0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012 #include <linux/pm_runtime.h>
0013 #include <linux/slab.h>
0014 #include <linux/errno.h>
0015 #include <linux/pci.h>
0016 #include <linux/dma-mapping.h>
0017 #include <linux/interrupt.h>
0018 #include <linux/iommu.h>
0019 #include <linux/module.h>
0020 #include <linux/delay.h>
0021 #include <linux/property.h>
0022 #include <linux/string_helpers.h>
0023
0024 #include "nhi.h"
0025 #include "nhi_regs.h"
0026 #include "tb.h"
0027
0028 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
0029
0030 #define RING_FIRST_USABLE_HOPID 1
0031
0032
0033
0034
0035
0036 #define MSIX_MIN_VECS 6
0037 #define MSIX_MAX_VECS 16
0038
0039 #define NHI_MAILBOX_TIMEOUT 500
0040
0041 #define QUIRK_AUTO_CLEAR_INT BIT(0)
0042
0043 static int ring_interrupt_index(struct tb_ring *ring)
0044 {
0045 int bit = ring->hop;
0046 if (!ring->is_tx)
0047 bit += ring->nhi->hop_count;
0048 return bit;
0049 }
0050
0051
0052
0053
0054
0055
0056 static void ring_interrupt_active(struct tb_ring *ring, bool active)
0057 {
0058 int reg = REG_RING_INTERRUPT_BASE +
0059 ring_interrupt_index(ring) / 32 * 4;
0060 int bit = ring_interrupt_index(ring) & 31;
0061 int mask = 1 << bit;
0062 u32 old, new;
0063
0064 if (ring->irq > 0) {
0065 u32 step, shift, ivr, misc;
0066 void __iomem *ivr_base;
0067 int index;
0068
0069 if (ring->is_tx)
0070 index = ring->hop;
0071 else
0072 index = ring->hop + ring->nhi->hop_count;
0073
0074 if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT) {
0075
0076
0077
0078
0079
0080 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
0081 if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
0082 misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
0083 iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
0084 }
0085 }
0086
0087 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
0088 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
0089 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
0090 ivr = ioread32(ivr_base + step);
0091 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
0092 if (active)
0093 ivr |= ring->vector << shift;
0094 iowrite32(ivr, ivr_base + step);
0095 }
0096
0097 old = ioread32(ring->nhi->iobase + reg);
0098 if (active)
0099 new = old | mask;
0100 else
0101 new = old & ~mask;
0102
0103 dev_dbg(&ring->nhi->pdev->dev,
0104 "%s interrupt at register %#x bit %d (%#x -> %#x)\n",
0105 active ? "enabling" : "disabling", reg, bit, old, new);
0106
0107 if (new == old)
0108 dev_WARN(&ring->nhi->pdev->dev,
0109 "interrupt for %s %d is already %s\n",
0110 RING_TYPE(ring), ring->hop,
0111 active ? "enabled" : "disabled");
0112 iowrite32(new, ring->nhi->iobase + reg);
0113 }
0114
0115
0116
0117
0118
0119
0120 static void nhi_disable_interrupts(struct tb_nhi *nhi)
0121 {
0122 int i = 0;
0123
0124 for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
0125 iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
0126
0127
0128 for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
0129 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
0130 }
0131
0132
0133
0134 static void __iomem *ring_desc_base(struct tb_ring *ring)
0135 {
0136 void __iomem *io = ring->nhi->iobase;
0137 io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
0138 io += ring->hop * 16;
0139 return io;
0140 }
0141
0142 static void __iomem *ring_options_base(struct tb_ring *ring)
0143 {
0144 void __iomem *io = ring->nhi->iobase;
0145 io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
0146 io += ring->hop * 32;
0147 return io;
0148 }
0149
0150 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
0151 {
0152
0153
0154
0155
0156
0157 iowrite32(cons, ring_desc_base(ring) + 8);
0158 }
0159
0160 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
0161 {
0162
0163 iowrite32(prod << 16, ring_desc_base(ring) + 8);
0164 }
0165
0166 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
0167 {
0168 iowrite32(value, ring_desc_base(ring) + offset);
0169 }
0170
0171 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
0172 {
0173 iowrite32(value, ring_desc_base(ring) + offset);
0174 iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
0175 }
0176
0177 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
0178 {
