Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 // spi-uniphier.c - Socionext UniPhier SPI controller driver
0003 // Copyright 2012      Panasonic Corporation
0004 // Copyright 2016-2018 Socionext Inc.
0005 
0006 #include <linux/kernel.h>
0007 #include <linux/bitfield.h>
0008 #include <linux/bitops.h>
0009 #include <linux/clk.h>
0010 #include <linux/delay.h>
0011 #include <linux/dmaengine.h>
0012 #include <linux/interrupt.h>
0013 #include <linux/io.h>
0014 #include <linux/module.h>
0015 #include <linux/platform_device.h>
0016 #include <linux/spi/spi.h>
0017 
0018 #include <asm/unaligned.h>
0019 
0020 #define SSI_TIMEOUT_MS      2000
0021 #define SSI_POLL_TIMEOUT_US 200
0022 #define SSI_MAX_CLK_DIVIDER 254
0023 #define SSI_MIN_CLK_DIVIDER 4
0024 
0025 struct uniphier_spi_priv {
0026     void __iomem *base;
0027     dma_addr_t base_dma_addr;
0028     struct clk *clk;
0029     struct spi_master *master;
0030     struct completion xfer_done;
0031 
0032     int error;
0033     unsigned int tx_bytes;
0034     unsigned int rx_bytes;
0035     const u8 *tx_buf;
0036     u8 *rx_buf;
0037     atomic_t dma_busy;
0038 
0039     bool is_save_param;
0040     u8 bits_per_word;
0041     u16 mode;
0042     u32 speed_hz;
0043 };
0044 
0045 #define SSI_CTL         0x00
0046 #define   SSI_CTL_EN        BIT(0)
0047 
0048 #define SSI_CKS         0x04
0049 #define   SSI_CKS_CKRAT_MASK    GENMASK(7, 0)
0050 #define   SSI_CKS_CKPHS     BIT(14)
0051 #define   SSI_CKS_CKINIT    BIT(13)
0052 #define   SSI_CKS_CKDLY     BIT(12)
0053 
0054 #define SSI_TXWDS       0x08
0055 #define   SSI_TXWDS_WDLEN_MASK  GENMASK(13, 8)
0056 #define   SSI_TXWDS_TDTF_MASK   GENMASK(7, 6)
0057 #define   SSI_TXWDS_DTLEN_MASK  GENMASK(5, 0)
0058 
0059 #define SSI_RXWDS       0x0c
0060 #define   SSI_RXWDS_DTLEN_MASK  GENMASK(5, 0)
0061 
0062 #define SSI_FPS         0x10
0063 #define   SSI_FPS_FSPOL     BIT(15)
0064 #define   SSI_FPS_FSTRT     BIT(14)
0065 
0066 #define SSI_SR          0x14
0067 #define   SSI_SR_BUSY       BIT(7)
0068 #define   SSI_SR_RNE        BIT(0)
0069 
0070 #define SSI_IE          0x18
0071 #define   SSI_IE_TCIE       BIT(4)
0072 #define   SSI_IE_RCIE       BIT(3)
0073 #define   SSI_IE_TXRE       BIT(2)
0074 #define   SSI_IE_RXRE       BIT(1)
0075 #define   SSI_IE_RORIE      BIT(0)
0076 #define   SSI_IE_ALL_MASK   GENMASK(4, 0)
0077 
0078 #define SSI_IS          0x1c
0079 #define   SSI_IS_RXRS       BIT(9)
0080 #define   SSI_IS_RCID       BIT(3)
0081 #define   SSI_IS_RORID      BIT(0)
0082 
0083 #define SSI_IC          0x1c
0084 #define   SSI_IC_TCIC       BIT(4)
0085 #define   SSI_IC_RCIC       BIT(3)
0086 #define   SSI_IC_RORIC      BIT(0)
0087 
0088 #define SSI_FC          0x20
0089 #define   SSI_FC_TXFFL      BIT(12)
0090 #define   SSI_FC_TXFTH_MASK GENMASK(11, 8)
0091 #define   SSI_FC_RXFFL      BIT(4)
0092 #define   SSI_FC_RXFTH_MASK GENMASK(3, 0)
0093 
0094 #define SSI_TXDR        0x24
0095 #define SSI_RXDR        0x24
0096 
0097 #define SSI_FIFO_DEPTH      8U
0098 #define SSI_FIFO_BURST_NUM  1
0099 
0100 #define SSI_DMA_RX_BUSY     BIT(1)
0101 #define SSI_DMA_TX_BUSY     BIT(0)
0102 
0103 static inline unsigned int bytes_per_word(unsigned int bits)
0104 {
0105     return bits <= 8 ? 1 : (bits <= 16 ? 2 : 4);
0106 }
0107 
0108 static inline void uniphier_spi_irq_enable(struct uniphier_spi_priv *priv,
