0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/math.h>
0009 #include <linux/math64.h>
0010 #include <linux/module.h>
0011 #include <linux/init.h>
0012 #include <linux/kernel.h>
0013 #include <linux/pm_runtime.h>
0014 #include <linux/err.h>
0015 #include <linux/types.h>
0016 #include <linux/of_platform.h>
0017 #include <linux/io.h>
0018 #include <linux/thermal.h>
0019 #include <linux/of.h>
0020 #include <linux/delay.h>
0021 #include <linux/slab.h>
0022
0023 #define K3_VTM_DEVINFO_PWR0_OFFSET 0x4
0024 #define K3_VTM_DEVINFO_PWR0_TEMPSENS_CT_MASK 0xf0
0025 #define K3_VTM_TMPSENS0_CTRL_OFFSET 0x300
0026 #define K3_VTM_MISC_CTRL_OFFSET 0xc
0027 #define K3_VTM_TMPSENS_STAT_OFFSET 0x8
0028 #define K3_VTM_ANYMAXT_OUTRG_ALERT_EN 0x1
0029 #define K3_VTM_MISC_CTRL2_OFFSET 0x10
0030 #define K3_VTM_TS_STAT_DTEMP_MASK 0x3ff
0031 #define K3_VTM_MAX_NUM_TS 8
0032 #define K3_VTM_TMPSENS_CTRL_SOC BIT(5)
0033 #define K3_VTM_TMPSENS_CTRL_CLRZ BIT(6)
0034 #define K3_VTM_TMPSENS_CTRL_CLKON_REQ BIT(7)
0035 #define K3_VTM_TMPSENS_CTRL_MAXT_OUTRG_EN BIT(11)
0036
0037 #define K3_VTM_CORRECTION_TEMP_CNT 3
0038
0039 #define MINUS40CREF 5
0040 #define PLUS30CREF 253
0041 #define PLUS125CREF 730
0042 #define PLUS150CREF 940
0043
0044 #define TABLE_SIZE 1024
0045 #define MAX_TEMP 123000
0046 #define COOL_DOWN_TEMP 105000
0047
0048 #define FACTORS_REDUCTION 13
0049 static int *derived_table;
0050
0051 static int compute_value(int index, const s64 *factors, int nr_factors,
0052 int reduction)
0053 {
0054 s64 value = 0;
0055 int i;
0056
0057 for (i = 0; i < nr_factors; i++)
0058 value += factors[i] * int_pow(index, i);
0059
0060 return (int)div64_s64(value, int_pow(10, reduction));
0061 }
0062
0063 static void init_table(int factors_size, int *table, const s64 *factors)
0064 {
0065 int i;
0066
0067 for (i = 0; i < TABLE_SIZE; i++)
0068 table[i] = compute_value(i, factors, factors_size,
0069 FACTORS_REDUCTION);
0070 }
0071
0072
0073
0074
0075
0076
0077 struct err_values {
0078 int refs[4];
0079 int errs[4];
0080 };
0081
0082 static void create_table_segments(struct err_values *err_vals, int seg,
0083 int *ref_table)
0084 {
0085 int m = 0, c, num, den, i, err, idx1, idx2, err1, err2, ref1, ref2;
0086
0087 if (seg == 0)
0088 idx1 = 0;
0089 else
0090 idx1 = err_vals->refs[seg];
0091
0092 idx2 = err_vals->refs[seg + 1];
0093 err1 = err_vals->errs[seg];
0094 err2 = err_vals->errs[seg + 1];
0095 ref1 = err_vals->refs[seg];
0096 ref2 = err_vals->refs[seg + 1];
0097
0098
0099
0100
0101
0102 num = ref2 - ref1;
0103 den = err2 - err1;
0104 if (den)
0105 m = num / den;
0106 c = ref2 - m * err2;
0107
0108
0109
0110
0111
0112 if (den != 0 && m != 0) {
0113 for (i = idx1; i <= idx2; i++) {
0114 err = (i - c) / m;
0115 if (((i + err) < 0) || ((i + err) >= TABLE_SIZE))
