Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0+
0002 /*
0003  * (C) Copyright Linus Torvalds 1999
0004  * (C) Copyright Johannes Erdfelt 1999-2001
0005  * (C) Copyright Andreas Gal 1999
0006  * (C) Copyright Gregory P. Smith 1999
0007  * (C) Copyright Deti Fliegl 1999
0008  * (C) Copyright Randy Dunlap 2000
0009  * (C) Copyright David Brownell 2000-2002
0010  */
0011 
0012 #include <linux/bcd.h>
0013 #include <linux/module.h>
0014 #include <linux/version.h>
0015 #include <linux/kernel.h>
0016 #include <linux/sched/task_stack.h>
0017 #include <linux/slab.h>
0018 #include <linux/completion.h>
0019 #include <linux/utsname.h>
0020 #include <linux/mm.h>
0021 #include <asm/io.h>
0022 #include <linux/device.h>
0023 #include <linux/dma-mapping.h>
0024 #include <linux/mutex.h>
0025 #include <asm/irq.h>
0026 #include <asm/byteorder.h>
0027 #include <asm/unaligned.h>
0028 #include <linux/platform_device.h>
0029 #include <linux/workqueue.h>
0030 #include <linux/pm_runtime.h>
0031 #include <linux/types.h>
0032 #include <linux/genalloc.h>
0033 #include <linux/io.h>
0034 #include <linux/kcov.h>
0035 
0036 #include <linux/phy/phy.h>
0037 #include <linux/usb.h>
0038 #include <linux/usb/hcd.h>
0039 #include <linux/usb/otg.h>
0040 
0041 #include "usb.h"
0042 #include "phy.h"
0043 
0044 
0045 /*-------------------------------------------------------------------------*/
0046 
0047 /*
0048  * USB Host Controller Driver framework
0049  *
0050  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
0051  * HCD-specific behaviors/bugs.
0052  *
0053  * This does error checks, tracks devices and urbs, and delegates to a
0054  * "hc_driver" only for code (and data) that really needs to know about
0055  * hardware differences.  That includes root hub registers, i/o queues,
0056  * and so on ... but as little else as possible.
0057  *
0058  * Shared code includes most of the "root hub" code (these are emulated,
0059  * though each HC's hardware works differently) and PCI glue, plus request
0060  * tracking overhead.  The HCD code should only block on spinlocks or on
0061  * hardware handshaking; blocking on software events (such as other kernel
0062  * threads releasing resources, or completing actions) is all generic.
0063  *
0064  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
0065  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
0066  * only by the hub driver ... and that neither should be seen or used by
0067  * usb client device drivers.
0068  *
0069  * Contributors of ideas or unattributed patches include: David Brownell,
0070  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
0071  *
0072  * HISTORY:
0073  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
0074  *      associated cleanup.  "usb_hcd" still != "usb_bus".
0075  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
0076  */
0077 
0078 /*-------------------------------------------------------------------------*/
0079 
0080 /* Keep track of which host controller drivers are loaded */
0081 unsigned long usb_hcds_loaded;
0082 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
0083 
0084 /* host controllers we manage */
0085 DEFINE_IDR (usb_bus_idr);
0086 EXPORT_SYMBOL_GPL (usb_bus_idr);
0087 
0088 /* used when allocating bus numbers */
0089 #define USB_MAXBUS      64
0090 
0091 /* used when updating list of hcds */
0092 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
0093 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
0094 
0095 /* used for controlling access to virtual root hubs */
0096 static DEFINE_SPINLOCK(hcd_root_hub_lock);
0097 
0098 /* used when updating an endpoint's URB list */
0099 static DEFINE_SPINLOCK(hcd_urb_list_lock);
0100 
0101 /* used to protect against unlinking URBs after the device is gone */
0102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
0103 
0104 /* wait queue for synchronous unlinks */
0105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
0106 
0107 /*-------------------------------------------------------------------------*/
0108 
0109 /*
0110  * Sharable chunks of root hub code.
0111  */
0112 
0113 /*-------------------------------------------------------------------------*/
0114 #define KERNEL_REL  bin2bcd(LINUX_VERSION_MAJOR)
0115 #define KERNEL_VER  bin2bcd(LINUX_VERSION_PATCHLEVEL)
0116 
0117 /* usb 3.1 root hub device descriptor */
0118 static const u8 usb31_rh_dev_descriptor[18] = {
0119     0x12,       /*  __u8  bLength; */
0120     USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
0121     0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
0122 
0123     0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
0124     0x00,       /*  __u8  bDeviceSubClass; */
0125     0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
0126     0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
0127 
0128     0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
0129     0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
0130     KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
0131 
0132     0x03,       /*  __u8  iManufacturer; */
0133     0x02,       /*  __u8  iProduct; */
0134     0x01,       /*  __u8  iSerialNumber; */
0135     0x01        /*  __u8  bNumConfigurations; */
0136 };
0137 
0138 /* usb 3.0 root hub device descriptor */
0139 static const u8 usb3_rh_dev_descriptor[18] = {
0140     0x12,       /*  __u8  bLength; */
0141     USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
0142     0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
0143 
0144     0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
0145     0x00,       /*  __u8  bDeviceSubClass; */
0146     0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
0147     0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
0148 
0149     0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
0150     0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
0151     KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
0152 
0153     0x03,       /*  __u8  iManufacturer; */
0154     0x02,       /*  __u8  iProduct; */
0155     0x01,       /*  __u8  iSerialNumber; */
0156     0x01        /*  __u8  bNumConfigurations; */
0157 };
0158 
0159 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
0160 static const u8 usb25_rh_dev_descriptor[18] = {
0161     0x12,       /*  __u8  bLength; */
0162     USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
0163     0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
0164 
0165     0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
0166     0x00,       /*  __u8  bDeviceSubClass; */
0167     0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
0168     0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
0169 
0170     0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
0171     0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
0172     KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
0173 
0174     0x03,       /*  __u8  iManufacturer; */
0175     0x02,       /*  __u8  iProduct; */
0176     0x01,       /*  __u8  iSerialNumber; */
0177     0x01        /*  __u8  bNumConfigurations; */
0178 };
0179 
0180 /* usb 2.0 root hub device descriptor */
0181 static const u8 usb2_rh_dev_descriptor[18] = {
0182     0x12,       /*  __u8  bLength; */
0183     USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
0184     0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
0185 
0186     0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
0187     0x00,       /*  __u8  bDeviceSubClass; */
0188     0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
0189     0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
0190 
0191     0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
0192     0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
0193     KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
0194 
0195     0x03,       /*  __u8  iManufacturer; */
0196     0x02,       /*  __u8  iProduct; */
0197     0x01,       /*  __u8  iSerialNumber; */
0198     0x01        /*  __u8  bNumConfigurations; */
0199 };
0200 
0201 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
0202 
0203 /* usb 1.1 root hub device descriptor */
0204 static const u8 usb11_rh_dev_descriptor[18] = {
0205     0x12,       /*  __u8  bLength; */
0206     USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
0207     0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
0208 
0209     0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
0210     0x00,       /*  __u8  bDeviceSubClass; */
0211     0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
0212     0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
0213 
0214     0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
0215     0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
0216     KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
0217 
0218     0x03,       /*  __u8  iManufacturer; */
0219     0x02,       /*  __u8  iProduct; */
0220     0x01,       /*  __u8  iSerialNumber; */
0221     0x01        /*  __u8  bNumConfigurations; */
0222 };
0223 
0224 
0225 /*-------------------------------------------------------------------------*/
0226 
0227 /* Configuration descriptors for our root hubs */
0228 
0229 static const u8 fs_rh_config_descriptor[] = {
0230 
0231     /* one configuration */
0232     0x09,       /*  __u8  bLength; */
0233     USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
0234     0x19, 0x00, /*  __le16 wTotalLength; */
0235     0x01,       /*  __u8  bNumInterfaces; (1) */
0236     0x01,       /*  __u8  bConfigurationValue; */
0237     0x00,       /*  __u8  iConfiguration; */
0238     0xc0,       /*  __u8  bmAttributes;
0239                  Bit 7: must be set,
0240                      6: Self-powered,
0241                      5: Remote wakeup,
0242                      4..0: resvd */
0243     0x00,       /*  __u8  MaxPower; */
0244 
0245     /* USB 1.1:
0246      * USB 2.0, single TT organization (mandatory):
0247      *  one interface, protocol 0
0248      *
0249      * USB 2.0, multiple TT organization (optional):
0250      *  two interfaces, protocols 1 (like single TT)
0251      *  and 2 (multiple TT mode) ... config is
0252      *  sometimes settable
0253      *  NOT IMPLEMENTED
0254      */
0255 
0256     /* one interface */
0257     0x09,       /*  __u8  if_bLength; */
0258     USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
0259     0x00,       /*  __u8  if_bInterfaceNumber; */
0260     0x00,       /*  __u8  if_bAlternateSetting; */
0261     0x01,       /*  __u8  if_bNumEndpoints; */
0262     0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
0263     0x00,       /*  __u8  if_bInterfaceSubClass; */
0264     0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
0265     0x00,       /*  __u8  if_iInterface; */
0266 
0267     /* one endpoint (status change endpoint) */
0268     0x07,       /*  __u8  ep_bLength; */
0269     USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
0270     0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
0271     0x03,       /*  __u8  ep_bmAttributes; Interrupt */
0272     0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
0273     0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
0274 };
0275 
0276 static const u8 hs_rh_config_descriptor[] = {
0277 
0278     /* one configuration */
0279     0x09,       /*  __u8  bLength; */
0280     USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
0281     0x19, 0x00, /*  __le16 wTotalLength; */
0282     0x01,       /*  __u8  bNumInterfaces; (1) */
0283     0x01,       /*  __u8  bConfigurationValue; */
0284     0x00,       /*  __u8  iConfiguration; */
0285     0xc0,       /*  __u8  bmAttributes;
0286                  Bit 7: must be set,
0287                      6: Self-powered,
0288                      5: Remote wakeup,
0289                      4..0: resvd */
0290     0x00,       /*  __u8  MaxPower; */
0291 
0292     /* USB 1.1:
0293      * USB 2.0, single TT organization (mandatory):
0294      *  one interface, protocol 0
0295      *
0296      * USB 2.0, multiple TT organization (optional):
0297      *  two interfaces, protocols 1 (like single TT)
0298      *  and 2 (multiple TT mode) ... config is
0299      *  sometimes settable
0300      *  NOT IMPLEMENTED
0301      */
0302 
0303     /* one interface */
0304     0x09,       /*  __u8  if_bLength; */
0305     USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
0306     0x00,       /*  __u8  if_bInterfaceNumber; */
0307     0x00,       /*  __u8  if_bAlternateSetting; */
0308     0x01,       /*  __u8  if_bNumEndpoints; */
0309     0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
0310     0x00,       /*  __u8  if_bInterfaceSubClass; */
0311     0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
0312     0x00,       /*  __u8  if_iInterface; */
0313 
0314     /* one endpoint (status change endpoint) */
0315     0x07,       /*  __u8  ep_bLength; */
0316     USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
0317     0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
0318     0x03,       /*  __u8  ep_bmAttributes; Interrupt */
0319             /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
0320              * see hub.c:hub_configure() for details. */
0321     (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
0322     0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
0323 };
0324 
0325 static const u8 ss_rh_config_descriptor[] = {
0326     /* one configuration */
0327     0x09,       /*  __u8  bLength; */
0328     USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
0329     0x1f, 0x00, /*  __le16 wTotalLength; */
0330     0x01,       /*  __u8  bNumInterfaces; (1) */
0331     0x01,       /*  __u8  bConfigurationValue; */
0332     0x00,       /*  __u8  iConfiguration; */
0333     0xc0,       /*  __u8  bmAttributes;
0334                  Bit 7: must be set,
0335                      6: Self-powered,
0336                      5: Remote wakeup,
0337                      4..0: resvd */
0338     0x00,       /*  __u8  MaxPower; */
0339 
0340     /* one interface */
0341     0x09,       /*  __u8  if_bLength; */
0342     USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
0343     0x00,       /*  __u8  if_bInterfaceNumber; */
0344     0x00,       /*  __u8  if_bAlternateSetting; */
0345     0x01,       /*  __u8  if_bNumEndpoints; */
0346     0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
0347     0x00,       /*  __u8  if_bInterfaceSubClass; */
0348     0x00,       /*  __u8  if_bInterfaceProtocol; */
0349     0x00,       /*  __u8  if_iInterface; */
0350 
0351     /* one endpoint (status change endpoint) */
0352     0x07,       /*  __u8  ep_bLength; */
0353     USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
0354     0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
0355     0x03,       /*  __u8  ep_bmAttributes; Interrupt */
0356             /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
0357              * see hub.c:hub_configure() for details. */
0358     (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
0359     0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
0360 
0361     /* one SuperSpeed endpoint companion descriptor */
0362     0x06,        /* __u8 ss_bLength */
0363     USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
0364              /* Companion */
0365     0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
0366     0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
0367     0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
0368 };
0369 
0370 /* authorized_default behaviour:
0371  * -1 is authorized for all devices except wireless (old behaviour)
0372  * 0 is unauthorized for all devices
0373  * 1 is authorized for all devices
0374  * 2 is authorized for internal devices
0375  */
0376 #define USB_AUTHORIZE_WIRED -1
0377 #define USB_AUTHORIZE_NONE  0
0378 #define USB_AUTHORIZE_ALL   1
0379 #define USB_AUTHORIZE_INTERNAL  2
0380 
0381 static int authorized_default = USB_AUTHORIZE_WIRED;
0382 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
0383 MODULE_PARM_DESC(authorized_default,
0384         "Default USB device authorization: 0 is not authorized, 1 is "
0385         "authorized, 2 is authorized for internal devices, -1 is "
0386         "authorized except for wireless USB (default, old behaviour)");
0387 /*-------------------------------------------------------------------------*/
0388 
0389 /**
0390  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
0391  * @s: Null-terminated ASCII (actually ISO-8859-1) string
0392  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
0393  * @len: Length (in bytes; may be odd) of descriptor buffer.
