Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*******************************************************************************
0003  * Filename:  target_core_transport.c
0004  *
0005  * This file contains the Generic Target Engine Core.
0006  *
0007  * (c) Copyright 2002-2013 Datera, Inc.
0008  *
0009  * Nicholas A. Bellinger <nab@kernel.org>
0010  *
0011  ******************************************************************************/
0012 
0013 #include <linux/net.h>
0014 #include <linux/delay.h>
0015 #include <linux/string.h>
0016 #include <linux/timer.h>
0017 #include <linux/slab.h>
0018 #include <linux/spinlock.h>
0019 #include <linux/kthread.h>
0020 #include <linux/in.h>
0021 #include <linux/cdrom.h>
0022 #include <linux/module.h>
0023 #include <linux/ratelimit.h>
0024 #include <linux/vmalloc.h>
0025 #include <asm/unaligned.h>
0026 #include <net/sock.h>
0027 #include <net/tcp.h>
0028 #include <scsi/scsi_proto.h>
0029 #include <scsi/scsi_common.h>
0030 
0031 #include <target/target_core_base.h>
0032 #include <target/target_core_backend.h>
0033 #include <target/target_core_fabric.h>
0034 
0035 #include "target_core_internal.h"
0036 #include "target_core_alua.h"
0037 #include "target_core_pr.h"
0038 #include "target_core_ua.h"
0039 
0040 #define CREATE_TRACE_POINTS
0041 #include <trace/events/target.h>
0042 
0043 static struct workqueue_struct *target_completion_wq;
0044 static struct workqueue_struct *target_submission_wq;
0045 static struct kmem_cache *se_sess_cache;
0046 struct kmem_cache *se_ua_cache;
0047 struct kmem_cache *t10_pr_reg_cache;
0048 struct kmem_cache *t10_alua_lu_gp_cache;
0049 struct kmem_cache *t10_alua_lu_gp_mem_cache;
0050 struct kmem_cache *t10_alua_tg_pt_gp_cache;
0051 struct kmem_cache *t10_alua_lba_map_cache;
0052 struct kmem_cache *t10_alua_lba_map_mem_cache;
0053 
0054 static void transport_complete_task_attr(struct se_cmd *cmd);
0055 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
0056 static void transport_handle_queue_full(struct se_cmd *cmd,
0057         struct se_device *dev, int err, bool write_pending);
0058 static void target_complete_ok_work(struct work_struct *work);
0059 
0060 int init_se_kmem_caches(void)
0061 {
0062     se_sess_cache = kmem_cache_create("se_sess_cache",
0063             sizeof(struct se_session), __alignof__(struct se_session),
0064             0, NULL);
0065     if (!se_sess_cache) {
0066         pr_err("kmem_cache_create() for struct se_session"
0067                 " failed\n");
0068         goto out;
0069     }
0070     se_ua_cache = kmem_cache_create("se_ua_cache",
0071             sizeof(struct se_ua), __alignof__(struct se_ua),
0072             0, NULL);
0073     if (!se_ua_cache) {
0074         pr_err("kmem_cache_create() for struct se_ua failed\n");
0075         goto out_free_sess_cache;
0076     }
0077     t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
0078             sizeof(struct t10_pr_registration),
0079             __alignof__(struct t10_pr_registration), 0, NULL);
0080     if (!t10_pr_reg_cache) {
0081         pr_err("kmem_cache_create() for struct t10_pr_registration"
0082                 " failed\n");
0083         goto out_free_ua_cache;
0084     }
0085     t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
0086             sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
0087             0, NULL);
0088     if (!t10_alua_lu_gp_cache) {
0089         pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
0090                 " failed\n");
0091         goto out_free_pr_reg_cache;
0092     }
0093     t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
0094             sizeof(struct t10_alua_lu_gp_member),
0095             __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
0096     if (!t10_alua_lu_gp_mem_cache) {
0097         pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
0098                 "cache failed\n");
0099         goto out_free_lu_gp_cache;
0100     }
0101     t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
0102             sizeof(struct t10_alua_tg_pt_gp),
0103             __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
0104     if (!t10_alua_tg_pt_gp_cache) {
0105         pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
0106                 "cache failed\n");
0107         goto out_free_lu_gp_mem_cache;
0108     }
0109     t10_alua_lba_map_cache = kmem_cache_create(
0110             "t10_alua_lba_map_cache",
0111             sizeof(struct t10_alua_lba_map),
0112             __alignof__(struct t10_alua_lba_map), 0, NULL);
0113     if (!t10_alua_lba_map_cache) {
0114         pr_err("kmem_cache_create() for t10_alua_lba_map_"
0115                 "cache failed\n");
0116         goto out_free_tg_pt_gp_cache;
0117     }
0118     t10_alua_lba_map_mem_cache = kmem_cache_create(
0119             "t10_alua_lba_map_mem_cache",
0120             sizeof(struct t10_alua_lba_map_member),
0121             __alignof__(struct t10_alua_lba_map_member), 0, NULL);
0122     if (!t10_alua_lba_map_mem_cache) {
0123         pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
0124                 "cache failed\n");
0125         goto out_free_lba_map_cache;
0126     }
0127 
0128     target_completion_wq = alloc_workqueue("target_completion",
0129                            WQ_MEM_RECLAIM, 0);
0130     if (!target_completion_wq)
0131         goto out_free_lba_map_mem_cache;
0132 
0133     target_submission_wq = alloc_workqueue("target_submission",
0134                            WQ_MEM_RECLAIM, 0);
0135     if (!target_submission_wq)
0136         goto out_free_completion_wq;
0137 
0138     return 0;
0139 
0140 out_free_completion_wq:
0141     destroy_workqueue(target_completion_wq);
0142 out_free_lba_map_mem_cache:
0143     kmem_cache_destroy(t10_alua_lba_map_mem_cache);
0144 out_free_lba_map_cache:
0145     kmem_cache_destroy(t10_alua_lba_map_cache);
0146 out_free_tg_pt_gp_cache:
0147     kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
0148 out_free_lu_gp_mem_cache:
0149     kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
0150 out_free_lu_gp_cache:
0151     kmem_cache_destroy(t10_alua_lu_gp_cache);
0152 out_free_pr_reg_cache:
0153     kmem_cache_destroy(t10_pr_reg_cache);
0154 out_free_ua_cache:
0155     kmem_cache_destroy(se_ua_cache);
0156 out_free_sess_cache:
0157     kmem_cache_destroy(se_sess_cache);
0158 out:
0159     return -ENOMEM;
0160 }
0161 
0162 void release_se_kmem_caches(void)
0163 {
0164     destroy_workqueue(target_submission_wq);
0165     destroy_workqueue(target_completion_wq);
0166     kmem_cache_destroy(se_sess_cache);
0167     kmem_cache_destroy(se_ua_cache);
0168     kmem_cache_destroy(t10_pr_reg_cache);
0169     kmem_cache_destroy(t10_alua_lu_gp_cache);
0170     kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
0171     kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
0172     kmem_cache_destroy(t10_alua_lba_map_cache);
0173     kmem_cache_destroy(t10_alua_lba_map_mem_cache);
0174 }
0175 
0176 /* This code ensures unique mib indexes are handed out. */
0177 static DEFINE_SPINLOCK(scsi_mib_index_lock);
0178 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
0179 
0180 /*
0181  * Allocate a new row index for the entry type specified
0182  */
0183 u32 scsi_get_new_index(scsi_index_t type)
0184 {
0185     u32 new_index;
0186 
0187     BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
0188 
0189     spin_lock(&scsi_mib_index_lock);
0190     new_index = ++scsi_mib_index[type];
0191     spin_unlock(&scsi_mib_index_lock);
0192 
0193     return new_index;
0194 }
0195 
0196 void transport_subsystem_check_init(void)
0197 {
0198     int ret;
0199     static int sub_api_initialized;
0200 
0201     if (sub_api_initialized)
0202         return;
0203 
0204     ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
0205     if (ret != 0)
0206         pr_err("Unable to load target_core_iblock\n");
0207 
0208     ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
0209     if (ret != 0)
0210         pr_err("Unable to load target_core_file\n");
0211 
0212     ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
0213     if (ret != 0)
0214         pr_err("Unable to load target_core_pscsi\n");
0215 
0216     ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
0217     if (ret != 0)
0218         pr_err("Unable to load target_core_user\n");
0219 
0220     sub_api_initialized = 1;
0221 }
0222 
0223 static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
0224 {
0225     struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);
0226 
0227     wake_up(&sess->cmd_count_wq);
0228 }
0229 
0230 /**
0231  * transport_init_session - initialize a session object
0232  * @se_sess: Session object pointer.
0233  *
0234  * The caller must have zero-initialized @se_sess before calling this function.
0235  */
0236 int transport_init_session(struct se_session *se_sess)
0237 {
0238     INIT_LIST_HEAD(&se_sess->sess_list);
0239     INIT_LIST_HEAD(&se_sess->sess_acl_list);
0240     spin_lock_init(&se_sess->sess_cmd_lock);
0241     init_waitqueue_head(&se_sess->cmd_count_wq);
0242     init_completion(&se_sess->stop_done);
0243     atomic_set(&se_sess->stopped, 0);
0244     return percpu_ref_init(&se_sess->cmd_count,
0245                    target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
0246 }
0247 EXPORT_SYMBOL(transport_init_session);
0248 
0249 void transport_uninit_session(struct se_session *se_sess)
0250 {
0251     /*
0252      * Drivers like iscsi and loop do not call target_stop_session
0253      * during session shutdown so we have to drop the ref taken at init
0254      * time here.
0255      */
0256     if (!atomic_read(&se_sess->stopped))
0257         percpu_ref_put(&se_sess->cmd_count);
0258 
0259     percpu_ref_exit(&se_sess->cmd_count);
0260 }
0261 
0262 /**
0263  * transport_alloc_session - allocate a session object and initialize it
0264  * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
0265  */
0266 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
0267 {
0268     struct se_session *se_sess;
0269     int ret;
0270 
0271     se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
0272     if (!se_sess) {
0273         pr_err("Unable to allocate struct se_session from"
0274                 " se_sess_cache\n");
0275         return ERR_PTR(-ENOMEM);
0276     }
0277     ret = transport_init_session(se_sess);
0278     if (ret < 0) {
0279         kmem_cache_free(se_sess_cache, se_sess);
0280         return ERR_PTR(ret);
0281     }
0282     se_sess->sup_prot_ops = sup_prot_ops;
0283 
0284     return se_sess;
0285 }
0286 EXPORT_SYMBOL(transport_alloc_session);
0287 
0288 /**
0289  * transport_alloc_session_tags - allocate target driver private data
0290  * @se_sess:  Session pointer.
0291  * @tag_num:  Maximum number of in-flight commands between initiator and target.
0292  * @tag_size: Size in bytes of the private data a target driver associates with
0293  *        each command.
0294  */
0295 int transport_alloc_session_tags(struct se_session *se_sess,
0296                      unsigned int tag_num, unsigned int tag_size)
0297 {
0298     int rc;
0299 
0300     se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
0301                      GFP_KERNEL | __GFP_RETRY_MAYFAIL);
0302     if (!se_sess->sess_cmd_map) {
0303         pr_err("Unable to allocate se_sess->sess_cmd_map\n");
0304         return -ENOMEM;
0305     }
0306 
0307     rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
0308             false, GFP_KERNEL, NUMA_NO_NODE);
0309     if (rc < 0) {
0310         pr_err("Unable to init se_sess->sess_tag_pool,"
0311             " tag_num: %u\n", tag_num);
0312         kvfree(se_sess->sess_cmd_map);
0313         se_sess->sess_cmd_map = NULL;
0314         return -ENOMEM;
0315     }
0316 
0317     return 0;
0318 }
0319 EXPORT_SYMBOL(transport_alloc_session_tags);
0320 
0321 /**
0322  * transport_init_session_tags - allocate a session and target driver private data
0323  * @tag_num:  Maximum number of in-flight commands between initiator and target.
0324  * @tag_size: Size in bytes of the private data a target driver associates with
0325  *        each command.
0326  * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
0327  */
0328 static struct se_session *
0329 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
0330                 enum target_prot_op sup_prot_ops)
0331 {
0332     struct se_session *se_sess;
0333     int rc;
0334 
0335     if (tag_num != 0 && !tag_size) {
0336         pr_err("init_session_tags called with percpu-ida tag_num:"
0337                " %u, but zero tag_size\n", tag_num);
0338         return ERR_PTR(-EINVAL);
0339     }
0340     if (!tag_num && tag_size) {
0341         pr_err("init_session_tags called with percpu-ida tag_size:"
0342                " %u, but zero tag_num\n", tag_size);
0343         return ERR_PTR(-EINVAL);
0344     }
0345 
0346     se_sess = transport_alloc_session(sup_prot_ops);
0347     if (IS_ERR(se_sess))
0348         return se_sess;
0349 
0350     rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
0351     if (rc < 0) {
0352         transport_free_session(se_sess);
0353         return ERR_PTR(-ENOMEM);
0354     }
0355 
0356     return se_sess;
0357 }
0358 
0359 /*
0360  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
0361  */
0362 void __transport_register_session(
0363     struct se_portal_group *se_tpg,
0364     struct se_node_acl *se_nacl,
0365     struct se_session *se_sess,
0366     void *fabric_sess_ptr)
0367 {
0368     const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
0369     unsigned char buf[PR_REG_ISID_LEN];
0370     unsigned long flags;
0371 
0372     se_sess->se_tpg = se_tpg;
0373     se_sess->fabric_sess_ptr = fabric_sess_ptr;
0374     /*
0375      * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
0376      *
0377      * Only set for struct se_session's that will actually be moving I/O.
0378      * eg: *NOT* discovery sessions.
0379      */
0380     if (se_nacl) {
0381         /*
0382          *
0383          * Determine if fabric allows for T10-PI feature bits exposed to
0384          * initiators for device backends with !dev->dev_attrib.pi_prot_type.
0385          *
0386          * If so, then always save prot_type on a per se_node_acl node
0387          * basis and re-instate the previous sess_prot_type to avoid
0388          * disabling PI from below any previously initiator side
0389          * registered LUNs.
0390          */
0391         if (se_nacl->saved_prot_type)
0392             se_sess->sess_prot_type = se_nacl->saved_prot_type;
0393         else if (tfo->tpg_check_prot_fabric_only)
0394             se_sess->sess_prot_type = se_nacl->saved_prot_type =
0395                     tfo->tpg_check_prot_fabric_only(se_tpg);
0396         /*
0397          * If the fabric module supports an ISID based TransportID,
0398          * save this value in binary from the fabric I_T Nexus now.
0399          */
0400         if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
0401             memset(&buf[0], 0, PR_REG_ISID_LEN);
0402             se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
0403                     &buf[0], PR_REG_ISID_LEN);
0404             se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
0405         }
0406 
0407         spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
0408         /*
0409          * The se_nacl->nacl_sess pointer will be set to the
0410          * last active I_T Nexus for each struct se_node_acl.
