0001
0002
0003
0004
0005
0006 #include <linux/acpi.h>
0007 #include <linux/clk.h>
0008 #include <linux/kernel.h>
0009 #include <linux/module.h>
0010 #include <linux/platform_device.h>
0011 #include <linux/spi/spi.h>
0012 #include <linux/interrupt.h>
0013
0014
0015 #define XLP_SPI_CONFIG 0x00
0016 #define XLP_SPI_CPHA BIT(0)
0017 #define XLP_SPI_CPOL BIT(1)
0018 #define XLP_SPI_CS_POL BIT(2)
0019 #define XLP_SPI_TXMISO_EN BIT(3)
0020 #define XLP_SPI_TXMOSI_EN BIT(4)
0021 #define XLP_SPI_RXMISO_EN BIT(5)
0022 #define XLP_SPI_CS_LSBFE BIT(10)
0023 #define XLP_SPI_RXCAP_EN BIT(11)
0024
0025
0026 #define XLP_SPI_FDIV 0x04
0027
0028
0029 #define XLP_SPI_CMD 0x08
0030 #define XLP_SPI_CMD_IDLE_MASK 0x0
0031 #define XLP_SPI_CMD_TX_MASK 0x1
0032 #define XLP_SPI_CMD_RX_MASK 0x2
0033 #define XLP_SPI_CMD_TXRX_MASK 0x3
0034 #define XLP_SPI_CMD_CONT BIT(4)
0035 #define XLP_SPI_XFR_BITCNT_SHIFT 16
0036
0037
0038 #define XLP_SPI_STATUS 0x0c
0039 #define XLP_SPI_XFR_PENDING BIT(0)
0040 #define XLP_SPI_XFR_DONE BIT(1)
0041 #define XLP_SPI_TX_INT BIT(2)
0042 #define XLP_SPI_RX_INT BIT(3)
0043 #define XLP_SPI_TX_UF BIT(4)
0044 #define XLP_SPI_RX_OF BIT(5)
0045 #define XLP_SPI_STAT_MASK 0x3f
0046
0047
0048 #define XLP_SPI_INTR_EN 0x10
0049 #define XLP_SPI_INTR_DONE BIT(0)
0050 #define XLP_SPI_INTR_TXTH BIT(1)
0051 #define XLP_SPI_INTR_RXTH BIT(2)
0052 #define XLP_SPI_INTR_TXUF BIT(3)
0053 #define XLP_SPI_INTR_RXOF BIT(4)
0054
0055
0056 #define XLP_SPI_FIFO_THRESH 0x14
0057
0058
0059 #define XLP_SPI_FIFO_WCNT 0x18
0060 #define XLP_SPI_RXFIFO_WCNT_MASK 0xf
0061 #define XLP_SPI_TXFIFO_WCNT_MASK 0xf0
0062 #define XLP_SPI_TXFIFO_WCNT_SHIFT 4
0063
0064
0065 #define XLP_SPI_TXDATA_FIFO 0x1c
0066
0067
0068 #define XLP_SPI_RXDATA_FIFO 0x20
0069
0070
0071 #define XLP_SPI_SYSCTRL 0x100
0072 #define XLP_SPI_SYS_RESET BIT(0)
0073 #define XLP_SPI_SYS_CLKDIS BIT(1)
0074 #define XLP_SPI_SYS_PMEN BIT(8)
0075
0076 #define SPI_CS_OFFSET 0x40
0077 #define XLP_SPI_TXRXTH 0x80
0078 #define XLP_SPI_FIFO_SIZE 8
0079 #define XLP_SPI_MAX_CS 4
0080 #define XLP_SPI_DEFAULT_FREQ 133333333
0081 #define XLP_SPI_FDIV_MIN 4
0082 #define XLP_SPI_FDIV_MAX 65535
0083
0084
0085
0086
0087 #define XLP_SPI_XFER_SIZE 28
0088
0089 struct xlp_spi_priv {
0090 struct device dev;
0091 void __iomem *base;
0092 const u8 *tx_buf;
0093 u8 *rx_buf;
0094 int tx_len;
0095 int rx_len;
0096 int txerrors;
0097 int rxerrors;
0098 int cs;
0099 u32 spi_clk;
0100 bool cmd_cont;
0101 struct completion done;
0102 };
0103
0104 static inline u32 xlp_spi_reg_read(struct xlp_spi_priv *priv,
0105 int cs, int regoff)
0106 {
0107 return readl(priv->base + regoff + cs * SPI_CS_OFFSET);
0108 }
0109
0110 static inline void xlp_spi_reg_write(struct xlp_spi_priv *priv, int cs,
0111 int regoff, u32 val)
0112 {
0113 writel(val, priv->base + regoff + cs * SPI_CS_OFFSET);
0114 }
0115
0116 static inline void xlp_spi_sysctl_write(struct xlp_spi_priv *priv,
