *buf, int size)
0782 {
0783     int i;
0784     int result;
0785 
0786     if (size <= 0)      /* No point in asking for no data */
0787         return -EINVAL;
0788 
0789     memset(buf, 0, size);   /* Make sure we parse really received data */
0790 
0791     for (i = 0; i < 3; ++i) {
0792         /* retry on length 0 or error; some devices are flakey */
0793         result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
0794                 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
0795                 (type << 8) + index, 0, buf, size,
0796                 USB_CTRL_GET_TIMEOUT);
0797         if (result <= 0 && result != -ETIMEDOUT)
0798             continue;
0799         if (result > 1 && ((u8 *)buf)[1] != type) {
0800             result = -ENODATA;
0801             continue;
0802         }
0803         break;
0804     }
0805     return result;
0806 }
0807 EXPORT_SYMBOL_GPL(usb_get_descriptor);
0808 
0809 /**
0810  * usb_get_string - gets a string descriptor
0811  * @dev: the device whose string descriptor is being retrieved
0812  * @langid: code for language chosen (from string descriptor zero)
0813  * @index: the number of the descriptor
0814  * @buf: where to put the string
0815  * @size: how big is "buf"?
0816  *
0817  * Context: task context, might sleep.
0818  *
0819  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
0820  * in little-endian byte order).
0821  * The usb_string() function will often be a convenient way to turn
0822  * these strings into kernel-printable form.
0823  *
0824  * Strings may be referenced in device, configuration, interface, or other
0825  * descriptors, and could also be used in vendor-specific ways.
0826  *
0827  * This call is synchronous, and may not be used in an interrupt context.
0828  *
0829  * Return: The number of bytes received on success, or else the status code
0830  * returned by the underlying usb_control_msg() call.
0831  */
0832 static int usb_get_string(struct usb_device *dev, unsigned short langid,
0833               unsigned char index, void *buf, int size)
0834 {
0835     int i;
0836     int result;
0837 
0838     if (size <= 0)      /* No point in asking for no data */
0839         return -EINVAL;
0840 
0841     for (i = 0; i < 3; ++i) {
0842         /* retry on length 0 or stall; some devices are flakey */
0843         result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
0844             USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
0845             (USB_DT_STRING << 8) + index, langid, buf, size,
0846             USB_CTRL_GET_TIMEOUT);
0847         if (result == 0 || result == -EPIPE)
0848             continue;
0849         if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
0850             result = -ENODATA;
0851             continue;
0852         }
0853         break;
0854     }
0855     return result;
0856 }
0857 
0858 static void usb_try_string_workarounds(unsigned char *buf, int *length)
0859 {
0860     int newlength, oldlength = *length;
0861 
0862     for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
0863         if (!isprint(buf[newlength]) || buf[newlength + 1])
0864             break;
0865 
0866     if (newlength > 2) {
0867         buf[0] = newlength;
0868         *length = newlength;
0869     }
0870 }
0871 
0872 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
0873               unsigned int index, unsigned char *buf)
0874 {
0875     int rc;
0876 
0877     /* Try to read the string descriptor by asking for the maximum
0878      * possible number of bytes */
0879     if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
0880         rc = -EIO;
0881     else
0882         rc = usb_get_string(dev, langid, index, buf, 255);
0883 
0884     /* If that failed try to read the descriptor length, then
0885      * ask for just that many bytes */
0886     if (rc < 2) {
0887         rc = usb_get_string(dev, langid, index, buf, 2);
0888         if (rc == 2)
0889             rc = usb_get_string(dev, langid, index, buf, buf[0]);
0890     }
0891 
0892     if (rc >= 2) {
0893         if (!buf[0] && !buf[1])
0894             usb_try_string_workarounds(buf, &rc);
0895 
0896         /* There might be extra junk at the end of the descriptor */
0897         if (buf[0] < rc)
0898             rc = buf[0];
0899 
0900         rc = rc - (rc & 1); /* force a multiple of two */
0901     }
0902 
0903     if (rc < 2)
0904         rc = (rc < 0 ? rc : -EINVAL);
0905 
0906     return rc;
0907 }
0908 
0909 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
0910 {
0911     int err;
0912 
0913     if (dev->have_langid)
0914         return 0;
0915 
0916     if (dev->string_langid < 0)
0917         return -EPIPE;
0918 
0919     err = usb_string_sub(dev, 0, 0, tbuf);
0920 
0921     /* If the string was reported but is malformed, default to english
0922      * (0x0409) */
0923     if (err == -ENODATA || (err > 0 && err < 4)) {
0924         dev->string_langid = 0x0409;
0925         dev->have_langid = 1;
0926         dev_err(&dev->dev,
0927             "language id specifier not provided by device, defaulting to English\n");
0928         return 0;
0929     }
0930 
0931     /* In case of all other errors, we assume the device is not able to
0932      * deal with strings at all. Set string_langid to -1 in order to
0933      * prevent any string to be retrieved from the device */
0934     if (err < 0) {
0935         dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
0936                     err);
0937         dev->string_langid = -1;
0938         return -EPIPE;
0939     }
0940 
0941     /* always use the first langid listed */
0942     dev->string_langid = tbuf[2] | (tbuf[3] << 8);
0943     dev->have_langid = 1;
0944     dev_dbg(&dev->dev, "default language 0x%04x\n",
0945                 dev->string_langid);
0946     return 0;
0947 }
0948 
0949 /**
0950  * usb_string - returns UTF-8 version of a string descriptor
0951  * @dev: the device whose string descriptor is being retrieved
0952  * @index: the number of the descriptor
0953  * @buf: where to put the string
0954  * @size: how big is "buf"?
0955  *
0956  * Context: task context, might sleep.
0957  *
0958  * This converts the UTF-16LE encoded strings returned by devices, from
0959  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
0960  * that are more usable in most kernel contexts.  Note that this function
0961  * chooses strings in the first language supported by the device.
0962  *
0963  * This call is synchronous, and may not be used in an interrupt context.
0964  *
0965  * Return: length of the string (>= 0) or usb_control_msg status (< 0).
0966  */
0967 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
0968 {
0969     unsigned char *tbuf;
0970     int err;
0971 
0972     if (dev->state == USB_STATE_SUSPENDED)
0973         return -EHOSTUNREACH;
0974     if (size <= 0 || !buf)
0975         return -EINVAL;
0976     buf[0] = 0;
0977     if (index <= 0 || index >= 256)
0978         return -EINVAL;
0979     tbuf = kmalloc(256, GFP_NOIO);
0980     if (!tbuf)
0981         return -ENOMEM;
0982 
0983     err = usb_get_langid(dev, tbuf);
0984     if (err < 0)
0985         goto errout;
0986 
0987     err = usb_string_sub(dev, dev->string_langid, index, tbuf);
0988     if (err < 0)
0989         goto errout;
0990 
0991     size--;     /* leave room for trailing NULL char in output buffer */
0992     err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
0993             UTF16_LITTLE_ENDIAN, buf, size);
0994     buf[err] = 0;
0995 
0996     if (tbuf[1] != USB_DT_STRING)
0997         dev_dbg(&dev->dev,
0998             "wrong descriptor type %02x for string %d (\"%s\")\n",
0999             tbuf[1], index, buf);
1000 
1001  errout:
1002     kfree(tbuf);
1003     return err;
1004 }
1005 EXPORT_SYMBOL_GPL(usb_string);
1006 
1007 /* one UTF-8-encoded 16-bit character has at most three bytes */
1008 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
1009 
1010 /**
1011  * usb_cache_string - read a string descriptor and cache it for later use
1012  * @udev: the device whose string descriptor is being read
1013  * @index: the descriptor index
1014  *
1015  * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
1016  * or %NULL if the index is 0 or the string could not be read.