0179 iowrite32(value, ring_options_base(ring) + offset);
0180 }
0181
0182 static bool ring_full(struct tb_ring *ring)
0183 {
0184 return ((ring->head + 1) % ring->size) == ring->tail;
0185 }
0186
0187 static bool ring_empty(struct tb_ring *ring)
0188 {
0189 return ring->head == ring->tail;
0190 }
0191
0192
0193
0194
0195
0196
0197 static void ring_write_descriptors(struct tb_ring *ring)
0198 {
0199 struct ring_frame *frame, *n;
0200 struct ring_desc *descriptor;
0201 list_for_each_entry_safe(frame, n, &ring->queue, list) {
0202 if (ring_full(ring))
0203 break;
0204 list_move_tail(&frame->list, &ring->in_flight);
0205 descriptor = &ring->descriptors[ring->head];
0206 descriptor->phys = frame->buffer_phy;
0207 descriptor->time = 0;
0208 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
0209 if (ring->is_tx) {
0210 descriptor->length = frame->size;
0211 descriptor->eof = frame->eof;
0212 descriptor->sof = frame->sof;
0213 }
0214 ring->head = (ring->head + 1) % ring->size;
0215 if (ring->is_tx)
0216 ring_iowrite_prod(ring, ring->head);
0217 else
0218 ring_iowrite_cons(ring, ring->head);
0219 }
0220 }
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231 static void ring_work(struct work_struct *work)
0232 {
0233 struct tb_ring *ring = container_of(work, typeof(*ring), work);
0234 struct ring_frame *frame;
0235 bool canceled = false;
0236 unsigned long flags;
0237 LIST_HEAD(done);
0238
0239 spin_lock_irqsave(&ring->lock, flags);
0240
0241 if (!ring->running) {
0242
0243 list_splice_tail_init(&ring->in_flight, &done);
0244 list_splice_tail_init(&ring->queue, &done);
0245 canceled = true;
0246 goto invoke_callback;
0247 }
0248
0249 while (!ring_empty(ring)) {
0250 if (!(ring->descriptors[ring->tail].flags
0251 & RING_DESC_COMPLETED))
0252 break;
0253 frame = list_first_entry(&ring->in_flight, typeof(*frame),
0254 list);
0255 list_move_tail(&frame->list, &done);
0256 if (!ring->is_tx) {
0257 frame->size = ring->descriptors[ring->tail].length;
0258 frame->eof = ring->descriptors[ring->tail].eof;
0259 frame->sof = ring->descriptors[ring->tail].sof;
0260 frame->flags = ring->descriptors[ring->tail].flags;
0261 }
0262 ring->tail = (ring->tail + 1) % ring->size;
0263 }
0264 ring_write_descriptors(ring);
0265
0266 invoke_callback:
0267
0268 spin_unlock_irqrestore(&ring->lock, flags);
0269 while (!list_empty(&done)) {
0270 frame = list_first_entry(&done, typeof(*frame), list);
0271
0272
0273
0274
0275 list_del_init(&frame->list);
0276 if (frame->callback)
0277 frame->callback(ring, frame, canceled);
0278 }
0279 }
0280
0281 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
0282 {
0283 unsigned long flags;
0284 int ret = 0;
0285
0286 spin_lock_irqsave(&ring->lock, flags);
0287 if (ring->running) {
0288 list_add_tail(&frame->list, &ring->queue);
0289 ring_write_descriptors(ring);
0290 } else {
0291 ret = -ESHUTDOWN;
0292 }
0293 spin_unlock_irqrestore(&ring->lock, flags);
0294 return ret;
0295 }
0296 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
0308 {
0309 struct ring_frame *frame = NULL;
0310 unsigned long flags;
0311
0312 spin_lock_irqsave(&ring->lock, flags);
0313 if (!ring->running)
0314 goto unlock;
0315 if (ring_empty(ring))
0316 goto unlock;
0317
0318 if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
0319 frame = list_first_entry(&ring->in_flight, typeof(*frame),
0320 list);
0321 list_del_init(&frame->list);
0322
0323 if (!ring->is_tx) {
0324 frame->size = ring->descriptors[ring->tail].length;
0325 frame->eof = ring->descriptors[ring->tail].eof;
0326 frame->sof = ring->descriptors[ring->tail].sof;
0327 frame->flags = ring->descriptors[ring->tail].flags;
0328 }
0329
0330 ring->tail = (ring->tail + 1) % ring->size;
0331 }
0332
0333 unlock:
0334 spin_unlock_irqrestore(&ring->lock, flags);
0335 return frame;
0336 }
0337 EXPORT_SYMBOL_GPL(tb_ring_poll);
0338
0339 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
0340 {
0341 int idx = ring_interrupt_index(ring);
0342 int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
0343 int bit = idx % 32;
0344 u32 val;
0345
0346 val = ioread32(ring->nhi->iobase + reg);
0347 if (mask)
0348 val &= ~BIT(bit);
0349 else
0350 val |= BIT(bit);
0351 iowrite32(val, ring->nhi->iobase + reg);
0352 }
0353
0354
