0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/clk.h>
0009 #include <linux/completion.h>
0010 #include <linux/delay.h>
0011 #include <linux/dmaengine.h>
0012 #include <linux/dma-mapping.h>
0013 #include <linux/dmapool.h>
0014 #include <linux/err.h>
0015 #include <linux/interrupt.h>
0016 #include <linux/io.h>
0017 #include <linux/kernel.h>
0018 #include <linux/kthread.h>
0019 #include <linux/module.h>
0020 #include <linux/platform_device.h>
0021 #include <linux/pm_runtime.h>
0022 #include <linux/of.h>
0023 #include <linux/of_device.h>
0024 #include <linux/reset.h>
0025 #include <linux/spi/spi.h>
0026
0027 #define SPI_COMMAND1 0x000
0028 #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
0029 #define SPI_PACKED (1 << 5)
0030 #define SPI_TX_EN (1 << 11)
0031 #define SPI_RX_EN (1 << 12)
0032 #define SPI_BOTH_EN_BYTE (1 << 13)
0033 #define SPI_BOTH_EN_BIT (1 << 14)
0034 #define SPI_LSBYTE_FE (1 << 15)
0035 #define SPI_LSBIT_FE (1 << 16)
0036 #define SPI_BIDIROE (1 << 17)
0037 #define SPI_IDLE_SDA_DRIVE_LOW (0 << 18)
0038 #define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18)
0039 #define SPI_IDLE_SDA_PULL_LOW (2 << 18)
0040 #define SPI_IDLE_SDA_PULL_HIGH (3 << 18)
0041 #define SPI_IDLE_SDA_MASK (3 << 18)
0042 #define SPI_CS_SW_VAL (1 << 20)
0043 #define SPI_CS_SW_HW (1 << 21)
0044
0045
0046 #define SPI_CS_POL_INACTIVE(n) (1 << (22 + (n)))
0047 #define SPI_CS_POL_INACTIVE_MASK (0xF << 22)
0048
0049 #define SPI_CS_SEL_0 (0 << 26)
0050 #define SPI_CS_SEL_1 (1 << 26)
0051 #define SPI_CS_SEL_2 (2 << 26)
0052 #define SPI_CS_SEL_3 (3 << 26)
0053 #define SPI_CS_SEL_MASK (3 << 26)
0054 #define SPI_CS_SEL(x) (((x) & 0x3) << 26)
0055 #define SPI_CONTROL_MODE_0 (0 << 28)
0056 #define SPI_CONTROL_MODE_1 (1 << 28)
0057 #define SPI_CONTROL_MODE_2 (2 << 28)
0058 #define SPI_CONTROL_MODE_3 (3 << 28)
0059 #define SPI_CONTROL_MODE_MASK (3 << 28)
0060 #define SPI_MODE_SEL(x) (((x) & 0x3) << 28)
0061 #define SPI_M_S (1 << 30)
0062 #define SPI_PIO (1 << 31)
0063
0064 #define SPI_COMMAND2 0x004
0065 #define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6)
0066 #define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0)
0067
0068 #define SPI_CS_TIMING1 0x008
0069 #define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
0070 #define SPI_CS_SETUP_HOLD(reg, cs, val) \
0071 ((((val) & 0xFFu) << ((cs) * 8)) | \
0072 ((reg) & ~(0xFFu << ((cs) * 8))))
0073
0074 #define SPI_CS_TIMING2 0x00C
0075 #define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0)
0076 #define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5)
0077 #define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8)
0078 #define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13)
0079 #define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16)
0080 #define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21)
0081 #define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24)
0082 #define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29)
0083 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \
0084 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \
0085 ((reg) & ~(1 << ((cs) * 8 + 5))))
0086 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \
0087 (reg = (((val) & 0x1F) << ((cs) * 8)) | \
0088 ((reg) & ~(0x1F << ((cs) * 8))))
0089 #define MAX_SETUP_HOLD_CYCLES 16
0090 #define MAX_INACTIVE_CYCLES 32
0091
0092 #define SPI_TRANS_STATUS 0x010
0093 #define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF)
0094 #define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF)
0095 #define SPI_RDY (1 << 30)
0096
0097 #define SPI_FIFO_STATUS 0x014
0098 #define SPI_RX_FIFO_EMPTY (1 << 0)
0099 #define SPI_RX_FIFO_FULL (1 << 1)
0100 #define SPI_TX_FIFO_EMPTY (1 << 2)