0117 int regoff, u32 val)
0118 {
0119 writel(val, priv->base + regoff);
0120 }
0121
0122
0123
0124
0125 static void xlp_spi_sysctl_setup(struct xlp_spi_priv *xspi)
0126 {
0127 int cs;
0128
0129 for (cs = 0; cs < XLP_SPI_MAX_CS; cs++)
0130 xlp_spi_sysctl_write(xspi, XLP_SPI_SYSCTRL,
0131 XLP_SPI_SYS_RESET << cs);
0132 xlp_spi_sysctl_write(xspi, XLP_SPI_SYSCTRL, XLP_SPI_SYS_PMEN);
0133 }
0134
0135 static int xlp_spi_setup(struct spi_device *spi)
0136 {
0137 struct xlp_spi_priv *xspi;
0138 u32 fdiv, cfg;
0139 int cs;
0140
0141 xspi = spi_master_get_devdata(spi->master);
0142 cs = spi->chip_select;
0143
0144
0145
0146 fdiv = DIV_ROUND_UP(xspi->spi_clk, spi->max_speed_hz);
0147 if (fdiv > XLP_SPI_FDIV_MAX)
0148 fdiv = XLP_SPI_FDIV_MAX;
0149 else if (fdiv < XLP_SPI_FDIV_MIN)
0150 fdiv = XLP_SPI_FDIV_MIN;
0151
0152 xlp_spi_reg_write(xspi, cs, XLP_SPI_FDIV, fdiv);
0153 xlp_spi_reg_write(xspi, cs, XLP_SPI_FIFO_THRESH, XLP_SPI_TXRXTH);
0154 cfg = xlp_spi_reg_read(xspi, cs, XLP_SPI_CONFIG);
0155 if (spi->mode & SPI_CPHA)
0156 cfg |= XLP_SPI_CPHA;
0157 else
0158 cfg &= ~XLP_SPI_CPHA;
0159 if (spi->mode & SPI_CPOL)
0160 cfg |= XLP_SPI_CPOL;
0161 else
0162 cfg &= ~XLP_SPI_CPOL;
0163 if (!(spi->mode & SPI_CS_HIGH))
0164 cfg |= XLP_SPI_CS_POL;
0165 else
0166 cfg &= ~XLP_SPI_CS_POL;
0167 if (spi->mode & SPI_LSB_FIRST)
0168 cfg |= XLP_SPI_CS_LSBFE;
0169 else
0170 cfg &= ~XLP_SPI_CS_LSBFE;
0171
0172 cfg |= XLP_SPI_TXMOSI_EN | XLP_SPI_RXMISO_EN;
0173 if (fdiv == 4)
0174 cfg |= XLP_SPI_RXCAP_EN;
0175 xlp_spi_reg_write(xspi, cs, XLP_SPI_CONFIG, cfg);
0176
0177 return 0;
0178 }
0179
0180 static void xlp_spi_read_rxfifo(struct xlp_spi_priv *xspi)
0181 {
0182 u32 rx_data, rxfifo_cnt;
0183 int i, j, nbytes;
0184
0185 rxfifo_cnt = xlp_spi_reg_read(xspi, xspi->cs, XLP_SPI_FIFO_WCNT);
0186 rxfifo_cnt &= XLP_SPI_RXFIFO_WCNT_MASK;
0187 while (rxfifo_cnt) {
0188 rx_data = xlp_spi_reg_read(xspi, xspi->cs, XLP_SPI_RXDATA_FIFO);
0189 j = 0;
0190 nbytes = min(xspi->rx_len, 4);
0191 for (i = nbytes - 1; i >= 0; i--, j++)
0192 xspi->rx_buf[i] = (rx_data >> (j * 8)) & 0xff;
0193
0194 xspi->rx_len -= nbytes;
0195 xspi->rx_buf += nbytes;
0196 rxfifo_cnt--;
0197 }
0198 }
0199
0200 static void xlp_spi_fill_txfifo(struct xlp_spi_priv *xspi)
0201 {
0202 u32 tx_data, txfifo_cnt;
0203 int i, j, nbytes;
0204
0205 txfifo_cnt = xlp_spi_reg_read(xspi, xspi->cs, XLP_SPI_FIFO_WCNT);
0206 txfifo_cnt &= XLP_SPI_TXFIFO_WCNT_MASK;
0207 txfifo_cnt >>= XLP_SPI_TXFIFO_WCNT_SHIFT;
0208 while (xspi->tx_len && (txfifo_cnt < XLP_SPI_FIFO_SIZE)) {
0209 j = 0;
0210 tx_data = 0;
0211 nbytes = min(xspi->tx_len, 4);
0212 for (i = nbytes - 1; i >= 0; i--, j++)
0213 tx_data |= xspi->tx_buf[i] << (j * 8);
0214
0215 xlp_spi_reg_write(xspi, xspi->cs, XLP_SPI_TXDATA_FIFO, tx_data);
0216 xspi->tx_len -= nbytes;
0217 xspi->tx_buf += nbytes;
0218 txfifo_cnt++;
0219 }
0220 }
0221
0222 static irqreturn_t xlp_spi_interrupt(int irq, void *dev_id)
0223 {