0394  *
0395  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
0396  * whichever is less.
0397  *
0398  * Note:
0399  * USB String descriptors can contain at most 126 characters; input
0400  * strings longer than that are truncated.
0401  */
0402 static unsigned
0403 ascii2desc(char const *s, u8 *buf, unsigned len)
0404 {
0405     unsigned n, t = 2 + 2*strlen(s);
0406 
0407     if (t > 254)
0408         t = 254;    /* Longest possible UTF string descriptor */
0409     if (len > t)
0410         len = t;
0411 
0412     t += USB_DT_STRING << 8;    /* Now t is first 16 bits to store */
0413 
0414     n = len;
0415     while (n--) {
0416         *buf++ = t;
0417         if (!n--)
0418             break;
0419         *buf++ = t >> 8;
0420         t = (unsigned char)*s++;
0421     }
0422     return len;
0423 }
0424 
0425 /**
0426  * rh_string() - provides string descriptors for root hub
0427  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
0428  * @hcd: the host controller for this root hub
0429  * @data: buffer for output packet
0430  * @len: length of the provided buffer
0431  *
0432  * Produces either a manufacturer, product or serial number string for the
0433  * virtual root hub device.
0434  *
0435  * Return: The number of bytes filled in: the length of the descriptor or
0436  * of the provided buffer, whichever is less.
0437  */
0438 static unsigned
0439 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
0440 {
0441     char buf[100];
0442     char const *s;
0443     static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
0444 
0445     /* language ids */
0446     switch (id) {
0447     case 0:
0448         /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
0449         /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
0450         if (len > 4)
0451             len = 4;
0452         memcpy(data, langids, len);
0453         return len;
0454     case 1:
0455         /* Serial number */
0456         s = hcd->self.bus_name;
0457         break;
0458     case 2:
0459         /* Product name */
0460         s = hcd->product_desc;
0461         break;
0462     case 3:
0463         /* Manufacturer */
0464         snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
0465             init_utsname()->release, hcd->driver->description);
0466         s = buf;
0467         break;
0468     default:
0469         /* Can't happen; caller guarantees it */
0470         return 0;
0471     }
0472 
0473     return ascii2desc(s, data, len);
0474 }
0475 
0476 
0477 /* Root hub control transfers execute synchronously */
0478 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
0479 {
0480     struct usb_ctrlrequest *cmd;
0481     u16     typeReq, wValue, wIndex, wLength;
0482     u8      *ubuf = urb->transfer_buffer;
0483     unsigned    len = 0;
0484     int     status;
0485     u8      patch_wakeup = 0;
0486     u8      patch_protocol = 0;
0487     u16     tbuf_size;
0488     u8      *tbuf = NULL;
0489     const u8    *bufp;
0490 
0491     might_sleep();
0492 
0493     spin_lock_irq(&hcd_root_hub_lock);
0494     status = usb_hcd_link_urb_to_ep(hcd, urb);
0495     spin_unlock_irq(&hcd_root_hub_lock);
0496     if (status)
0497         return status;
0498     urb->hcpriv = hcd;  /* Indicate it's queued */
0499 
0500     cmd = (struct usb_ctrlrequest *) urb->setup_packet;
0501     typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
0502     wValue   = le16_to_cpu (cmd->wValue);
0503     wIndex   = le16_to_cpu (cmd->wIndex);
0504     wLength  = le16_to_cpu (cmd->wLength);
0505 
0506     if (wLength > urb->transfer_buffer_length)
0507         goto error;
0508 
0509     /*
0510      * tbuf should be at least as big as the
0511      * USB hub descriptor.
0512      */
0513     tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
0514     tbuf = kzalloc(tbuf_size, GFP_KERNEL);
0515     if (!tbuf) {
0516         status = -ENOMEM;
0517         goto err_alloc;
0518     }
0519 
0520     bufp = tbuf;
0521 
0522 
0523     urb->actual_length = 0;
0524     switch (typeReq) {
0525 
0526     /* DEVICE REQUESTS */
0527 
0528     /* The root hub's remote wakeup enable bit is implemented using
0529      * driver model wakeup flags.  If this system supports wakeup
0530      * through USB, userspace may change the default "allow wakeup"
0531      * policy through sysfs or these calls.
0532      *
0533      * Most root hubs support wakeup from downstream devices, for
0534      * runtime power management (disabling USB clocks and reducing
0535      * VBUS power usage).  However, not all of them do so; silicon,
0536      * board, and BIOS bugs here are not uncommon, so these can't
0537      * be treated quite like external hubs.
0538      *
0539      * Likewise, not all root hubs will pass wakeup events upstream,
0540      * to wake up the whole system.  So don't assume root hub and
0541      * controller capabilities are identical.
0542      */
0543 
0544     case DeviceRequest | USB_REQ_GET_STATUS:
0545         tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
0546                     << USB_DEVICE_REMOTE_WAKEUP)
0547                 | (1 << USB_DEVICE_SELF_POWERED);
0548         tbuf[1] = 0;
0549         len = 2;
0550         break;
0551     case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
0552         if (wValue == USB_DEVICE_REMOTE_WAKEUP)
0553             device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
0554         else
0555             goto error;
0556         break;
0557     case DeviceOutRequest | USB_REQ_SET_FEATURE:
0558         if (device_can_wakeup(&hcd->self.root_hub->dev)
0559                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
0560             device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
0561         else
0562             goto error;
0563         break;
0564     case DeviceRequest | USB_REQ_GET_CONFIGURATION:
0565         tbuf[0] = 1;
0566         len = 1;
0567         fallthrough;
0568     case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
0569         break;
0570     case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
0571         switch (wValue & 0xff00) {
0572         case USB_DT_DEVICE << 8:
0573             switch (hcd->speed) {
0574             case HCD_USB32:
0575             case HCD_USB31:
0576                 bufp = usb31_rh_dev_descriptor;
0577                 break;
0578             case HCD_USB3:
0579                 bufp = usb3_rh_dev_descriptor;
0580                 break;
0581             case HCD_USB25:
0582                 bufp = usb25_rh_dev_descriptor;
0583                 break;
0584             case HCD_USB2:
0585                 bufp = usb2_rh_dev_descriptor;
0586                 break;
0587             case HCD_USB11:
0588                 bufp = usb11_rh_dev_descriptor;
0589                 break;
0590             default:
0591                 goto error;
0592             }
0593             len = 18;
0594             if (hcd->has_tt)
0595                 patch_protocol = 1;
0596             break;
0597         case USB_DT_CONFIG << 8:
0598             switch (hcd->speed) {
0599             case HCD_USB32:
0600             case HCD_USB31:
0601             case HCD_USB3:
0602                 bufp = ss_rh_config_descriptor;
0603                 len = sizeof ss_rh_config_descriptor;
0604                 break;
0605             case HCD_USB25:
0606             case HCD_USB2:
0607                 bufp = hs_rh_config_descriptor;
0608                 len = sizeof hs_rh_config_descriptor;
0609                 break;
0610             case HCD_USB11:
0611                 bufp = fs_rh_config_descriptor;
0612                 len = sizeof fs_rh_config_descriptor;
0613                 break;
0614             default:
0615                 goto error;
0616             }
0617             if (device_can_wakeup(&hcd->self.root_hub->dev))
0618                 patch_wakeup = 1;
0619             break;
0620         case USB_DT_STRING << 8:
0621             if ((wValue & 0xff) < 4)
0622                 urb->actual_length = rh_string(wValue & 0xff,
0623                         hcd, ubuf, wLength);
0624             else /* unsupported IDs --> "protocol stall" */
0625                 goto error;
0626             break;
0627         case USB_DT_BOS << 8:
0628             goto nongeneric;
0629         default:
0630             goto error;
0631         }
0632         break;
0633     case DeviceRequest | USB_REQ_GET_INTERFACE:
0634         tbuf[0] = 0;
0635         len = 1;
0636         fallthrough;
0637     case DeviceOutRequest | USB_REQ_SET_INTERFACE:
0638         break;
0639     case DeviceOutRequest | USB_REQ_SET_ADDRESS:
0640         /* wValue == urb->dev->devaddr */
0641         dev_dbg (hcd->self.controller, "root hub device address %d\n",
0642             wValue);
0643         break;
0644 
0645     /* INTERFACE REQUESTS (no defined feature/status flags) */
0646 
0647     /* ENDPOINT REQUESTS */
0648 
0649     case EndpointRequest | USB_REQ_GET_STATUS:
0650         /* ENDPOINT_HALT flag */
0651         tbuf[0] = 0;
0652         tbuf[1] = 0;
0653         len = 2;
0654         fallthrough;
0655     case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
0656     case EndpointOutRequest | USB_REQ_SET_FEATURE:
0657         dev_dbg (hcd->self.controller, "no endpoint features yet\n");
0658         break;
0659 
0660     /* CLASS REQUESTS (and errors) */
0661 
0662     default:
0663 nongeneric:
0664         /* non-generic request */
0665         switch (typeReq) {
0666         case GetHubStatus:
0667             len = 4;
0668             break;
0669         case GetPortStatus:
0670             if (wValue == HUB_PORT_STATUS)
0671                 len = 4;
0672             else
0673                 /* other port status types return 8 bytes */
0674                 len = 8;
0675             break;
0676         case GetHubDescriptor:
0677             len = sizeof (struct usb_hub_descriptor);
0678             break;
0679         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
0680             /* len is returned by hub_control */
0681             break;
0682         }
0683         status = hcd->driver->hub_control (hcd,
0684             typeReq, wValue, wIndex,
0685             tbuf, wLength);
0686 
0687         if (typeReq == GetHubDescriptor)
0688             usb_hub_adjust_deviceremovable(hcd->self.root_hub,
0689                 (struct usb_hub_descriptor *)tbuf);
0690         break;
0691 error:
0692         /* "protocol stall" on error */
0693         status = -EPIPE;
0694     }
0695 
0696     if (status < 0) {
0697         len = 0;
0698         if (status != -EPIPE) {
0699             dev_dbg (hcd->self.controller,
0700                 "CTRL: TypeReq=0x%x val=0x%x "
0701                 "idx=0x%x len=%d ==> %d\n",
0702                 typeReq, wValue, wIndex,
0703                 wLength, status);
0704         }
0705     } else if (status > 0) {
0706         /* hub_control may return the length of data copied. */
0707         len = status;
0708         status = 0;
0709     }
0710     if (len) {
0711         if (urb->transfer_buffer_length < len)
0712             len = urb->transfer_buffer_length;
0713         urb->actual_length = len;
0714         /* always USB_DIR_IN, toward host */
0715         memcpy (ubuf, bufp, len);
0716 
0717         /* report whether RH hardware supports remote wakeup */
0718         if (patch_wakeup &&
0719                 len > offsetof (struct usb_config_descriptor,
0720                         bmAttributes))
0721             ((struct usb_config_descriptor *)ubuf)->bmAttributes
0722                 |= USB_CONFIG_ATT_WAKEUP;
0723 
0724         /* report whether RH hardware has an integrated TT */
0725         if (patch_protocol &&
0726                 len > offsetof(struct usb_device_descriptor,
0727                         bDeviceProtocol))
0728             ((struct usb_device_descriptor *) ubuf)->
0729                 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
0730     }
0731 
0732     kfree(tbuf);
0733  err_alloc:
0734 
0735     /* any errors get returned through the urb completion */
0736     spin_lock_irq(&hcd_root_hub_lock);
0737     usb_hcd_unlink_urb_from_ep(hcd, urb);
0738     usb_hcd_giveback_urb(hcd, urb, status);
0739     spin_unlock_irq(&hcd_root_hub_lock);
0740     return 0;
0741 }
0742 
0743 /*-------------------------------------------------------------------------*/
0744 
0745 /*
0746  * Root Hub interrupt transfers are polled using a timer if the
0747  * driver requests it; otherwise the driver is responsible for
0748  * calling usb_hcd_poll_rh_status() when an event occurs.