1017  */
1018 char *usb_cache_string(struct usb_device *udev, int index)
1019 {
1020     char *buf;
1021     char *smallbuf = NULL;
1022     int len;
1023 
1024     if (index <= 0)
1025         return NULL;
1026 
1027     buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
1028     if (buf) {
1029         len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
1030         if (len > 0) {
1031             smallbuf = kmalloc(++len, GFP_NOIO);
1032             if (!smallbuf)
1033                 return buf;
1034             memcpy(smallbuf, buf, len);
1035         }
1036         kfree(buf);
1037     }
1038     return smallbuf;
1039 }
1040 
1041 /*
1042  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
1043  * @dev: the device whose device descriptor is being updated
1044  * @size: how much of the descriptor to read
1045  *
1046  * Context: task context, might sleep.
1047  *
1048  * Updates the copy of the device descriptor stored in the device structure,
1049  * which dedicates space for this purpose.
1050  *
1051  * Not exported, only for use by the core.  If drivers really want to read
1052  * the device descriptor directly, they can call usb_get_descriptor() with
1053  * type = USB_DT_DEVICE and index = 0.
1054  *
1055  * This call is synchronous, and may not be used in an interrupt context.
1056  *
1057  * Return: The number of bytes received on success, or else the status code
1058  * returned by the underlying usb_control_msg() call.
1059  */
1060 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
1061 {
1062     struct usb_device_descriptor *desc;
1063     int ret;
1064 
1065     if (size > sizeof(*desc))
1066         return -EINVAL;
1067     desc = kmalloc(sizeof(*desc), GFP_NOIO);
1068     if (!desc)
1069         return -ENOMEM;
1070 
1071     ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
1072     if (ret >= 0)
1073         memcpy(&dev->descriptor, desc, size);
1074     kfree(desc);
1075     return ret;
1076 }
1077 
1078 /*
1079  * usb_set_isoch_delay - informs the device of the packet transmit delay
1080  * @dev: the device whose delay is to be informed
1081  * Context: task context, might sleep
1082  *
1083  * Since this is an optional request, we don't bother if it fails.
1084  */
1085 int usb_set_isoch_delay(struct usb_device *dev)
1086 {
1087     /* skip hub devices */
1088     if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
1089         return 0;
1090 
1091     /* skip non-SS/non-SSP devices */
1092     if (dev->speed < USB_SPEED_SUPER)
1093         return 0;
1094 
1095     return usb_control_msg_send(dev, 0,
1096             USB_REQ_SET_ISOCH_DELAY,
1097             USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
1098             dev->hub_delay, 0, NULL, 0,
1099             USB_CTRL_SET_TIMEOUT,
1100             GFP_NOIO);
1101 }
1102 
1103 /**
1104  * usb_get_status - issues a GET_STATUS call
1105  * @dev: the device whose status is being checked
1106  * @recip: USB_RECIP_*; for device, interface, or endpoint
1107  * @type: USB_STATUS_TYPE_*; for standard or PTM status types
1108  * @target: zero (for device), else interface or endpoint number
1109  * @data: pointer to two bytes of bitmap data
1110  *
1111  * Context: task context, might sleep.
1112  *
1113  * Returns device, interface, or endpoint status.  Normally only of
1114  * interest to see if the device is self powered, or has enabled the
1115  * remote wakeup facility; or whether a bulk or interrupt endpoint
1116  * is halted ("stalled").
1117  *
1118  * Bits in these status bitmaps are set using the SET_FEATURE request,
1119  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
1120  * function should be used to clear halt ("stall") status.
1121  *
1122  * This call is synchronous, and may not be used in an interrupt context.
1123  *
1124  * Returns 0 and the status value in *@data (in host byte order) on success,
1125  * or else the status code from the underlying usb_control_msg() call.
1126  */
1127 int usb_get_status(struct usb_device *dev, int recip, int type, int target,
1128         void *data)
1129 {
1130     int ret;
1131     void *status;
1132     int length;
1133 
1134     switch (type) {
1135     case USB_STATUS_TYPE_STANDARD:
1136         length = 2;
1137         break;
1138     case USB_STATUS_TYPE_PTM:
1139         if (recip != USB_RECIP_DEVICE)
1140             return -EINVAL;
1141 
1142         length = 4;
1143         break;
1144     default:
1145         return -EINVAL;
1146     }
1147 
1148     status =  kmalloc(length, GFP_KERNEL);
1149     if (!status)
1150         return -ENOMEM;
1151 
1152     ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
1153         USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
1154         target, status, length, USB_CTRL_GET_TIMEOUT);
1155 
1156     switch (ret) {
1157     case 4:
1158         if (type != USB_STATUS_TYPE_PTM) {
1159             ret = -EIO;
1160             break;
1161         }
1162 
1163         *(u32 *) data = le32_to_cpu(*(__le32 *) status);
1164         ret = 0;
1165         break;
1166     case 2:
1167         if (type != USB_STATUS_TYPE_STANDARD) {
1168             ret = -EIO;
1169             break;
1170         }
1171 
1172         *(u16 *) data = le16_to_cpu(*(__le16 *) status);
1173         ret = 0;
1174         break;
1175     default:
1176         ret = -EIO;
1177     }
1178 
1179     kfree(status);
1180     return ret;
1181 }
1182 EXPORT_SYMBOL_GPL(usb_get_status);
1183 
1184 /**
1185  * usb_clear_halt - tells device to clear endpoint halt/stall condition
1186  * @dev: device whose endpoint is halted
1187  * @pipe: endpoint "pipe" being cleared
1188  *
1189  * Context: task context, might sleep.
1190  *
1191  * This is used to clear halt conditions for bulk and interrupt endpoints,
1192  * as reported by URB completion status.  Endpoints that are halted are
1193  * sometimes referred to as being "stalled".  Such endpoints are unable
1194  * to transmit or receive data until the halt status is cleared.  Any URBs
1195  * queued for such an endpoint should normally be unlinked by the driver
1196  * before clearing the halt condition, as described in sections 5.7.5
1197  * and 5.8.5 of the USB 2.0 spec.
1198  *
1199  * Note that control and isochronous endpoints don't halt, although control
1200  * endpoints report "protocol stall" (for unsupported requests) using the
1201  * same status code used to report a true stall.
1202  *
1203  * This call is synchronous, and may not be used in an interrupt context.
1204  *
1205  * Return: Zero on success, or else the status code returned by the
1206  * underlying usb_control_msg() call.
1207  */
1208 int usb_clear_halt(struct usb_device *dev, int pipe)
1209 {
1210     int result;
1211     int endp = usb_pipeendpoint(pipe);
1212 
1213     if (usb_pipein(pipe))
1214         endp |= USB_DIR_IN;
1215 
1216     /* we don't care if it wasn't halted first. in fact some devices
1217      * (like some ibmcam model 1 units) seem to expect hosts to make
1218      * this request for iso endpoints, which can't halt!