0355 static void __ring_interrupt(struct tb_ring *ring)
0356 {
0357 if (!ring->running)
0358 return;
0359
0360 if (ring->start_poll) {
0361 __ring_interrupt_mask(ring, true);
0362 ring->start_poll(ring->poll_data);
0363 } else {
0364 schedule_work(&ring->work);
0365 }
0366 }
0367
0368
0369
0370
0371
0372
0373
0374
0375 void tb_ring_poll_complete(struct tb_ring *ring)
0376 {
0377 unsigned long flags;
0378
0379 spin_lock_irqsave(&ring->nhi->lock, flags);
0380 spin_lock(&ring->lock);
0381 if (ring->start_poll)
0382 __ring_interrupt_mask(ring, false);
0383 spin_unlock(&ring->lock);
0384 spin_unlock_irqrestore(&ring->nhi->lock, flags);
0385 }
0386 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
0387
0388 static void ring_clear_msix(const struct tb_ring *ring)
0389 {
0390 if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT)
0391 return;
0392
0393 if (ring->is_tx)
0394 ioread32(ring->nhi->iobase + REG_RING_NOTIFY_BASE);
0395 else
0396 ioread32(ring->nhi->iobase + REG_RING_NOTIFY_BASE +
0397 4 * (ring->nhi->hop_count / 32));
0398 }
0399
0400 static irqreturn_t ring_msix(int irq, void *data)
0401 {
0402 struct tb_ring *ring = data;
0403
0404 spin_lock(&ring->nhi->lock);
0405 ring_clear_msix(ring);
0406 spin_lock(&ring->lock);
0407 __ring_interrupt(ring);
0408 spin_unlock(&ring->lock);
0409 spin_unlock(&ring->nhi->lock);
0410
0411 return IRQ_HANDLED;
0412 }
0413
0414 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
0415 {
0416 struct tb_nhi *nhi = ring->nhi;
0417 unsigned long irqflags;
0418 int ret;
0419
0420 if (!nhi->pdev->msix_enabled)
0421 return 0;
0422
0423 ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
0424 if (ret < 0)
0425 return ret;
0426
0427 ring->vector = ret;
0428
0429 ret = pci_irq_vector(ring->nhi->pdev, ring->vector);
0430 if (ret < 0)
0431 goto err_ida_remove;
0432
0433 ring->irq = ret;
0434
0435 irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
0436 ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
0437 if (ret)
0438 goto err_ida_remove;
0439
0440 return 0;
0441
0442 err_ida_remove:
0443 ida_simple_remove(&nhi->msix_ida, ring->vector);
0444
0445 return ret;
0446 }
0447
0448 static void ring_release_msix(struct tb_ring *ring)
0449 {
0450 if (ring->irq <= 0)
0451 return;
0452
0453 free_irq(ring->irq, ring);
0454 ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
0455 ring->vector = 0;
0456 ring->irq = 0;
0457 }
0458
0459 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
0460 {
0461 int ret = 0;
0462
0463 spin_lock_irq(&nhi->lock);
0464
0465 if (ring->hop < 0) {
0466 unsigned int i;
0467
0468
0469
0470
0471
0472 for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
0473 if (ring->is_tx) {
0474 if (!nhi->tx_rings[i]) {
0475 ring->hop = i;
0476 break;
0477 }
0478 } else {
0479 if (!nhi->rx_rings[i]) {
0480 ring->hop = i;
0481 break;
0482 }
0483 }
0484 }
0485 }
0486
0487 if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
0488 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
0489 ret = -EINVAL;
0490 goto err_unlock;
0491 }
0492 if (ring->is_tx && nhi->tx_rings[ring->hop]) {
0493 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
0494 ring->hop);
0495 ret = -EBUSY;
0496 goto err_unlock;
0497 } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
0498 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
0499 ring->hop);
0500 ret = -EBUSY;
0501 goto err_unlock;
0502 }
0503
0504 if (ring->is_tx)
0505 nhi->tx_rings[ring->hop] = ring;
0506 else
0507 nhi->rx_rings[ring->hop] = ring;
0508
0509 err_unlock:
0510 spin_unlock_irq(&nhi->lock);
0511
0512 return ret;
0513 }
0514
0515 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
0516 bool transmit, unsigned int flags,
0517 int e2e_tx_hop, u16 sof_mask, u16 eof_mask,
0518 void (*start_poll)(void *),
0519 void *poll_data)
0520 {
0521 struct tb_ring *ring = NULL;
0522
0523 dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
0524 transmit ? "TX" : "RX", hop, size);
0525
0526 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
0527 if (!ring)
0528 return NULL;
0529
0530 spin_lock_init(&ring->lock);
0531 INIT_LIST_HEAD(&ring->queue);
0532 INIT_LIST_HEAD(&ring->in_flight);
0533 INIT_WORK(&ring->work, ring_work);
0534
0535 ring->nhi = nhi;
0536 ring->hop = hop;
0537 ring->is_tx = transmit;
