Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * SPI bus driver for the Topcliff PCH used by Intel SoCs
0004  *
0005  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
0006  */
0007 
0008 #include <linux/delay.h>
0009 #include <linux/pci.h>
0010 #include <linux/wait.h>
0011 #include <linux/spi/spi.h>
0012 #include <linux/interrupt.h>
0013 #include <linux/sched.h>
0014 #include <linux/spi/spidev.h>
0015 #include <linux/module.h>
0016 #include <linux/device.h>
0017 #include <linux/platform_device.h>
0018 
0019 #include <linux/dmaengine.h>
0020 #include <linux/pch_dma.h>
0021 
0022 /* Register offsets */
0023 #define PCH_SPCR        0x00    /* SPI control register */
0024 #define PCH_SPBRR       0x04    /* SPI baud rate register */
0025 #define PCH_SPSR        0x08    /* SPI status register */
0026 #define PCH_SPDWR       0x0C    /* SPI write data register */
0027 #define PCH_SPDRR       0x10    /* SPI read data register */
0028 #define PCH_SSNXCR      0x18    /* SSN Expand Control Register */
0029 #define PCH_SRST        0x1C    /* SPI reset register */
0030 #define PCH_ADDRESS_SIZE    0x20
0031 
0032 #define PCH_SPSR_TFD        0x000007C0
0033 #define PCH_SPSR_RFD        0x0000F800
0034 
0035 #define PCH_READABLE(x)     (((x) & PCH_SPSR_RFD)>>11)
0036 #define PCH_WRITABLE(x)     (((x) & PCH_SPSR_TFD)>>6)
0037 
0038 #define PCH_RX_THOLD        7
0039 #define PCH_RX_THOLD_MAX    15
0040 
0041 #define PCH_TX_THOLD        2
0042 
0043 #define PCH_MAX_BAUDRATE    5000000
0044 #define PCH_MAX_FIFO_DEPTH  16
0045 
0046 #define STATUS_RUNNING      1
0047 #define STATUS_EXITING      2
0048 #define PCH_SLEEP_TIME      10
0049 
0050 #define SSN_LOW         0x02U
0051 #define SSN_HIGH        0x03U
0052 #define SSN_NO_CONTROL      0x00U
0053 #define PCH_MAX_CS      0xFF
0054 #define PCI_DEVICE_ID_GE_SPI    0x8816
0055 
0056 #define SPCR_SPE_BIT        (1 << 0)
0057 #define SPCR_MSTR_BIT       (1 << 1)
0058 #define SPCR_LSBF_BIT       (1 << 4)
0059 #define SPCR_CPHA_BIT       (1 << 5)
0060 #define SPCR_CPOL_BIT       (1 << 6)
0061 #define SPCR_TFIE_BIT       (1 << 8)
0062 #define SPCR_RFIE_BIT       (1 << 9)
0063 #define SPCR_FIE_BIT        (1 << 10)
0064 #define SPCR_ORIE_BIT       (1 << 11)
0065 #define SPCR_MDFIE_BIT      (1 << 12)
0066 #define SPCR_FICLR_BIT      (1 << 24)
0067 #define SPSR_TFI_BIT        (1 << 0)
0068 #define SPSR_RFI_BIT        (1 << 1)
0069 #define SPSR_FI_BIT     (1 << 2)
0070 #define SPSR_ORF_BIT        (1 << 3)
0071 #define SPBRR_SIZE_BIT      (1 << 10)
0072 
0073 #define PCH_ALL         (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
0074                 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
0075 
0076 #define SPCR_RFIC_FIELD     20
0077 #define SPCR_TFIC_FIELD     16
0078 
0079 #define MASK_SPBRR_SPBR_BITS    ((1 << 10) - 1)
0080 #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
0081 #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
0082 
0083 #define PCH_CLOCK_HZ        50000000
0084 #define PCH_MAX_SPBR        1023
0085 
0086 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
0087 #define PCI_DEVICE_ID_ML7213_SPI    0x802c
0088 #define PCI_DEVICE_ID_ML7223_SPI    0x800F
0089 #define PCI_DEVICE_ID_ML7831_SPI    0x8816
0090 
0091 /*
0092  * Set the number of SPI instance max
0093  * Intel EG20T PCH :        1ch
0094  * LAPIS Semiconductor ML7213 IOH : 2ch
0095  * LAPIS Semiconductor ML7223 IOH : 1ch
0096  * LAPIS Semiconductor ML7831 IOH : 1ch
0097 */
0098 #define PCH_SPI_MAX_DEV         2
0099 
0100 #define PCH_BUF_SIZE        4096
0101 #define PCH_DMA_TRANS_SIZE  12
0102 
0103 static int use_dma = 1;
0104 
0105 struct pch_spi_dma_ctrl {
0106     struct pci_dev      *dma_dev;
0107     struct dma_async_tx_descriptor  *desc_tx;
0108     struct dma_async_tx_descriptor  *desc_rx;
0109     struct pch_dma_slave        param_tx;
0110     struct pch_dma_slave        param_rx;
0111     struct dma_chan     *chan_tx;
0112     struct dma_chan     *chan_rx;
0113     struct scatterlist      *sg_tx_p;
0114     struct scatterlist      *sg_rx_p;
0115     struct scatterlist      sg_tx;
0116     struct scatterlist      sg_rx;
0117     int             nent;
0118     void                *tx_buf_virt;
0119     void                *rx_buf_virt;
0120     dma_addr_t          tx_buf_dma;
0121     dma_addr_t          rx_buf_dma;
0122 };
0123 /**
0124  * struct pch_spi_data - Holds the SPI channel specific details
0125  * @io_remap_addr:      The remapped PCI base address
0126  * @io_base_addr:       Base address
0127  * @master:         Pointer to the SPI master structure
0128  * @work:           Reference to work queue handler
0129  * @wait:           Wait queue for waking up upon receiving an
0130  *              interrupt.
0131  * @transfer_complete:      Status of SPI Transfer
0132  * @bcurrent_msg_processing:    Status flag for message processing
0133  * @lock:           Lock for protecting this structure
0134  * @queue:          SPI Message queue
0135  * @status:         Status of the SPI driver
0136  * @bpw_len:            Length of data to be transferred in bits per
0137  *              word
0138  * @transfer_active:        Flag showing active transfer
0139  * @tx_index:           Transmit data count; for bookkeeping during
0140  *              transfer
0141  * @rx_index:           Receive data count; for bookkeeping during
0142  *              transfer
0143  * @pkt_tx_buff:        Buffer for data to be transmitted
0144  * @pkt_rx_buff:        Buffer for received data
0145  * @n_curnt_chip:       The chip number that this SPI driver currently
0146  *              operates on
0147  * @current_chip:       Reference to the current chip that this SPI
0148  *              driver currently operates on
0149  * @current_msg:        The current message that this SPI driver is
0150  *              handling
0151  * @cur_trans:          The current transfer that this SPI driver is
0152  *              handling
0153  * @board_dat:          Reference to the SPI device data structure
0154  * @plat_dev:           platform_device structure
0155  * @ch:             SPI channel number
0156  * @dma:            Local DMA information
0157  * @use_dma:            True if DMA is to be used
0158  * @irq_reg_sts:        Status of IRQ registration
0159  * @save_total_len:     Save length while data is being transferred
0160  */
0161 struct pch_spi_data {
0162     void __iomem *io_remap_addr;
0163     unsigned long io_base_addr;
0164     struct spi_master *master;
0165     struct work_struct work;
0166     wait_queue_head_t wait;
0167     u8 transfer_complete;
0168     u8 bcurrent_msg_processing;
0169     spinlock_t lock;
0170     struct list_head queue;
0171     u8 status;
0172     u32 bpw_len;
0173     u8 transfer_active;
0174     u32 tx_index;
0175     u32 rx_index;
0176     u16 *pkt_tx_buff;
0177     u16 *pkt_rx_buff;
0178     u8 n_curnt_chip;
0179     struct spi_device *current_chip;
0180     struct spi_message *current_msg;
0181     struct spi_transfer *cur_trans;
0182     struct pch_spi_board_data *board_dat;
0183     struct platform_device  *plat_dev;
0184     int ch;
0185     struct pch_spi_dma_ctrl dma;
0186     int use_dma;
0187     u8 irq_reg_sts;
0188     int save_total_len;
0189 };
0190 
0191 /**
0192  * struct pch_spi_board_data - Holds the SPI device specific details
0193  * @pdev:       Pointer to the PCI device
0194  * @suspend_sts:    Status of suspend
0195  * @num:        The number of SPI device instance
0196  */
0197 struct pch_spi_board_data {
0198     struct pci_dev *pdev;
0199     u8 suspend_sts;
0200     int num;
0201 };
0202 
0203 struct pch_pd_dev_save {
0204     int num;
0205     struct platform_device *pd_save[PCH_SPI_MAX_DEV];
0206     struct pch_spi_board_data *board_dat;
0207 };
0208 
0209 static const struct pci_device_id pch_spi_pcidev_id[] = {
0210     { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
0211     { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
0212     { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
0213     { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
0214     { }
0215 };
0216 
0217 /**
0218  * pch_spi_writereg() - Performs  register writes
0219  * @master: Pointer to struct spi_master.
0220  * @idx:    Register offset.
0221  * @val:    Value to be written to register.
0222  */
0223 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
0224 {
0225     struct pch_spi_data *data = spi_master_get_devdata(master);
0226     iowrite32(val, (data->io_remap_addr + idx));
0227 }
0228 
0229 /**
0230  * pch_spi_readreg() - Performs register reads
0231  * @master: Pointer to struct spi_master.
0232  * @idx:    Register offset.
0233  */
0234 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
0235 {
0236     struct pch_spi_data *data = spi_master_get_devdata(master);
0237     return ioread32(data->io_remap_addr + idx);
0238 }
0239 
0240 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
0241                       u32 set, u32 clr)
0242 {
0243     u32 tmp = pch_spi_readreg(master, idx);
0244     tmp = (tmp & ~clr) | set;
0245     pch_spi_writereg(master, idx, tmp);
0246 }
0247 
0248 static void pch_spi_set_master_mode(struct spi_master *master)
0249 {
0250     pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
0251 }
0252 
0253 /**
0254  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
0255  * @master: Pointer to struct spi_master.
0256  */
0257 static void pch_spi_clear_fifo(struct spi_master *master)
0258 {
0259     pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
0260     pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
0261 }
0262 
0263 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
0264                 void __iomem *io_remap_addr)
0265 {
0266     u32 n_read, tx_index, rx_index, bpw_len;
0267     u16 *pkt_rx_buffer, *pkt_tx_buff;
0268     int read_cnt;
0269     u32 reg_spcr_val;
0270     void __iomem *spsr;
0271     void __iomem *spdrr;
0272     void __iomem *spdwr;
0273 
0274     spsr = io_remap_addr + PCH_SPSR;
0275     iowrite32(reg_spsr_val, spsr);
0276 
0277     if (data->transfer_active) {
0278         rx_index = data->rx_index;
0279         tx_index = data->tx_index;
0280         bpw_len = data->bpw_len;
0281         pkt_rx_buffer = data->pkt_rx_buff;
0282         pkt_tx_buff = data->pkt_tx_buff;
0283 
0284         spdrr = io_remap_addr + PCH_SPDRR;
0285         spdwr = io_remap_addr + PCH_SPDWR;
0286 
0287         n_read = PCH_READABLE(reg_spsr_val);
0288 
0289         for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
0290             pkt_rx_buffer[rx_index++] = ioread32(spdrr);
0291             if (tx_index < bpw_len)
0292                 iowrite32(pkt_tx_buff[tx_index++], spdwr);
0293         }
0294 
0295         /* disable RFI if not needed */
0296         if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
0297             reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
0298             reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
0299 
0300             /* reset rx threshold */
0301             reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
0302             reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
0303 
0304             iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
0305         }
0306 
0307         /* update counts */
0308         data->tx_index = tx_index;
0309         data->rx_index = rx_index;
0310 
0311         /* if transfer complete interrupt */
0312         if (reg_spsr_val & SPSR_FI_BIT) {
0313             if ((tx_index == bpw_len) && (rx_index == tx_index)) {
0314                 /* disable interrupts */
0315                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
0316                            PCH_ALL);
0317 
0318                 /* transfer is completed;
0319                    inform pch_spi_process_messages */
0320                 data->transfer_complete = true;
0321                 data->transfer_active = false;
0322                 wake_up(&data->wait);
0323             } else {
0324                 dev_vdbg(&data->master->dev,
0325                     "%s : Transfer is not completed",
0326                     __func__);
0327             }
0328         }
0329     }
0330 }
0331 
0332 /**
0333  * pch_spi_handler() - Interrupt handler
0334  * @irq:    The interrupt number.
0335  * @dev_id: Pointer to struct pch_spi_board_data.
0336  */
0337 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
0338 {
0339     u32 reg_spsr_val;
0340     void __iomem *spsr;
0341     void __iomem *io_remap_addr;
0342     irqreturn_t ret = IRQ_NONE;
0343     struct pch_spi_data *data = dev_id;
0344     struct pch_spi_board_data *board_dat = data->board_dat;
0345 
0346     if (board_dat->suspend_sts) {
0347         dev_dbg(&board_dat->pdev->dev,
0348             "%s returning due to suspend\n", __func__);
0349         return IRQ_NONE;
0350     }
0351 
0352     io_remap_addr = data->io_remap_addr;
0353     spsr = io_remap_addr + PCH_SPSR;
0354 
0355     reg_spsr_val = ioread32(spsr);
0356 
0357     if (reg_spsr_val & SPSR_ORF_BIT) {
0358         dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
0359         if (data->current_msg->complete) {
0360             data->transfer_complete = true;
0361             data->current_msg->status = -EIO;
0362             data->current_msg->complete(data->current_msg->context);
0363             data->bcurrent_msg_processing = false;
0364             data->current_msg = NULL;
0365             data->cur_trans = NULL;
0366         }
0367     }
0368 
0369     if (data->use_dma)
0370         return IRQ_NONE;
0371 
0372     /* Check if the interrupt is for SPI device */
0373     if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
0374         pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
0375         ret = IRQ_HANDLED;
0376     }
0377 
0378     dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
0379         __func__, ret);
0380 
0381     return ret;
0382 }
0383 
0384 /**
0385  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
0386  * @master: Pointer to struct spi_master.
0387  * @speed_hz:   Baud rate.
0388  */
0389 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
0390 {
0391     u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
0392 
0393     /* if baud rate is less than we can support limit it */
0394     if (n_spbr > PCH_MAX_SPBR)
0395         n_spbr = PCH_MAX_SPBR;
0396 
0397     pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
0398 }
0399 
0400 /**
0401  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
0402  * @master:     Pointer to struct spi_master.
0403  * @bits_per_word:  Bits per word for SPI transfer.
0404  */
0405 static void pch_spi_set_bits_per_word(struct spi_master *master,
0406                       u8 bits_per_word)
0407 {
0408     if (bits_per_word == 8)
0409         pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
0410     else
0411         pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
0412 }
0413 
0414 /**
0415  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
0416  * @spi:    Pointer to struct spi_device.
0417  */
0418 static void pch_spi_setup_transfer(struct spi_device *spi)
0419 {
0420     u32 flags = 0;
0421 
0422     dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
0423         __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
0424         spi->max_speed_hz);
0425     pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
0426 
0427     /* set bits per word */
0428     pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
0429 
0430     if (!(spi->mode & SPI_LSB_FIRST))
0431         flags |= SPCR_LSBF_BIT;
0432     if (spi->mode & SPI_CPOL)
0433         flags |= SPCR_CPOL_BIT;
0434     if (spi->mode & SPI_CPHA)
0435         flags |= SPCR_CPHA_BIT;
0436     pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
0437                (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
0438 
0439     /* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
0440     pch_spi_clear_fifo(spi->master);
0441 }
0442 
0443 /**
0444  * pch_spi_reset() - Clears SPI registers
0445  * @master: Pointer to struct spi_master.
0446  */
0447 static void pch_spi_reset(struct spi_master *master)
0448 {
0449     /* write 1 to reset SPI */
0450     pch_spi_writereg(master, PCH_SRST, 0x1);
0451 
0452     /* clear reset */
0453     pch_spi_writereg(master, PCH_SRST, 0x0);
0454 }
0455 
0456 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
0457 {
0458     struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
0459     int retval;
0460     unsigned long flags;
0461 
0462     /* We won't process any messages if we have been asked to terminate */
0463     if (data->status == STATUS_EXITING) {
0464         dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
0465         retval = -ESHUTDOWN;
0466         goto err_out;
0467     }
0468 
0469     /* If suspended ,return -EINVAL */
0470     if (data->board_dat->suspend_sts) {
0471         dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
0472         retval = -EINVAL;
0473         goto err_out;
0474     }
0475 
0476     /* set status of message */
0477     pmsg->actual_length = 0;
0478     dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
0479 
0480     pmsg->status = -EINPROGRESS;
0481     spin_lock_irqsave(&data->lock, flags);
0482     /* add message to queue */
0483     list_add_tail(&pmsg->queue, &data->queue);
0484     spin_unlock_irqrestore(&data->lock, flags);
0485 
0486     dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
0487 
0488     schedule_work(&data->work);
0489     dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
0490 
0491     retval = 0;
0492 
0493 err_out:
0494     dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
0495     return retval;
0496 }
0497 
0498 static inline void pch_spi_select_chip(struct pch_spi_data *data,
0499                        struct spi_device *pspi)
0500 {
0501     if (data->current_chip != NULL) {
0502         if (pspi->chip_select != data->n_curnt_chip) {
0503             dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
0504             data->current_chip = NULL;
0505         }
0506     }
0507 
0508     data->current_chip = pspi;
0509 
0510     data->n_curnt_chip = data->current_chip->chip_select;
0511 
0512     dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
0513     pch_spi_setup_transfer(pspi);
0514 }
0515 
0516 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
0517 {
0518     int size;
0519     u32 n_writes;
0520     int j;
0521     struct spi_message *pmsg, *tmp;
0522     const u8 *tx_buf;
0523     const u16 *tx_sbuf;
0524 
0525     /* set baud rate if needed */
0526     if (data->cur_trans->speed_hz) {
0527         dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
0528         pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
0529     }
0530 
0531     /* set bits per word if needed */
0532     if (data->cur_trans->bits_per_word &&
0533         (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
0534         dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
0535         pch_spi_set_bits_per_word(data->master,
0536                       data->cur_trans->bits_per_word);
0537         *bpw = data->cur_trans->bits_per_word;
0538     } else {
0539         *bpw = data->current_msg->spi->bits_per_word;
0540     }
0541 
0542     /* reset Tx/Rx index */
0543     data->tx_index = 0;
0544     data->rx_index = 0;
0545 
0546     data->bpw_len = data->cur_trans->len / (*bpw / 8);
0547 
0548     /* find alloc size */
0549     size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
0550 
0551     /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
0552     data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
0553     if (data->pkt_tx_buff != NULL) {
0554         data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
0555         if (!data->pkt_rx_buff) {
0556             kfree(data->pkt_tx_buff);
0557             data->pkt_tx_buff = NULL;
0558         }
0559     }
0560 
0561     if (!data->pkt_rx_buff) {
0562         /* flush queue and set status of all transfers to -ENOMEM */
0563         list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
0564             pmsg->status = -ENOMEM;
0565 
0566             if (pmsg->complete)
0567                 pmsg->complete(pmsg->context);
0568 
0569             /* delete from queue */
0570             list_del_init(&pmsg->queue);
0571         }
0572         return;
0573     }
0574 
0575     /* copy Tx Data */
0576     if (data->cur_trans->tx_buf != NULL) {
0577         if (*bpw == 8) {
0578             tx_buf = data->cur_trans->tx_buf;
0579             for (j = 0; j < data->bpw_len; j++)
0580                 data->pkt_tx_buff[j] = *tx_buf++;
0581         } else {
0582             tx_sbuf = data->cur_trans->tx_buf;
0583             for (j = 0; j < data->bpw_len; j++)
0584                 data->pkt_tx_buff[j] = *tx_sbuf++;
0585         }
0586     }
0587 
0588     /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
0589     n_writes = data->bpw_len;
0590     if (n_writes > PCH_MAX_FIFO_DEPTH)
0591         n_writes = PCH_MAX_FIFO_DEPTH;
0592 
0593     dev_dbg(&data->master->dev,
0594         "\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
0595         __func__);
0596     pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
0597 
0598     for (j = 0; j < n_writes; j++)
0599         pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
0600 
0601     /* update tx_index */
0602     data->tx_index = j;
0603 
0604     /* reset transfer complete flag */
0605     data->transfer_complete = false;
0606     data->transfer_active = true;
0607 }
0608 
0609 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
0610 {
0611     struct spi_message *pmsg, *tmp;
0612     dev_dbg(&data->master->dev, "%s called\n", __func__);
0613     /* Invoke complete callback
0614      * [To the spi core..indicating end of transfer] */
0615     data->current_msg->status = 0;
0616 
0617     if (data->current_msg->complete) {
0618         dev_dbg(&data->master->dev,
0619             "%s:Invoking callback of SPI core\n", __func__);
0620         data->current_msg->complete(data->current_msg->context);
0621     }
0622 
0623     /* update status in global variable */
0624     data->bcurrent_msg_processing = false;
0625 
0626     dev_dbg(&data->master->dev,
0627         "%s:data->bcurrent_msg_processing = false\n", __func__);
0628 
0629     data->current_msg = NULL;
0630     data->cur_trans = NULL;
0631 
0632     /* check if we have items in list and not suspending
0633      * return 1 if list empty */
0634     if ((list_empty(&data->queue) == 0) &&
0635         (!data->board_dat->suspend_sts) &&
0636         (data->status != STATUS_EXITING)) {
0637         /* We have some more work to do (either there is more tranint
0638          * bpw;sfer requests in the current message or there are
0639          *more messages)
0640          */
0641         dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
0642         schedule_work(&data->work);
0643     } else if (data->board_dat->suspend_sts ||
0644            data->status == STATUS_EXITING) {
0645         dev_dbg(&data->master->dev,
0646             "%s suspend/remove initiated, flushing queue\n",
0647             __func__);
0648         list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
0649             pmsg->status = -EIO;
0650 
0651             if (pmsg->complete)
0652                 pmsg->complete(pmsg->context);
0653 
0654             /* delete from queue */
0655             list_del_init(&pmsg->queue);
0656         }
0657     }
0658 }
0659 
0660 static void pch_spi_set_ir(struct pch_spi_data *data)
0661 {
0662     /* enable interrupts, set threshold, enable SPI */
0663     if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
0664         /* set receive threshold to PCH_RX_THOLD */
0665         pch_spi_setclr_reg(data->master, PCH_SPCR,
0666                    PCH_RX_THOLD << SPCR_RFIC_FIELD |
0667                    SPCR_FIE_BIT | SPCR_RFIE_BIT |
0668                    SPCR_ORIE_BIT | SPCR_SPE_BIT,
0669                    MASK_RFIC_SPCR_BITS | PCH_ALL);
0670     else
0671         /* set receive threshold to maximum */
0672         pch_spi_setclr_reg(data->master, PCH_SPCR,
0673                    PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
0674                    SPCR_FIE_BIT | SPCR_ORIE_BIT |
0675                    SPCR_SPE_BIT,
0676                    MASK_RFIC_SPCR_BITS | PCH_ALL);
0677 
0678     /* Wait until the transfer completes; go to sleep after
0679                  initiating the transfer. */
0680     dev_dbg(&data->master->dev,
0681         "%s:waiting for transfer to get over\n", __func__);
0682 
0683     wait_event_interruptible(data->wait, data->transfer_complete);
0684 
0685     /* clear all interrupts */
0686     pch_spi_writereg(data->master, PCH_SPSR,
0687              pch_spi_readreg(data->master, PCH_SPSR));
0688     /* Disable interrupts and SPI transfer */
0689     pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
0690     /* clear FIFO */
0691     pch_spi_clear_fifo(data->master);
0692 }
0693 
0694 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
0695 {
0696     int j;
0697     u8 *rx_buf;
0698     u16 *rx_sbuf;
0699 
0700     /* copy Rx Data */
0701     if (!data->cur_trans->rx_buf)
0702         return;
0703 
0704     if (bpw == 8) {
0705         rx_buf = data->cur_trans->rx_buf;
0706         for (j = 0; j < data->bpw_len; j++)
0707             *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
0708     } else {
0709         rx_sbuf = data->cur_trans->rx_buf;
0710         for (j = 0; j < data->bpw_len; j++)
0711             *rx_sbuf++ = data->pkt_rx_buff[j];
0712     }
0713 }
0714 
0715 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
0716 {
0717     int j;
0718     u8 *rx_buf;
0719     u16 *rx_sbuf;
0720     const u8 *rx_dma_buf;
0721     const u16 *rx_dma_sbuf;
0722 
0723     /* copy Rx Data */
0724     if (!data->cur_trans->rx_buf)
0725         return;
0726 
0727     if (bpw == 8) {
0728         rx_buf = data->cur_trans->rx_buf;
0729         rx_dma_buf = data->dma.rx_buf_virt;
0730         for (j = 0; j < data->bpw_len; j++)
0731             *rx_buf++ = *rx_dma_buf++ & 0xFF;
0732         data->cur_trans->rx_buf = rx_buf;
0733     } else {
0734         rx_sbuf = data->cur_trans->rx_buf;
0735         rx_dma_sbuf = data->dma.rx_buf_virt;
0736         for (j = 0; j < data->bpw_len; j++)
0737             *rx_sbuf++ = *rx_dma_sbuf++;
0738         data->cur_trans->rx_buf = rx_sbuf;
0739     }
0740 }
0741 
0742 static int pch_spi_start_transfer(struct pch_spi_data *data)
0743 {
0744     struct pch_spi_dma_ctrl *dma;
0745     unsigned long flags;
0746     int rtn;
0747 
0748     dma = &data->dma;
0749 
0750     spin_lock_irqsave(&data->lock, flags);
0751 
0752     /* disable interrupts, SPI set enable */
0753     pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
0754 
0755     spin_unlock_irqrestore(&data->lock, flags);
0756 
0757     /* Wait until the transfer completes; go to sleep after
0758                  initiating the transfer. */
0759     dev_dbg(&data->master->dev,
0760         "%s:waiting for transfer to get over\n", __func__);
0761     rtn = wait_event_interruptible_timeout(data->wait,
0762                            data->transfer_complete,
0763                            msecs_to_jiffies(2 * HZ));
0764     if (!rtn)
0765         dev_err(&data->master->dev,
0766             "%s wait-event timeout\n", __func__);
0767 
0768     dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
0769                 DMA_FROM_DEVICE);
0770 
0771     dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
0772                 DMA_FROM_DEVICE);
0773     memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
0774 
0775     async_tx_ack(dma->desc_rx);
0776     async_tx_ack(dma->desc_tx);
0777     kfree(dma->sg_tx_p);
0778     kfree(dma->sg_rx_p);
0779 
0780     spin_lock_irqsave(&data->lock, flags);
0781 
0782     /* clear fifo threshold, disable interrupts, disable SPI transfer */
0783     pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
0784                MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
0785                SPCR_SPE_BIT);
0786     /* clear all interrupts */
0787     pch_spi_writereg(data->master, PCH_SPSR,
0788              pch_spi_readreg(data->master, PCH_SPSR));
0789     /* clear FIFO */
0790     pch_spi_clear_fifo(data->master);
0791 
0792     spin_unlock_irqrestore(&data->lock, flags);
0793 
0794     return rtn;
0795 }
0796 
0797 static void pch_dma_rx_complete(void *arg)
0798 {
0799     struct pch_spi_data *data = arg;
0800 
0801     /* transfer is completed;inform pch_spi_process_messages_dma */
0802     data->transfer_complete = true;
0803     wake_up_interruptible(&data->wait);
0804 }
0805 
0806 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
0807 {
0808     struct pch_dma_slave *param = slave;
0809 
0810     if ((chan->chan_id == param->chan_id) &&
0811         (param->dma_dev == chan->device->dev)) {
0812         chan->private = param;
0813         return true;
0814     } else {
0815         return false;
0816     }
0817 }
0818 
0819 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
0820 {
0821     dma_cap_mask_t mask;
0822     struct dma_chan *chan;
0823     struct pci_dev *dma_dev;
0824     struct pch_dma_slave *param;
0825     struct pch_spi_dma_ctrl *dma;
0826     unsigned int width;
0827 
0828     if (bpw == 8)
0829         width = PCH_DMA_WIDTH_1_BYTE;
0830     else
0831         width = PCH_DMA_WIDTH_2_BYTES;
0832 
0833     dma = &data->dma;
0834     dma_cap_zero(mask);
0835     dma_cap_set(DMA_SLAVE, mask);
0836 
0837     /* Get DMA's dev information */
0838     dma_dev = pci_get_slot(data->board_dat->pdev->bus,
0839             PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
0840 
0841     /* Set Tx DMA */
0842     param = &dma->param_tx;
0843     param->dma_dev = &dma_dev->dev;
0844     param->chan_id = data->ch * 2; /* Tx = 0, 2 */
0845     param->tx_reg = data->io_base_addr + PCH_SPDWR;
0846     param->width = width;
0847     chan = dma_request_channel(mask, pch_spi_filter, param);
0848     if (!chan) {
0849         dev_err(&data->master->dev,
0850             "ERROR: dma_request_channel FAILS(Tx)\n");
0851         goto out;
0852     }
0853     dma->chan_tx = chan;
0854 
0855     /* Set Rx DMA */
0856     param = &dma->param_rx;
0857     param->dma_dev = &dma_dev->dev;
0858     param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */
0859     param->rx_reg = data->io_base_addr + PCH_SPDRR;
0860     param->width = width;
0861     chan = dma_request_channel(mask, pch_spi_filter, param);
0862     if (!chan) {
0863         dev_err(&data->master->dev,
0864             "ERROR: dma_request_channel FAILS(Rx)\n");
0865         dma_release_channel(dma->chan_tx);
0866         dma->chan_tx = NULL;
0867         goto out;
0868     }
0869     dma->chan_rx = chan;
0870 
0871     dma->dma_dev = dma_dev;
0872     return;
0873 out:
0874     pci_dev_put(dma_dev);
0875     data->use_dma = 0;
0876 }
0877 
0878 static void pch_spi_release_dma(struct pch_spi_data *data)
0879 {
0880     struct pch_spi_dma_ctrl *dma;
0881 
0882     dma = &data->dma;
0883     if (dma->chan_tx) {
0884         dma_release_channel(dma->chan_tx);
0885         dma->chan_tx = NULL;
0886     }
0887     if (dma->chan_rx) {
0888         dma_release_channel(dma->chan_rx);
0889         dma->chan_rx = NULL;
0890     }
0891 
0892     pci_dev_put(dma->dma_dev);
0893 }
0894 
0895 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
0896 {
0897     const u8 *tx_buf;
0898     const u16 *tx_sbuf;
0899     u8 *tx_dma_buf;
0900     u16 *tx_dma_sbuf;
0901     struct scatterlist *sg;
0902     struct dma_async_tx_descriptor *desc_tx;
0903     struct dma_async_tx_descriptor *desc_rx;
0904     int num;
0905     int i;
0906     int size;
0907     int rem;
0908     int head;
0909     unsigned long flags;
0910     struct pch_spi_dma_ctrl *dma;
0911 
0912     dma = &data->dma;
0913 
0914     /* set baud rate if needed */
0915     if (data->cur_trans->speed_hz) {
0916         dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
0917         spin_lock_irqsave(&data->lock, flags);
0918         pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
0919         spin_unlock_irqrestore(&data->lock, flags);
0920     }
0921 
0922     /* set bits per word if needed */
0923     if (data->cur_trans->bits_per_word &&
0924         (data->current_msg->spi->bits_per_word !=
0925          data->cur_trans->bits_per_word)) {
0926         dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
0927         spin_lock_irqsave(&data->lock, flags);
0928         pch_spi_set_bits_per_word(data->master,
0929                       data->cur_trans->bits_per_word);
0930         spin_unlock_irqrestore(&data->lock, flags);
0931         *bpw = data->cur_trans->bits_per_word;
0932     } else {
0933         *bpw = data->current_msg->spi->bits_per_word;
0934     }
0935     data->bpw_len = data->cur_trans->len / (*bpw / 8);
0936 
0937     if (data->bpw_len > PCH_BUF_SIZE) {
0938         data->bpw_len = PCH_BUF_SIZE;
0939         data->cur_trans->len -= PCH_BUF_SIZE;
0940     }
0941 
0942     /* copy Tx Data */
0943     if (data->cur_trans->tx_buf != NULL) {
0944         if (*bpw == 8) {
0945             tx_buf = data->cur_trans->tx_buf;
0946             tx_dma_buf = dma->tx_buf_virt;
0947             for (i = 0; i < data->bpw_len; i++)
0948                 *tx_dma_buf++ = *tx_buf++;
0949         } else {
0950             tx_sbuf = data->cur_trans->tx_buf;
0951             tx_dma_sbuf = dma->tx_buf_virt;
0952             for (i = 0; i < data->bpw_len; i++)
0953                 *tx_dma_sbuf++ = *tx_sbuf++;
0954         }
0955     }
0956 
0957     /* Calculate Rx parameter for DMA transmitting */
0958     if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
0959         if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
0960             num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
0961             rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
0962         } else {
0963             num = data->bpw_len / PCH_DMA_TRANS_SIZE;
0964             rem = PCH_DMA_TRANS_SIZE;
0965         }
0966         size = PCH_DMA_TRANS_SIZE;
0967     } else {
0968         num = 1;
0969         size = data->bpw_len;
0970         rem = data->bpw_len;
0971     }
0972     dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
0973         __func__, num, size, rem);
0974     spin_lock_irqsave(&data->lock, flags);
0975 
0976     /* set receive fifo threshold and transmit fifo threshold */
0977     pch_spi_setclr_reg(data->master, PCH_SPCR,
0978                ((size - 1) << SPCR_RFIC_FIELD) |
0979                (PCH_TX_THOLD << SPCR_TFIC_FIELD),
0980                MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
0981 
0982     spin_unlock_irqrestore(&data->lock, flags);
0983 
0984     /* RX */
0985     dma->sg_rx_p = kmalloc_array(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
0986     if (!dma->sg_rx_p)
0987         return;
0988 
0989     sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
0990     /* offset, length setting */
0991     sg = dma->sg_rx_p;
0992     for (i = 0; i < num; i++, sg++) {
0993         if (i == (num - 2)) {
0994             sg->offset = size * i;
0995             sg->offset = sg->offset * (*bpw / 8);
0996             sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
0997                     sg->offset);
0998             sg_dma_len(sg) = rem;
0999         } else if (i == (num - 1)) {
1000             sg->offset = size * (i - 1) + rem;
1001             sg->offset = sg->offset * (*bpw / 8);
1002             sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1003                     sg->offset);
1004             sg_dma_len(sg) = size;
1005         } else {
1006             sg->offset = size * i;
1007             sg->offset = sg->offset * (*bpw / 8);
1008             sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1009                     sg->offset);
1010             sg_dma_len(sg) = size;
1011         }
1012         sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1013     }
1014     sg = dma->sg_rx_p;
1015     desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1016                     num, DMA_DEV_TO_MEM,
1017                     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1018     if (!desc_rx) {
1019         dev_err(&data->master->dev,
1020             "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1021         return;
1022     }
1023     dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1024     desc_rx->callback = pch_dma_rx_complete;
1025     desc_rx->callback_param = data;
1026     dma->nent = num;
1027     dma->desc_rx = desc_rx;
1028 
1029     /* Calculate Tx parameter for DMA transmitting */
1030     if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1031         head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1032         if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1033             num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1034             rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1035         } else {
1036             num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1037             rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1038                   PCH_DMA_TRANS_SIZE - head;
1039         }
1040         size = PCH_DMA_TRANS_SIZE;
1041     } else {
1042         num = 1;
1043         size = data->bpw_len;
1044         rem = data->bpw_len;
1045         head = 0;
1046     }
1047 
1048     dma->sg_tx_p = kmalloc_array(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1049     if (!dma->sg_tx_p)
1050         return;
1051 
1052     sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1053     /* offset, length setting */
1054     sg = dma->sg_tx_p;
1055     for (i = 0; i < num; i++, sg++) {
1056         if (i == 0) {
1057             sg->offset = 0;
1058             sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1059                     sg->offset);
1060             sg_dma_len(sg) = size + head;
1061         } else if (i == (num - 1)) {
1062             sg->offset = head + size * i;
1063             sg->offset = sg->offset * (*bpw / 8);
1064             sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1065                     sg->offset);
1066             sg_dma_len(sg) = rem;
1067         } else {
1068             sg->offset = head + size * i;
1069             sg->offset = sg->offset * (*bpw / 8);
1070             sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1071                     sg->offset);
1072             sg_dma_len(sg) = size;
1073         }
1074         sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1075     }
1076     sg = dma->sg_tx_p;
1077     desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1078                     sg, num, DMA_MEM_TO_DEV,
1079                     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1080     if (!desc_tx) {
1081         dev_err(&data->master->dev,
1082             "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1083         return;
1084     }
1085     dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1086     desc_tx->callback = NULL;
1087     desc_tx->callback_param = data;
1088     dma->nent = num;
1089     dma->desc_tx = desc_tx;
1090 
1091     dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1092 
1093     spin_lock_irqsave(&data->lock, flags);
1094     pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1095     desc_rx->tx_submit(desc_rx);
1096     desc_tx->tx_submit(desc_tx);
1097     spin_unlock_irqrestore(&data->lock, flags);
1098 
1099     /* reset transfer complete flag */
1100     data->transfer_complete = false;
1101 }
1102 
1103 static void pch_spi_process_messages(struct work_struct *pwork)
1104 {
1105     struct spi_message *pmsg, *tmp;
1106     struct pch_spi_data *data;
1107     int bpw;
1108 
1109     data = container_of(pwork, struct pch_spi_data, work);
1110     dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1111 
1112     spin_lock(&data->lock);
1113     /* check if suspend has been initiated;if yes flush queue */
1114     if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1115         dev_dbg(&data->master->dev,
1116             "%s suspend/remove initiated, flushing queue\n", __func__);
1117         list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1118             pmsg->status = -EIO;
1119 
1120             if (pmsg->complete) {
1121                 spin_unlock(&data->lock);
1122                 pmsg->complete(pmsg->context);
1123                 spin_lock(&data->lock);
1124             }
1125 
1126             /* delete from queue */
1127             list_del_init(&pmsg->queue);
1128         }
1129 
1130         spin_unlock(&data->lock);
1131         return;
1132     }
1133 
1134     data->bcurrent_msg_processing = true;
1135     dev_dbg(&data->master->dev,
1136         "%s Set data->bcurrent_msg_processing= true\n", __func__);
1137 
1138     /* Get the message from the queue and delete it from there. */
1139     data->current_msg = list_entry(data->queue.next, struct spi_message,
1140                     queue);
1141 
1142     list_del_init(&data->current_msg->queue);
1143 
1144     data->current_msg->status = 0;
1145 
1146     pch_spi_select_chip(data, data->current_msg->spi);
1147 
1148     spin_unlock(&data->lock);
1149 
1150     if (data->use_dma)
1151         pch_spi_request_dma(data,
1152                     data->current_msg->spi->bits_per_word);
1153     pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1154     do {
1155         int cnt;
1156         /* If we are already processing a message get the next
1157         transfer structure from the message otherwise retrieve
1158         the 1st transfer request from the message. */
1159         spin_lock(&data->lock);
1160         if (data->cur_trans == NULL) {
1161             data->cur_trans =
1162                 list_entry(data->current_msg->transfers.next,
1163                        struct spi_transfer, transfer_list);
1164             dev_dbg(&data->master->dev,
1165                 "%s :Getting 1st transfer message\n",
1166                 __func__);
1167         } else {
1168             data->cur_trans =
1169                 list_entry(data->cur_trans->transfer_list.next,
1170                        struct spi_transfer, transfer_list);
1171             dev_dbg(&data->master->dev,
1172                 "%s :Getting next transfer message\n",
1173                 __func__);
1174         }
1175         spin_unlock(&data->lock);
1176 
1177         if (!data->cur_trans->len)
1178             goto out;
1179         cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1180         data->save_total_len = data->cur_trans->len;
1181         if (data->use_dma) {
1182             int i;
1183             char *save_rx_buf = data->cur_trans->rx_buf;
1184 
1185             for (i = 0; i < cnt; i++) {
1186                 pch_spi_handle_dma(data, &bpw);
1187                 if (!pch_spi_start_transfer(data)) {
1188                     data->transfer_complete = true;
1189                     data->current_msg->status = -EIO;
1190                     data->current_msg->complete
1191                            (data->current_msg->context);
1192                     data->bcurrent_msg_processing = false;
1193                     data->current_msg = NULL;
1194                     data->cur_trans = NULL;
1195                     goto out;
1196                 }
1197                 pch_spi_copy_rx_data_for_dma(data, bpw);
1198             }
1199             data->cur_trans->rx_buf = save_rx_buf;
1200         } else {
1201             pch_spi_set_tx(data, &bpw);
1202             pch_spi_set_ir(data);
1203             pch_spi_copy_rx_data(data, bpw);
1204             kfree(data->pkt_rx_buff);
1205             data->pkt_rx_buff = NULL;
1206             kfree(data->pkt_tx_buff);
1207             data->pkt_tx_buff = NULL;
1208         }
1209         /* increment message count */
1210         data->cur_trans->len = data->save_total_len;
1211         data->current_msg->actual_length += data->cur_trans->len;
1212 
1213         dev_dbg(&data->master->dev,
1214             "%s:data->current_msg->actual_length=%d\n",
1215             __func__, data->current_msg->actual_length);
1216 
1217         spi_transfer_delay_exec(data->cur_trans);
1218 
1219         spin_lock(&data->lock);
1220 
1221         /* No more transfer in this message. */
1222         if ((data->cur_trans->transfer_list.next) ==
1223             &(data->current_msg->transfers)) {
1224             pch_spi_nomore_transfer(data);
1225         }
1226 
1227         spin_unlock(&data->lock);
1228 
1229     } while (data->cur_trans != NULL);
1230 
1231 out:
1232     pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1233     if (data->use_dma)
1234         pch_spi_release_dma(data);
1235 }
1236 
1237 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1238                    struct pch_spi_data *data)
1239 {
1240     dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1241 
1242     flush_work(&data->work);
1243 }
1244 
1245 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1246                  struct pch_spi_data *data)
1247 {
1248     dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1249 
1250     /* reset PCH SPI h/w */
1251     pch_spi_reset(data->master);
1252     dev_dbg(&board_dat->pdev->dev,
1253         "%s pch_spi_reset invoked successfully\n", __func__);
1254 
1255     dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1256 
1257     return 0;
1258 }
1259 
1260 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1261                  struct pch_spi_data *data)
1262 {
1263     struct pch_spi_dma_ctrl *dma;
1264 
1265     dma = &data->dma;
1266     if (dma->tx_buf_dma)
1267         dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1268                   dma->tx_buf_virt, dma->tx_buf_dma);
1269     if (dma->rx_buf_dma)
1270         dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1271                   dma->rx_buf_virt, dma->rx_buf_dma);
1272 }
1273 
1274 static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1275                   struct pch_spi_data *data)
1276 {
1277     struct pch_spi_dma_ctrl *dma;
1278     int ret;
1279 
1280     dma = &data->dma;
1281     ret = 0;
1282     /* Get Consistent memory for Tx DMA */
1283     dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1284                 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1285     if (!dma->tx_buf_virt)
1286         ret = -ENOMEM;
1287 
1288     /* Get Consistent memory for Rx DMA */
1289     dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1290                 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1291     if (!dma->rx_buf_virt)
1292         ret = -ENOMEM;
1293 
1294     return ret;
1295 }
1296 
1297 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1298 {
1299     int ret;
1300     struct spi_master *master;
1301     struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1302     struct pch_spi_data *data;
1303 
1304     dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1305 
1306     master = spi_alloc_master(&board_dat->pdev->dev,
1307                   sizeof(struct pch_spi_data));
1308     if (!master) {
1309         dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1310             plat_dev->id);
1311         return -ENOMEM;
1312     }
1313 
1314     data = spi_master_get_devdata(master);
1315     data->master = master;
1316 
1317     platform_set_drvdata(plat_dev, data);
1318 
1319     /* baseaddress + address offset) */
1320     data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1321                      PCH_ADDRESS_SIZE * plat_dev->id;
1322     data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1323     if (!data->io_remap_addr) {
1324         dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1325         ret = -ENOMEM;
1326         goto err_pci_iomap;
1327     }
1328     data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1329 
1330     dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1331         plat_dev->id, data->io_remap_addr);
1332 
1333     /* initialize members of SPI master */
1334     master->num_chipselect = PCH_MAX_CS;
1335     master->transfer = pch_spi_transfer;
1336     master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1337     master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1338     master->max_speed_hz = PCH_MAX_BAUDRATE;
1339     master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1340 
1341     data->board_dat = board_dat;
1342     data->plat_dev = plat_dev;
1343     data->n_curnt_chip = 255;
1344     data->status = STATUS_RUNNING;
1345     data->ch = plat_dev->id;
1346     data->use_dma = use_dma;
1347 
1348     INIT_LIST_HEAD(&data->queue);
1349     spin_lock_init(&data->lock);
1350     INIT_WORK(&data->work, pch_spi_process_messages);
1351     init_waitqueue_head(&data->wait);
1352 
1353     ret = pch_spi_get_resources(board_dat, data);
1354     if (ret) {
1355         dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1356         goto err_spi_get_resources;
1357     }
1358 
1359     ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1360               IRQF_SHARED, KBUILD_MODNAME, data);
1361     if (ret) {
1362         dev_err(&plat_dev->dev,
1363             "%s request_irq failed\n", __func__);
1364         goto err_request_irq;
1365     }
1366     data->irq_reg_sts = true;
1367 
1368     pch_spi_set_master_mode(master);
1369 
1370     if (use_dma) {
1371         dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1372         ret = pch_alloc_dma_buf(board_dat, data);
1373         if (ret)
1374             goto err_spi_register_master;
1375     }
1376 
1377     ret = spi_register_master(master);
1378     if (ret != 0) {
1379         dev_err(&plat_dev->dev,
1380             "%s spi_register_master FAILED\n", __func__);
1381         goto err_spi_register_master;
1382     }
1383 
1384     return 0;
1385 
1386 err_spi_register_master:
1387     pch_free_dma_buf(board_dat, data);
1388     free_irq(board_dat->pdev->irq, data);
1389 err_request_irq:
1390     pch_spi_free_resources(board_dat, data);
1391 err_spi_get_resources:
1392     pci_iounmap(board_dat->pdev, data->io_remap_addr);
1393 err_pci_iomap:
1394     spi_master_put(master);
1395 
1396     return ret;
1397 }
1398 
1399 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1400 {
1401     struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1402     struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1403     int count;
1404     unsigned long flags;
1405 
1406     dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1407         __func__, plat_dev->id, board_dat->pdev->irq);
1408 
1409     if (use_dma)
1410         pch_free_dma_buf(board_dat, data);
1411 
1412     /* check for any pending messages; no action is taken if the queue
1413      * is still full; but at least we tried.  Unload anyway */
1414     count = 500;
1415     spin_lock_irqsave(&data->lock, flags);
1416     data->status = STATUS_EXITING;
1417     while ((list_empty(&data->queue) == 0) && --count) {
1418         dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1419             __func__);
1420         spin_unlock_irqrestore(&data->lock, flags);
1421         msleep(PCH_SLEEP_TIME);
1422         spin_lock_irqsave(&data->lock, flags);
1423     }
1424     spin_unlock_irqrestore(&data->lock, flags);
1425 
1426     pch_spi_free_resources(board_dat, data);
1427     /* disable interrupts & free IRQ */
1428     if (data->irq_reg_sts) {
1429         /* disable interrupts */
1430         pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1431         data->irq_reg_sts = false;
1432         free_irq(board_dat->pdev->irq, data);
1433     }
1434 
1435     pci_iounmap(board_dat->pdev, data->io_remap_addr);
1436     spi_unregister_master(data->master);
1437 
1438     return 0;
1439 }
1440 #ifdef CONFIG_PM
1441 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1442                   pm_message_t state)
1443 {
1444     u8 count;
1445     struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1446     struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1447 
1448     dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1449 
1450     if (!board_dat) {
1451         dev_err(&pd_dev->dev,
1452             "%s pci_get_drvdata returned NULL\n", __func__);
1453         return -EFAULT;
1454     }
1455 
1456     /* check if the current message is processed:
1457        Only after thats done the transfer will be suspended */
1458     count = 255;
1459     while ((--count) > 0) {
1460         if (!(data->bcurrent_msg_processing))
1461             break;
1462         msleep(PCH_SLEEP_TIME);
1463     }
1464 
1465     /* Free IRQ */
1466     if (data->irq_reg_sts) {
1467         /* disable all interrupts */
1468         pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1469         pch_spi_reset(data->master);
1470         free_irq(board_dat->pdev->irq, data);
1471 
1472         data->irq_reg_sts = false;
1473         dev_dbg(&pd_dev->dev,
1474             "%s free_irq invoked successfully.\n", __func__);
1475     }
1476 
1477     return 0;
1478 }
1479 
1480 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1481 {
1482     struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1483     struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1484     int retval;
1485 
1486     if (!board_dat) {
1487         dev_err(&pd_dev->dev,
1488             "%s pci_get_drvdata returned NULL\n", __func__);
1489         return -EFAULT;
1490     }
1491 
1492     if (!data->irq_reg_sts) {
1493         /* register IRQ */
1494         retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1495                      IRQF_SHARED, KBUILD_MODNAME, data);
1496         if (retval < 0) {
1497             dev_err(&pd_dev->dev,
1498                 "%s request_irq failed\n", __func__);
1499             return retval;
1500         }
1501 
1502         /* reset PCH SPI h/w */
1503         pch_spi_reset(data->master);
1504         pch_spi_set_master_mode(data->master);
1505         data->irq_reg_sts = true;
1506     }
1507     return 0;
1508 }
1509 #else
1510 #define pch_spi_pd_suspend NULL
1511 #define pch_spi_pd_resume NULL
1512 #endif
1513 
1514 static struct platform_driver pch_spi_pd_driver = {
1515     .driver = {
1516         .name = "pch-spi",
1517     },
1518     .probe = pch_spi_pd_probe,
1519     .remove = pch_spi_pd_remove,
1520     .suspend = pch_spi_pd_suspend,
1521     .resume = pch_spi_pd_resume
1522 };
1523 
1524 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1525 {
1526     struct pch_spi_board_data *board_dat;
1527     struct platform_device *pd_dev = NULL;
1528     int retval;
1529     int i;
1530     struct pch_pd_dev_save *pd_dev_save;
1531 
1532     pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1533     if (!pd_dev_save)
1534         return -ENOMEM;
1535 
1536     board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1537     if (!board_dat) {
1538         retval = -ENOMEM;
1539         goto err_no_mem;
1540     }
1541 
1542     retval = pci_request_regions(pdev, KBUILD_MODNAME);
1543     if (retval) {
1544         dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1545         goto pci_request_regions;
1546     }
1547 
1548     board_dat->pdev = pdev;
1549     board_dat->num = id->driver_data;
1550     pd_dev_save->num = id->driver_data;
1551     pd_dev_save->board_dat = board_dat;
1552 
1553     retval = pci_enable_device(pdev);
1554     if (retval) {
1555         dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1556         goto pci_enable_device;
1557     }
1558 
1559     for (i = 0; i < board_dat->num; i++) {
1560         pd_dev = platform_device_alloc("pch-spi", i);
1561         if (!pd_dev) {
1562             dev_err(&pdev->dev, "platform_device_alloc failed\n");
1563             retval = -ENOMEM;
1564             goto err_platform_device;
1565         }
1566         pd_dev_save->pd_save[i] = pd_dev;
1567         pd_dev->dev.parent = &pdev->dev;
1568 
1569         retval = platform_device_add_data(pd_dev, board_dat,
1570                           sizeof(*board_dat));
1571         if (retval) {
1572             dev_err(&pdev->dev,
1573                 "platform_device_add_data failed\n");
1574             platform_device_put(pd_dev);
1575             goto err_platform_device;
1576         }
1577 
1578         retval = platform_device_add(pd_dev);
1579         if (retval) {
1580             dev_err(&pdev->dev, "platform_device_add failed\n");
1581             platform_device_put(pd_dev);
1582             goto err_platform_device;
1583         }
1584     }
1585 
1586     pci_set_drvdata(pdev, pd_dev_save);
1587 
1588     return 0;
1589 
1590 err_platform_device:
1591     while (--i >= 0)
1592         platform_device_unregister(pd_dev_save->pd_save[i]);
1593     pci_disable_device(pdev);
1594 pci_enable_device:
1595     pci_release_regions(pdev);
1596 pci_request_regions:
1597     kfree(board_dat);
1598 err_no_mem:
1599     kfree(pd_dev_save);
1600 
1601     return retval;
1602 }
1603 
1604 static void pch_spi_remove(struct pci_dev *pdev)
1605 {
1606     int i;
1607     struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1608 
1609     dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1610 
1611     for (i = 0; i < pd_dev_save->num; i++)
1612         platform_device_unregister(pd_dev_save->pd_save[i]);
1613 
1614     pci_disable_device(pdev);
1615     pci_release_regions(pdev);
1616     kfree(pd_dev_save->board_dat);
1617     kfree(pd_dev_save);
1618 }
1619 
1620 static int __maybe_unused pch_spi_suspend(struct device *dev)
1621 {
1622     struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1623 
1624     dev_dbg(dev, "%s ENTRY\n", __func__);
1625 
1626     pd_dev_save->board_dat->suspend_sts = true;
1627 
1628     return 0;
1629 }
1630 
1631 static int __maybe_unused pch_spi_resume(struct device *dev)
1632 {
1633     struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1634 
1635     dev_dbg(dev, "%s ENTRY\n", __func__);
1636 
1637     /* set suspend status to false */
1638     pd_dev_save->board_dat->suspend_sts = false;
1639 
1640     return 0;
1641 }
1642 
1643 static SIMPLE_DEV_PM_OPS(pch_spi_pm_ops, pch_spi_suspend, pch_spi_resume);
1644 
1645 static struct pci_driver pch_spi_pcidev_driver = {
1646     .name = "pch_spi",
1647     .id_table = pch_spi_pcidev_id,
1648     .probe = pch_spi_probe,
1649     .remove = pch_spi_remove,
1650     .driver.pm = &pch_spi_pm_ops,
1651 };
1652 
1653 static int __init pch_spi_init(void)
1654 {
1655     int ret;
1656     ret = platform_driver_register(&pch_spi_pd_driver);
1657     if (ret)
1658         return ret;
1659 
1660     ret = pci_register_driver(&pch_spi_pcidev_driver);
1661     if (ret) {
1662         platform_driver_unregister(&pch_spi_pd_driver);
1663         return ret;
1664     }
1665 
1666     return 0;
1667 }
1668 module_init(pch_spi_init);
1669 
1670 static void __exit pch_spi_exit(void)
1671 {
1672     pci_unregister_driver(&pch_spi_pcidev_driver);
1673     platform_driver_unregister(&pch_spi_pd_driver);
1674 }
1675 module_exit(pch_spi_exit);
1676 
1677 module_param(use_dma, int, 0644);
1678 MODULE_PARM_DESC(use_dma,
1679          "to use DMA for data transfers pass 1 else 0; default 1");
1680 
1681 MODULE_LICENSE("GPL");
1682 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1683 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1684