1219      */
1220     result = usb_control_msg_send(dev, 0,
1221                       USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1222                       USB_ENDPOINT_HALT, endp, NULL, 0,
1223                       USB_CTRL_SET_TIMEOUT, GFP_NOIO);
1224 
1225     /* don't un-halt or force to DATA0 except on success */
1226     if (result)
1227         return result;
1228 
1229     /* NOTE:  seems like Microsoft and Apple don't bother verifying
1230      * the clear "took", so some devices could lock up if you check...
1231      * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1232      *
1233      * NOTE:  make sure the logic here doesn't diverge much from
1234      * the copy in usb-storage, for as long as we need two copies.
1235      */
1236 
1237     usb_reset_endpoint(dev, endp);
1238 
1239     return 0;
1240 }
1241 EXPORT_SYMBOL_GPL(usb_clear_halt);
1242 
1243 static int create_intf_ep_devs(struct usb_interface *intf)
1244 {
1245     struct usb_device *udev = interface_to_usbdev(intf);
1246     struct usb_host_interface *alt = intf->cur_altsetting;
1247     int i;
1248 
1249     if (intf->ep_devs_created || intf->unregistering)
1250         return 0;
1251 
1252     for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1253         (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1254     intf->ep_devs_created = 1;
1255     return 0;
1256 }
1257 
1258 static void remove_intf_ep_devs(struct usb_interface *intf)
1259 {
1260     struct usb_host_interface *alt = intf->cur_altsetting;
1261     int i;
1262 
1263     if (!intf->ep_devs_created)
1264         return;
1265 
1266     for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1267         usb_remove_ep_devs(&alt->endpoint[i]);
1268     intf->ep_devs_created = 0;
1269 }
1270 
1271 /**
1272  * usb_disable_endpoint -- Disable an endpoint by address
1273  * @dev: the device whose endpoint is being disabled
1274  * @epaddr: the endpoint's address.  Endpoint number for output,
1275  *  endpoint number + USB_DIR_IN for input
1276  * @reset_hardware: flag to erase any endpoint state stored in the
1277  *  controller hardware
1278  *
1279  * Disables the endpoint for URB submission and nukes all pending URBs.
1280  * If @reset_hardware is set then also deallocates hcd/hardware state
1281  * for the endpoint.
1282  */
1283 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1284         bool reset_hardware)
1285 {
1286     unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1287     struct usb_host_endpoint *ep;
1288 
1289     if (!dev)
1290         return;
1291 
1292     if (usb_endpoint_out(epaddr)) {
1293         ep = dev->ep_out[epnum];
1294         if (reset_hardware && epnum != 0)
1295             dev->ep_out[epnum] = NULL;
1296     } else {
1297         ep = dev->ep_in[epnum];
1298         if (reset_hardware && epnum != 0)
1299             dev->ep_in[epnum] = NULL;
1300     }
1301     if (ep) {
1302         ep->enabled = 0;
1303         usb_hcd_flush_endpoint(dev, ep);
1304         if (reset_hardware)
1305             usb_hcd_disable_endpoint(dev, ep);
1306     }
1307 }
1308 
1309 /**
1310  * usb_reset_endpoint - Reset an endpoint's state.
1311  * @dev: the device whose endpoint is to be reset
1312  * @epaddr: the endpoint's address.  Endpoint number for output,
1313  *  endpoint number + USB_DIR_IN for input
1314  *
1315  * Resets any host-side endpoint state such as the toggle bit,
1316  * sequence number or current window.
1317  */
1318 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1319 {
1320     unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1321     struct usb_host_endpoint *ep;
1322 
1323     if (usb_endpoint_out(epaddr))
1324         ep = dev->ep_out[epnum];
1325     else
1326         ep = dev->ep_in[epnum];
1327     if (ep)
1328         usb_hcd_reset_endpoint(dev, ep);
1329 }
1330 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1331 
1332 
1333 /**
1334  * usb_disable_interface -- Disable all endpoints for an interface
1335  * @dev: the device whose interface is being disabled
1336  * @intf: pointer to the interface descriptor
1337  * @reset_hardware: flag to erase any endpoint state stored in the
1338  *  controller hardware
1339  *
1340  * Disables all the endpoints for the interface's current altsetting.
1341  */
1342 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1343         bool reset_hardware)
1344 {
1345     struct usb_host_interface *alt = intf->cur_altsetting;
1346     int i;
1347 
1348     for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1349         usb_disable_endpoint(dev,
1350                 alt->endpoint[i].desc.bEndpointAddress,
1351                 reset_hardware);
1352     }
1353 }
1354 
1355 /*
1356  * usb_disable_device_endpoints -- Disable all endpoints for a device
1357  * @dev: the device whose endpoints are being disabled
1358  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1359  */
1360 static void usb_disable_device_endpoints(struct usb_device *dev, int skip_ep0)
1361 {
1362     struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1363     int i;
1364 
1365     if (hcd->driver->check_bandwidth) {
1366         /* First pass: Cancel URBs, leave endpoint pointers intact. */
1367         for (i = skip_ep0; i < 16; ++i) {
1368             usb_disable_endpoint(dev, i, false);
1369             usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1370         }
1371         /* Remove endpoints from the host controller internal state */
1372         mutex_lock(hcd->bandwidth_mutex);
1373         usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1374         mutex_unlock(hcd->bandwidth_mutex);
1375     }
1376     /* Second pass: remove endpoint pointers */
1377     for (i = skip_ep0; i < 16; ++i) {
1378         usb_disable_endpoint(dev, i, true);
1379         usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1380     }
1381 }
1382 
1383 /**
1384  * usb_disable_device - Disable all the endpoints for a USB device
1385  * @dev: the device whose endpoints are being disabled
1386  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1387  *
1388  * Disables all the device's endpoints, potentially including endpoint 0.
1389  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1390  * pending urbs) and usbcore state for the interfaces, so that usbcore
1391  * must usb_set_configuration() before any interfaces could be used.
1392  */
1393 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1394 {
1395     int i;
1396 
1397     /* getting rid of interfaces will disconnect
1398      * any drivers bound to them (a key side effect)
1399      */
1400     if (dev->actconfig) {
1401         /*
1402          * FIXME: In order to avoid self-deadlock involving the
1403          * bandwidth_mutex, we have to mark all the interfaces
1404          * before unregistering any of them.
1405          */
1406         for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1407             dev->actconfig->interface[i]->unregistering = 1;
1408 
1409         for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1410             struct usb_interface    *interface;
1411 
1412             /* remove this interface if it has been registered */
1413             interface = dev->actconfig->interface[i];
1414             if (!device_is_registered(&interface->dev))
1415                 continue;
1416             dev_dbg(&dev->dev, "unregistering interface %s\n",
1417                 dev_name(&interface->dev));
1418             remove_intf_ep_devs(interface);
1419             device_del(&interface->dev);
1420         }
1421 
1422         /* Now that the interfaces are unbound, nobody should
1423          * try to access them.
1424          */
1425         for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1426             put_device(&dev->actconfig->interface[i]->dev);
1427             dev->actconfig->interface[i] = NULL;
1428         }
1429 
1430         usb_disable_usb2_hardware_lpm(dev);
1431         usb_unlocked_disable_lpm(dev);
1432         usb_disable_ltm(dev);
1433 
1434         dev->actconfig = NULL;
1435         if (dev->state == USB_STATE_CONFIGURED)
1436             usb_set_device_state(dev, USB_STATE_ADDRESS);
1437     }
1438 
1439     dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1440         skip_ep0 ? "non-ep0" : "all");
1441 
1442     usb_disable_device_endpoints(dev, skip_ep0);
1443 }
1444 
1445 /**
1446  * usb_enable_endpoint - Enable an endpoint for USB communications
1447  * @dev: the device whose interface is being enabled
1448  * @ep: the endpoint
1449  * @reset_ep: flag to reset the endpoint state
1450  *
1451  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1452  * For control endpoints, both the input and output sides are handled.