0411          */
0412         se_nacl->nacl_sess = se_sess;
0413 
0414         list_add_tail(&se_sess->sess_acl_list,
0415                   &se_nacl->acl_sess_list);
0416         spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
0417     }
0418     list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
0419 
0420     pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
0421         se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
0422 }
0423 EXPORT_SYMBOL(__transport_register_session);
0424 
0425 void transport_register_session(
0426     struct se_portal_group *se_tpg,
0427     struct se_node_acl *se_nacl,
0428     struct se_session *se_sess,
0429     void *fabric_sess_ptr)
0430 {
0431     unsigned long flags;
0432 
0433     spin_lock_irqsave(&se_tpg->session_lock, flags);
0434     __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
0435     spin_unlock_irqrestore(&se_tpg->session_lock, flags);
0436 }
0437 EXPORT_SYMBOL(transport_register_session);
0438 
0439 struct se_session *
0440 target_setup_session(struct se_portal_group *tpg,
0441              unsigned int tag_num, unsigned int tag_size,
0442              enum target_prot_op prot_op,
0443              const char *initiatorname, void *private,
0444              int (*callback)(struct se_portal_group *,
0445                      struct se_session *, void *))
0446 {
0447     struct se_session *sess;
0448 
0449     /*
0450      * If the fabric driver is using percpu-ida based pre allocation
0451      * of I/O descriptor tags, go ahead and perform that setup now..
0452      */
0453     if (tag_num != 0)
0454         sess = transport_init_session_tags(tag_num, tag_size, prot_op);
0455     else
0456         sess = transport_alloc_session(prot_op);
0457 
0458     if (IS_ERR(sess))
0459         return sess;
0460 
0461     sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
0462                     (unsigned char *)initiatorname);
0463     if (!sess->se_node_acl) {
0464         transport_free_session(sess);
0465         return ERR_PTR(-EACCES);
0466     }
0467     /*
0468      * Go ahead and perform any remaining fabric setup that is
0469      * required before transport_register_session().
0470      */
0471     if (callback != NULL) {
0472         int rc = callback(tpg, sess, private);
0473         if (rc) {
0474             transport_free_session(sess);
0475             return ERR_PTR(rc);
0476         }
0477     }
0478 
0479     transport_register_session(tpg, sess->se_node_acl, sess, private);
0480     return sess;
0481 }
0482 EXPORT_SYMBOL(target_setup_session);
0483 
0484 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
0485 {
0486     struct se_session *se_sess;
0487     ssize_t len = 0;
0488 
0489     spin_lock_bh(&se_tpg->session_lock);
0490     list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
0491         if (!se_sess->se_node_acl)
0492             continue;
0493         if (!se_sess->se_node_acl->dynamic_node_acl)
0494             continue;
0495         if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
0496             break;
0497 
0498         len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
0499                 se_sess->se_node_acl->initiatorname);
0500         len += 1; /* Include NULL terminator */
0501     }
0502     spin_unlock_bh(&se_tpg->session_lock);
0503 
0504     return len;
0505 }
0506 EXPORT_SYMBOL(target_show_dynamic_sessions);
0507 
0508 static void target_complete_nacl(struct kref *kref)
0509 {
0510     struct se_node_acl *nacl = container_of(kref,
0511                 struct se_node_acl, acl_kref);
0512     struct se_portal_group *se_tpg = nacl->se_tpg;
0513 
0514     if (!nacl->dynamic_stop) {
0515         complete(&nacl->acl_free_comp);
0516         return;
0517     }
0518 
0519     mutex_lock(&se_tpg->acl_node_mutex);
0520     list_del_init(&nacl->acl_list);
0521     mutex_unlock(&se_tpg->acl_node_mutex);
0522 
0523     core_tpg_wait_for_nacl_pr_ref(nacl);
0524     core_free_device_list_for_node(nacl, se_tpg);
0525     kfree(nacl);
0526 }
0527 
0528 void target_put_nacl(struct se_node_acl *nacl)
0529 {
0530     kref_put(&nacl->acl_kref, target_complete_nacl);
0531 }
0532 EXPORT_SYMBOL(target_put_nacl);
0533 
0534 void transport_deregister_session_configfs(struct se_session *se_sess)
0535 {
0536     struct se_node_acl *se_nacl;
0537     unsigned long flags;
0538     /*
0539      * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
0540      */
0541     se_nacl = se_sess->se_node_acl;
0542     if (se_nacl) {
0543         spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
0544         if (!list_empty(&se_sess->sess_acl_list))
0545             list_del_init(&se_sess->sess_acl_list);
0546         /*
0547          * If the session list is empty, then clear the pointer.
0548          * Otherwise, set the struct se_session pointer from the tail
0549          * element of the per struct se_node_acl active session list.
0550          */
0551         if (list_empty(&se_nacl->acl_sess_list))
0552             se_nacl->nacl_sess = NULL;
0553         else {
0554             se_nacl->nacl_sess = container_of(
0555                     se_nacl->acl_sess_list.prev,
0556                     struct se_session, sess_acl_list);
0557         }
0558         spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
0559     }
0560 }
0561 EXPORT_SYMBOL(transport_deregister_session_configfs);
0562 
0563 void transport_free_session(struct se_session *se_sess)
0564 {
0565     struct se_node_acl *se_nacl = se_sess->se_node_acl;
0566 
0567     /*
0568      * Drop the se_node_acl->nacl_kref obtained from within
0569      * core_tpg_get_initiator_node_acl().
0570      */
0571     if (se_nacl) {
0572         struct se_portal_group *se_tpg = se_nacl->se_tpg;
0573         const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
0574         unsigned long flags;
0575 
0576         se_sess->se_node_acl = NULL;
0577 
0578         /*
0579          * Also determine if we need to drop the extra ->cmd_kref if
0580          * it had been previously dynamically generated, and
0581          * the endpoint is not caching dynamic ACLs.
0582          */
0583         mutex_lock(&se_tpg->acl_node_mutex);
0584         if (se_nacl->dynamic_node_acl &&
0585             !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
0586             spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
0587             if (list_empty(&se_nacl->acl_sess_list))
0588                 se_nacl->dynamic_stop = true;
0589             spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
0590 
0591             if (se_nacl->dynamic_stop)
0592                 list_del_init(&se_nacl->acl_list);
0593         }
0594         mutex_unlock(&se_tpg->acl_node_mutex);
0595 
0596         if (se_nacl->dynamic_stop)
0597             target_put_nacl(se_nacl);
0598 
0599         target_put_nacl(se_nacl);
0600     }
0601     if (se_sess->sess_cmd_map) {
0602         sbitmap_queue_free(&se_sess->sess_tag_pool);
0603         kvfree(se_sess->sess_cmd_map);
0604     }
0605     transport_uninit_session(se_sess);
0606     kmem_cache_free(se_sess_cache, se_sess);
0607 }
0608 EXPORT_SYMBOL(transport_free_session);
0609 
0610 static int target_release_res(struct se_device *dev, void *data)
0611 {
0612     struct se_session *sess = data;
0613 
0614     if (dev->reservation_holder == sess)
0615         target_release_reservation(dev);
0616     return 0;
0617 }
0618 
0619 void transport_deregister_session(struct se_session *se_sess)
0620 {
0621     struct se_portal_group *se_tpg = se_sess->se_tpg;
0622     unsigned long flags;
0623 
0624     if (!se_tpg) {
0625         transport_free_session(se_sess);
0626         return;
0627     }
0628 
0629     spin_lock_irqsave(&se_tpg->session_lock, flags);
0630     list_del(&se_sess->sess_list);
0631     se_sess->se_tpg = NULL;
0632     se_sess->fabric_sess_ptr = NULL;
0633     spin_unlock_irqrestore(&se_tpg->session_lock, flags);
0634 
0635     /*
0636      * Since the session is being removed, release SPC-2
0637      * reservations held by the session that is disappearing.
0638      */
0639     target_for_each_device(target_release_res, se_sess);
0640 
0641     pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
0642         se_tpg->se_tpg_tfo->fabric_name);
0643     /*
0644      * If last kref is dropping now for an explicit NodeACL, awake sleeping
0645      * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
0646      * removal context from within transport_free_session() code.
0647      *
0648      * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
0649      * to release all remaining generate_node_acl=1 created ACL resources.
0650      */
0651 
0652     transport_free_session(se_sess);
0653 }
0654 EXPORT_SYMBOL(transport_deregister_session);
0655 
0656 void target_remove_session(struct se_session *se_sess)
0657 {
0658     transport_deregister_session_configfs(se_sess);
0659     transport_deregister_session(se_sess);
0660 }
0661 EXPORT_SYMBOL(target_remove_session);
0662 
0663 static void target_remove_from_state_list(struct se_cmd *cmd)
0664 {
0665     struct se_device *dev = cmd->se_dev;
0666     unsigned long flags;
0667 
0668     if (!dev)
0669         return;
0670 
0671     spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
0672     if (cmd->state_active) {
0673         list_del(&cmd->state_list);
0674         cmd->state_active = false;
0675     }
0676     spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
0677 }
0678 
0679 static void target_remove_from_tmr_list(struct se_cmd *cmd)
0680 {
0681     struct se_device *dev = NULL;
0682     unsigned long flags;
0683 
0684     if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
0685         dev = cmd->se_tmr_req->tmr_dev;
0686 
0687     if (dev) {
0688         spin_lock_irqsave(&dev->se_tmr_lock, flags);
0689         if (cmd->se_tmr_req->tmr_dev)
0690             list_del_init(&cmd->se_tmr_req->tmr_list);
0691         spin_unlock_irqrestore(&dev->se_tmr_lock, flags);
0692     }
0693 }
0694 /*
0695  * This function is called by the target core after the target core has
0696  * finished processing a SCSI command or SCSI TMF. Both the regular command
0697  * processing code and the code for aborting commands can call this
0698  * function. CMD_T_STOP is set if and only if another thread is waiting
0699  * inside transport_wait_for_tasks() for t_transport_stop_comp.
0700  */
0701 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
0702 {
0703     unsigned long flags;
0704 
0705     spin_lock_irqsave(&cmd->t_state_lock, flags);
0706     /*
0707      * Determine if frontend context caller is requesting the stopping of
0708      * this command for frontend exceptions.
0709      */
0710     if (cmd->transport_state & CMD_T_STOP) {
0711         pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
0712             __func__, __LINE__, cmd->tag);
0713 
0714         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
0715 
0716         complete_all(&cmd->t_transport_stop_comp);
0717         return 1;
0718     }
0719     cmd->transport_state &= ~CMD_T_ACTIVE;
0720     spin_unlock_irqrestore(&cmd->t_state_lock, flags);
0721 
0722     /*
0723      * Some fabric modules like tcm_loop can release their internally
0724      * allocated I/O reference and struct se_cmd now.
0725      *
0726      * Fabric modules are expected to return '1' here if the se_cmd being
0727      * passed is released at this point, or zero if not being released.
0728      */
0729     return cmd->se_tfo->check_stop_free(cmd);
0730 }
0731 
0732 static void transport_lun_remove_cmd(struct se_cmd *cmd)
0733 {
0734     struct se_lun *lun = cmd->se_lun;
0735 
0736     if (!lun)
0737         return;
0738 
0739     target_remove_from_state_list(cmd);
0740     target_remove_from_tmr_list(cmd);
0741 
0742     if (cmpxchg(&cmd->lun_ref_active, true, false))
0743         percpu_ref_put(&lun->lun_ref);
0744 
0745     /*
0746      * Clear struct se_cmd->se_lun before the handoff to FE.
0747      */
0748     cmd->se_lun = NULL;
0749 }
0750 
0751 static void target_complete_failure_work(struct work_struct *work)
0752 {
0753     struct se_cmd *cmd = container_of(work, struct se_cmd, work);
0754 
0755     transport_generic_request_failure(cmd, cmd->sense_reason);
0756 }
0757 
0758 /*
0759  * Used when asking transport to copy Sense Data from the underlying
0760  * Linux/SCSI struct scsi_cmnd
0761  */
0762 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
0763 {
0764     struct se_device *dev = cmd->se_dev;
0765 
0766     WARN_ON(!cmd->se_lun);
0767 
0768     if (!dev)
0769         return NULL;
0770 
0771     if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
0772         return NULL;
0773 
0774     cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
0775 
0776     pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
0777         dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
0778     return cmd->sense_buffer;
0779 }
0780 
0781 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
0782 {
0783     unsigned char *cmd_sense_buf;
0784     unsigned long flags;
0785 
0786     spin_lock_irqsave(&cmd->t_state_lock, flags);
0787     cmd_sense_buf = transport_get_sense_buffer(cmd);
0788     if (!cmd_sense_buf) {
0789         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
0790         return;
0791     }
0792 
0793     cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
0794     memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
0795     spin_unlock_irqrestore(&cmd->t_state_lock, flags);
0796 }
0797 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
0798 
0799 static void target_handle_abort(struct se_cmd *cmd)
0800 {
0801     bool tas = cmd->transport_state & CMD_T_TAS;
0802     bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
0803     int ret;
0804 
0805     pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
0806 
0807     if (tas) {
0808         if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
0809             cmd->scsi_status = SAM_STAT_TASK_ABORTED;
0810             pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
0811                  cmd->t_task_cdb[0], cmd->tag);
0812             trace_target_cmd_complete(cmd);
0813             ret = cmd->se_tfo->queue_status(cmd);
0814             if (ret) {
0815                 transport_handle_queue_full(cmd, cmd->se_dev,
0816                                 ret, false);
0817                 return;
0818             }
0819         } else {
0820             cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
0821             cmd->se_tfo->queue_tm_rsp(cmd);
0822         }
0823     } else {
0824         /*
0825          * Allow the fabric driver to unmap any resources before
0826          * releasing the descriptor via TFO->release_cmd().
0827          */
0828         cmd->se_tfo->aborted_task(cmd);
0829         if (ack_kref)
0830             WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
0831         /*
0832          * To do: establish a unit attention condition on the I_T
0833          * nexus associated with cmd. See also the paragraph "Aborting
0834          * commands" in SAM.
