Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Copyright (c) 2015 MediaTek Inc.
0004  * Author: Hanyi Wu <hanyi.wu@mediatek.com>
0005  *         Sascha Hauer <s.hauer@pengutronix.de>
0006  *         Dawei Chien <dawei.chien@mediatek.com>
0007  *         Louis Yu <louis.yu@mediatek.com>
0008  */
0009 
0010 #include <linux/clk.h>
0011 #include <linux/delay.h>
0012 #include <linux/interrupt.h>
0013 #include <linux/kernel.h>
0014 #include <linux/module.h>
0015 #include <linux/nvmem-consumer.h>
0016 #include <linux/of.h>
0017 #include <linux/of_address.h>
0018 #include <linux/of_device.h>
0019 #include <linux/platform_device.h>
0020 #include <linux/slab.h>
0021 #include <linux/io.h>
0022 #include <linux/thermal.h>
0023 #include <linux/reset.h>
0024 #include <linux/types.h>
0025 
0026 #include "thermal_hwmon.h"
0027 
0028 /* AUXADC Registers */
0029 #define AUXADC_CON1_SET_V   0x008
0030 #define AUXADC_CON1_CLR_V   0x00c
0031 #define AUXADC_CON2_V       0x010
0032 #define AUXADC_DATA(channel)    (0x14 + (channel) * 4)
0033 
0034 #define APMIXED_SYS_TS_CON1 0x604
0035 
0036 /* Thermal Controller Registers */
0037 #define TEMP_MONCTL0        0x000
0038 #define TEMP_MONCTL1        0x004
0039 #define TEMP_MONCTL2        0x008
0040 #define TEMP_MONIDET0       0x014
0041 #define TEMP_MONIDET1       0x018
0042 #define TEMP_MSRCTL0        0x038
0043 #define TEMP_MSRCTL1        0x03c
0044 #define TEMP_AHBPOLL        0x040
0045 #define TEMP_AHBTO      0x044
0046 #define TEMP_ADCPNP0        0x048
0047 #define TEMP_ADCPNP1        0x04c
0048 #define TEMP_ADCPNP2        0x050
0049 #define TEMP_ADCPNP3        0x0b4
0050 
0051 #define TEMP_ADCMUX     0x054
0052 #define TEMP_ADCEN      0x060
0053 #define TEMP_PNPMUXADDR     0x064
0054 #define TEMP_ADCMUXADDR     0x068
0055 #define TEMP_ADCENADDR      0x074
0056 #define TEMP_ADCVALIDADDR   0x078
0057 #define TEMP_ADCVOLTADDR    0x07c
0058 #define TEMP_RDCTRL     0x080
0059 #define TEMP_ADCVALIDMASK   0x084
0060 #define TEMP_ADCVOLTAGESHIFT    0x088
0061 #define TEMP_ADCWRITECTRL   0x08c
0062 #define TEMP_MSR0       0x090
0063 #define TEMP_MSR1       0x094
0064 #define TEMP_MSR2       0x098
0065 #define TEMP_MSR3       0x0B8
0066 
0067 #define TEMP_SPARE0     0x0f0
0068 
0069 #define TEMP_ADCPNP0_1          0x148
0070 #define TEMP_ADCPNP1_1          0x14c
0071 #define TEMP_ADCPNP2_1          0x150
0072 #define TEMP_MSR0_1             0x190
0073 #define TEMP_MSR1_1             0x194
0074 #define TEMP_MSR2_1             0x198
0075 #define TEMP_ADCPNP3_1          0x1b4
0076 #define TEMP_MSR3_1             0x1B8
0077 
0078 #define PTPCORESEL      0x400
0079 
0080 #define TEMP_MONCTL1_PERIOD_UNIT(x) ((x) & 0x3ff)
0081 
0082 #define TEMP_MONCTL2_FILTER_INTERVAL(x) (((x) & 0x3ff) << 16)
0083 #define TEMP_MONCTL2_SENSOR_INTERVAL(x) ((x) & 0x3ff)
0084 
0085 #define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x)   (x)
0086 
0087 #define TEMP_ADCWRITECTRL_ADC_PNP_WRITE     BIT(0)
0088 #define TEMP_ADCWRITECTRL_ADC_MUX_WRITE     BIT(1)
0089 
0090 #define TEMP_ADCVALIDMASK_VALID_HIGH        BIT(5)
0091 #define TEMP_ADCVALIDMASK_VALID_POS(bit)    (bit)
0092 
0093 /* MT8173 thermal sensors */
0094 #define MT8173_TS1  0
0095 #define MT8173_TS2  1
0096 #define MT8173_TS3  2
0097 #define MT8173_TS4  3
0098 #define MT8173_TSABB    4
0099 
0100 /* AUXADC channel 11 is used for the temperature sensors */
0101 #define MT8173_TEMP_AUXADC_CHANNEL  11
0102 
0103 /* The total number of temperature sensors in the MT8173 */
0104 #define MT8173_NUM_SENSORS      5
0105 
0106 /* The number of banks in the MT8173 */
0107 #define MT8173_NUM_ZONES        4
0108 
0109 /* The number of sensing points per bank */
0110 #define MT8173_NUM_SENSORS_PER_ZONE 4
0111 
0112 /* The number of controller in the MT8173 */
0113 #define MT8173_NUM_CONTROLLER       1
0114 
0115 /* The calibration coefficient of sensor  */
0116 #define MT8173_CALIBRATION  165
0117 
0118 /*
0119  * Layout of the fuses providing the calibration data
0120  * These macros could be used for MT8183, MT8173, MT2701, and MT2712.
0121  * MT8183 has 6 sensors and needs 6 VTS calibration data.
0122  * MT8173 has 5 sensors and needs 5 VTS calibration data.
0123  * MT2701 has 3 sensors and needs 3 VTS calibration data.
0124  * MT2712 has 4 sensors and needs 4 VTS calibration data.
0125  */
0126 #define CALIB_BUF0_VALID_V1     BIT(0)
0127 #define CALIB_BUF1_ADC_GE_V1(x)     (((x) >> 22) & 0x3ff)
0128 #define CALIB_BUF0_VTS_TS1_V1(x)    (((x) >> 17) & 0x1ff)
0129 #define CALIB_BUF0_VTS_TS2_V1(x)    (((x) >> 8) & 0x1ff)
0130 #define CALIB_BUF1_VTS_TS3_V1(x)    (((x) >> 0) & 0x1ff)
0131 #define CALIB_BUF2_VTS_TS4_V1(x)    (((x) >> 23) & 0x1ff)
0132 #define CALIB_BUF2_VTS_TS5_V1(x)    (((x) >> 5) & 0x1ff)
0133 #define CALIB_BUF2_VTS_TSABB_V1(x)  (((x) >> 14) & 0x1ff)
0134 #define CALIB_BUF0_DEGC_CALI_V1(x)  (((x) >> 1) & 0x3f)
0135 #define CALIB_BUF0_O_SLOPE_V1(x)    (((x) >> 26) & 0x3f)
0136 #define CALIB_BUF0_O_SLOPE_SIGN_V1(x)   (((x) >> 7) & 0x1)
0137 #define CALIB_BUF1_ID_V1(x)     (((x) >> 9) & 0x1)
0138 
0139 /*
0140  * Layout of the fuses providing the calibration data
0141  * These macros could be used for MT7622.
0142  */
0143 #define CALIB_BUF0_ADC_OE_V2(x)     (((x) >> 22) & 0x3ff)
0144 #define CALIB_BUF0_ADC_GE_V2(x)     (((x) >> 12) & 0x3ff)
0145 #define CALIB_BUF0_DEGC_CALI_V2(x)  (((x) >> 6) & 0x3f)
0146 #define CALIB_BUF0_O_SLOPE_V2(x)    (((x) >> 0) & 0x3f)
0147 #define CALIB_BUF1_VTS_TS1_V2(x)    (((x) >> 23) & 0x1ff)
0148 #define CALIB_BUF1_VTS_TS2_V2(x)    (((x) >> 14) & 0x1ff)
0149 #define CALIB_BUF1_VTS_TSABB_V2(x)  (((x) >> 5) & 0x1ff)
0150 #define CALIB_BUF1_VALID_V2(x)      (((x) >> 4) & 0x1)
0151 #define CALIB_BUF1_O_SLOPE_SIGN_V2(x)   (((x) >> 3) & 0x1)
0152 
0153 enum {
0154     VTS1,
0155     VTS2,
0156     VTS3,
0157     VTS4,
0158     VTS5,
0159     VTSABB,
0160     MAX_NUM_VTS,
0161 };
0162 
0163 enum mtk_thermal_version {
0164     MTK_THERMAL_V1 = 1,
0165     MTK_THERMAL_V2,
0166 };
0167 
0168 /* MT2701 thermal sensors */
0169 #define MT2701_TS1  0
0170 #define MT2701_TS2  1
0171 #define MT2701_TSABB    2
0172 
0173 /* AUXADC channel 11 is used for the temperature sensors */
0174 #define MT2701_TEMP_AUXADC_CHANNEL  11
0175 
0176 /* The total number of temperature sensors in the MT2701 */
0177 #define MT2701_NUM_SENSORS  3
0178 
0179 /* The number of sensing points per bank */
0180 #define MT2701_NUM_SENSORS_PER_ZONE 3
0181 
0182 /* The number of controller in the MT2701 */
0183 #define MT2701_NUM_CONTROLLER       1
0184 
0185 /* The calibration coefficient of sensor  */
0186 #define MT2701_CALIBRATION  165
0187 
0188 /* MT2712 thermal sensors */
0189 #define MT2712_TS1  0
0190 #define MT2712_TS2  1
0191 #define MT2712_TS3  2
0192 #define MT2712_TS4  3
0193 
0194 /* AUXADC channel 11 is used for the temperature sensors */
0195 #define MT2712_TEMP_AUXADC_CHANNEL  11
0196 
0197 /* The total number of temperature sensors in the MT2712 */
0198 #define MT2712_NUM_SENSORS  4
0199 
0200 /* The number of sensing points per bank */
0201 #define MT2712_NUM_SENSORS_PER_ZONE 4
0202 
0203 /* The number of controller in the MT2712 */
0204 #define MT2712_NUM_CONTROLLER       1
0205 
0206 /* The calibration coefficient of sensor  */
0207 #define MT2712_CALIBRATION  165
0208 
0209 #define MT7622_TEMP_AUXADC_CHANNEL  11
0210 #define MT7622_NUM_SENSORS      1
0211 #define MT7622_NUM_ZONES        1
0212 #define MT7622_NUM_SENSORS_PER_ZONE 1
0213 #define MT7622_TS1  0
0214 #define MT7622_NUM_CONTROLLER       1
0215 
0216 /* The maximum number of banks */
0217 #define MAX_NUM_ZONES       8
0218 
0219 /* The calibration coefficient of sensor  */
0220 #define MT7622_CALIBRATION  165
0221 
0222 /* MT8183 thermal sensors */
0223 #define MT8183_TS1  0
0224 #define MT8183_TS2  1
0225 #define MT8183_TS3  2
0226 #define MT8183_TS4  3
0227 #define MT8183_TS5  4
0228 #define MT8183_TSABB    5
0229 
0230 /* AUXADC channel  is used for the temperature sensors */
0231 #define MT8183_TEMP_AUXADC_CHANNEL  11
0232 
0233 /* The total number of temperature sensors in the MT8183 */
0234 #define MT8183_NUM_SENSORS  6
0235 
0236 /* The number of banks in the MT8183 */
0237 #define MT8183_NUM_ZONES               1
0238 
0239 /* The number of sensing points per bank */
0240 #define MT8183_NUM_SENSORS_PER_ZONE  6
0241 
0242 /* The number of controller in the MT8183 */
0243 #define MT8183_NUM_CONTROLLER       2
0244 
0245 /* The calibration coefficient of sensor  */
0246 #define MT8183_CALIBRATION  153
0247 
0248 struct mtk_thermal;
0249 
0250 struct thermal_bank_cfg {
0251     unsigned int num_sensors;
0252     const int *sensors;
0253 };
0254 
0255 struct mtk_thermal_bank {
0256     struct mtk_thermal *mt;
0257     int id;
0258 };
0259 
0260 struct mtk_thermal_data {
0261     s32 num_banks;
0262     s32 num_sensors;
0263     s32 auxadc_channel;
0264     const int *vts_index;
0265     const int *sensor_mux_values;
0266     const int *msr;
0267     const int *adcpnp;
0268     const int cali_val;
0269     const int num_controller;
0270     const int *controller_offset;
0271     bool need_switch_bank;
0272     struct thermal_bank_cfg bank_data[MAX_NUM_ZONES];
0273     enum mtk_thermal_version version;
0274 };
0275 
0276 struct mtk_thermal {
0277     struct device *dev;
0278     void __iomem *thermal_base;
0279 
0280     struct clk *clk_peri_therm;
0281     struct clk *clk_auxadc;
0282     /* lock: for getting and putting banks */
0283     struct mutex lock;
0284 
0285     /* Calibration values */
0286     s32 adc_ge;
0287     s32 adc_oe;
0288     s32 degc_cali;
0289     s32 o_slope;
0290     s32 o_slope_sign;
0291     s32 vts[MAX_NUM_VTS];
0292 
0293     const struct mtk_thermal_data *conf;
0294     struct mtk_thermal_bank banks[MAX_NUM_ZONES];
0295 };
0296 
0297 /* MT8183 thermal sensor data */
0298 static const int mt8183_bank_data[MT8183_NUM_SENSORS] = {
0299     MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB
0300 };
0301 
0302 static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = {
0303     TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1
0304 };
0305 
0306 static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = {
0307     TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1,
0308     TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1
0309 };
0310 
0311 static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 };
0312 static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100};
0313 
0314 static const int mt8183_vts_index[MT8183_NUM_SENSORS] = {
0315     VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB
0316 };
0317 
0318 /* MT8173 thermal sensor data */
0319 static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = {
0320     { MT8173_TS2, MT8173_TS3 },
0321     { MT8173_TS2, MT8173_TS4 },
0322     { MT8173_TS1, MT8173_TS2, MT8173_TSABB },
0323     { MT8173_TS2 },
0324 };
0325 
0326 static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = {
0327     TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
0328 };
0329 
0330 static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = {
0331     TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
0332 };
0333 
0334 static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 };
0335 static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, };
0336 
0337 static const int mt8173_vts_index[MT8173_NUM_SENSORS] = {
0338     VTS1, VTS2, VTS3, VTS4, VTSABB
0339 };
0340 
0341 /* MT2701 thermal sensor data */
0342 static const int mt2701_bank_data[MT2701_NUM_SENSORS] = {
0343     MT2701_TS1, MT2701_TS2, MT2701_TSABB
0344 };
0345 
0346 static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = {
0347     TEMP_MSR0, TEMP_MSR1, TEMP_MSR2
0348 };
0349 
0350 static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = {
0351     TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2
0352 };
0353 
0354 static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 };
0355 static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, };
0356 
0357 static const int mt2701_vts_index[MT2701_NUM_SENSORS] = {
0358     VTS1, VTS2, VTS3
0359 };
0360 
0361 /* MT2712 thermal sensor data */
0362 static const int mt2712_bank_data[MT2712_NUM_SENSORS] = {
0363     MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4
0364 };
0365 
0366 static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = {
0367     TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
0368 };
0369 
0370 static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = {
0371     TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
0372 };
0373 
0374 static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 };
0375 static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, };
0376 
0377 static const int mt2712_vts_index[MT2712_NUM_SENSORS] = {
0378     VTS1, VTS2, VTS3, VTS4
0379 };
0380 
0381 /* MT7622 thermal sensor data */
0382 static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, };
0383 static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, };
0384 static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, };
0385 static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, };
0386 static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 };
0387 static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, };
0388 
0389 /*
0390  * The MT8173 thermal controller has four banks. Each bank can read up to
0391  * four temperature sensors simultaneously. The MT8173 has a total of 5
0392  * temperature sensors. We use each bank to measure a certain area of the
0393  * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple
0394  * areas, hence is used in different banks.
0395  *
0396  * The thermal core only gets the maximum temperature of all banks, so
0397  * the bank concept wouldn't be necessary here. However, the SVS (Smart
0398  * Voltage Scaling) unit makes its decisions based on the same bank
0399  * data, and this indeed needs the temperatures of the individual banks
0400  * for making better decisions.
0401  */
0402 static const struct mtk_thermal_data mt8173_thermal_data = {
0403     .auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL,
0404     .num_banks = MT8173_NUM_ZONES,
0405     .num_sensors = MT8173_NUM_SENSORS,
0406     .vts_index = mt8173_vts_index,
0407     .cali_val = MT8173_CALIBRATION,
0408     .num_controller = MT8173_NUM_CONTROLLER,
0409     .controller_offset = mt8173_tc_offset,
0410     .need_switch_bank = true,
0411     .bank_data = {
0412         {
0413             .num_sensors = 2,
0414             .sensors = mt8173_bank_data[0],
0415         }, {
0416             .num_sensors = 2,
0417             .sensors = mt8173_bank_data[1],
0418         }, {
0419             .num_sensors = 3,
0420             .sensors = mt8173_bank_data[2],
0421         }, {
0422             .num_sensors = 1,
0423             .sensors = mt8173_bank_data[3],
0424         },
0425     },
0426     .msr = mt8173_msr,
0427     .adcpnp = mt8173_adcpnp,
0428     .sensor_mux_values = mt8173_mux_values,
0429     .version = MTK_THERMAL_V1,
0430 };
0431 
0432 /*
0433  * The MT2701 thermal controller has one bank, which can read up to
0434  * three temperature sensors simultaneously. The MT2701 has a total of 3
0435  * temperature sensors.
0436  *
0437  * The thermal core only gets the maximum temperature of this one bank,
0438  * so the bank concept wouldn't be necessary here. However, the SVS (Smart
0439  * Voltage Scaling) unit makes its decisions based on the same bank
0440  * data.
0441  */
0442 static const struct mtk_thermal_data mt2701_thermal_data = {
0443     .auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL,
0444     .num_banks = 1,
0445     .num_sensors = MT2701_NUM_SENSORS,
0446     .vts_index = mt2701_vts_index,
0447     .cali_val = MT2701_CALIBRATION,
0448     .num_controller = MT2701_NUM_CONTROLLER,
0449     .controller_offset = mt2701_tc_offset,
0450     .need_switch_bank = true,
0451     .bank_data = {
0452         {
0453             .num_sensors = 3,
0454             .sensors = mt2701_bank_data,
0455         },
0456     },
0457     .msr = mt2701_msr,
0458     .adcpnp = mt2701_adcpnp,
0459     .sensor_mux_values = mt2701_mux_values,
0460     .version = MTK_THERMAL_V1,
0461 };
0462 
0463 /*
0464  * The MT2712 thermal controller has one bank, which can read up to
0465  * four temperature sensors simultaneously. The MT2712 has a total of 4
0466  * temperature sensors.
0467  *
0468  * The thermal core only gets the maximum temperature of this one bank,
0469  * so the bank concept wouldn't be necessary here. However, the SVS (Smart
0470  * Voltage Scaling) unit makes its decisions based on the same bank
0471  * data.
0472  */
0473 static const struct mtk_thermal_data mt2712_thermal_data = {
0474     .auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL,
0475     .num_banks = 1,
0476     .num_sensors = MT2712_NUM_SENSORS,
0477     .vts_index = mt2712_vts_index,
0478     .cali_val = MT2712_CALIBRATION,
0479     .num_controller = MT2712_NUM_CONTROLLER,
0480     .controller_offset = mt2712_tc_offset,
0481     .need_switch_bank = true,
0482     .bank_data = {
0483         {
0484             .num_sensors = 4,
0485             .sensors = mt2712_bank_data,
0486         },
0487     },
0488     .msr = mt2712_msr,
0489     .adcpnp = mt2712_adcpnp,
0490     .sensor_mux_values = mt2712_mux_values,
0491     .version = MTK_THERMAL_V1,
0492 };
0493 
0494 /*
0495  * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data
0496  * access.
0497  */
0498 static const struct mtk_thermal_data mt7622_thermal_data = {
0499     .auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL,
0500     .num_banks = MT7622_NUM_ZONES,
0501     .num_sensors = MT7622_NUM_SENSORS,
0502     .vts_index = mt7622_vts_index,
0503     .cali_val = MT7622_CALIBRATION,
0504     .num_controller = MT7622_NUM_CONTROLLER,
0505     .controller_offset = mt7622_tc_offset,
0506     .need_switch_bank = true,
0507     .bank_data = {
0508         {
0509             .num_sensors = 1,
0510             .sensors = mt7622_bank_data,
0511         },
0512     },
0513     .msr = mt7622_msr,
0514     .adcpnp = mt7622_adcpnp,
0515     .sensor_mux_values = mt7622_mux_values,
0516     .version = MTK_THERMAL_V2,
0517 };
0518 
0519 /*
0520  * The MT8183 thermal controller has one bank for the current SW framework.
0521  * The MT8183 has a total of 6 temperature sensors.
0522  * There are two thermal controller to control the six sensor.
0523  * The first one bind 2 sensor, and the other bind 4 sensors.
0524  * The thermal core only gets the maximum temperature of all sensor, so
0525  * the bank concept wouldn't be necessary here. However, the SVS (Smart
0526  * Voltage Scaling) unit makes its decisions based on the same bank
0527  * data, and this indeed needs the temperatures of the individual banks
0528  * for making better decisions.
0529  */
0530 static const struct mtk_thermal_data mt8183_thermal_data = {
0531     .auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL,
0532     .num_banks = MT8183_NUM_ZONES,
0533     .num_sensors = MT8183_NUM_SENSORS,
0534     .vts_index = mt8183_vts_index,
0535     .cali_val = MT8183_CALIBRATION,
0536     .num_controller = MT8183_NUM_CONTROLLER,
0537     .controller_offset = mt8183_tc_offset,
0538     .need_switch_bank = false,
0539     .bank_data = {
0540         {
0541             .num_sensors = 6,
0542             .sensors = mt8183_bank_data,
0543         },
0544     },
0545 
0546     .msr = mt8183_msr,
0547     .adcpnp = mt8183_adcpnp,
0548     .sensor_mux_values = mt8183_mux_values,
0549     .version = MTK_THERMAL_V1,
0550 };
0551 
0552 /**
0553  * raw_to_mcelsius - convert a raw ADC value to mcelsius
0554  * @mt: The thermal controller
0555  * @sensno: sensor number
0556  * @raw:    raw ADC value
0557  *
0558  * This converts the raw ADC value to mcelsius using the SoC specific
0559  * calibration constants
0560  */
0561 static int raw_to_mcelsius_v1(struct mtk_thermal *mt, int sensno, s32 raw)
0562 {
0563     s32 tmp;
0564 
0565     raw &= 0xfff;
0566 
0567     tmp = 203450520 << 3;
0568     tmp /= mt->conf->cali_val + mt->o_slope;
0569     tmp /= 10000 + mt->adc_ge;
0570     tmp *= raw - mt->vts[sensno] - 3350;
0571     tmp >>= 3;
0572 
0573     return mt->degc_cali * 500 - tmp;
0574 }
0575 
0576 static int raw_to_mcelsius_v2(struct mtk_thermal *mt, int sensno, s32 raw)
0577 {
0578     s32 format_1;
0579     s32 format_2;
0580     s32 g_oe;
0581     s32 g_gain;
0582     s32 g_x_roomt;
0583     s32 tmp;
0584 
0585     if (raw == 0)
0586         return 0;
0587 
0588     raw &= 0xfff;
0589     g_gain = 10000 + (((mt->adc_ge - 512) * 10000) >> 12);
0590     g_oe = mt->adc_oe - 512;
0591     format_1 = mt->vts[VTS2] + 3105 - g_oe;
0592     format_2 = (mt->degc_cali * 10) >> 1;
0593     g_x_roomt = (((format_1 * 10000) >> 12) * 10000) / g_gain;
0594 
0595     tmp = (((((raw - g_oe) * 10000) >> 12) * 10000) / g_gain) - g_x_roomt;
0596     tmp = tmp * 10 * 100 / 11;
0597 
0598     if (mt->o_slope_sign == 0)
0599         tmp = tmp / (165 - mt->o_slope);
0600     else
0601         tmp = tmp / (165 + mt->o_slope);
0602 
0603     return (format_2 - tmp) * 100;
0604 }
0605 
0606 /**
0607  * mtk_thermal_get_bank - get bank
0608  * @bank:   The bank
0609  *
0610  * The bank registers are banked, we have to select a bank in the
0611  * PTPCORESEL register to access it.
0612  */
0613 static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank)
0614 {
0615     struct mtk_thermal *mt = bank->mt;
0616     u32 val;
0617 
0618     if (mt->conf->need_switch_bank) {
0619         mutex_lock(&mt->lock);
0620 
0621         val = readl(mt->thermal_base + PTPCORESEL);
0622         val &= ~0xf;
0623         val |= bank->id;
0624         writel(val, mt->thermal_base + PTPCORESEL);
0625     }
0626 }
0627 
0628 /**
0629  * mtk_thermal_put_bank - release bank
0630  * @bank:   The bank
0631  *
0632  * release a bank previously taken with mtk_thermal_get_bank,
0633  */
0634 static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank)
0635 {
0636     struct mtk_thermal *mt = bank->mt;
0637 
0638     if (mt->conf->need_switch_bank)
0639         mutex_unlock(&mt->lock);
0640 }
0641 
0642 /**
0643  * mtk_thermal_bank_temperature - get the temperature of a bank
0644  * @bank:   The bank
0645  *
0646  * The temperature of a bank is considered the maximum temperature of
0647  * the sensors associated to the bank.
0648  */
0649 static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank)
0650 {
0651     struct mtk_thermal *mt = bank->mt;
0652     const struct mtk_thermal_data *conf = mt->conf;
0653     int i, temp = INT_MIN, max = INT_MIN;
0654     u32 raw;
0655 
0656     for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) {
0657         raw = readl(mt->thermal_base + conf->msr[i]);
0658 
0659         if (mt->conf->version == MTK_THERMAL_V1) {
0660             temp = raw_to_mcelsius_v1(
0661                 mt, conf->bank_data[bank->id].sensors[i], raw);
0662         } else {
0663             temp = raw_to_mcelsius_v2(
0664                 mt, conf->bank_data[bank->id].sensors[i], raw);
0665         }
0666 
0667         /*
0668          * The first read of a sensor often contains very high bogus
0669          * temperature value. Filter these out so that the system does
0670          * not immediately shut down.
0671          */
0672         if (temp > 200000)
0673             temp = 0;
0674 
0675         if (temp > max)
0676             max = temp;
0677     }
0678 
0679     return max;
0680 }
0681 
0682 static int mtk_read_temp(void *data, int *temperature)
0683 {
0684     struct mtk_thermal *mt = data;
0685     int i;
0686     int tempmax = INT_MIN;
0687 
0688     for (i = 0; i < mt->conf->num_banks; i++) {
0689         struct mtk_thermal_bank *bank = &mt->banks[i];
0690 
0691         mtk_thermal_get_bank(bank);
0692 
0693         tempmax = max(tempmax, mtk_thermal_bank_temperature(bank));
0694 
0695         mtk_thermal_put_bank(bank);
0696     }
0697 
0698     *temperature = tempmax;
0699 
0700     return 0;
0701 }
0702 
0703 static const struct thermal_zone_of_device_ops mtk_thermal_ops = {
0704     .get_temp = mtk_read_temp,
0705 };
0706 
0707 static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num,
0708                   u32 apmixed_phys_base, u32 auxadc_phys_base,
0709                   int ctrl_id)
0710 {
0711     struct mtk_thermal_bank *bank = &mt->banks[num];
0712     const struct mtk_thermal_data *conf = mt->conf;
0713     int i;
0714 
0715     int offset = mt->conf->controller_offset[ctrl_id];
0716     void __iomem *controller_base = mt->thermal_base + offset;
0717 
0718     bank->id = num;
0719     bank->mt = mt;
0720 
0721     mtk_thermal_get_bank(bank);
0722 
0723     /* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */
0724     writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1);
0725 
0726     /*
0727      * filt interval is 1 * 46.540us = 46.54us,
0728      * sen interval is 429 * 46.540us = 19.96ms
0729      */
0730     writel(TEMP_MONCTL2_FILTER_INTERVAL(1) |
0731             TEMP_MONCTL2_SENSOR_INTERVAL(429),
0732             controller_base + TEMP_MONCTL2);
0733 
0734     /* poll is set to 10u */
0735     writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768),
0736            controller_base + TEMP_AHBPOLL);
0737 
0738     /* temperature sampling control, 1 sample */
0739     writel(0x0, controller_base + TEMP_MSRCTL0);
0740 
0741     /* exceed this polling time, IRQ would be inserted */
0742     writel(0xffffffff, controller_base + TEMP_AHBTO);
0743 
0744     /* number of interrupts per event, 1 is enough */
0745     writel(0x0, controller_base + TEMP_MONIDET0);
0746     writel(0x0, controller_base + TEMP_MONIDET1);
0747 
0748     /*
0749      * The MT8173 thermal controller does not have its own ADC. Instead it
0750      * uses AHB bus accesses to control the AUXADC. To do this the thermal
0751      * controller has to be programmed with the physical addresses of the
0752      * AUXADC registers and with the various bit positions in the AUXADC.
0753      * Also the thermal controller controls a mux in the APMIXEDSYS register
0754      * space.
0755      */
0756 
0757     /*
0758      * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0)
0759      * automatically by hw
0760      */
0761     writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX);
0762 
0763     /* AHB address for auxadc mux selection */
0764     writel(auxadc_phys_base + AUXADC_CON1_CLR_V,
0765            controller_base + TEMP_ADCMUXADDR);
0766 
0767     if (mt->conf->version == MTK_THERMAL_V1) {
0768         /* AHB address for pnp sensor mux selection */
0769         writel(apmixed_phys_base + APMIXED_SYS_TS_CON1,
0770                controller_base + TEMP_PNPMUXADDR);
0771     }
0772 
0773     /* AHB value for auxadc enable */
0774     writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN);
0775 
0776     /* AHB address for auxadc enable (channel 0 immediate mode selected) */
0777     writel(auxadc_phys_base + AUXADC_CON1_SET_V,
0778            controller_base + TEMP_ADCENADDR);
0779 
0780     /* AHB address for auxadc valid bit */
0781     writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
0782            controller_base + TEMP_ADCVALIDADDR);
0783 
0784     /* AHB address for auxadc voltage output */
0785     writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
0786            controller_base + TEMP_ADCVOLTADDR);
0787 
0788     /* read valid & voltage are at the same register */
0789     writel(0x0, controller_base + TEMP_RDCTRL);
0790 
0791     /* indicate where the valid bit is */
0792     writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12),
0793            controller_base + TEMP_ADCVALIDMASK);
0794 
0795     /* no shift */
0796     writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT);
0797 
0798     /* enable auxadc mux write transaction */
0799     writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
0800         controller_base + TEMP_ADCWRITECTRL);
0801 
0802     for (i = 0; i < conf->bank_data[num].num_sensors; i++)
0803         writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]],
0804                mt->thermal_base + conf->adcpnp[i]);
0805 
0806     writel((1 << conf->bank_data[num].num_sensors) - 1,
0807            controller_base + TEMP_MONCTL0);
0808 
0809     writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE |
0810            TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
0811            controller_base + TEMP_ADCWRITECTRL);
0812 
0813     mtk_thermal_put_bank(bank);
0814 }
0815 
0816 static u64 of_get_phys_base(struct device_node *np)
0817 {
0818     u64 size64;
0819     const __be32 *regaddr_p;
0820 
0821     regaddr_p = of_get_address(np, 0, &size64, NULL);
0822     if (!regaddr_p)
0823         return OF_BAD_ADDR;
0824 
0825     return of_translate_address(np, regaddr_p);
0826 }
0827 
0828 static int mtk_thermal_extract_efuse_v1(struct mtk_thermal *mt, u32 *buf)
0829 {
0830     int i;
0831 
0832     if (!(buf[0] & CALIB_BUF0_VALID_V1))
0833         return -EINVAL;
0834 
0835     mt->adc_ge = CALIB_BUF1_ADC_GE_V1(buf[1]);
0836 
0837     for (i = 0; i < mt->conf->num_sensors; i++) {
0838         switch (mt->conf->vts_index[i]) {
0839         case VTS1:
0840             mt->vts[VTS1] = CALIB_BUF0_VTS_TS1_V1(buf[0]);
0841             break;
0842         case VTS2:
0843             mt->vts[VTS2] = CALIB_BUF0_VTS_TS2_V1(buf[0]);
0844             break;
0845         case VTS3:
0846             mt->vts[VTS3] = CALIB_BUF1_VTS_TS3_V1(buf[1]);
0847             break;
0848         case VTS4:
0849             mt->vts[VTS4] = CALIB_BUF2_VTS_TS4_V1(buf[2]);
0850             break;
0851         case VTS5:
0852             mt->vts[VTS5] = CALIB_BUF2_VTS_TS5_V1(buf[2]);
0853             break;
0854         case VTSABB:
0855             mt->vts[VTSABB] =
0856                 CALIB_BUF2_VTS_TSABB_V1(buf[2]);
0857             break;
0858         default:
0859             break;
0860         }
0861     }
0862 
0863     mt->degc_cali = CALIB_BUF0_DEGC_CALI_V1(buf[0]);
0864     if (CALIB_BUF1_ID_V1(buf[1]) &
0865         CALIB_BUF0_O_SLOPE_SIGN_V1(buf[0]))
0866         mt->o_slope = -CALIB_BUF0_O_SLOPE_V1(buf[0]);
0867     else
0868         mt->o_slope = CALIB_BUF0_O_SLOPE_V1(buf[0]);
0869 
0870     return 0;
0871 }
0872 
0873 static int mtk_thermal_extract_efuse_v2(struct mtk_thermal *mt, u32 *buf)
0874 {
0875     if (!CALIB_BUF1_VALID_V2(buf[1]))
0876         return -EINVAL;
0877 
0878     mt->adc_oe = CALIB_BUF0_ADC_OE_V2(buf[0]);
0879     mt->adc_ge = CALIB_BUF0_ADC_GE_V2(buf[0]);
0880     mt->degc_cali = CALIB_BUF0_DEGC_CALI_V2(buf[0]);
0881     mt->o_slope = CALIB_BUF0_O_SLOPE_V2(buf[0]);
0882     mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V2(buf[1]);
0883     mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V2(buf[1]);
0884     mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V2(buf[1]);
0885     mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V2(buf[1]);
0886 
0887     return 0;
0888 }
0889 
0890 static int mtk_thermal_get_calibration_data(struct device *dev,
0891                         struct mtk_thermal *mt)
0892 {
0893     struct nvmem_cell *cell;
0894     u32 *buf;
0895     size_t len;
0896     int i, ret = 0;
0897 
0898     /* Start with default values */
0899     mt->adc_ge = 512;
0900     for (i = 0; i < mt->conf->num_sensors; i++)
0901         mt->vts[i] = 260;
0902     mt->degc_cali = 40;
0903     mt->o_slope = 0;
0904 
0905     cell = nvmem_cell_get(dev, "calibration-data");
0906     if (IS_ERR(cell)) {
0907         if (PTR_ERR(cell) == -EPROBE_DEFER)
0908             return PTR_ERR(cell);
0909         return 0;
0910     }
0911 
0912     buf = (u32 *)nvmem_cell_read(cell, &len);
0913 
0914     nvmem_cell_put(cell);
0915 
0916     if (IS_ERR(buf))
0917         return PTR_ERR(buf);
0918 
0919     if (len < 3 * sizeof(u32)) {
0920         dev_warn(dev, "invalid calibration data\n");
0921         ret = -EINVAL;
0922         goto out;
0923     }
0924 
0925     if (mt->conf->version == MTK_THERMAL_V1)
0926         ret = mtk_thermal_extract_efuse_v1(mt, buf);
0927     else
0928         ret = mtk_thermal_extract_efuse_v2(mt, buf);
0929 
0930     if (ret) {
0931         dev_info(dev, "Device not calibrated, using default calibration values\n");
0932         ret = 0;
0933     }
0934 
0935 out:
0936     kfree(buf);
0937 
0938     return ret;
0939 }
0940 
0941 static const struct of_device_id mtk_thermal_of_match[] = {
0942     {
0943         .compatible = "mediatek,mt8173-thermal",
0944         .data = (void *)&mt8173_thermal_data,
0945     },
0946     {
0947         .compatible = "mediatek,mt2701-thermal",
0948         .data = (void *)&mt2701_thermal_data,
0949     },
0950     {
0951         .compatible = "mediatek,mt2712-thermal",
0952         .data = (void *)&mt2712_thermal_data,
0953     },
0954     {
0955         .compatible = "mediatek,mt7622-thermal",
0956         .data = (void *)&mt7622_thermal_data,
0957     },
0958     {
0959         .compatible = "mediatek,mt8183-thermal",
0960         .data = (void *)&mt8183_thermal_data,
0961     }, {
0962     },
0963 };
0964 MODULE_DEVICE_TABLE(of, mtk_thermal_of_match);
0965 
0966 static void mtk_thermal_turn_on_buffer(void __iomem *apmixed_base)
0967 {
0968     int tmp;
0969 
0970     tmp = readl(apmixed_base + APMIXED_SYS_TS_CON1);
0971     tmp &= ~(0x37);
0972     tmp |= 0x1;
0973     writel(tmp, apmixed_base + APMIXED_SYS_TS_CON1);
0974     udelay(200);
0975 }
0976 
0977 static void mtk_thermal_release_periodic_ts(struct mtk_thermal *mt,
0978                         void __iomem *auxadc_base)
0979 {
0980     int tmp;
0981 
0982     writel(0x800, auxadc_base + AUXADC_CON1_SET_V);
0983     writel(0x1, mt->thermal_base + TEMP_MONCTL0);
0984     tmp = readl(mt->thermal_base + TEMP_MSRCTL1);
0985     writel((tmp & (~0x10e)), mt->thermal_base + TEMP_MSRCTL1);
0986 }
0987 
0988 static int mtk_thermal_probe(struct platform_device *pdev)
0989 {
0990     int ret, i, ctrl_id;
0991     struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node;
0992     struct mtk_thermal *mt;
0993     struct resource *res;
0994     u64 auxadc_phys_base, apmixed_phys_base;
0995     struct thermal_zone_device *tzdev;
0996     void __iomem *apmixed_base, *auxadc_base;
0997 
0998     mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL);
0999     if (!mt)
1000         return -ENOMEM;
1001 
1002     mt->conf = of_device_get_match_data(&pdev->dev);
1003 
1004     mt->clk_peri_therm = devm_clk_get(&pdev->dev, "therm");
1005     if (IS_ERR(mt->clk_peri_therm))
1006         return PTR_ERR(mt->clk_peri_therm);
1007 
1008     mt->clk_auxadc = devm_clk_get(&pdev->dev, "auxadc");
1009     if (IS_ERR(mt->clk_auxadc))
1010         return PTR_ERR(mt->clk_auxadc);
1011 
1012     res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1013     mt->thermal_base = devm_ioremap_resource(&pdev->dev, res);
1014     if (IS_ERR(mt->thermal_base))
1015         return PTR_ERR(mt->thermal_base);
1016 
1017     ret = mtk_thermal_get_calibration_data(&pdev->dev, mt);
1018     if (ret)
1019         return ret;
1020 
1021     mutex_init(&mt->lock);
1022 
1023     mt->dev = &pdev->dev;
1024 
1025     auxadc = of_parse_phandle(np, "mediatek,auxadc", 0);
1026     if (!auxadc) {
1027         dev_err(&pdev->dev, "missing auxadc node\n");
1028         return -ENODEV;
1029     }
1030 
1031     auxadc_base = of_iomap(auxadc, 0);
1032     auxadc_phys_base = of_get_phys_base(auxadc);
1033 
1034     of_node_put(auxadc);
1035 
1036     if (auxadc_phys_base == OF_BAD_ADDR) {
1037         dev_err(&pdev->dev, "Can't get auxadc phys address\n");
1038         return -EINVAL;
1039     }
1040 
1041     apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0);
1042     if (!apmixedsys) {
1043         dev_err(&pdev->dev, "missing apmixedsys node\n");
1044         return -ENODEV;
1045     }
1046 
1047     apmixed_base = of_iomap(apmixedsys, 0);
1048     apmixed_phys_base = of_get_phys_base(apmixedsys);
1049 
1050     of_node_put(apmixedsys);
1051 
1052     if (apmixed_phys_base == OF_BAD_ADDR) {
1053         dev_err(&pdev->dev, "Can't get auxadc phys address\n");
1054         return -EINVAL;
1055     }
1056 
1057     ret = device_reset_optional(&pdev->dev);
1058     if (ret)
1059         return ret;
1060 
1061     ret = clk_prepare_enable(mt->clk_auxadc);
1062     if (ret) {
1063         dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret);
1064         return ret;
1065     }
1066 
1067     ret = clk_prepare_enable(mt->clk_peri_therm);
1068     if (ret) {
1069         dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret);
1070         goto err_disable_clk_auxadc;
1071     }
1072 
1073     if (mt->conf->version == MTK_THERMAL_V2) {
1074         mtk_thermal_turn_on_buffer(apmixed_base);
1075         mtk_thermal_release_periodic_ts(mt, auxadc_base);
1076     }
1077 
1078     for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++)
1079         for (i = 0; i < mt->conf->num_banks; i++)
1080             mtk_thermal_init_bank(mt, i, apmixed_phys_base,
1081                           auxadc_phys_base, ctrl_id);
1082 
1083     platform_set_drvdata(pdev, mt);
1084 
1085     tzdev = devm_thermal_zone_of_sensor_register(&pdev->dev, 0, mt,
1086                              &mtk_thermal_ops);
1087     if (IS_ERR(tzdev)) {
1088         ret = PTR_ERR(tzdev);
1089         goto err_disable_clk_peri_therm;
1090     }
1091 
1092     ret = devm_thermal_add_hwmon_sysfs(tzdev);
1093     if (ret)
1094         dev_warn(&pdev->dev, "error in thermal_add_hwmon_sysfs");
1095 
1096     return 0;
1097 
1098 err_disable_clk_peri_therm:
1099     clk_disable_unprepare(mt->clk_peri_therm);
1100 err_disable_clk_auxadc:
1101     clk_disable_unprepare(mt->clk_auxadc);
1102 
1103     return ret;
1104 }
1105 
1106 static int mtk_thermal_remove(struct platform_device *pdev)
1107 {
1108     struct mtk_thermal *mt = platform_get_drvdata(pdev);
1109 
1110     clk_disable_unprepare(mt->clk_peri_therm);
1111     clk_disable_unprepare(mt->clk_auxadc);
1112 
1113     return 0;
1114 }
1115 
1116 static struct platform_driver mtk_thermal_driver = {
1117     .probe = mtk_thermal_probe,
1118     .remove = mtk_thermal_remove,
1119     .driver = {
1120         .name = "mtk-thermal",
1121         .of_match_table = mtk_thermal_of_match,
1122     },
1123 };
1124 
1125 module_platform_driver(mtk_thermal_driver);
1126 
1127 MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>");
1128 MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>");
1129 MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>");
1130 MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
1131 MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>");
1132 MODULE_DESCRIPTION("Mediatek thermal driver");
1133 MODULE_LICENSE("GPL v2");