1453  */
1454 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1455         bool reset_ep)
1456 {
1457     int epnum = usb_endpoint_num(&ep->desc);
1458     int is_out = usb_endpoint_dir_out(&ep->desc);
1459     int is_control = usb_endpoint_xfer_control(&ep->desc);
1460 
1461     if (reset_ep)
1462         usb_hcd_reset_endpoint(dev, ep);
1463     if (is_out || is_control)
1464         dev->ep_out[epnum] = ep;
1465     if (!is_out || is_control)
1466         dev->ep_in[epnum] = ep;
1467     ep->enabled = 1;
1468 }
1469 
1470 /**
1471  * usb_enable_interface - Enable all the endpoints for an interface
1472  * @dev: the device whose interface is being enabled
1473  * @intf: pointer to the interface descriptor
1474  * @reset_eps: flag to reset the endpoints' state
1475  *
1476  * Enables all the endpoints for the interface's current altsetting.
1477  */
1478 void usb_enable_interface(struct usb_device *dev,
1479         struct usb_interface *intf, bool reset_eps)
1480 {
1481     struct usb_host_interface *alt = intf->cur_altsetting;
1482     int i;
1483 
1484     for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1485         usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1486 }
1487 
1488 /**
1489  * usb_set_interface - Makes a particular alternate setting be current
1490  * @dev: the device whose interface is being updated
1491  * @interface: the interface being updated
1492  * @alternate: the setting being chosen.
1493  *
1494  * Context: task context, might sleep.
1495  *
1496  * This is used to enable data transfers on interfaces that may not
1497  * be enabled by default.  Not all devices support such configurability.
1498  * Only the driver bound to an interface may change its setting.
1499  *
1500  * Within any given configuration, each interface may have several
1501  * alternative settings.  These are often used to control levels of
1502  * bandwidth consumption.  For example, the default setting for a high
1503  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1504  * while interrupt transfers of up to 3KBytes per microframe are legal.
1505  * Also, isochronous endpoints may never be part of an
1506  * interface's default setting.  To access such bandwidth, alternate
1507  * interface settings must be made current.
1508  *
1509  * Note that in the Linux USB subsystem, bandwidth associated with
1510  * an endpoint in a given alternate setting is not reserved until an URB
1511  * is submitted that needs that bandwidth.  Some other operating systems
1512  * allocate bandwidth early, when a configuration is chosen.
1513  *
1514  * xHCI reserves bandwidth and configures the alternate setting in
1515  * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1516  * may be disabled. Drivers cannot rely on any particular alternate
1517  * setting being in effect after a failure.
1518  *
1519  * This call is synchronous, and may not be used in an interrupt context.
1520  * Also, drivers must not change altsettings while urbs are scheduled for
1521  * endpoints in that interface; all such urbs must first be completed
1522  * (perhaps forced by unlinking).
1523  *
1524  * Return: Zero on success, or else the status code returned by the
1525  * underlying usb_control_msg() call.
1526  */
1527 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1528 {
1529     struct usb_interface *iface;
1530     struct usb_host_interface *alt;
1531     struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1532     int i, ret, manual = 0;
1533     unsigned int epaddr;
1534     unsigned int pipe;
1535 
1536     if (dev->state == USB_STATE_SUSPENDED)
1537         return -EHOSTUNREACH;
1538 
1539     iface = usb_ifnum_to_if(dev, interface);
1540     if (!iface) {
1541         dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1542             interface);
1543         return -EINVAL;
1544     }
1545     if (iface->unregistering)
1546         return -ENODEV;
1547 
1548     alt = usb_altnum_to_altsetting(iface, alternate);
1549     if (!alt) {
1550         dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1551              alternate);
1552         return -EINVAL;
1553     }
1554     /*
1555      * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1556      * including freeing dropped endpoint ring buffers.
1557      * Make sure the interface endpoints are flushed before that
1558      */
1559     usb_disable_interface(dev, iface, false);
1560 
1561     /* Make sure we have enough bandwidth for this alternate interface.
1562      * Remove the current alt setting and add the new alt setting.
1563      */
1564     mutex_lock(hcd->bandwidth_mutex);
1565     /* Disable LPM, and re-enable it once the new alt setting is installed,
1566      * so that the xHCI driver can recalculate the U1/U2 timeouts.
1567      */
1568     if (usb_disable_lpm(dev)) {
1569         dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1570         mutex_unlock(hcd->bandwidth_mutex);
1571         return -ENOMEM;
1572     }
1573     /* Changing alt-setting also frees any allocated streams */
1574     for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1575         iface->cur_altsetting->endpoint[i].streams = 0;
1576 
1577     ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1578     if (ret < 0) {
1579         dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1580                 alternate);
1581         usb_enable_lpm(dev);
1582         mutex_unlock(hcd->bandwidth_mutex);
1583         return ret;
1584     }
1585 
1586     if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1587         ret = -EPIPE;
1588     else
1589         ret = usb_control_msg_send(dev, 0,
1590                        USB_REQ_SET_INTERFACE,
1591                        USB_RECIP_INTERFACE, alternate,
1592                        interface, NULL, 0, 5000,
1593                        GFP_NOIO);
1594 
1595     /* 9.4.10 says devices don't need this and are free to STALL the
1596      * request if the interface only has one alternate setting.
1597      */
1598     if (ret == -EPIPE && iface->num_altsetting == 1) {
1599         dev_dbg(&dev->dev,
1600             "manual set_interface for iface %d, alt %d\n",
1601             interface, alternate);
1602         manual = 1;
1603     } else if (ret) {
1604         /* Re-instate the old alt setting */
1605         usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1606         usb_enable_lpm(dev);
1607         mutex_unlock(hcd->bandwidth_mutex);
1608         return ret;
1609     }
1610     mutex_unlock(hcd->bandwidth_mutex);
1611 
1612     /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1613      * when they implement async or easily-killable versions of this or
1614      * other "should-be-internal" functions (like clear_halt).
1615      * should hcd+usbcore postprocess control requests?
1616      */
1617 
1618     /* prevent submissions using previous endpoint settings */
1619     if (iface->cur_altsetting != alt) {
1620         remove_intf_ep_devs(iface);
1621         usb_remove_sysfs_intf_files(iface);
1622     }
1623     usb_disable_interface(dev, iface, true);
1624 
1625     iface->cur_altsetting = alt;
1626 
1627     /* Now that the interface is installed, re-enable LPM. */
1628     usb_unlocked_enable_lpm(dev);
1629 
1630     /* If the interface only has one altsetting and the device didn't
1631      * accept the request, we attempt to carry out the equivalent action
1632      * by manually clearing the HALT feature for each endpoint in the
1633      * new altsetting.
1634      */
1635     if (manual) {
1636         for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1637             epaddr = alt->endpoint[i].desc.bEndpointAddress;
1638             pipe = __create_pipe(dev,
1639                     USB_ENDPOINT_NUMBER_MASK & epaddr) |
1640                     (usb_endpoint_out(epaddr) ?
