Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 // SPI init/core code
0003 //
0004 // Copyright (C) 2005 David Brownell
0005 // Copyright (C) 2008 Secret Lab Technologies Ltd.
0006 
0007 #include <linux/kernel.h>
0008 #include <linux/device.h>
0009 #include <linux/init.h>
0010 #include <linux/cache.h>
0011 #include <linux/dma-mapping.h>
0012 #include <linux/dmaengine.h>
0013 #include <linux/mutex.h>
0014 #include <linux/of_device.h>
0015 #include <linux/of_irq.h>
0016 #include <linux/clk/clk-conf.h>
0017 #include <linux/slab.h>
0018 #include <linux/mod_devicetable.h>
0019 #include <linux/spi/spi.h>
0020 #include <linux/spi/spi-mem.h>
0021 #include <linux/gpio/consumer.h>
0022 #include <linux/pm_runtime.h>
0023 #include <linux/pm_domain.h>
0024 #include <linux/property.h>
0025 #include <linux/export.h>
0026 #include <linux/sched/rt.h>
0027 #include <uapi/linux/sched/types.h>
0028 #include <linux/delay.h>
0029 #include <linux/kthread.h>
0030 #include <linux/ioport.h>
0031 #include <linux/acpi.h>
0032 #include <linux/highmem.h>
0033 #include <linux/idr.h>
0034 #include <linux/platform_data/x86/apple.h>
0035 #include <linux/ptp_clock_kernel.h>
0036 #include <linux/percpu.h>
0037 
0038 #define CREATE_TRACE_POINTS
0039 #include <trace/events/spi.h>
0040 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
0041 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
0042 
0043 #include "internals.h"
0044 
0045 static DEFINE_IDR(spi_master_idr);
0046 
0047 static void spidev_release(struct device *dev)
0048 {
0049     struct spi_device   *spi = to_spi_device(dev);
0050 
0051     spi_controller_put(spi->controller);
0052     kfree(spi->driver_override);
0053     free_percpu(spi->pcpu_statistics);
0054     kfree(spi);
0055 }
0056 
0057 static ssize_t
0058 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
0059 {
0060     const struct spi_device *spi = to_spi_device(dev);
0061     int len;
0062 
0063     len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
0064     if (len != -ENODEV)
0065         return len;
0066 
0067     return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
0068 }
0069 static DEVICE_ATTR_RO(modalias);
0070 
0071 static ssize_t driver_override_store(struct device *dev,
0072                      struct device_attribute *a,
0073                      const char *buf, size_t count)
0074 {
0075     struct spi_device *spi = to_spi_device(dev);
0076     int ret;
0077 
0078     ret = driver_set_override(dev, &spi->driver_override, buf, count);
0079     if (ret)
0080         return ret;
0081 
0082     return count;
0083 }
0084 
0085 static ssize_t driver_override_show(struct device *dev,
0086                     struct device_attribute *a, char *buf)
0087 {
0088     const struct spi_device *spi = to_spi_device(dev);
0089     ssize_t len;
0090 
0091     device_lock(dev);
0092     len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
0093     device_unlock(dev);
0094     return len;
0095 }
0096 static DEVICE_ATTR_RW(driver_override);
0097 
0098 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
0099 {
0100     struct spi_statistics __percpu *pcpu_stats;
0101 
0102     if (dev)
0103         pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
0104     else
0105         pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
0106 
0107     if (pcpu_stats) {
0108         int cpu;
0109 
0110         for_each_possible_cpu(cpu) {
0111             struct spi_statistics *stat;
0112 
0113             stat = per_cpu_ptr(pcpu_stats, cpu);
0114             u64_stats_init(&stat->syncp);
0115         }
0116     }
0117     return pcpu_stats;
0118 }
0119 
0120 #define spi_pcpu_stats_totalize(ret, in, field)             \
0121 do {                                    \
0122     int i;                              \
0123     ret = 0;                            \
0124     for_each_possible_cpu(i) {                  \
0125         const struct spi_statistics *pcpu_stats;        \
0126         u64 inc;                        \
0127         unsigned int start;                 \
0128         pcpu_stats = per_cpu_ptr(in, i);            \
0129         do {                            \
0130             start = u64_stats_fetch_begin_irq(      \
0131                     &pcpu_stats->syncp);        \
0132             inc = u64_stats_read(&pcpu_stats->field);   \
0133         } while (u64_stats_fetch_retry_irq(         \
0134                     &pcpu_stats->syncp, start));    \
0135         ret += inc;                     \
0136     }                               \
0137 } while (0)
0138 
0139 #define SPI_STATISTICS_ATTRS(field, file)               \
0140 static ssize_t spi_controller_##field##_show(struct device *dev,    \
0141                          struct device_attribute *attr, \
0142                          char *buf)         \
0143 {                                   \
0144     struct spi_controller *ctlr = container_of(dev,         \
0145                      struct spi_controller, dev);   \
0146     return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
0147 }                                   \
0148 static struct device_attribute dev_attr_spi_controller_##field = {  \
0149     .attr = { .name = file, .mode = 0444 },             \
0150     .show = spi_controller_##field##_show,              \
0151 };                                  \
0152 static ssize_t spi_device_##field##_show(struct device *dev,        \
0153                      struct device_attribute *attr, \
0154                     char *buf)          \
0155 {                                   \
0156     struct spi_device *spi = to_spi_device(dev);            \
0157     return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
0158 }                                   \
0159 static struct device_attribute dev_attr_spi_device_##field = {      \
0160     .attr = { .name = file, .mode = 0444 },             \
0161     .show = spi_device_##field##_show,              \
0162 }
0163 
0164 #define SPI_STATISTICS_SHOW_NAME(name, file, field)         \
0165 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
0166                         char *buf)          \
0167 {                                   \
0168     ssize_t len;                            \
0169     u64 val;                            \
0170     spi_pcpu_stats_totalize(val, stat, field);          \
0171     len = sysfs_emit(buf, "%llu\n", val);               \
0172     return len;                         \
0173 }                                   \
0174 SPI_STATISTICS_ATTRS(name, file)
0175 
0176 #define SPI_STATISTICS_SHOW(field)                  \
0177     SPI_STATISTICS_SHOW_NAME(field, __stringify(field),     \
0178                  field)
0179 
0180 SPI_STATISTICS_SHOW(messages);
0181 SPI_STATISTICS_SHOW(transfers);
0182 SPI_STATISTICS_SHOW(errors);
0183 SPI_STATISTICS_SHOW(timedout);
0184 
0185 SPI_STATISTICS_SHOW(spi_sync);
0186 SPI_STATISTICS_SHOW(spi_sync_immediate);
0187 SPI_STATISTICS_SHOW(spi_async);
0188 
0189 SPI_STATISTICS_SHOW(bytes);
0190 SPI_STATISTICS_SHOW(bytes_rx);
0191 SPI_STATISTICS_SHOW(bytes_tx);
0192 
0193 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)      \
0194     SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,       \
0195                  "transfer_bytes_histo_" number,    \
0196                  transfer_bytes_histo[index])
0197 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
0198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
0199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
0200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
0201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
0202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
0203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
0204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
0205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
0206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
0207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
0208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
0209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
0210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
0211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
0212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
0213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
0214 
0215 SPI_STATISTICS_SHOW(transfers_split_maxsize);
0216 
0217 static struct attribute *spi_dev_attrs[] = {
0218     &dev_attr_modalias.attr,
0219     &dev_attr_driver_override.attr,
0220     NULL,
0221 };
0222 
0223 static const struct attribute_group spi_dev_group = {
0224     .attrs  = spi_dev_attrs,
0225 };
0226 
0227 static struct attribute *spi_device_statistics_attrs[] = {
0228     &dev_attr_spi_device_messages.attr,
0229     &dev_attr_spi_device_transfers.attr,
0230     &dev_attr_spi_device_errors.attr,
0231     &dev_attr_spi_device_timedout.attr,
0232     &dev_attr_spi_device_spi_sync.attr,
0233     &dev_attr_spi_device_spi_sync_immediate.attr,
0234     &dev_attr_spi_device_spi_async.attr,
0235     &dev_attr_spi_device_bytes.attr,
0236     &dev_attr_spi_device_bytes_rx.attr,
0237     &dev_attr_spi_device_bytes_tx.attr,
0238     &dev_attr_spi_device_transfer_bytes_histo0.attr,
0239     &dev_attr_spi_device_transfer_bytes_histo1.attr,
0240     &dev_attr_spi_device_transfer_bytes_histo2.attr,
0241     &dev_attr_spi_device_transfer_bytes_histo3.attr,
0242     &dev_attr_spi_device_transfer_bytes_histo4.attr,
0243     &dev_attr_spi_device_transfer_bytes_histo5.attr,
0244     &dev_attr_spi_device_transfer_bytes_histo6.attr,
0245     &dev_attr_spi_device_transfer_bytes_histo7.attr,
0246     &dev_attr_spi_device_transfer_bytes_histo8.attr,
0247     &dev_attr_spi_device_transfer_bytes_histo9.attr,
0248     &dev_attr_spi_device_transfer_bytes_histo10.attr,
0249     &dev_attr_spi_device_transfer_bytes_histo11.attr,
0250     &dev_attr_spi_device_transfer_bytes_histo12.attr,
0251     &dev_attr_spi_device_transfer_bytes_histo13.attr,
0252     &dev_attr_spi_device_transfer_bytes_histo14.attr,
0253     &dev_attr_spi_device_transfer_bytes_histo15.attr,
0254     &dev_attr_spi_device_transfer_bytes_histo16.attr,
0255     &dev_attr_spi_device_transfers_split_maxsize.attr,
0256     NULL,
0257 };
0258 
0259 static const struct attribute_group spi_device_statistics_group = {
0260     .name  = "statistics",
0261     .attrs  = spi_device_statistics_attrs,
0262 };
0263 
0264 static const struct attribute_group *spi_dev_groups[] = {
0265     &spi_dev_group,
0266     &spi_device_statistics_group,
0267     NULL,
0268 };
0269 
0270 static struct attribute *spi_controller_statistics_attrs[] = {
0271     &dev_attr_spi_controller_messages.attr,
0272     &dev_attr_spi_controller_transfers.attr,
0273     &dev_attr_spi_controller_errors.attr,
0274     &dev_attr_spi_controller_timedout.attr,
0275     &dev_attr_spi_controller_spi_sync.attr,
0276     &dev_attr_spi_controller_spi_sync_immediate.attr,
0277     &dev_attr_spi_controller_spi_async.attr,
0278     &dev_attr_spi_controller_bytes.attr,
0279     &dev_attr_spi_controller_bytes_rx.attr,
0280     &dev_attr_spi_controller_bytes_tx.attr,
0281     &dev_attr_spi_controller_transfer_bytes_histo0.attr,
0282     &dev_attr_spi_controller_transfer_bytes_histo1.attr,
0283     &dev_attr_spi_controller_transfer_bytes_histo2.attr,
0284     &dev_attr_spi_controller_transfer_bytes_histo3.attr,
0285     &dev_attr_spi_controller_transfer_bytes_histo4.attr,
0286     &dev_attr_spi_controller_transfer_bytes_histo5.attr,
0287     &dev_attr_spi_controller_transfer_bytes_histo6.attr,
0288     &dev_attr_spi_controller_transfer_bytes_histo7.attr,
0289     &dev_attr_spi_controller_transfer_bytes_histo8.attr,
0290     &dev_attr_spi_controller_transfer_bytes_histo9.attr,
0291     &dev_attr_spi_controller_transfer_bytes_histo10.attr,
0292     &dev_attr_spi_controller_transfer_bytes_histo11.attr,
0293     &dev_attr_spi_controller_transfer_bytes_histo12.attr,
0294     &dev_attr_spi_controller_transfer_bytes_histo13.attr,
0295     &dev_attr_spi_controller_transfer_bytes_histo14.attr,
0296     &dev_attr_spi_controller_transfer_bytes_histo15.attr,
0297     &dev_attr_spi_controller_transfer_bytes_histo16.attr,
0298     &dev_attr_spi_controller_transfers_split_maxsize.attr,
0299     NULL,
0300 };
0301 
0302 static const struct attribute_group spi_controller_statistics_group = {
0303     .name  = "statistics",
0304     .attrs  = spi_controller_statistics_attrs,
0305 };
0306 
0307 static const struct attribute_group *spi_master_groups[] = {
0308     &spi_controller_statistics_group,
0309     NULL,
0310 };
0311 
0312 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
0313                           struct spi_transfer *xfer,
0314                           struct spi_controller *ctlr)
0315 {
0316     int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
0317     struct spi_statistics *stats;
0318 
0319     if (l2len < 0)
0320         l2len = 0;
0321 
0322     get_cpu();
0323     stats = this_cpu_ptr(pcpu_stats);
0324     u64_stats_update_begin(&stats->syncp);
0325 
0326     u64_stats_inc(&stats->transfers);
0327     u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
0328 
0329     u64_stats_add(&stats->bytes, xfer->len);
0330     if ((xfer->tx_buf) &&
0331         (xfer->tx_buf != ctlr->dummy_tx))
0332         u64_stats_add(&stats->bytes_tx, xfer->len);
0333     if ((xfer->rx_buf) &&
0334         (xfer->rx_buf != ctlr->dummy_rx))
0335         u64_stats_add(&stats->bytes_rx, xfer->len);
0336 
0337     u64_stats_update_end(&stats->syncp);
0338     put_cpu();
0339 }
0340 
0341 /*
0342  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
0343  * and the sysfs version makes coldplug work too.
0344  */
0345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
0346 {
0347     while (id->name[0]) {
0348         if (!strcmp(name, id->name))
0349             return id;
0350         id++;
0351     }
0352     return NULL;
0353 }
0354 
0355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
0356 {
0357     const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
0358 
0359     return spi_match_id(sdrv->id_table, sdev->modalias);
0360 }
0361 EXPORT_SYMBOL_GPL(spi_get_device_id);
0362 
0363 static int spi_match_device(struct device *dev, struct device_driver *drv)
0364 {
0365     const struct spi_device *spi = to_spi_device(dev);
0366     const struct spi_driver *sdrv = to_spi_driver(drv);
0367 
0368     /* Check override first, and if set, only use the named driver */
0369     if (spi->driver_override)
0370         return strcmp(spi->driver_override, drv->name) == 0;
0371 
0372     /* Attempt an OF style match */
0373     if (of_driver_match_device(dev, drv))
0374         return 1;
0375 
0376     /* Then try ACPI */
0377     if (acpi_driver_match_device(dev, drv))
0378         return 1;
0379 
0380     if (sdrv->id_table)
0381         return !!spi_match_id(sdrv->id_table, spi->modalias);
0382 
0383     return strcmp(spi->modalias, drv->name) == 0;
0384 }
0385 
0386 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
0387 {
0388     const struct spi_device     *spi = to_spi_device(dev);
0389     int rc;
0390 
0391     rc = acpi_device_uevent_modalias(dev, env);
0392     if (rc != -ENODEV)
0393         return rc;
0394 
0395     return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
0396 }
0397 
0398 static int spi_probe(struct device *dev)
0399 {
0400     const struct spi_driver     *sdrv = to_spi_driver(dev->driver);
0401     struct spi_device       *spi = to_spi_device(dev);
0402     int ret;
0403 
0404     ret = of_clk_set_defaults(dev->of_node, false);
0405     if (ret)
0406         return ret;
0407 
0408     if (dev->of_node) {
0409         spi->irq = of_irq_get(dev->of_node, 0);
0410         if (spi->irq == -EPROBE_DEFER)
0411             return -EPROBE_DEFER;
0412         if (spi->irq < 0)
0413             spi->irq = 0;
0414     }
0415 
0416     ret = dev_pm_domain_attach(dev, true);
0417     if (ret)
0418         return ret;
0419 
0420     if (sdrv->probe) {
0421         ret = sdrv->probe(spi);
0422         if (ret)
0423             dev_pm_domain_detach(dev, true);
0424     }
0425 
0426     return ret;
0427 }
0428 
0429 static void spi_remove(struct device *dev)
0430 {
0431     const struct spi_driver     *sdrv = to_spi_driver(dev->driver);
0432 
0433     if (sdrv->remove)
0434         sdrv->remove(to_spi_device(dev));
0435 
0436     dev_pm_domain_detach(dev, true);
0437 }
0438 
0439 static void spi_shutdown(struct device *dev)
0440 {
0441     if (dev->driver) {
0442         const struct spi_driver *sdrv = to_spi_driver(dev->driver);
0443 
0444         if (sdrv->shutdown)
0445             sdrv->shutdown(to_spi_device(dev));
0446     }
0447 }
0448 
0449 struct bus_type spi_bus_type = {
0450     .name       = "spi",
0451     .dev_groups = spi_dev_groups,
0452     .match      = spi_match_device,
0453     .uevent     = spi_uevent,
0454     .probe      = spi_probe,
0455     .remove     = spi_remove,
0456     .shutdown   = spi_shutdown,
0457 };
0458 EXPORT_SYMBOL_GPL(spi_bus_type);
0459 
0460 /**
0461  * __spi_register_driver - register a SPI driver
0462  * @owner: owner module of the driver to register
0463  * @sdrv: the driver to register
0464  * Context: can sleep
0465  *
0466  * Return: zero on success, else a negative error code.
0467  */
0468 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
0469 {
0470     sdrv->driver.owner = owner;
0471     sdrv->driver.bus = &spi_bus_type;
0472 
0473     /*
0474      * For Really Good Reasons we use spi: modaliases not of:
0475      * modaliases for DT so module autoloading won't work if we
0476      * don't have a spi_device_id as well as a compatible string.