0749  *
0750  * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
0751  */
0752 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
0753 {
0754     struct urb  *urb;
0755     int     length;
0756     int     status;
0757     unsigned long   flags;
0758     char        buffer[6];  /* Any root hubs with > 31 ports? */
0759 
0760     if (unlikely(!hcd->rh_pollable))
0761         return;
0762     if (!hcd->uses_new_polling && !hcd->status_urb)
0763         return;
0764 
0765     length = hcd->driver->hub_status_data(hcd, buffer);
0766     if (length > 0) {
0767 
0768         /* try to complete the status urb */
0769         spin_lock_irqsave(&hcd_root_hub_lock, flags);
0770         urb = hcd->status_urb;
0771         if (urb) {
0772             clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
0773             hcd->status_urb = NULL;
0774             if (urb->transfer_buffer_length >= length) {
0775                 status = 0;
0776             } else {
0777                 status = -EOVERFLOW;
0778                 length = urb->transfer_buffer_length;
0779             }
0780             urb->actual_length = length;
0781             memcpy(urb->transfer_buffer, buffer, length);
0782 
0783             usb_hcd_unlink_urb_from_ep(hcd, urb);
0784             usb_hcd_giveback_urb(hcd, urb, status);
0785         } else {
0786             length = 0;
0787             set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
0788         }
0789         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
0790     }
0791 
0792     /* The USB 2.0 spec says 256 ms.  This is close enough and won't
0793      * exceed that limit if HZ is 100. The math is more clunky than
0794      * maybe expected, this is to make sure that all timers for USB devices
0795      * fire at the same time to give the CPU a break in between */
0796     if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
0797             (length == 0 && hcd->status_urb != NULL))
0798         mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
0799 }
0800 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
0801 
0802 /* timer callback */
0803 static void rh_timer_func (struct timer_list *t)
0804 {
0805     struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
0806 
0807     usb_hcd_poll_rh_status(_hcd);
0808 }
0809 
0810 /*-------------------------------------------------------------------------*/
0811 
0812 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
0813 {
0814     int     retval;
0815     unsigned long   flags;
0816     unsigned    len = 1 + (urb->dev->maxchild / 8);
0817 
0818     spin_lock_irqsave (&hcd_root_hub_lock, flags);
0819     if (hcd->status_urb || urb->transfer_buffer_length < len) {
0820         dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
0821         retval = -EINVAL;
0822         goto done;
0823     }
0824 
0825     retval = usb_hcd_link_urb_to_ep(hcd, urb);
0826     if (retval)
0827         goto done;
0828 
0829     hcd->status_urb = urb;
0830     urb->hcpriv = hcd;  /* indicate it's queued */
0831     if (!hcd->uses_new_polling)
0832         mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
0833 
0834     /* If a status change has already occurred, report it ASAP */
0835     else if (HCD_POLL_PENDING(hcd))
0836         mod_timer(&hcd->rh_timer, jiffies);
0837     retval = 0;
0838  done:
0839     spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
0840     return retval;
0841 }
0842 
0843 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
0844 {
0845     if (usb_endpoint_xfer_int(&urb->ep->desc))
0846         return rh_queue_status (hcd, urb);
0847     if (usb_endpoint_xfer_control(&urb->ep->desc))
0848         return rh_call_control (hcd, urb);
0849     return -EINVAL;
0850 }
0851 
0852 /*-------------------------------------------------------------------------*/
0853 
0854 /* Unlinks of root-hub control URBs are legal, but they don't do anything
0855  * since these URBs always execute synchronously.
0856  */
0857 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
0858 {
0859     unsigned long   flags;
0860     int     rc;
0861 
0862     spin_lock_irqsave(&hcd_root_hub_lock, flags);
0863     rc = usb_hcd_check_unlink_urb(hcd, urb, status);
0864     if (rc)
0865         goto done;
0866 
0867     if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
0868         ;   /* Do nothing */
0869 
0870     } else {                /* Status URB */
0871         if (!hcd->uses_new_polling)
0872             del_timer (&hcd->rh_timer);
0873         if (urb == hcd->status_urb) {
0874             hcd->status_urb = NULL;
0875             usb_hcd_unlink_urb_from_ep(hcd, urb);
0876             usb_hcd_giveback_urb(hcd, urb, status);
0877         }
0878     }
0879  done:
0880     spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
0881     return rc;
0882 }
0883 
0884 
0885 /*-------------------------------------------------------------------------*/
0886 
0887 /**
0888  * usb_bus_init - shared initialization code
0889  * @bus: the bus structure being initialized
0890  *
0891  * This code is used to initialize a usb_bus structure, memory for which is
0892  * separately managed.
0893  */
0894 static void usb_bus_init (struct usb_bus *bus)
0895 {
0896     memset (&bus->devmap, 0, sizeof(struct usb_devmap));
0897 
0898     bus->devnum_next = 1;
0899 
0900     bus->root_hub = NULL;
0901     bus->busnum = -1;
0902     bus->bandwidth_allocated = 0;
0903     bus->bandwidth_int_reqs  = 0;
0904     bus->bandwidth_isoc_reqs = 0;
0905     mutex_init(&bus->devnum_next_mutex);
0906 }
0907 
0908 /*-------------------------------------------------------------------------*/
0909 
0910 /**
0911  * usb_register_bus - registers the USB host controller with the usb core
0912  * @bus: pointer to the bus to register
0913  *
0914  * Context: task context, might sleep.
0915  *
0916  * Assigns a bus number, and links the controller into usbcore data
0917  * structures so that it can be seen by scanning the bus list.
0918  *
0919  * Return: 0 if successful. A negative error code otherwise.
0920  */
0921 static int usb_register_bus(struct usb_bus *bus)
0922 {
0923     int result = -E2BIG;
0924     int busnum;
0925 
0926     mutex_lock(&usb_bus_idr_lock);
0927     busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
0928     if (busnum < 0) {
0929         pr_err("%s: failed to get bus number\n", usbcore_name);
0930         goto error_find_busnum;
0931     }
0932     bus->busnum = busnum;
0933     mutex_unlock(&usb_bus_idr_lock);
0934 
0935     usb_notify_add_bus(bus);
0936 
0937     dev_info (bus->controller, "new USB bus registered, assigned bus "
0938           "number %d\n", bus->busnum);
0939     return 0;
0940 
0941 error_find_busnum:
0942     mutex_unlock(&usb_bus_idr_lock);
0943     return result;
0944 }
0945 
0946 /**
0947  * usb_deregister_bus - deregisters the USB host controller
0948  * @bus: pointer to the bus to deregister
0949  *
0950  * Context: task context, might sleep.
0951  *
0952  * Recycles the bus number, and unlinks the controller from usbcore data
0953  * structures so that it won't be seen by scanning the bus list.
0954  */
0955 static void usb_deregister_bus (struct usb_bus *bus)
0956 {
0957     dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
0958 
0959     /*
0960      * NOTE: make sure that all the devices are removed by the
0961      * controller code, as well as having it call this when cleaning
0962      * itself up
0963      */
0964     mutex_lock(&usb_bus_idr_lock);
0965     idr_remove(&usb_bus_idr, bus->busnum);
0966     mutex_unlock(&usb_bus_idr_lock);
0967 
0968     usb_notify_remove_bus(bus);
0969 }
0970 
0971 /**
0972  * register_root_hub - called by usb_add_hcd() to register a root hub
0973  * @hcd: host controller for this root hub
0974  *
0975  * This function registers the root hub with the USB subsystem.  It sets up
0976  * the device properly in the device tree and then calls usb_new_device()
0977  * to register the usb device.  It also assigns the root hub's USB address
0978  * (always 1).
0979  *
0980  * Return: 0 if successful. A negative error code otherwise.
0981  */
0982 static int register_root_hub(struct usb_hcd *hcd)
0983 {
0984     struct device *parent_dev = hcd->self.controller;
0985     struct usb_device *usb_dev = hcd->self.root_hub;
0986     const int devnum = 1;
0987     int retval;
0988 
0989     usb_dev->devnum = devnum;
0990     usb_dev->bus->devnum_next = devnum + 1;
0991     set_bit (devnum, usb_dev->bus->devmap.devicemap);
0992     usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
0993 
0994     mutex_lock(&usb_bus_idr_lock);
0995 
0996     usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
0997     retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
0998     if (retval != sizeof usb_dev->descriptor) {
0999         mutex_unlock(&usb_bus_idr_lock);
1000         dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1001                 dev_name(&usb_dev->dev), retval);
1002         return (retval < 0) ? retval : -EMSGSIZE;
1003     }
1004 
1005     if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1006         retval = usb_get_bos_descriptor(usb_dev);
1007         if (!retval) {
1008             usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1009         } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1010             mutex_unlock(&usb_bus_idr_lock);
1011             dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1012                     dev_name(&usb_dev->dev), retval);
1013             return retval;
1014         }
1015     }
1016 
1017     retval = usb_new_device (usb_dev);
1018     if (retval) {
1019         dev_err (parent_dev, "can't register root hub for %s, %d\n",
1020                 dev_name(&usb_dev->dev), retval);
1021     } else {
1022         spin_lock_irq (&hcd_root_hub_lock);
1023         hcd->rh_registered = 1;
1024         spin_unlock_irq (&hcd_root_hub_lock);
1025 
1026         /* Did the HC die before the root hub was registered? */
1027         if (HCD_DEAD(hcd))
1028             usb_hc_died (hcd);  /* This time clean up */
1029     }
1030     mutex_unlock(&usb_bus_idr_lock);
1031 
1032     return retval;
1033 }
1034 
1035 /*
1036  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1037  * @bus: the bus which the root hub belongs to
1038  * @portnum: the port which is being resumed
1039  *
1040  * HCDs should call this function when they know that a resume signal is
1041  * being sent to a root-hub port.  The root hub will be prevented from
1042  * going into autosuspend until usb_hcd_end_port_resume() is called.
1043  *
1044  * The bus's private lock must be held by the caller.
1045  */
1046 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1047 {
1048     unsigned bit = 1 << portnum;
1049 
1050     if (!(bus->resuming_ports & bit)) {
1051         bus->resuming_ports |= bit;
1052         pm_runtime_get_noresume(&bus->root_hub->dev);
1053     }
1054 }
1055 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1056 
1057 /*
1058  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1059  * @bus: the bus which the root hub belongs to
1060  * @portnum: the port which is being resumed
1061  *
1062  * HCDs should call this function when they know that a resume signal has
1063  * stopped being sent to a root-hub port.  The root hub will be allowed to
1064  * autosuspend again.
1065  *
1066  * The bus's private lock must be held by the caller.
1067  */
1068 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1069 {
1070     unsigned bit = 1 << portnum;
1071 
1072     if (bus->resuming_ports & bit) {
1073         bus->resuming_ports &= ~bit;
1074         pm_runtime_put_noidle(&bus->root_hub->dev);
1075     }
1076 }
1077 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1078 
1079 /*-------------------------------------------------------------------------*/
1080 
1081 /**
1082  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1083  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1084  * @is_input: true iff the transaction sends data to the host
1085  * @isoc: true for isochronous transactions, false for interrupt ones
1086  * @bytecount: how many bytes in the transaction.
1087  *
1088  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1089  *
1090  * Note:
1091  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1092  * scheduled in software, this function is only used for such scheduling.
1093  */
1094 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1095 {
1096     unsigned long   tmp;
1097 
1098     switch (speed) {
1099     case USB_SPEED_LOW:     /* INTR only */
1100         if (is_input) {
1101             tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1102             return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1103         } else {
1104             tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1105             return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1106         }
1107     case USB_SPEED_FULL:    /* ISOC or INTR */
1108         if (isoc) {
1109             tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1110             return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1111         } else {
1112             tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1113             return 9107L + BW_HOST_DELAY + tmp;
1114         }
1115     case USB_SPEED_HIGH:    /* ISOC or INTR */
1116         /* FIXME adjust for input vs output */
1117         if (isoc)
1118             tmp = HS_NSECS_ISO (bytecount);
1119         else
1120             tmp = HS_NSECS (bytecount);
1121         return tmp;
1122     default:
1123         pr_debug ("%s: bogus device speed!\n", usbcore_name);
1124         return -1;
1125     }
1126 }
1127 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1128 
1129 
1130 /*-------------------------------------------------------------------------*/
1131 
1132 /*
1133  * Generic HC operations.
1134  */
1135 
1136 /*-------------------------------------------------------------------------*/
1137 
1138 /**
1139  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1140  * @hcd: host controller to which @urb was submitted
1141  * @urb: URB being submitted
1142  *
1143  * Host controller drivers should call this routine in their enqueue()
1144  * method.  The HCD's private spinlock must be held and interrupts must
1145  * be disabled.  The actions carried out here are required for URB
1146  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1147  *
1148  * Return: 0 for no error, otherwise a negative error code (in which case
1149  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1150  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1151  * the private spinlock and returning.
1152  */
1153 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1154 {
1155     int     rc = 0;
1156 
1157     spin_lock(&hcd_urb_list_lock);
1158 
1159     /* Check that the URB isn't being killed */
1160     if (unlikely(atomic_read(&urb->reject))) {
1161         rc = -EPERM;
1162         goto done;
1163     }
1164 
1165     if (unlikely(!urb->ep->enabled)) {
1166         rc = -ENOENT;
1167         goto done;
1168     }
1169 
1170     if (unlikely(!urb->dev->can_submit)) {
1171         rc = -EHOSTUNREACH;
1172         goto done;
1173     }
1174 
1175     /*
1176      * Check the host controller's state and add the URB to the
1177      * endpoint's queue.
1178      */
1179     if (HCD_RH_RUNNING(hcd)) {
1180         urb->unlinked = 0;
1181         list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1182     } else {
1183         rc = -ESHUTDOWN;
1184         goto done;
1185     }
1186  done:
1187     spin_unlock(&hcd_urb_list_lock);
1188     return rc;
1189 }
1190 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1191 
1192 /**
1193  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1194  * @hcd: host controller to which @urb was submitted
1195  * @urb: URB being checked for unlinkability
1196  * @status: error code to store in @urb if the unlink succeeds
1197  *
1198  * Host controller drivers should call this routine in their dequeue()
1199  * method.  The HCD's private spinlock must be held and interrupts must
1200  * be disabled.  The actions carried out here are required for making
1201  * sure than an unlink is valid.