0538 ring->size = size;
0539 ring->flags = flags;
0540 ring->e2e_tx_hop = e2e_tx_hop;
0541 ring->sof_mask = sof_mask;
0542 ring->eof_mask = eof_mask;
0543 ring->head = 0;
0544 ring->tail = 0;
0545 ring->running = false;
0546 ring->start_poll = start_poll;
0547 ring->poll_data = poll_data;
0548
0549 ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
0550 size * sizeof(*ring->descriptors),
0551 &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
0552 if (!ring->descriptors)
0553 goto err_free_ring;
0554
0555 if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
0556 goto err_free_descs;
0557
0558 if (nhi_alloc_hop(nhi, ring))
0559 goto err_release_msix;
0560
0561 return ring;
0562
0563 err_release_msix:
0564 ring_release_msix(ring);
0565 err_free_descs:
0566 dma_free_coherent(&ring->nhi->pdev->dev,
0567 ring->size * sizeof(*ring->descriptors),
0568 ring->descriptors, ring->descriptors_dma);
0569 err_free_ring:
0570 kfree(ring);
0571
0572 return NULL;
0573 }
0574
0575
0576
0577
0578
0579
0580
0581
0582 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
0583 unsigned int flags)
0584 {
0585 return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL);
0586 }
0587 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
0604 unsigned int flags, int e2e_tx_hop,
0605 u16 sof_mask, u16 eof_mask,
0606 void (*start_poll)(void *), void *poll_data)
0607 {
0608 return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask,
0609 start_poll, poll_data);
0610 }
0611 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
0612
0613
0614
0615
0616
0617
0618
0619 void tb_ring_start(struct tb_ring *ring)
0620 {
0621 u16 frame_size;
0622 u32 flags;
0623
0624 spin_lock_irq(&ring->nhi->lock);
0625 spin_lock(&ring->lock);
0626 if (ring->nhi->going_away)
0627 goto err;
0628 if (ring->running) {
0629 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
0630 goto err;
0631 }
0632 dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
0633 RING_TYPE(ring), ring->hop);
0634
0635 if (ring->flags & RING_FLAG_FRAME) {
0636
0637 frame_size = 0;
0638 flags = RING_FLAG_ENABLE;
0639 } else {
0640 frame_size = TB_FRAME_SIZE;
0641 flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
0642 }
0643
0644 ring_iowrite64desc(ring, ring->descriptors_dma, 0);
0645 if (ring->is_tx) {
0646 ring_iowrite32desc(ring, ring->size, 12);
0647 ring_iowrite32options(ring, 0, 4);
0648 ring_iowrite32options(ring, flags, 0);
0649 } else {
0650 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
0651
0652 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
0653 ring_iowrite32options(ring, sof_eof_mask, 4);
0654 ring_iowrite32options(ring, flags, 0);
0655 }
0656
0657
0658
0659
0660
0661 if (ring->flags & RING_FLAG_E2E) {
0662 if (!ring->is_tx) {
0663 u32 hop;
0664
0665 hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT;
0666 hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
0667 flags |= hop;
0668
0669 dev_dbg(&ring->nhi->pdev->dev,
0670 "enabling E2E for %s %d with TX HopID %d\n",
0671 RING_TYPE(ring), ring->hop, ring->e2e_tx_hop);
0672 } else {
0673 dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n",
0674 RING_TYPE(ring), ring->hop);
0675 }
0676
0677 flags |= RING_FLAG_E2E_FLOW_CONTROL;
0678 ring_iowrite32options(ring, flags, 0);
0679 }
0680
0681 ring_interrupt_active(ring, true);
0682 ring->running = true;
0683 err:
0684 spin_unlock(&ring->lock);
0685 spin_unlock_irq(&ring->nhi->lock);
0686 }
0687 EXPORT_SYMBOL_GPL(tb_ring_start);
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703 void tb_ring_stop(struct tb_ring *ring)
0704 {
0705 spin_lock_irq(&ring->nhi->lock);
0706 spin_lock(&ring->lock);
0707 dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
0708 RING_TYPE(ring), ring->hop);
0709 if (ring->nhi->going_away)
0710 goto err;
0711 if (!ring->running) {
0712 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
0713 RING_TYPE(ring), ring->hop);
0714 goto err;
0715 }
0716 ring_interrupt_active(ring, false);
0717
0718 ring_iowrite32options(ring, 0, 0);
0719 ring_iowrite64desc(ring, 0, 0);
0720 ring_iowrite32desc(ring, 0, 8);
0721 ring_iowrite32desc(ring, 0, 12);
0722 ring->head = 0;
0723 ring->tail = 0;
0724 ring->running = false;
0725
0726 err:
0727 spin_unlock(&ring->lock);