1641                     USB_DIR_OUT : USB_DIR_IN);
1642 
1643             usb_clear_halt(dev, pipe);
1644         }
1645     }
1646 
1647     /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1648      *
1649      * Note:
1650      * Despite EP0 is always present in all interfaces/AS, the list of
1651      * endpoints from the descriptor does not contain EP0. Due to its
1652      * omnipresence one might expect EP0 being considered "affected" by
1653      * any SetInterface request and hence assume toggles need to be reset.
1654      * However, EP0 toggles are re-synced for every individual transfer
1655      * during the SETUP stage - hence EP0 toggles are "don't care" here.
1656      * (Likewise, EP0 never "halts" on well designed devices.)
1657      */
1658     usb_enable_interface(dev, iface, true);
1659     if (device_is_registered(&iface->dev)) {
1660         usb_create_sysfs_intf_files(iface);
1661         create_intf_ep_devs(iface);
1662     }
1663     return 0;
1664 }
1665 EXPORT_SYMBOL_GPL(usb_set_interface);
1666 
1667 /**
1668  * usb_reset_configuration - lightweight device reset
1669  * @dev: the device whose configuration is being reset
1670  *
1671  * This issues a standard SET_CONFIGURATION request to the device using
1672  * the current configuration.  The effect is to reset most USB-related
1673  * state in the device, including interface altsettings (reset to zero),
1674  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1675  * endpoints).  Other usbcore state is unchanged, including bindings of
1676  * usb device drivers to interfaces.
1677  *
1678  * Because this affects multiple interfaces, avoid using this with composite
1679  * (multi-interface) devices.  Instead, the driver for each interface may
1680  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1681  * some devices don't support the SET_INTERFACE request, and others won't
1682  * reset all the interface state (notably endpoint state).  Resetting the whole
1683  * configuration would affect other drivers' interfaces.
1684  *
1685  * The caller must own the device lock.
1686  *
1687  * Return: Zero on success, else a negative error code.
1688  *
1689  * If this routine fails the device will probably be in an unusable state
1690  * with endpoints disabled, and interfaces only partially enabled.
1691  */
1692 int usb_reset_configuration(struct usb_device *dev)
1693 {
1694     int         i, retval;
1695     struct usb_host_config  *config;
1696     struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1697 
1698     if (dev->state == USB_STATE_SUSPENDED)
1699         return -EHOSTUNREACH;
1700 
1701     /* caller must have locked the device and must own
1702      * the usb bus readlock (so driver bindings are stable);
1703      * calls during probe() are fine
1704      */
1705 
1706     usb_disable_device_endpoints(dev, 1); /* skip ep0*/
1707 
1708     config = dev->actconfig;
1709     retval = 0;
1710     mutex_lock(hcd->bandwidth_mutex);
1711     /* Disable LPM, and re-enable it once the configuration is reset, so
1712      * that the xHCI driver can recalculate the U1/U2 timeouts.
1713      */
1714     if (usb_disable_lpm(dev)) {
1715         dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1716         mutex_unlock(hcd->bandwidth_mutex);
1717         return -ENOMEM;
1718     }
1719 
1720     /* xHCI adds all endpoints in usb_hcd_alloc_bandwidth */
1721     retval = usb_hcd_alloc_bandwidth(dev, config, NULL, NULL);
1722     if (retval < 0) {
1723         usb_enable_lpm(dev);
1724         mutex_unlock(hcd->bandwidth_mutex);
1725         return retval;
1726     }
1727     retval = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0,
1728                       config->desc.bConfigurationValue, 0,
1729                       NULL, 0, USB_CTRL_SET_TIMEOUT,
1730                       GFP_NOIO);
1731     if (retval) {
1732         usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1733         usb_enable_lpm(dev);
1734         mutex_unlock(hcd->bandwidth_mutex);
1735         return retval;
1736     }
1737     mutex_unlock(hcd->bandwidth_mutex);
1738 
1739     /* re-init hc/hcd interface/endpoint state */
1740     for (i = 0; i < config->desc.bNumInterfaces; i++) {
1741         struct usb_interface *intf = config->interface[i];
1742         struct usb_host_interface *alt;
1743 
1744         alt = usb_altnum_to_altsetting(intf, 0);
1745 
1746         /* No altsetting 0?  We'll assume the first altsetting.
1747          * We could use a GetInterface call, but if a device is
1748          * so non-compliant that it doesn't have altsetting 0
1749          * then I wouldn't trust its reply anyway.
1750          */
1751         if (!alt)
1752             alt = &intf->altsetting[0];
1753 
1754         if (alt != intf->cur_altsetting) {
1755             remove_intf_ep_devs(intf);
1756             usb_remove_sysfs_intf_files(intf);
1757         }
1758         intf->cur_altsetting = alt;
1759         usb_enable_interface(dev, intf, true);
1760         if (device_is_registered(&intf->dev)) {
1761             usb_create_sysfs_intf_files(intf);
1762             create_intf_ep_devs(intf);
1763         }
1764     }
1765     /* Now that the interfaces are installed, re-enable LPM. */
1766     usb_unlocked_enable_lpm(dev);
1767     return 0;
1768 }
1769 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1770 
1771 static void usb_release_interface(struct device *dev)
1772 {
1773     struct usb_interface *intf = to_usb_interface(dev);
1774     struct usb_interface_cache *intfc =
1775             altsetting_to_usb_interface_cache(intf->altsetting);
1776 
1777     kref_put(&intfc->ref, usb_release_interface_cache);
1778     usb_put_dev(interface_to_usbdev(intf));
1779     of_node_put(dev->of_node);
1780     kfree(intf);
1781 }
1782 
1783 /*
1784  * usb_deauthorize_interface - deauthorize an USB interface
1785  *
1786  * @intf: USB interface structure
1787  */
1788 void usb_deauthorize_interface(struct usb_interface *intf)
1789 {
1790     struct device *dev = &intf->dev;
1791 
1792     device_lock(dev->parent);
1793 
1794     if (intf->authorized) {
1795         device_lock(dev);
1796         intf->authorized = 0;
1797         device_unlock(dev);
1798 
1799         usb_forced_unbind_intf(intf);
1800     }
1801 
1802     device_unlock(dev->parent);
1803 }
1804 
1805 /*
1806  * usb_authorize_interface - authorize an USB interface
1807  *
1808  * @intf: USB interface structure
1809  */
1810 void usb_authorize_interface(struct usb_interface *intf)
1811 {
1812     struct device *dev = &intf->dev;
1813 
1814     if (!intf->authorized) {
1815         device_lock(dev);
1816         intf->authorized = 1; /* authorize interface */
1817         device_unlock(dev);
1818     }
1819 }
1820 
1821 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1822 {
1823     struct usb_device *usb_dev;
1824     struct usb_interface *intf;
1825     struct usb_host_interface *alt;
1826 
1827     intf = to_usb_interface(dev);
1828     usb_dev = interface_to_usbdev(intf);
1829     alt = intf->cur_altsetting;
1830 
1831     if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1832            alt->desc.bInterfaceClass,
1833            alt->desc.bInterfaceSubClass,
1834            alt->desc.bInterfaceProtocol))
1835         return -ENOMEM;
1836 
1837     if (add_uevent_var(env,
1838            "MODALIAS=usb:"
1839            "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1840            le16_to_cpu(usb_dev->descriptor.idVendor),
1841            le16_to_cpu(usb_dev->descriptor.idProduct),
1842            le16_to_cpu(usb_dev->descriptor.bcdDevice),
1843            usb_dev->descriptor.bDeviceClass,
1844            usb_dev->descriptor.bDeviceSubClass,
1845            usb_dev->descriptor.bDeviceProtocol,
1846            alt->desc.bInterfaceClass,