1202  *
1203  * Return: 0 for no error, otherwise a negative error code (in which case
1204  * the dequeue() method must fail).  The possible error codes are:
1205  *
1206  *  -EIDRM: @urb was not submitted or has already completed.
1207  *      The completion function may not have been called yet.
1208  *
1209  *  -EBUSY: @urb has already been unlinked.
1210  */
1211 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1212         int status)
1213 {
1214     struct list_head    *tmp;
1215 
1216     /* insist the urb is still queued */
1217     list_for_each(tmp, &urb->ep->urb_list) {
1218         if (tmp == &urb->urb_list)
1219             break;
1220     }
1221     if (tmp != &urb->urb_list)
1222         return -EIDRM;
1223 
1224     /* Any status except -EINPROGRESS means something already started to
1225      * unlink this URB from the hardware.  So there's no more work to do.
1226      */
1227     if (urb->unlinked)
1228         return -EBUSY;
1229     urb->unlinked = status;
1230     return 0;
1231 }
1232 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1233 
1234 /**
1235  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1236  * @hcd: host controller to which @urb was submitted
1237  * @urb: URB being unlinked
1238  *
1239  * Host controller drivers should call this routine before calling
1240  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1241  * interrupts must be disabled.  The actions carried out here are required
1242  * for URB completion.
1243  */
1244 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1245 {
1246     /* clear all state linking urb to this dev (and hcd) */
1247     spin_lock(&hcd_urb_list_lock);
1248     list_del_init(&urb->urb_list);
1249     spin_unlock(&hcd_urb_list_lock);
1250 }
1251 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1252 
1253 /*
1254  * Some usb host controllers can only perform dma using a small SRAM area,
1255  * or have restrictions on addressable DRAM.
1256  * The usb core itself is however optimized for host controllers that can dma
1257  * using regular system memory - like pci devices doing bus mastering.
1258  *
1259  * To support host controllers with limited dma capabilities we provide dma
1260  * bounce buffers. This feature can be enabled by initializing
1261  * hcd->localmem_pool using usb_hcd_setup_local_mem().
1262  *
1263  * The initialized hcd->localmem_pool then tells the usb code to allocate all
1264  * data for dma using the genalloc API.
1265  *
1266  * So, to summarize...
1267  *
1268  * - We need "local" memory, canonical example being
1269  *   a small SRAM on a discrete controller being the
1270  *   only memory that the controller can read ...
1271  *   (a) "normal" kernel memory is no good, and
1272  *   (b) there's not enough to share
1273  *
1274  * - So we use that, even though the primary requirement
1275  *   is that the memory be "local" (hence addressable
1276  *   by that device), not "coherent".
1277  *
1278  */
1279 
1280 static int hcd_alloc_coherent(struct usb_bus *bus,
1281                   gfp_t mem_flags, dma_addr_t *dma_handle,
1282                   void **vaddr_handle, size_t size,
1283                   enum dma_data_direction dir)
1284 {
1285     unsigned char *vaddr;
1286 
1287     if (*vaddr_handle == NULL) {
1288         WARN_ON_ONCE(1);
1289         return -EFAULT;
1290     }
1291 
1292     vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long),
1293                  mem_flags, dma_handle);
1294     if (!vaddr)
1295         return -ENOMEM;
1296 
1297     /*
1298      * Store the virtual address of the buffer at the end
1299      * of the allocated dma buffer. The size of the buffer
1300      * may be uneven so use unaligned functions instead
1301      * of just rounding up. It makes sense to optimize for
1302      * memory footprint over access speed since the amount
1303      * of memory available for dma may be limited.
1304      */
1305     put_unaligned((unsigned long)*vaddr_handle,
1306               (unsigned long *)(vaddr + size));
1307 
1308     if (dir == DMA_TO_DEVICE)
1309         memcpy(vaddr, *vaddr_handle, size);
1310 
1311     *vaddr_handle = vaddr;
1312     return 0;
1313 }
1314 
1315 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1316                   void **vaddr_handle, size_t size,
1317                   enum dma_data_direction dir)
1318 {
1319     unsigned char *vaddr = *vaddr_handle;
1320 
1321     vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1322 
1323     if (dir == DMA_FROM_DEVICE)
1324         memcpy(vaddr, *vaddr_handle, size);
1325 
1326     hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1327 
1328     *vaddr_handle = vaddr;
1329     *dma_handle = 0;
1330 }
1331 
1332 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1333 {
1334     if (IS_ENABLED(CONFIG_HAS_DMA) &&
1335         (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1336         dma_unmap_single(hcd->self.sysdev,
1337                 urb->setup_dma,
1338                 sizeof(struct usb_ctrlrequest),
1339                 DMA_TO_DEVICE);
1340     else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1341         hcd_free_coherent(urb->dev->bus,
1342                 &urb->setup_dma,
1343                 (void **) &urb->setup_packet,
1344                 sizeof(struct usb_ctrlrequest),
1345                 DMA_TO_DEVICE);
1346 
1347     /* Make it safe to call this routine more than once */
1348     urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1349 }
1350 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1351 
1352 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1353 {
1354     if (hcd->driver->unmap_urb_for_dma)
1355         hcd->driver->unmap_urb_for_dma(hcd, urb);
1356     else
1357         usb_hcd_unmap_urb_for_dma(hcd, urb);
1358 }
1359 
1360 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1361 {
1362     enum dma_data_direction dir;
1363 
1364     usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1365 
1366     dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1367     if (IS_ENABLED(CONFIG_HAS_DMA) &&
1368         (urb->transfer_flags & URB_DMA_MAP_SG))
1369         dma_unmap_sg(hcd->self.sysdev,
1370                 urb->sg,
1371                 urb->num_sgs,
1372                 dir);
1373     else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1374          (urb->transfer_flags & URB_DMA_MAP_PAGE))
1375         dma_unmap_page(hcd->self.sysdev,
1376                 urb->transfer_dma,
1377                 urb->transfer_buffer_length,
1378                 dir);
1379     else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1380          (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1381         dma_unmap_single(hcd->self.sysdev,
1382                 urb->transfer_dma,
1383                 urb->transfer_buffer_length,
1384                 dir);
1385     else if (urb->transfer_flags & URB_MAP_LOCAL)
1386         hcd_free_coherent(urb->dev->bus,
1387                 &urb->transfer_dma,
1388                 &urb->transfer_buffer,
1389                 urb->transfer_buffer_length,
1390                 dir);
1391 
1392     /* Make it safe to call this routine more than once */
1393     urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1394             URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1395 }
1396 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1397 
1398 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1399                gfp_t mem_flags)
1400 {
1401     if (hcd->driver->map_urb_for_dma)
1402         return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1403     else
1404         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1405 }
1406 
1407 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1408                 gfp_t mem_flags)
1409 {
1410     enum dma_data_direction dir;
1411     int ret = 0;
1412 
1413     /* Map the URB's buffers for DMA access.
1414      * Lower level HCD code should use *_dma exclusively,
1415      * unless it uses pio or talks to another transport,
1416      * or uses the provided scatter gather list for bulk.
1417      */
1418 
1419     if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1420         if (hcd->self.uses_pio_for_control)
1421             return ret;
1422         if (hcd->localmem_pool) {
1423             ret = hcd_alloc_coherent(
1424                     urb->dev->bus, mem_flags,
1425                     &urb->setup_dma,
1426                     (void **)&urb->setup_packet,
1427                     sizeof(struct usb_ctrlrequest),
1428                     DMA_TO_DEVICE);
1429             if (ret)
1430                 return ret;
1431             urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1432         } else if (hcd_uses_dma(hcd)) {
1433             if (object_is_on_stack(urb->setup_packet)) {
1434                 WARN_ONCE(1, "setup packet is on stack\n");
1435                 return -EAGAIN;
1436             }
1437 
1438             urb->setup_dma = dma_map_single(
1439                     hcd->self.sysdev,
1440                     urb->setup_packet,
1441                     sizeof(struct usb_ctrlrequest),
1442                     DMA_TO_DEVICE);
1443             if (dma_mapping_error(hcd->self.sysdev,
1444                         urb->setup_dma))
1445                 return -EAGAIN;
1446             urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1447         }
1448     }
1449 
1450     dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1451     if (urb->transfer_buffer_length != 0
1452         && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1453         if (hcd->localmem_pool) {
1454             ret = hcd_alloc_coherent(
1455                     urb->dev->bus, mem_flags,
1456                     &urb->transfer_dma,
1457                     &urb->transfer_buffer,
1458                     urb->transfer_buffer_length,
1459                     dir);
1460             if (ret == 0)
1461                 urb->transfer_flags |= URB_MAP_LOCAL;
1462         } else if (hcd_uses_dma(hcd)) {
1463             if (urb->num_sgs) {
1464                 int n;
1465 
1466                 /* We don't support sg for isoc transfers ! */
1467                 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1468                     WARN_ON(1);
1469                     return -EINVAL;
1470                 }
1471 
1472                 n = dma_map_sg(
1473                         hcd->self.sysdev,
1474                         urb->sg,
1475                         urb->num_sgs,
1476                         dir);
1477                 if (n <= 0)
1478                     ret = -EAGAIN;
1479                 else
1480                     urb->transfer_flags |= URB_DMA_MAP_SG;
1481                 urb->num_mapped_sgs = n;
1482                 if (n != urb->num_sgs)
1483                     urb->transfer_flags |=
1484                             URB_DMA_SG_COMBINED;
1485             } else if (urb->sg) {
1486                 struct scatterlist *sg = urb->sg;
1487                 urb->transfer_dma = dma_map_page(
1488                         hcd->self.sysdev,
1489                         sg_page(sg),
1490                         sg->offset,
1491                         urb->transfer_buffer_length,
1492                         dir);
1493                 if (dma_mapping_error(hcd->self.sysdev,
1494                         urb->transfer_dma))
1495                     ret = -EAGAIN;
1496                 else
1497                     urb->transfer_flags |= URB_DMA_MAP_PAGE;
1498             } else if (object_is_on_stack(urb->transfer_buffer)) {
1499                 WARN_ONCE(1, "transfer buffer is on stack\n");
1500                 ret = -EAGAIN;
1501             } else {
1502                 urb->transfer_dma = dma_map_single(
1503                         hcd->self.sysdev,
1504                         urb->transfer_buffer,
1505                         urb->transfer_buffer_length,
1506                         dir);
1507                 if (dma_mapping_error(hcd->self.sysdev,
1508                         urb->transfer_dma))
1509                     ret = -EAGAIN;
1510                 else
1511                     urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1512             }
1513         }
1514         if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1515                 URB_SETUP_MAP_LOCAL)))
1516             usb_hcd_unmap_urb_for_dma(hcd, urb);
1517     }
1518     return ret;
1519 }
1520 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1521 
1522 /*-------------------------------------------------------------------------*/
1523 
1524 /* may be called in any context with a valid urb->dev usecount
1525  * caller surrenders "ownership" of urb
1526  * expects usb_submit_urb() to have sanity checked and conditioned all
1527  * inputs in the urb
1528  */
1529 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1530 {
1531     int         status;
1532     struct usb_hcd      *hcd = bus_to_hcd(urb->dev->bus);
1533 
1534     /* increment urb's reference count as part of giving it to the HCD
1535      * (which will control it).  HCD guarantees that it either returns
1536      * an error or calls giveback(), but not both.
1537      */
1538     usb_get_urb(urb);
1539     atomic_inc(&urb->use_count);
1540     atomic_inc(&urb->dev->urbnum);
1541     usbmon_urb_submit(&hcd->self, urb);
1542 
1543     /* NOTE requirements on root-hub callers (usbfs and the hub
1544      * driver, for now):  URBs' urb->transfer_buffer must be
1545      * valid and usb_buffer_{sync,unmap}() not be needed, since
1546      * they could clobber root hub response data.  Also, control
1547      * URBs must be submitted in process context with interrupts
1548      * enabled.
1549      */
1550 
1551     if (is_root_hub(urb->dev)) {
1552         status = rh_urb_enqueue(hcd, urb);
1553     } else {
1554         status = map_urb_for_dma(hcd, urb, mem_flags);
1555         if (likely(status == 0)) {
1556             status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1557             if (unlikely(status))
1558                 unmap_urb_for_dma(hcd, urb);
1559         }
1560     }
1561 
1562     if (unlikely(status)) {
1563         usbmon_urb_submit_error(&hcd->self, urb, status);
1564         urb->hcpriv = NULL;
1565         INIT_LIST_HEAD(&urb->urb_list);
1566         atomic_dec(&urb->use_count);
1567         /*
1568          * Order the write of urb->use_count above before the read
1569          * of urb->reject below.  Pairs with the memory barriers in
1570          * usb_kill_urb() and usb_poison_urb().
1571          */
1572         smp_mb__after_atomic();
1573 
1574         atomic_dec(&urb->dev->urbnum);
1575         if (atomic_read(&urb->reject))
1576             wake_up(&usb_kill_urb_queue);
1577         usb_put_urb(urb);
1578     }
1579     return status;
1580 }
1581 
1582 /*-------------------------------------------------------------------------*/
1583 
1584 /* this makes the hcd giveback() the urb more quickly, by kicking it
1585  * off hardware queues (which may take a while) and returning it as
1586  * soon as practical.  we've already set up the urb's return status,
1587  * but we can't know if the callback completed already.