0109                        u32 mask)
0110 {
0111     u32 val;
0112 
0113     val = readl(priv->base + SSI_IE);
0114     val |= mask;
0115     writel(val, priv->base + SSI_IE);
0116 }
0117 
0118 static inline void uniphier_spi_irq_disable(struct uniphier_spi_priv *priv,
0119                         u32 mask)
0120 {
0121     u32 val;
0122 
0123     val = readl(priv->base + SSI_IE);
0124     val &= ~mask;
0125     writel(val, priv->base + SSI_IE);
0126 }
0127 
0128 static void uniphier_spi_set_mode(struct spi_device *spi)
0129 {
0130     struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
0131     u32 val1, val2;
0132 
0133     /*
0134      * clock setting
0135      * CKPHS    capture timing. 0:rising edge, 1:falling edge
0136      * CKINIT   clock initial level. 0:low, 1:high
0137      * CKDLY    clock delay. 0:no delay, 1:delay depending on FSTRT
0138      *          (FSTRT=0: 1 clock, FSTRT=1: 0.5 clock)
0139      *
0140      * frame setting
0141      * FSPOL    frame signal porarity. 0: low, 1: high
0142      * FSTRT    start frame timing
0143      *          0: rising edge of clock, 1: falling edge of clock
0144      */
0145     switch (spi->mode & SPI_MODE_X_MASK) {
0146     case SPI_MODE_0:
0147         /* CKPHS=1, CKINIT=0, CKDLY=1, FSTRT=0 */
0148         val1 = SSI_CKS_CKPHS | SSI_CKS_CKDLY;
0149         val2 = 0;
0150         break;
0151     case SPI_MODE_1:
0152         /* CKPHS=0, CKINIT=0, CKDLY=0, FSTRT=1 */
0153         val1 = 0;
0154         val2 = SSI_FPS_FSTRT;
0155         break;
0156     case SPI_MODE_2:
0157         /* CKPHS=0, CKINIT=1, CKDLY=1, FSTRT=1 */
0158         val1 = SSI_CKS_CKINIT | SSI_CKS_CKDLY;
0159         val2 = SSI_FPS_FSTRT;
0160         break;
0161     case SPI_MODE_3:
0162         /* CKPHS=1, CKINIT=1, CKDLY=0, FSTRT=0 */
0163         val1 = SSI_CKS_CKPHS | SSI_CKS_CKINIT;
0164         val2 = 0;
0165         break;
0166     }
0167 
0168     if (!(spi->mode & SPI_CS_HIGH))
0169         val2 |= SSI_FPS_FSPOL;
0170 
0171     writel(val1, priv->base + SSI_CKS);
0172     writel(val2, priv->base + SSI_FPS);
0173 
0174     val1 = 0;
0175     if (spi->mode & SPI_LSB_FIRST)
0176         val1 |= FIELD_PREP(SSI_TXWDS_TDTF_MASK, 1);
0177     writel(val1, priv->base + SSI_TXWDS);
0178     writel(val1, priv->base + SSI_RXWDS);
0179 }
0180 
0181 static void uniphier_spi_set_transfer_size(struct spi_device *spi, int size)
0182 {
0183     struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
0184     u32 val;
0185 
0186     val = readl(priv->base + SSI_TXWDS);
0187     val &= ~(SSI_TXWDS_WDLEN_MASK | SSI_TXWDS_DTLEN_MASK);
0188     val |= FIELD_PREP(SSI_TXWDS_WDLEN_MASK, size);
0189     val |= FIELD_PREP(SSI_TXWDS_DTLEN_MASK, size);
0190     writel(val, priv->base + SSI_TXWDS);
0191 
0192     val = readl(priv->base + SSI_RXWDS);
0193     val &= ~SSI_RXWDS_DTLEN_MASK;
0194     val |= FIELD_PREP(SSI_RXWDS_DTLEN_MASK, size);
0195     writel(val, priv->base + SSI_RXWDS);
0196 }
0197 
0198 static void uniphier_spi_set_baudrate(struct spi_device *spi,
0199                       unsigned int speed)
0200 {
0201     struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
0202     u32 val, ckdiv;
0203 
0204     /*
0205      * the supported rates are even numbers from 4 to 254. (4,6,8...254)
0206      * round up as we look for equal or less speed
0207      */