0101 #define SPI_TX_FIFO_FULL (1 << 3)
0102 #define SPI_RX_FIFO_UNF (1 << 4)
0103 #define SPI_RX_FIFO_OVF (1 << 5)
0104 #define SPI_TX_FIFO_UNF (1 << 6)
0105 #define SPI_TX_FIFO_OVF (1 << 7)
0106 #define SPI_ERR (1 << 8)
0107 #define SPI_TX_FIFO_FLUSH (1 << 14)
0108 #define SPI_RX_FIFO_FLUSH (1 << 15)
0109 #define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F)
0110 #define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F)
0111 #define SPI_FRAME_END (1 << 30)
0112 #define SPI_CS_INACTIVE (1 << 31)
0113
0114 #define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \
0115 SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
0116 #define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
0117
0118 #define SPI_TX_DATA 0x018
0119 #define SPI_RX_DATA 0x01C
0120
0121 #define SPI_DMA_CTL 0x020
0122 #define SPI_TX_TRIG_1 (0 << 15)
0123 #define SPI_TX_TRIG_4 (1 << 15)
0124 #define SPI_TX_TRIG_8 (2 << 15)
0125 #define SPI_TX_TRIG_16 (3 << 15)
0126 #define SPI_TX_TRIG_MASK (3 << 15)
0127 #define SPI_RX_TRIG_1 (0 << 19)
0128 #define SPI_RX_TRIG_4 (1 << 19)
0129 #define SPI_RX_TRIG_8 (2 << 19)
0130 #define SPI_RX_TRIG_16 (3 << 19)
0131 #define SPI_RX_TRIG_MASK (3 << 19)
0132 #define SPI_IE_TX (1 << 28)
0133 #define SPI_IE_RX (1 << 29)
0134 #define SPI_CONT (1 << 30)
0135 #define SPI_DMA (1 << 31)
0136 #define SPI_DMA_EN SPI_DMA
0137
0138 #define SPI_DMA_BLK 0x024
0139 #define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0)
0140
0141 #define SPI_TX_FIFO 0x108
0142 #define SPI_RX_FIFO 0x188
0143 #define SPI_INTR_MASK 0x18c
0144 #define SPI_INTR_ALL_MASK (0x1fUL << 25)
0145 #define MAX_CHIP_SELECT 4
0146 #define SPI_FIFO_DEPTH 64
0147 #define DATA_DIR_TX (1 << 0)
0148 #define DATA_DIR_RX (1 << 1)
0149
0150 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
0151 #define DEFAULT_SPI_DMA_BUF_LEN (16*1024)
0152 #define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40)
0153 #define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0)
0154 #define MAX_HOLD_CYCLES 16
0155 #define SPI_DEFAULT_SPEED 25000000
0156
0157 struct tegra_spi_soc_data {
0158 bool has_intr_mask_reg;
0159 };
0160
0161 struct tegra_spi_client_data {
0162 int tx_clk_tap_delay;
0163 int rx_clk_tap_delay;
0164 };
0165
0166 struct tegra_spi_data {
0167 struct device *dev;
0168 struct spi_master *master;
0169 spinlock_t lock;
0170
0171 struct clk *clk;
0172 struct reset_control *rst;
0173 void __iomem *base;
0174 phys_addr_t phys;
0175 unsigned irq;
0176 u32 cur_speed;
0177
0178 struct spi_device *cur_spi;
0179 struct spi_device *cs_control;
0180 unsigned cur_pos;
0181 unsigned words_per_32bit;
0182 unsigned bytes_per_word;
0183 unsigned curr_dma_words;
0184 unsigned cur_direction;
0185
0186 unsigned cur_rx_pos;
0187 unsigned cur_tx_pos;
0188
0189 unsigned dma_buf_size;
0190 unsigned max_buf_size;
0191 bool is_curr_dma_xfer;
0192 bool use_hw_based_cs;
0193
0194 struct completion rx_dma_complete;
0195 struct completion tx_dma_complete;
0196
0197 u32 tx_status;
0198 u32 rx_status;
0199 u32 status_reg;
0200 bool is_packed;
0201
0202 u32 command1_reg;
0203 u32 dma_control_reg;
0204 u32 def_command1_reg;
0205 u32 def_command2_reg;
0206 u32 spi_cs_timing1;
0207 u32 spi_cs_timing2;
0208 u8 last_used_cs;
0209
0210 struct completion xfer_completion;
0211 struct spi_transfer *curr_xfer;
0212 struct dma_chan *rx_dma_chan;
0213 u32 *rx_dma_buf;
0214 dma_addr_t rx_dma_phys;
0215 struct dma_async_tx_descriptor *rx_dma_desc;
0216
0217 struct dma_chan *tx_dma_chan;
0218 u32 *tx_dma_buf;
0219 dma_addr_t tx_dma_phys;
0220 struct dma_async_tx_descriptor *tx_dma_desc;
0221 const struct tegra_spi_soc_data *soc_data;
0222 };
0223
0224 static int tegra_spi_runtime_suspend(struct device *dev);