0116 continue;
0117 derived_table[i] = ref_table[i + err];
0118 }
0119 } else {
0120 for (i = idx1; i <= idx2; i++) {
0121 if (((i + err1) < 0) || ((i + err1) >= TABLE_SIZE))
0122 continue;
0123 derived_table[i] = ref_table[i + err1];
0124 }
0125 }
0126 }
0127
0128 static int prep_lookup_table(struct err_values *err_vals, int *ref_table)
0129 {
0130 int inc, i, seg;
0131
0132
0133
0134
0135
0136
0137
0138 for (seg = 0; seg < 3; seg++)
0139 create_table_segments(err_vals, seg, ref_table);
0140
0141
0142 i = 0;
0143 while (!derived_table[i])
0144 i++;
0145
0146
0147
0148
0149
0150 if (i) {
0151
0152 while (i--)
0153 derived_table[i] = derived_table[i + 1] - 300;
0154 }
0155
0156
0157
0158
0159
0160 i = TABLE_SIZE - 1;
0161 while (!derived_table[i])
0162 i--;
0163
0164 i++;
0165 inc = 1;
0166 while (i < TABLE_SIZE) {
0167 derived_table[i] = derived_table[i - 1] + inc * 100;
0168 i++;
0169 }
0170
0171 return 0;
0172 }
0173
0174 struct k3_thermal_data;
0175
0176 struct k3_j72xx_bandgap {
0177 struct device *dev;
0178 void __iomem *base;
0179 void __iomem *cfg2_base;
0180 void __iomem *fuse_base;
0181 struct k3_thermal_data *ts_data[K3_VTM_MAX_NUM_TS];
0182 };
0183
0184
0185 struct k3_thermal_data {
0186 struct k3_j72xx_bandgap *bgp;
0187 u32 ctrl_offset;
0188 u32 stat_offset;
0189 };
0190
0191 static int two_cmp(int tmp, int mask)
0192 {
0193 tmp = ~(tmp);
0194 tmp &= mask;
0195 tmp += 1;
0196
0197
0198 return (0 - tmp);
0199 }
0200
0201 static unsigned int vtm_get_best_value(unsigned int s0, unsigned int s1,
0202 unsigned int s2)
0203 {
0204 int d01 = abs(s0 - s1);
0205 int d02 = abs(s0 - s2);
0206 int d12 = abs(s1 - s2);
0207
0208 if (d01 <= d02 && d01 <= d12)
0209 return (s0 + s1) / 2;
0210
0211 if (d02 <= d01 && d02 <= d12)
0212 return (s0 + s2) / 2;
0213
0214 return (s1 + s2) / 2;
0215 }
0216
0217 static inline int k3_bgp_read_temp(struct k3_thermal_data *devdata,
0218 int *temp)
0219 {
0220 struct k3_j72xx_bandgap *bgp;
0221 unsigned int dtemp, s0, s1, s2;
0222
0223 bgp = devdata->bgp;
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233 s0 = readl(bgp->base + devdata->stat_offset) &
0234 K3_VTM_TS_STAT_DTEMP_MASK;
0235 s1 = readl(bgp->base + devdata->stat_offset) &
0236 K3_VTM_TS_STAT_DTEMP_MASK;
0237 s2 = readl(bgp->base + devdata->stat_offset) &
0238 K3_VTM_TS_STAT_DTEMP_MASK;
0239 dtemp = vtm_get_best_value(s0, s1, s2);
0240
0241 if (dtemp < 0 || dtemp >= TABLE_SIZE)
0242 return -EINVAL;
0243
0244 *temp = derived_table[dtemp];
0245
0246 return 0;
0247 }
0248
0249
0250 static int k3_thermal_get_temp(void *devdata, int *temp)
0251 {
0252 struct k3_thermal_data *data = devdata;
0253 int ret = 0;
0254
0255 ret = k3_bgp_read_temp(data, temp);
0256 if (ret)
0257 return ret;
0258