0835          */
0836     }
0837 
0838     WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
0839 
0840     transport_lun_remove_cmd(cmd);
0841 
0842     transport_cmd_check_stop_to_fabric(cmd);
0843 }
0844 
0845 static void target_abort_work(struct work_struct *work)
0846 {
0847     struct se_cmd *cmd = container_of(work, struct se_cmd, work);
0848 
0849     target_handle_abort(cmd);
0850 }
0851 
0852 static bool target_cmd_interrupted(struct se_cmd *cmd)
0853 {
0854     int post_ret;
0855 
0856     if (cmd->transport_state & CMD_T_ABORTED) {
0857         if (cmd->transport_complete_callback)
0858             cmd->transport_complete_callback(cmd, false, &post_ret);
0859         INIT_WORK(&cmd->work, target_abort_work);
0860         queue_work(target_completion_wq, &cmd->work);
0861         return true;
0862     } else if (cmd->transport_state & CMD_T_STOP) {
0863         if (cmd->transport_complete_callback)
0864             cmd->transport_complete_callback(cmd, false, &post_ret);
0865         complete_all(&cmd->t_transport_stop_comp);
0866         return true;
0867     }
0868 
0869     return false;
0870 }
0871 
0872 /* May be called from interrupt context so must not sleep. */
0873 void target_complete_cmd_with_sense(struct se_cmd *cmd, u8 scsi_status,
0874                     sense_reason_t sense_reason)
0875 {
0876     struct se_wwn *wwn = cmd->se_sess->se_tpg->se_tpg_wwn;
0877     int success, cpu;
0878     unsigned long flags;
0879 
0880     if (target_cmd_interrupted(cmd))
0881         return;
0882 
0883     cmd->scsi_status = scsi_status;
0884     cmd->sense_reason = sense_reason;
0885 
0886     spin_lock_irqsave(&cmd->t_state_lock, flags);
0887     switch (cmd->scsi_status) {
0888     case SAM_STAT_CHECK_CONDITION:
0889         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
0890             success = 1;
0891         else
0892             success = 0;
0893         break;
0894     default:
0895         success = 1;
0896         break;
0897     }
0898 
0899     cmd->t_state = TRANSPORT_COMPLETE;
0900     cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
0901     spin_unlock_irqrestore(&cmd->t_state_lock, flags);
0902 
0903     INIT_WORK(&cmd->work, success ? target_complete_ok_work :
0904           target_complete_failure_work);
0905 
0906     if (!wwn || wwn->cmd_compl_affinity == SE_COMPL_AFFINITY_CPUID)
0907         cpu = cmd->cpuid;
0908     else
0909         cpu = wwn->cmd_compl_affinity;
0910 
0911     queue_work_on(cpu, target_completion_wq, &cmd->work);
0912 }
0913 EXPORT_SYMBOL(target_complete_cmd_with_sense);
0914 
0915 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
0916 {
0917     target_complete_cmd_with_sense(cmd, scsi_status, scsi_status ?
0918                   TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE :
0919                   TCM_NO_SENSE);
0920 }
0921 EXPORT_SYMBOL(target_complete_cmd);
0922 
0923 void target_set_cmd_data_length(struct se_cmd *cmd, int length)
0924 {
0925     if (length < cmd->data_length) {
0926         if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
0927             cmd->residual_count += cmd->data_length - length;
0928         } else {
0929             cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
0930             cmd->residual_count = cmd->data_length - length;
0931         }
0932 
0933         cmd->data_length = length;
0934     }
0935 }
0936 EXPORT_SYMBOL(target_set_cmd_data_length);
0937 
0938 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
0939 {
0940     if (scsi_status == SAM_STAT_GOOD ||
0941         cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) {
0942         target_set_cmd_data_length(cmd, length);
0943     }
0944 
0945     target_complete_cmd(cmd, scsi_status);
0946 }
0947 EXPORT_SYMBOL(target_complete_cmd_with_length);
0948 
0949 static void target_add_to_state_list(struct se_cmd *cmd)
0950 {
0951     struct se_device *dev = cmd->se_dev;
0952     unsigned long flags;
0953 
0954     spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
0955     if (!cmd->state_active) {
0956         list_add_tail(&cmd->state_list,
0957                   &dev->queues[cmd->cpuid].state_list);
0958         cmd->state_active = true;
0959     }
0960     spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
0961 }
0962 
0963 /*
0964  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
0965  */
0966 static void transport_write_pending_qf(struct se_cmd *cmd);
0967 static void transport_complete_qf(struct se_cmd *cmd);
0968 
0969 void target_qf_do_work(struct work_struct *work)
0970 {
0971     struct se_device *dev = container_of(work, struct se_device,
0972                     qf_work_queue);
0973     LIST_HEAD(qf_cmd_list);
0974     struct se_cmd *cmd, *cmd_tmp;
0975 
0976     spin_lock_irq(&dev->qf_cmd_lock);
0977     list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
0978     spin_unlock_irq(&dev->qf_cmd_lock);
0979 
0980     list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
0981         list_del(&cmd->se_qf_node);
0982         atomic_dec_mb(&dev->dev_qf_count);
0983 
0984         pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
0985             " context: %s\n", cmd->se_tfo->fabric_name, cmd,
0986             (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
0987             (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
0988             : "UNKNOWN");
0989 
0990         if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
0991             transport_write_pending_qf(cmd);
0992         else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
0993              cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
0994             transport_complete_qf(cmd);
0995     }
0996 }
0997 
0998 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
0999 {
1000     switch (cmd->data_direction) {
1001     case DMA_NONE:
1002         return "NONE";
1003     case DMA_FROM_DEVICE:
1004         return "READ";
1005     case DMA_TO_DEVICE:
1006         return "WRITE";
1007     case DMA_BIDIRECTIONAL:
1008         return "BIDI";
1009     default:
1010         break;
1011     }
1012 
1013     return "UNKNOWN";
1014 }
1015 
1016 void transport_dump_dev_state(
1017     struct se_device *dev,
1018     char *b,
1019     int *bl)
1020 {
1021     *bl += sprintf(b + *bl, "Status: ");
1022     if (dev->export_count)
1023         *bl += sprintf(b + *bl, "ACTIVATED");
1024     else
1025         *bl += sprintf(b + *bl, "DEACTIVATED");
1026 
1027     *bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
1028     *bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
1029         dev->dev_attrib.block_size,
1030         dev->dev_attrib.hw_max_sectors);
1031     *bl += sprintf(b + *bl, "        ");
1032 }
1033 
1034 void transport_dump_vpd_proto_id(
1035     struct t10_vpd *vpd,
1036     unsigned char *p_buf,
1037     int p_buf_len)
1038 {
1039     unsigned char buf[VPD_TMP_BUF_SIZE];
1040     int len;
1041 
1042     memset(buf, 0, VPD_TMP_BUF_SIZE);
1043     len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1044 
1045     switch (vpd->protocol_identifier) {
1046     case 0x00:
1047         sprintf(buf+len, "Fibre Channel\n");
1048         break;
1049     case 0x10:
1050         sprintf(buf+len, "Parallel SCSI\n");
1051         break;
1052     case 0x20:
1053         sprintf(buf+len, "SSA\n");
1054         break;
1055     case 0x30:
1056         sprintf(buf+len, "IEEE 1394\n");
1057         break;
1058     case 0x40:
1059         sprintf(buf+len, "SCSI Remote Direct Memory Access"
1060                 " Protocol\n");
1061         break;
1062     case 0x50:
1063         sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1064         break;
1065     case 0x60:
1066         sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1067         break;
1068     case 0x70:
1069         sprintf(buf+len, "Automation/Drive Interface Transport"
1070                 " Protocol\n");
1071         break;
1072     case 0x80:
1073         sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1074         break;
1075     default:
1076         sprintf(buf+len, "Unknown 0x%02x\n",
1077                 vpd->protocol_identifier);
1078         break;
1079     }
1080 
1081     if (p_buf)
1082         strncpy(p_buf, buf, p_buf_len);
1083     else
1084         pr_debug("%s", buf);
1085 }
1086 
1087 void
1088 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1089 {
1090     /*
1091      * Check if the Protocol Identifier Valid (PIV) bit is set..
1092      *
1093      * from spc3r23.pdf section 7.5.1
1094      */
1095      if (page_83[1] & 0x80) {
1096         vpd->protocol_identifier = (page_83[0] & 0xf0);
1097         vpd->protocol_identifier_set = 1;
1098         transport_dump_vpd_proto_id(vpd, NULL, 0);
1099     }
1100 }
1101 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1102 
1103 int transport_dump_vpd_assoc(
1104     struct t10_vpd *vpd,
1105     unsigned char *p_buf,
1106     int p_buf_len)
1107 {
1108     unsigned char buf[VPD_TMP_BUF_SIZE];
1109     int ret = 0;
1110     int len;
1111 
1112     memset(buf, 0, VPD_TMP_BUF_SIZE);
1113     len = sprintf(buf, "T10 VPD Identifier Association: ");
1114 
1115     switch (vpd->association) {
1116     case 0x00:
1117         sprintf(buf+len, "addressed logical unit\n");
1118         break;
1119     case 0x10:
1120         sprintf(buf+len, "target port\n");
1121         break;
1122     case 0x20:
1123         sprintf(buf+len, "SCSI target device\n");
1124         break;
1125     default:
1126         sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1127         ret = -EINVAL;
1128         break;
1129     }
1130 
1131     if (p_buf)
1132         strncpy(p_buf, buf, p_buf_len);
1133     else
1134         pr_debug("%s", buf);
1135 
1136     return ret;
1137 }
1138 
1139 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1140 {
1141     /*
1142      * The VPD identification association..
1143      *
1144      * from spc3r23.pdf Section 7.6.3.1 Table 297
1145      */
1146     vpd->association = (page_83[1] & 0x30);
1147     return transport_dump_vpd_assoc(vpd, NULL, 0);
1148 }
1149 EXPORT_SYMBOL(transport_set_vpd_assoc);
1150 
1151 int transport_dump_vpd_ident_type(
1152     struct t10_vpd *vpd,
1153     unsigned char *p_buf,
1154     int p_buf_len)
1155 {
1156     unsigned char buf[VPD_TMP_BUF_SIZE];
1157     int ret = 0;
1158     int len;
1159 
1160     memset(buf, 0, VPD_TMP_BUF_SIZE);
1161     len = sprintf(buf, "T10 VPD Identifier Type: ");
1162 
1163     switch (vpd->device_identifier_type) {
1164     case 0x00:
1165         sprintf(buf+len, "Vendor specific\n");
1166         break;
1167     case 0x01:
1168         sprintf(buf+len, "T10 Vendor ID based\n");
1169         break;
1170     case 0x02:
1171         sprintf(buf+len, "EUI-64 based\n");
1172         break;
1173     case 0x03:
1174         sprintf(buf+len, "NAA\n");
1175         break;
1176     case 0x04:
1177         sprintf(buf+len, "Relative target port identifier\n");
1178         break;
1179     case 0x08:
1180         sprintf(buf+len, "SCSI name string\n");
1181         break;
1182     default:
1183         sprintf(buf+len, "Unsupported: 0x%02x\n",
1184                 vpd->device_identifier_type);
1185         ret = -EINVAL;
1186         break;
1187     }
1188 
1189     if (p_buf) {
1190         if (p_buf_len < strlen(buf)+1)
1191             return -EINVAL;
1192         strncpy(p_buf, buf, p_buf_len);
1193     } else {
1194         pr_debug("%s", buf);
1195     }
1196 
1197     return ret;
1198 }
1199 
1200 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1201 {
1202     /*
1203      * The VPD identifier type..
1204      *
1205      * from spc3r23.pdf Section 7.6.3.1 Table 298
1206      */
1207     vpd->device_identifier_type = (page_83[1] & 0x0f);
1208     return transport_dump_vpd_ident_type(vpd, NULL, 0);
1209 }
1210 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1211 
1212 int transport_dump_vpd_ident(
1213     struct t10_vpd *vpd,
1214     unsigned char *p_buf,
1215     int p_buf_len)
1216 {
1217     unsigned char buf[VPD_TMP_BUF_SIZE];
1218     int ret = 0;
1219 
1220     memset(buf, 0, VPD_TMP_BUF_SIZE);
1221 
1222     switch (vpd->device_identifier_code_set) {
1223     case 0x01: /* Binary */
1224         snprintf(buf, sizeof(buf),
1225             "T10 VPD Binary Device Identifier: %s\n",
1226             &vpd->device_identifier[0]);
1227         break;
1228     case 0x02: /* ASCII */
1229         snprintf(buf, sizeof(buf),
1230             "T10 VPD ASCII Device Identifier: %s\n",
1231             &vpd->device_identifier[0]);
1232         break;
1233     case 0x03: /* UTF-8 */
1234         snprintf(buf, sizeof(buf),
1235             "T10 VPD UTF-8 Device Identifier: %s\n",
1236             &vpd->device_identifier[0]);
1237         break;
1238     default:
1239         sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1240             " 0x%02x", vpd->device_identifier_code_set);
1241         ret = -EINVAL;
1242         break;
1243     }
1244 
1245     if (p_buf)
1246         strncpy(p_buf, buf, p_buf_len);
1247     else
1248         pr_debug("%s", buf);
1249 
1250     return ret;
1251 }
1252 
1253 int
1254 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1255 {
1256     static const char hex_str[] = "0123456789abcdef";
1257     int j = 0, i = 4; /* offset to start of the identifier */
1258 
1259     /*
1260      * The VPD Code Set (encoding)
1261      *
1262      * from spc3r23.pdf Section 7.6.3.1 Table 296
1263      */
1264     vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1265     switch (vpd->device_identifier_code_set) {
1266     case 0x01: /* Binary */
1267         vpd->device_identifier[j++] =
1268                 hex_str[vpd->device_identifier_type];
1269         while (i < (4 + page_83[3])) {
1270             vpd->device_identifier[j++] =
1271                 hex_str[(page_83[i] & 0xf0) >> 4];
1272             vpd->device_identifier[j++] =
1273                 hex_str[page_83[i] & 0x0f];
1274             i++;
1275         }
1276         break;
1277     case 0x02: /* ASCII */
1278     case 0x03: /* UTF-8 */
1279         while (i < (4 + page_83[3]))
1280             vpd->device_identifier[j++] = page_83[i++];
1281         break;
1282     default:
1283         break;
1284     }
1285 
1286     return transport_dump_vpd_ident(vpd, NULL, 0);
1287 }
1288 EXPORT_SYMBOL(transport_set_vpd_ident);
1289 
1290 static sense_reason_t
1291 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1292                    unsigned int size)
1293 {
1294     u32 mtl;
1295 
1296     if (!cmd->se_tfo->max_data_sg_nents)
1297         return TCM_NO_SENSE;
1298     /*
1299      * Check if fabric enforced maximum SGL entries per I/O descriptor
1300      * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1301      * residual_count and reduce original cmd->data_length to maximum
1302      * length based on single PAGE_SIZE entry scatter-lists.
1303      */
1304     mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1305     if (cmd->data_length > mtl) {
1306         /*
1307          * If an existing CDB overflow is present, calculate new residual
1308          * based on CDB size minus fabric maximum transfer length.
1309          *
1310          * If an existing CDB underflow is present, calculate new residual
1311          * based on original cmd->data_length minus fabric maximum transfer
1312          * length.
1313          *
1314          * Otherwise, set the underflow residual based on cmd->data_length
1315          * minus fabric maximum transfer length.
1316          */
1317         if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1318             cmd->residual_count = (size - mtl);
1319         } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1320             u32 orig_dl = size + cmd->residual_count;
1321             cmd->residual_count = (orig_dl - mtl);
1322         } else {
1323             cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1324             cmd->residual_count = (cmd->data_length - mtl);
1325         }
1326         cmd->data_length = mtl;
1327         /*
1328          * Reset sbc_check_prot() calculated protection payload
1329          * length based upon the new smaller MTL.