1847            alt->desc.bInterfaceSubClass,
1848            alt->desc.bInterfaceProtocol,
1849            alt->desc.bInterfaceNumber))
1850         return -ENOMEM;
1851 
1852     return 0;
1853 }
1854 
1855 struct device_type usb_if_device_type = {
1856     .name =     "usb_interface",
1857     .release =  usb_release_interface,
1858     .uevent =   usb_if_uevent,
1859 };
1860 
1861 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1862                         struct usb_host_config *config,
1863                         u8 inum)
1864 {
1865     struct usb_interface_assoc_descriptor *retval = NULL;
1866     struct usb_interface_assoc_descriptor *intf_assoc;
1867     int first_intf;
1868     int last_intf;
1869     int i;
1870 
1871     for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1872         intf_assoc = config->intf_assoc[i];
1873         if (intf_assoc->bInterfaceCount == 0)
1874             continue;
1875 
1876         first_intf = intf_assoc->bFirstInterface;
1877         last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1878         if (inum >= first_intf && inum <= last_intf) {
1879             if (!retval)
1880                 retval = intf_assoc;
1881             else
1882                 dev_err(&dev->dev, "Interface #%d referenced"
1883                     " by multiple IADs\n", inum);
1884         }
1885     }
1886 
1887     return retval;
1888 }
1889 
1890 
1891 /*
1892  * Internal function to queue a device reset
1893  * See usb_queue_reset_device() for more details
1894  */
1895 static void __usb_queue_reset_device(struct work_struct *ws)
1896 {
1897     int rc;
1898     struct usb_interface *iface =
1899         container_of(ws, struct usb_interface, reset_ws);
1900     struct usb_device *udev = interface_to_usbdev(iface);
1901 
1902     rc = usb_lock_device_for_reset(udev, iface);
1903     if (rc >= 0) {
1904         usb_reset_device(udev);
1905         usb_unlock_device(udev);
1906     }
1907     usb_put_intf(iface);    /* Undo _get_ in usb_queue_reset_device() */
1908 }
1909 
1910 
1911 /*
1912  * usb_set_configuration - Makes a particular device setting be current
1913  * @dev: the device whose configuration is being updated
1914  * @configuration: the configuration being chosen.
1915  *
1916  * Context: task context, might sleep. Caller holds device lock.
1917  *
1918  * This is used to enable non-default device modes.  Not all devices
1919  * use this kind of configurability; many devices only have one
1920  * configuration.
1921  *
1922  * @configuration is the value of the configuration to be installed.
1923  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1924  * must be non-zero; a value of zero indicates that the device in
1925  * unconfigured.  However some devices erroneously use 0 as one of their
1926  * configuration values.  To help manage such devices, this routine will
1927  * accept @configuration = -1 as indicating the device should be put in
1928  * an unconfigured state.
1929  *
1930  * USB device configurations may affect Linux interoperability,
1931  * power consumption and the functionality available.  For example,
1932  * the default configuration is limited to using 100mA of bus power,
1933  * so that when certain device functionality requires more power,
1934  * and the device is bus powered, that functionality should be in some
1935  * non-default device configuration.  Other device modes may also be
1936  * reflected as configuration options, such as whether two ISDN
1937  * channels are available independently; and choosing between open
1938  * standard device protocols (like CDC) or proprietary ones.
1939  *
1940  * Note that a non-authorized device (dev->authorized == 0) will only
1941  * be put in unconfigured mode.
1942  *
1943  * Note that USB has an additional level of device configurability,
1944  * associated with interfaces.  That configurability is accessed using
1945  * usb_set_interface().
1946  *
1947  * This call is synchronous. The calling context must be able to sleep,
1948  * must own the device lock, and must not hold the driver model's USB
1949  * bus mutex; usb interface driver probe() methods cannot use this routine.
1950  *
1951  * Returns zero on success, or else the status code returned by the
1952  * underlying call that failed.  On successful completion, each interface
1953  * in the original device configuration has been destroyed, and each one
1954  * in the new configuration has been probed by all relevant usb device
1955  * drivers currently known to the kernel.
1956  */
1957 int usb_set_configuration(struct usb_device *dev, int configuration)
1958 {
1959     int i, ret;
1960     struct usb_host_config *cp = NULL;
1961     struct usb_interface **new_interfaces = NULL;
1962     struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1963     int n, nintf;
1964 
1965     if (dev->authorized == 0 || configuration == -1)
1966         configuration = 0;
1967     else {
1968         for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1969             if (dev->config[i].desc.bConfigurationValue ==
1970                     configuration) {
1971                 cp = &dev->config[i];
1972                 break;
1973             }
1974         }
1975     }
1976     if ((!cp && configuration != 0))
1977         return -EINVAL;
1978 
1979     /* The USB spec says configuration 0 means unconfigured.
1980      * But if a device includes a configuration numbered 0,
1981      * we will accept it as a correctly configured state.
1982      * Use -1 if you really want to unconfigure the device.
1983      */
1984     if (cp && configuration == 0)
1985         dev_warn(&dev->dev, "config 0 descriptor??\n");
1986 
1987     /* Allocate memory for new interfaces before doing anything else,
1988      * so that if we run out then nothing will have changed. */
1989     n = nintf = 0;
1990     if (cp) {
1991         nintf = cp->desc.bNumInterfaces;
1992         new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces),
1993                            GFP_NOIO);
1994         if (!new_interfaces)
1995             return -ENOMEM;
1996 
1997         for (; n < nintf; ++n) {
1998             new_interfaces[n] = kzalloc(
1999                     sizeof(struct usb_interface),
2000                     GFP_NOIO);
2001             if (!new_interfaces[n]) {
2002                 ret = -ENOMEM;
2003 free_interfaces:
2004                 while (--n >= 0)
2005                     kfree(new_interfaces[n]);
2006                 kfree(new_interfaces);
2007                 return ret;
2008             }
2009         }
2010 
2011         i = dev->bus_mA - usb_get_max_power(dev, cp);
2012         if (i < 0)
2013             dev_warn(&dev->dev, "new config #%d exceeds power "
2014                     "limit by %dmA\n",
2015                     configuration, -i);
2016     }
2017 
2018     /* Wake up the device so we can send it the Set-Config request */
2019     ret = usb_autoresume_device(dev);
2020     if (ret)
2021         goto free_interfaces;
2022 
2023     /* if it's already configured, clear out old state first.
2024      * getting rid of old interfaces means unbinding their drivers.
2025      */
2026     if (dev->state != USB_STATE_ADDRESS)
2027         usb_disable_device(dev, 1); /* Skip ep0 */
2028 
2029     /* Get rid of pending async Set-Config requests for this device */
2030     cancel_async_set_config(dev);
2031 
2032     /* Make sure we have bandwidth (and available HCD resources) for this
2033      * configuration.  Remove endpoints from the schedule if we're dropping
2034      * this configuration to set configuration 0.  After this point, the
2035      * host controller will not allow submissions to dropped endpoints.  If
2036      * this call fails, the device state is unchanged.