0477      */
0478     if (sdrv->driver.of_match_table) {
0479         const struct of_device_id *of_id;
0480 
0481         for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
0482              of_id++) {
0483             const char *of_name;
0484 
0485             /* Strip off any vendor prefix */
0486             of_name = strnchr(of_id->compatible,
0487                       sizeof(of_id->compatible), ',');
0488             if (of_name)
0489                 of_name++;
0490             else
0491                 of_name = of_id->compatible;
0492 
0493             if (sdrv->id_table) {
0494                 const struct spi_device_id *spi_id;
0495 
0496                 spi_id = spi_match_id(sdrv->id_table, of_name);
0497                 if (spi_id)
0498                     continue;
0499             } else {
0500                 if (strcmp(sdrv->driver.name, of_name) == 0)
0501                     continue;
0502             }
0503 
0504             pr_warn("SPI driver %s has no spi_device_id for %s\n",
0505                 sdrv->driver.name, of_id->compatible);
0506         }
0507     }
0508 
0509     return driver_register(&sdrv->driver);
0510 }
0511 EXPORT_SYMBOL_GPL(__spi_register_driver);
0512 
0513 /*-------------------------------------------------------------------------*/
0514 
0515 /*
0516  * SPI devices should normally not be created by SPI device drivers; that
0517  * would make them board-specific.  Similarly with SPI controller drivers.
0518  * Device registration normally goes into like arch/.../mach.../board-YYY.c
0519  * with other readonly (flashable) information about mainboard devices.
0520  */
0521 
0522 struct boardinfo {
0523     struct list_head    list;
0524     struct spi_board_info   board_info;
0525 };
0526 
0527 static LIST_HEAD(board_list);
0528 static LIST_HEAD(spi_controller_list);
0529 
0530 /*
0531  * Used to protect add/del operation for board_info list and
0532  * spi_controller list, and their matching process also used
0533  * to protect object of type struct idr.
0534  */
0535 static DEFINE_MUTEX(board_lock);
0536 
0537 /**
0538  * spi_alloc_device - Allocate a new SPI device
0539  * @ctlr: Controller to which device is connected
0540  * Context: can sleep
0541  *
0542  * Allows a driver to allocate and initialize a spi_device without
0543  * registering it immediately.  This allows a driver to directly
0544  * fill the spi_device with device parameters before calling
0545  * spi_add_device() on it.
0546  *
0547  * Caller is responsible to call spi_add_device() on the returned
0548  * spi_device structure to add it to the SPI controller.  If the caller
0549  * needs to discard the spi_device without adding it, then it should
0550  * call spi_dev_put() on it.
0551  *
0552  * Return: a pointer to the new device, or NULL.
0553  */
0554 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
0555 {
0556     struct spi_device   *spi;
0557 
0558     if (!spi_controller_get(ctlr))
0559         return NULL;
0560 
0561     spi = kzalloc(sizeof(*spi), GFP_KERNEL);
0562     if (!spi) {
0563         spi_controller_put(ctlr);
0564         return NULL;
0565     }
0566 
0567     spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
0568     if (!spi->pcpu_statistics) {
0569         kfree(spi);
0570         spi_controller_put(ctlr);
0571         return NULL;
0572     }
0573 
0574     spi->master = spi->controller = ctlr;
0575     spi->dev.parent = &ctlr->dev;
0576     spi->dev.bus = &spi_bus_type;
0577     spi->dev.release = spidev_release;
0578     spi->mode = ctlr->buswidth_override_bits;
0579 
0580     device_initialize(&spi->dev);
0581     return spi;
0582 }
0583 EXPORT_SYMBOL_GPL(spi_alloc_device);
0584 
0585 static void spi_dev_set_name(struct spi_device *spi)
0586 {
0587     struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
0588 
0589     if (adev) {
0590         dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
0591         return;
0592     }
0593 
0594     dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
0595              spi->chip_select);
0596 }
0597 
0598 static int spi_dev_check(struct device *dev, void *data)
0599 {
0600     struct spi_device *spi = to_spi_device(dev);
0601     struct spi_device *new_spi = data;
0602 
0603     if (spi->controller == new_spi->controller &&
0604         spi->chip_select == new_spi->chip_select)
0605         return -EBUSY;
0606     return 0;
0607 }
0608 
0609 static void spi_cleanup(struct spi_device *spi)
0610 {
0611     if (spi->controller->cleanup)
0612         spi->controller->cleanup(spi);
0613 }
0614 
0615 static int __spi_add_device(struct spi_device *spi)
0616 {
0617     struct spi_controller *ctlr = spi->controller;
0618     struct device *dev = ctlr->dev.parent;
0619     int status;
0620 
0621     /*
0622      * We need to make sure there's no other device with this
0623      * chipselect **BEFORE** we call setup(), else we'll trash
0624      * its configuration.
0625      */
0626     status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
0627     if (status) {
0628         dev_err(dev, "chipselect %d already in use\n",
0629                 spi->chip_select);
0630         return status;
0631     }
0632 
0633     /* Controller may unregister concurrently */
0634     if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
0635         !device_is_registered(&ctlr->dev)) {
0636         return -ENODEV;
0637     }
0638 
0639     if (ctlr->cs_gpiods)
0640         spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
0641 
0642     /*
0643      * Drivers may modify this initial i/o setup, but will
0644      * normally rely on the device being setup.  Devices
0645      * using SPI_CS_HIGH can't coexist well otherwise...
0646      */
0647     status = spi_setup(spi);
0648     if (status < 0) {
0649         dev_err(dev, "can't setup %s, status %d\n",
0650                 dev_name(&spi->dev), status);
0651         return status;
0652     }
0653 
0654     /* Device may be bound to an active driver when this returns */
0655     status = device_add(&spi->dev);
0656     if (status < 0) {
0657         dev_err(dev, "can't add %s, status %d\n",
0658                 dev_name(&spi->dev), status);
0659         spi_cleanup(spi);
0660     } else {
0661         dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
0662     }
0663 
0664     return status;
0665 }
0666 
0667 /**
0668  * spi_add_device - Add spi_device allocated with spi_alloc_device
0669  * @spi: spi_device to register
0670  *
0671  * Companion function to spi_alloc_device.  Devices allocated with
0672  * spi_alloc_device can be added onto the spi bus with this function.
0673  *
0674  * Return: 0 on success; negative errno on failure
0675  */
0676 int spi_add_device(struct spi_device *spi)
0677 {
0678     struct spi_controller *ctlr = spi->controller;
0679     struct device *dev = ctlr->dev.parent;
0680     int status;
0681 
0682     /* Chipselects are numbered 0..max; validate. */
0683     if (spi->chip_select >= ctlr->num_chipselect) {
0684         dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
0685             ctlr->num_chipselect);
0686         return -EINVAL;
0687     }
0688 
0689     /* Set the bus ID string */
0690     spi_dev_set_name(spi);
0691 
0692     mutex_lock(&ctlr->add_lock);
0693     status = __spi_add_device(spi);
0694     mutex_unlock(&ctlr->add_lock);
0695     return status;
0696 }
0697 EXPORT_SYMBOL_GPL(spi_add_device);
0698 
0699 static int spi_add_device_locked(struct spi_device *spi)
0700 {
0701     struct spi_controller *ctlr = spi->controller;
0702     struct device *dev = ctlr->dev.parent;
0703 
0704     /* Chipselects are numbered 0..max; validate. */
0705     if (spi->chip_select >= ctlr->num_chipselect) {
0706         dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
0707             ctlr->num_chipselect);
0708         return -EINVAL;
0709     }
0710 
0711     /* Set the bus ID string */
0712     spi_dev_set_name(spi);
0713 
0714     WARN_ON(!mutex_is_locked(&ctlr->add_lock));
0715     return __spi_add_device(spi);
0716 }
0717 
0718 /**
0719  * spi_new_device - instantiate one new SPI device
0720  * @ctlr: Controller to which device is connected
0721  * @chip: Describes the SPI device
0722  * Context: can sleep
0723  *
0724  * On typical mainboards, this is purely internal; and it's not needed
0725  * after board init creates the hard-wired devices.  Some development
0726  * platforms may not be able to use spi_register_board_info though, and
0727  * this is exported so that for example a USB or parport based adapter
0728  * driver could add devices (which it would learn about out-of-band).
0729  *
0730  * Return: the new device, or NULL.
0731  */
0732 struct spi_device *spi_new_device(struct spi_controller *ctlr,
0733                   struct spi_board_info *chip)
0734 {
0735     struct spi_device   *proxy;
0736     int         status;
0737 
0738     /*
0739      * NOTE:  caller did any chip->bus_num checks necessary.
0740      *
0741      * Also, unless we change the return value convention to use
0742      * error-or-pointer (not NULL-or-pointer), troubleshootability
0743      * suggests syslogged diagnostics are best here (ugh).
0744      */
0745 
0746     proxy = spi_alloc_device(ctlr);
0747     if (!proxy)
0748         return NULL;
0749 
0750     WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
0751 
0752     proxy->chip_select = chip->chip_select;
0753     proxy->max_speed_hz = chip->max_speed_hz;
0754     proxy->mode = chip->mode;
0755     proxy->irq = chip->irq;
0756     strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
0757     proxy->dev.platform_data = (void *) chip->platform_data;
0758     proxy->controller_data = chip->controller_data;
0759     proxy->controller_state = NULL;
0760 
0761     if (chip->swnode) {
0762         status = device_add_software_node(&proxy->dev, chip->swnode);
0763         if (status) {
0764             dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
0765                 chip->modalias, status);
0766             goto err_dev_put;
0767         }
0768     }
0769 
0770     status = spi_add_device(proxy);
0771     if (status < 0)
0772         goto err_dev_put;
0773 
0774     return proxy;
0775 
0776 err_dev_put:
0777     device_remove_software_node(&proxy->dev);
0778     spi_dev_put(proxy);
0779     return NULL;
0780 }
0781 EXPORT_SYMBOL_GPL(spi_new_device);
0782 
0783 /**
0784  * spi_unregister_device - unregister a single SPI device
0785  * @spi: spi_device to unregister
0786  *
0787  * Start making the passed SPI device vanish. Normally this would be handled
0788  * by spi_unregister_controller().
0789  */
0790 void spi_unregister_device(struct spi_device *spi)
0791 {
0792     if (!spi)
0793         return;
0794 
0795     if (spi->dev.of_node) {
0796         of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
0797         of_node_put(spi->dev.of_node);
0798     }
0799     if (ACPI_COMPANION(&spi->dev))
0800         acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
0801     device_remove_software_node(&spi->dev);
0802     device_del(&spi->dev);
0803     spi_cleanup(spi);
0804     put_device(&spi->dev);
0805 }
0806 EXPORT_SYMBOL_GPL(spi_unregister_device);
0807 
0808 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
0809                           struct spi_board_info *bi)
0810 {
0811     struct spi_device *dev;
0812 
0813     if (ctlr->bus_num != bi->bus_num)
0814         return;
0815 
0816     dev = spi_new_device(ctlr, bi);
0817     if (!dev)
0818         dev_err(ctlr->dev.parent, "can't create new device for %s\n",
0819             bi->modalias);
0820 }
0821 
0822 /**
0823  * spi_register_board_info - register SPI devices for a given board
0824  * @info: array of chip descriptors
0825  * @n: how many descriptors are provided
0826  * Context: can sleep
0827  *
0828  * Board-specific early init code calls this (probably during arch_initcall)
0829  * with segments of the SPI device table.  Any device nodes are created later,
0830  * after the relevant parent SPI controller (bus_num) is defined.  We keep
0831  * this table of devices forever, so that reloading a controller driver will
0832  * not make Linux forget about these hard-wired devices.
0833  *
0834  * Other code can also call this, e.g. a particular add-on board might provide
0835  * SPI devices through its expansion connector, so code initializing that board
0836  * would naturally declare its SPI devices.
0837  *
0838  * The board info passed can safely be __initdata ... but be careful of
0839  * any embedded pointers (platform_data, etc), they're copied as-is.
0840  *
0841  * Return: zero on success, else a negative error code.
0842  */
0843 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
0844 {
0845     struct boardinfo *bi;
0846     int i;
0847 
0848     if (!n)
0849         return 0;
0850 
0851     bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
0852     if (!bi)
0853         return -ENOMEM;
0854 
0855     for (i = 0; i < n; i++, bi++, info++) {
0856         struct spi_controller *ctlr;
0857 
0858         memcpy(&bi->board_info, info, sizeof(*info));
0859 
0860         mutex_lock(&board_lock);
0861         list_add_tail(&bi->list, &board_list);
0862         list_for_each_entry(ctlr, &spi_controller_list, list)
0863             spi_match_controller_to_boardinfo(ctlr,
0864                               &bi->board_info);
0865         mutex_unlock(&board_lock);
0866     }
0867 
0868     return 0;
0869 }
0870 
0871 /*-------------------------------------------------------------------------*/
0872 
0873 /* Core methods for SPI resource management */
0874 
0875 /**
0876  * spi_res_alloc - allocate a spi resource that is life-cycle managed
0877  *                 during the processing of a spi_message while using
0878  *                 spi_transfer_one
0879  * @spi:     the spi device for which we allocate memory
0880  * @release: the release code to execute for this resource
0881  * @size:    size to alloc and return
0882  * @gfp:     GFP allocation flags
0883  *
0884  * Return: the pointer to the allocated data
0885  *
0886  * This may get enhanced in the future to allocate from a memory pool
0887  * of the @spi_device or @spi_controller to avoid repeated allocations.
0888  */
0889 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
0890                size_t size, gfp_t gfp)
0891 {
0892     struct spi_res *sres;
0893 
0894     sres = kzalloc(sizeof(*sres) + size, gfp);
0895     if (!sres)
0896         return NULL;
0897 
0898     INIT_LIST_HEAD(&sres->entry);
0899     sres->release = release;
0900 
0901     return sres->data;
0902 }
0903 
0904 /**
0905  * spi_res_free - free an spi resource
0906  * @res: pointer to the custom data of a resource
0907  */
0908 static void spi_res_free(void *res)
0909 {
0910     struct spi_res *sres = container_of(res, struct spi_res, data);
0911 
0912     if (!res)
0913         return;
0914 
0915     WARN_ON(!list_empty(&sres->entry));
0916     kfree(sres);
0917 }
0918 
0919 /**
0920  * spi_res_add - add a spi_res to the spi_message
0921  * @message: the spi message
0922  * @res:     the spi_resource
0923  */
0924 static void spi_res_add(struct spi_message *message, void *res)
0925 {
0926     struct spi_res *sres = container_of(res, struct spi_res, data);
0927 
0928     WARN_ON(!list_empty(&sres->entry));
0929     list_add_tail(&sres->entry, &message->resources);
0930 }
0931 
0932 /**
0933  * spi_res_release - release all spi resources for this message
0934  * @ctlr:  the @spi_controller
0935  * @message: the @spi_message
0936  */
0937 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
0938 {
0939     struct spi_res *res, *tmp;
0940 
0941     list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
0942         if (res->release)
0943             res->release(ctlr, message, res->data);
0944 
0945         list_del(&res->entry);
0946 
0947         kfree(res);
0948     }
0949 }
0950 
0951 /*-------------------------------------------------------------------------*/
0952 
0953 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
0954 {
0955     bool activate = enable;
0956 
0957     /*
0958      * Avoid calling into the driver (or doing delays) if the chip select
0959      * isn't actually changing from the last time this was called.
0960      */
0961     if (!force && ((enable && spi->controller->last_cs == spi->chip_select) ||
0962                 (!enable && spi->controller->last_cs != spi->chip_select)) &&
0963         (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
0964         return;
0965 
0966     trace_spi_set_cs(spi, activate);
0967 
0968     spi->controller->last_cs = enable ? spi->chip_select : -1;
0969     spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
0970 
0971     if ((spi->cs_gpiod || !spi->controller->set_cs_timing) && !activate) {
0972         spi_delay_exec(&spi->cs_hold, NULL);
0973     }
0974 
0975     if (spi->mode & SPI_CS_HIGH)
0976         enable = !enable;
0977 
0978     if (spi->cs_gpiod) {
0979         if (!(spi->mode & SPI_NO_CS)) {
0980             /*
0981              * Historically ACPI has no means of the GPIO polarity and
0982              * thus the SPISerialBus() resource defines it on the per-chip
0983              * basis. In order to avoid a chain of negations, the GPIO
0984              * polarity is considered being Active High. Even for the cases
0985              * when _DSD() is involved (in the updated versions of ACPI)
0986              * the GPIO CS polarity must be defined Active High to avoid
0987              * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
0988              * into account.
0989              */
0990             if (has_acpi_companion(&spi->dev))
0991                 gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
0992             else
0993                 /* Polarity handled by GPIO library */
0994                 gpiod_set_value_cansleep(spi->cs_gpiod, activate);
0995         }
0996         /* Some SPI masters need both GPIO CS & slave_select */
0997         if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
0998             spi->controller->set_cs)
0999             spi->controller->set_cs(spi, !enable);
1000     } else if (spi->controller->set_cs) {
1001         spi->controller->set_cs(spi, !enable);
1002     }
1003 
1004     if (spi->cs_gpiod || !spi->controller->set_cs_timing) {
1005         if (activate)
1006             spi_delay_exec(&spi->cs_setup, NULL);
1007         else
1008             spi_delay_exec(&spi->cs_inactive, NULL);
1009     }
1010 }
1011 
1012 #ifdef CONFIG_HAS_DMA
1013 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1014         struct sg_table *sgt, void *buf, size_t len,
1015         enum dma_data_direction dir)
1016 {
1017     const bool vmalloced_buf = is_vmalloc_addr(buf);
1018     unsigned int max_seg_size = dma_get_max_seg_size(dev);
1019 #ifdef CONFIG_HIGHMEM
1020     const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1021                 (unsigned long)buf < (PKMAP_BASE +
1022                     (LAST_PKMAP * PAGE_SIZE)));
1023 #else
1024     const bool kmap_buf = false;
1025 #endif
1026     int desc_len;
1027     int sgs;
1028     struct page *vm_page;
1029     struct scatterlist *sg;
1030     void *sg_buf;
1031     size_t min;
1032     int i, ret;
1033 
1034     if (vmalloced_buf || kmap_buf) {
1035         desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1036         sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1037     } else if (virt_addr_valid(buf)) {
1038         desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1039         sgs = DIV_ROUND_UP(len, desc_len);
1040     } else {
1041         return -EINVAL;
1042     }
1043 
1044     ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1045     if (ret != 0)
1046         return ret;
1047 
1048     sg = &sgt->sgl[0];
1049     for (i = 0; i < sgs; i++) {
1050 
1051         if (vmalloced_buf || kmap_buf) {
1052             /*
1053              * Next scatterlist entry size is the minimum between
1054              * the desc_len and the remaining buffer length that
1055              * fits in a page.