0225 static int tegra_spi_runtime_resume(struct device *dev);
0226
0227 static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
0228 unsigned long reg)
0229 {
0230 return readl(tspi->base + reg);
0231 }
0232
0233 static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
0234 u32 val, unsigned long reg)
0235 {
0236 writel(val, tspi->base + reg);
0237
0238
0239 if (reg != SPI_TX_FIFO)
0240 readl(tspi->base + SPI_COMMAND1);
0241 }
0242
0243 static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
0244 {
0245 u32 val;
0246
0247
0248 val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
0249 tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
0250
0251
0252 val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
0253 if (val & SPI_ERR)
0254 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
0255 SPI_FIFO_STATUS);
0256 }
0257
0258 static unsigned tegra_spi_calculate_curr_xfer_param(
0259 struct spi_device *spi, struct tegra_spi_data *tspi,
0260 struct spi_transfer *t)
0261 {
0262 unsigned remain_len = t->len - tspi->cur_pos;
0263 unsigned max_word;
0264 unsigned bits_per_word = t->bits_per_word;
0265 unsigned max_len;
0266 unsigned total_fifo_words;
0267
0268 tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
0269
0270 if ((bits_per_word == 8 || bits_per_word == 16 ||
0271 bits_per_word == 32) && t->len > 3) {
0272 tspi->is_packed = true;
0273 tspi->words_per_32bit = 32/bits_per_word;
0274 } else {
0275 tspi->is_packed = false;
0276 tspi->words_per_32bit = 1;
0277 }
0278
0279 if (tspi->is_packed) {
0280 max_len = min(remain_len, tspi->max_buf_size);
0281 tspi->curr_dma_words = max_len/tspi->bytes_per_word;
0282 total_fifo_words = (max_len + 3) / 4;
0283 } else {
0284 max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
0285 max_word = min(max_word, tspi->max_buf_size/4);
0286 tspi->curr_dma_words = max_word;
0287 total_fifo_words = max_word;
0288 }
0289 return total_fifo_words;
0290 }
0291
0292 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
0293 struct tegra_spi_data *tspi, struct spi_transfer *t)
0294 {
0295 unsigned nbytes;
0296 unsigned tx_empty_count;
0297 u32 fifo_status;
0298 unsigned max_n_32bit;
0299 unsigned i, count;
0300 unsigned int written_words;
0301 unsigned fifo_words_left;
0302 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
0303
0304 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
0305 tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
0306
0307 if (tspi->is_packed) {
0308 fifo_words_left = tx_empty_count * tspi->words_per_32bit;
0309 written_words = min(fifo_words_left, tspi->curr_dma_words);
0310 nbytes = written_words * tspi->bytes_per_word;
0311 max_n_32bit = DIV_ROUND_UP(nbytes, 4);
0312 for (count = 0; count < max_n_32bit; count++) {
0313 u32 x = 0;
0314
0315 for (i = 0; (i < 4) && nbytes; i++, nbytes--)
0316 x |= (u32)(*tx_buf++) << (i * 8);
0317 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
0318 }
0319
0320 tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
0321 } else {
0322 unsigned int write_bytes;
0323 max_n_32bit = min(tspi->curr_dma_words, tx_empty_count);
0324 written_words = max_n_32bit;
0325 nbytes = written_words * tspi->bytes_per_word;
0326 if (nbytes > t->len - tspi->cur_pos)
0327 nbytes = t->len - tspi->cur_pos;
0328 write_bytes = nbytes;
0329 for (count = 0; count < max_n_32bit; count++) {
0330 u32 x = 0;
0331
0332 for (i = 0; nbytes && (i < tspi->bytes_per_word);
0333 i++, nbytes--)
0334 x |= (u32)(*tx_buf++) << (i * 8);
0335 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
0336 }
0337
0338 tspi->cur_tx_pos += write_bytes;
0339 }
0340
0341 return written_words;
0342 }
0343
0344 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