2037      */
2038     mutex_lock(hcd->bandwidth_mutex);
2039     /* Disable LPM, and re-enable it once the new configuration is
2040      * installed, so that the xHCI driver can recalculate the U1/U2
2041      * timeouts.
2042      */
2043     if (dev->actconfig && usb_disable_lpm(dev)) {
2044         dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
2045         mutex_unlock(hcd->bandwidth_mutex);
2046         ret = -ENOMEM;
2047         goto free_interfaces;
2048     }
2049     ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
2050     if (ret < 0) {
2051         if (dev->actconfig)
2052             usb_enable_lpm(dev);
2053         mutex_unlock(hcd->bandwidth_mutex);
2054         usb_autosuspend_device(dev);
2055         goto free_interfaces;
2056     }
2057 
2058     /*
2059      * Initialize the new interface structures and the
2060      * hc/hcd/usbcore interface/endpoint state.
2061      */
2062     for (i = 0; i < nintf; ++i) {
2063         struct usb_interface_cache *intfc;
2064         struct usb_interface *intf;
2065         struct usb_host_interface *alt;
2066         u8 ifnum;
2067 
2068         cp->interface[i] = intf = new_interfaces[i];
2069         intfc = cp->intf_cache[i];
2070         intf->altsetting = intfc->altsetting;
2071         intf->num_altsetting = intfc->num_altsetting;
2072         intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
2073         kref_get(&intfc->ref);
2074 
2075         alt = usb_altnum_to_altsetting(intf, 0);
2076 
2077         /* No altsetting 0?  We'll assume the first altsetting.
2078          * We could use a GetInterface call, but if a device is
2079          * so non-compliant that it doesn't have altsetting 0
2080          * then I wouldn't trust its reply anyway.
2081          */
2082         if (!alt)
2083             alt = &intf->altsetting[0];
2084 
2085         ifnum = alt->desc.bInterfaceNumber;
2086         intf->intf_assoc = find_iad(dev, cp, ifnum);
2087         intf->cur_altsetting = alt;
2088         usb_enable_interface(dev, intf, true);
2089         intf->dev.parent = &dev->dev;
2090         if (usb_of_has_combined_node(dev)) {
2091             device_set_of_node_from_dev(&intf->dev, &dev->dev);
2092         } else {
2093             intf->dev.of_node = usb_of_get_interface_node(dev,
2094                     configuration, ifnum);
2095         }
2096         ACPI_COMPANION_SET(&intf->dev, ACPI_COMPANION(&dev->dev));
2097         intf->dev.driver = NULL;
2098         intf->dev.bus = &usb_bus_type;
2099         intf->dev.type = &usb_if_device_type;
2100         intf->dev.groups = usb_interface_groups;
2101         INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
2102         intf->minor = -1;
2103         device_initialize(&intf->dev);
2104         pm_runtime_no_callbacks(&intf->dev);
2105         dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
2106                 dev->devpath, configuration, ifnum);
2107         usb_get_dev(dev);
2108     }
2109     kfree(new_interfaces);
2110 
2111     ret = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0,
2112                    configuration, 0, NULL, 0,
2113                    USB_CTRL_SET_TIMEOUT, GFP_NOIO);
2114     if (ret && cp) {
2115         /*
2116          * All the old state is gone, so what else can we do?
2117          * The device is probably useless now anyway.
2118          */
2119         usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
2120         for (i = 0; i < nintf; ++i) {
2121             usb_disable_interface(dev, cp->interface[i], true);
2122             put_device(&cp->interface[i]->dev);
2123             cp->interface[i] = NULL;
2124         }
2125         cp = NULL;
2126     }
2127 
2128     dev->actconfig = cp;
2129     mutex_unlock(hcd->bandwidth_mutex);
2130 
2131     if (!cp) {
2132         usb_set_device_state(dev, USB_STATE_ADDRESS);
2133 
2134         /* Leave LPM disabled while the device is unconfigured. */
2135         usb_autosuspend_device(dev);
2136         return ret;
2137     }
2138     usb_set_device_state(dev, USB_STATE_CONFIGURED);
2139 
2140     if (cp->string == NULL &&
2141             !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
2142         cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
2143 
2144     /* Now that the interfaces are installed, re-enable LPM. */
2145     usb_unlocked_enable_lpm(dev);
2146     /* Enable LTM if it was turned off by usb_disable_device. */
2147     usb_enable_ltm(dev);
2148 
2149     /* Now that all the interfaces are set up, register them
2150      * to trigger binding of drivers to interfaces.  probe()
2151      * routines may install different altsettings and may
2152      * claim() any interfaces not yet bound.  Many class drivers
2153      * need that: CDC, audio, video, etc.
2154      */
2155     for (i = 0; i < nintf; ++i) {
2156         struct usb_interface *intf = cp->interface[i];
2157 
2158         if (intf->dev.of_node &&
2159             !of_device_is_available(intf->dev.of_node)) {
2160             dev_info(&dev->dev, "skipping disabled interface %d\n",
2161                  intf->cur_altsetting->desc.bInterfaceNumber);
2162             continue;
2163         }
2164 
2165         dev_dbg(&dev->dev,
2166             "adding %s (config #%d, interface %d)\n",
2167             dev_name(&intf->dev), configuration,
2168             intf->cur_altsetting->desc.bInterfaceNumber);
2169         device_enable_async_suspend(&intf->dev);
2170         ret = device_add(&intf->dev);
2171         if (ret != 0) {
2172             dev_err(&dev->dev, "device_add(%s) --> %d\n",
2173                 dev_name(&intf->dev), ret);
2174             continue;
2175         }
2176         create_intf_ep_devs(intf);
2177     }
2178 
2179     usb_autosuspend_device(dev);
2180     return 0;
2181 }
2182 EXPORT_SYMBOL_GPL(usb_set_configuration);
2183 
2184 static LIST_HEAD(set_config_list);
2185 static DEFINE_SPINLOCK(set_config_lock);
2186 
2187 struct set_config_request {
2188     struct usb_device   *udev;
2189     int         config;
2190     struct work_struct  work;
2191     struct list_head    node;
2192 };
2193 
2194 /* Worker routine for usb_driver_set_configuration() */
2195 static void driver_set_config_work(struct work_struct *work)
2196 {
2197     struct set_config_request *req =
2198         container_of(work, struct set_config_request, work);
2199     struct usb_device *udev = req->udev;
2200 
2201     usb_lock_device(udev);
2202     spin_lock(&set_config_lock);
2203     list_del(&req->node);
2204     spin_unlock(&set_config_lock);
2205 
2206     if (req->config >= -1)      /* Is req still valid? */
2207         usb_set_configuration(udev, req->config);
2208     usb_unlock_device(udev);
2209     usb_put_dev(udev);
2210     kfree(req);
2211 }
2212 
2213 /* Cancel pending Set-Config requests for a device whose configuration
2214  * was just changed
2215  */
2216 static void cancel_async_set_config(struct usb_device *udev)
2217 {
2218     struct set_config_request *req;
2219 
2220     spin_lock(&set_config_lock);
2221     list_for_each_entry(req, &set_config_list, node) {
2222         if (req->udev == udev)
2223             req->config = -999; /* Mark as cancelled */
2224     }
2225     spin_unlock(&set_config_lock);
2226 }
2227 
2228 /**
2229  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2230  * @udev: the device whose configuration is being updated
2231  * @config: the configuration being chosen.