1330          */
1331         if (cmd->prot_length) {
1332             u32 sectors = (mtl / dev->dev_attrib.block_size);
1333             cmd->prot_length = dev->prot_length * sectors;
1334         }
1335     }
1336     return TCM_NO_SENSE;
1337 }
1338 
1339 /**
1340  * target_cmd_size_check - Check whether there will be a residual.
1341  * @cmd: SCSI command.
1342  * @size: Data buffer size derived from CDB. The data buffer size provided by
1343  *   the SCSI transport driver is available in @cmd->data_length.
1344  *
1345  * Compare the data buffer size from the CDB with the data buffer limit from the transport
1346  * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1347  *
1348  * Note: target drivers set @cmd->data_length by calling __target_init_cmd().
1349  *
1350  * Return: TCM_NO_SENSE
1351  */
1352 sense_reason_t
1353 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1354 {
1355     struct se_device *dev = cmd->se_dev;
1356 
1357     if (cmd->unknown_data_length) {
1358         cmd->data_length = size;
1359     } else if (size != cmd->data_length) {
1360         pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1361             " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1362             " 0x%02x\n", cmd->se_tfo->fabric_name,
1363                 cmd->data_length, size, cmd->t_task_cdb[0]);
1364         /*
1365          * For READ command for the overflow case keep the existing
1366          * fabric provided ->data_length. Otherwise for the underflow
1367          * case, reset ->data_length to the smaller SCSI expected data
1368          * transfer length.
1369          */
1370         if (size > cmd->data_length) {
1371             cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1372             cmd->residual_count = (size - cmd->data_length);
1373         } else {
1374             cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1375             cmd->residual_count = (cmd->data_length - size);
1376             /*
1377              * Do not truncate ->data_length for WRITE command to
1378              * dump all payload
1379              */
1380             if (cmd->data_direction == DMA_FROM_DEVICE) {
1381                 cmd->data_length = size;
1382             }
1383         }
1384 
1385         if (cmd->data_direction == DMA_TO_DEVICE) {
1386             if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1387                 pr_err_ratelimited("Rejecting underflow/overflow"
1388                            " for WRITE data CDB\n");
1389                 return TCM_INVALID_FIELD_IN_COMMAND_IU;
1390             }
1391             /*
1392              * Some fabric drivers like iscsi-target still expect to
1393              * always reject overflow writes.  Reject this case until
1394              * full fabric driver level support for overflow writes
1395              * is introduced tree-wide.
1396              */
1397             if (size > cmd->data_length) {
1398                 pr_err_ratelimited("Rejecting overflow for"
1399                            " WRITE control CDB\n");
1400                 return TCM_INVALID_CDB_FIELD;
1401             }
1402         }
1403     }
1404 
1405     return target_check_max_data_sg_nents(cmd, dev, size);
1406 
1407 }
1408 
1409 /*
1410  * Used by fabric modules containing a local struct se_cmd within their
1411  * fabric dependent per I/O descriptor.
1412  *
1413  * Preserves the value of @cmd->tag.
1414  */
1415 void __target_init_cmd(
1416     struct se_cmd *cmd,
1417     const struct target_core_fabric_ops *tfo,
1418     struct se_session *se_sess,
1419     u32 data_length,
1420     int data_direction,
1421     int task_attr,
1422     unsigned char *sense_buffer, u64 unpacked_lun)
1423 {
1424     INIT_LIST_HEAD(&cmd->se_delayed_node);
1425     INIT_LIST_HEAD(&cmd->se_qf_node);
1426     INIT_LIST_HEAD(&cmd->state_list);
1427     init_completion(&cmd->t_transport_stop_comp);
1428     cmd->free_compl = NULL;
1429     cmd->abrt_compl = NULL;
1430     spin_lock_init(&cmd->t_state_lock);
1431     INIT_WORK(&cmd->work, NULL);
1432     kref_init(&cmd->cmd_kref);
1433 
1434     cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1435     cmd->se_tfo = tfo;
1436     cmd->se_sess = se_sess;
1437     cmd->data_length = data_length;
1438     cmd->data_direction = data_direction;
1439     cmd->sam_task_attr = task_attr;
1440     cmd->sense_buffer = sense_buffer;
1441     cmd->orig_fe_lun = unpacked_lun;
1442 
1443     if (!(cmd->se_cmd_flags & SCF_USE_CPUID))
1444         cmd->cpuid = raw_smp_processor_id();
1445 
1446     cmd->state_active = false;
1447 }
1448 EXPORT_SYMBOL(__target_init_cmd);
1449 
1450 static sense_reason_t
1451 transport_check_alloc_task_attr(struct se_cmd *cmd)
1452 {
1453     struct se_device *dev = cmd->se_dev;
1454 
1455     /*
1456      * Check if SAM Task Attribute emulation is enabled for this
1457      * struct se_device storage object
1458      */
1459     if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1460         return 0;
1461 
1462     if (cmd->sam_task_attr == TCM_ACA_TAG) {
1463         pr_debug("SAM Task Attribute ACA"
1464             " emulation is not supported\n");
1465         return TCM_INVALID_CDB_FIELD;
1466     }
1467 
1468     return 0;
1469 }
1470 
1471 sense_reason_t
1472 target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb, gfp_t gfp)
1473 {
1474     sense_reason_t ret;
1475 
1476     /*
1477      * Ensure that the received CDB is less than the max (252 + 8) bytes
1478      * for VARIABLE_LENGTH_CMD
1479      */
1480     if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1481         pr_err("Received SCSI CDB with command_size: %d that"
1482             " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1483             scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1484         ret = TCM_INVALID_CDB_FIELD;
1485         goto err;
1486     }
1487     /*
1488      * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1489      * allocate the additional extended CDB buffer now..  Otherwise
1490      * setup the pointer from __t_task_cdb to t_task_cdb.
1491      */
1492     if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1493         cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), gfp);
1494         if (!cmd->t_task_cdb) {
1495             pr_err("Unable to allocate cmd->t_task_cdb"
1496                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1497                 scsi_command_size(cdb),
1498                 (unsigned long)sizeof(cmd->__t_task_cdb));
1499             ret = TCM_OUT_OF_RESOURCES;
1500             goto err;
1501         }
1502     }
1503     /*
1504      * Copy the original CDB into cmd->
1505      */
1506     memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1507 
1508     trace_target_sequencer_start(cmd);
1509     return 0;
1510 
1511 err:
1512     /*
1513      * Copy the CDB here to allow trace_target_cmd_complete() to
1514      * print the cdb to the trace buffers.
1515      */
1516     memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb),
1517                      (unsigned int)TCM_MAX_COMMAND_SIZE));
1518     return ret;
1519 }
1520 EXPORT_SYMBOL(target_cmd_init_cdb);
1521 
1522 sense_reason_t
1523 target_cmd_parse_cdb(struct se_cmd *cmd)
1524 {
1525     struct se_device *dev = cmd->se_dev;
1526     sense_reason_t ret;
1527 
1528     ret = dev->transport->parse_cdb(cmd);
1529     if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1530         pr_debug_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1531                      cmd->se_tfo->fabric_name,
1532                      cmd->se_sess->se_node_acl->initiatorname,
1533                      cmd->t_task_cdb[0]);
1534     if (ret)
1535         return ret;
1536 
1537     ret = transport_check_alloc_task_attr(cmd);
1538     if (ret)
1539         return ret;
1540 
1541     cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1542     atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1543     return 0;
1544 }
1545 EXPORT_SYMBOL(target_cmd_parse_cdb);
1546 
1547 /*
1548  * Used by fabric module frontends to queue tasks directly.
1549  * May only be used from process context.
1550  */
1551 int transport_handle_cdb_direct(
1552     struct se_cmd *cmd)
1553 {
1554     sense_reason_t ret;
1555 
1556     might_sleep();
1557 
1558     if (!cmd->se_lun) {
1559         dump_stack();
1560         pr_err("cmd->se_lun is NULL\n");
1561         return -EINVAL;
1562     }
1563 
1564     /*
1565      * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1566      * outstanding descriptors are handled correctly during shutdown via
1567      * transport_wait_for_tasks()
1568      *
1569      * Also, we don't take cmd->t_state_lock here as we only expect
1570      * this to be called for initial descriptor submission.
1571      */
1572     cmd->t_state = TRANSPORT_NEW_CMD;
1573     cmd->transport_state |= CMD_T_ACTIVE;
1574 
1575     /*
1576      * transport_generic_new_cmd() is already handling QUEUE_FULL,
1577      * so follow TRANSPORT_NEW_CMD processing thread context usage
1578      * and call transport_generic_request_failure() if necessary..
1579      */
1580     ret = transport_generic_new_cmd(cmd);
1581     if (ret)
1582         transport_generic_request_failure(cmd, ret);
1583     return 0;
1584 }
1585 EXPORT_SYMBOL(transport_handle_cdb_direct);
1586 
1587 sense_reason_t
1588 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1589         u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1590 {
1591     if (!sgl || !sgl_count)
1592         return 0;
1593 
1594     /*
1595      * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1596      * scatterlists already have been set to follow what the fabric
1597      * passes for the original expected data transfer length.
1598      */
1599     if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1600         pr_warn("Rejecting SCSI DATA overflow for fabric using"
1601             " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1602         return TCM_INVALID_CDB_FIELD;
1603     }
1604 
1605     cmd->t_data_sg = sgl;
1606     cmd->t_data_nents = sgl_count;
1607     cmd->t_bidi_data_sg = sgl_bidi;
1608     cmd->t_bidi_data_nents = sgl_bidi_count;
1609 
1610     cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1611     return 0;
1612 }
1613 
1614 /**
1615  * target_init_cmd - initialize se_cmd
1616  * @se_cmd: command descriptor to init
1617  * @se_sess: associated se_sess for endpoint
1618  * @sense: pointer to SCSI sense buffer
1619  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1620  * @data_length: fabric expected data transfer length
1621  * @task_attr: SAM task attribute
1622  * @data_dir: DMA data direction
1623  * @flags: flags for command submission from target_sc_flags_tables
1624  *
1625  * Task tags are supported if the caller has set @se_cmd->tag.
1626  *
1627  * Returns:
1628  *  - less than zero to signal active I/O shutdown failure.
1629  *  - zero on success.
1630  *
1631  * If the fabric driver calls target_stop_session, then it must check the
1632  * return code and handle failures. This will never fail for other drivers,
1633  * and the return code can be ignored.
1634  */
1635 int target_init_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1636             unsigned char *sense, u64 unpacked_lun,
1637             u32 data_length, int task_attr, int data_dir, int flags)
1638 {
1639     struct se_portal_group *se_tpg;
1640 
1641     se_tpg = se_sess->se_tpg;
1642     BUG_ON(!se_tpg);
1643     BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1644 
1645     if (flags & TARGET_SCF_USE_CPUID)
1646         se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1647     /*
1648      * Signal bidirectional data payloads to target-core
1649      */
1650     if (flags & TARGET_SCF_BIDI_OP)
1651         se_cmd->se_cmd_flags |= SCF_BIDI;
1652 
1653     if (flags & TARGET_SCF_UNKNOWN_SIZE)
1654         se_cmd->unknown_data_length = 1;
1655     /*
1656      * Initialize se_cmd for target operation.  From this point
1657      * exceptions are handled by sending exception status via
1658      * target_core_fabric_ops->queue_status() callback
1659      */
1660     __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, data_length,
1661               data_dir, task_attr, sense, unpacked_lun);
1662 
1663     /*
1664      * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is
1665      * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second
1666      * kref_put() to happen during fabric packet acknowledgement.
1667      */
1668     return target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1669 }
1670 EXPORT_SYMBOL_GPL(target_init_cmd);
1671 
1672 /**
1673  * target_submit_prep - prepare cmd for submission
1674  * @se_cmd: command descriptor to prep
1675  * @cdb: pointer to SCSI CDB
1676  * @sgl: struct scatterlist memory for unidirectional mapping
1677  * @sgl_count: scatterlist count for unidirectional mapping
1678  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1679  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1680  * @sgl_prot: struct scatterlist memory protection information
1681  * @sgl_prot_count: scatterlist count for protection information
1682  * @gfp: gfp allocation type
1683  *
1684  * Returns:
1685  *  - less than zero to signal failure.
1686  *  - zero on success.
1687  *
1688  * If failure is returned, lio will the callers queue_status to complete
1689  * the cmd.
1690  */
1691 int target_submit_prep(struct se_cmd *se_cmd, unsigned char *cdb,
1692                struct scatterlist *sgl, u32 sgl_count,
1693                struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1694                struct scatterlist *sgl_prot, u32 sgl_prot_count,
1695                gfp_t gfp)
1696 {
1697     sense_reason_t rc;
1698 
1699     rc = target_cmd_init_cdb(se_cmd, cdb, gfp);
1700     if (rc)
1701         goto send_cc_direct;
1702 
1703     /*
1704      * Locate se_lun pointer and attach it to struct se_cmd
1705      */
1706     rc = transport_lookup_cmd_lun(se_cmd);
1707     if (rc)
1708         goto send_cc_direct;
1709 
1710     rc = target_cmd_parse_cdb(se_cmd);
1711     if (rc != 0)
1712         goto generic_fail;
1713 
1714     /*
1715      * Save pointers for SGLs containing protection information,
1716      * if present.
1717      */
1718     if (sgl_prot_count) {
1719         se_cmd->t_prot_sg = sgl_prot;
1720         se_cmd->t_prot_nents = sgl_prot_count;
1721         se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1722     }
1723 
1724     /*
1725      * When a non zero sgl_count has been passed perform SGL passthrough
1726      * mapping for pre-allocated fabric memory instead of having target
1727      * core perform an internal SGL allocation..
1728      */
1729     if (sgl_count != 0) {
1730         BUG_ON(!sgl);
1731 
1732         rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1733                 sgl_bidi, sgl_bidi_count);
1734         if (rc != 0)
1735             goto generic_fail;
1736     }
1737 
1738     return 0;
1739 
1740 send_cc_direct:
1741     transport_send_check_condition_and_sense(se_cmd, rc, 0);
1742     target_put_sess_cmd(se_cmd);
1743     return -EIO;
1744 
1745 generic_fail:
1746     transport_generic_request_failure(se_cmd, rc);
1747     return -EIO;
1748 }
1749 EXPORT_SYMBOL_GPL(target_submit_prep);
1750 
1751 /**
1752  * target_submit - perform final initialization and submit cmd to LIO core
1753  * @se_cmd: command descriptor to submit
1754  *
1755  * target_submit_prep must have been called on the cmd, and this must be
1756  * called from process context.
1757  */
1758 void target_submit(struct se_cmd *se_cmd)
1759 {
1760     struct scatterlist *sgl = se_cmd->t_data_sg;
1761     unsigned char *buf = NULL;
1762 
1763     might_sleep();
1764 
1765     if (se_cmd->t_data_nents != 0) {
1766         BUG_ON(!sgl);
1767         /*
1768          * A work-around for tcm_loop as some userspace code via
1769          * scsi-generic do not memset their associated read buffers,
1770          * so go ahead and do that here for type non-data CDBs.  Also
1771          * note that this is currently guaranteed to be a single SGL
1772          * for this case by target core in target_setup_cmd_from_cdb()
1773          * -> transport_generic_cmd_sequencer().
1774          */
1775         if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1776              se_cmd->data_direction == DMA_FROM_DEVICE) {
1777             if (sgl)
1778                 buf = kmap(sg_page(sgl)) + sgl->offset;
1779 
1780             if (buf) {
1781                 memset(buf, 0, sgl->length);
1782                 kunmap(sg_page(sgl));
1783             }
1784         }
1785 
1786     }
1787 
1788     /*
1789      * Check if we need to delay processing because of ALUA
1790      * Active/NonOptimized primary access state..
1791      */
1792     core_alua_check_nonop_delay(se_cmd);
1793 
1794     transport_handle_cdb_direct(se_cmd);
1795 }
1796 EXPORT_SYMBOL_GPL(target_submit);
1797 
1798 /**
1799  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1800  *
1801  * @se_cmd: command descriptor to submit
1802  * @se_sess: associated se_sess for endpoint
1803  * @cdb: pointer to SCSI CDB
1804  * @sense: pointer to SCSI sense buffer
1805  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1806  * @data_length: fabric expected data transfer length
1807  * @task_attr: SAM task attribute
1808  * @data_dir: DMA data direction
1809  * @flags: flags for command submission from target_sc_flags_tables
1810  *
1811  * Task tags are supported if the caller has set @se_cmd->tag.
1812  *
1813  * This may only be called from process context, and also currently
1814  * assumes internal allocation of fabric payload buffer by target-core.
1815  *
1816  * It also assumes interal target core SGL memory allocation.
1817  *
1818  * This function must only be used by drivers that do their own
1819  * sync during shutdown and does not use target_stop_session. If there
1820  * is a failure this function will call into the fabric driver's
1821  * queue_status with a CHECK_CONDITION.
1822  */
1823 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1824         unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1825         u32 data_length, int task_attr, int data_dir, int flags)
1826 {
1827     int rc;
1828 
1829     rc = target_init_cmd(se_cmd, se_sess, sense, unpacked_lun, data_length,
1830                  task_attr, data_dir, flags);
1831     WARN(rc, "Invalid target_submit_cmd use. Driver must not use target_stop_session or call target_init_cmd directly.\n");
1832     if (rc)
1833         return;
1834 
1835     if (target_submit_prep(se_cmd, cdb, NULL, 0, NULL, 0, NULL, 0,
1836                    GFP_KERNEL))
1837         return;
1838 
1839     target_submit(se_cmd);
1840 }
1841 EXPORT_SYMBOL(target_submit_cmd);
1842 
1843 
1844 static struct se_dev_plug *target_plug_device(struct se_device *se_dev)
1845 {
1846     struct se_dev_plug *se_plug;
1847 
1848     if (!se_dev->transport->plug_device)
1849         return NULL;
1850 
1851     se_plug = se_dev->transport->plug_device(se_dev);
1852     if (!se_plug)
1853         return NULL;
1854 
1855     se_plug->se_dev = se_dev;
1856     /*
1857      * We have a ref to the lun at this point, but the cmds could
1858      * complete before we unplug, so grab a ref to the se_device so we
1859      * can call back into the backend.
1860      */
1861     config_group_get(&se_dev->dev_group);
1862     return se_plug;
1863 }
1864 
1865 static void target_unplug_device(struct se_dev_plug *se_plug)
1866 {
1867     struct se_device *se_dev = se_plug->se_dev;
1868 
1869     se_dev->transport->unplug_device(se_plug);
1870     config_group_put(&se_dev->dev_group);
1871 }
1872 
1873 void target_queued_submit_work(struct work_struct *work)
1874 {
1875     struct se_cmd_queue *sq = container_of(work, struct se_cmd_queue, work);
1876     struct se_cmd *se_cmd, *next_cmd;
1877     struct se_dev_plug *se_plug = NULL;
1878     struct se_device *se_dev = NULL;
1879     struct llist_node *cmd_list;
1880 
1881     cmd_list = llist_del_all(&sq->cmd_list);
1882     if (!cmd_list)
1883         /* Previous call took what we were queued to submit */
1884         return;
1885 
1886     cmd_list = llist_reverse_order(cmd_list);
1887     llist_for_each_entry_safe(se_cmd, next_cmd, cmd_list, se_cmd_list) {
1888         if (!se_dev) {
1889             se_dev = se_cmd->se_dev;
1890             se_plug = target_plug_device(se_dev);
1891         }
1892 
1893         target_submit(se_cmd);
1894     }
1895 
1896     if (se_plug)
1897         target_unplug_device(se_plug);
1898 }
1899 
1900 /**
1901  * target_queue_submission - queue the cmd to run on the LIO workqueue
1902  * @se_cmd: command descriptor to submit
1903  */
1904 void target_queue_submission(struct se_cmd *se_cmd)
1905 {
1906     struct se_device *se_dev = se_cmd->se_dev;
1907     int cpu = se_cmd->cpuid;
1908     struct se_cmd_queue *sq;
1909 
1910     sq = &se_dev->queues[cpu].sq;
1911     llist_add(&se_cmd->se_cmd_list, &sq->cmd_list);
1912     queue_work_on(cpu, target_submission_wq, &sq->work);
1913 }
1914 EXPORT_SYMBOL_GPL(target_queue_submission);
1915 
1916 static void target_complete_tmr_failure(struct work_struct *work)
1917 {
1918     struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1919 
1920     se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1921     se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1922 
1923     transport_lun_remove_cmd(se_cmd);
1924     transport_cmd_check_stop_to_fabric(se_cmd);
1925 }
1926 
1927 /**
1928  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1929  *                     for TMR CDBs
1930  *
1931  * @se_cmd: command descriptor to submit
1932  * @se_sess: associated se_sess for endpoint
1933  * @sense: pointer to SCSI sense buffer
1934  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1935  * @fabric_tmr_ptr: fabric context for TMR req
1936  * @tm_type: Type of TM request
1937  * @gfp: gfp type for caller
1938  * @tag: referenced task tag for TMR_ABORT_TASK
1939  * @flags: submit cmd flags
1940  *
1941  * Callable from all contexts.
1942  **/
1943 
1944 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1945         unsigned char *sense, u64 unpacked_lun,
1946         void *fabric_tmr_ptr, unsigned char tm_type,
1947         gfp_t gfp, u64 tag, int flags)
1948 {
1949     struct se_portal_group *se_tpg;
1950     int ret;
1951 
1952     se_tpg = se_sess->se_tpg;
1953     BUG_ON(!se_tpg);
1954 
1955     __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1956               0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun);
1957     /*
1958      * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1959      * allocation failure.
1960      */
1961     ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1962     if (ret < 0)
1963         return -ENOMEM;
1964 
1965     if (tm_type == TMR_ABORT_TASK)
1966         se_cmd->se_tmr_req->ref_task_tag = tag;
1967 
1968     /* See target_submit_cmd for commentary */
1969     ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1970     if (ret) {
1971         core_tmr_release_req(se_cmd->se_tmr_req);
1972         return ret;
1973     }
1974 
1975     ret = transport_lookup_tmr_lun(se_cmd);
1976     if (ret)
1977         goto failure;
1978 
1979     transport_generic_handle_tmr(se_cmd);
1980     return 0;
1981 
1982     /*
1983      * For callback during failure handling, push this work off
1984      * to process context with TMR_LUN_DOES_NOT_EXIST status.
1985      */
1986 failure:
1987     INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1988     schedule_work(&se_cmd->work);
1989     return 0;
1990 }
1991 EXPORT_SYMBOL(target_submit_tmr);
1992 
1993 /*
1994  * Handle SAM-esque emulation for generic transport request failures.
1995  */
1996 void transport_generic_request_failure(struct se_cmd *cmd,
1997         sense_reason_t sense_reason)
1998 {
1999     int ret = 0, post_ret;
2000 
2001     pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
2002          sense_reason);
2003     target_show_cmd("-----[ ", cmd);
2004 
2005     /*
2006      * For SAM Task Attribute emulation for failed struct se_cmd
2007      */
2008     transport_complete_task_attr(cmd);
2009 
2010     if (cmd->transport_complete_callback)
2011         cmd->transport_complete_callback(cmd, false, &post_ret);
2012 
2013     if (cmd->transport_state & CMD_T_ABORTED) {
2014         INIT_WORK(&cmd->work, target_abort_work);
2015         queue_work(target_completion_wq, &cmd->work);
2016         return;
2017     }
2018 
2019     switch (sense_reason) {
2020     case TCM_NON_EXISTENT_LUN:
2021     case TCM_UNSUPPORTED_SCSI_OPCODE:
2022     case TCM_INVALID_CDB_FIELD:
2023     case TCM_INVALID_PARAMETER_LIST:
2024     case TCM_PARAMETER_LIST_LENGTH_ERROR:
2025     case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2026     case TCM_UNKNOWN_MODE_PAGE:
2027     case TCM_WRITE_PROTECTED:
2028     case TCM_ADDRESS_OUT_OF_RANGE:
2029     case TCM_CHECK_CONDITION_ABORT_CMD:
2030     case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2031     case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2032     case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2033     case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2034     case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
2035     case TCM_TOO_MANY_TARGET_DESCS:
2036     case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
2037     case TCM_TOO_MANY_SEGMENT_DESCS:
2038     case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
2039     case TCM_INVALID_FIELD_IN_COMMAND_IU:
2040     case TCM_ALUA_TG_PT_STANDBY:
2041     case TCM_ALUA_TG_PT_UNAVAILABLE:
2042     case TCM_ALUA_STATE_TRANSITION:
2043     case TCM_ALUA_OFFLINE:
2044         break;
2045     case TCM_OUT_OF_RESOURCES:
2046         cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
2047         goto queue_status;
2048     case TCM_LUN_BUSY:
2049         cmd->scsi_status = SAM_STAT_BUSY;
2050         goto queue_status;
2051     case TCM_RESERVATION_CONFLICT:
2052         /*
2053          * No SENSE Data payload for this case, set SCSI Status
2054          * and queue the response to $FABRIC_MOD.
2055          *
2056          * Uses linux/include/scsi/scsi.h SAM status codes defs
2057          */
2058         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2059         /*
2060          * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2061          * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2062          * CONFLICT STATUS.
2063          *
2064          * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2065          */
2066         if (cmd->se_sess &&
2067             cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl
2068                     == TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) {
2069             target_ua_allocate_lun(cmd->se_sess->se_node_acl,
2070                            cmd->orig_fe_lun, 0x2C,
2071                     ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2072         }
2073 
2074         goto queue_status;
2075     default:
2076         pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2077             cmd->t_task_cdb[0], sense_reason);
2078         sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2079         break;
2080     }
2081 
2082     ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
2083     if (ret)
2084         goto queue_full;
2085 
2086 check_stop:
2087     transport_lun_remove_cmd(cmd);
2088     transport_cmd_check_stop_to_fabric(cmd);
2089     return;
2090 
2091 queue_status:
2092     trace_target_cmd_complete(cmd);
2093     ret = cmd->se_tfo->queue_status(cmd);
2094     if (!ret)
2095         goto check_stop;
2096 queue_full:
2097     transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2098 }
2099 EXPORT_SYMBOL(transport_generic_request_failure);
2100 
2101 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
2102 {
2103     sense_reason_t ret;
2104 
2105     if (!cmd->execute_cmd) {
2106         ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2107         goto err;
2108     }
2109     if (do_checks) {
2110         /*
2111          * Check for an existing UNIT ATTENTION condition after
2112          * target_handle_task_attr() has done SAM task attr
2113          * checking, and possibly have already defered execution
2114          * out to target_restart_delayed_cmds() context.
2115          */
2116         ret = target_scsi3_ua_check(cmd);
2117         if (ret)
2118             goto err;
2119 
2120         ret = target_alua_state_check(cmd);
2121         if (ret)
2122             goto err;
2123 
2124         ret = target_check_reservation(cmd);
2125         if (ret) {
2126             cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2127             goto err;
2128         }
2129     }
2130 
2131     ret = cmd->execute_cmd(cmd);
2132     if (!ret)
2133         return;
2134 err:
2135     spin_lock_irq(&cmd->t_state_lock);
2136     cmd->transport_state &= ~CMD_T_SENT;
2137     spin_unlock_irq(&cmd->t_state_lock);
2138 
2139     transport_generic_request_failure(cmd, ret);
2140 }
2141 
2142 static int target_write_prot_action(struct se_cmd *cmd)
2143 {
2144     u32 sectors;
2145     /*
2146      * Perform WRITE_INSERT of PI using software emulation when backend
2147      * device has PI enabled, if the transport has not already generated
2148      * PI using hardware WRITE_INSERT offload.
2149      */
2150     switch (cmd->prot_op) {
2151     case TARGET_PROT_DOUT_INSERT:
2152         if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
2153             sbc_dif_generate(cmd);
2154         break;
2155     case TARGET_PROT_DOUT_STRIP:
2156         if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
2157             break;
2158 
2159         sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
2160         cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2161                          sectors, 0, cmd->t_prot_sg, 0);
2162         if (unlikely(cmd->pi_err)) {
2163             spin_lock_irq(&cmd->t_state_lock);
2164             cmd->transport_state &= ~CMD_T_SENT;
2165             spin_unlock_irq(&cmd->t_state_lock);
2166             transport_generic_request_failure(cmd, cmd->pi_err);
2167             return -1;
2168         }
2169         break;
2170     default:
2171         break;
2172     }
2173 
2174     return 0;
2175 }
2176 
2177 static bool target_handle_task_attr(struct se_cmd *cmd)
2178 {
2179     struct se_device *dev = cmd->se_dev;
2180 
2181     if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2182         return false;
2183 
2184     cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
2185 
2186     /*
2187      * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2188      * to allow the passed struct se_cmd list of tasks to the front of the list.
2189      */
2190     switch (cmd->sam_task_attr) {
2191     case TCM_HEAD_TAG:
2192         atomic_inc_mb(&dev->non_ordered);
2193         pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2194              cmd->t_task_cdb[0]);
2195         return false;
2196     case TCM_ORDERED_TAG:
2197         atomic_inc_mb(&dev->delayed_cmd_count);
2198 
2199         pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2200              cmd->t_task_cdb[0]);
2201         break;
2202     default:
2203         /*
2204          * For SIMPLE and UNTAGGED Task Attribute commands
2205          */
2206         atomic_inc_mb(&dev->non_ordered);
2207 
2208         if (atomic_read(&dev->delayed_cmd_count) == 0)
2209             return false;
2210         break;
2211     }
2212 
2213     if (cmd->sam_task_attr != TCM_ORDERED_TAG) {
2214         atomic_inc_mb(&dev->delayed_cmd_count);
2215         /*
2216          * We will account for this when we dequeue from the delayed
2217          * list.
2218          */
2219         atomic_dec_mb(&dev->non_ordered);
2220     }
2221 
2222     spin_lock_irq(&cmd->t_state_lock);
2223     cmd->transport_state &= ~CMD_T_SENT;
2224     spin_unlock_irq(&cmd->t_state_lock);
2225 
2226     spin_lock(&dev->delayed_cmd_lock);
2227     list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2228     spin_unlock(&dev->delayed_cmd_lock);
2229 
2230     pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2231         cmd->t_task_cdb[0], cmd->sam_task_attr);
2232     /*
2233      * We may have no non ordered cmds when this function started or we
2234      * could have raced with the last simple/head cmd completing, so kick
2235      * the delayed handler here.
2236      */
2237     schedule_work(&dev->delayed_cmd_work);
2238     return true;
2239 }
2240 
2241 void target_execute_cmd(struct se_cmd *cmd)
2242 {
2243     /*
2244      * Determine if frontend context caller is requesting the stopping of
2245      * this command for frontend exceptions.
2246      *
2247      * If the received CDB has already been aborted stop processing it here.
2248      */
2249     if (target_cmd_interrupted(cmd))
2250         return;
2251 
2252     spin_lock_irq(&cmd->t_state_lock);
2253     cmd->t_state = TRANSPORT_PROCESSING;
2254     cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2255     spin_unlock_irq(&cmd->t_state_lock);
2256 
2257     if (target_write_prot_action(cmd))
2258         return;
2259 
2260     if (target_handle_task_attr(cmd))
2261         return;
2262 
2263     __target_execute_cmd(cmd, true);
2264 }
2265 EXPORT_SYMBOL(target_execute_cmd);
2266 
2267 /*
2268  * Process all commands up to the last received ORDERED task attribute which
2269  * requires another blocking boundary
2270  */
2271 void target_do_delayed_work(struct work_struct *work)
2272 {
2273     struct se_device *dev = container_of(work, struct se_device,
2274                          delayed_cmd_work);
2275 
2276     spin_lock(&dev->delayed_cmd_lock);
2277     while (!dev->ordered_sync_in_progress) {
2278         struct se_cmd *cmd;
2279 
2280         if (list_empty(&dev->delayed_cmd_list))
2281             break;
2282 
2283         cmd = list_entry(dev->delayed_cmd_list.next,
2284                  struct se_cmd, se_delayed_node);
2285 
2286         if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2287             /*
2288              * Check if we started with:
2289              * [ordered] [simple] [ordered]
2290              * and we are now at the last ordered so we have to wait
2291              * for the simple cmd.
2292              */
2293             if (atomic_read(&dev->non_ordered) > 0)
2294                 break;
2295 
2296             dev->ordered_sync_in_progress = true;
2297         }
2298 
2299         list_del(&cmd->se_delayed_node);
2300         atomic_dec_mb(&dev->delayed_cmd_count);
2301         spin_unlock(&dev->delayed_cmd_lock);
2302 
2303         if (cmd->sam_task_attr != TCM_ORDERED_TAG)
2304             atomic_inc_mb(&dev->non_ordered);
2305 
2306         cmd->transport_state |= CMD_T_SENT;
2307 
2308         __target_execute_cmd(cmd, true);
2309 
2310         spin_lock(&dev->delayed_cmd_lock);
2311     }
2312     spin_unlock(&dev->delayed_cmd_lock);
2313 }
2314 
2315 /*
2316  * Called from I/O completion to determine which dormant/delayed
2317  * and ordered cmds need to have their tasks added to the execution queue.
2318  */
2319 static void transport_complete_task_attr(struct se_cmd *cmd)
2320 {
2321     struct se_device *dev = cmd->se_dev;
2322 
2323     if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2324         return;
2325 
2326     if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2327         goto restart;
2328 
2329     if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2330         atomic_dec_mb(&dev->non_ordered);
2331         dev->dev_cur_ordered_id++;
2332     } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2333         atomic_dec_mb(&dev->non_ordered);
2334         dev->dev_cur_ordered_id++;
2335         pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2336              dev->dev_cur_ordered_id);
2337     } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2338         spin_lock(&dev->delayed_cmd_lock);
2339         dev->ordered_sync_in_progress = false;
2340         spin_unlock(&dev->delayed_cmd_lock);
2341 
2342         dev->dev_cur_ordered_id++;
2343         pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2344              dev->dev_cur_ordered_id);
2345     }
2346     cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2347 
2348 restart:
2349     if (atomic_read(&dev->delayed_cmd_count) > 0)
2350         schedule_work(&dev->delayed_cmd_work);
2351 }
2352 
2353 static void transport_complete_qf(struct se_cmd *cmd)
2354 {
2355     int ret = 0;
2356 
2357     transport_complete_task_attr(cmd);
2358     /*
2359      * If a fabric driver ->write_pending() or ->queue_data_in() callback
2360      * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2361      * the same callbacks should not be retried.  Return CHECK_CONDITION
2362      * if a scsi_status is not already set.
2363      *
2364      * If a fabric driver ->queue_status() has returned non zero, always
2365      * keep retrying no matter what..
2366      */
2367     if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2368         if (cmd->scsi_status)
2369             goto queue_status;
2370 
2371         translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2372         goto queue_status;
2373     }
2374 
2375     /*
2376      * Check if we need to send a sense buffer from
2377      * the struct se_cmd in question. We do NOT want
2378      * to take this path of the IO has been marked as
2379      * needing to be treated like a "normal read". This
2380      * is the case if it's a tape read, and either the
2381      * FM, EOM, or ILI bits are set, but there is no
2382      * sense data.
2383      */
2384     if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2385         cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2386         goto queue_status;
2387 
2388     switch (cmd->data_direction) {
2389     case DMA_FROM_DEVICE:
2390         /* queue status if not treating this as a normal read */
2391         if (cmd->scsi_status &&
2392             !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2393             goto queue_status;
2394 
2395         trace_target_cmd_complete(cmd);
2396         ret = cmd->se_tfo->queue_data_in(cmd);
2397         break;
2398     case DMA_TO_DEVICE:
2399         if (cmd->se_cmd_flags & SCF_BIDI) {
2400             ret = cmd->se_tfo->queue_data_in(cmd);
2401             break;
2402         }
2403         fallthrough;
2404     case DMA_NONE:
2405 queue_status:
2406         trace_target_cmd_complete(cmd);
2407         ret = cmd->se_tfo->queue_status(cmd);
2408         break;
2409     default:
2410         break;
2411     }
2412 
2413     if (ret < 0) {
2414         transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2415         return;
2416     }
2417     transport_lun_remove_cmd(cmd);
2418     transport_cmd_check_stop_to_fabric(cmd);
2419 }
2420 
2421 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2422                     int err, bool write_pending)
2423 {
2424     /*
2425      * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2426      * ->queue_data_in() callbacks from new process context.
2427      *
2428      * Otherwise for other errors, transport_complete_qf() will send
2429      * CHECK_CONDITION via ->queue_status() instead of attempting to
2430      * retry associated fabric driver data-transfer callbacks.
2431      */
2432     if (err == -EAGAIN || err == -ENOMEM) {
2433         cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2434                          TRANSPORT_COMPLETE_QF_OK;
2435     } else {
2436         pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2437         cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2438     }
2439 
2440     spin_lock_irq(&dev->qf_cmd_lock);
2441     list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2442     atomic_inc_mb(&dev->dev_qf_count);
2443     spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2444 
2445     schedule_work(&cmd->se_dev->qf_work_queue);
2446 }
2447 
2448 static bool target_read_prot_action(struct se_cmd *cmd)
2449 {
2450     switch (cmd->prot_op) {
2451     case TARGET_PROT_DIN_STRIP:
2452         if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2453             u32 sectors = cmd->data_length >>
2454                   ilog2(cmd->se_dev->dev_attrib.block_size);
2455 
2456             cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2457                              sectors, 0, cmd->t_prot_sg,
2458                              0);
2459             if (cmd->pi_err)
2460                 return true;
2461         }
2462         break;
2463     case TARGET_PROT_DIN_INSERT:
2464         if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2465             break;
2466 
2467         sbc_dif_generate(cmd);
2468         break;
2469     default:
2470         break;
2471     }
2472 
2473     return false;
2474 }
2475 
2476 static void target_complete_ok_work(struct work_struct *work)
2477 {
2478     struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2479     int ret;
2480 
2481     /*
2482      * Check if we need to move delayed/dormant tasks from cmds on the
2483      * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2484      * Attribute.
2485      */
2486     transport_complete_task_attr(cmd);
2487 
2488     /*
2489      * Check to schedule QUEUE_FULL work, or execute an existing
2490      * cmd->transport_qf_callback()
2491      */
2492     if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2493         schedule_work(&cmd->se_dev->qf_work_queue);
2494 
2495     /*
2496      * Check if we need to send a sense buffer from
2497      * the struct se_cmd in question. We do NOT want
2498      * to take this path of the IO has been marked as
2499      * needing to be treated like a "normal read". This
2500      * is the case if it's a tape read, and either the
2501      * FM, EOM, or ILI bits are set, but there is no
2502      * sense data.
2503      */
2504     if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2505         cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2506         WARN_ON(!cmd->scsi_status);
2507         ret = transport_send_check_condition_and_sense(
2508                     cmd, 0, 1);
2509         if (ret)
2510             goto queue_full;
2511 
2512         transport_lun_remove_cmd(cmd);
2513         transport_cmd_check_stop_to_fabric(cmd);
2514         return;
2515     }
2516     /*
2517      * Check for a callback, used by amongst other things
2518      * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2519      */
2520     if (cmd->transport_complete_callback) {
2521         sense_reason_t rc;
2522         bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2523         bool zero_dl = !(cmd->data_length);
2524         int post_ret = 0;
2525 
2526         rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2527         if (!rc && !post_ret) {
2528             if (caw && zero_dl)
2529                 goto queue_rsp;
2530 
2531             return;
2532         } else if (rc) {
2533             ret = transport_send_check_condition_and_sense(cmd,
2534                         rc, 0);
2535             if (ret)
2536                 goto queue_full;
2537 
2538             transport_lun_remove_cmd(cmd);
2539             transport_cmd_check_stop_to_fabric(cmd);
2540             return;
2541         }
2542     }
2543 
2544 queue_rsp:
2545     switch (cmd->data_direction) {
2546     case DMA_FROM_DEVICE:
2547         /*
2548          * if this is a READ-type IO, but SCSI status
2549          * is set, then skip returning data and just
2550          * return the status -- unless this IO is marked
2551          * as needing to be treated as a normal read,
2552          * in which case we want to go ahead and return
2553          * the data. This happens, for example, for tape
2554          * reads with the FM, EOM, or ILI bits set, with
2555          * no sense data.
2556          */
2557         if (cmd->scsi_status &&
2558             !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2559             goto queue_status;
2560 
2561         atomic_long_add(cmd->data_length,
2562                 &cmd->se_lun->lun_stats.tx_data_octets);
2563         /*
2564          * Perform READ_STRIP of PI using software emulation when
2565          * backend had PI enabled, if the transport will not be
2566          * performing hardware READ_STRIP offload.
2567          */
2568         if (target_read_prot_action(cmd)) {
2569             ret = transport_send_check_condition_and_sense(cmd,
2570                         cmd->pi_err, 0);
2571             if (ret)
2572                 goto queue_full;
2573 
2574             transport_lun_remove_cmd(cmd);
2575             transport_cmd_check_stop_to_fabric(cmd);
2576             return;
2577         }
2578 
2579         trace_target_cmd_complete(cmd);
2580         ret = cmd->se_tfo->queue_data_in(cmd);
2581         if (ret)
2582             goto queue_full;
2583         break;
2584     case DMA_TO_DEVICE:
2585         atomic_long_add(cmd->data_length,
2586                 &cmd->se_lun->lun_stats.rx_data_octets);
2587         /*
2588          * Check if we need to send READ payload for BIDI-COMMAND
2589          */
2590         if (cmd->se_cmd_flags & SCF_BIDI) {
2591             atomic_long_add(cmd->data_length,
2592                     &cmd->se_lun->lun_stats.tx_data_octets);
2593             ret = cmd->se_tfo->queue_data_in(cmd);
2594             if (ret)
2595                 goto queue_full;
2596             break;
2597         }
2598         fallthrough;
2599     case DMA_NONE:
2600 queue_status:
2601         trace_target_cmd_complete(cmd);
2602         ret = cmd->se_tfo->queue_status(cmd);
2603         if (ret)
2604             goto queue_full;
2605         break;
2606     default:
2607         break;
2608     }
2609 
2610     transport_lun_remove_cmd(cmd);
2611     transport_cmd_check_stop_to_fabric(cmd);
2612     return;
2613 
2614 queue_full:
2615     pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2616         " data_direction: %d\n", cmd, cmd->data_direction);
2617 
2618     transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2619 }
2620 
2621 void target_free_sgl(struct scatterlist *sgl, int nents)
2622 {
2623     sgl_free_n_order(sgl, nents, 0);
2624 }
2625 EXPORT_SYMBOL(target_free_sgl);
2626 
2627 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2628 {
2629     /*
2630      * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2631      * emulation, and free + reset pointers if necessary..
2632      */
2633     if (!cmd->t_data_sg_orig)
2634         return;
2635 
2636     kfree(cmd->t_data_sg);
2637     cmd->t_data_sg = cmd->t_data_sg_orig;
2638     cmd->t_data_sg_orig = NULL;
2639     cmd->t_data_nents = cmd->t_data_nents_orig;
2640     cmd->t_data_nents_orig = 0;
2641 }
2642 
2643 static inline void transport_free_pages(struct se_cmd *cmd)
2644 {
2645     if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2646         target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2647         cmd->t_prot_sg = NULL;
2648         cmd->t_prot_nents = 0;
2649     }
2650 
2651     if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2652         /*
2653          * Release special case READ buffer payload required for
2654          * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2655          */
2656         if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2657             target_free_sgl(cmd->t_bidi_data_sg,
2658                        cmd->t_bidi_data_nents);
2659             cmd->t_bidi_data_sg = NULL;
2660             cmd->t_bidi_data_nents = 0;
2661         }
2662         transport_reset_sgl_orig(cmd);
2663         return;
2664     }
2665     transport_reset_sgl_orig(cmd);
2666 
2667     target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2668     cmd->t_data_sg = NULL;
2669     cmd->t_data_nents = 0;
2670 
2671     target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2672     cmd->t_bidi_data_sg = NULL;
2673     cmd->t_bidi_data_nents = 0;
2674 }
2675 
2676 void *transport_kmap_data_sg(struct se_cmd *cmd)
2677 {
2678     struct scatterlist *sg = cmd->t_data_sg;
2679     struct page **pages;
2680     int i;
2681 
2682     /*
2683      * We need to take into account a possible offset here for fabrics like
2684      * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2685      * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2686      */
2687     if (!cmd->t_data_nents)
2688         return NULL;
2689 
2690     BUG_ON(!sg);
2691     if (cmd->t_data_nents == 1)
2692         return kmap(sg_page(sg)) + sg->offset;
2693 
2694     /* >1 page. use vmap */
2695     pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2696     if (!pages)
2697         return NULL;
2698 
2699     /* convert sg[] to pages[] */
2700     for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2701         pages[i] = sg_page(sg);
2702     }
2703 
2704     cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2705     kfree(pages);
2706     if (!cmd->t_data_vmap)
2707         return NULL;
2708 
2709     return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2710 }
2711 EXPORT_SYMBOL(transport_kmap_data_sg);
2712 
2713 void transport_kunmap_data_sg(struct se_cmd *cmd)
2714 {
2715     if (!cmd->t_data_nents) {
2716         return;
2717     } else if (cmd->t_data_nents == 1) {
2718         kunmap(sg_page(cmd->t_data_sg));
2719         return;
2720     }
2721 
2722     vunmap(cmd->t_data_vmap);
2723     cmd->t_data_vmap = NULL;
2724 }
2725 EXPORT_SYMBOL(transport_kunmap_data_sg);
2726 
2727 int
2728 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2729          bool zero_page, bool chainable)
2730 {
2731     gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2732 
2733     *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2734     return *sgl ? 0 : -ENOMEM;
2735 }
2736 EXPORT_SYMBOL(target_alloc_sgl);
2737 
2738 /*
2739  * Allocate any required resources to execute the command.  For writes we
2740  * might not have the payload yet, so notify the fabric via a call to
2741  * ->write_pending instead. Otherwise place it on the execution queue.