0345 struct tegra_spi_data *tspi, struct spi_transfer *t)
0346 {
0347 unsigned rx_full_count;
0348 u32 fifo_status;
0349 unsigned i, count;
0350 unsigned int read_words = 0;
0351 unsigned len;
0352 u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
0353
0354 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
0355 rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
0356 if (tspi->is_packed) {
0357 len = tspi->curr_dma_words * tspi->bytes_per_word;
0358 for (count = 0; count < rx_full_count; count++) {
0359 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
0360
0361 for (i = 0; len && (i < 4); i++, len--)
0362 *rx_buf++ = (x >> i*8) & 0xFF;
0363 }
0364 read_words += tspi->curr_dma_words;
0365 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
0366 } else {
0367 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
0368 u8 bytes_per_word = tspi->bytes_per_word;
0369 unsigned int read_bytes;
0370
0371 len = rx_full_count * bytes_per_word;
0372 if (len > t->len - tspi->cur_pos)
0373 len = t->len - tspi->cur_pos;
0374 read_bytes = len;
0375 for (count = 0; count < rx_full_count; count++) {
0376 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
0377
0378 for (i = 0; len && (i < bytes_per_word); i++, len--)
0379 *rx_buf++ = (x >> (i*8)) & 0xFF;
0380 }
0381 read_words += rx_full_count;
0382 tspi->cur_rx_pos += read_bytes;
0383 }
0384
0385 return read_words;
0386 }
0387
0388 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
0389 struct tegra_spi_data *tspi, struct spi_transfer *t)
0390 {
0391
0392 dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
0393 tspi->dma_buf_size, DMA_TO_DEVICE);
0394
0395 if (tspi->is_packed) {
0396 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
0397
0398 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
0399 tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
0400 } else {
0401 unsigned int i;
0402 unsigned int count;
0403 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
0404 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
0405 unsigned int write_bytes;
0406
0407 if (consume > t->len - tspi->cur_pos)
0408 consume = t->len - tspi->cur_pos;
0409 write_bytes = consume;
0410 for (count = 0; count < tspi->curr_dma_words; count++) {
0411 u32 x = 0;
0412
0413 for (i = 0; consume && (i < tspi->bytes_per_word);
0414 i++, consume--)
0415 x |= (u32)(*tx_buf++) << (i * 8);
0416 tspi->tx_dma_buf[count] = x;
0417 }
0418
0419 tspi->cur_tx_pos += write_bytes;
0420 }
0421
0422
0423 dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
0424 tspi->dma_buf_size, DMA_TO_DEVICE);
0425 }
0426
0427 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
0428 struct tegra_spi_data *tspi, struct spi_transfer *t)
0429 {
0430
0431 dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
0432 tspi->dma_buf_size, DMA_FROM_DEVICE);
0433
0434 if (tspi->is_packed) {
0435 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
0436
0437 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
0438 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
0439 } else {
0440 unsigned int i;
0441 unsigned int count;
0442 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
0443 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
0444 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
0445 unsigned int read_bytes;
0446
0447 if (consume > t->len - tspi->cur_pos)
0448 consume = t->len - tspi->cur_pos;
0449 read_bytes = consume;
0450 for (count = 0; count < tspi->curr_dma_words; count++) {
0451 u32 x = tspi->rx_dma_buf[count] & rx_mask;
0452
0453 for (i = 0; consume && (i < tspi->bytes_per_word);
0454 i++, consume--)
0455 *rx_buf++ = (x >> (i*8)) & 0xFF;
0456 }
0457
0458 tspi->cur_rx_pos += read_bytes;
0459 }
0460
0461