1056              */
1057             min = min_t(size_t, desc_len,
1058                     min_t(size_t, len,
1059                       PAGE_SIZE - offset_in_page(buf)));
1060             if (vmalloced_buf)
1061                 vm_page = vmalloc_to_page(buf);
1062             else
1063                 vm_page = kmap_to_page(buf);
1064             if (!vm_page) {
1065                 sg_free_table(sgt);
1066                 return -ENOMEM;
1067             }
1068             sg_set_page(sg, vm_page,
1069                     min, offset_in_page(buf));
1070         } else {
1071             min = min_t(size_t, len, desc_len);
1072             sg_buf = buf;
1073             sg_set_buf(sg, sg_buf, min);
1074         }
1075 
1076         buf += min;
1077         len -= min;
1078         sg = sg_next(sg);
1079     }
1080 
1081     ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
1082     if (!ret)
1083         ret = -ENOMEM;
1084     if (ret < 0) {
1085         sg_free_table(sgt);
1086         return ret;
1087     }
1088 
1089     sgt->nents = ret;
1090 
1091     return 0;
1092 }
1093 
1094 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1095            struct sg_table *sgt, enum dma_data_direction dir)
1096 {
1097     if (sgt->orig_nents) {
1098         dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
1099         sg_free_table(sgt);
1100     }
1101 }
1102 
1103 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1104 {
1105     struct device *tx_dev, *rx_dev;
1106     struct spi_transfer *xfer;
1107     int ret;
1108 
1109     if (!ctlr->can_dma)
1110         return 0;
1111 
1112     if (ctlr->dma_tx)
1113         tx_dev = ctlr->dma_tx->device->dev;
1114     else if (ctlr->dma_map_dev)
1115         tx_dev = ctlr->dma_map_dev;
1116     else
1117         tx_dev = ctlr->dev.parent;
1118 
1119     if (ctlr->dma_rx)
1120         rx_dev = ctlr->dma_rx->device->dev;
1121     else if (ctlr->dma_map_dev)
1122         rx_dev = ctlr->dma_map_dev;
1123     else
1124         rx_dev = ctlr->dev.parent;
1125 
1126     list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1127         if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1128             continue;
1129 
1130         if (xfer->tx_buf != NULL) {
1131             ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1132                       (void *)xfer->tx_buf, xfer->len,
1133                       DMA_TO_DEVICE);
1134             if (ret != 0)
1135                 return ret;
1136         }
1137 
1138         if (xfer->rx_buf != NULL) {
1139             ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1140                       xfer->rx_buf, xfer->len,
1141                       DMA_FROM_DEVICE);
1142             if (ret != 0) {
1143                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1144                           DMA_TO_DEVICE);
1145                 return ret;
1146             }
1147         }
1148     }
1149 
1150     ctlr->cur_msg_mapped = true;
1151 
1152     return 0;
1153 }
1154 
1155 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1156 {
1157     struct spi_transfer *xfer;
1158     struct device *tx_dev, *rx_dev;
1159 
1160     if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1161         return 0;
1162 
1163     if (ctlr->dma_tx)
1164         tx_dev = ctlr->dma_tx->device->dev;
1165     else if (ctlr->dma_map_dev)
1166         tx_dev = ctlr->dma_map_dev;
1167     else
1168         tx_dev = ctlr->dev.parent;
1169 
1170     if (ctlr->dma_rx)
1171         rx_dev = ctlr->dma_rx->device->dev;
1172     else if (ctlr->dma_map_dev)
1173         rx_dev = ctlr->dma_map_dev;
1174     else
1175         rx_dev = ctlr->dev.parent;
1176 
1177     list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1178         if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1179             continue;
1180 
1181         spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1182         spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1183     }
1184 
1185     ctlr->cur_msg_mapped = false;
1186 
1187     return 0;
1188 }
1189 #else /* !CONFIG_HAS_DMA */
1190 static inline int __spi_map_msg(struct spi_controller *ctlr,
1191                 struct spi_message *msg)
1192 {
1193     return 0;
1194 }
1195 
1196 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1197                   struct spi_message *msg)
1198 {
1199     return 0;
1200 }
1201 #endif /* !CONFIG_HAS_DMA */
1202 
1203 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1204                 struct spi_message *msg)
1205 {
1206     struct spi_transfer *xfer;
1207 
1208     list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1209         /*
1210          * Restore the original value of tx_buf or rx_buf if they are
1211          * NULL.
1212          */
1213         if (xfer->tx_buf == ctlr->dummy_tx)
1214             xfer->tx_buf = NULL;
1215         if (xfer->rx_buf == ctlr->dummy_rx)
1216             xfer->rx_buf = NULL;
1217     }
1218 
1219     return __spi_unmap_msg(ctlr, msg);
1220 }
1221 
1222 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1223 {
1224     struct spi_transfer *xfer;
1225     void *tmp;
1226     unsigned int max_tx, max_rx;
1227 
1228     if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1229         && !(msg->spi->mode & SPI_3WIRE)) {
1230         max_tx = 0;
1231         max_rx = 0;
1232 
1233         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1234             if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1235                 !xfer->tx_buf)
1236                 max_tx = max(xfer->len, max_tx);
1237             if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1238                 !xfer->rx_buf)
1239                 max_rx = max(xfer->len, max_rx);
1240         }
1241 
1242         if (max_tx) {
1243             tmp = krealloc(ctlr->dummy_tx, max_tx,
1244                        GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1245             if (!tmp)
1246                 return -ENOMEM;
1247             ctlr->dummy_tx = tmp;
1248         }
1249 
1250         if (max_rx) {
1251             tmp = krealloc(ctlr->dummy_rx, max_rx,
1252                        GFP_KERNEL | GFP_DMA);
1253             if (!tmp)
1254                 return -ENOMEM;
1255             ctlr->dummy_rx = tmp;
1256         }
1257 
1258         if (max_tx || max_rx) {
1259             list_for_each_entry(xfer, &msg->transfers,
1260                         transfer_list) {
1261                 if (!xfer->len)
1262                     continue;
1263                 if (!xfer->tx_buf)
1264                     xfer->tx_buf = ctlr->dummy_tx;
1265                 if (!xfer->rx_buf)
1266                     xfer->rx_buf = ctlr->dummy_rx;
1267             }
1268         }
1269     }
1270 
1271     return __spi_map_msg(ctlr, msg);
1272 }
1273 
1274 static int spi_transfer_wait(struct spi_controller *ctlr,
1275                  struct spi_message *msg,
1276                  struct spi_transfer *xfer)
1277 {
1278     struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1279     struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1280     u32 speed_hz = xfer->speed_hz;
1281     unsigned long long ms;
1282 
1283     if (spi_controller_is_slave(ctlr)) {
1284         if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1285             dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1286             return -EINTR;
1287         }
1288     } else {
1289         if (!speed_hz)
1290             speed_hz = 100000;
1291 
1292         /*
1293          * For each byte we wait for 8 cycles of the SPI clock.
1294          * Since speed is defined in Hz and we want milliseconds,
1295          * use respective multiplier, but before the division,
1296          * otherwise we may get 0 for short transfers.
1297          */
1298         ms = 8LL * MSEC_PER_SEC * xfer->len;
1299         do_div(ms, speed_hz);
1300 
1301         /*
1302          * Increase it twice and add 200 ms tolerance, use
1303          * predefined maximum in case of overflow.
1304          */
1305         ms += ms + 200;
1306         if (ms > UINT_MAX)
1307             ms = UINT_MAX;
1308 
1309         ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1310                          msecs_to_jiffies(ms));
1311 
1312         if (ms == 0) {
1313             SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1314             SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1315             dev_err(&msg->spi->dev,
1316                 "SPI transfer timed out\n");
1317             return -ETIMEDOUT;
1318         }
1319     }
1320 
1321     return 0;
1322 }
1323 
1324 static void _spi_transfer_delay_ns(u32 ns)
1325 {
1326     if (!ns)
1327         return;
1328     if (ns <= NSEC_PER_USEC) {
1329         ndelay(ns);
1330     } else {
1331         u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1332 
1333         if (us <= 10)
1334             udelay(us);
1335         else
1336             usleep_range(us, us + DIV_ROUND_UP(us, 10));
1337     }
1338 }
1339 
1340 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1341 {
1342     u32 delay = _delay->value;
1343     u32 unit = _delay->unit;
1344     u32 hz;
1345 
1346     if (!delay)
1347         return 0;
1348 
1349     switch (unit) {
1350     case SPI_DELAY_UNIT_USECS:
1351         delay *= NSEC_PER_USEC;
1352         break;
1353     case SPI_DELAY_UNIT_NSECS:
1354         /* Nothing to do here */
1355         break;
1356     case SPI_DELAY_UNIT_SCK:
1357         /* Clock cycles need to be obtained from spi_transfer */
1358         if (!xfer)
1359             return -EINVAL;
1360         /*
1361          * If there is unknown effective speed, approximate it
1362          * by underestimating with half of the requested hz.
1363          */
1364         hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1365         if (!hz)
1366             return -EINVAL;
1367 
1368         /* Convert delay to nanoseconds */
1369         delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1370         break;
1371     default:
1372         return -EINVAL;
1373     }
1374 
1375     return delay;
1376 }
1377 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1378 
1379 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1380 {
1381     int delay;
1382 
1383     might_sleep();
1384 
1385     if (!_delay)
1386         return -EINVAL;
1387 
1388     delay = spi_delay_to_ns(_delay, xfer);
1389     if (delay < 0)
1390         return delay;
1391 
1392     _spi_transfer_delay_ns(delay);
1393 
1394     return 0;
1395 }
1396 EXPORT_SYMBOL_GPL(spi_delay_exec);
1397 
1398 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1399                       struct spi_transfer *xfer)
1400 {
1401     u32 default_delay_ns = 10 * NSEC_PER_USEC;
1402     u32 delay = xfer->cs_change_delay.value;
1403     u32 unit = xfer->cs_change_delay.unit;
1404     int ret;
1405 
1406     /* Return early on "fast" mode - for everything but USECS */
1407     if (!delay) {
1408         if (unit == SPI_DELAY_UNIT_USECS)
1409             _spi_transfer_delay_ns(default_delay_ns);
1410         return;
1411     }
1412 
1413     ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1414     if (ret) {
1415         dev_err_once(&msg->spi->dev,
1416                  "Use of unsupported delay unit %i, using default of %luus\n",
1417                  unit, default_delay_ns / NSEC_PER_USEC);
1418         _spi_transfer_delay_ns(default_delay_ns);
1419     }
1420 }
1421 
1422 /*
1423  * spi_transfer_one_message - Default implementation of transfer_one_message()
1424  *
1425  * This is a standard implementation of transfer_one_message() for
1426  * drivers which implement a transfer_one() operation.  It provides
1427  * standard handling of delays and chip select management.
1428  */
1429 static int spi_transfer_one_message(struct spi_controller *ctlr,
1430                     struct spi_message *msg)
1431 {
1432     struct spi_transfer *xfer;
1433     bool keep_cs = false;
1434     int ret = 0;
1435     struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1436     struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1437 
1438     spi_set_cs(msg->spi, true, false);
1439 
1440     SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1441     SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1442 
1443     list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1444         trace_spi_transfer_start(msg, xfer);
1445 
1446         spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1447         spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1448 
1449         if (!ctlr->ptp_sts_supported) {
1450             xfer->ptp_sts_word_pre = 0;
1451             ptp_read_system_prets(xfer->ptp_sts);
1452         }
1453 
1454         if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1455             reinit_completion(&ctlr->xfer_completion);
1456 
1457 fallback_pio:
1458             ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1459             if (ret < 0) {
1460                 if (ctlr->cur_msg_mapped &&
1461                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1462                     __spi_unmap_msg(ctlr, msg);
1463                     ctlr->fallback = true;
1464                     xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1465                     goto fallback_pio;
1466                 }
1467 
1468                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1469                                    errors);
1470                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1471                                    errors);
1472                 dev_err(&msg->spi->dev,
1473                     "SPI transfer failed: %d\n", ret);
1474                 goto out;
1475             }
1476 
1477             if (ret > 0) {
1478                 ret = spi_transfer_wait(ctlr, msg, xfer);
1479                 if (ret < 0)
1480                     msg->status = ret;
1481             }
1482         } else {
1483             if (xfer->len)
1484                 dev_err(&msg->spi->dev,
1485                     "Bufferless transfer has length %u\n",
1486                     xfer->len);
1487         }
1488 
1489         if (!ctlr->ptp_sts_supported) {
1490             ptp_read_system_postts(xfer->ptp_sts);
1491             xfer->ptp_sts_word_post = xfer->len;
1492         }
1493 
1494         trace_spi_transfer_stop(msg, xfer);
1495 
1496         if (msg->status != -EINPROGRESS)
1497             goto out;
1498 
1499         spi_transfer_delay_exec(xfer);
1500 
1501         if (xfer->cs_change) {
1502             if (list_is_last(&xfer->transfer_list,
1503                      &msg->transfers)) {
1504                 keep_cs = true;
1505             } else {
1506                 spi_set_cs(msg->spi, false, false);
1507                 _spi_transfer_cs_change_delay(msg, xfer);
1508                 spi_set_cs(msg->spi, true, false);
1509             }
1510         }
1511 
1512         msg->actual_length += xfer->len;
1513     }
1514 
1515 out:
1516     if (ret != 0 || !keep_cs)
1517         spi_set_cs(msg->spi, false, false);
1518 
1519     if (msg->status == -EINPROGRESS)
1520         msg->status = ret;
1521 
1522     if (msg->status && ctlr->handle_err)
1523         ctlr->handle_err(ctlr, msg);
1524 
1525     spi_finalize_current_message(ctlr);
1526 
1527     return ret;
1528 }
1529 
1530 /**
1531  * spi_finalize_current_transfer - report completion of a transfer
1532  * @ctlr: the controller reporting completion
1533  *
1534  * Called by SPI drivers using the core transfer_one_message()
1535  * implementation to notify it that the current interrupt driven
1536  * transfer has finished and the next one may be scheduled.
1537  */
1538 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1539 {
1540     complete(&ctlr->xfer_completion);
1541 }
1542 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1543 
1544 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1545 {
1546     if (ctlr->auto_runtime_pm) {
1547         pm_runtime_mark_last_busy(ctlr->dev.parent);
1548         pm_runtime_put_autosuspend(ctlr->dev.parent);
1549     }
1550 }
1551 
1552 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1553         struct spi_message *msg, bool was_busy)
1554 {
1555     struct spi_transfer *xfer;
1556     int ret;
1557 
1558     if (!was_busy && ctlr->auto_runtime_pm) {
1559         ret = pm_runtime_get_sync(ctlr->dev.parent);
1560         if (ret < 0) {
1561             pm_runtime_put_noidle(ctlr->dev.parent);
1562             dev_err(&ctlr->dev, "Failed to power device: %d\n",
1563                 ret);
1564             return ret;
1565         }
1566     }
1567 
1568     if (!was_busy)
1569         trace_spi_controller_busy(ctlr);
1570 
1571     if (!was_busy && ctlr->prepare_transfer_hardware) {
1572         ret = ctlr->prepare_transfer_hardware(ctlr);
1573         if (ret) {
1574             dev_err(&ctlr->dev,
1575                 "failed to prepare transfer hardware: %d\n",
1576                 ret);
1577 
1578             if (ctlr->auto_runtime_pm)
1579                 pm_runtime_put(ctlr->dev.parent);
1580 
1581             msg->status = ret;
1582             spi_finalize_current_message(ctlr);
1583 
1584             return ret;
1585         }
1586     }
1587 
1588     trace_spi_message_start(msg);
1589 
1590     if (ctlr->prepare_message) {
1591         ret = ctlr->prepare_message(ctlr, msg);
1592         if (ret) {
1593             dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1594                 ret);
1595             msg->status = ret;
1596             spi_finalize_current_message(ctlr);
1597             return ret;
1598         }
1599         msg->prepared = true;
1600     }
1601 
1602     ret = spi_map_msg(ctlr, msg);
1603     if (ret) {
1604         msg->status = ret;
1605         spi_finalize_current_message(ctlr);
1606         return ret;
1607     }
1608 
1609     if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1610         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1611             xfer->ptp_sts_word_pre = 0;
1612             ptp_read_system_prets(xfer->ptp_sts);
1613         }
1614     }
1615 
1616     /*
1617      * Drivers implementation of transfer_one_message() must arrange for
1618      * spi_finalize_current_message() to get called. Most drivers will do
1619      * this in the calling context, but some don't. For those cases, a
1620      * completion is used to guarantee that this function does not return
1621      * until spi_finalize_current_message() is done accessing
1622      * ctlr->cur_msg.
1623      * Use of the following two flags enable to opportunistically skip the
1624      * use of the completion since its use involves expensive spin locks.