0259 return ret;
0260 }
0261
0262 static const struct thermal_zone_of_device_ops k3_of_thermal_ops = {
0263 .get_temp = k3_thermal_get_temp,
0264 };
0265
0266 static int k3_j72xx_bandgap_temp_to_adc_code(int temp)
0267 {
0268 int low = 0, high = TABLE_SIZE - 1, mid;
0269
0270 if (temp > 160000 || temp < -50000)
0271 return -EINVAL;
0272
0273
0274 while (low < (high - 1)) {
0275 mid = (low + high) / 2;
0276 if (temp <= derived_table[mid])
0277 high = mid;
0278 else
0279 low = mid;
0280 }
0281
0282 return mid;
0283 }
0284
0285 static void get_efuse_values(int id, struct k3_thermal_data *data, int *err,
0286 struct k3_j72xx_bandgap *bgp)
0287 {
0288 int i, tmp, pow;
0289 int ct_offsets[5][K3_VTM_CORRECTION_TEMP_CNT] = {
0290 { 0x0, 0x8, 0x4 },
0291 { 0x0, 0x8, 0x4 },
0292 { 0x0, -1, 0x4 },
0293 { 0x0, 0xC, -1 },
0294 { 0x0, 0xc, 0x8 }
0295 };
0296 int ct_bm[5][K3_VTM_CORRECTION_TEMP_CNT] = {
0297 { 0x3f, 0x1fe000, 0x1ff },
0298 { 0xfc0, 0x1fe000, 0x3fe00 },
0299 { 0x3f000, 0x7f800000, 0x7fc0000 },
0300 { 0xfc0000, 0x1fe0, 0x1f800000 },
0301 { 0x3f000000, 0x1fe000, 0x1ff0 }
0302 };
0303
0304 for (i = 0; i < 3; i++) {
0305
0306 if (ct_offsets[id][i] == -1 && i == 1) {
0307
0308 tmp = (readl(bgp->fuse_base + 0x8) & 0xE0000000) >> (29);
0309 tmp |= ((readl(bgp->fuse_base + 0xC) & 0x1F) << 3);
0310 pow = tmp & 0x80;
0311 } else if (ct_offsets[id][i] == -1 && i == 2) {
0312
0313 tmp = (readl(bgp->fuse_base + 0x4) & 0xF8000000) >> (27);
0314 tmp |= ((readl(bgp->fuse_base + 0x8) & 0xF) << 5);
0315 pow = tmp & 0x100;
0316 } else {
0317 tmp = readl(bgp->fuse_base + ct_offsets[id][i]);
0318 tmp &= ct_bm[id][i];
0319 tmp = tmp >> __ffs(ct_bm[id][i]);
0320
0321
0322 pow = ct_bm[id][i] >> __ffs(ct_bm[id][i]);
0323 pow += 1;
0324 pow /= 2;
0325 }
0326
0327
0328 if (tmp & pow) {
0329
0330 tmp = two_cmp(tmp, ct_bm[id][i] >> __ffs(ct_bm[id][i]));
0331 }
0332 err[i] = tmp;
0333 }
0334
0335
0336 err[i] = 0;
0337 }
0338
0339 static void print_look_up_table(struct device *dev, int *ref_table)
0340 {
0341 int i;
0342
0343 dev_dbg(dev, "The contents of derived array\n");
0344 dev_dbg(dev, "Code Temperature\n");
0345 for (i = 0; i < TABLE_SIZE; i++)
0346 dev_dbg(dev, "%d %d %d\n", i, derived_table[i], ref_table[i]);
0347 }
0348
0349 struct k3_j72xx_bandgap_data {
0350 unsigned int has_errata_i2128;
0351 };
0352
0353 static int k3_j72xx_bandgap_probe(struct platform_device *pdev)
0354 {
0355 int ret = 0, cnt, val, id;
0356 int high_max, low_temp;
0357 struct resource *res;
0358 struct device *dev = &pdev->dev;
0359 struct k3_j72xx_bandgap *bgp;
0360 struct k3_thermal_data *data;
0361 int workaround_needed = 0;
0362 const struct k3_j72xx_bandgap_data *driver_data;
0363 struct thermal_zone_device *ti_thermal;
0364 int *ref_table;