2742  */
2743 sense_reason_t
2744 transport_generic_new_cmd(struct se_cmd *cmd)
2745 {
2746     unsigned long flags;
2747     int ret = 0;
2748     bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2749 
2750     if (cmd->prot_op != TARGET_PROT_NORMAL &&
2751         !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2752         ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2753                        cmd->prot_length, true, false);
2754         if (ret < 0)
2755             return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2756     }
2757 
2758     /*
2759      * Determine if the TCM fabric module has already allocated physical
2760      * memory, and is directly calling transport_generic_map_mem_to_cmd()
2761      * beforehand.
2762      */
2763     if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2764         cmd->data_length) {
2765 
2766         if ((cmd->se_cmd_flags & SCF_BIDI) ||
2767             (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2768             u32 bidi_length;
2769 
2770             if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2771                 bidi_length = cmd->t_task_nolb *
2772                           cmd->se_dev->dev_attrib.block_size;
2773             else
2774                 bidi_length = cmd->data_length;
2775 
2776             ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2777                            &cmd->t_bidi_data_nents,
2778                            bidi_length, zero_flag, false);
2779             if (ret < 0)
2780                 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2781         }
2782 
2783         ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2784                        cmd->data_length, zero_flag, false);
2785         if (ret < 0)
2786             return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2787     } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2788             cmd->data_length) {
2789         /*
2790          * Special case for COMPARE_AND_WRITE with fabrics
2791          * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2792          */
2793         u32 caw_length = cmd->t_task_nolb *
2794                  cmd->se_dev->dev_attrib.block_size;
2795 
2796         ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2797                        &cmd->t_bidi_data_nents,
2798                        caw_length, zero_flag, false);
2799         if (ret < 0)
2800             return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2801     }
2802     /*
2803      * If this command is not a write we can execute it right here,
2804      * for write buffers we need to notify the fabric driver first
2805      * and let it call back once the write buffers are ready.
2806      */
2807     target_add_to_state_list(cmd);
2808     if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2809         target_execute_cmd(cmd);
2810         return 0;
2811     }
2812 
2813     spin_lock_irqsave(&cmd->t_state_lock, flags);
2814     cmd->t_state = TRANSPORT_WRITE_PENDING;
2815     /*
2816      * Determine if frontend context caller is requesting the stopping of
2817      * this command for frontend exceptions.
2818      */
2819     if (cmd->transport_state & CMD_T_STOP &&
2820         !cmd->se_tfo->write_pending_must_be_called) {
2821         pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2822              __func__, __LINE__, cmd->tag);
2823 
2824         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2825 
2826         complete_all(&cmd->t_transport_stop_comp);
2827         return 0;
2828     }
2829     cmd->transport_state &= ~CMD_T_ACTIVE;
2830     spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2831 
2832     ret = cmd->se_tfo->write_pending(cmd);
2833     if (ret)
2834         goto queue_full;
2835 
2836     return 0;
2837 
2838 queue_full:
2839     pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2840     transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2841     return 0;
2842 }
2843 EXPORT_SYMBOL(transport_generic_new_cmd);
2844 
2845 static void transport_write_pending_qf(struct se_cmd *cmd)
2846 {
2847     unsigned long flags;
2848     int ret;
2849     bool stop;
2850 
2851     spin_lock_irqsave(&cmd->t_state_lock, flags);
2852     stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2853     spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2854 
2855     if (stop) {
2856         pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2857             __func__, __LINE__, cmd->tag);
2858         complete_all(&cmd->t_transport_stop_comp);
2859         return;
2860     }
2861 
2862     ret = cmd->se_tfo->write_pending(cmd);
2863     if (ret) {
2864         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2865              cmd);
2866         transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2867     }
2868 }
2869 
2870 static bool
2871 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2872                unsigned long *flags);
2873 
2874 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2875 {
2876     unsigned long flags;
2877 
2878     spin_lock_irqsave(&cmd->t_state_lock, flags);
2879     __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2880     spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2881 }
2882 
2883 /*
2884  * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2885  * finished.
2886  */
2887 void target_put_cmd_and_wait(struct se_cmd *cmd)
2888 {
2889     DECLARE_COMPLETION_ONSTACK(compl);
2890 
2891     WARN_ON_ONCE(cmd->abrt_compl);
2892     cmd->abrt_compl = &compl;
2893     target_put_sess_cmd(cmd);
2894     wait_for_completion(&compl);
2895 }
2896 
2897 /*
2898  * This function is called by frontend drivers after processing of a command
2899  * has finished.
2900  *
2901  * The protocol for ensuring that either the regular frontend command
2902  * processing flow or target_handle_abort() code drops one reference is as
2903  * follows:
2904  * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2905  *   the frontend driver to call this function synchronously or asynchronously.
2906  *   That will cause one reference to be dropped.
2907  * - During regular command processing the target core sets CMD_T_COMPLETE
2908  *   before invoking one of the .queue_*() functions.
2909  * - The code that aborts commands skips commands and TMFs for which
2910  *   CMD_T_COMPLETE has been set.
2911  * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2912  *   commands that will be aborted.
2913  * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2914  *   transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2915  * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2916  *   be called and will drop a reference.
2917  * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2918  *   will be called. target_handle_abort() will drop the final reference.
2919  */
2920 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2921 {
2922     DECLARE_COMPLETION_ONSTACK(compl);
2923     int ret = 0;
2924     bool aborted = false, tas = false;
2925 
2926     if (wait_for_tasks)
2927         target_wait_free_cmd(cmd, &aborted, &tas);
2928 
2929     if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2930         /*
2931          * Handle WRITE failure case where transport_generic_new_cmd()
2932          * has already added se_cmd to state_list, but fabric has
2933          * failed command before I/O submission.
2934          */
2935         if (cmd->state_active)
2936             target_remove_from_state_list(cmd);
2937 
2938         if (cmd->se_lun)
2939             transport_lun_remove_cmd(cmd);
2940     }
2941     if (aborted)
2942         cmd->free_compl = &compl;
2943     ret = target_put_sess_cmd(cmd);
2944     if (aborted) {
2945         pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2946         wait_for_completion(&compl);
2947         ret = 1;
2948     }
2949     return ret;
2950 }
2951 EXPORT_SYMBOL(transport_generic_free_cmd);
2952 
2953 /**
2954  * target_get_sess_cmd - Verify the session is accepting cmds and take ref
2955  * @se_cmd: command descriptor to add
2956  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
2957  */
2958 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2959 {
2960     struct se_session *se_sess = se_cmd->se_sess;
2961     int ret = 0;
2962 
2963     /*
2964      * Add a second kref if the fabric caller is expecting to handle
2965      * fabric acknowledgement that requires two target_put_sess_cmd()
2966      * invocations before se_cmd descriptor release.
2967      */
2968     if (ack_kref) {
2969         kref_get(&se_cmd->cmd_kref);
2970         se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2971     }
2972 
2973     if (!percpu_ref_tryget_live(&se_sess->cmd_count))
2974         ret = -ESHUTDOWN;
2975 
2976     if (ret && ack_kref)
2977         target_put_sess_cmd(se_cmd);
2978 
2979     return ret;
2980 }
2981 EXPORT_SYMBOL(target_get_sess_cmd);
2982 
2983 static void target_free_cmd_mem(struct se_cmd *cmd)
2984 {
2985     transport_free_pages(cmd);
2986 
2987     if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2988         core_tmr_release_req(cmd->se_tmr_req);
2989     if (cmd->t_task_cdb != cmd->__t_task_cdb)
2990         kfree(cmd->t_task_cdb);
2991 }
2992 
2993 static void target_release_cmd_kref(struct kref *kref)
2994 {
2995     struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2996     struct se_session *se_sess = se_cmd->se_sess;
2997     struct completion *free_compl = se_cmd->free_compl;
2998     struct completion *abrt_compl = se_cmd->abrt_compl;
2999 
3000     target_free_cmd_mem(se_cmd);
3001     se_cmd->se_tfo->release_cmd(se_cmd);
3002     if (free_compl)
3003         complete(free_compl);
3004     if (abrt_compl)
3005         complete(abrt_compl);
3006 
3007     percpu_ref_put(&se_sess->cmd_count);
3008 }
3009 
3010 /**
3011  * target_put_sess_cmd - decrease the command reference count
3012  * @se_cmd: command to drop a reference from
3013  *
3014  * Returns 1 if and only if this target_put_sess_cmd() call caused the
3015  * refcount to drop to zero. Returns zero otherwise.
3016  */
3017 int target_put_sess_cmd(struct se_cmd *se_cmd)
3018 {
3019     return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
3020 }
3021 EXPORT_SYMBOL(target_put_sess_cmd);
3022 
3023 static const char *data_dir_name(enum dma_data_direction d)
3024 {
3025     switch (d) {
3026     case DMA_BIDIRECTIONAL: return "BIDI";
3027     case DMA_TO_DEVICE: return "WRITE";
3028     case DMA_FROM_DEVICE:   return "READ";
3029     case DMA_NONE:      return "NONE";
3030     }
3031 
3032     return "(?)";
3033 }
3034 
3035 static const char *cmd_state_name(enum transport_state_table t)
3036 {
3037     switch (t) {
3038     case TRANSPORT_NO_STATE:    return "NO_STATE";
3039     case TRANSPORT_NEW_CMD:     return "NEW_CMD";
3040     case TRANSPORT_WRITE_PENDING:   return "WRITE_PENDING";
3041     case TRANSPORT_PROCESSING:  return "PROCESSING";
3042     case TRANSPORT_COMPLETE:    return "COMPLETE";
3043     case TRANSPORT_ISTATE_PROCESSING:
3044                     return "ISTATE_PROCESSING";
3045     case TRANSPORT_COMPLETE_QF_WP:  return "COMPLETE_QF_WP";
3046     case TRANSPORT_COMPLETE_QF_OK:  return "COMPLETE_QF_OK";
3047     case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR";
3048     }
3049 
3050     return "(?)";
3051 }
3052 
3053 static void target_append_str(char **str, const char *txt)
3054 {
3055     char *prev = *str;
3056 
3057     *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
3058         kstrdup(txt, GFP_ATOMIC);
3059     kfree(prev);
3060 }
3061 
3062 /*
3063  * Convert a transport state bitmask into a string. The caller is
3064  * responsible for freeing the returned pointer.
3065  */
3066 static char *target_ts_to_str(u32 ts)
3067 {
3068     char *str = NULL;
3069 
3070     if (ts & CMD_T_ABORTED)
3071         target_append_str(&str, "aborted");
3072     if (ts & CMD_T_ACTIVE)
3073         target_append_str(&str, "active");
3074     if (ts & CMD_T_COMPLETE)
3075         target_append_str(&str, "complete");
3076     if (ts & CMD_T_SENT)
3077         target_append_str(&str, "sent");
3078     if (ts & CMD_T_STOP)
3079         target_append_str(&str, "stop");
3080     if (ts & CMD_T_FABRIC_STOP)
3081         target_append_str(&str, "fabric_stop");
3082 
3083     return str;
3084 }
3085 
3086 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
3087 {
3088     switch (tmf) {
3089     case TMR_ABORT_TASK:        return "ABORT_TASK";
3090     case TMR_ABORT_TASK_SET:    return "ABORT_TASK_SET";
3091     case TMR_CLEAR_ACA:     return "CLEAR_ACA";
3092     case TMR_CLEAR_TASK_SET:    return "CLEAR_TASK_SET";
3093     case TMR_LUN_RESET:     return "LUN_RESET";
3094     case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET";
3095     case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET";
3096     case TMR_LUN_RESET_PRO:     return "LUN_RESET_PRO";
3097     case TMR_UNKNOWN:       break;
3098     }
3099     return "(?)";
3100 }
3101 
3102 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
3103 {
3104     char *ts_str = target_ts_to_str(cmd->transport_state);
3105     const u8 *cdb = cmd->t_task_cdb;
3106     struct se_tmr_req *tmf = cmd->se_tmr_req;
3107 
3108     if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3109         pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
3110              pfx, cdb[0], cdb[1], cmd->tag,
3111              data_dir_name(cmd->data_direction),
3112              cmd->se_tfo->get_cmd_state(cmd),
3113              cmd_state_name(cmd->t_state), cmd->data_length,
3114              kref_read(&cmd->cmd_kref), ts_str);
3115     } else {
3116         pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
3117              pfx, target_tmf_name(tmf->function), cmd->tag,
3118              tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
3119              cmd_state_name(cmd->t_state),
3120              kref_read(&cmd->cmd_kref), ts_str);
3121     }
3122     kfree(ts_str);
3123 }
3124 EXPORT_SYMBOL(target_show_cmd);
3125 
3126 static void target_stop_session_confirm(struct percpu_ref *ref)
3127 {
3128     struct se_session *se_sess = container_of(ref, struct se_session,
3129                           cmd_count);
3130     complete_all(&se_sess->stop_done);
3131 }
3132 
3133 /**
3134  * target_stop_session - Stop new IO from being queued on the session.