0224 struct xlp_spi_priv *xspi = dev_id;
0225 u32 stat;
0226
0227 stat = xlp_spi_reg_read(xspi, xspi->cs, XLP_SPI_STATUS) &
0228 XLP_SPI_STAT_MASK;
0229 if (!stat)
0230 return IRQ_NONE;
0231
0232 if (stat & XLP_SPI_TX_INT) {
0233 if (xspi->tx_len)
0234 xlp_spi_fill_txfifo(xspi);
0235 if (stat & XLP_SPI_TX_UF)
0236 xspi->txerrors++;
0237 }
0238
0239 if (stat & XLP_SPI_RX_INT) {
0240 if (xspi->rx_len)
0241 xlp_spi_read_rxfifo(xspi);
0242 if (stat & XLP_SPI_RX_OF)
0243 xspi->rxerrors++;
0244 }
0245
0246
0247 xlp_spi_reg_write(xspi, xspi->cs, XLP_SPI_STATUS, stat);
0248 if (stat & XLP_SPI_XFR_DONE)
0249 complete(&xspi->done);
0250
0251 return IRQ_HANDLED;
0252 }
0253
0254 static void xlp_spi_send_cmd(struct xlp_spi_priv *xspi, int xfer_len,
0255 int cmd_cont)
0256 {
0257 u32 cmd = 0;
0258
0259 if (xspi->tx_buf)
0260 cmd |= XLP_SPI_CMD_TX_MASK;
0261 if (xspi->rx_buf)
0262 cmd |= XLP_SPI_CMD_RX_MASK;
0263 if (cmd_cont)
0264 cmd |= XLP_SPI_CMD_CONT;
0265 cmd |= ((xfer_len * 8 - 1) << XLP_SPI_XFR_BITCNT_SHIFT);
0266 xlp_spi_reg_write(xspi, xspi->cs, XLP_SPI_CMD, cmd);
0267 }
0268
0269 static int xlp_spi_xfer_block(struct xlp_spi_priv *xs,
0270 const unsigned char *tx_buf,
0271 unsigned char *rx_buf, int xfer_len, int cmd_cont)
0272 {
0273 int timeout;
0274 u32 intr_mask = 0;
0275
0276 xs->tx_buf = tx_buf;
0277 xs->rx_buf = rx_buf;
0278 xs->tx_len = (xs->tx_buf == NULL) ? 0 : xfer_len;
0279 xs->rx_len = (xs->rx_buf == NULL) ? 0 : xfer_len;
0280 xs->txerrors = xs->rxerrors = 0;
0281
0282
0283 if (xs->tx_len)
0284 xlp_spi_fill_txfifo(xs);
0285
0286 xlp_spi_send_cmd(xs, xfer_len, cmd_cont);
0287
0288
0289
0290
0291
0292
0293 if (xs->tx_len)
0294 intr_mask |= XLP_SPI_INTR_TXTH | XLP_SPI_INTR_TXUF |
0295 XLP_SPI_INTR_RXTH | XLP_SPI_INTR_RXOF;
0296 else
0297 intr_mask |= XLP_SPI_INTR_RXTH | XLP_SPI_INTR_RXOF;
0298
0299 intr_mask |= XLP_SPI_INTR_DONE;
0300 xlp_spi_reg_write(xs, xs->cs, XLP_SPI_INTR_EN, intr_mask);
0301
0302 timeout = wait_for_completion_timeout(&xs->done,
0303 msecs_to_jiffies(1000));
0304
0305 xlp_spi_reg_write(xs, xs->cs, XLP_SPI_INTR_EN, 0x0);
0306 if (!timeout) {
0307 dev_err(&xs->dev, "xfer timedout!\n");
0308 goto out;
0309 }
0310 if (xs->txerrors || xs->rxerrors)
0311 dev_err(&xs->dev, "Over/Underflow rx %d tx %d xfer %d!\n",
0312 xs->rxerrors, xs->txerrors, xfer_len);
0313
0314 return xfer_len;
0315 out:
0316 return -ETIMEDOUT;
0317 }
0318
0319 static int xlp_spi_txrx_bufs(struct xlp_spi_priv *xs, struct spi_transfer *t)
0320 {
0321 int bytesleft, sz;
0322 unsigned char *rx_buf;
0323 const unsigned char *tx_buf;
0324
0325 tx_buf = t->tx_buf;
0326 rx_buf = t->rx_buf;
0327 bytesleft = t->len;
0328 while (bytesleft) {
0329 if (bytesleft > XLP_SPI_XFER_SIZE)
0330 sz = xlp_spi_xfer_block(xs, tx_buf, rx_buf,
0331 XLP_SPI_XFER_SIZE, 1);
0332 else
0333 sz = xlp_spi_xfer_block(xs, tx_buf, rx_buf,
0334 bytesleft, xs->cmd_cont);
0335 if (sz < 0)
0336 return sz;
0337 bytesleft -= sz;