0208     ckdiv = DIV_ROUND_UP(clk_get_rate(priv->clk), speed);
0209     ckdiv = round_up(ckdiv, 2);
0210 
0211     val = readl(priv->base + SSI_CKS);
0212     val &= ~SSI_CKS_CKRAT_MASK;
0213     val |= ckdiv & SSI_CKS_CKRAT_MASK;
0214     writel(val, priv->base + SSI_CKS);
0215 }
0216 
0217 static void uniphier_spi_setup_transfer(struct spi_device *spi,
0218                        struct spi_transfer *t)
0219 {
0220     struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
0221     u32 val;
0222 
0223     priv->error = 0;
0224     priv->tx_buf = t->tx_buf;
0225     priv->rx_buf = t->rx_buf;
0226     priv->tx_bytes = priv->rx_bytes = t->len;
0227 
0228     if (!priv->is_save_param || priv->mode != spi->mode) {
0229         uniphier_spi_set_mode(spi);
0230         priv->mode = spi->mode;
0231         priv->is_save_param = false;
0232     }
0233 
0234     if (!priv->is_save_param || priv->bits_per_word != t->bits_per_word) {
0235         uniphier_spi_set_transfer_size(spi, t->bits_per_word);
0236         priv->bits_per_word = t->bits_per_word;
0237     }
0238 
0239     if (!priv->is_save_param || priv->speed_hz != t->speed_hz) {
0240         uniphier_spi_set_baudrate(spi, t->speed_hz);
0241         priv->speed_hz = t->speed_hz;
0242     }
0243 
0244     priv->is_save_param = true;
0245 
0246     /* reset FIFOs */
0247     val = SSI_FC_TXFFL | SSI_FC_RXFFL;
0248     writel(val, priv->base + SSI_FC);
0249 }
0250 
0251 static void uniphier_spi_send(struct uniphier_spi_priv *priv)
0252 {
0253     int wsize;
0254     u32 val = 0;
0255 
0256     wsize = min(bytes_per_word(priv->bits_per_word), priv->tx_bytes);
0257     priv->tx_bytes -= wsize;
0258 
0259     if (priv->tx_buf) {
0260         switch (wsize) {
0261         case 1:
0262             val = *priv->tx_buf;
0263             break;
0264         case 2:
0265             val = get_unaligned_le16(priv->tx_buf);
0266             break;
0267         case 4:
0268             val = get_unaligned_le32(priv->tx_buf);
0269             break;
0270         }
0271 
0272         priv->tx_buf += wsize;
0273     }
0274 
0275     writel(val, priv->base + SSI_TXDR);
0276 }
0277 
0278 static void uniphier_spi_recv(struct uniphier_spi_priv *priv)
0279 {
0280     int rsize;
0281     u32 val;
0282 
0283     rsize = min(bytes_per_word(priv->bits_per_word), priv->rx_bytes);
0284     priv->rx_bytes -= rsize;
0285 
0286     val = readl(priv->base + SSI_RXDR);
0287 
0288     if (priv->rx_buf) {
0289         switch (rsize) {
0290         case 1:
0291             *priv->rx_buf = val;
0292             break;
0293         case 2:
0294             put_unaligned_le16(val, priv->rx_buf);
0295             break;
0296         case 4:
0297             put_unaligned_le32(val, priv->rx_buf);
0298             break;
0299         }
0300 
0301         priv->rx_buf += rsize;
0302     }
0303 }
0304 
0305 static void uniphier_spi_set_fifo_threshold(struct uniphier_spi_priv *priv,
0306                         unsigned int threshold)
0307 {
0308     u32 val;
0309 
0310     val = readl(priv->base + SSI_FC);
0311     val &= ~(SSI_FC_TXFTH_MASK | SSI_FC_RXFTH_MASK);
0312     val |= FIELD_PREP(SSI_FC_TXFTH_MASK, SSI_FIFO_DEPTH - threshold);
0313     val |= FIELD_PREP(SSI_FC_RXFTH_MASK, threshold);
0314     writel(val, priv->base + SSI_FC);
0315 }
0316 