1588  */
1589 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1590 {
1591     int     value;
1592 
1593     if (is_root_hub(urb->dev))
1594         value = usb_rh_urb_dequeue(hcd, urb, status);
1595     else {
1596 
1597         /* The only reason an HCD might fail this call is if
1598          * it has not yet fully queued the urb to begin with.
1599          * Such failures should be harmless. */
1600         value = hcd->driver->urb_dequeue(hcd, urb, status);
1601     }
1602     return value;
1603 }
1604 
1605 /*
1606  * called in any context
1607  *
1608  * caller guarantees urb won't be recycled till both unlink()
1609  * and the urb's completion function return
1610  */
1611 int usb_hcd_unlink_urb (struct urb *urb, int status)
1612 {
1613     struct usb_hcd      *hcd;
1614     struct usb_device   *udev = urb->dev;
1615     int         retval = -EIDRM;
1616     unsigned long       flags;
1617 
1618     /* Prevent the device and bus from going away while
1619      * the unlink is carried out.  If they are already gone
1620      * then urb->use_count must be 0, since disconnected
1621      * devices can't have any active URBs.
1622      */
1623     spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1624     if (atomic_read(&urb->use_count) > 0) {
1625         retval = 0;
1626         usb_get_dev(udev);
1627     }
1628     spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1629     if (retval == 0) {
1630         hcd = bus_to_hcd(urb->dev->bus);
1631         retval = unlink1(hcd, urb, status);
1632         if (retval == 0)
1633             retval = -EINPROGRESS;
1634         else if (retval != -EIDRM && retval != -EBUSY)
1635             dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1636                     urb, retval);
1637         usb_put_dev(udev);
1638     }
1639     return retval;
1640 }
1641 
1642 /*-------------------------------------------------------------------------*/
1643 
1644 static void __usb_hcd_giveback_urb(struct urb *urb)
1645 {
1646     struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1647     struct usb_anchor *anchor = urb->anchor;
1648     int status = urb->unlinked;
1649 
1650     urb->hcpriv = NULL;
1651     if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1652         urb->actual_length < urb->transfer_buffer_length &&
1653         !status))
1654         status = -EREMOTEIO;
1655 
1656     unmap_urb_for_dma(hcd, urb);
1657     usbmon_urb_complete(&hcd->self, urb, status);
1658     usb_anchor_suspend_wakeups(anchor);
1659     usb_unanchor_urb(urb);
1660     if (likely(status == 0))
1661         usb_led_activity(USB_LED_EVENT_HOST);
1662 
1663     /* pass ownership to the completion handler */
1664     urb->status = status;
1665     /*
1666      * This function can be called in task context inside another remote
1667      * coverage collection section, but kcov doesn't support that kind of
1668      * recursion yet. Only collect coverage in softirq context for now.
1669      */
1670     kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1671     urb->complete(urb);
1672     kcov_remote_stop_softirq();
1673 
1674     usb_anchor_resume_wakeups(anchor);
1675     atomic_dec(&urb->use_count);
1676     /*
1677      * Order the write of urb->use_count above before the read
1678      * of urb->reject below.  Pairs with the memory barriers in
1679      * usb_kill_urb() and usb_poison_urb().
1680      */
1681     smp_mb__after_atomic();
1682 
1683     if (unlikely(atomic_read(&urb->reject)))
1684         wake_up(&usb_kill_urb_queue);
1685     usb_put_urb(urb);
1686 }
1687 
1688 static void usb_giveback_urb_bh(struct tasklet_struct *t)
1689 {
1690     struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
1691     struct list_head local_list;
1692 
1693     spin_lock_irq(&bh->lock);
1694     bh->running = true;
1695     list_replace_init(&bh->head, &local_list);
1696     spin_unlock_irq(&bh->lock);
1697 
1698     while (!list_empty(&local_list)) {
1699         struct urb *urb;
1700 
1701         urb = list_entry(local_list.next, struct urb, urb_list);
1702         list_del_init(&urb->urb_list);
1703         bh->completing_ep = urb->ep;
1704         __usb_hcd_giveback_urb(urb);
1705         bh->completing_ep = NULL;
1706     }
1707 
1708     /*
1709      * giveback new URBs next time to prevent this function
1710      * from not exiting for a long time.
1711      */
1712     spin_lock_irq(&bh->lock);
1713     if (!list_empty(&bh->head)) {
1714         if (bh->high_prio)
1715             tasklet_hi_schedule(&bh->bh);
1716         else
1717             tasklet_schedule(&bh->bh);
1718     }
1719     bh->running = false;
1720     spin_unlock_irq(&bh->lock);
1721 }
1722 
1723 /**
1724  * usb_hcd_giveback_urb - return URB from HCD to device driver
1725  * @hcd: host controller returning the URB
1726  * @urb: urb being returned to the USB device driver.
1727  * @status: completion status code for the URB.
1728  *
1729  * Context: atomic. The completion callback is invoked in caller's context.
1730  * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet
1731  * context (except for URBs submitted to the root hub which always complete in
1732  * caller's context).
1733  *
1734  * This hands the URB from HCD to its USB device driver, using its
1735  * completion function.  The HCD has freed all per-urb resources
1736  * (and is done using urb->hcpriv).  It also released all HCD locks;
1737  * the device driver won't cause problems if it frees, modifies,
1738  * or resubmits this URB.
1739  *
1740  * If @urb was unlinked, the value of @status will be overridden by
1741  * @urb->unlinked.  Erroneous short transfers are detected in case
1742  * the HCD hasn't checked for them.
1743  */
1744 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1745 {
1746     struct giveback_urb_bh *bh;
1747     bool running;
1748 
1749     /* pass status to tasklet via unlinked */
1750     if (likely(!urb->unlinked))
1751         urb->unlinked = status;
1752 
1753     if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1754         __usb_hcd_giveback_urb(urb);
1755         return;
1756     }
1757 
1758     if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1759         bh = &hcd->high_prio_bh;
1760     else
1761         bh = &hcd->low_prio_bh;
1762 
1763     spin_lock(&bh->lock);
1764     list_add_tail(&urb->urb_list, &bh->head);
1765     running = bh->running;
1766     spin_unlock(&bh->lock);
1767 
1768     if (running)
1769         ;
1770     else if (bh->high_prio)
1771         tasklet_hi_schedule(&bh->bh);
1772     else
1773         tasklet_schedule(&bh->bh);
1774 }
1775 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1776 
1777 /*-------------------------------------------------------------------------*/
1778 
1779 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1780  * queue to drain completely.  The caller must first insure that no more
1781  * URBs can be submitted for this endpoint.
1782  */
1783 void usb_hcd_flush_endpoint(struct usb_device *udev,
1784         struct usb_host_endpoint *ep)
1785 {
1786     struct usb_hcd      *hcd;
1787     struct urb      *urb;
1788 
1789     if (!ep)
1790         return;
1791     might_sleep();
1792     hcd = bus_to_hcd(udev->bus);
1793 
1794     /* No more submits can occur */
1795     spin_lock_irq(&hcd_urb_list_lock);
1796 rescan:
1797     list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1798         int is_in;
1799 
1800         if (urb->unlinked)
1801             continue;
1802         usb_get_urb (urb);
1803         is_in = usb_urb_dir_in(urb);
1804         spin_unlock(&hcd_urb_list_lock);
1805 
1806         /* kick hcd */
1807         unlink1(hcd, urb, -ESHUTDOWN);
1808         dev_dbg (hcd->self.controller,
1809             "shutdown urb %pK ep%d%s-%s\n",
1810             urb, usb_endpoint_num(&ep->desc),
1811             is_in ? "in" : "out",
1812             usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1813         usb_put_urb (urb);
1814 
1815         /* list contents may have changed */
1816         spin_lock(&hcd_urb_list_lock);
1817         goto rescan;
1818     }
1819     spin_unlock_irq(&hcd_urb_list_lock);
1820 
1821     /* Wait until the endpoint queue is completely empty */
1822     while (!list_empty (&ep->urb_list)) {
1823         spin_lock_irq(&hcd_urb_list_lock);
1824 
1825         /* The list may have changed while we acquired the spinlock */
1826         urb = NULL;
1827         if (!list_empty (&ep->urb_list)) {
1828             urb = list_entry (ep->urb_list.prev, struct urb,
1829                     urb_list);
1830             usb_get_urb (urb);
1831         }
1832         spin_unlock_irq(&hcd_urb_list_lock);
1833 
1834         if (urb) {
1835             usb_kill_urb (urb);
1836             usb_put_urb (urb);
1837         }
1838     }
1839 }
1840 
1841 /**
1842  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1843  *              the bus bandwidth
1844  * @udev: target &usb_device
1845  * @new_config: new configuration to install
1846  * @cur_alt: the current alternate interface setting
1847  * @new_alt: alternate interface setting that is being installed
1848  *
1849  * To change configurations, pass in the new configuration in new_config,
1850  * and pass NULL for cur_alt and new_alt.
1851  *
1852  * To reset a device's configuration (put the device in the ADDRESSED state),
1853  * pass in NULL for new_config, cur_alt, and new_alt.
1854  *
1855  * To change alternate interface settings, pass in NULL for new_config,
1856  * pass in the current alternate interface setting in cur_alt,
1857  * and pass in the new alternate interface setting in new_alt.
1858  *
1859  * Return: An error if the requested bandwidth change exceeds the
1860  * bus bandwidth or host controller internal resources.
1861  */
1862 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1863         struct usb_host_config *new_config,
1864         struct usb_host_interface *cur_alt,
1865         struct usb_host_interface *new_alt)
1866 {
1867     int num_intfs, i, j;
1868     struct usb_host_interface *alt = NULL;
1869     int ret = 0;
1870     struct usb_hcd *hcd;
1871     struct usb_host_endpoint *ep;
1872 
1873     hcd = bus_to_hcd(udev->bus);
1874     if (!hcd->driver->check_bandwidth)
1875         return 0;
1876 
1877     /* Configuration is being removed - set configuration 0 */
1878     if (!new_config && !cur_alt) {
1879         for (i = 1; i < 16; ++i) {
1880             ep = udev->ep_out[i];
1881             if (ep)
1882                 hcd->driver->drop_endpoint(hcd, udev, ep);
1883             ep = udev->ep_in[i];
1884             if (ep)
1885                 hcd->driver->drop_endpoint(hcd, udev, ep);
1886         }
1887         hcd->driver->check_bandwidth(hcd, udev);
1888         return 0;
1889     }
1890     /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1891      * each interface's alt setting 0 and ask the HCD to check the bandwidth
1892      * of the bus.  There will always be bandwidth for endpoint 0, so it's
1893      * ok to exclude it.
1894      */
1895     if (new_config) {
1896         num_intfs = new_config->desc.bNumInterfaces;
1897         /* Remove endpoints (except endpoint 0, which is always on the
1898          * schedule) from the old config from the schedule
1899          */
1900         for (i = 1; i < 16; ++i) {
1901             ep = udev->ep_out[i];
1902             if (ep) {
1903                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1904                 if (ret < 0)
1905                     goto reset;
1906             }
1907             ep = udev->ep_in[i];
1908             if (ep) {
1909                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1910                 if (ret < 0)
1911                     goto reset;
1912             }
1913         }
1914         for (i = 0; i < num_intfs; ++i) {
1915             struct usb_host_interface *first_alt;
1916             int iface_num;
1917 
1918             first_alt = &new_config->intf_cache[i]->altsetting[0];
1919             iface_num = first_alt->desc.bInterfaceNumber;
1920             /* Set up endpoints for alternate interface setting 0 */
1921             alt = usb_find_alt_setting(new_config, iface_num, 0);
1922             if (!alt)
1923                 /* No alt setting 0? Pick the first setting. */
1924                 alt = first_alt;
1925 
1926             for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1927                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1928                 if (ret < 0)
1929                     goto reset;
1930             }
1931         }
1932     }
1933     if (cur_alt && new_alt) {
1934         struct usb_interface *iface = usb_ifnum_to_if(udev,
1935                 cur_alt->desc.bInterfaceNumber);
1936 
1937         if (!iface)
1938             return -EINVAL;
1939         if (iface->resetting_device) {
1940             /*
1941              * The USB core just reset the device, so the xHCI host
1942              * and the device will think alt setting 0 is installed.
1943              * However, the USB core will pass in the alternate
1944              * setting installed before the reset as cur_alt.  Dig
1945              * out the alternate setting 0 structure, or the first
1946              * alternate setting if a broken device doesn't have alt
1947              * setting 0.
1948              */
1949             cur_alt = usb_altnum_to_altsetting(iface, 0);
1950             if (!cur_alt)
1951                 cur_alt = &iface->altsetting[0];
1952         }
1953 
1954         /* Drop all the endpoints in the current alt setting */
1955         for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1956             ret = hcd->driver->drop_endpoint(hcd, udev,
1957                     &cur_alt->endpoint[i]);
1958             if (ret < 0)
1959                 goto reset;
1960         }
1961         /* Add all the endpoints in the new alt setting */
1962         for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1963             ret = hcd->driver->add_endpoint(hcd, udev,
1964                     &new_alt->endpoint[i]);
1965             if (ret < 0)
1966                 goto reset;
1967         }
1968     }
1969     ret = hcd->driver->check_bandwidth(hcd, udev);
1970 reset:
1971     if (ret < 0)
1972         hcd->driver->reset_bandwidth(hcd, udev);
1973     return ret;
1974 }
1975 
1976 /* Disables the endpoint: synchronizes with the hcd to make sure all
1977  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1978  * have been called previously.  Use for set_configuration, set_interface,
1979  * driver removal, physical disconnect.