0728 spin_unlock_irq(&ring->nhi->lock);
0729
0730
0731
0732
0733 schedule_work(&ring->work);
0734 flush_work(&ring->work);
0735 }
0736 EXPORT_SYMBOL_GPL(tb_ring_stop);
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748 void tb_ring_free(struct tb_ring *ring)
0749 {
0750 spin_lock_irq(&ring->nhi->lock);
0751
0752
0753
0754
0755 if (ring->is_tx)
0756 ring->nhi->tx_rings[ring->hop] = NULL;
0757 else
0758 ring->nhi->rx_rings[ring->hop] = NULL;
0759
0760 if (ring->running) {
0761 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
0762 RING_TYPE(ring), ring->hop);
0763 }
0764 spin_unlock_irq(&ring->nhi->lock);
0765
0766 ring_release_msix(ring);
0767
0768 dma_free_coherent(&ring->nhi->pdev->dev,
0769 ring->size * sizeof(*ring->descriptors),
0770 ring->descriptors, ring->descriptors_dma);
0771
0772 ring->descriptors = NULL;
0773 ring->descriptors_dma = 0;
0774
0775
0776 dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
0777 ring->hop);
0778
0779
0780
0781
0782
0783
0784 flush_work(&ring->work);
0785 kfree(ring);
0786 }
0787 EXPORT_SYMBOL_GPL(tb_ring_free);
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
0799 {
0800 ktime_t timeout;
0801 u32 val;
0802
0803 iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
0804
0805 val = ioread32(nhi->iobase + REG_INMAIL_CMD);
0806 val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
0807 val |= REG_INMAIL_OP_REQUEST | cmd;
0808 iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
0809
0810 timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
0811 do {
0812 val = ioread32(nhi->iobase + REG_INMAIL_CMD);
0813 if (!(val & REG_INMAIL_OP_REQUEST))
0814 break;
0815 usleep_range(10, 20);
0816 } while (ktime_before(ktime_get(), timeout));
0817
0818 if (val & REG_INMAIL_OP_REQUEST)
0819 return -ETIMEDOUT;
0820 if (val & REG_INMAIL_ERROR)
0821 return -EIO;
0822
0823 return 0;
0824 }
0825
0826
0827
0828
0829
0830
0831
0832
0833 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
0834 {
0835 u32 val;
0836
0837 val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
0838 val &= REG_OUTMAIL_CMD_OPMODE_MASK;
0839 val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
0840
0841 return (enum nhi_fw_mode)val;
0842 }
0843
0844 static void nhi_interrupt_work(struct work_struct *work)
0845 {
0846 struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
0847 int value = 0;
0848 int bit;
0849 int hop = -1;
0850 int type = 0;
0851 struct tb_ring *ring;
0852
0853 spin_lock_irq(&nhi->lock);
0854
0855
0856
0857
0858
0859
0860 for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
0861 if (bit % 32 == 0)
0862 value = ioread32(nhi->iobase
0863 + REG_RING_NOTIFY_BASE
0864 + 4 * (bit / 32));
0865 if (++hop == nhi->hop_count) {
0866 hop = 0;
0867 type++;
0868 }
0869 if ((value & (1 << (bit % 32))) == 0)
0870 continue;
0871 if (type == 2) {
0872 dev_warn(&nhi->pdev->dev,
0873 "RX overflow for ring %d\n",
0874 hop);
0875 continue;
0876 }
0877 if (type == 0)
0878 ring = nhi->tx_rings[hop];
0879 else
0880 ring = nhi->rx_rings[hop];
0881 if (ring == NULL) {
0882 dev_warn(&nhi->pdev->dev,
0883 "got interrupt for inactive %s ring %d\n",
0884 type ? "RX" : "TX",
0885 hop);
0886 continue;
0887 }
0888
0889 spin_lock(&ring->lock);
0890 __ring_interrupt(ring);
0891 spin_unlock(&ring->lock);
0892 }
0893 spin_unlock_irq(&nhi->lock);
0894 }
0895
0896 static irqreturn_t nhi_msi(int irq, void *data)
0897 {
0898 struct tb_nhi *nhi = data;
0899 schedule_work(&nhi->interrupt_work);
0900 return IRQ_HANDLED;
0901 }
0902
0903 static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
0904 {
0905 struct pci_dev *pdev = to_pci_dev(dev);
0906 struct tb *tb = pci_get_drvdata(pdev);
0907 struct tb_nhi *nhi = tb->nhi;
0908 int ret;
0909
0910 ret = tb_domain_suspend_noirq(tb);
0911 if (ret)
0912 return ret;
0913
0914 if (nhi->ops && nhi->ops->suspend_noirq) {
0915 ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
0916 if (ret)
0917 return ret;
0918 }
0919
0920 return 0;
0921 }
0922
0923 static int nhi_suspend_noirq(struct device *dev)
0924 {
0925 return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
0926 }
0927
0928 static int nhi_freeze_noirq(struct device *dev)
0929 {
0930 struct pci_dev *pdev = to_pci_dev(dev);
0931 struct tb *tb = pci_get_drvdata(pdev);