0317 static void uniphier_spi_fill_tx_fifo(struct uniphier_spi_priv *priv)
0318 {
0319     unsigned int fifo_threshold, fill_words;
0320     unsigned int bpw = bytes_per_word(priv->bits_per_word);
0321 
0322     fifo_threshold = DIV_ROUND_UP(priv->rx_bytes, bpw);
0323     fifo_threshold = min(fifo_threshold, SSI_FIFO_DEPTH);
0324 
0325     uniphier_spi_set_fifo_threshold(priv, fifo_threshold);
0326 
0327     fill_words = fifo_threshold -
0328         DIV_ROUND_UP(priv->rx_bytes - priv->tx_bytes, bpw);
0329 
0330     while (fill_words--)
0331         uniphier_spi_send(priv);
0332 }
0333 
0334 static void uniphier_spi_set_cs(struct spi_device *spi, bool enable)
0335 {
0336     struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
0337     u32 val;
0338 
0339     val = readl(priv->base + SSI_FPS);
0340 
0341     if (enable)
0342         val |= SSI_FPS_FSPOL;
0343     else
0344         val &= ~SSI_FPS_FSPOL;
0345 
0346     writel(val, priv->base + SSI_FPS);
0347 }
0348 
0349 static bool uniphier_spi_can_dma(struct spi_master *master,
0350                  struct spi_device *spi,
0351                  struct spi_transfer *t)
0352 {
0353     struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
0354     unsigned int bpw = bytes_per_word(priv->bits_per_word);
0355 
0356     if ((!master->dma_tx && !master->dma_rx)
0357         || (!master->dma_tx && t->tx_buf)
0358         || (!master->dma_rx && t->rx_buf))
0359         return false;
0360 
0361     return DIV_ROUND_UP(t->len, bpw) > SSI_FIFO_DEPTH;
0362 }
0363 
0364 static void uniphier_spi_dma_rxcb(void *data)
0365 {
0366     struct spi_master *master = data;
0367     struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
0368     int state = atomic_fetch_andnot(SSI_DMA_RX_BUSY, &priv->dma_busy);
0369 
0370     uniphier_spi_irq_disable(priv, SSI_IE_RXRE);
0371 
0372     if (!(state & SSI_DMA_TX_BUSY))
0373         spi_finalize_current_transfer(master);
0374 }
0375 
0376 static void uniphier_spi_dma_txcb(void *data)
0377 {
0378     struct spi_master *master = data;
0379     struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
0380     int state = atomic_fetch_andnot(SSI_DMA_TX_BUSY, &priv->dma_busy);
0381 
0382     uniphier_spi_irq_disable(priv, SSI_IE_TXRE);
0383 
0384     if (!(state & SSI_DMA_RX_BUSY))
0385         spi_finalize_current_transfer(master);
0386 }
0387 
0388 static int uniphier_spi_transfer_one_dma(struct spi_master *master,
0389                      struct spi_device *spi,
0390                      struct spi_transfer *t)
0391 {
0392     struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
0393     struct dma_async_tx_descriptor *rxdesc = NULL, *txdesc = NULL;
0394     int buswidth;
0395 
0396     atomic_set(&priv->dma_busy, 0);
0397 
0398     uniphier_spi_set_fifo_threshold(priv, SSI_FIFO_BURST_NUM);
0399 
0400     if (priv->bits_per_word <= 8)
0401         buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
0402     else if (priv->bits_per_word <= 16)
0403         buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
0404     else
0405         buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
0406 
0407     if (priv->rx_buf) {
0408         struct dma_slave_config rxconf = {
0409             .direction = DMA_DEV_TO_MEM,
0410             .src_addr = priv->base_dma_addr + SSI_RXDR,
0411             .src_addr_width = buswidth,