1980  *
1981  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1982  * type, maxpacket size, toggle, halt status, and scheduling.
1983  */
1984 void usb_hcd_disable_endpoint(struct usb_device *udev,
1985         struct usb_host_endpoint *ep)
1986 {
1987     struct usb_hcd      *hcd;
1988 
1989     might_sleep();
1990     hcd = bus_to_hcd(udev->bus);
1991     if (hcd->driver->endpoint_disable)
1992         hcd->driver->endpoint_disable(hcd, ep);
1993 }
1994 
1995 /**
1996  * usb_hcd_reset_endpoint - reset host endpoint state
1997  * @udev: USB device.
1998  * @ep:   the endpoint to reset.
1999  *
2000  * Resets any host endpoint state such as the toggle bit, sequence
2001  * number and current window.
2002  */
2003 void usb_hcd_reset_endpoint(struct usb_device *udev,
2004                 struct usb_host_endpoint *ep)
2005 {
2006     struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2007 
2008     if (hcd->driver->endpoint_reset)
2009         hcd->driver->endpoint_reset(hcd, ep);
2010     else {
2011         int epnum = usb_endpoint_num(&ep->desc);
2012         int is_out = usb_endpoint_dir_out(&ep->desc);
2013         int is_control = usb_endpoint_xfer_control(&ep->desc);
2014 
2015         usb_settoggle(udev, epnum, is_out, 0);
2016         if (is_control)
2017             usb_settoggle(udev, epnum, !is_out, 0);
2018     }
2019 }
2020 
2021 /**
2022  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2023  * @interface:      alternate setting that includes all endpoints.
2024  * @eps:        array of endpoints that need streams.
2025  * @num_eps:        number of endpoints in the array.
2026  * @num_streams:    number of streams to allocate.
2027  * @mem_flags:      flags hcd should use to allocate memory.
2028  *
2029  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2030  * Drivers may queue multiple transfers to different stream IDs, which may
2031  * complete in a different order than they were queued.
2032  *
2033  * Return: On success, the number of allocated streams. On failure, a negative
2034  * error code.
2035  */
2036 int usb_alloc_streams(struct usb_interface *interface,
2037         struct usb_host_endpoint **eps, unsigned int num_eps,
2038         unsigned int num_streams, gfp_t mem_flags)
2039 {
2040     struct usb_hcd *hcd;
2041     struct usb_device *dev;
2042     int i, ret;
2043 
2044     dev = interface_to_usbdev(interface);
2045     hcd = bus_to_hcd(dev->bus);
2046     if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2047         return -EINVAL;
2048     if (dev->speed < USB_SPEED_SUPER)
2049         return -EINVAL;
2050     if (dev->state < USB_STATE_CONFIGURED)
2051         return -ENODEV;
2052 
2053     for (i = 0; i < num_eps; i++) {
2054         /* Streams only apply to bulk endpoints. */
2055         if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2056             return -EINVAL;
2057         /* Re-alloc is not allowed */
2058         if (eps[i]->streams)
2059             return -EINVAL;
2060     }
2061 
2062     ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2063             num_streams, mem_flags);
2064     if (ret < 0)
2065         return ret;
2066 
2067     for (i = 0; i < num_eps; i++)
2068         eps[i]->streams = ret;
2069 
2070     return ret;
2071 }
2072 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2073 
2074 /**
2075  * usb_free_streams - free bulk endpoint stream IDs.
2076  * @interface:  alternate setting that includes all endpoints.
2077  * @eps:    array of endpoints to remove streams from.
2078  * @num_eps:    number of endpoints in the array.
2079  * @mem_flags:  flags hcd should use to allocate memory.
2080  *
2081  * Reverts a group of bulk endpoints back to not using stream IDs.
2082  * Can fail if we are given bad arguments, or HCD is broken.
2083  *
2084  * Return: 0 on success. On failure, a negative error code.
2085  */
2086 int usb_free_streams(struct usb_interface *interface,
2087         struct usb_host_endpoint **eps, unsigned int num_eps,
2088         gfp_t mem_flags)
2089 {
2090     struct usb_hcd *hcd;
2091     struct usb_device *dev;
2092     int i, ret;
2093 
2094     dev = interface_to_usbdev(interface);
2095     hcd = bus_to_hcd(dev->bus);
2096     if (dev->speed < USB_SPEED_SUPER)
2097         return -EINVAL;
2098 
2099     /* Double-free is not allowed */
2100     for (i = 0; i < num_eps; i++)
2101         if (!eps[i] || !eps[i]->streams)
2102             return -EINVAL;
2103 
2104     ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2105     if (ret < 0)
2106         return ret;
2107 
2108     for (i = 0; i < num_eps; i++)
2109         eps[i]->streams = 0;
2110 
2111     return ret;
2112 }
2113 EXPORT_SYMBOL_GPL(usb_free_streams);
2114 
2115 /* Protect against drivers that try to unlink URBs after the device
2116  * is gone, by waiting until all unlinks for @udev are finished.
2117  * Since we don't currently track URBs by device, simply wait until
2118  * nothing is running in the locked region of usb_hcd_unlink_urb().
2119  */
2120 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2121 {
2122     spin_lock_irq(&hcd_urb_unlink_lock);
2123     spin_unlock_irq(&hcd_urb_unlink_lock);
2124 }
2125 
2126 /*-------------------------------------------------------------------------*/
2127 
2128 /* called in any context */
2129 int usb_hcd_get_frame_number (struct usb_device *udev)
2130 {
2131     struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
2132 
2133     if (!HCD_RH_RUNNING(hcd))
2134         return -ESHUTDOWN;
2135     return hcd->driver->get_frame_number (hcd);
2136 }
2137 
2138 /*-------------------------------------------------------------------------*/
2139 #ifdef CONFIG_USB_HCD_TEST_MODE
2140 
2141 static void usb_ehset_completion(struct urb *urb)
2142 {
2143     struct completion  *done = urb->context;
2144 
2145     complete(done);
2146 }
2147 /*
2148  * Allocate and initialize a control URB. This request will be used by the
2149  * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2150  * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2151  * Return NULL if failed.
2152  */
2153 static struct urb *request_single_step_set_feature_urb(
2154     struct usb_device   *udev,
2155     void            *dr,
2156     void            *buf,
2157     struct completion   *done)
2158 {
2159     struct urb *urb;
2160     struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2161     struct usb_host_endpoint *ep;
2162 
2163     urb = usb_alloc_urb(0, GFP_KERNEL);
2164     if (!urb)
2165         return NULL;
2166 
2167     urb->pipe = usb_rcvctrlpipe(udev, 0);
2168     ep = (usb_pipein(urb->pipe) ? udev->ep_in : udev->ep_out)
2169                 [usb_pipeendpoint(urb->pipe)];
2170     if (!ep) {
2171         usb_free_urb(urb);
2172         return NULL;
2173     }
2174 
2175     urb->ep = ep;
2176     urb->dev = udev;
2177     urb->setup_packet = (void *)dr;
2178     urb->transfer_buffer = buf;
2179     urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2180     urb->complete = usb_ehset_completion;
2181     urb->status = -EINPROGRESS;
2182     urb->actual_length = 0;
2183     urb->transfer_flags = URB_DIR_IN;
2184     usb_get_urb(urb);
2185     atomic_inc(&urb->use_count);
2186     atomic_inc(&urb->dev->urbnum);
2187     if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2188         usb_put_urb(urb);
2189         usb_free_urb(urb);
2190         return NULL;
2191     }
2192 
2193     urb->context = done;
2194     return urb;
2195 }
2196 
2197 int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2198 {
2199     int retval = -ENOMEM;
2200     struct usb_ctrlrequest *dr;
2201     struct urb *urb;
2202     struct usb_device *udev;
2203     struct usb_device_descriptor *buf;
2204     DECLARE_COMPLETION_ONSTACK(done);
2205 
2206     /* Obtain udev of the rhub's child port */
2207     udev = usb_hub_find_child(hcd->self.root_hub, port);
2208     if (!udev) {
2209         dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2210         return -ENODEV;
2211     }
2212     buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2213     if (!buf)
2214         return -ENOMEM;
2215 
2216     dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2217     if (!dr) {
2218         kfree(buf);
2219         return -ENOMEM;
2220     }
2221 
2222     /* Fill Setup packet for GetDescriptor */
2223     dr->bRequestType = USB_DIR_IN;
2224     dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2225     dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2226     dr->wIndex = 0;
2227     dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2228     urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2229     if (!urb)
2230         goto cleanup;
2231 
2232     /* Submit just the SETUP stage */
2233     retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2234     if (retval)
2235         goto out1;
2236     if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2237         usb_kill_urb(urb);
2238         retval = -ETIMEDOUT;
2239         dev_err(hcd->self.controller,
2240             "%s SETUP stage timed out on ep0\n", __func__);
2241         goto out1;
2242     }
2243     msleep(15 * 1000);
2244 
2245     /* Complete remaining DATA and STATUS stages using the same URB */
2246     urb->status = -EINPROGRESS;
2247     usb_get_urb(urb);
2248     atomic_inc(&urb->use_count);
2249     atomic_inc(&urb->dev->urbnum);
2250     retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2251     if (!retval && !wait_for_completion_timeout(&done,
2252                         msecs_to_jiffies(2000))) {
2253         usb_kill_urb(urb);
2254         retval = -ETIMEDOUT;
2255         dev_err(hcd->self.controller,
2256             "%s IN stage timed out on ep0\n", __func__);
2257     }
2258 out1:
2259     usb_free_urb(urb);
2260 cleanup:
2261     kfree(dr);
2262     kfree(buf);
2263     return retval;
2264 }
2265 EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2266 #endif /* CONFIG_USB_HCD_TEST_MODE */
2267 
2268 /*-------------------------------------------------------------------------*/
2269 
2270 #ifdef  CONFIG_PM
2271 
2272 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2273 {
2274     struct usb_hcd  *hcd = bus_to_hcd(rhdev->bus);
2275     int     status;
2276     int     old_state = hcd->state;
2277 
2278     dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2279             (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2280             rhdev->do_remote_wakeup);
2281     if (HCD_DEAD(hcd)) {
2282         dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2283         return 0;
2284     }
2285 
2286     if (!hcd->driver->bus_suspend) {
2287         status = -ENOENT;
2288     } else {
2289         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2290         hcd->state = HC_STATE_QUIESCING;
2291         status = hcd->driver->bus_suspend(hcd);
2292     }
2293     if (status == 0) {
2294         usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2295         hcd->state = HC_STATE_SUSPENDED;
2296 
2297         if (!PMSG_IS_AUTO(msg))
2298             usb_phy_roothub_suspend(hcd->self.sysdev,
2299                         hcd->phy_roothub);
2300 
2301         /* Did we race with a root-hub wakeup event? */
2302         if (rhdev->do_remote_wakeup) {
2303             char    buffer[6];
2304 
2305             status = hcd->driver->hub_status_data(hcd, buffer);
2306             if (status != 0) {
2307                 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2308                 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2309                 status = -EBUSY;
2310             }
2311         }
2312     } else {
2313         spin_lock_irq(&hcd_root_hub_lock);
2314         if (!HCD_DEAD(hcd)) {
2315             set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2316             hcd->state = old_state;
2317         }
2318         spin_unlock_irq(&hcd_root_hub_lock);
2319         dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2320                 "suspend", status);
2321     }
2322     return status;
2323 }
2324 
2325 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2326 {
2327     struct usb_hcd  *hcd = bus_to_hcd(rhdev->bus);
2328     int     status;
2329     int     old_state = hcd->state;
2330 
2331     dev_dbg(&rhdev->dev, "usb %sresume\n",
2332             (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2333     if (HCD_DEAD(hcd)) {
2334         dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2335         return 0;
2336     }
2337 
2338     if (!PMSG_IS_AUTO(msg)) {
2339         status = usb_phy_roothub_resume(hcd->self.sysdev,
2340                         hcd->phy_roothub);
2341         if (status)
2342             return status;
2343     }
2344 
2345     if (!hcd->driver->bus_resume)
2346         return -ENOENT;
2347     if (HCD_RH_RUNNING(hcd))
2348         return 0;
2349 
2350     hcd->state = HC_STATE_RESUMING;
2351     status = hcd->driver->bus_resume(hcd);
2352     clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2353     if (status == 0)
2354         status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2355 
2356     if (status == 0) {
2357         struct usb_device *udev;
2358         int port1;
2359 
2360         spin_lock_irq(&hcd_root_hub_lock);
2361         if (!HCD_DEAD(hcd)) {
2362             usb_set_device_state(rhdev, rhdev->actconfig
2363                     ? USB_STATE_CONFIGURED
2364                     : USB_STATE_ADDRESS);
2365             set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2366             hcd->state = HC_STATE_RUNNING;
2367         }
2368         spin_unlock_irq(&hcd_root_hub_lock);
2369 
2370         /*
2371          * Check whether any of the enabled ports on the root hub are
2372          * unsuspended.  If they are then a TRSMRCY delay is needed
2373          * (this is what the USB-2 spec calls a "global resume").