1625      * In case of a race with the context that calls
1626      * spi_finalize_current_message() the completion will always be used,
1627      * due to strict ordering of these flags using barriers.
1628      */
1629     WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1630     WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1631     reinit_completion(&ctlr->cur_msg_completion);
1632     smp_wmb(); /* Make these available to spi_finalize_current_message() */
1633 
1634     ret = ctlr->transfer_one_message(ctlr, msg);
1635     if (ret) {
1636         dev_err(&ctlr->dev,
1637             "failed to transfer one message from queue\n");
1638         return ret;
1639     }
1640 
1641     WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1642     smp_mb(); /* See spi_finalize_current_message()... */
1643     if (READ_ONCE(ctlr->cur_msg_incomplete))
1644         wait_for_completion(&ctlr->cur_msg_completion);
1645 
1646     return 0;
1647 }
1648 
1649 /**
1650  * __spi_pump_messages - function which processes spi message queue
1651  * @ctlr: controller to process queue for
1652  * @in_kthread: true if we are in the context of the message pump thread
1653  *
1654  * This function checks if there is any spi message in the queue that
1655  * needs processing and if so call out to the driver to initialize hardware
1656  * and transfer each message.
1657  *
1658  * Note that it is called both from the kthread itself and also from
1659  * inside spi_sync(); the queue extraction handling at the top of the
1660  * function should deal with this safely.
1661  */
1662 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1663 {
1664     struct spi_message *msg;
1665     bool was_busy = false;
1666     unsigned long flags;
1667     int ret;
1668 
1669     /* Take the IO mutex */
1670     mutex_lock(&ctlr->io_mutex);
1671 
1672     /* Lock queue */
1673     spin_lock_irqsave(&ctlr->queue_lock, flags);
1674 
1675     /* Make sure we are not already running a message */
1676     if (ctlr->cur_msg)
1677         goto out_unlock;
1678 
1679     /* Check if the queue is idle */
1680     if (list_empty(&ctlr->queue) || !ctlr->running) {
1681         if (!ctlr->busy)
1682             goto out_unlock;
1683 
1684         /* Defer any non-atomic teardown to the thread */
1685         if (!in_kthread) {
1686             if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1687                 !ctlr->unprepare_transfer_hardware) {
1688                 spi_idle_runtime_pm(ctlr);
1689                 ctlr->busy = false;
1690                 ctlr->queue_empty = true;
1691                 trace_spi_controller_idle(ctlr);
1692             } else {
1693                 kthread_queue_work(ctlr->kworker,
1694                            &ctlr->pump_messages);
1695             }
1696             goto out_unlock;
1697         }
1698 
1699         ctlr->busy = false;
1700         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1701 
1702         kfree(ctlr->dummy_rx);
1703         ctlr->dummy_rx = NULL;
1704         kfree(ctlr->dummy_tx);
1705         ctlr->dummy_tx = NULL;
1706         if (ctlr->unprepare_transfer_hardware &&
1707             ctlr->unprepare_transfer_hardware(ctlr))
1708             dev_err(&ctlr->dev,
1709                 "failed to unprepare transfer hardware\n");
1710         spi_idle_runtime_pm(ctlr);
1711         trace_spi_controller_idle(ctlr);
1712 
1713         spin_lock_irqsave(&ctlr->queue_lock, flags);
1714         ctlr->queue_empty = true;
1715         goto out_unlock;
1716     }
1717 
1718     /* Extract head of queue */
1719     msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1720     ctlr->cur_msg = msg;
1721 
1722     list_del_init(&msg->queue);
1723     if (ctlr->busy)
1724         was_busy = true;
1725     else
1726         ctlr->busy = true;
1727     spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1728 
1729     ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1730     kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1731 
1732     ctlr->cur_msg = NULL;
1733     ctlr->fallback = false;
1734 
1735     mutex_unlock(&ctlr->io_mutex);
1736 
1737     /* Prod the scheduler in case transfer_one() was busy waiting */
1738     if (!ret)
1739         cond_resched();
1740     return;
1741 
1742 out_unlock:
1743     spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1744     mutex_unlock(&ctlr->io_mutex);
1745 }
1746 
1747 /**
1748  * spi_pump_messages - kthread work function which processes spi message queue
1749  * @work: pointer to kthread work struct contained in the controller struct
1750  */
1751 static void spi_pump_messages(struct kthread_work *work)
1752 {
1753     struct spi_controller *ctlr =
1754         container_of(work, struct spi_controller, pump_messages);
1755 
1756     __spi_pump_messages(ctlr, true);
1757 }
1758 
1759 /**
1760  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1761  * @ctlr: Pointer to the spi_controller structure of the driver
1762  * @xfer: Pointer to the transfer being timestamped
1763  * @progress: How many words (not bytes) have been transferred so far
1764  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1765  *        transfer, for less jitter in time measurement. Only compatible
1766  *        with PIO drivers. If true, must follow up with
1767  *        spi_take_timestamp_post or otherwise system will crash.
1768  *        WARNING: for fully predictable results, the CPU frequency must
1769  *        also be under control (governor).
1770  *
1771  * This is a helper for drivers to collect the beginning of the TX timestamp
1772  * for the requested byte from the SPI transfer. The frequency with which this
1773  * function must be called (once per word, once for the whole transfer, once
1774  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1775  * greater than or equal to the requested byte at the time of the call. The
1776  * timestamp is only taken once, at the first such call. It is assumed that
1777  * the driver advances its @tx buffer pointer monotonically.
1778  */
1779 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1780                 struct spi_transfer *xfer,
1781                 size_t progress, bool irqs_off)
1782 {
1783     if (!xfer->ptp_sts)
1784         return;
1785 
1786     if (xfer->timestamped)
1787         return;
1788 
1789     if (progress > xfer->ptp_sts_word_pre)
1790         return;
1791 
1792     /* Capture the resolution of the timestamp */
1793     xfer->ptp_sts_word_pre = progress;
1794 
1795     if (irqs_off) {
1796         local_irq_save(ctlr->irq_flags);
1797         preempt_disable();
1798     }
1799 
1800     ptp_read_system_prets(xfer->ptp_sts);
1801 }
1802 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1803 
1804 /**
1805  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1806  * @ctlr: Pointer to the spi_controller structure of the driver
1807  * @xfer: Pointer to the transfer being timestamped
1808  * @progress: How many words (not bytes) have been transferred so far
1809  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1810  *
1811  * This is a helper for drivers to collect the end of the TX timestamp for
1812  * the requested byte from the SPI transfer. Can be called with an arbitrary
1813  * frequency: only the first call where @tx exceeds or is equal to the
1814  * requested word will be timestamped.
1815  */
1816 void spi_take_timestamp_post(struct spi_controller *ctlr,
1817                  struct spi_transfer *xfer,
1818                  size_t progress, bool irqs_off)
1819 {
1820     if (!xfer->ptp_sts)
1821         return;
1822 
1823     if (xfer->timestamped)
1824         return;
1825 
1826     if (progress < xfer->ptp_sts_word_post)
1827         return;
1828 
1829     ptp_read_system_postts(xfer->ptp_sts);
1830 
1831     if (irqs_off) {
1832         local_irq_restore(ctlr->irq_flags);
1833         preempt_enable();
1834     }
1835 
1836     /* Capture the resolution of the timestamp */
1837     xfer->ptp_sts_word_post = progress;
1838 
1839     xfer->timestamped = true;
1840 }
1841 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1842 
1843 /**
1844  * spi_set_thread_rt - set the controller to pump at realtime priority
1845  * @ctlr: controller to boost priority of
1846  *
1847  * This can be called because the controller requested realtime priority
1848  * (by setting the ->rt value before calling spi_register_controller()) or
1849  * because a device on the bus said that its transfers needed realtime
1850  * priority.
1851  *
1852  * NOTE: at the moment if any device on a bus says it needs realtime then
1853  * the thread will be at realtime priority for all transfers on that
1854  * controller.  If this eventually becomes a problem we may see if we can
1855  * find a way to boost the priority only temporarily during relevant
1856  * transfers.
1857  */
1858 static void spi_set_thread_rt(struct spi_controller *ctlr)
1859 {
1860     dev_info(&ctlr->dev,
1861         "will run message pump with realtime priority\n");
1862     sched_set_fifo(ctlr->kworker->task);
1863 }
1864 
1865 static int spi_init_queue(struct spi_controller *ctlr)
1866 {
1867     ctlr->running = false;
1868     ctlr->busy = false;
1869     ctlr->queue_empty = true;
1870 
1871     ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1872     if (IS_ERR(ctlr->kworker)) {
1873         dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1874         return PTR_ERR(ctlr->kworker);
1875     }
1876 
1877     kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1878 
1879     /*
1880      * Controller config will indicate if this controller should run the
1881      * message pump with high (realtime) priority to reduce the transfer
1882      * latency on the bus by minimising the delay between a transfer
1883      * request and the scheduling of the message pump thread. Without this
1884      * setting the message pump thread will remain at default priority.
1885      */
1886     if (ctlr->rt)
1887         spi_set_thread_rt(ctlr);
1888 
1889     return 0;
1890 }
1891 
1892 /**
1893  * spi_get_next_queued_message() - called by driver to check for queued
1894  * messages
1895  * @ctlr: the controller to check for queued messages
1896  *
1897  * If there are more messages in the queue, the next message is returned from
1898  * this call.
1899  *
1900  * Return: the next message in the queue, else NULL if the queue is empty.
1901  */
1902 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1903 {
1904     struct spi_message *next;
1905     unsigned long flags;
1906 
1907     /* Get a pointer to the next message, if any */
1908     spin_lock_irqsave(&ctlr->queue_lock, flags);
1909     next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1910                     queue);
1911     spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1912 
1913     return next;
1914 }
1915 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1916 
1917 /**
1918  * spi_finalize_current_message() - the current message is complete
1919  * @ctlr: the controller to return the message to
1920  *
1921  * Called by the driver to notify the core that the message in the front of the
1922  * queue is complete and can be removed from the queue.
1923  */
1924 void spi_finalize_current_message(struct spi_controller *ctlr)
1925 {
1926     struct spi_transfer *xfer;
1927     struct spi_message *mesg;
1928     int ret;
1929 
1930     mesg = ctlr->cur_msg;
1931 
1932     if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1933         list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1934             ptp_read_system_postts(xfer->ptp_sts);
1935             xfer->ptp_sts_word_post = xfer->len;
1936         }
1937     }
1938 
1939     if (unlikely(ctlr->ptp_sts_supported))
1940         list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1941             WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1942 
1943     spi_unmap_msg(ctlr, mesg);
1944 
1945     /*
1946      * In the prepare_messages callback the SPI bus has the opportunity
1947      * to split a transfer to smaller chunks.
1948      *
1949      * Release the split transfers here since spi_map_msg() is done on
1950      * the split transfers.
1951      */
1952     spi_res_release(ctlr, mesg);
1953 
1954     if (mesg->prepared && ctlr->unprepare_message) {
1955         ret = ctlr->unprepare_message(ctlr, mesg);
1956         if (ret) {
1957             dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1958                 ret);
1959         }
1960     }
1961 
1962     mesg->prepared = false;
1963 
1964     WRITE_ONCE(ctlr->cur_msg_incomplete, false);
1965     smp_mb(); /* See __spi_pump_transfer_message()... */
1966     if (READ_ONCE(ctlr->cur_msg_need_completion))
1967         complete(&ctlr->cur_msg_completion);
1968 
1969     trace_spi_message_done(mesg);
1970 
1971     mesg->state = NULL;
1972     if (mesg->complete)
1973         mesg->complete(mesg->context);
1974 }
1975 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1976 
1977 static int spi_start_queue(struct spi_controller *ctlr)
1978 {
1979     unsigned long flags;
1980 
1981     spin_lock_irqsave(&ctlr->queue_lock, flags);
1982 
1983     if (ctlr->running || ctlr->busy) {
1984         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1985         return -EBUSY;
1986     }
1987 
1988     ctlr->running = true;
1989     ctlr->cur_msg = NULL;
1990     spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1991 
1992     kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1993 
1994     return 0;
1995 }
1996 
1997 static int spi_stop_queue(struct spi_controller *ctlr)
1998 {
1999     unsigned long flags;
2000     unsigned limit = 500;
2001     int ret = 0;
2002 
2003     spin_lock_irqsave(&ctlr->queue_lock, flags);
2004 
2005     /*
2006      * This is a bit lame, but is optimized for the common execution path.
2007      * A wait_queue on the ctlr->busy could be used, but then the common
2008      * execution path (pump_messages) would be required to call wake_up or
2009      * friends on every SPI message. Do this instead.
2010      */
2011     while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2012         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2013         usleep_range(10000, 11000);
2014         spin_lock_irqsave(&ctlr->queue_lock, flags);
2015     }
2016 
2017     if (!list_empty(&ctlr->queue) || ctlr->busy)
2018         ret = -EBUSY;
2019     else
2020         ctlr->running = false;
2021 
2022     spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2023 
2024     if (ret) {
2025         dev_warn(&ctlr->dev, "could not stop message queue\n");
2026         return ret;
2027     }
2028     return ret;
2029 }
2030 
2031 static int spi_destroy_queue(struct spi_controller *ctlr)
2032 {
2033     int ret;
2034 
2035     ret = spi_stop_queue(ctlr);
2036 
2037     /*
2038      * kthread_flush_worker will block until all work is done.
2039      * If the reason that stop_queue timed out is that the work will never
2040      * finish, then it does no good to call flush/stop thread, so
2041      * return anyway.
2042      */
2043     if (ret) {
2044         dev_err(&ctlr->dev, "problem destroying queue\n");
2045         return ret;
2046     }
2047 
2048     kthread_destroy_worker(ctlr->kworker);
2049 
2050     return 0;
2051 }
2052 
2053 static int __spi_queued_transfer(struct spi_device *spi,
2054                  struct spi_message *msg,
2055                  bool need_pump)
2056 {
2057     struct spi_controller *ctlr = spi->controller;
2058     unsigned long flags;
2059 
2060     spin_lock_irqsave(&ctlr->queue_lock, flags);
2061 
2062     if (!ctlr->running) {
2063         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2064         return -ESHUTDOWN;
2065     }
2066     msg->actual_length = 0;
2067     msg->status = -EINPROGRESS;
2068 
2069     list_add_tail(&msg->queue, &ctlr->queue);
2070     ctlr->queue_empty = false;
2071     if (!ctlr->busy && need_pump)
2072         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2073 
2074     spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2075     return 0;
2076 }
2077 
2078 /**
2079  * spi_queued_transfer - transfer function for queued transfers
2080  * @spi: spi device which is requesting transfer
2081  * @msg: spi message which is to handled is queued to driver queue
2082  *
2083  * Return: zero on success, else a negative error code.
2084  */
2085 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2086 {
2087     return __spi_queued_transfer(spi, msg, true);
2088 }
2089 
2090 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2091 {
2092     int ret;
2093 
2094     ctlr->transfer = spi_queued_transfer;
2095     if (!ctlr->transfer_one_message)
2096         ctlr->transfer_one_message = spi_transfer_one_message;
2097 
2098     /* Initialize and start queue */
2099     ret = spi_init_queue(ctlr);
2100     if (ret) {
2101         dev_err(&ctlr->dev, "problem initializing queue\n");
2102         goto err_init_queue;
2103     }
2104     ctlr->queued = true;
2105     ret = spi_start_queue(ctlr);
2106     if (ret) {
2107         dev_err(&ctlr->dev, "problem starting queue\n");
2108         goto err_start_queue;
2109     }
2110 
2111     return 0;
2112 
2113 err_start_queue:
2114     spi_destroy_queue(ctlr);
2115 err_init_queue:
2116     return ret;
2117 }
2118 
2119 /**
2120  * spi_flush_queue - Send all pending messages in the queue from the callers'
2121  *           context
2122  * @ctlr: controller to process queue for
2123  *
2124  * This should be used when one wants to ensure all pending messages have been
2125  * sent before doing something. Is used by the spi-mem code to make sure SPI
2126  * memory operations do not preempt regular SPI transfers that have been queued
2127  * before the spi-mem operation.
2128  */
2129 void spi_flush_queue(struct spi_controller *ctlr)
2130 {
2131     if (ctlr->transfer == spi_queued_transfer)
2132         __spi_pump_messages(ctlr, false);
2133 }
2134 
2135 /*-------------------------------------------------------------------------*/
2136 
2137 #if defined(CONFIG_OF)
2138 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2139                struct device_node *nc)
2140 {
2141     u32 value;
2142     int rc;
2143 
2144     /* Mode (clock phase/polarity/etc.) */
2145     if (of_property_read_bool(nc, "spi-cpha"))
2146         spi->mode |= SPI_CPHA;
2147     if (of_property_read_bool(nc, "spi-cpol"))
2148         spi->mode |= SPI_CPOL;
2149     if (of_property_read_bool(nc, "spi-3wire"))
2150         spi->mode |= SPI_3WIRE;
2151     if (of_property_read_bool(nc, "spi-lsb-first"))
2152         spi->mode |= SPI_LSB_FIRST;
2153     if (of_property_read_bool(nc, "spi-cs-high"))
2154         spi->mode |= SPI_CS_HIGH;
2155 
2156     /* Device DUAL/QUAD mode */
2157     if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2158         switch (value) {
2159         case 0:
2160             spi->mode |= SPI_NO_TX;
2161             break;
2162         case 1:
2163             break;
2164         case 2:
2165             spi->mode |= SPI_TX_DUAL;
2166             break;
2167         case 4:
2168             spi->mode |= SPI_TX_QUAD;
2169             break;
2170         case 8:
2171             spi->mode |= SPI_TX_OCTAL;
2172             break;
2173         default:
2174             dev_warn(&ctlr->dev,
2175                 "spi-tx-bus-width %d not supported\n",
2176                 value);
2177             break;
2178         }
2179     }
2180 
2181     if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2182         switch (value) {
2183         case 0:
2184             spi->mode |= SPI_NO_RX;
2185             break;
2186         case 1:
2187             break;
2188         case 2:
2189             spi->mode |= SPI_RX_DUAL;
2190             break;
2191         case 4:
2192             spi->mode |= SPI_RX_QUAD;
2193             break;
2194         case 8:
2195             spi->mode |= SPI_RX_OCTAL;
2196             break;
2197         default:
2198             dev_warn(&ctlr->dev,
2199                 "spi-rx-bus-width %d not supported\n",
2200                 value);
2201             break;
2202         }
2203     }
2204 
2205     if (spi_controller_is_slave(ctlr)) {
2206         if (!of_node_name_eq(nc, "slave")) {
2207             dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2208                 nc);
2209             return -EINVAL;
2210         }
2211         return 0;
2212     }
2213 
2214     /* Device address */
2215     rc = of_property_read_u32(nc, "reg", &value);
2216     if (rc) {
2217         dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2218             nc, rc);
2219         return rc;
2220     }
2221     spi->chip_select = value;
2222 
2223     /* Device speed */
2224     if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2225         spi->max_speed_hz = value;
2226 
2227     return 0;
2228 }
2229 
2230 static struct spi_device *
2231 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2232 {
2233     struct spi_device *spi;
2234     int rc;
2235 
2236     /* Alloc an spi_device */
2237     spi = spi_alloc_device(ctlr);
2238     if (!spi) {
2239         dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2240         rc = -ENOMEM;
2241         goto err_out;
2242     }
2243 
2244     /* Select device driver */
2245     rc = of_modalias_node(nc, spi->modalias,
2246                 sizeof(spi->modalias));
2247     if (rc < 0) {
2248         dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2249         goto err_out;
2250     }
2251 
2252     rc = of_spi_parse_dt(ctlr, spi, nc);
2253     if (rc)
2254         goto err_out;
2255 
2256     /* Store a pointer to the node in the device structure */
2257     of_node_get(nc);
2258     spi->dev.of_node = nc;
2259     spi->dev.fwnode = of_fwnode_handle(nc);
2260 
2261     /* Register the new device */
2262     rc = spi_add_device(spi);
2263     if (rc) {
2264         dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2265         goto err_of_node_put;
2266     }
2267 
2268     return spi;
2269 
2270 err_of_node_put:
2271     of_node_put(nc);
2272 err_out:
2273     spi_dev_put(spi);
2274     return ERR_PTR(rc);
2275 }
2276 
2277 /**
2278  * of_register_spi_devices() - Register child devices onto the SPI bus
2279  * @ctlr:   Pointer to spi_controller device
2280  *
2281  * Registers an spi_device for each child node of controller node which
2282  * represents a valid SPI slave.
2283  */
2284 static void of_register_spi_devices(struct spi_controller *ctlr)
2285 {
2286     struct spi_device *spi;
2287     struct device_node *nc;
2288 
2289     if (!ctlr->dev.of_node)
2290         return;
2291 
2292     for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2293         if (of_node_test_and_set_flag(nc, OF_POPULATED))
2294             continue;
2295         spi = of_register_spi_device(ctlr, nc);
2296         if (IS_ERR(spi)) {
2297             dev_warn(&ctlr->dev,
2298                  "Failed to create SPI device for %pOF\n", nc);
2299             of_node_clear_flag(nc, OF_POPULATED);
2300         }
2301     }
2302 }
2303 #else
2304 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2305 #endif
2306 
2307 /**
2308  * spi_new_ancillary_device() - Register ancillary SPI device
2309  * @spi:         Pointer to the main SPI device registering the ancillary device
2310  * @chip_select: Chip Select of the ancillary device
2311  *
2312  * Register an ancillary SPI device; for example some chips have a chip-select
2313  * for normal device usage and another one for setup/firmware upload.
2314  *
2315  * This may only be called from main SPI device's probe routine.
2316  *
2317  * Return: 0 on success; negative errno on failure
2318  */
2319 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2320                          u8 chip_select)
2321 {
2322     struct spi_device *ancillary;
2323     int rc = 0;
2324 
2325     /* Alloc an spi_device */
2326     ancillary = spi_alloc_device(spi->controller);
2327     if (!ancillary) {
2328         rc = -ENOMEM;
2329         goto err_out;
2330     }
2331 
2332     strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2333 
2334     /* Use provided chip-select for ancillary device */
2335     ancillary->chip_select = chip_select;
2336 
2337     /* Take over SPI mode/speed from SPI main device */
2338     ancillary->max_speed_hz = spi->max_speed_hz;
2339     ancillary->mode = spi->mode;
2340 
2341     /* Register the new device */
2342     rc = spi_add_device_locked(ancillary);
2343     if (rc) {
2344         dev_err(&spi->dev, "failed to register ancillary device\n");
2345         goto err_out;
2346     }
2347 
2348     return ancillary;
2349 
2350 err_out:
2351     spi_dev_put(ancillary);
2352     return ERR_PTR(rc);
2353 }
2354 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2355 
2356 #ifdef CONFIG_ACPI
2357 struct acpi_spi_lookup {
2358     struct spi_controller   *ctlr;
2359     u32         max_speed_hz;
2360     u32         mode;
2361     int         irq;
2362     u8          bits_per_word;
2363     u8          chip_select;
2364     int         n;
2365     int         index;
2366 };
2367 
2368 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2369 {
2370     struct acpi_resource_spi_serialbus *sb;
2371     int *count = data;
2372 
2373     if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2374         return 1;
2375 
2376     sb = &ares->data.spi_serial_bus;
2377     if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2378         return 1;
2379 
2380     *count = *count + 1;
2381 
2382     return 1;
2383 }
2384 
2385 /**
2386  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2387  * @adev:   ACPI device
2388  *
2389  * Returns the number of SpiSerialBus resources in the ACPI-device's
2390  * resource-list; or a negative error code.
2391  */
2392 int acpi_spi_count_resources(struct acpi_device *adev)
2393 {
2394     LIST_HEAD(r);
2395     int count = 0;
2396     int ret;
2397 
2398     ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2399     if (ret < 0)
2400         return ret;
2401 
2402     acpi_dev_free_resource_list(&r);
2403 
2404     return count;
2405 }
2406 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2407 
2408 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2409                         struct acpi_spi_lookup *lookup)
2410 {
2411     const union acpi_object *obj;
2412 
2413     if (!x86_apple_machine)
2414         return;
2415 
2416     if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2417         && obj->buffer.length >= 4)
2418         lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2419 
2420     if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2421         && obj->buffer.length == 8)
2422         lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2423 
2424     if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2425         && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2426         lookup->mode |= SPI_LSB_FIRST;
2427 
2428     if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2429         && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2430         lookup->mode |= SPI_CPOL;
2431 
2432     if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2433         && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2434         lookup->mode |= SPI_CPHA;
2435 }
2436 
2437 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2438 
2439 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2440 {
2441     struct acpi_spi_lookup *lookup = data;
2442     struct spi_controller *ctlr = lookup->ctlr;
2443 
2444     if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2445         struct acpi_resource_spi_serialbus *sb;
2446         acpi_handle parent_handle;
2447         acpi_status status;
2448 
2449         sb = &ares->data.spi_serial_bus;
2450         if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2451 
2452             if (lookup->index != -1 && lookup->n++ != lookup->index)
2453                 return 1;
2454 
2455             status = acpi_get_handle(NULL,
2456                          sb->resource_source.string_ptr,
2457                          &parent_handle);
2458 
2459             if (ACPI_FAILURE(status))
2460                 return -ENODEV;
2461 
2462             if (ctlr) {
2463                 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2464                     return -ENODEV;
2465             } else {
2466                 struct acpi_device *adev;
2467 
2468                 adev = acpi_fetch_acpi_dev(parent_handle);
2469                 if (!adev)
2470                     return -ENODEV;
2471 
2472                 ctlr = acpi_spi_find_controller_by_adev(adev);
2473                 if (!ctlr)
2474                     return -EPROBE_DEFER;
2475 
2476                 lookup->ctlr = ctlr;
2477             }
2478 
2479             /*
2480              * ACPI DeviceSelection numbering is handled by the
2481              * host controller driver in Windows and can vary
2482              * from driver to driver. In Linux we always expect
2483              * 0 .. max - 1 so we need to ask the driver to
2484              * translate between the two schemes.
2485              */
2486             if (ctlr->fw_translate_cs) {
2487                 int cs = ctlr->fw_translate_cs(ctlr,
2488                         sb->device_selection);
2489                 if (cs < 0)
2490                     return cs;
2491                 lookup->chip_select = cs;
2492             } else {
2493                 lookup->chip_select = sb->device_selection;
2494             }
2495 
2496             lookup->max_speed_hz = sb->connection_speed;
2497             lookup->bits_per_word = sb->data_bit_length;
2498 
2499             if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2500                 lookup->mode |= SPI_CPHA;
2501             if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2502                 lookup->mode |= SPI_CPOL;
2503             if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2504                 lookup->mode |= SPI_CS_HIGH;
2505         }
2506     } else if (lookup->irq < 0) {
2507         struct resource r;
2508 
2509         if (acpi_dev_resource_interrupt(ares, 0, &r))
2510             lookup->irq = r.start;
2511     }
2512 
2513     /* Always tell the ACPI core to skip this resource */
2514     return 1;
2515 }
2516 
2517 /**
2518  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2519  * @ctlr: controller to which the spi device belongs
2520  * @adev: ACPI Device for the spi device
2521  * @index: Index of the spi resource inside the ACPI Node
2522  *
2523  * This should be used to allocate a new spi device from and ACPI Node.
2524  * The caller is responsible for calling spi_add_device to register the spi device.
2525  *
2526  * If ctlr is set to NULL, the Controller for the spi device will be looked up
2527  * using the resource.
2528  * If index is set to -1, index is not used.
2529  * Note: If index is -1, ctlr must be set.
2530  *
2531  * Return: a pointer to the new device, or ERR_PTR on error.
2532  */
2533 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2534                      struct acpi_device *adev,
2535                      int index)
2536 {
2537     acpi_handle parent_handle = NULL;
2538     struct list_head resource_list;
2539     struct acpi_spi_lookup lookup = {};
2540     struct spi_device *spi;
2541     int ret;
2542 
2543     if (!ctlr && index == -1)
2544         return ERR_PTR(-EINVAL);
2545 
2546     lookup.ctlr     = ctlr;
2547     lookup.irq      = -1;
2548     lookup.index        = index;
2549     lookup.n        = 0;
2550 
2551     INIT_LIST_HEAD(&resource_list);
2552     ret = acpi_dev_get_resources(adev, &resource_list,
2553                      acpi_spi_add_resource, &lookup);
2554     acpi_dev_free_resource_list(&resource_list);
2555 
2556     if (ret < 0)
2557         /* Found SPI in _CRS but it points to another controller */
2558         return ERR_PTR(ret);
2559 
2560     if (!lookup.max_speed_hz &&
2561         ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2562         ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2563         /* Apple does not use _CRS but nested devices for SPI slaves */
2564         acpi_spi_parse_apple_properties(adev, &lookup);
2565     }
2566 
2567     if (!lookup.max_speed_hz)
2568         return ERR_PTR(-ENODEV);
2569 
2570     spi = spi_alloc_device(lookup.ctlr);
2571     if (!spi) {
2572         dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2573             dev_name(&adev->dev));
2574         return ERR_PTR(-ENOMEM);
2575     }
2576 
2577     ACPI_COMPANION_SET(&spi->dev, adev);
2578     spi->max_speed_hz   = lookup.max_speed_hz;
2579     spi->mode       |= lookup.mode;
2580     spi->irq        = lookup.irq;
2581     spi->bits_per_word  = lookup.bits_per_word;
2582     spi->chip_select    = lookup.chip_select;
2583 
2584     return spi;
2585 }
2586 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2587 
2588 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2589                         struct acpi_device *adev)
2590 {
2591     struct spi_device *spi;
2592 
2593     if (acpi_bus_get_status(adev) || !adev->status.present ||
2594         acpi_device_enumerated(adev))
2595         return AE_OK;
2596 
2597     spi = acpi_spi_device_alloc(ctlr, adev, -1);
2598     if (IS_ERR(spi)) {
2599         if (PTR_ERR(spi) == -ENOMEM)
2600             return AE_NO_MEMORY;
2601         else
2602             return AE_OK;
2603     }
2604 
2605     acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2606               sizeof(spi->modalias));
2607 
2608     if (spi->irq < 0)
2609         spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2610 
2611     acpi_device_set_enumerated(adev);
2612 
2613     adev->power.flags.ignore_parent = true;
2614     if (spi_add_device(spi)) {
2615         adev->power.flags.ignore_parent = false;
2616         dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2617             dev_name(&adev->dev));
2618         spi_dev_put(spi);
2619     }
2620 
2621     return AE_OK;
2622 }
2623 
2624 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2625                        void *data, void **return_value)
2626 {
2627     struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2628     struct spi_controller *ctlr = data;
2629 
2630     if (!adev)
2631         return AE_OK;
2632 
2633     return acpi_register_spi_device(ctlr, adev);
2634 }
2635 
2636 #define SPI_ACPI_ENUMERATE_MAX_DEPTH        32
2637 
2638 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2639 {
2640     acpi_status status;
2641     acpi_handle handle;
2642 
2643     handle = ACPI_HANDLE(ctlr->dev.parent);
2644     if (!handle)
2645         return;
2646 
2647     status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2648                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2649                      acpi_spi_add_device, NULL, ctlr, NULL);
2650     if (ACPI_FAILURE(status))
2651         dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2652 }
2653 #else
2654 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2655 #endif /* CONFIG_ACPI */
2656 
2657 static void spi_controller_release(struct device *dev)
2658 {
2659     struct spi_controller *ctlr;
2660 
2661     ctlr = container_of(dev, struct spi_controller, dev);
2662     kfree(ctlr);
2663 }
2664 
2665 static struct class spi_master_class = {
2666     .name       = "spi_master",
2667     .owner      = THIS_MODULE,
2668     .dev_release    = spi_controller_release,
2669     .dev_groups = spi_master_groups,
2670 };
2671 
2672 #ifdef CONFIG_SPI_SLAVE
2673 /**
2674  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2675  *           controller
2676  * @spi: device used for the current transfer
2677  */
2678 int spi_slave_abort(struct spi_device *spi)
2679 {
2680     struct spi_controller *ctlr = spi->controller;
2681 
2682     if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2683         return ctlr->slave_abort(ctlr);
2684 
2685     return -ENOTSUPP;
2686 }
2687 EXPORT_SYMBOL_GPL(spi_slave_abort);
2688 
2689 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2690               char *buf)
2691 {
2692     struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2693                            dev);
2694     struct device *child;
2695 
2696     child = device_find_any_child(&ctlr->dev);
2697     return sprintf(buf, "%s\n",
2698                child ? to_spi_device(child)->modalias : NULL);
2699 }
2700 
2701 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2702                const char *buf, size_t count)
2703 {
2704     struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2705                            dev);
2706     struct spi_device *spi;
2707     struct device *child;
2708     char name[32];
2709     int rc;
2710 
2711     rc = sscanf(buf, "%31s", name);
2712     if (rc != 1 || !name[0])
2713         return -EINVAL;
2714 
2715     child = device_find_any_child(&ctlr->dev);
2716     if (child) {
2717         /* Remove registered slave */
2718         device_unregister(child);
2719         put_device(child);
2720     }
2721 
2722     if (strcmp(name, "(null)")) {
2723         /* Register new slave */
2724         spi = spi_alloc_device(ctlr);
2725         if (!spi)
2726             return -ENOMEM;
2727 
2728         strlcpy(spi->modalias, name, sizeof(spi->modalias));
2729 
2730         rc = spi_add_device(spi);
2731         if (rc) {
2732             spi_dev_put(spi);
2733             return rc;
2734         }
2735     }
2736 
2737     return count;
2738 }
2739 
2740 static DEVICE_ATTR_RW(slave);
2741 
2742 static struct attribute *spi_slave_attrs[] = {
2743     &dev_attr_slave.attr,
2744     NULL,
2745 };
2746 
2747 static const struct attribute_group spi_slave_group = {
2748     .attrs = spi_slave_attrs,
2749 };
2750 
2751 static const struct attribute_group *spi_slave_groups[] = {
2752     &spi_controller_statistics_group,
2753     &spi_slave_group,
2754     NULL,
2755 };
2756 
2757 static struct class spi_slave_class = {
2758     .name       = "spi_slave",
2759     .owner      = THIS_MODULE,
2760     .dev_release    = spi_controller_release,
2761     .dev_groups = spi_slave_groups,
2762 };
2763 #else
2764 extern struct class spi_slave_class;    /* dummy */
2765 #endif
2766 
2767 /**
2768  * __spi_alloc_controller - allocate an SPI master or slave controller
2769  * @dev: the controller, possibly using the platform_bus
2770  * @size: how much zeroed driver-private data to allocate; the pointer to this
2771  *  memory is in the driver_data field of the returned device, accessible
2772  *  with spi_controller_get_devdata(); the memory is cacheline aligned;
2773  *  drivers granting DMA access to portions of their private data need to
2774  *  round up @size using ALIGN(size, dma_get_cache_alignment()).
2775  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2776  *  slave (true) controller
2777  * Context: can sleep
2778  *
2779  * This call is used only by SPI controller drivers, which are the
2780  * only ones directly touching chip registers.  It's how they allocate
2781  * an spi_controller structure, prior to calling spi_register_controller().
2782  *
2783  * This must be called from context that can sleep.
2784  *
2785  * The caller is responsible for assigning the bus number and initializing the
2786  * controller's methods before calling spi_register_controller(); and (after
2787  * errors adding the device) calling spi_controller_put() to prevent a memory
2788  * leak.
2789  *
2790  * Return: the SPI controller structure on success, else NULL.
2791  */
2792 struct spi_controller *__spi_alloc_controller(struct device *dev,
2793                           unsigned int size, bool slave)
2794 {
2795     struct spi_controller   *ctlr;
2796     size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2797 
2798     if (!dev)
2799         return NULL;
2800 
2801     ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2802     if (!ctlr)
2803         return NULL;
2804 
2805     device_initialize(&ctlr->dev);
2806     INIT_LIST_HEAD(&ctlr->queue);
2807     spin_lock_init(&ctlr->queue_lock);
2808     spin_lock_init(&ctlr->bus_lock_spinlock);
2809     mutex_init(&ctlr->bus_lock_mutex);
2810     mutex_init(&ctlr->io_mutex);
2811     mutex_init(&ctlr->add_lock);
2812     ctlr->bus_num = -1;
2813     ctlr->num_chipselect = 1;
2814     ctlr->slave = slave;
2815     if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2816         ctlr->dev.class = &spi_slave_class;
2817     else
2818         ctlr->dev.class = &spi_master_class;
2819     ctlr->dev.parent = dev;
2820     pm_suspend_ignore_children(&ctlr->dev, true);
2821     spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2822 
2823     return ctlr;
2824 }
2825 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2826 
2827 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2828 {
2829     spi_controller_put(*(struct spi_controller **)ctlr);
2830 }
2831 
2832 /**
2833  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2834  * @dev: physical device of SPI controller
2835  * @size: how much zeroed driver-private data to allocate
2836  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2837  * Context: can sleep
2838  *
2839  * Allocate an SPI controller and automatically release a reference on it
2840  * when @dev is unbound from its driver.  Drivers are thus relieved from
2841  * having to call spi_controller_put().
2842  *
2843  * The arguments to this function are identical to __spi_alloc_controller().
2844  *
2845  * Return: the SPI controller structure on success, else NULL.
2846  */
2847 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2848                            unsigned int size,
2849                            bool slave)
2850 {
2851     struct spi_controller **ptr, *ctlr;
2852 
2853     ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2854                GFP_KERNEL);
2855     if (!ptr)
2856         return NULL;
2857 
2858     ctlr = __spi_alloc_controller(dev, size, slave);
2859     if (ctlr) {
2860         ctlr->devm_allocated = true;
2861         *ptr = ctlr;
2862         devres_add(dev, ptr);
2863     } else {
2864         devres_free(ptr);
2865     }
2866 
2867     return ctlr;
2868 }
2869 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2870 
2871 /**
2872  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2873  * @ctlr: The SPI master to grab GPIO descriptors for
2874  */
2875 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2876 {
2877     int nb, i;
2878     struct gpio_desc **cs;
2879     struct device *dev = &ctlr->dev;
2880     unsigned long native_cs_mask = 0;
2881     unsigned int num_cs_gpios = 0;
2882 
2883     nb = gpiod_count(dev, "cs");
2884     if (nb < 0) {
2885         /* No GPIOs at all is fine, else return the error */
2886         if (nb == -ENOENT)
2887             return 0;
2888         return nb;
2889     }
2890 
2891     ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2892 
2893     cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2894               GFP_KERNEL);
2895     if (!cs)
2896         return -ENOMEM;
2897     ctlr->cs_gpiods = cs;
2898 
2899     for (i = 0; i < nb; i++) {
2900         /*
2901          * Most chipselects are active low, the inverted
2902          * semantics are handled by special quirks in gpiolib,
2903          * so initializing them GPIOD_OUT_LOW here means
2904          * "unasserted", in most cases this will drive the physical
2905          * line high.
2906          */
2907         cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2908                               GPIOD_OUT_LOW);
2909         if (IS_ERR(cs[i]))
2910             return PTR_ERR(cs[i]);
2911 
2912         if (cs[i]) {
2913             /*
2914              * If we find a CS GPIO, name it after the device and
2915              * chip select line.
2916              */
2917             char *gpioname;
2918 
2919             gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2920                           dev_name(dev), i);
2921             if (!gpioname)
2922                 return -ENOMEM;
2923             gpiod_set_consumer_name(cs[i], gpioname);
2924             num_cs_gpios++;
2925             continue;
2926         }
2927 
2928         if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2929             dev_err(dev, "Invalid native chip select %d\n", i);
2930             return -EINVAL;
2931         }
2932         native_cs_mask |= BIT(i);
2933     }
2934 
2935     ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2936 
2937     if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2938         ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2939         dev_err(dev, "No unused native chip select available\n");
2940         return -EINVAL;
2941     }
2942 
2943     return 0;
2944 }
2945 
2946 static int spi_controller_check_ops(struct spi_controller *ctlr)
2947 {
2948     /*
2949      * The controller may implement only the high-level SPI-memory like
2950      * operations if it does not support regular SPI transfers, and this is
2951      * valid use case.
2952      * If ->mem_ops is NULL, we request that at least one of the
2953      * ->transfer_xxx() method be implemented.
2954      */
2955     if (ctlr->mem_ops) {
2956         if (!ctlr->mem_ops->exec_op)
2957             return -EINVAL;
2958     } else if (!ctlr->transfer && !ctlr->transfer_one &&
2959            !ctlr->transfer_one_message) {
2960         return -EINVAL;
2961     }
2962 
2963     return 0;
2964 }
2965 
2966 /**
2967  * spi_register_controller - register SPI master or slave controller
2968  * @ctlr: initialized master, originally from spi_alloc_master() or
2969  *  spi_alloc_slave()
2970  * Context: can sleep
2971  *
2972  * SPI controllers connect to their drivers using some non-SPI bus,
2973  * such as the platform bus.  The final stage of probe() in that code
2974  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2975  *
2976  * SPI controllers use board specific (often SOC specific) bus numbers,
2977  * and board-specific addressing for SPI devices combines those numbers
2978  * with chip select numbers.  Since SPI does not directly support dynamic
2979  * device identification, boards need configuration tables telling which
2980  * chip is at which address.
2981  *
2982  * This must be called from context that can sleep.  It returns zero on
2983  * success, else a negative error code (dropping the controller's refcount).
2984  * After a successful return, the caller is responsible for calling
2985  * spi_unregister_controller().
2986  *
2987  * Return: zero on success, else a negative error code.
2988  */
2989 int spi_register_controller(struct spi_controller *ctlr)
2990 {
2991     struct device       *dev = ctlr->dev.parent;
2992     struct boardinfo    *bi;
2993     int         status;
2994     int         id, first_dynamic;
2995 
2996     if (!dev)
2997         return -ENODEV;
2998 
2999     /*
3000      * Make sure all necessary hooks are implemented before registering
3001      * the SPI controller.
3002      */
3003     status = spi_controller_check_ops(ctlr);
3004     if (status)
3005         return status;
3006 
3007     if (ctlr->bus_num >= 0) {
3008         /* Devices with a fixed bus num must check-in with the num */
3009         mutex_lock(&board_lock);
3010         id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3011             ctlr->bus_num + 1, GFP_KERNEL);
3012         mutex_unlock(&board_lock);
3013         if (WARN(id < 0, "couldn't get idr"))
3014             return id == -ENOSPC ? -EBUSY : id;
3015         ctlr->bus_num = id;
3016     } else if (ctlr->dev.of_node) {
3017         /* Allocate dynamic bus number using Linux idr */
3018         id = of_alias_get_id(ctlr->dev.of_node, "spi");
3019         if (id >= 0) {
3020             ctlr->bus_num = id;
3021             mutex_lock(&board_lock);
3022             id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3023                        ctlr->bus_num + 1, GFP_KERNEL);
3024             mutex_unlock(&board_lock);
3025             if (WARN(id < 0, "couldn't get idr"))
3026                 return id == -ENOSPC ? -EBUSY : id;
3027         }
3028     }
3029     if (ctlr->bus_num < 0) {
3030         first_dynamic = of_alias_get_highest_id("spi");
3031         if (first_dynamic < 0)
3032             first_dynamic = 0;
3033         else
3034             first_dynamic++;
3035 
3036         mutex_lock(&board_lock);
3037         id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
3038                    0, GFP_KERNEL);
3039         mutex_unlock(&board_lock);
3040         if (WARN(id < 0, "couldn't get idr"))
3041             return id;
3042         ctlr->bus_num = id;
3043     }
3044     ctlr->bus_lock_flag = 0;
3045     init_completion(&ctlr->xfer_completion);
3046     init_completion(&ctlr->cur_msg_completion);
3047     if (!ctlr->max_dma_len)
3048         ctlr->max_dma_len = INT_MAX;
3049 
3050     /*
3051      * Register the device, then userspace will see it.
3052      * Registration fails if the bus ID is in use.
3053      */
3054     dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3055 
3056     if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3057         status = spi_get_gpio_descs(ctlr);
3058         if (status)
3059             goto free_bus_id;
3060         /*
3061          * A controller using GPIO descriptors always
3062          * supports SPI_CS_HIGH if need be.
3063          */
3064         ctlr->mode_bits |= SPI_CS_HIGH;
3065     }
3066 
3067     /*
3068      * Even if it's just one always-selected device, there must
3069      * be at least one chipselect.
3070      */
3071     if (!ctlr->num_chipselect) {
3072         status = -EINVAL;
3073         goto free_bus_id;
3074     }
3075 
3076     /* Setting last_cs to -1 means no chip selected */
3077     ctlr->last_cs = -1;
3078 
3079     status = device_add(&ctlr->dev);
3080     if (status < 0)
3081         goto free_bus_id;
3082     dev_dbg(dev, "registered %s %s\n",
3083             spi_controller_is_slave(ctlr) ? "slave" : "master",
3084             dev_name(&ctlr->dev));
3085 
3086     /*
3087      * If we're using a queued driver, start the queue. Note that we don't
3088      * need the queueing logic if the driver is only supporting high-level
3089      * memory operations.
3090      */
3091     if (ctlr->transfer) {
3092         dev_info(dev, "controller is unqueued, this is deprecated\n");
3093     } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3094         status = spi_controller_initialize_queue(ctlr);
3095         if (status) {
3096             device_del(&ctlr->dev);
3097             goto free_bus_id;
3098         }
3099     }
3100     /* Add statistics */
3101     ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3102     if (!ctlr->pcpu_statistics) {
3103         dev_err(dev, "Error allocating per-cpu statistics\n");
3104         status = -ENOMEM;
3105         goto destroy_queue;
3106     }
3107 
3108     mutex_lock(&board_lock);
3109     list_add_tail(&ctlr->list, &spi_controller_list);
3110     list_for_each_entry(bi, &board_list, list)
3111         spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3112     mutex_unlock(&board_lock);
3113 
3114     /* Register devices from the device tree and ACPI */
3115     of_register_spi_devices(ctlr);
3116     acpi_register_spi_devices(ctlr);
3117     return status;
3118 
3119 destroy_queue:
3120     spi_destroy_queue(ctlr);
3121 free_bus_id:
3122     mutex_lock(&board_lock);
3123     idr_remove(&spi_master_idr, ctlr->bus_num);
3124     mutex_unlock(&board_lock);
3125     return status;
3126 }
3127 EXPORT_SYMBOL_GPL(spi_register_controller);
3128 
3129 static void devm_spi_unregister(struct device *dev, void *res)
3130 {
3131     spi_unregister_controller(*(struct spi_controller **)res);
3132 }
3133 
3134 /**
3135  * devm_spi_register_controller - register managed SPI master or slave
3136  *  controller
3137  * @dev:    device managing SPI controller
3138  * @ctlr: initialized controller, originally from spi_alloc_master() or
3139  *  spi_alloc_slave()
3140  * Context: can sleep
3141  *
3142  * Register a SPI device as with spi_register_controller() which will
3143  * automatically be unregistered and freed.
3144  *
3145  * Return: zero on success, else a negative error code.
3146  */
3147 int devm_spi_register_controller(struct device *dev,
3148                  struct spi_controller *ctlr)
3149 {
3150     struct spi_controller **ptr;
3151     int ret;
3152 
3153     ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3154     if (!ptr)
3155         return -ENOMEM;
3156 
3157     ret = spi_register_controller(ctlr);
3158     if (!ret) {
3159         *ptr = ctlr;
3160         devres_add(dev, ptr);
3161     } else {
3162         devres_free(ptr);
3163     }
3164 
3165     return ret;
3166 }
3167 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3168 
3169 static int __unregister(struct device *dev, void *null)
3170 {
3171     spi_unregister_device(to_spi_device(dev));
3172     return 0;
3173 }
3174 
3175 /**
3176  * spi_unregister_controller - unregister SPI master or slave controller
3177  * @ctlr: the controller being unregistered
3178  * Context: can sleep
3179  *
3180  * This call is used only by SPI controller drivers, which are the
3181  * only ones directly touching chip registers.
3182  *
3183  * This must be called from context that can sleep.
3184  *
3185  * Note that this function also drops a reference to the controller.
3186  */
3187 void spi_unregister_controller(struct spi_controller *ctlr)
3188 {
3189     struct spi_controller *found;
3190     int id = ctlr->bus_num;
3191 
3192     /* Prevent addition of new devices, unregister existing ones */
3193     if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3194         mutex_lock(&ctlr->add_lock);
3195 
3196     device_for_each_child(&ctlr->dev, NULL, __unregister);
3197 
3198     /* First make sure that this controller was ever added */
3199     mutex_lock(&board_lock);
3200     found = idr_find(&spi_master_idr, id);
3201     mutex_unlock(&board_lock);
3202     if (ctlr->queued) {
3203         if (spi_destroy_queue(ctlr))
3204             dev_err(&ctlr->dev, "queue remove failed\n");
3205     }
3206     mutex_lock(&board_lock);
3207     list_del(&ctlr->list);
3208     mutex_unlock(&board_lock);
3209 
3210     device_del(&ctlr->dev);
3211 
3212     /* Free bus id */
3213     mutex_lock(&board_lock);
3214     if (found == ctlr)
3215         idr_remove(&spi_master_idr, id);
3216     mutex_unlock(&board_lock);
3217 
3218     if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3219         mutex_unlock(&ctlr->add_lock);
3220 
3221     /* Release the last reference on the controller if its driver
3222      * has not yet been converted to devm_spi_alloc_master/slave().
3223      */
3224     if (!ctlr->devm_allocated)
3225         put_device(&ctlr->dev);
3226 }
3227 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3228 
3229 int spi_controller_suspend(struct spi_controller *ctlr)
3230 {
3231     int ret;
3232 
3233     /* Basically no-ops for non-queued controllers */
3234     if (!ctlr->queued)
3235         return 0;
3236 
3237     ret = spi_stop_queue(ctlr);
3238     if (ret)
3239         dev_err(&ctlr->dev, "queue stop failed\n");
3240 
3241     return ret;
3242 }
3243 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3244 
3245 int spi_controller_resume(struct spi_controller *ctlr)
3246 {
3247     int ret;
3248 
3249     if (!ctlr->queued)
3250         return 0;
3251 
3252     ret = spi_start_queue(ctlr);
3253     if (ret)
3254         dev_err(&ctlr->dev, "queue restart failed\n");
3255 
3256     return ret;
3257 }
3258 EXPORT_SYMBOL_GPL(spi_controller_resume);
3259 
3260 /*-------------------------------------------------------------------------*/
3261 
3262 /* Core methods for spi_message alterations */
3263 
3264 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3265                         struct spi_message *msg,
3266                         void *res)
3267 {
3268     struct spi_replaced_transfers *rxfer = res;
3269     size_t i;
3270 
3271     /* Call extra callback if requested */
3272     if (rxfer->release)
3273         rxfer->release(ctlr, msg, res);
3274 
3275     /* Insert replaced transfers back into the message */
3276     list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3277 
3278     /* Remove the formerly inserted entries */
3279     for (i = 0; i < rxfer->inserted; i++)
3280         list_del(&rxfer->inserted_transfers[i].transfer_list);
3281 }
3282 
3283 /**
3284  * spi_replace_transfers - replace transfers with several transfers
3285  *                         and register change with spi_message.resources
3286  * @msg:           the spi_message we work upon
3287  * @xfer_first:    the first spi_transfer we want to replace
3288  * @remove:        number of transfers to remove
3289  * @insert:        the number of transfers we want to insert instead
3290  * @release:       extra release code necessary in some circumstances
3291  * @extradatasize: extra data to allocate (with alignment guarantees
3292  *                 of struct @spi_transfer)
3293  * @gfp:           gfp flags
3294  *
3295  * Returns: pointer to @spi_replaced_transfers,
3296  *          PTR_ERR(...) in case of errors.
3297  */
3298 static struct spi_replaced_transfers *spi_replace_transfers(
3299     struct spi_message *msg,
3300     struct spi_transfer *xfer_first,
3301     size_t remove,
3302     size_t insert,
3303     spi_replaced_release_t release,
3304     size_t extradatasize,
3305     gfp_t gfp)
3306 {
3307     struct spi_replaced_transfers *rxfer;
3308     struct spi_transfer *xfer;
3309     size_t i;
3310 
3311     /* Allocate the structure using spi_res */
3312     rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3313                   struct_size(rxfer, inserted_transfers, insert)
3314                   + extradatasize,
3315                   gfp);
3316     if (!rxfer)
3317         return ERR_PTR(-ENOMEM);
3318 
3319     /* The release code to invoke before running the generic release */
3320     rxfer->release = release;
3321 
3322     /* Assign extradata */
3323     if (extradatasize)
3324         rxfer->extradata =
3325             &rxfer->inserted_transfers[insert];
3326 
3327     /* Init the replaced_transfers list */
3328     INIT_LIST_HEAD(&rxfer->replaced_transfers);
3329 
3330     /*
3331      * Assign the list_entry after which we should reinsert
3332      * the @replaced_transfers - it may be spi_message.messages!
3333      */
3334     rxfer->replaced_after = xfer_first->transfer_list.prev;
3335 
3336     /* Remove the requested number of transfers */
3337     for (i = 0; i < remove; i++) {
3338         /*
3339          * If the entry after replaced_after it is msg->transfers
3340          * then we have been requested to remove more transfers
3341          * than are in the list.
3342          */
3343         if (rxfer->replaced_after->next == &msg->transfers) {
3344             dev_err(&msg->spi->dev,
3345                 "requested to remove more spi_transfers than are available\n");
3346             /* Insert replaced transfers back into the message */
3347             list_splice(&rxfer->replaced_transfers,
3348                     rxfer->replaced_after);
3349 
3350             /* Free the spi_replace_transfer structure... */
3351             spi_res_free(rxfer);
3352 
3353             /* ...and return with an error */
3354             return ERR_PTR(-EINVAL);
3355         }
3356 
3357         /*
3358          * Remove the entry after replaced_after from list of
3359          * transfers and add it to list of replaced_transfers.
3360          */
3361         list_move_tail(rxfer->replaced_after->next,
3362                    &rxfer->replaced_transfers);
3363     }
3364 
3365     /*
3366      * Create copy of the given xfer with identical settings
3367      * based on the first transfer to get removed.
3368      */
3369     for (i = 0; i < insert; i++) {
3370         /* We need to run in reverse order */
3371         xfer = &rxfer->inserted_transfers[insert - 1 - i];
3372 
3373         /* Copy all spi_transfer data */
3374         memcpy(xfer, xfer_first, sizeof(*xfer));
3375 
3376         /* Add to list */
3377         list_add(&xfer->transfer_list, rxfer->replaced_after);
3378 
3379         /* Clear cs_change and delay for all but the last */
3380         if (i) {
3381             xfer->cs_change = false;
3382             xfer->delay.value = 0;
3383         }
3384     }
3385 
3386     /* Set up inserted... */
3387     rxfer->inserted = insert;
3388 
3389     /* ...and register it with spi_res/spi_message */
3390     spi_res_add(msg, rxfer);
3391 
3392     return rxfer;
3393 }
3394 
3395 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3396                     struct spi_message *msg,
3397                     struct spi_transfer **xferp,
3398                     size_t maxsize,
3399                     gfp_t gfp)
3400 {
3401     struct spi_transfer *xfer = *xferp, *xfers;
3402     struct spi_replaced_transfers *srt;
3403     size_t offset;
3404     size_t count, i;
3405 
3406     /* Calculate how many we have to replace */
3407     count = DIV_ROUND_UP(xfer->len, maxsize);
3408 
3409     /* Create replacement */
3410     srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3411     if (IS_ERR(srt))
3412         return PTR_ERR(srt);
3413     xfers = srt->inserted_transfers;
3414 
3415     /*
3416      * Now handle each of those newly inserted spi_transfers.
3417      * Note that the replacements spi_transfers all are preset
3418      * to the same values as *xferp, so tx_buf, rx_buf and len
3419      * are all identical (as well as most others)
3420      * so we just have to fix up len and the pointers.
3421      *
3422      * This also includes support for the depreciated
3423      * spi_message.is_dma_mapped interface.
3424      */
3425 
3426     /*
3427      * The first transfer just needs the length modified, so we
3428      * run it outside the loop.
3429      */
3430     xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3431 
3432     /* All the others need rx_buf/tx_buf also set */
3433     for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3434         /* Update rx_buf, tx_buf and dma */
3435         if (xfers[i].rx_buf)
3436             xfers[i].rx_buf += offset;
3437         if (xfers[i].rx_dma)
3438             xfers[i].rx_dma += offset;
3439         if (xfers[i].tx_buf)
3440             xfers[i].tx_buf += offset;
3441         if (xfers[i].tx_dma)
3442             xfers[i].tx_dma += offset;
3443 
3444         /* Update length */
3445         xfers[i].len = min(maxsize, xfers[i].len - offset);
3446     }
3447 
3448     /*
3449      * We set up xferp to the last entry we have inserted,
3450      * so that we skip those already split transfers.
3451      */
3452     *xferp = &xfers[count - 1];
3453 
3454     /* Increment statistics counters */
3455     SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3456                        transfers_split_maxsize);
3457     SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3458                        transfers_split_maxsize);
3459 
3460     return 0;
3461 }
3462 
3463 /**
3464  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3465  *                               when an individual transfer exceeds a
3466  *                               certain size
3467  * @ctlr:    the @spi_controller for this transfer
3468  * @msg:   the @spi_message to transform
3469  * @maxsize:  the maximum when to apply this
3470  * @gfp: GFP allocation flags
3471  *
3472  * Return: status of transformation
3473  */
3474 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3475                 struct spi_message *msg,
3476                 size_t maxsize,
3477                 gfp_t gfp)
3478 {
3479     struct spi_transfer *xfer;
3480     int ret;
3481 
3482     /*
3483      * Iterate over the transfer_list,
3484      * but note that xfer is advanced to the last transfer inserted
3485      * to avoid checking sizes again unnecessarily (also xfer does
3486      * potentially belong to a different list by the time the
3487      * replacement has happened).
3488      */
3489     list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3490         if (xfer->len > maxsize) {
3491             ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3492                                maxsize, gfp);
3493             if (ret)
3494                 return ret;
3495         }
3496     }
3497 
3498     return 0;
3499 }
3500 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3501 
3502 /*-------------------------------------------------------------------------*/
3503 
3504 /* Core methods for SPI controller protocol drivers.  Some of the
3505  * other core methods are currently defined as inline functions.
3506  */
3507 
3508 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3509                     u8 bits_per_word)
3510 {
3511     if (ctlr->bits_per_word_mask) {
3512         /* Only 32 bits fit in the mask */
3513         if (bits_per_word > 32)
3514             return -EINVAL;
3515         if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3516             return -EINVAL;
3517     }
3518 
3519     return 0;
3520 }
3521 
3522 /**
3523  * spi_setup - setup SPI mode and clock rate
3524  * @spi: the device whose settings are being modified
3525  * Context: can sleep, and no requests are queued to the device
3526  *
3527  * SPI protocol drivers may need to update the transfer mode if the
3528  * device doesn't work with its default.  They may likewise need
3529  * to update clock rates or word sizes from initial values.  This function
3530  * changes those settings, and must be called from a context that can sleep.
3531  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3532  * effect the next time the device is selected and data is transferred to
3533  * or from it.  When this function returns, the spi device is deselected.
3534  *
3535  * Note that this call will fail if the protocol driver specifies an option
3536  * that the underlying controller or its driver does not support.  For
3537  * example, not all hardware supports wire transfers using nine bit words,
3538  * LSB-first wire encoding, or active-high chipselects.
3539  *
3540  * Return: zero on success, else a negative error code.
3541  */
3542 int spi_setup(struct spi_device *spi)
3543 {
3544     unsigned    bad_bits, ugly_bits;
3545     int     status = 0;
3546 
3547     /*
3548      * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3549      * are set at the same time.
3550      */
3551     if ((hweight_long(spi->mode &
3552         (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3553         (hweight_long(spi->mode &
3554         (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3555         dev_err(&spi->dev,
3556         "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3557         return -EINVAL;
3558     }
3559     /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3560     if ((spi->mode & SPI_3WIRE) && (spi->mode &
3561         (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3562          SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3563         return -EINVAL;
3564     /*
3565      * Help drivers fail *cleanly* when they need options
3566      * that aren't supported with their current controller.
3567      * SPI_CS_WORD has a fallback software implementation,
3568      * so it is ignored here.
3569      */
3570     bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3571                  SPI_NO_TX | SPI_NO_RX);
3572     ugly_bits = bad_bits &
3573             (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3574              SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3575     if (ugly_bits) {
3576         dev_warn(&spi->dev,
3577              "setup: ignoring unsupported mode bits %x\n",
3578              ugly_bits);
3579         spi->mode &= ~ugly_bits;
3580         bad_bits &= ~ugly_bits;
3581     }
3582     if (bad_bits) {
3583         dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3584             bad_bits);
3585         return -EINVAL;
3586     }
3587 
3588     if (!spi->bits_per_word) {
3589         spi->bits_per_word = 8;
3590     } else {
3591         /*
3592          * Some controllers may not support the default 8 bits-per-word
3593          * so only perform the check when this is explicitly provided.
3594          */
3595         status = __spi_validate_bits_per_word(spi->controller,
3596                               spi->bits_per_word);
3597         if (status)
3598             return status;
3599     }
3600 
3601     if (spi->controller->max_speed_hz &&
3602         (!spi->max_speed_hz ||
3603          spi->max_speed_hz > spi->controller->max_speed_hz))
3604         spi->max_speed_hz = spi->controller->max_speed_hz;
3605 
3606     mutex_lock(&spi->controller->io_mutex);
3607 
3608     if (spi->controller->setup) {
3609         status = spi->controller->setup(spi);
3610         if (status) {
3611             mutex_unlock(&spi->controller->io_mutex);
3612             dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3613                 status);
3614             return status;
3615         }
3616     }
3617 
3618     if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3619         status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3620         if (status < 0) {
3621             mutex_unlock(&spi->controller->io_mutex);
3622             dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3623                 status);
3624             return status;
3625         }
3626 
3627         /*
3628          * We do not want to return positive value from pm_runtime_get,
3629          * there are many instances of devices calling spi_setup() and
3630          * checking for a non-zero return value instead of a negative
3631          * return value.
3632          */
3633         status = 0;
3634 
3635         spi_set_cs(spi, false, true);
3636         pm_runtime_mark_last_busy(spi->controller->dev.parent);
3637         pm_runtime_put_autosuspend(spi->controller->dev.parent);
3638     } else {
3639         spi_set_cs(spi, false, true);
3640     }
3641 
3642     mutex_unlock(&spi->controller->io_mutex);
3643 
3644     if (spi->rt && !spi->controller->rt) {
3645         spi->controller->rt = true;
3646         spi_set_thread_rt(spi->controller);
3647     }
3648 
3649     trace_spi_setup(spi, status);
3650 
3651     dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3652             spi->mode & SPI_MODE_X_MASK,
3653             (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3654             (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3655             (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3656             (spi->mode & SPI_LOOP) ? "loopback, " : "",
3657             spi->bits_per_word, spi->max_speed_hz,
3658             status);
3659 
3660     return status;
3661 }
3662 EXPORT_SYMBOL_GPL(spi_setup);
3663 
3664 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3665                        struct spi_device *spi)
3666 {
3667     int delay1, delay2;
3668 
3669     delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3670     if (delay1 < 0)
3671         return delay1;
3672 
3673     delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3674     if (delay2 < 0)
3675         return delay2;
3676 
3677     if (delay1 < delay2)
3678         memcpy(&xfer->word_delay, &spi->word_delay,
3679                sizeof(xfer->word_delay));
3680 
3681     return 0;
3682 }
3683 
3684 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3685 {
3686     struct spi_controller *ctlr = spi->controller;
3687     struct spi_transfer *xfer;
3688     int w_size;
3689 
3690     if (list_empty(&message->transfers))
3691         return -EINVAL;
3692 
3693     /*
3694      * If an SPI controller does not support toggling the CS line on each
3695      * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3696      * for the CS line, we can emulate the CS-per-word hardware function by
3697      * splitting transfers into one-word transfers and ensuring that
3698      * cs_change is set for each transfer.
3699      */
3700     if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3701                       spi->cs_gpiod)) {
3702         size_t maxsize;
3703         int ret;
3704 
3705         maxsize = (spi->bits_per_word + 7) / 8;
3706 
3707         /* spi_split_transfers_maxsize() requires message->spi */
3708         message->spi = spi;
3709 
3710         ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3711                           GFP_KERNEL);
3712         if (ret)
3713             return ret;
3714 
3715         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3716             /* Don't change cs_change on the last entry in the list */
3717             if (list_is_last(&xfer->transfer_list, &message->transfers))
3718                 break;
3719             xfer->cs_change = 1;
3720         }
3721     }
3722 
3723     /*
3724      * Half-duplex links include original MicroWire, and ones with
3725      * only one data pin like SPI_3WIRE (switches direction) or where
3726      * either MOSI or MISO is missing.  They can also be caused by
3727      * software limitations.
3728      */
3729     if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3730         (spi->mode & SPI_3WIRE)) {
3731         unsigned flags = ctlr->flags;
3732 
3733         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3734             if (xfer->rx_buf && xfer->tx_buf)
3735                 return -EINVAL;
3736             if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3737                 return -EINVAL;
3738             if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3739                 return -EINVAL;
3740         }
3741     }
3742 
3743     /*
3744      * Set transfer bits_per_word and max speed as spi device default if
3745      * it is not set for this transfer.
3746      * Set transfer tx_nbits and rx_nbits as single transfer default
3747      * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3748      * Ensure transfer word_delay is at least as long as that required by
3749      * device itself.
3750      */
3751     message->frame_length = 0;
3752     list_for_each_entry(xfer, &message->transfers, transfer_list) {
3753         xfer->effective_speed_hz = 0;
3754         message->frame_length += xfer->len;
3755         if (!xfer->bits_per_word)
3756             xfer->bits_per_word = spi->bits_per_word;
3757 
3758         if (!xfer->speed_hz)
3759             xfer->speed_hz = spi->max_speed_hz;
3760 
3761         if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3762             xfer->speed_hz = ctlr->max_speed_hz;
3763 
3764         if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3765             return -EINVAL;
3766 
3767         /*
3768          * SPI transfer length should be multiple of SPI word size
3769          * where SPI word size should be power-of-two multiple.
3770          */
3771         if (xfer->bits_per_word <= 8)
3772             w_size = 1;
3773         else if (xfer->bits_per_word <= 16)
3774             w_size = 2;
3775         else
3776             w_size = 4;
3777 
3778         /* No partial transfers accepted */
3779         if (xfer->len % w_size)
3780             return -EINVAL;
3781 
3782         if (xfer->speed_hz && ctlr->min_speed_hz &&
3783             xfer->speed_hz < ctlr->min_speed_hz)
3784             return -EINVAL;
3785 
3786         if (xfer->tx_buf && !xfer->tx_nbits)
3787             xfer->tx_nbits = SPI_NBITS_SINGLE;
3788         if (xfer->rx_buf && !xfer->rx_nbits)
3789             xfer->rx_nbits = SPI_NBITS_SINGLE;
3790         /*
3791          * Check transfer tx/rx_nbits:
3792          * 1. check the value matches one of single, dual and quad
3793          * 2. check tx/rx_nbits match the mode in spi_device
3794          */
3795         if (xfer->tx_buf) {
3796             if (spi->mode & SPI_NO_TX)
3797                 return -EINVAL;
3798             if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3799                 xfer->tx_nbits != SPI_NBITS_DUAL &&
3800                 xfer->tx_nbits != SPI_NBITS_QUAD)
3801                 return -EINVAL;
3802             if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3803                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3804                 return -EINVAL;
3805             if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3806                 !(spi->mode & SPI_TX_QUAD))
3807                 return -EINVAL;
3808         }
3809         /* Check transfer rx_nbits */
3810         if (xfer->rx_buf) {
3811             if (spi->mode & SPI_NO_RX)
3812                 return -EINVAL;
3813             if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3814                 xfer->rx_nbits != SPI_NBITS_DUAL &&
3815                 xfer->rx_nbits != SPI_NBITS_QUAD)
3816                 return -EINVAL;
3817             if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3818                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3819                 return -EINVAL;
3820             if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3821                 !(spi->mode & SPI_RX_QUAD))
3822                 return -EINVAL;
3823         }
3824 
3825         if (_spi_xfer_word_delay_update(xfer, spi))
3826             return -EINVAL;
3827     }
3828 
3829     message->status = -EINPROGRESS;
3830 
3831     return 0;
3832 }
3833 
3834 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3835 {
3836     struct spi_controller *ctlr = spi->controller;
3837     struct spi_transfer *xfer;
3838 
3839     /*
3840      * Some controllers do not support doing regular SPI transfers. Return
3841      * ENOTSUPP when this is the case.
3842      */
3843     if (!ctlr->transfer)
3844         return -ENOTSUPP;
3845 
3846     message->spi = spi;
3847 
3848     SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
3849     SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
3850 
3851     trace_spi_message_submit(message);
3852 
3853     if (!ctlr->ptp_sts_supported) {
3854         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3855             xfer->ptp_sts_word_pre = 0;
3856             ptp_read_system_prets(xfer->ptp_sts);
3857         }
3858     }
3859 
3860     return ctlr->transfer(spi, message);
3861 }
3862 
3863 /**
3864  * spi_async - asynchronous SPI transfer
3865  * @spi: device with which data will be exchanged
3866  * @message: describes the data transfers, including completion callback
3867  * Context: any (irqs may be blocked, etc)
3868  *
3869  * This call may be used in_irq and other contexts which can't sleep,
3870  * as well as from task contexts which can sleep.
3871  *
3872  * The completion callback is invoked in a context which can't sleep.
3873  * Before that invocation, the value of message->status is undefined.
3874  * When the callback is issued, message->status holds either zero (to
3875  * indicate complete success) or a negative error code.  After that
3876  * callback returns, the driver which issued the transfer request may
3877  * deallocate the associated memory; it's no longer in use by any SPI
3878  * core or controller driver code.
3879  *
3880  * Note that although all messages to a spi_device are handled in
3881  * FIFO order, messages may go to different devices in other orders.
3882  * Some device might be higher priority, or have various "hard" access
3883  * time requirements, for example.