0412             .src_maxburst = SSI_FIFO_BURST_NUM,
0413         };
0414 
0415         dmaengine_slave_config(master->dma_rx, &rxconf);
0416 
0417         rxdesc = dmaengine_prep_slave_sg(
0418             master->dma_rx,
0419             t->rx_sg.sgl, t->rx_sg.nents,
0420             DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
0421         if (!rxdesc)
0422             goto out_err_prep;
0423 
0424         rxdesc->callback = uniphier_spi_dma_rxcb;
0425         rxdesc->callback_param = master;
0426 
0427         uniphier_spi_irq_enable(priv, SSI_IE_RXRE);
0428         atomic_or(SSI_DMA_RX_BUSY, &priv->dma_busy);
0429 
0430         dmaengine_submit(rxdesc);
0431         dma_async_issue_pending(master->dma_rx);
0432     }
0433 
0434     if (priv->tx_buf) {
0435         struct dma_slave_config txconf = {
0436             .direction = DMA_MEM_TO_DEV,
0437             .dst_addr = priv->base_dma_addr + SSI_TXDR,
0438             .dst_addr_width = buswidth,
0439             .dst_maxburst = SSI_FIFO_BURST_NUM,
0440         };
0441 
0442         dmaengine_slave_config(master->dma_tx, &txconf);
0443 
0444         txdesc = dmaengine_prep_slave_sg(
0445             master->dma_tx,
0446             t->tx_sg.sgl, t->tx_sg.nents,
0447             DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
0448         if (!txdesc)
0449             goto out_err_prep;
0450 
0451         txdesc->callback = uniphier_spi_dma_txcb;
0452         txdesc->callback_param = master;
0453 
0454         uniphier_spi_irq_enable(priv, SSI_IE_TXRE);
0455         atomic_or(SSI_DMA_TX_BUSY, &priv->dma_busy);
0456 
0457         dmaengine_submit(txdesc);
0458         dma_async_issue_pending(master->dma_tx);
0459     }
0460 
0461     /* signal that we need to wait for completion */
0462     return (priv->tx_buf || priv->rx_buf);
0463 
0464 out_err_prep:
0465     if (rxdesc)
0466         dmaengine_terminate_sync(master->dma_rx);
0467 
0468     return -EINVAL;
0469 }
0470 
0471 static int uniphier_spi_transfer_one_irq(struct spi_master *master,
0472                      struct spi_device *spi,
0473                      struct spi_transfer *t)
0474 {
0475     struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
0476     struct device *dev = master->dev.parent;
0477     unsigned long time_left;
0478 
0479     reinit_completion(&priv->xfer_done);
0480 
0481     uniphier_spi_fill_tx_fifo(priv);
0482 
0483     uniphier_spi_irq_enable(priv, SSI_IE_RCIE | SSI_IE_RORIE);
0484 
0485     time_left = wait_for_completion_timeout(&priv->xfer_done,
0486                     msecs_to_jiffies(SSI_TIMEOUT_MS));
0487 
0488     uniphier_spi_irq_disable(priv, SSI_IE_RCIE | SSI_IE_RORIE);
0489 
0490     if (!time_left) {
0491         dev_err(dev, "transfer timeout.\n");
0492         return -ETIMEDOUT;
0493     }
0494 
0495     return priv->error;
0496 }
0497 
0498 static int uniphier_spi_transfer_one_poll(struct spi_master *master,
0499                       struct spi_device *spi,
0500                       struct spi_transfer *t)
0501 {
0502     struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
0503     int loop = SSI_POLL_TIMEOUT_US * 10;
0504 
0505     while (priv->tx_bytes) {
0506         uniphier_spi_fill_tx_fifo(priv);
0507 
0508         while ((priv->rx_bytes - priv->tx_bytes) > 0) {
0509             while (!(readl(priv->base + SSI_SR) & SSI_SR_RNE)
0510                                 && loop--)
0511                 ndelay(100);
0512 
0513             if (loop == -1)
0514                 goto irq_transfer;
0515 
0516             uniphier_spi_recv(priv);
0517         }
0518     }
0519 
0520     return 0;
0521 
0522 irq_transfer:
0523     return uniphier_spi_transfer_one_irq(master, spi, t);
0524 }
0525 
0526 static int uniphier_spi_transfer_one(struct spi_master *master,
0527                      struct spi_device *spi,
0528                      struct spi_transfer *t)
0529 {
0530     struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
0531     unsigned long threshold;
0532     bool use_dma;
0533 
0534     /* Terminate and return success for 0 byte length transfer */
0535     if (!t->len)
0536         return 0;
0537 
0538     uniphier_spi_setup_transfer(spi, t);
0539 
0540     use_dma = master->can_dma ? master->can_dma(master, spi, t) : false;
0541     if (use_dma)
0542         return uniphier_spi_transfer_one_dma(master, spi, t);
0543 
0544     /*
0545      * If the transfer operation will take longer than
0546      * SSI_POLL_TIMEOUT_US, it should use irq.
0547      */
0548     threshold = DIV_ROUND_UP(SSI_POLL_TIMEOUT_US * priv->speed_hz,
0549                     USEC_PER_SEC * BITS_PER_BYTE);
0550     if (t->len > threshold)
0551         return uniphier_spi_transfer_one_irq(master, spi, t);
0552     else
0553         return uniphier_spi_transfer_one_poll(master, spi, t);
0554 }
0555 
0556 static int uniphier_spi_prepare_transfer_hardware(struct spi_master *master)
0557 {
0558     struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
0559 
0560     writel(SSI_CTL_EN, priv->base + SSI_CTL);
0561 
0562     return 0;
0563 }
0564 
0565 static int uniphier_spi_unprepare_transfer_hardware(struct spi_master *master)
0566 {
0567     struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
0568 
0569     writel(0, priv->base + SSI_CTL);
0570 
0571     return 0;
0572 }
0573 
0574 static void uniphier_spi_handle_err(struct spi_master *master,
0575                     struct spi_message *msg)
0576 {
0577     struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
0578     u32 val;
0579 
0580     /* stop running spi transfer */
0581     writel(0, priv->base + SSI_CTL);
0582 
0583     /* reset FIFOs */
0584     val = SSI_FC_TXFFL | SSI_FC_RXFFL;
0585     writel(val, priv->base + SSI_FC);
0586 
0587     uniphier_spi_irq_disable(priv, SSI_IE_ALL_MASK);
0588 
0589     if (atomic_read(&priv->dma_busy) & SSI_DMA_TX_BUSY) {
0590         dmaengine_terminate_async(master->dma_tx);
0591         atomic_andnot(SSI_DMA_TX_BUSY, &priv->dma_busy);
0592     }
0593 
0594     if (atomic_read(&priv->dma_busy) & SSI_DMA_RX_BUSY) {
0595         dmaengine_terminate_async(master->dma_rx);
0596         atomic_andnot(SSI_DMA_RX_BUSY, &priv->dma_busy);
0597     }
0598 }
0599 
0600 static irqreturn_t uniphier_spi_handler(int irq, void *dev_id)
0601 {
0602     struct uniphier_spi_priv *priv = dev_id;
0603     u32 val, stat;
0604 
0605     stat = readl(priv->base + SSI_IS);
0606     val = SSI_IC_TCIC | SSI_IC_RCIC | SSI_IC_RORIC;
0607     writel(val, priv->base + SSI_IC);
0608 
0609     /* rx fifo overrun */
0610     if (stat & SSI_IS_RORID) {
0611         priv->error = -EIO;
0612         goto done;
0613     }
0614 
0615     /* rx complete */
0616     if ((stat & SSI_IS_RCID) && (stat & SSI_IS_RXRS)) {
0617         while ((readl(priv->base + SSI_SR) & SSI_SR_RNE) &&
0618                 (priv->rx_bytes - priv->tx_bytes) > 0)
0619             uniphier_spi_recv(priv);
0620 
0621         if ((readl(priv->base + SSI_SR) & SSI_SR_RNE) ||
0622                 (priv->rx_bytes != priv->tx_bytes)) {
0623             priv->error = -EIO;
0624             goto done;
0625         } else if (priv->rx_bytes == 0)
0626             goto done;
0627 
0628         /* next tx transfer */
0629         uniphier_spi_fill_tx_fifo(priv);
0630 
0631         return IRQ_HANDLED;
0632     }
0633 
0634     return IRQ_NONE;
0635 
0636 done:
0637     complete(&priv->xfer_done);
0638     return IRQ_HANDLED;
0639 }
0640 
0641 static int uniphier_spi_probe(struct platform_device *pdev)
0642 {
0643     struct uniphier_spi_priv *priv;
0644     struct spi_master *master;
0645     struct resource *res;
0646     struct dma_slave_caps caps;
0647     u32 dma_tx_burst = 0, dma_rx_burst = 0;
0648     unsigned long clk_rate;
0649     int irq;
0650     int ret;
0651 
0652     master = spi_alloc_master(&pdev->dev, sizeof(*priv));
0653     if (!master)
0654         return -ENOMEM;
0655 
0656     platform_set_drvdata(pdev, master);
0657 
0658     priv = spi_master_get_devdata(master);
0659     priv->master = master;
0660     priv->is_save_param = false;
0661 
0662     priv->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
0663     if (IS_ERR(priv->base)) {
0664         ret = PTR_ERR(priv->base);
0665         goto out_master_put;
0666     }
0667     priv->base_dma_addr = res->start;
0668 
0669     priv->clk = devm_clk_get(&pdev->dev, NULL);
0670     if (IS_ERR(priv->clk)) {
0671         dev_err(&pdev->dev, "failed to get clock\n");
0672         ret = PTR_ERR(priv->clk);
0673         goto out_master_put;
0674     }
0675 
0676     ret = clk_prepare_enable(priv->clk);
0677     if (ret)
0678         goto out_master_put;
0679 
0680     irq = platform_get_irq(pdev, 0);
0681     if (irq < 0) {
0682         ret = irq;
0683         goto out_disable_clk;
0684     }
0685 
0686     ret = devm_request_irq(&pdev->dev, irq, uniphier_spi_handler,
0687                    0, "uniphier-spi", priv);
0688     if (ret) {
0689         dev_err(&pdev->dev, "failed to request IRQ\n");
0690         goto out_disable_clk;
0691     }
0692 
0693     init_completion(&priv->xfer_done);
0694 
0695     clk_rate = clk_get_rate(priv->clk);
0696 
0697     master->max_speed_hz = DIV_ROUND_UP(clk_rate, SSI_MIN_CLK_DIVIDER);
0698     master->min_speed_hz = DIV_ROUND_UP(clk_rate, SSI_MAX_CLK_DIVIDER);
0699     master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
0700     master->dev.of_node = pdev->dev.of_node;
0701     master->bus_num = pdev->id;
0702     master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
0703 
0704     master->set_cs = uniphier_spi_set_cs;
0705     master->transfer_one = uniphier_spi_transfer_one;
0706     master->prepare_transfer_hardware
0707                 = uniphier_spi_prepare_transfer_hardware;
0708     master->unprepare_transfer_hardware
0709                 = uniphier_spi_unprepare_transfer_hardware;
0710     master->handle_err = uniphier_spi_handle_err;
0711     master->can_dma = uniphier_spi_can_dma;
0712 
0713     master->num_chipselect = 1;
0714     master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
0715 
0716     master->dma_tx = dma_request_chan(&pdev->dev, "tx");
0717     if (IS_ERR_OR_NULL(master->dma_tx)) {
0718         if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) {
0719             ret = -EPROBE_DEFER;
0720             goto out_disable_clk;
0721         }
0722         master->dma_tx = NULL;
0723         dma_tx_burst = INT_MAX;
0724     } else {
0725         ret = dma_get_slave_caps(master->dma_tx, &caps);
0726         if (ret) {
0727             dev_err(&pdev->dev, "failed to get TX DMA capacities: %d\n",
0728                 ret);
0729             goto out_release_dma;
0730         }
0731         dma_tx_burst = caps.max_burst;
0732     }
0733 
0734     master->dma_rx = dma_request_chan(&pdev->dev, "rx");
0735     if (IS_ERR_OR_NULL(master->dma_rx)) {
0736         if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) {
0737             ret = -EPROBE_DEFER;
0738             goto out_release_dma;
0739         }
0740         master->dma_rx = NULL;
0741         dma_rx_burst = INT_MAX;
0742     } else {
0743         ret = dma_get_slave_caps(master->dma_rx, &caps);
0744         if (ret) {
0745             dev_err(&pdev->dev, "failed to get RX DMA capacities: %d\n",
0746                 ret);
0747             goto out_release_dma;
0748         }
0749         dma_rx_burst = caps.max_burst;
0750     }
0751 
0752     master->max_dma_len = min(dma_tx_burst, dma_rx_burst);
0753 
0754     ret = devm_spi_register_master(&pdev->dev, master);
0755     if (ret)
0756         goto out_release_dma;
0757 
0758     return 0;
0759 
0760 out_release_dma:
0761     if (!IS_ERR_OR_NULL(master->dma_rx)) {
0762         dma_release_channel(master->dma_rx);
0763         master->dma_rx = NULL;
0764     }
0765     if (!IS_ERR_OR_NULL(master->dma_tx)) {
0766         dma_release_channel(master->dma_tx);
0767         master->dma_tx = NULL;
0768     }
0769 
0770 out_disable_clk:
0771     clk_disable_unprepare(priv->clk);
0772 
0773 out_master_put:
0774     spi_master_put(master);
0775     return ret;
0776 }
0777 
0778 static int uniphier_spi_remove(struct platform_device *pdev)
0779 {
0780     struct spi_master *master = platform_get_drvdata(pdev);
0781     struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
0782 
0783     if (master->dma_tx)
0784         dma_release_channel(master->dma_tx);
0785     if (master->dma_rx)
0786         dma_release_channel(master->dma_rx);
0787 
0788     clk_disable_unprepare(priv->clk);
0789 
0790     return 0;
0791 }
0792 
0793 static const struct of_device_id uniphier_spi_match[] = {
0794     { .compatible = "socionext,uniphier-scssi" },
0795     { /* sentinel */ }
0796 };
0797 MODULE_DEVICE_TABLE(of, uniphier_spi_match);
0798 
0799 static struct platform_driver uniphier_spi_driver = {
0800     .probe = uniphier_spi_probe,
0801     .remove = uniphier_spi_remove,
0802     .driver = {
0803         .name = "uniphier-spi",
0804         .of_match_table = uniphier_spi_match,
0805     },
0806 };
0807 module_platform_driver(uniphier_spi_driver);
0808 
0809 MODULE_AUTHOR("Kunihiko Hayashi <hayashi.kunihiko@socionext.com>");
0810 MODULE_AUTHOR("Keiji Hayashibara <hayashibara.keiji@socionext.com>");
0811 MODULE_DESCRIPTION("Socionext UniPhier SPI controller driver");
0812 MODULE_LICENSE("GPL v2");