0365 struct err_values err_vals;
0366
0367 const s64 golden_factors[] = {
0368 -490019999999999936,
0369 3251200000000000,
0370 -1705800000000,
0371 603730000,
0372 -92627,
0373 };
0374
0375 const s64 pvt_wa_factors[] = {
0376 -415230000000000000,
0377 3126600000000000,
0378 -1157800000000,
0379 };
0380
0381 bgp = devm_kzalloc(&pdev->dev, sizeof(*bgp), GFP_KERNEL);
0382 if (!bgp)
0383 return -ENOMEM;
0384
0385 bgp->dev = dev;
0386 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
0387 bgp->base = devm_ioremap_resource(dev, res);
0388 if (IS_ERR(bgp->base))
0389 return PTR_ERR(bgp->base);
0390
0391 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
0392 bgp->cfg2_base = devm_ioremap_resource(dev, res);
0393 if (IS_ERR(bgp->cfg2_base))
0394 return PTR_ERR(bgp->cfg2_base);
0395
0396 res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
0397 bgp->fuse_base = devm_ioremap_resource(dev, res);
0398 if (IS_ERR(bgp->fuse_base))
0399 return PTR_ERR(bgp->fuse_base);
0400
0401 driver_data = of_device_get_match_data(dev);
0402 if (driver_data)
0403 workaround_needed = driver_data->has_errata_i2128;
0404
0405 pm_runtime_enable(dev);
0406 ret = pm_runtime_get_sync(dev);
0407 if (ret < 0) {
0408 pm_runtime_put_noidle(dev);
0409 pm_runtime_disable(dev);
0410 return ret;
0411 }
0412
0413
0414 val = readl(bgp->base + K3_VTM_DEVINFO_PWR0_OFFSET);
0415 cnt = val & K3_VTM_DEVINFO_PWR0_TEMPSENS_CT_MASK;
0416 cnt >>= __ffs(K3_VTM_DEVINFO_PWR0_TEMPSENS_CT_MASK);
0417
0418 data = devm_kcalloc(bgp->dev, cnt, sizeof(*data), GFP_KERNEL);
0419 if (!data) {
0420 ret = -ENOMEM;
0421 goto err_alloc;
0422 }
0423
0424 ref_table = kzalloc(sizeof(*ref_table) * TABLE_SIZE, GFP_KERNEL);
0425 if (!ref_table) {
0426 ret = -ENOMEM;
0427 goto err_alloc;
0428 }
0429
0430 derived_table = devm_kzalloc(bgp->dev, sizeof(*derived_table) * TABLE_SIZE,
0431 GFP_KERNEL);
0432 if (!derived_table) {
0433 ret = -ENOMEM;
0434 goto err_free_ref_table;
0435 }
0436
0437
0438 if (workaround_needed && (readl(bgp->fuse_base + 0x0) & 0xc0000000) == 0xc0000000)
0439 workaround_needed = false;
0440
0441 dev_dbg(bgp->dev, "Work around %sneeded\n",
0442 workaround_needed ? "not " : "");
0443
0444 if (!workaround_needed)
0445 init_table(5, ref_table, golden_factors);
0446 else
0447 init_table(3, ref_table, pvt_wa_factors);
0448
0449
0450 for (id = 0; id < cnt; id++) {
0451 data[id].bgp = bgp;
0452 data[id].ctrl_offset = K3_VTM_TMPSENS0_CTRL_OFFSET + id * 0x20;
0453 data[id].stat_offset = data[id].ctrl_offset +
0454 K3_VTM_TMPSENS_STAT_OFFSET;
0455
0456 if (workaround_needed) {
0457
0458 err_vals.refs[0] = MINUS40CREF;
0459 err_vals.refs[1] = PLUS30CREF;
0460 err_vals.refs[2] = PLUS125CREF;
0461 err_vals.refs[3] = PLUS150CREF;
0462 get_efuse_values(id, &data[id], err_vals.errs, bgp);
0463 }
0464
0465 if (id == 0 && workaround_needed)
0466 prep_lookup_table(&err_vals, ref_table);
0467 else if (id == 0 && !workaround_needed)
0468 memcpy(derived_table, ref_table, TABLE_SIZE * 4);
0469
0470 val = readl(data[id].bgp->cfg2_base + data[id].ctrl_offset);
0471 val |= (K3_VTM_TMPSENS_CTRL_MAXT_OUTRG_EN |
0472 K3_VTM_TMPSENS_CTRL_SOC |
0473 K3_VTM_TMPSENS_CTRL_CLRZ | BIT(4));
0474 writel(val, data[id].bgp->cfg2_base + data[id].ctrl_offset);
0475
0476 bgp->ts_data[id] = &data[id];
0477 ti_thermal =
0478 devm_thermal_zone_of_sensor_register(bgp->dev, id,
0479 &data[id],
0480 &k3_of_thermal_ops);
0481 if (IS_ERR(ti_thermal)) {
0482 dev_err(bgp->dev, "thermal zone device is NULL\n");
0483 ret = PTR_ERR(ti_thermal);
0484 goto err_free_ref_table;
0485 }
0486 }
0487
0488
0489
0490
0491
0492
0493
0494
0495 high_max = k3_j72xx_bandgap_temp_to_adc_code(MAX_TEMP);
0496 low_temp = k3_j72xx_bandgap_temp_to_adc_code(COOL_DOWN_TEMP);
0497
0498 writel((low_temp << 16) | high_max, data[0].bgp->cfg2_base +
0499 K3_VTM_MISC_CTRL2_OFFSET);
0500 mdelay(100);
0501 writel(K3_VTM_ANYMAXT_OUTRG_ALERT_EN, data[0].bgp->cfg2_base +
0502 K3_VTM_MISC_CTRL_OFFSET);
0503
0504 platform_set_drvdata(pdev, bgp);
0505
0506 print_look_up_table(dev, ref_table);
0507
0508
0509
0510
0511 kfree(ref_table);
0512
0513 return 0;
0514
0515 err_free_ref_table:
0516 kfree(ref_table);
0517
0518 err_alloc:
0519 pm_runtime_put_sync(&pdev->dev);
0520 pm_runtime_disable(&pdev->dev);
0521
0522 return ret;
0523 }
0524
0525 static int k3_j72xx_bandgap_remove(struct platform_device *pdev)
0526 {
0527 pm_runtime_put_sync(&pdev->dev);
0528 pm_runtime_disable(&pdev->dev);
0529
0530 return 0;
0531 }
0532
0533 static const struct k3_j72xx_bandgap_data k3_j72xx_bandgap_j721e_data = {
0534 .has_errata_i2128 = 1,
0535 };
0536
0537 static const struct k3_j72xx_bandgap_data k3_j72xx_bandgap_j7200_data = {
0538 .has_errata_i2128 = 0,
0539 };
0540
0541 static const struct of_device_id of_k3_j72xx_bandgap_match[] = {
0542 {
0543 .compatible = "ti,j721e-vtm",
0544 .data = &k3_j72xx_bandgap_j721e_data,
0545 },
0546 {
0547 .compatible = "ti,j7200-vtm",
0548 .data = &k3_j72xx_bandgap_j7200_data,
0549 },
0550 { },
0551 };
0552 MODULE_DEVICE_TABLE(of, of_k3_j72xx_bandgap_match);
0553
0554 static struct platform_driver k3_j72xx_bandgap_sensor_driver = {
0555 .probe = k3_j72xx_bandgap_probe,
0556 .remove = k3_j72xx_bandgap_remove,
0557 .driver = {
0558 .name = "k3-j72xx-soc-thermal",
0559 .of_match_table = of_k3_j72xx_bandgap_match,
0560 },
0561 };
0562
0563 module_platform_driver(k3_j72xx_bandgap_sensor_driver);
0564
0565 MODULE_DESCRIPTION("K3 bandgap temperature sensor driver");
0566 MODULE_LICENSE("GPL");
0567 MODULE_AUTHOR("J Keerthy <j-keerthy@ti.com>");