0932
0933 return tb_domain_freeze_noirq(tb);
0934 }
0935
0936 static int nhi_thaw_noirq(struct device *dev)
0937 {
0938 struct pci_dev *pdev = to_pci_dev(dev);
0939 struct tb *tb = pci_get_drvdata(pdev);
0940
0941 return tb_domain_thaw_noirq(tb);
0942 }
0943
0944 static bool nhi_wake_supported(struct pci_dev *pdev)
0945 {
0946 u8 val;
0947
0948
0949
0950
0951
0952 if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
0953 return !!val;
0954
0955 return true;
0956 }
0957
0958 static int nhi_poweroff_noirq(struct device *dev)
0959 {
0960 struct pci_dev *pdev = to_pci_dev(dev);
0961 bool wakeup;
0962
0963 wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
0964 return __nhi_suspend_noirq(dev, wakeup);
0965 }
0966
0967 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
0968 {
0969
0970 u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
0971 unsigned int i;
0972
0973
0974
0975
0976
0977 for (i = 0; i < MSIX_MAX_VECS; i++) {
0978 u32 reg = REG_INT_THROTTLING_RATE + i * 4;
0979 iowrite32(throttle, nhi->iobase + reg);
0980 }
0981 }
0982
0983 static int nhi_resume_noirq(struct device *dev)
0984 {
0985 struct pci_dev *pdev = to_pci_dev(dev);
0986 struct tb *tb = pci_get_drvdata(pdev);
0987 struct tb_nhi *nhi = tb->nhi;
0988 int ret;
0989
0990
0991
0992
0993
0994
0995 if (!pci_device_is_present(pdev)) {
0996 nhi->going_away = true;
0997 } else {
0998 if (nhi->ops && nhi->ops->resume_noirq) {
0999 ret = nhi->ops->resume_noirq(nhi);
1000 if (ret)
1001 return ret;
1002 }
1003 nhi_enable_int_throttling(tb->nhi);
1004 }
1005
1006 return tb_domain_resume_noirq(tb);
1007 }
1008
1009 static int nhi_suspend(struct device *dev)
1010 {
1011 struct pci_dev *pdev = to_pci_dev(dev);
1012 struct tb *tb = pci_get_drvdata(pdev);
1013
1014 return tb_domain_suspend(tb);
1015 }
1016
1017 static void nhi_complete(struct device *dev)
1018 {
1019 struct pci_dev *pdev = to_pci_dev(dev);
1020 struct tb *tb = pci_get_drvdata(pdev);
1021
1022
1023
1024
1025
1026
1027 if (pm_runtime_suspended(&pdev->dev))
1028 pm_runtime_resume(&pdev->dev);
1029 else
1030 tb_domain_complete(tb);
1031 }
1032
1033 static int nhi_runtime_suspend(struct device *dev)
1034 {
1035 struct pci_dev *pdev = to_pci_dev(dev);
1036 struct tb *tb = pci_get_drvdata(pdev);
1037 struct tb_nhi *nhi = tb->nhi;
1038 int ret;
1039
1040 ret = tb_domain_runtime_suspend(tb);
1041 if (ret)
1042 return ret;
1043
1044 if (nhi->ops && nhi->ops->runtime_suspend) {
1045 ret = nhi->ops->runtime_suspend(tb->nhi);
1046 if (ret)
1047 return ret;
1048 }
1049 return 0;
1050 }
1051
1052 static int nhi_runtime_resume(struct device *dev)
1053 {
1054 struct pci_dev *pdev = to_pci_dev(dev);
1055 struct tb *tb = pci_get_drvdata(pdev);
1056 struct tb_nhi *nhi = tb->nhi;
1057 int ret;
1058
1059 if (nhi->ops && nhi->ops->runtime_resume) {
1060 ret = nhi->ops->runtime_resume(nhi);
1061 if (ret)
1062 return ret;
1063 }
1064
1065 nhi_enable_int_throttling(nhi);
1066 return tb_domain_runtime_resume(tb);
1067 }
1068
1069 static void nhi_shutdown(struct tb_nhi *nhi)
1070 {
1071 int i;
1072
1073 dev_dbg(&nhi->pdev->dev, "shutdown\n");
1074
1075 for (i = 0; i < nhi->hop_count; i++) {
1076 if (nhi->tx_rings[i])
1077 dev_WARN(&nhi->pdev->dev,
1078 "TX ring %d is still active\n", i);
1079 if (nhi->rx_rings[i])
1080 dev_WARN(&nhi->pdev->dev,
1081 "RX ring %d is still active\n", i);
1082 }
1083 nhi_disable_interrupts(nhi);
1084
1085
1086
1087
1088 if (!nhi->pdev->msix_enabled) {
1089 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1090 flush_work(&nhi->interrupt_work);
1091 }
1092 ida_destroy(&nhi->msix_ida);
1093
1094 if (nhi->ops && nhi->ops->shutdown)
1095 nhi->ops->shutdown(nhi);
1096 }
1097
1098 static void nhi_check_quirks(struct tb_nhi *nhi)
1099 {
1100
1101
1102
1103
1104 if (nhi->pdev->vendor == PCI_VENDOR_ID_INTEL)
1105 nhi->quirks |= QUIRK_AUTO_CLEAR_INT;
1106 }
1107
1108 static int nhi_check_iommu_pdev(struct pci_dev *pdev, void *data)
1109 {
1110 if (!pdev->external_facing ||
1111 !device_iommu_capable(&pdev->dev, IOMMU_CAP_PRE_BOOT_PROTECTION))
1112 return 0;
1113 *(bool *)data = true;
1114 return 1;
1115 }
1116
1117 static void nhi_check_iommu(struct tb_nhi *nhi)
1118 {
1119 struct pci_bus *bus = nhi->pdev->bus;
1120 bool port_ok = false;