2374          * Otherwise we can skip the delay.
2375          */
2376         usb_hub_for_each_child(rhdev, port1, udev) {
2377             if (udev->state != USB_STATE_NOTATTACHED &&
2378                     !udev->port_is_suspended) {
2379                 usleep_range(10000, 11000); /* TRSMRCY */
2380                 break;
2381             }
2382         }
2383     } else {
2384         hcd->state = old_state;
2385         usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2386         dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2387                 "resume", status);
2388         if (status != -ESHUTDOWN)
2389             usb_hc_died(hcd);
2390     }
2391     return status;
2392 }
2393 
2394 /* Workqueue routine for root-hub remote wakeup */
2395 static void hcd_resume_work(struct work_struct *work)
2396 {
2397     struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2398     struct usb_device *udev = hcd->self.root_hub;
2399 
2400     usb_remote_wakeup(udev);
2401 }
2402 
2403 /**
2404  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2405  * @hcd: host controller for this root hub
2406  *
2407  * The USB host controller calls this function when its root hub is
2408  * suspended (with the remote wakeup feature enabled) and a remote
2409  * wakeup request is received.  The routine submits a workqueue request
2410  * to resume the root hub (that is, manage its downstream ports again).
2411  */
2412 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2413 {
2414     unsigned long flags;
2415 
2416     spin_lock_irqsave (&hcd_root_hub_lock, flags);
2417     if (hcd->rh_registered) {
2418         pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2419         set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2420         queue_work(pm_wq, &hcd->wakeup_work);
2421     }
2422     spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2423 }
2424 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2425 
2426 #endif  /* CONFIG_PM */
2427 
2428 /*-------------------------------------------------------------------------*/
2429 
2430 #ifdef  CONFIG_USB_OTG
2431 
2432 /**
2433  * usb_bus_start_enum - start immediate enumeration (for OTG)
2434  * @bus: the bus (must use hcd framework)
2435  * @port_num: 1-based number of port; usually bus->otg_port
2436  * Context: atomic
2437  *
2438  * Starts enumeration, with an immediate reset followed later by
2439  * hub_wq identifying and possibly configuring the device.
2440  * This is needed by OTG controller drivers, where it helps meet
2441  * HNP protocol timing requirements for starting a port reset.
2442  *
2443  * Return: 0 if successful.
2444  */
2445 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2446 {
2447     struct usb_hcd      *hcd;
2448     int         status = -EOPNOTSUPP;
2449 
2450     /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2451      * boards with root hubs hooked up to internal devices (instead of
2452      * just the OTG port) may need more attention to resetting...
2453      */
2454     hcd = bus_to_hcd(bus);
2455     if (port_num && hcd->driver->start_port_reset)
2456         status = hcd->driver->start_port_reset(hcd, port_num);
2457 
2458     /* allocate hub_wq shortly after (first) root port reset finishes;
2459      * it may issue others, until at least 50 msecs have passed.
2460      */
2461     if (status == 0)
2462         mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2463     return status;
2464 }
2465 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2466 
2467 #endif
2468 
2469 /*-------------------------------------------------------------------------*/
2470 
2471 /**
2472  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2473  * @irq: the IRQ being raised
2474  * @__hcd: pointer to the HCD whose IRQ is being signaled
2475  *
2476  * If the controller isn't HALTed, calls the driver's irq handler.
2477  * Checks whether the controller is now dead.
2478  *
2479  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2480  */
2481 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2482 {
2483     struct usb_hcd      *hcd = __hcd;
2484     irqreturn_t     rc;
2485 
2486     if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2487         rc = IRQ_NONE;
2488     else if (hcd->driver->irq(hcd) == IRQ_NONE)
2489         rc = IRQ_NONE;
2490     else
2491         rc = IRQ_HANDLED;
2492 
2493     return rc;
2494 }
2495 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2496 
2497 /*-------------------------------------------------------------------------*/
2498 
2499 /* Workqueue routine for when the root-hub has died. */
2500 static void hcd_died_work(struct work_struct *work)
2501 {
2502     struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2503     static char *env[] = {
2504         "ERROR=DEAD",
2505         NULL
2506     };
2507 
2508     /* Notify user space that the host controller has died */
2509     kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2510 }
2511 
2512 /**
2513  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2514  * @hcd: pointer to the HCD representing the controller
2515  *
2516  * This is called by bus glue to report a USB host controller that died
2517  * while operations may still have been pending.  It's called automatically
2518  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2519  *
2520  * Only call this function with the primary HCD.
2521  */
2522 void usb_hc_died (struct usb_hcd *hcd)
2523 {
2524     unsigned long flags;
2525 
2526     dev_err (hcd->self.controller, "HC died; cleaning up\n");
2527 
2528     spin_lock_irqsave (&hcd_root_hub_lock, flags);
2529     clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2530     set_bit(HCD_FLAG_DEAD, &hcd->flags);
2531     if (hcd->rh_registered) {
2532         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2533 
2534         /* make hub_wq clean up old urbs and devices */
2535         usb_set_device_state (hcd->self.root_hub,
2536                 USB_STATE_NOTATTACHED);
2537         usb_kick_hub_wq(hcd->self.root_hub);
2538     }
2539     if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2540         hcd = hcd->shared_hcd;
2541         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2542         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2543         if (hcd->rh_registered) {
2544             clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2545 
2546             /* make hub_wq clean up old urbs and devices */
2547             usb_set_device_state(hcd->self.root_hub,
2548                     USB_STATE_NOTATTACHED);
2549             usb_kick_hub_wq(hcd->self.root_hub);
2550         }
2551     }
2552 
2553     /* Handle the case where this function gets called with a shared HCD */
2554     if (usb_hcd_is_primary_hcd(hcd))
2555         schedule_work(&hcd->died_work);
2556     else
2557         schedule_work(&hcd->primary_hcd->died_work);
2558 
2559     spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2560     /* Make sure that the other roothub is also deallocated. */
2561 }
2562 EXPORT_SYMBOL_GPL (usb_hc_died);
2563 
2564 /*-------------------------------------------------------------------------*/
2565 
2566 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2567 {
2568 
2569     spin_lock_init(&bh->lock);
2570     INIT_LIST_HEAD(&bh->head);
2571     tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2572 }
2573 
2574 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2575         struct device *sysdev, struct device *dev, const char *bus_name,
2576         struct usb_hcd *primary_hcd)
2577 {
2578     struct usb_hcd *hcd;
2579 
2580     hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2581     if (!hcd)
2582         return NULL;
2583     if (primary_hcd == NULL) {
2584         hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2585                 GFP_KERNEL);
2586         if (!hcd->address0_mutex) {
2587             kfree(hcd);
2588             dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2589             return NULL;
2590         }
2591         mutex_init(hcd->address0_mutex);
2592         hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2593                 GFP_KERNEL);
2594         if (!hcd->bandwidth_mutex) {
2595             kfree(hcd->address0_mutex);
2596             kfree(hcd);
2597             dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2598             return NULL;
2599         }
2600         mutex_init(hcd->bandwidth_mutex);
2601         dev_set_drvdata(dev, hcd);
2602     } else {
2603         mutex_lock(&usb_port_peer_mutex);
2604         hcd->address0_mutex = primary_hcd->address0_mutex;
2605         hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2606         hcd->primary_hcd = primary_hcd;
2607         primary_hcd->primary_hcd = primary_hcd;
2608         hcd->shared_hcd = primary_hcd;
2609         primary_hcd->shared_hcd = hcd;
2610         mutex_unlock(&usb_port_peer_mutex);
2611     }
2612 
2613     kref_init(&hcd->kref);
2614 
2615     usb_bus_init(&hcd->self);
2616     hcd->self.controller = dev;
2617     hcd->self.sysdev = sysdev;
2618     hcd->self.bus_name = bus_name;
2619 
2620     timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2621 #ifdef CONFIG_PM
2622     INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2623 #endif
2624 
2625     INIT_WORK(&hcd->died_work, hcd_died_work);
2626 
2627     hcd->driver = driver;
2628     hcd->speed = driver->flags & HCD_MASK;
2629     hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2630             "USB Host Controller";
2631     return hcd;
2632 }
2633 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2634 
2635 /**
2636  * usb_create_shared_hcd - create and initialize an HCD structure
2637  * @driver: HC driver that will use this hcd
2638  * @dev: device for this HC, stored in hcd->self.controller
2639  * @bus_name: value to store in hcd->self.bus_name
2640  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2641  *              PCI device.  Only allocate certain resources for the primary HCD
2642  *
2643  * Context: task context, might sleep.
2644  *
2645  * Allocate a struct usb_hcd, with extra space at the end for the
2646  * HC driver's private data.  Initialize the generic members of the
2647  * hcd structure.
2648  *
2649  * Return: On success, a pointer to the created and initialized HCD structure.
2650  * On failure (e.g. if memory is unavailable), %NULL.
2651  */
2652 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2653         struct device *dev, const char *bus_name,
2654         struct usb_hcd *primary_hcd)
2655 {
2656     return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2657 }
2658 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2659 
2660 /**
2661  * usb_create_hcd - create and initialize an HCD structure
2662  * @driver: HC driver that will use this hcd
2663  * @dev: device for this HC, stored in hcd->self.controller
2664  * @bus_name: value to store in hcd->self.bus_name
2665  *
2666  * Context: task context, might sleep.
2667  *
2668  * Allocate a struct usb_hcd, with extra space at the end for the
2669  * HC driver's private data.  Initialize the generic members of the
2670  * hcd structure.
2671  *
2672  * Return: On success, a pointer to the created and initialized HCD
2673  * structure. On failure (e.g. if memory is unavailable), %NULL.
2674  */
2675 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2676         struct device *dev, const char *bus_name)
2677 {
2678     return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2679 }
2680 EXPORT_SYMBOL_GPL(usb_create_hcd);
2681 
2682 /*
2683  * Roothubs that share one PCI device must also share the bandwidth mutex.
2684  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2685  * deallocated.
2686  *
2687  * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2688  * freed.  When hcd_release() is called for either hcd in a peer set,
2689  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2690  */
2691 static void hcd_release(struct kref *kref)
2692 {
2693     struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2694 
2695     mutex_lock(&usb_port_peer_mutex);
2696     if (hcd->shared_hcd) {
2697         struct usb_hcd *peer = hcd->shared_hcd;
2698 
2699         peer->shared_hcd = NULL;
2700         peer->primary_hcd = NULL;
2701     } else {
2702         kfree(hcd->address0_mutex);
2703         kfree(hcd->bandwidth_mutex);
2704     }
2705     mutex_unlock(&usb_port_peer_mutex);
2706     kfree(hcd);
2707 }
2708 
2709 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2710 {
2711     if (hcd)
2712         kref_get (&hcd->kref);
2713     return hcd;
2714 }
2715 EXPORT_SYMBOL_GPL(usb_get_hcd);
2716 
2717 void usb_put_hcd (struct usb_hcd *hcd)
2718 {
2719     if (hcd)
2720         kref_put (&hcd->kref, hcd_release);
2721 }
2722 EXPORT_SYMBOL_GPL(usb_put_hcd);
2723 
2724 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2725 {
2726     if (!hcd->primary_hcd)
2727         return 1;
2728     return hcd == hcd->primary_hcd;
2729 }
2730 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2731 
2732 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2733 {
2734     if (!hcd->driver->find_raw_port_number)
2735         return port1;
2736 
2737     return hcd->driver->find_raw_port_number(hcd, port1);
2738 }
2739 
2740 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2741         unsigned int irqnum, unsigned long irqflags)
2742 {
2743     int retval;
2744 
2745     if (hcd->driver->irq) {
2746 
2747         snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2748                 hcd->driver->description, hcd->self.busnum);
2749         retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2750                 hcd->irq_descr, hcd);
2751         if (retval != 0) {
2752             dev_err(hcd->self.controller,
2753                     "request interrupt %d failed\n",
2754                     irqnum);
2755             return retval;
2756         }
2757         hcd->irq = irqnum;
2758         dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2759                 (hcd->driver->flags & HCD_MEMORY) ?
2760                     "io mem" : "io port",
2761                 (unsigned long long)hcd->rsrc_start);
2762     } else {
2763         hcd->irq = 0;
2764         if (hcd->rsrc_start)
2765             dev_info(hcd->self.controller, "%s 0x%08llx\n",
2766                     (hcd->driver->flags & HCD_MEMORY) ?
2767                         "io mem" : "io port",
2768                     (unsigned long long)hcd->rsrc_start);
2769     }
2770     return 0;
2771 }
2772 
2773 /*
2774  * Before we free this root hub, flush in-flight peering attempts
2775  * and disable peer lookups
2776  */
2777 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2778 {
2779     struct usb_device *rhdev;
2780 
2781     mutex_lock(&usb_port_peer_mutex);
2782     rhdev = hcd->self.root_hub;
2783     hcd->self.root_hub = NULL;
2784     mutex_unlock(&usb_port_peer_mutex);
2785     usb_put_dev(rhdev);
2786 }
2787 
2788 /**
2789  * usb_stop_hcd - Halt the HCD
2790  * @hcd: the usb_hcd that has to be halted
2791  *
2792  * Stop the root-hub polling timer and invoke the HCD's ->stop callback.