0338 if (tx_buf)
0339 tx_buf += sz;
0340 if (rx_buf)
0341 rx_buf += sz;
0342 }
0343 return bytesleft;
0344 }
0345
0346 static int xlp_spi_transfer_one(struct spi_master *master,
0347 struct spi_device *spi,
0348 struct spi_transfer *t)
0349 {
0350 struct xlp_spi_priv *xspi = spi_master_get_devdata(master);
0351 int ret = 0;
0352
0353 xspi->cs = spi->chip_select;
0354 xspi->dev = spi->dev;
0355
0356 if (spi_transfer_is_last(master, t))
0357 xspi->cmd_cont = 0;
0358 else
0359 xspi->cmd_cont = 1;
0360
0361 if (xlp_spi_txrx_bufs(xspi, t))
0362 ret = -EIO;
0363
0364 spi_finalize_current_transfer(master);
0365 return ret;
0366 }
0367
0368 static int xlp_spi_probe(struct platform_device *pdev)
0369 {
0370 struct spi_master *master;
0371 struct xlp_spi_priv *xspi;
0372 struct clk *clk;
0373 int irq, err;
0374
0375 xspi = devm_kzalloc(&pdev->dev, sizeof(*xspi), GFP_KERNEL);
0376 if (!xspi)
0377 return -ENOMEM;
0378
0379 xspi->base = devm_platform_ioremap_resource(pdev, 0);
0380 if (IS_ERR(xspi->base))
0381 return PTR_ERR(xspi->base);
0382
0383 irq = platform_get_irq(pdev, 0);
0384 if (irq < 0)
0385 return irq;
0386 err = devm_request_irq(&pdev->dev, irq, xlp_spi_interrupt, 0,
0387 pdev->name, xspi);
0388 if (err) {
0389 dev_err(&pdev->dev, "unable to request irq %d\n", irq);
0390 return err;
0391 }
0392
0393 clk = devm_clk_get(&pdev->dev, NULL);
0394 if (IS_ERR(clk)) {
0395 dev_err(&pdev->dev, "could not get spi clock\n");
0396 return PTR_ERR(clk);
0397 }
0398
0399 xspi->spi_clk = clk_get_rate(clk);
0400
0401 master = spi_alloc_master(&pdev->dev, 0);
0402 if (!master) {
0403 dev_err(&pdev->dev, "could not alloc master\n");
0404 return -ENOMEM;
0405 }
0406
0407 master->bus_num = 0;
0408 master->num_chipselect = XLP_SPI_MAX_CS;
0409 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
0410 master->setup = xlp_spi_setup;
0411 master->transfer_one = xlp_spi_transfer_one;
0412 master->dev.of_node = pdev->dev.of_node;
0413
0414 init_completion(&xspi->done);
0415 spi_master_set_devdata(master, xspi);
0416 xlp_spi_sysctl_setup(xspi);
0417
0418
0419 err = devm_spi_register_master(&pdev->dev, master);
0420 if (err) {
0421 dev_err(&pdev->dev, "spi register master failed!\n");
0422 spi_master_put(master);
0423 return err;
0424 }
0425
0426 return 0;
0427 }
0428
0429 #ifdef CONFIG_ACPI
0430 static const struct acpi_device_id xlp_spi_acpi_match[] = {
0431 { "BRCM900D", 0 },
0432 { "CAV900D", 0 },
0433 { },
0434 };
0435 MODULE_DEVICE_TABLE(acpi, xlp_spi_acpi_match);
0436 #endif
0437
0438 static struct platform_driver xlp_spi_driver = {
0439 .probe = xlp_spi_probe,
0440 .driver = {
0441 .name = "xlp-spi",
0442 .acpi_match_table = ACPI_PTR(xlp_spi_acpi_match),
0443 },
0444 };
0445 module_platform_driver(xlp_spi_driver);
0446
0447 MODULE_AUTHOR("Kamlakant Patel <kamlakant.patel@broadcom.com>");
0448 MODULE_DESCRIPTION("Netlogic XLP SPI controller driver");
0449 MODULE_LICENSE("GPL v2");