3884  *
3885  * On detection of any fault during the transfer, processing of
3886  * the entire message is aborted, and the device is deselected.
3887  * Until returning from the associated message completion callback,
3888  * no other spi_message queued to that device will be processed.
3889  * (This rule applies equally to all the synchronous transfer calls,
3890  * which are wrappers around this core asynchronous primitive.)
3891  *
3892  * Return: zero on success, else a negative error code.
3893  */
3894 int spi_async(struct spi_device *spi, struct spi_message *message)
3895 {
3896     struct spi_controller *ctlr = spi->controller;
3897     int ret;
3898     unsigned long flags;
3899 
3900     ret = __spi_validate(spi, message);
3901     if (ret != 0)
3902         return ret;
3903 
3904     spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3905 
3906     if (ctlr->bus_lock_flag)
3907         ret = -EBUSY;
3908     else
3909         ret = __spi_async(spi, message);
3910 
3911     spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3912 
3913     return ret;
3914 }
3915 EXPORT_SYMBOL_GPL(spi_async);
3916 
3917 /**
3918  * spi_async_locked - version of spi_async with exclusive bus usage
3919  * @spi: device with which data will be exchanged
3920  * @message: describes the data transfers, including completion callback
3921  * Context: any (irqs may be blocked, etc)
3922  *
3923  * This call may be used in_irq and other contexts which can't sleep,
3924  * as well as from task contexts which can sleep.
3925  *
3926  * The completion callback is invoked in a context which can't sleep.
3927  * Before that invocation, the value of message->status is undefined.
3928  * When the callback is issued, message->status holds either zero (to
3929  * indicate complete success) or a negative error code.  After that
3930  * callback returns, the driver which issued the transfer request may
3931  * deallocate the associated memory; it's no longer in use by any SPI
3932  * core or controller driver code.
3933  *
3934  * Note that although all messages to a spi_device are handled in
3935  * FIFO order, messages may go to different devices in other orders.
3936  * Some device might be higher priority, or have various "hard" access
3937  * time requirements, for example.
3938  *
3939  * On detection of any fault during the transfer, processing of
3940  * the entire message is aborted, and the device is deselected.
3941  * Until returning from the associated message completion callback,
3942  * no other spi_message queued to that device will be processed.
3943  * (This rule applies equally to all the synchronous transfer calls,
3944  * which are wrappers around this core asynchronous primitive.)
3945  *
3946  * Return: zero on success, else a negative error code.
3947  */
3948 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3949 {
3950     struct spi_controller *ctlr = spi->controller;
3951     int ret;
3952     unsigned long flags;
3953 
3954     ret = __spi_validate(spi, message);
3955     if (ret != 0)
3956         return ret;
3957 
3958     spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3959 
3960     ret = __spi_async(spi, message);
3961 
3962     spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3963 
3964     return ret;
3965 
3966 }
3967 
3968 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
3969 {
3970     bool was_busy;
3971     int ret;
3972 
3973     mutex_lock(&ctlr->io_mutex);
3974 
3975     was_busy = ctlr->busy;
3976 
3977     ctlr->cur_msg = msg;
3978     ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
3979     if (ret)
3980         goto out;
3981 
3982     ctlr->cur_msg = NULL;
3983     ctlr->fallback = false;
3984 
3985     if (!was_busy) {
3986         kfree(ctlr->dummy_rx);
3987         ctlr->dummy_rx = NULL;
3988         kfree(ctlr->dummy_tx);
3989         ctlr->dummy_tx = NULL;
3990         if (ctlr->unprepare_transfer_hardware &&
3991             ctlr->unprepare_transfer_hardware(ctlr))
3992             dev_err(&ctlr->dev,
3993                 "failed to unprepare transfer hardware\n");
3994         spi_idle_runtime_pm(ctlr);
3995     }
3996 
3997 out:
3998     mutex_unlock(&ctlr->io_mutex);
3999 }
4000 
4001 /*-------------------------------------------------------------------------*/
4002 
4003 /*
4004  * Utility methods for SPI protocol drivers, layered on
4005  * top of the core.  Some other utility methods are defined as
4006  * inline functions.
4007  */
4008 
4009 static void spi_complete(void *arg)
4010 {
4011     complete(arg);
4012 }
4013 
4014 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4015 {
4016     DECLARE_COMPLETION_ONSTACK(done);
4017     int status;
4018     struct spi_controller *ctlr = spi->controller;
4019 
4020     status = __spi_validate(spi, message);
4021     if (status != 0)
4022         return status;
4023 
4024     message->spi = spi;
4025 
4026     SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4027     SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4028 
4029     /*
4030      * Checking queue_empty here only guarantees async/sync message
4031      * ordering when coming from the same context. It does not need to
4032      * guard against reentrancy from a different context. The io_mutex
4033      * will catch those cases.
4034      */
4035     if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4036         message->actual_length = 0;
4037         message->status = -EINPROGRESS;
4038 
4039         trace_spi_message_submit(message);
4040 
4041         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4042         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4043 
4044         __spi_transfer_message_noqueue(ctlr, message);
4045 
4046         return message->status;
4047     }
4048 
4049     /*
4050      * There are messages in the async queue that could have originated
4051      * from the same context, so we need to preserve ordering.
4052      * Therefor we send the message to the async queue and wait until they
4053      * are completed.
4054      */
4055     message->complete = spi_complete;
4056     message->context = &done;
4057     status = spi_async_locked(spi, message);
4058     if (status == 0) {
4059         wait_for_completion(&done);
4060         status = message->status;
4061     }
4062     message->context = NULL;
4063 
4064     return status;
4065 }
4066 
4067 /**
4068  * spi_sync - blocking/synchronous SPI data transfers
4069  * @spi: device with which data will be exchanged
4070  * @message: describes the data transfers
4071  * Context: can sleep
4072  *
4073  * This call may only be used from a context that may sleep.  The sleep
4074  * is non-interruptible, and has no timeout.  Low-overhead controller
4075  * drivers may DMA directly into and out of the message buffers.
4076  *
4077  * Note that the SPI device's chip select is active during the message,
4078  * and then is normally disabled between messages.  Drivers for some
4079  * frequently-used devices may want to minimize costs of selecting a chip,
4080  * by leaving it selected in anticipation that the next message will go
4081  * to the same chip.  (That may increase power usage.)
4082  *
4083  * Also, the caller is guaranteeing that the memory associated with the
4084  * message will not be freed before this call returns.
4085  *
4086  * Return: zero on success, else a negative error code.
4087  */
4088 int spi_sync(struct spi_device *spi, struct spi_message *message)
4089 {
4090     int ret;
4091 
4092     mutex_lock(&spi->controller->bus_lock_mutex);
4093     ret = __spi_sync(spi, message);
4094     mutex_unlock(&spi->controller->bus_lock_mutex);
4095 
4096     return ret;
4097 }
4098 EXPORT_SYMBOL_GPL(spi_sync);
4099 
4100 /**
4101  * spi_sync_locked - version of spi_sync with exclusive bus usage
4102  * @spi: device with which data will be exchanged
4103  * @message: describes the data transfers
4104  * Context: can sleep
4105  *
4106  * This call may only be used from a context that may sleep.  The sleep
4107  * is non-interruptible, and has no timeout.  Low-overhead controller
4108  * drivers may DMA directly into and out of the message buffers.
4109  *
4110  * This call should be used by drivers that require exclusive access to the
4111  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4112  * be released by a spi_bus_unlock call when the exclusive access is over.
4113  *
4114  * Return: zero on success, else a negative error code.
4115  */
4116 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4117 {
4118     return __spi_sync(spi, message);
4119 }
4120 EXPORT_SYMBOL_GPL(spi_sync_locked);
4121 
4122 /**
4123  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4124  * @ctlr: SPI bus master that should be locked for exclusive bus access
4125  * Context: can sleep
4126  *
4127  * This call may only be used from a context that may sleep.  The sleep
4128  * is non-interruptible, and has no timeout.
4129  *
4130  * This call should be used by drivers that require exclusive access to the
4131  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4132  * exclusive access is over. Data transfer must be done by spi_sync_locked
4133  * and spi_async_locked calls when the SPI bus lock is held.
4134  *
4135  * Return: always zero.
4136  */
4137 int spi_bus_lock(struct spi_controller *ctlr)
4138 {
4139     unsigned long flags;
4140 
4141     mutex_lock(&ctlr->bus_lock_mutex);
4142 
4143     spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4144     ctlr->bus_lock_flag = 1;
4145     spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4146 
4147     /* Mutex remains locked until spi_bus_unlock() is called */
4148 
4149     return 0;
4150 }
4151 EXPORT_SYMBOL_GPL(spi_bus_lock);
4152 
4153 /**
4154  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4155  * @ctlr: SPI bus master that was locked for exclusive bus access
4156  * Context: can sleep
4157  *
4158  * This call may only be used from a context that may sleep.  The sleep
4159  * is non-interruptible, and has no timeout.
4160  *
4161  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4162  * call.
4163  *
4164  * Return: always zero.
4165  */
4166 int spi_bus_unlock(struct spi_controller *ctlr)
4167 {
4168     ctlr->bus_lock_flag = 0;
4169 
4170     mutex_unlock(&ctlr->bus_lock_mutex);
4171 
4172     return 0;
4173 }
4174 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4175 
4176 /* Portable code must never pass more than 32 bytes */
4177 #define SPI_BUFSIZ  max(32, SMP_CACHE_BYTES)
4178 
4179 static u8   *buf;
4180 
4181 /**
4182  * spi_write_then_read - SPI synchronous write followed by read
4183  * @spi: device with which data will be exchanged
4184  * @txbuf: data to be written (need not be dma-safe)
4185  * @n_tx: size of txbuf, in bytes
4186  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4187  * @n_rx: size of rxbuf, in bytes
4188  * Context: can sleep
4189  *
4190  * This performs a half duplex MicroWire style transaction with the
4191  * device, sending txbuf and then reading rxbuf.  The return value
4192  * is zero for success, else a negative errno status code.
4193  * This call may only be used from a context that may sleep.
4194  *
4195  * Parameters to this routine are always copied using a small buffer.
4196  * Performance-sensitive or bulk transfer code should instead use
4197  * spi_{async,sync}() calls with dma-safe buffers.
4198  *
4199  * Return: zero on success, else a negative error code.
4200  */
4201 int spi_write_then_read(struct spi_device *spi,
4202         const void *txbuf, unsigned n_tx,
4203         void *rxbuf, unsigned n_rx)
4204 {
4205     static DEFINE_MUTEX(lock);
4206 
4207     int         status;
4208     struct spi_message  message;
4209     struct spi_transfer x[2];
4210     u8          *local_buf;
4211 
4212     /*
4213      * Use preallocated DMA-safe buffer if we can. We can't avoid
4214      * copying here, (as a pure convenience thing), but we can
4215      * keep heap costs out of the hot path unless someone else is
4216      * using the pre-allocated buffer or the transfer is too large.
4217      */
4218     if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4219         local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4220                     GFP_KERNEL | GFP_DMA);
4221         if (!local_buf)
4222             return -ENOMEM;
4223     } else {
4224         local_buf = buf;
4225     }
4226 
4227     spi_message_init(&message);
4228     memset(x, 0, sizeof(x));
4229     if (n_tx) {
4230         x[0].len = n_tx;
4231         spi_message_add_tail(&x[0], &message);
4232     }
4233     if (n_rx) {
4234         x[1].len = n_rx;
4235         spi_message_add_tail(&x[1], &message);
4236     }
4237 
4238     memcpy(local_buf, txbuf, n_tx);
4239     x[0].tx_buf = local_buf;
4240     x[1].rx_buf = local_buf + n_tx;
4241 
4242     /* Do the i/o */
4243     status = spi_sync(spi, &message);
4244     if (status == 0)
4245         memcpy(rxbuf, x[1].rx_buf, n_rx);
4246 
4247     if (x[0].tx_buf == buf)
4248         mutex_unlock(&lock);
4249     else
4250         kfree(local_buf);
4251 
4252     return status;
4253 }
4254 EXPORT_SYMBOL_GPL(spi_write_then_read);
4255 
4256 /*-------------------------------------------------------------------------*/
4257 
4258 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4259 /* Must call put_device() when done with returned spi_device device */
4260 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4261 {
4262     struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4263 
4264     return dev ? to_spi_device(dev) : NULL;
4265 }
4266 
4267 /* The spi controllers are not using spi_bus, so we find it with another way */
4268 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4269 {
4270     struct device *dev;
4271 
4272     dev = class_find_device_by_of_node(&spi_master_class, node);
4273     if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4274         dev = class_find_device_by_of_node(&spi_slave_class, node);
4275     if (!dev)
4276         return NULL;
4277 
4278     /* Reference got in class_find_device */
4279     return container_of(dev, struct spi_controller, dev);
4280 }
4281 
4282 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4283              void *arg)
4284 {
4285     struct of_reconfig_data *rd = arg;
4286     struct spi_controller *ctlr;
4287     struct spi_device *spi;
4288 
4289     switch (of_reconfig_get_state_change(action, arg)) {
4290     case OF_RECONFIG_CHANGE_ADD:
4291         ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4292         if (ctlr == NULL)
4293             return NOTIFY_OK;   /* Not for us */
4294 
4295         if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4296             put_device(&ctlr->dev);
4297             return NOTIFY_OK;
4298         }
4299 
4300         spi = of_register_spi_device(ctlr, rd->dn);
4301         put_device(&ctlr->dev);
4302 
4303         if (IS_ERR(spi)) {
4304             pr_err("%s: failed to create for '%pOF'\n",
4305                     __func__, rd->dn);
4306             of_node_clear_flag(rd->dn, OF_POPULATED);
4307             return notifier_from_errno(PTR_ERR(spi));
4308         }
4309         break;
4310 
4311     case OF_RECONFIG_CHANGE_REMOVE:
4312         /* Already depopulated? */
4313         if (!of_node_check_flag(rd->dn, OF_POPULATED))
4314             return NOTIFY_OK;
4315 
4316         /* Find our device by node */
4317         spi = of_find_spi_device_by_node(rd->dn);
4318         if (spi == NULL)
4319             return NOTIFY_OK;   /* No? not meant for us */
4320 
4321         /* Unregister takes one ref away */
4322         spi_unregister_device(spi);
4323 
4324         /* And put the reference of the find */
4325         put_device(&spi->dev);
4326         break;
4327     }
4328 
4329     return NOTIFY_OK;
4330 }
4331 
4332 static struct notifier_block spi_of_notifier = {
4333     .notifier_call = of_spi_notify,
4334 };
4335 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4336 extern struct notifier_block spi_of_notifier;
4337 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4338 
4339 #if IS_ENABLED(CONFIG_ACPI)
4340 static int spi_acpi_controller_match(struct device *dev, const void *data)
4341 {
4342     return ACPI_COMPANION(dev->parent) == data;
4343 }
4344 
4345 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4346 {
4347     struct device *dev;
4348 
4349     dev = class_find_device(&spi_master_class, NULL, adev,
4350                 spi_acpi_controller_match);
4351     if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4352         dev = class_find_device(&spi_slave_class, NULL, adev,
4353                     spi_acpi_controller_match);
4354     if (!dev)
4355         return NULL;
4356 
4357     return container_of(dev, struct spi_controller, dev);
4358 }
4359 
4360 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4361 {
4362     struct device *dev;
4363 
4364     dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4365     return to_spi_device(dev);
4366 }
4367 
4368 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4369                void *arg)
4370 {
4371     struct acpi_device *adev = arg;
4372     struct spi_controller *ctlr;
4373     struct spi_device *spi;
4374 
4375     switch (value) {
4376     case ACPI_RECONFIG_DEVICE_ADD:
4377         ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4378         if (!ctlr)
4379             break;
4380 
4381         acpi_register_spi_device(ctlr, adev);
4382         put_device(&ctlr->dev);
4383         break;
4384     case ACPI_RECONFIG_DEVICE_REMOVE:
4385         if (!acpi_device_enumerated(adev))
4386             break;
4387 
4388         spi = acpi_spi_find_device_by_adev(adev);
4389         if (!spi)
4390             break;
4391 
4392         spi_unregister_device(spi);
4393         put_device(&spi->dev);
4394         break;
4395     }
4396 
4397     return NOTIFY_OK;
4398 }
4399 
4400 static struct notifier_block spi_acpi_notifier = {
4401     .notifier_call = acpi_spi_notify,
4402 };
4403 #else
4404 extern struct notifier_block spi_acpi_notifier;
4405 #endif
4406 
4407 static int __init spi_init(void)
4408 {
4409     int status;
4410 
4411     buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4412     if (!buf) {
4413         status = -ENOMEM;
4414         goto err0;
4415     }
4416 
4417     status = bus_register(&spi_bus_type);
4418     if (status < 0)
4419         goto err1;
4420 
4421     status = class_register(&spi_master_class);
4422     if (status < 0)
4423         goto err2;
4424 
4425     if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4426         status = class_register(&spi_slave_class);
4427         if (status < 0)
4428             goto err3;
4429     }
4430 
4431     if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4432         WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4433     if (IS_ENABLED(CONFIG_ACPI))
4434         WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4435 
4436     return 0;
4437 
4438 err3:
4439     class_unregister(&spi_master_class);
4440 err2:
4441     bus_unregister(&spi_bus_type);
4442 err1:
4443     kfree(buf);
4444     buf = NULL;
4445 err0:
4446     return status;
4447 }
4448 
4449 /*
4450  * A board_info is normally registered in arch_initcall(),
4451  * but even essential drivers wait till later.
4452  *
4453  * REVISIT only boardinfo really needs static linking. The rest (device and
4454  * driver registration) _could_ be dynamically linked (modular) ... Costs
4455  * include needing to have boardinfo data structures be much more public.
4456  */
4457 postcore_initcall(spi_init);