2793  */
2794 static void usb_stop_hcd(struct usb_hcd *hcd)
2795 {
2796     hcd->rh_pollable = 0;
2797     clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2798     del_timer_sync(&hcd->rh_timer);
2799 
2800     hcd->driver->stop(hcd);
2801     hcd->state = HC_STATE_HALT;
2802 
2803     /* In case the HCD restarted the timer, stop it again. */
2804     clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2805     del_timer_sync(&hcd->rh_timer);
2806 }
2807 
2808 /**
2809  * usb_add_hcd - finish generic HCD structure initialization and register
2810  * @hcd: the usb_hcd structure to initialize
2811  * @irqnum: Interrupt line to allocate
2812  * @irqflags: Interrupt type flags
2813  *
2814  * Finish the remaining parts of generic HCD initialization: allocate the
2815  * buffers of consistent memory, register the bus, request the IRQ line,
2816  * and call the driver's reset() and start() routines.
2817  */
2818 int usb_add_hcd(struct usb_hcd *hcd,
2819         unsigned int irqnum, unsigned long irqflags)
2820 {
2821     int retval;
2822     struct usb_device *rhdev;
2823     struct usb_hcd *shared_hcd;
2824 
2825     if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2826         hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2827         if (IS_ERR(hcd->phy_roothub))
2828             return PTR_ERR(hcd->phy_roothub);
2829 
2830         retval = usb_phy_roothub_init(hcd->phy_roothub);
2831         if (retval)
2832             return retval;
2833 
2834         retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2835                           PHY_MODE_USB_HOST_SS);
2836         if (retval)
2837             retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2838                               PHY_MODE_USB_HOST);
2839         if (retval)
2840             goto err_usb_phy_roothub_power_on;
2841 
2842         retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2843         if (retval)
2844             goto err_usb_phy_roothub_power_on;
2845     }
2846 
2847     dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2848 
2849     switch (authorized_default) {
2850     case USB_AUTHORIZE_NONE:
2851         hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2852         break;
2853 
2854     case USB_AUTHORIZE_ALL:
2855         hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2856         break;
2857 
2858     case USB_AUTHORIZE_INTERNAL:
2859         hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2860         break;
2861 
2862     case USB_AUTHORIZE_WIRED:
2863     default:
2864         hcd->dev_policy = hcd->wireless ?
2865             USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2866         break;
2867     }
2868 
2869     set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2870 
2871     /* per default all interfaces are authorized */
2872     set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2873 
2874     /* HC is in reset state, but accessible.  Now do the one-time init,
2875      * bottom up so that hcds can customize the root hubs before hub_wq
2876      * starts talking to them.  (Note, bus id is assigned early too.)
2877      */
2878     retval = hcd_buffer_create(hcd);
2879     if (retval != 0) {
2880         dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2881         goto err_create_buf;
2882     }
2883 
2884     retval = usb_register_bus(&hcd->self);
2885     if (retval < 0)
2886         goto err_register_bus;
2887 
2888     rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2889     if (rhdev == NULL) {
2890         dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2891         retval = -ENOMEM;
2892         goto err_allocate_root_hub;
2893     }
2894     mutex_lock(&usb_port_peer_mutex);
2895     hcd->self.root_hub = rhdev;
2896     mutex_unlock(&usb_port_peer_mutex);
2897 
2898     rhdev->rx_lanes = 1;
2899     rhdev->tx_lanes = 1;
2900     rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2901 
2902     switch (hcd->speed) {
2903     case HCD_USB11:
2904         rhdev->speed = USB_SPEED_FULL;
2905         break;
2906     case HCD_USB2:
2907         rhdev->speed = USB_SPEED_HIGH;
2908         break;
2909     case HCD_USB25:
2910         rhdev->speed = USB_SPEED_WIRELESS;
2911         break;
2912     case HCD_USB3:
2913         rhdev->speed = USB_SPEED_SUPER;
2914         break;
2915     case HCD_USB32:
2916         rhdev->rx_lanes = 2;
2917         rhdev->tx_lanes = 2;
2918         rhdev->ssp_rate = USB_SSP_GEN_2x2;
2919         rhdev->speed = USB_SPEED_SUPER_PLUS;
2920         break;
2921     case HCD_USB31:
2922         rhdev->ssp_rate = USB_SSP_GEN_2x1;
2923         rhdev->speed = USB_SPEED_SUPER_PLUS;
2924         break;
2925     default:
2926         retval = -EINVAL;
2927         goto err_set_rh_speed;
2928     }
2929 
2930     /* wakeup flag init defaults to "everything works" for root hubs,
2931      * but drivers can override it in reset() if needed, along with
2932      * recording the overall controller's system wakeup capability.
2933      */
2934     device_set_wakeup_capable(&rhdev->dev, 1);
2935 
2936     /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2937      * registered.  But since the controller can die at any time,
2938      * let's initialize the flag before touching the hardware.
2939      */
2940     set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2941 
2942     /* "reset" is misnamed; its role is now one-time init. the controller
2943      * should already have been reset (and boot firmware kicked off etc).
2944      */
2945     if (hcd->driver->reset) {
2946         retval = hcd->driver->reset(hcd);
2947         if (retval < 0) {
2948             dev_err(hcd->self.controller, "can't setup: %d\n",
2949                     retval);
2950             goto err_hcd_driver_setup;
2951         }
2952     }
2953     hcd->rh_pollable = 1;
2954 
2955     retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2956     if (retval)
2957         goto err_hcd_driver_setup;
2958 
2959     /* NOTE: root hub and controller capabilities may not be the same */
2960     if (device_can_wakeup(hcd->self.controller)
2961             && device_can_wakeup(&hcd->self.root_hub->dev))
2962         dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2963 
2964     /* initialize tasklets */
2965     init_giveback_urb_bh(&hcd->high_prio_bh);
2966     hcd->high_prio_bh.high_prio = true;
2967     init_giveback_urb_bh(&hcd->low_prio_bh);
2968 
2969     /* enable irqs just before we start the controller,
2970      * if the BIOS provides legacy PCI irqs.
2971      */
2972     if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2973         retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2974         if (retval)
2975             goto err_request_irq;
2976     }
2977 
2978     hcd->state = HC_STATE_RUNNING;
2979     retval = hcd->driver->start(hcd);
2980     if (retval < 0) {
2981         dev_err(hcd->self.controller, "startup error %d\n", retval);
2982         goto err_hcd_driver_start;
2983     }
2984 
2985     /* starting here, usbcore will pay attention to the shared HCD roothub */
2986     shared_hcd = hcd->shared_hcd;
2987     if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2988         retval = register_root_hub(shared_hcd);
2989         if (retval != 0)
2990             goto err_register_root_hub;
2991 
2992         if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2993             usb_hcd_poll_rh_status(shared_hcd);
2994     }
2995 
2996     /* starting here, usbcore will pay attention to this root hub */
2997     if (!HCD_DEFER_RH_REGISTER(hcd)) {
2998         retval = register_root_hub(hcd);
2999         if (retval != 0)
3000             goto err_register_root_hub;
3001 
3002         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
3003             usb_hcd_poll_rh_status(hcd);
3004     }
3005 
3006     return retval;
3007 
3008 err_register_root_hub:
3009     usb_stop_hcd(hcd);
3010 err_hcd_driver_start:
3011     if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
3012         free_irq(irqnum, hcd);
3013 err_request_irq:
3014 err_hcd_driver_setup:
3015 err_set_rh_speed:
3016     usb_put_invalidate_rhdev(hcd);
3017 err_allocate_root_hub:
3018     usb_deregister_bus(&hcd->self);
3019 err_register_bus:
3020     hcd_buffer_destroy(hcd);
3021 err_create_buf:
3022     usb_phy_roothub_power_off(hcd->phy_roothub);
3023 err_usb_phy_roothub_power_on:
3024     usb_phy_roothub_exit(hcd->phy_roothub);
3025 
3026     return retval;
3027 }
3028 EXPORT_SYMBOL_GPL(usb_add_hcd);
3029 
3030 /**
3031  * usb_remove_hcd - shutdown processing for generic HCDs
3032  * @hcd: the usb_hcd structure to remove
3033  *
3034  * Context: task context, might sleep.
3035  *
3036  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
3037  * invoking the HCD's stop() method.
3038  */
3039 void usb_remove_hcd(struct usb_hcd *hcd)
3040 {
3041     struct usb_device *rhdev;
3042     bool rh_registered;
3043 
3044     if (!hcd) {
3045         pr_debug("%s: hcd is NULL\n", __func__);
3046         return;
3047     }
3048     rhdev = hcd->self.root_hub;
3049 
3050     dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3051 
3052     usb_get_dev(rhdev);
3053     clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3054     if (HC_IS_RUNNING (hcd->state))
3055         hcd->state = HC_STATE_QUIESCING;
3056 
3057     dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3058     spin_lock_irq (&hcd_root_hub_lock);
3059     rh_registered = hcd->rh_registered;
3060     hcd->rh_registered = 0;
3061     spin_unlock_irq (&hcd_root_hub_lock);
3062 
3063 #ifdef CONFIG_PM
3064     cancel_work_sync(&hcd->wakeup_work);
3065 #endif
3066     cancel_work_sync(&hcd->died_work);
3067 
3068     mutex_lock(&usb_bus_idr_lock);
3069     if (rh_registered)
3070         usb_disconnect(&rhdev);     /* Sets rhdev to NULL */
3071     mutex_unlock(&usb_bus_idr_lock);
3072 
3073     /*
3074      * tasklet_kill() isn't needed here because:
3075      * - driver's disconnect() called from usb_disconnect() should
3076      *   make sure its URBs are completed during the disconnect()
3077      *   callback
3078      *
3079      * - it is too late to run complete() here since driver may have
3080      *   been removed already now
3081      */
3082 
3083     /* Prevent any more root-hub status calls from the timer.
3084      * The HCD might still restart the timer (if a port status change
3085      * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3086      * the hub_status_data() callback.
3087      */
3088     usb_stop_hcd(hcd);
3089 
3090     if (usb_hcd_is_primary_hcd(hcd)) {
3091         if (hcd->irq > 0)
3092             free_irq(hcd->irq, hcd);
3093     }
3094 
3095     usb_deregister_bus(&hcd->self);
3096     hcd_buffer_destroy(hcd);
3097 
3098     usb_phy_roothub_power_off(hcd->phy_roothub);
3099     usb_phy_roothub_exit(hcd->phy_roothub);
3100 
3101     usb_put_invalidate_rhdev(hcd);
3102     hcd->flags = 0;
3103 }
3104 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3105 
3106 void
3107 usb_hcd_platform_shutdown(struct platform_device *dev)
3108 {
3109     struct usb_hcd *hcd = platform_get_drvdata(dev);
3110 
3111     /* No need for pm_runtime_put(), we're shutting down */
3112     pm_runtime_get_sync(&dev->dev);
3113 
3114     if (hcd->driver->shutdown)
3115         hcd->driver->shutdown(hcd);
3116 }
3117 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3118 
3119 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3120                 dma_addr_t dma, size_t size)
3121 {
3122     int err;
3123     void *local_mem;
3124 
3125     hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3126                           dev_to_node(hcd->self.sysdev),
3127                           dev_name(hcd->self.sysdev));
3128     if (IS_ERR(hcd->localmem_pool))
3129         return PTR_ERR(hcd->localmem_pool);
3130 
3131     /*
3132      * if a physical SRAM address was passed, map it, otherwise
3133      * allocate system memory as a buffer.
3134      */
3135     if (phys_addr)
3136         local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3137                       size, MEMREMAP_WC);
3138     else
3139         local_mem = dmam_alloc_attrs(hcd->self.sysdev, size, &dma,
3140                          GFP_KERNEL,
3141                          DMA_ATTR_WRITE_COMBINE);
3142 
3143     if (IS_ERR(local_mem))
3144         return PTR_ERR(local_mem);
3145 
3146     /*
3147      * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3148      * It's not backed by system memory and thus there's no kernel mapping
3149      * for it.
3150      */
3151     err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3152                 dma, size, dev_to_node(hcd->self.sysdev));
3153     if (err < 0) {
3154         dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3155             err);
3156         return err;
3157     }
3158 
3159     return 0;
3160 }
3161 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3162 
3163 /*-------------------------------------------------------------------------*/
3164 
3165 #if IS_ENABLED(CONFIG_USB_MON)
3166 
3167 const struct usb_mon_operations *mon_ops;
3168 
3169 /*
3170  * The registration is unlocked.
3171  * We do it this way because we do not want to lock in hot paths.
3172  *
3173  * Notice that the code is minimally error-proof. Because usbmon needs
3174  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3175  */
3176 
3177 int usb_mon_register(const struct usb_mon_operations *ops)
3178 {
3179 
3180     if (mon_ops)
3181         return -EBUSY;
3182 
3183     mon_ops = ops;
3184     mb();
3185     return 0;
3186 }
3187 EXPORT_SYMBOL_GPL (usb_mon_register);
3188 
3189 void usb_mon_deregister (void)
3190 {
3191 
3192     if (mon_ops == NULL) {
3193         printk(KERN_ERR "USB: monitor was not registered\n");
3194         return;
3195     }
3196     mon_ops = NULL;
3197     mb();
3198 }
3199 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3200 
3201 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */