0001
0002
0003
0004
0005
0006
0007
0008
0009
0010 #include <linux/clk.h>
0011 #include <linux/completion.h>
0012 #include <linux/delay.h>
0013 #include <linux/err.h>
0014 #include <linux/interrupt.h>
0015 #include <linux/io.h>
0016 #include <linux/kernel.h>
0017 #include <linux/kthread.h>
0018 #include <linux/module.h>
0019 #include <linux/platform_device.h>
0020 #include <linux/pm_runtime.h>
0021 #include <linux/of.h>
0022 #include <linux/of_device.h>
0023 #include <linux/reset.h>
0024 #include <linux/spi/spi.h>
0025
0026 #define SPI_COMMAND 0x000
0027 #define SPI_GO BIT(30)
0028 #define SPI_M_S BIT(28)
0029 #define SPI_ACTIVE_SCLK_MASK (0x3 << 26)
0030 #define SPI_ACTIVE_SCLK_DRIVE_LOW (0 << 26)
0031 #define SPI_ACTIVE_SCLK_DRIVE_HIGH (1 << 26)
0032 #define SPI_ACTIVE_SCLK_PULL_LOW (2 << 26)
0033 #define SPI_ACTIVE_SCLK_PULL_HIGH (3 << 26)
0034
0035 #define SPI_CK_SDA_FALLING (1 << 21)
0036 #define SPI_CK_SDA_RISING (0 << 21)
0037 #define SPI_CK_SDA_MASK (1 << 21)
0038 #define SPI_ACTIVE_SDA (0x3 << 18)
0039 #define SPI_ACTIVE_SDA_DRIVE_LOW (0 << 18)
0040 #define SPI_ACTIVE_SDA_DRIVE_HIGH (1 << 18)
0041 #define SPI_ACTIVE_SDA_PULL_LOW (2 << 18)
0042 #define SPI_ACTIVE_SDA_PULL_HIGH (3 << 18)
0043
0044 #define SPI_CS_POL_INVERT BIT(16)
0045 #define SPI_TX_EN BIT(15)
0046 #define SPI_RX_EN BIT(14)
0047 #define SPI_CS_VAL_HIGH BIT(13)
0048 #define SPI_CS_VAL_LOW 0x0
0049 #define SPI_CS_SW BIT(12)
0050 #define SPI_CS_HW 0x0
0051 #define SPI_CS_DELAY_MASK (7 << 9)
0052 #define SPI_CS3_EN BIT(8)
0053 #define SPI_CS2_EN BIT(7)
0054 #define SPI_CS1_EN BIT(6)
0055 #define SPI_CS0_EN BIT(5)
0056
0057 #define SPI_CS_MASK (SPI_CS3_EN | SPI_CS2_EN | \
0058 SPI_CS1_EN | SPI_CS0_EN)
0059 #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
0060
0061 #define SPI_MODES (SPI_ACTIVE_SCLK_MASK | SPI_CK_SDA_MASK)
0062
0063 #define SPI_STATUS 0x004
0064 #define SPI_BSY BIT(31)
0065 #define SPI_RDY BIT(30)
0066 #define SPI_TXF_FLUSH BIT(29)
0067 #define SPI_RXF_FLUSH BIT(28)
0068 #define SPI_RX_UNF BIT(27)
0069 #define SPI_TX_OVF BIT(26)
0070 #define SPI_RXF_EMPTY BIT(25)
0071 #define SPI_RXF_FULL BIT(24)
0072 #define SPI_TXF_EMPTY BIT(23)
0073 #define SPI_TXF_FULL BIT(22)
0074 #define SPI_BLK_CNT(count) (((count) & 0xffff) + 1)
0075
0076 #define SPI_FIFO_ERROR (SPI_RX_UNF | SPI_TX_OVF)
0077 #define SPI_FIFO_EMPTY (SPI_TX_EMPTY | SPI_RX_EMPTY)
0078
0079 #define SPI_RX_CMP 0x8
0080 #define SPI_DMA_CTL 0x0C
0081 #define SPI_DMA_EN BIT(31)
0082 #define SPI_IE_RXC BIT(27)
0083 #define SPI_IE_TXC BIT(26)
0084 #define SPI_PACKED BIT(20)
0085 #define SPI_RX_TRIG_MASK (0x3 << 18)
0086 #define SPI_RX_TRIG_1W (0x0 << 18)
0087 #define SPI_RX_TRIG_4W (0x1 << 18)
0088 #define SPI_TX_TRIG_MASK (0x3 << 16)
0089 #define SPI_TX_TRIG_1W (0x0 << 16)
0090 #define SPI_TX_TRIG_4W (0x1 << 16)
0091 #define SPI_DMA_BLK_COUNT(count) (((count) - 1) & 0xFFFF)
0092
0093 #define SPI_TX_FIFO 0x10
0094 #define SPI_RX_FIFO 0x20
0095
0096 #define DATA_DIR_TX (1 << 0)
0097 #define DATA_DIR_RX (1 << 1)
0098
0099 #define MAX_CHIP_SELECT 4
0100 #define SPI_FIFO_DEPTH 4
0101 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
0102
0103 struct tegra_sflash_data {
0104 struct device *dev;
0105 struct spi_master *master;
0106 spinlock_t lock;
0107
0108 struct clk *clk;
0109 struct reset_control *rst;
0110 void __iomem *base;
0111 unsigned irq;
0112 u32 cur_speed;
0113
0114 struct spi_device *cur_spi;
0115 unsigned cur_pos;
0116 unsigned cur_len;
0117 unsigned bytes_per_word;
0118 unsigned cur_direction;
0119 unsigned curr_xfer_words;
0120
0121 unsigned cur_rx_pos;
0122 unsigned cur_tx_pos;
0123
0124 u32 tx_status;
0125 u32 rx_status;
0126 u32 status_reg;
0127
0128 u32 def_command_reg;
0129 u32 command_reg;
0130 u32 dma_control_reg;
0131
0132 struct completion xfer_completion;
0133 struct spi_transfer *curr_xfer;
0134 };
0135
0136 static int tegra_sflash_runtime_suspend(struct device *dev);
0137 static int tegra_sflash_runtime_resume(struct device *dev);
0138
0139 static inline u32 tegra_sflash_readl(struct tegra_sflash_data *tsd,
0140 unsigned long reg)
0141 {
0142 return readl(tsd->base + reg);
0143 }
0144
0145 static inline void tegra_sflash_writel(struct tegra_sflash_data *tsd,
0146 u32 val, unsigned long reg)
0147 {
0148 writel(val, tsd->base + reg);
0149 }
0150
0151 static void tegra_sflash_clear_status(struct tegra_sflash_data *tsd)
0152 {
0153
0154 tegra_sflash_writel(tsd, SPI_RDY | SPI_FIFO_ERROR, SPI_STATUS);
0155 }
0156
0157 static unsigned tegra_sflash_calculate_curr_xfer_param(
0158 struct spi_device *spi, struct tegra_sflash_data *tsd,
0159 struct spi_transfer *t)
0160 {
0161 unsigned remain_len = t->len - tsd->cur_pos;
0162 unsigned max_word;
0163
0164 tsd->bytes_per_word = DIV_ROUND_UP(t->bits_per_word, 8);
0165 max_word = remain_len / tsd->bytes_per_word;
0166 if (max_word > SPI_FIFO_DEPTH)
0167 max_word = SPI_FIFO_DEPTH;
0168 tsd->curr_xfer_words = max_word;
0169 return max_word;
0170 }
0171
0172 static unsigned tegra_sflash_fill_tx_fifo_from_client_txbuf(
0173 struct tegra_sflash_data *tsd, struct spi_transfer *t)
0174 {
0175 unsigned nbytes;
0176 u32 status;
0177 unsigned max_n_32bit = tsd->curr_xfer_words;
0178 u8 *tx_buf = (u8 *)t->tx_buf + tsd->cur_tx_pos;
0179
0180 if (max_n_32bit > SPI_FIFO_DEPTH)
0181 max_n_32bit = SPI_FIFO_DEPTH;
0182 nbytes = max_n_32bit * tsd->bytes_per_word;
0183
0184 status = tegra_sflash_readl(tsd, SPI_STATUS);
0185 while (!(status & SPI_TXF_FULL)) {
0186 int i;
0187 u32 x = 0;
0188
0189 for (i = 0; nbytes && (i < tsd->bytes_per_word);
0190 i++, nbytes--)
0191 x |= (u32)(*tx_buf++) << (i * 8);
0192 tegra_sflash_writel(tsd, x, SPI_TX_FIFO);
0193 if (!nbytes)
0194 break;
0195
0196 status = tegra_sflash_readl(tsd, SPI_STATUS);
0197 }
0198 tsd->cur_tx_pos += max_n_32bit * tsd->bytes_per_word;
0199 return max_n_32bit;
0200 }
0201
0202 static int tegra_sflash_read_rx_fifo_to_client_rxbuf(
0203 struct tegra_sflash_data *tsd, struct spi_transfer *t)
0204 {
0205 u32 status;
0206 unsigned int read_words = 0;
0207 u8 *rx_buf = (u8 *)t->rx_buf + tsd->cur_rx_pos;
0208
0209 status = tegra_sflash_readl(tsd, SPI_STATUS);
0210 while (!(status & SPI_RXF_EMPTY)) {
0211 int i;
0212 u32 x = tegra_sflash_readl(tsd, SPI_RX_FIFO);
0213
0214 for (i = 0; (i < tsd->bytes_per_word); i++)
0215 *rx_buf++ = (x >> (i*8)) & 0xFF;
0216 read_words++;
0217 status = tegra_sflash_readl(tsd, SPI_STATUS);
0218 }
0219 tsd->cur_rx_pos += read_words * tsd->bytes_per_word;
0220 return 0;
0221 }
0222
0223 static int tegra_sflash_start_cpu_based_transfer(
0224 struct tegra_sflash_data *tsd, struct spi_transfer *t)
0225 {
0226 u32 val = 0;
0227 unsigned cur_words;
0228
0229 if (tsd->cur_direction & DATA_DIR_TX)
0230 val |= SPI_IE_TXC;
0231
0232 if (tsd->cur_direction & DATA_DIR_RX)
0233 val |= SPI_IE_RXC;
0234
0235 tegra_sflash_writel(tsd, val, SPI_DMA_CTL);
0236 tsd->dma_control_reg = val;
0237
0238 if (tsd->cur_direction & DATA_DIR_TX)
0239 cur_words = tegra_sflash_fill_tx_fifo_from_client_txbuf(tsd, t);
0240 else
0241 cur_words = tsd->curr_xfer_words;
0242 val |= SPI_DMA_BLK_COUNT(cur_words);
0243 tegra_sflash_writel(tsd, val, SPI_DMA_CTL);
0244 tsd->dma_control_reg = val;
0245 val |= SPI_DMA_EN;
0246 tegra_sflash_writel(tsd, val, SPI_DMA_CTL);
0247 return 0;
0248 }
0249
0250 static int tegra_sflash_start_transfer_one(struct spi_device *spi,
0251 struct spi_transfer *t, bool is_first_of_msg,
0252 bool is_single_xfer)
0253 {
0254 struct tegra_sflash_data *tsd = spi_master_get_devdata(spi->master);
0255 u32 speed;
0256 u32 command;
0257
0258 speed = t->speed_hz;
0259 if (speed != tsd->cur_speed) {
0260 clk_set_rate(tsd->clk, speed);
0261 tsd->cur_speed = speed;
0262 }
0263
0264 tsd->cur_spi = spi;
0265 tsd->cur_pos = 0;
0266 tsd->cur_rx_pos = 0;
0267 tsd->cur_tx_pos = 0;
0268 tsd->curr_xfer = t;
0269 tegra_sflash_calculate_curr_xfer_param(spi, tsd, t);
0270 if (is_first_of_msg) {
0271 command = tsd->def_command_reg;
0272 command |= SPI_BIT_LENGTH(t->bits_per_word - 1);
0273 command |= SPI_CS_VAL_HIGH;
0274
0275 command &= ~SPI_MODES;
0276 if (spi->mode & SPI_CPHA)
0277 command |= SPI_CK_SDA_FALLING;
0278
0279 if (spi->mode & SPI_CPOL)
0280 command |= SPI_ACTIVE_SCLK_DRIVE_HIGH;
0281 else
0282 command |= SPI_ACTIVE_SCLK_DRIVE_LOW;
0283 command |= SPI_CS0_EN << spi->chip_select;
0284 } else {
0285 command = tsd->command_reg;
0286 command &= ~SPI_BIT_LENGTH(~0);
0287 command |= SPI_BIT_LENGTH(t->bits_per_word - 1);
0288 command &= ~(SPI_RX_EN | SPI_TX_EN);
0289 }
0290
0291 tsd->cur_direction = 0;
0292 if (t->rx_buf) {
0293 command |= SPI_RX_EN;
0294 tsd->cur_direction |= DATA_DIR_RX;
0295 }
0296 if (t->tx_buf) {
0297 command |= SPI_TX_EN;
0298 tsd->cur_direction |= DATA_DIR_TX;
0299 }
0300 tegra_sflash_writel(tsd, command, SPI_COMMAND);
0301 tsd->command_reg = command;
0302
0303 return tegra_sflash_start_cpu_based_transfer(tsd, t);
0304 }
0305
0306 static int tegra_sflash_transfer_one_message(struct spi_master *master,
0307 struct spi_message *msg)
0308 {
0309 bool is_first_msg = true;
0310 int single_xfer;
0311 struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
0312 struct spi_transfer *xfer;
0313 struct spi_device *spi = msg->spi;
0314 int ret;
0315
0316 msg->status = 0;
0317 msg->actual_length = 0;
0318 single_xfer = list_is_singular(&msg->transfers);
0319 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
0320 reinit_completion(&tsd->xfer_completion);
0321 ret = tegra_sflash_start_transfer_one(spi, xfer,
0322 is_first_msg, single_xfer);
0323 if (ret < 0) {
0324 dev_err(tsd->dev,
0325 "spi can not start transfer, err %d\n", ret);
0326 goto exit;
0327 }
0328 is_first_msg = false;
0329 ret = wait_for_completion_timeout(&tsd->xfer_completion,
0330 SPI_DMA_TIMEOUT);
0331 if (WARN_ON(ret == 0)) {
0332 dev_err(tsd->dev,
0333 "spi transfer timeout, err %d\n", ret);
0334 ret = -EIO;
0335 goto exit;
0336 }
0337
0338 if (tsd->tx_status || tsd->rx_status) {
0339 dev_err(tsd->dev, "Error in Transfer\n");
0340 ret = -EIO;
0341 goto exit;
0342 }
0343 msg->actual_length += xfer->len;
0344 if (xfer->cs_change && xfer->delay.value) {
0345 tegra_sflash_writel(tsd, tsd->def_command_reg,
0346 SPI_COMMAND);
0347 spi_transfer_delay_exec(xfer);
0348 }
0349 }
0350 ret = 0;
0351 exit:
0352 tegra_sflash_writel(tsd, tsd->def_command_reg, SPI_COMMAND);
0353 msg->status = ret;
0354 spi_finalize_current_message(master);
0355 return ret;
0356 }
0357
0358 static irqreturn_t handle_cpu_based_xfer(struct tegra_sflash_data *tsd)
0359 {
0360 struct spi_transfer *t = tsd->curr_xfer;
0361
0362 spin_lock(&tsd->lock);
0363 if (tsd->tx_status || tsd->rx_status || (tsd->status_reg & SPI_BSY)) {
0364 dev_err(tsd->dev,
0365 "CpuXfer ERROR bit set 0x%x\n", tsd->status_reg);
0366 dev_err(tsd->dev,
0367 "CpuXfer 0x%08x:0x%08x\n", tsd->command_reg,
0368 tsd->dma_control_reg);
0369 reset_control_assert(tsd->rst);
0370 udelay(2);
0371 reset_control_deassert(tsd->rst);
0372 complete(&tsd->xfer_completion);
0373 goto exit;
0374 }
0375
0376 if (tsd->cur_direction & DATA_DIR_RX)
0377 tegra_sflash_read_rx_fifo_to_client_rxbuf(tsd, t);
0378
0379 if (tsd->cur_direction & DATA_DIR_TX)
0380 tsd->cur_pos = tsd->cur_tx_pos;
0381 else
0382 tsd->cur_pos = tsd->cur_rx_pos;
0383
0384 if (tsd->cur_pos == t->len) {
0385 complete(&tsd->xfer_completion);
0386 goto exit;
0387 }
0388
0389 tegra_sflash_calculate_curr_xfer_param(tsd->cur_spi, tsd, t);
0390 tegra_sflash_start_cpu_based_transfer(tsd, t);
0391 exit:
0392 spin_unlock(&tsd->lock);
0393 return IRQ_HANDLED;
0394 }
0395
0396 static irqreturn_t tegra_sflash_isr(int irq, void *context_data)
0397 {
0398 struct tegra_sflash_data *tsd = context_data;
0399
0400 tsd->status_reg = tegra_sflash_readl(tsd, SPI_STATUS);
0401 if (tsd->cur_direction & DATA_DIR_TX)
0402 tsd->tx_status = tsd->status_reg & SPI_TX_OVF;
0403
0404 if (tsd->cur_direction & DATA_DIR_RX)
0405 tsd->rx_status = tsd->status_reg & SPI_RX_UNF;
0406 tegra_sflash_clear_status(tsd);
0407
0408 return handle_cpu_based_xfer(tsd);
0409 }
0410
0411 static const struct of_device_id tegra_sflash_of_match[] = {
0412 { .compatible = "nvidia,tegra20-sflash", },
0413 {}
0414 };
0415 MODULE_DEVICE_TABLE(of, tegra_sflash_of_match);
0416
0417 static int tegra_sflash_probe(struct platform_device *pdev)
0418 {
0419 struct spi_master *master;
0420 struct tegra_sflash_data *tsd;
0421 int ret;
0422 const struct of_device_id *match;
0423
0424 match = of_match_device(tegra_sflash_of_match, &pdev->dev);
0425 if (!match) {
0426 dev_err(&pdev->dev, "Error: No device match found\n");
0427 return -ENODEV;
0428 }
0429
0430 master = spi_alloc_master(&pdev->dev, sizeof(*tsd));
0431 if (!master) {
0432 dev_err(&pdev->dev, "master allocation failed\n");
0433 return -ENOMEM;
0434 }
0435
0436
0437 master->mode_bits = SPI_CPOL | SPI_CPHA;
0438 master->transfer_one_message = tegra_sflash_transfer_one_message;
0439 master->auto_runtime_pm = true;
0440 master->num_chipselect = MAX_CHIP_SELECT;
0441
0442 platform_set_drvdata(pdev, master);
0443 tsd = spi_master_get_devdata(master);
0444 tsd->master = master;
0445 tsd->dev = &pdev->dev;
0446 spin_lock_init(&tsd->lock);
0447
0448 if (of_property_read_u32(tsd->dev->of_node, "spi-max-frequency",
0449 &master->max_speed_hz))
0450 master->max_speed_hz = 25000000;
0451
0452 tsd->base = devm_platform_ioremap_resource(pdev, 0);
0453 if (IS_ERR(tsd->base)) {
0454 ret = PTR_ERR(tsd->base);
0455 goto exit_free_master;
0456 }
0457
0458 tsd->irq = platform_get_irq(pdev, 0);
0459 ret = request_irq(tsd->irq, tegra_sflash_isr, 0,
0460 dev_name(&pdev->dev), tsd);
0461 if (ret < 0) {
0462 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
0463 tsd->irq);
0464 goto exit_free_master;
0465 }
0466
0467 tsd->clk = devm_clk_get(&pdev->dev, NULL);
0468 if (IS_ERR(tsd->clk)) {
0469 dev_err(&pdev->dev, "can not get clock\n");
0470 ret = PTR_ERR(tsd->clk);
0471 goto exit_free_irq;
0472 }
0473
0474 tsd->rst = devm_reset_control_get_exclusive(&pdev->dev, "spi");
0475 if (IS_ERR(tsd->rst)) {
0476 dev_err(&pdev->dev, "can not get reset\n");
0477 ret = PTR_ERR(tsd->rst);
0478 goto exit_free_irq;
0479 }
0480
0481 init_completion(&tsd->xfer_completion);
0482 pm_runtime_enable(&pdev->dev);
0483 if (!pm_runtime_enabled(&pdev->dev)) {
0484 ret = tegra_sflash_runtime_resume(&pdev->dev);
0485 if (ret)
0486 goto exit_pm_disable;
0487 }
0488
0489 ret = pm_runtime_resume_and_get(&pdev->dev);
0490 if (ret < 0) {
0491 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
0492 goto exit_pm_disable;
0493 }
0494
0495
0496 reset_control_assert(tsd->rst);
0497 udelay(2);
0498 reset_control_deassert(tsd->rst);
0499
0500 tsd->def_command_reg = SPI_M_S | SPI_CS_SW;
0501 tegra_sflash_writel(tsd, tsd->def_command_reg, SPI_COMMAND);
0502 pm_runtime_put(&pdev->dev);
0503
0504 master->dev.of_node = pdev->dev.of_node;
0505 ret = devm_spi_register_master(&pdev->dev, master);
0506 if (ret < 0) {
0507 dev_err(&pdev->dev, "can not register to master err %d\n", ret);
0508 goto exit_pm_disable;
0509 }
0510 return ret;
0511
0512 exit_pm_disable:
0513 pm_runtime_disable(&pdev->dev);
0514 if (!pm_runtime_status_suspended(&pdev->dev))
0515 tegra_sflash_runtime_suspend(&pdev->dev);
0516 exit_free_irq:
0517 free_irq(tsd->irq, tsd);
0518 exit_free_master:
0519 spi_master_put(master);
0520 return ret;
0521 }
0522
0523 static int tegra_sflash_remove(struct platform_device *pdev)
0524 {
0525 struct spi_master *master = platform_get_drvdata(pdev);
0526 struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
0527
0528 free_irq(tsd->irq, tsd);
0529
0530 pm_runtime_disable(&pdev->dev);
0531 if (!pm_runtime_status_suspended(&pdev->dev))
0532 tegra_sflash_runtime_suspend(&pdev->dev);
0533
0534 return 0;
0535 }
0536
0537 #ifdef CONFIG_PM_SLEEP
0538 static int tegra_sflash_suspend(struct device *dev)
0539 {
0540 struct spi_master *master = dev_get_drvdata(dev);
0541
0542 return spi_master_suspend(master);
0543 }
0544
0545 static int tegra_sflash_resume(struct device *dev)
0546 {
0547 struct spi_master *master = dev_get_drvdata(dev);
0548 struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
0549 int ret;
0550
0551 ret = pm_runtime_resume_and_get(dev);
0552 if (ret < 0) {
0553 dev_err(dev, "pm runtime failed, e = %d\n", ret);
0554 return ret;
0555 }
0556 tegra_sflash_writel(tsd, tsd->command_reg, SPI_COMMAND);
0557 pm_runtime_put(dev);
0558
0559 return spi_master_resume(master);
0560 }
0561 #endif
0562
0563 static int tegra_sflash_runtime_suspend(struct device *dev)
0564 {
0565 struct spi_master *master = dev_get_drvdata(dev);
0566 struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
0567
0568
0569 tegra_sflash_readl(tsd, SPI_COMMAND);
0570
0571 clk_disable_unprepare(tsd->clk);
0572 return 0;
0573 }
0574
0575 static int tegra_sflash_runtime_resume(struct device *dev)
0576 {
0577 struct spi_master *master = dev_get_drvdata(dev);
0578 struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
0579 int ret;
0580
0581 ret = clk_prepare_enable(tsd->clk);
0582 if (ret < 0) {
0583 dev_err(tsd->dev, "clk_prepare failed: %d\n", ret);
0584 return ret;
0585 }
0586 return 0;
0587 }
0588
0589 static const struct dev_pm_ops slink_pm_ops = {
0590 SET_RUNTIME_PM_OPS(tegra_sflash_runtime_suspend,
0591 tegra_sflash_runtime_resume, NULL)
0592 SET_SYSTEM_SLEEP_PM_OPS(tegra_sflash_suspend, tegra_sflash_resume)
0593 };
0594 static struct platform_driver tegra_sflash_driver = {
0595 .driver = {
0596 .name = "spi-tegra-sflash",
0597 .pm = &slink_pm_ops,
0598 .of_match_table = tegra_sflash_of_match,
0599 },
0600 .probe = tegra_sflash_probe,
0601 .remove = tegra_sflash_remove,
0602 };
0603 module_platform_driver(tegra_sflash_driver);
0604
0605 MODULE_ALIAS("platform:spi-tegra-sflash");
0606 MODULE_DESCRIPTION("NVIDIA Tegra20 Serial Flash Controller Driver");
0607 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
0608 MODULE_LICENSE("GPL v2");