3135  * @se_sess:    session to stop
3136  */
3137 void target_stop_session(struct se_session *se_sess)
3138 {
3139     pr_debug("Stopping session queue.\n");
3140     if (atomic_cmpxchg(&se_sess->stopped, 0, 1) == 0)
3141         percpu_ref_kill_and_confirm(&se_sess->cmd_count,
3142                         target_stop_session_confirm);
3143 }
3144 EXPORT_SYMBOL(target_stop_session);
3145 
3146 /**
3147  * target_wait_for_sess_cmds - Wait for outstanding commands
3148  * @se_sess:    session to wait for active I/O
3149  */
3150 void target_wait_for_sess_cmds(struct se_session *se_sess)
3151 {
3152     int ret;
3153 
3154     WARN_ON_ONCE(!atomic_read(&se_sess->stopped));
3155 
3156     do {
3157         pr_debug("Waiting for running cmds to complete.\n");
3158         ret = wait_event_timeout(se_sess->cmd_count_wq,
3159                 percpu_ref_is_zero(&se_sess->cmd_count),
3160                 180 * HZ);
3161     } while (ret <= 0);
3162 
3163     wait_for_completion(&se_sess->stop_done);
3164     pr_debug("Waiting for cmds done.\n");
3165 }
3166 EXPORT_SYMBOL(target_wait_for_sess_cmds);
3167 
3168 /*
3169  * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
3170  * all references to the LUN have been released. Called during LUN shutdown.
3171  */
3172 void transport_clear_lun_ref(struct se_lun *lun)
3173 {
3174     percpu_ref_kill(&lun->lun_ref);
3175     wait_for_completion(&lun->lun_shutdown_comp);
3176 }
3177 
3178 static bool
3179 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
3180                bool *aborted, bool *tas, unsigned long *flags)
3181     __releases(&cmd->t_state_lock)
3182     __acquires(&cmd->t_state_lock)
3183 {
3184     lockdep_assert_held(&cmd->t_state_lock);
3185 
3186     if (fabric_stop)
3187         cmd->transport_state |= CMD_T_FABRIC_STOP;
3188 
3189     if (cmd->transport_state & CMD_T_ABORTED)
3190         *aborted = true;
3191 
3192     if (cmd->transport_state & CMD_T_TAS)
3193         *tas = true;
3194 
3195     if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3196         !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3197         return false;
3198 
3199     if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3200         !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3201         return false;
3202 
3203     if (!(cmd->transport_state & CMD_T_ACTIVE))
3204         return false;
3205 
3206     if (fabric_stop && *aborted)
3207         return false;
3208 
3209     cmd->transport_state |= CMD_T_STOP;
3210 
3211     target_show_cmd("wait_for_tasks: Stopping ", cmd);
3212 
3213     spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3214 
3215     while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3216                         180 * HZ))
3217         target_show_cmd("wait for tasks: ", cmd);
3218 
3219     spin_lock_irqsave(&cmd->t_state_lock, *flags);
3220     cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3221 
3222     pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3223          "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3224 
3225     return true;
3226 }
3227 
3228 /**
3229  * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3230  * @cmd: command to wait on
3231  */
3232 bool transport_wait_for_tasks(struct se_cmd *cmd)
3233 {
3234     unsigned long flags;
3235     bool ret, aborted = false, tas = false;
3236 
3237     spin_lock_irqsave(&cmd->t_state_lock, flags);
3238     ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3239     spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3240 
3241     return ret;
3242 }
3243 EXPORT_SYMBOL(transport_wait_for_tasks);
3244 
3245 struct sense_detail {
3246     u8 key;
3247     u8 asc;
3248     u8 ascq;
3249     bool add_sense_info;
3250 };
3251 
3252 static const struct sense_detail sense_detail_table[] = {
3253     [TCM_NO_SENSE] = {
3254         .key = NOT_READY
3255     },
3256     [TCM_NON_EXISTENT_LUN] = {
3257         .key = ILLEGAL_REQUEST,
3258         .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3259     },
3260     [TCM_UNSUPPORTED_SCSI_OPCODE] = {
3261         .key = ILLEGAL_REQUEST,
3262         .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3263     },
3264     [TCM_SECTOR_COUNT_TOO_MANY] = {
3265         .key = ILLEGAL_REQUEST,
3266         .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3267     },
3268     [TCM_UNKNOWN_MODE_PAGE] = {
3269         .key = ILLEGAL_REQUEST,
3270         .asc = 0x24, /* INVALID FIELD IN CDB */
3271     },
3272     [TCM_CHECK_CONDITION_ABORT_CMD] = {
3273         .key = ABORTED_COMMAND,
3274         .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3275         .ascq = 0x03,
3276     },
3277     [TCM_INCORRECT_AMOUNT_OF_DATA] = {
3278         .key = ABORTED_COMMAND,
3279         .asc = 0x0c, /* WRITE ERROR */
3280         .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3281     },
3282     [TCM_INVALID_CDB_FIELD] = {
3283         .key = ILLEGAL_REQUEST,
3284         .asc = 0x24, /* INVALID FIELD IN CDB */
3285     },
3286     [TCM_INVALID_PARAMETER_LIST] = {
3287         .key = ILLEGAL_REQUEST,
3288         .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3289     },
3290     [TCM_TOO_MANY_TARGET_DESCS] = {
3291         .key = ILLEGAL_REQUEST,
3292         .asc = 0x26,
3293         .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3294     },
3295     [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3296         .key = ILLEGAL_REQUEST,
3297         .asc = 0x26,
3298         .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3299     },
3300     [TCM_TOO_MANY_SEGMENT_DESCS] = {
3301         .key = ILLEGAL_REQUEST,
3302         .asc = 0x26,
3303         .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3304     },
3305     [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3306         .key = ILLEGAL_REQUEST,
3307         .asc = 0x26,
3308         .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3309     },
3310     [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3311         .key = ILLEGAL_REQUEST,
3312         .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3313     },
3314     [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3315         .key = ILLEGAL_REQUEST,
3316         .asc = 0x0c, /* WRITE ERROR */
3317         .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3318     },
3319     [TCM_SERVICE_CRC_ERROR] = {
3320         .key = ABORTED_COMMAND,
3321         .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3322         .ascq = 0x05, /* N/A */
3323     },
3324     [TCM_SNACK_REJECTED] = {
3325         .key = ABORTED_COMMAND,
3326         .asc = 0x11, /* READ ERROR */
3327         .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3328     },
3329     [TCM_WRITE_PROTECTED] = {
3330         .key = DATA_PROTECT,
3331         .asc = 0x27, /* WRITE PROTECTED */
3332     },
3333     [TCM_ADDRESS_OUT_OF_RANGE] = {
3334         .key = ILLEGAL_REQUEST,
3335         .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3336     },
3337     [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3338         .key = UNIT_ATTENTION,
3339     },
3340     [TCM_MISCOMPARE_VERIFY] = {
3341         .key = MISCOMPARE,
3342         .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3343         .ascq = 0x00,
3344         .add_sense_info = true,
3345     },
3346     [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3347         .key = ABORTED_COMMAND,
3348         .asc = 0x10,
3349         .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3350         .add_sense_info = true,
3351     },
3352     [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3353         .key = ABORTED_COMMAND,
3354         .asc = 0x10,
3355         .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3356         .add_sense_info = true,
3357     },
3358     [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3359         .key = ABORTED_COMMAND,
3360         .asc = 0x10,
3361         .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3362         .add_sense_info = true,
3363     },
3364     [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3365         .key = COPY_ABORTED,
3366         .asc = 0x0d,
3367         .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3368 
3369     },
3370     [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3371         /*
3372          * Returning ILLEGAL REQUEST would cause immediate IO errors on
3373          * Solaris initiators.  Returning NOT READY instead means the
3374          * operations will be retried a finite number of times and we
3375          * can survive intermittent errors.
3376          */
3377         .key = NOT_READY,
3378         .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3379     },
3380     [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3381         /*
3382          * From spc4r22 section5.7.7,5.7.8
3383          * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3384          * or a REGISTER AND IGNORE EXISTING KEY service action or
3385          * REGISTER AND MOVE service actionis attempted,
3386          * but there are insufficient device server resources to complete the
3387          * operation, then the command shall be terminated with CHECK CONDITION
3388          * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3389          * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3390          */
3391         .key = ILLEGAL_REQUEST,
3392         .asc = 0x55,
3393         .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3394     },
3395     [TCM_INVALID_FIELD_IN_COMMAND_IU] = {
3396         .key = ILLEGAL_REQUEST,
3397         .asc = 0x0e,
3398         .ascq = 0x03, /* INVALID FIELD IN COMMAND INFORMATION UNIT */
3399     },
3400     [TCM_ALUA_TG_PT_STANDBY] = {
3401         .key = NOT_READY,
3402         .asc = 0x04,
3403         .ascq = ASCQ_04H_ALUA_TG_PT_STANDBY,
3404     },
3405     [TCM_ALUA_TG_PT_UNAVAILABLE] = {
3406         .key = NOT_READY,
3407         .asc = 0x04,
3408         .ascq = ASCQ_04H_ALUA_TG_PT_UNAVAILABLE,
3409     },
3410     [TCM_ALUA_STATE_TRANSITION] = {
3411         .key = NOT_READY,
3412         .asc = 0x04,
3413         .ascq = ASCQ_04H_ALUA_STATE_TRANSITION,
3414     },
3415     [TCM_ALUA_OFFLINE] = {
3416         .key = NOT_READY,
3417         .asc = 0x04,
3418         .ascq = ASCQ_04H_ALUA_OFFLINE,
3419     },
3420 };
3421 
3422 /**
3423  * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3424  * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3425  *   be stored.
3426  * @reason: LIO sense reason code. If this argument has the value
3427  *   TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3428  *   dequeuing a unit attention fails due to multiple commands being processed
3429  *   concurrently, set the command status to BUSY.
3430  *
3431  * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3432  */
3433 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3434 {
3435     const struct sense_detail *sd;
3436     u8 *buffer = cmd->sense_buffer;
3437     int r = (__force int)reason;
3438     u8 key, asc, ascq;
3439     bool desc_format = target_sense_desc_format(cmd->se_dev);
3440 
3441     if (r < ARRAY_SIZE(sense_detail_table) && sense_detail_table[r].key)
3442         sd = &sense_detail_table[r];
3443     else
3444         sd = &sense_detail_table[(__force int)
3445                        TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3446 
3447     key = sd->key;
3448     if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3449         if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3450                                &ascq)) {
3451             cmd->scsi_status = SAM_STAT_BUSY;
3452             return;
3453         }
3454     } else {
3455         WARN_ON_ONCE(sd->asc == 0);
3456         asc = sd->asc;
3457         ascq = sd->ascq;
3458     }
3459 
3460     cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3461     cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3462     cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3463     scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3464     if (sd->add_sense_info)
3465         WARN_ON_ONCE(scsi_set_sense_information(buffer,
3466                             cmd->scsi_sense_length,
3467                             cmd->sense_info) < 0);
3468 }
3469 
3470 int
3471 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3472         sense_reason_t reason, int from_transport)
3473 {
3474     unsigned long flags;
3475 
3476     WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3477 
3478     spin_lock_irqsave(&cmd->t_state_lock, flags);
3479     if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3480         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3481         return 0;
3482     }
3483     cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3484     spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3485 
3486     if (!from_transport)
3487         translate_sense_reason(cmd, reason);
3488 
3489     trace_target_cmd_complete(cmd);
3490     return cmd->se_tfo->queue_status(cmd);
3491 }
3492 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3493 
3494 /**
3495  * target_send_busy - Send SCSI BUSY status back to the initiator
3496  * @cmd: SCSI command for which to send a BUSY reply.
3497  *
3498  * Note: Only call this function if target_submit_cmd*() failed.
3499  */
3500 int target_send_busy(struct se_cmd *cmd)
3501 {
3502     WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3503 
3504     cmd->scsi_status = SAM_STAT_BUSY;
3505     trace_target_cmd_complete(cmd);
3506     return cmd->se_tfo->queue_status(cmd);
3507 }
3508 EXPORT_SYMBOL(target_send_busy);
3509 
3510 static void target_tmr_work(struct work_struct *work)
3511 {
3512     struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3513     struct se_device *dev = cmd->se_dev;
3514     struct se_tmr_req *tmr = cmd->se_tmr_req;
3515     int ret;
3516 
3517     if (cmd->transport_state & CMD_T_ABORTED)
3518         goto aborted;
3519 
3520     switch (tmr->function) {
3521     case TMR_ABORT_TASK:
3522         core_tmr_abort_task(dev, tmr, cmd->se_sess);
3523         break;
3524     case TMR_ABORT_TASK_SET:
3525     case TMR_CLEAR_ACA:
3526     case TMR_CLEAR_TASK_SET:
3527         tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3528         break;
3529     case TMR_LUN_RESET:
3530         ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3531         tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3532                      TMR_FUNCTION_REJECTED;
3533         if (tmr->response == TMR_FUNCTION_COMPLETE) {
3534             target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3535                            cmd->orig_fe_lun, 0x29,
3536                            ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3537         }
3538         break;
3539     case TMR_TARGET_WARM_RESET:
3540         tmr->response = TMR_FUNCTION_REJECTED;
3541         break;
3542     case TMR_TARGET_COLD_RESET:
3543         tmr->response = TMR_FUNCTION_REJECTED;
3544         break;
3545     default:
3546         pr_err("Unknown TMR function: 0x%02x.\n",
3547                 tmr->function);
3548         tmr->response = TMR_FUNCTION_REJECTED;
3549         break;
3550     }
3551 
3552     if (cmd->transport_state & CMD_T_ABORTED)
3553         goto aborted;
3554 
3555     cmd->se_tfo->queue_tm_rsp(cmd);
3556 
3557     transport_lun_remove_cmd(cmd);
3558     transport_cmd_check_stop_to_fabric(cmd);
3559     return;
3560 
3561 aborted:
3562     target_handle_abort(cmd);
3563 }
3564 
3565 int transport_generic_handle_tmr(
3566     struct se_cmd *cmd)
3567 {
3568     unsigned long flags;
3569     bool aborted = false;
3570 
3571     spin_lock_irqsave(&cmd->t_state_lock, flags);
3572     if (cmd->transport_state & CMD_T_ABORTED) {
3573         aborted = true;
3574     } else {
3575         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3576         cmd->transport_state |= CMD_T_ACTIVE;
3577     }
3578     spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3579 
3580     if (aborted) {
3581         pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3582                     cmd->se_tmr_req->function,
3583                     cmd->se_tmr_req->ref_task_tag, cmd->tag);
3584         target_handle_abort(cmd);
3585         return 0;
3586     }
3587 
3588     INIT_WORK(&cmd->work, target_tmr_work);
3589     schedule_work(&cmd->work);
3590     return 0;
3591 }
3592 EXPORT_SYMBOL(transport_generic_handle_tmr);
3593 
3594 bool
3595 target_check_wce(struct se_device *dev)
3596 {
3597     bool wce = false;
3598 
3599     if (dev->transport->get_write_cache)
3600         wce = dev->transport->get_write_cache(dev);
3601     else if (dev->dev_attrib.emulate_write_cache > 0)
3602         wce = true;
3603 
3604     return wce;
3605 }
3606 
3607 bool
3608 target_check_fua(struct se_device *dev)
3609 {
3610     return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3611 }