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139 while (bus->parent)
1140 bus = bus->parent;
1141
1142 pci_walk_bus(bus, nhi_check_iommu_pdev, &port_ok);
1143
1144 nhi->iommu_dma_protection = port_ok;
1145 dev_dbg(&nhi->pdev->dev, "IOMMU DMA protection is %s\n",
1146 str_enabled_disabled(port_ok));
1147 }
1148
1149 static int nhi_init_msi(struct tb_nhi *nhi)
1150 {
1151 struct pci_dev *pdev = nhi->pdev;
1152 int res, irq, nvec;
1153
1154
1155 nhi_disable_interrupts(nhi);
1156
1157 nhi_enable_int_throttling(nhi);
1158
1159 ida_init(&nhi->msix_ida);
1160
1161
1162
1163
1164
1165
1166
1167 nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1168 PCI_IRQ_MSIX);
1169 if (nvec < 0) {
1170 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1171 if (nvec < 0)
1172 return nvec;
1173
1174 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1175
1176 irq = pci_irq_vector(nhi->pdev, 0);
1177 if (irq < 0)
1178 return irq;
1179
1180 res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1181 IRQF_NO_SUSPEND, "thunderbolt", nhi);
1182 if (res) {
1183 dev_err(&pdev->dev, "request_irq failed, aborting\n");
1184 return res;
1185 }
1186 }
1187
1188 return 0;
1189 }
1190
1191 static bool nhi_imr_valid(struct pci_dev *pdev)
1192 {
1193 u8 val;
1194
1195 if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1196 return !!val;
1197
1198 return true;
1199 }
1200
1201 static struct tb *nhi_select_cm(struct tb_nhi *nhi)
1202 {
1203 struct tb *tb;
1204
1205
1206
1207
1208
1209 if (tb_acpi_is_native())
1210 return tb_probe(nhi);
1211
1212
1213
1214
1215
1216
1217 tb = icm_probe(nhi);
1218 if (!tb)
1219 tb = tb_probe(nhi);
1220
1221 return tb;
1222 }
1223
1224 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1225 {
1226 struct tb_nhi *nhi;
1227 struct tb *tb;
1228 int res;
1229
1230 if (!nhi_imr_valid(pdev)) {
1231 dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1232 return -ENODEV;
1233 }
1234
1235 res = pcim_enable_device(pdev);
1236 if (res) {
1237 dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1238 return res;
1239 }
1240
1241 res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1242 if (res) {
1243 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1244 return res;
1245 }
1246
1247 nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1248 if (!nhi)
1249 return -ENOMEM;
1250
1251 nhi->pdev = pdev;
1252 nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1253
1254 nhi->iobase = pcim_iomap_table(pdev)[0];
1255 nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1256 dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count);
1257
1258 nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1259 sizeof(*nhi->tx_rings), GFP_KERNEL);
1260 nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1261 sizeof(*nhi->rx_rings), GFP_KERNEL);
1262 if (!nhi->tx_rings || !nhi->rx_rings)
1263 return -ENOMEM;
1264
1265 nhi_check_quirks(nhi);
1266 nhi_check_iommu(nhi);
1267
1268 res = nhi_init_msi(nhi);
1269 if (res) {
1270 dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1271 return res;
1272 }
1273
1274 spin_lock_init(&nhi->lock);
1275
1276 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1277 if (res) {
1278 dev_err(&pdev->dev, "failed to set DMA mask\n");
1279 return res;
1280 }
1281
1282 pci_set_master(pdev);
1283
1284 if (nhi->ops && nhi->ops->init) {
1285 res = nhi->ops->init(nhi);
1286 if (res)
1287 return res;
1288 }
1289
1290 tb = nhi_select_cm(nhi);
1291 if (!tb) {
1292 dev_err(&nhi->pdev->dev,
1293 "failed to determine connection manager, aborting\n");
1294 return -ENODEV;
1295 }
1296
1297 dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1298
1299 res = tb_domain_add(tb);
1300 if (res) {
1301
1302
1303
1304
1305 tb_domain_put(tb);
1306 nhi_shutdown(nhi);
1307 return res;
1308 }
1309 pci_set_drvdata(pdev, tb);
1310
1311 device_wakeup_enable(&pdev->dev);
1312
1313 pm_runtime_allow(&pdev->dev);
1314 pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1315 pm_runtime_use_autosuspend(&pdev->dev);
1316 pm_runtime_put_autosuspend(&pdev->dev);
1317
1318 return 0;
1319 }
1320
1321 static void nhi_remove(struct pci_dev *pdev)
1322 {
1323 struct tb *tb = pci_get_drvdata(pdev);
1324 struct tb_nhi *nhi = tb->nhi;
1325
1326 pm_runtime_get_sync(&pdev->dev);
1327 pm_runtime_dont_use_autosuspend(&pdev->dev);
1328 pm_runtime_forbid(&pdev->dev);
1329
1330 tb_domain_remove(tb);
1331 nhi_shutdown(nhi);
1332 }
1333
1334
1335
1336
1337
1338
1339 static const struct dev_pm_ops nhi_pm_ops = {
1340 .suspend_noirq = nhi_suspend_noirq,
1341 .resume_noirq = nhi_resume_noirq,
1342 .freeze_noirq = nhi_freeze_noirq,
1343
1344
1345
1346 .thaw_noirq = nhi_thaw_noirq,
1347 .restore_noirq = nhi_resume_noirq,
1348 .suspend = nhi_suspend,
1349 .poweroff_noirq = nhi_poweroff_noirq,
1350 .poweroff = nhi_suspend,
1351 .complete = nhi_complete,
1352 .runtime_suspend = nhi_runtime_suspend,
1353 .runtime_resume = nhi_runtime_resume,
1354 };
1355
1356 static struct pci_device_id nhi_ids[] = {
1357
1358
1359
1360
1361 {
1362 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1363 .vendor = PCI_VENDOR_ID_INTEL,
1364 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1365 .subvendor = 0x2222, .subdevice = 0x1111,
1366 },
1367 {
1368 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1369 .vendor = PCI_VENDOR_ID_INTEL,
1370 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1371 .subvendor = 0x2222, .subdevice = 0x1111,
1372 },
1373 {
1374 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1375 .vendor = PCI_VENDOR_ID_INTEL,
1376 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1377 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1378 },
1379 {
1380 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1381 .vendor = PCI_VENDOR_ID_INTEL,
1382 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1383 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1384 },
1385
1386
1387 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1388 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1389 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1390 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1391 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1392 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1393 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1394 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1395 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1396 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1397 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1398 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1399 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1400 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1401 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1402 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1403 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1404 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1405 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0),
1406 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1407 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1),
1408 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1409 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI0),
1410 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1411 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI1),
1412 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1413 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_RPL_NHI0),
1414 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1415 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_RPL_NHI1),
1416 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1417
1418
1419 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1420
1421 { 0,}
1422 };
1423
1424 MODULE_DEVICE_TABLE(pci, nhi_ids);
1425 MODULE_LICENSE("GPL");
1426
1427 static struct pci_driver nhi_driver = {
1428 .name = "thunderbolt",
1429 .id_table = nhi_ids,
1430 .probe = nhi_probe,
1431 .remove = nhi_remove,
1432 .shutdown = nhi_remove,
1433 .driver.pm = &nhi_pm_ops,
1434 };
1435
1436 static int __init nhi_init(void)
1437 {
1438 int ret;
1439
1440 ret = tb_domain_init();
1441 if (ret)
1442 return ret;
1443 ret = pci_register_driver(&nhi_driver);
1444 if (ret)
1445 tb_domain_exit();
1446 return ret;
1447 }
1448
1449 static void __exit nhi_unload(void)
1450 {
1451 pci_unregister_driver(&nhi_driver);
1452 tb_domain_exit();
1453 }
1454
1455 rootfs_initcall(nhi_init);
1456 module_exit(nhi_unload);