2232  * Context: In process context, must be able to sleep
2233  *
2234  * Device interface drivers are not allowed to change device configurations.
2235  * This is because changing configurations will destroy the interface the
2236  * driver is bound to and create new ones; it would be like a floppy-disk
2237  * driver telling the computer to replace the floppy-disk drive with a
2238  * tape drive!
2239  *
2240  * Still, in certain specialized circumstances the need may arise.  This
2241  * routine gets around the normal restrictions by using a work thread to
2242  * submit the change-config request.
2243  *
2244  * Return: 0 if the request was successfully queued, error code otherwise.
2245  * The caller has no way to know whether the queued request will eventually
2246  * succeed.
2247  */
2248 int usb_driver_set_configuration(struct usb_device *udev, int config)
2249 {
2250     struct set_config_request *req;
2251 
2252     req = kmalloc(sizeof(*req), GFP_KERNEL);
2253     if (!req)
2254         return -ENOMEM;
2255     req->udev = udev;
2256     req->config = config;
2257     INIT_WORK(&req->work, driver_set_config_work);
2258 
2259     spin_lock(&set_config_lock);
2260     list_add(&req->node, &set_config_list);
2261     spin_unlock(&set_config_lock);
2262 
2263     usb_get_dev(udev);
2264     schedule_work(&req->work);
2265     return 0;
2266 }
2267 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2268 
2269 /**
2270  * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2271  * @hdr: the place to put the results of the parsing
2272  * @intf: the interface for which parsing is requested
2273  * @buffer: pointer to the extra headers to be parsed
2274  * @buflen: length of the extra headers
2275  *
2276  * This evaluates the extra headers present in CDC devices which
2277  * bind the interfaces for data and control and provide details
2278  * about the capabilities of the device.
2279  *
2280  * Return: number of descriptors parsed or -EINVAL
2281  * if the header is contradictory beyond salvage
2282  */
2283 
2284 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2285                 struct usb_interface *intf,
2286                 u8 *buffer,
2287                 int buflen)
2288 {
2289     /* duplicates are ignored */
2290     struct usb_cdc_union_desc *union_header = NULL;
2291 
2292     /* duplicates are not tolerated */
2293     struct usb_cdc_header_desc *header = NULL;
2294     struct usb_cdc_ether_desc *ether = NULL;
2295     struct usb_cdc_mdlm_detail_desc *detail = NULL;
2296     struct usb_cdc_mdlm_desc *desc = NULL;
2297 
2298     unsigned int elength;
2299     int cnt = 0;
2300 
2301     memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2302     hdr->phonet_magic_present = false;
2303     while (buflen > 0) {
2304         elength = buffer[0];
2305         if (!elength) {
2306             dev_err(&intf->dev, "skipping garbage byte\n");
2307             elength = 1;
2308             goto next_desc;
2309         }
2310         if ((buflen < elength) || (elength < 3)) {
2311             dev_err(&intf->dev, "invalid descriptor buffer length\n");
2312             break;
2313         }
2314         if (buffer[1] != USB_DT_CS_INTERFACE) {
2315             dev_err(&intf->dev, "skipping garbage\n");
2316             goto next_desc;
2317         }
2318 
2319         switch (buffer[2]) {
2320         case USB_CDC_UNION_TYPE: /* we've found it */
2321             if (elength < sizeof(struct usb_cdc_union_desc))
2322                 goto next_desc;
2323             if (union_header) {
2324                 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2325                 goto next_desc;
2326             }
2327             union_header = (struct usb_cdc_union_desc *)buffer;
2328             break;
2329         case USB_CDC_COUNTRY_TYPE:
2330             if (elength < sizeof(struct usb_cdc_country_functional_desc))
2331                 goto next_desc;
2332             hdr->usb_cdc_country_functional_desc =
2333                 (struct usb_cdc_country_functional_desc *)buffer;
2334             break;
2335         case USB_CDC_HEADER_TYPE:
2336             if (elength != sizeof(struct usb_cdc_header_desc))
2337                 goto next_desc;
2338             if (header)
2339                 return -EINVAL;
2340             header = (struct usb_cdc_header_desc *)buffer;
2341             break;
2342         case USB_CDC_ACM_TYPE:
2343             if (elength < sizeof(struct usb_cdc_acm_descriptor))
2344                 goto next_desc;
2345             hdr->usb_cdc_acm_descriptor =
2346                 (struct usb_cdc_acm_descriptor *)buffer;
2347             break;
2348         case USB_CDC_ETHERNET_TYPE:
2349             if (elength != sizeof(struct usb_cdc_ether_desc))
2350                 goto next_desc;
2351             if (ether)
2352                 return -EINVAL;
2353             ether = (struct usb_cdc_ether_desc *)buffer;
2354             break;
2355         case USB_CDC_CALL_MANAGEMENT_TYPE:
2356             if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2357                 goto next_desc;
2358             hdr->usb_cdc_call_mgmt_descriptor =
2359                 (struct usb_cdc_call_mgmt_descriptor *)buffer;
2360             break;
2361         case USB_CDC_DMM_TYPE:
2362             if (elength < sizeof(struct usb_cdc_dmm_desc))
2363                 goto next_desc;
2364             hdr->usb_cdc_dmm_desc =
2365                 (struct usb_cdc_dmm_desc *)buffer;
2366             break;
2367         case USB_CDC_MDLM_TYPE:
2368             if (elength < sizeof(struct usb_cdc_mdlm_desc))
2369                 goto next_desc;
2370             if (desc)
2371                 return -EINVAL;
2372             desc = (struct usb_cdc_mdlm_desc *)buffer;
2373             break;
2374         case USB_CDC_MDLM_DETAIL_TYPE:
2375             if (elength < sizeof(struct usb_cdc_mdlm_detail_desc))
2376                 goto next_desc;
2377             if (detail)
2378                 return -EINVAL;
2379             detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2380             break;
2381         case USB_CDC_NCM_TYPE:
2382             if (elength < sizeof(struct usb_cdc_ncm_desc))
2383                 goto next_desc;
2384             hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2385             break;
2386         case USB_CDC_MBIM_TYPE:
2387             if (elength < sizeof(struct usb_cdc_mbim_desc))
2388                 goto next_desc;
2389 
2390             hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2391             break;
2392         case USB_CDC_MBIM_EXTENDED_TYPE:
2393             if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2394                 break;
2395             hdr->usb_cdc_mbim_extended_desc =
2396                 (struct usb_cdc_mbim_extended_desc *)buffer;
2397             break;
2398         case CDC_PHONET_MAGIC_NUMBER:
2399             hdr->phonet_magic_present = true;
2400             break;
2401         default:
2402             /*
2403              * there are LOTS more CDC descriptors that
2404              * could legitimately be found here.
2405              */
2406             dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2407                     buffer[2], elength);
2408             goto next_desc;
2409         }
2410         cnt++;
2411 next_desc:
2412         buflen -= elength;
2413         buffer += elength;
2414     }
2415     hdr->usb_cdc_union_desc = union_header;
2416     hdr->usb_cdc_header_desc = header;
2417     hdr->usb_cdc_mdlm_detail_desc = detail;
2418     hdr->usb_cdc_mdlm_desc = desc;
2419     hdr->usb_cdc_ether_desc = ether;
2420     return cnt;
2421 }
2422 
2423 EXPORT_SYMBOL(cdc_parse_cdc_header);