0462 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
0463 tspi->dma_buf_size, DMA_FROM_DEVICE);
0464 }
0465
0466 static void tegra_spi_dma_complete(void *args)
0467 {
0468 struct completion *dma_complete = args;
0469
0470 complete(dma_complete);
0471 }
0472
0473 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
0474 {
0475 reinit_completion(&tspi->tx_dma_complete);
0476 tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
0477 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
0478 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
0479 if (!tspi->tx_dma_desc) {
0480 dev_err(tspi->dev, "Not able to get desc for Tx\n");
0481 return -EIO;
0482 }
0483
0484 tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
0485 tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
0486
0487 dmaengine_submit(tspi->tx_dma_desc);
0488 dma_async_issue_pending(tspi->tx_dma_chan);
0489 return 0;
0490 }
0491
0492 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
0493 {
0494 reinit_completion(&tspi->rx_dma_complete);
0495 tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
0496 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
0497 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
0498 if (!tspi->rx_dma_desc) {
0499 dev_err(tspi->dev, "Not able to get desc for Rx\n");
0500 return -EIO;
0501 }
0502
0503 tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
0504 tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
0505
0506 dmaengine_submit(tspi->rx_dma_desc);
0507 dma_async_issue_pending(tspi->rx_dma_chan);
0508 return 0;
0509 }
0510
0511 static int tegra_spi_flush_fifos(struct tegra_spi_data *tspi)
0512 {
0513 unsigned long timeout = jiffies + HZ;
0514 u32 status;
0515
0516 status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
0517 if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
0518 status |= SPI_RX_FIFO_FLUSH | SPI_TX_FIFO_FLUSH;
0519 tegra_spi_writel(tspi, status, SPI_FIFO_STATUS);
0520 while ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
0521 status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
0522 if (time_after(jiffies, timeout)) {
0523 dev_err(tspi->dev,
0524 "timeout waiting for fifo flush\n");
0525 return -EIO;
0526 }
0527
0528 udelay(1);
0529 }
0530 }
0531
0532 return 0;
0533 }
0534
0535 static int tegra_spi_start_dma_based_transfer(
0536 struct tegra_spi_data *tspi, struct spi_transfer *t)
0537 {
0538 u32 val;
0539 unsigned int len;
0540 int ret = 0;
0541 u8 dma_burst;
0542 struct dma_slave_config dma_sconfig = {0};
0543
0544 val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
0545 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
0546
0547 if (tspi->is_packed)
0548 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
0549 4) * 4;
0550 else
0551 len = tspi->curr_dma_words * 4;
0552
0553
0554 if (len & 0xF) {
0555 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
0556 dma_burst = 1;
0557 } else if (((len) >> 4) & 0x1) {
0558 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
0559 dma_burst = 4;
0560 } else {
0561 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
0562 dma_burst = 8;
0563 }
0564
0565 if (!tspi->soc_data->has_intr_mask_reg) {
0566 if (tspi->cur_direction & DATA_DIR_TX)
0567 val |= SPI_IE_TX;
0568
0569 if (tspi->cur_direction & DATA_DIR_RX)
0570 val |= SPI_IE_RX;
0571 }
0572
0573 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
0574 tspi->dma_control_reg = val;
0575
0576 dma_sconfig.device_fc = true;
0577 if (tspi->cur_direction & DATA_DIR_TX) {
0578 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
0579 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
0580 dma_sconfig.dst_maxburst = dma_burst;
0581 ret = dmaengine_slave_config(tspi->tx_dma_chan, &dma_sconfig);
0582 if (ret < 0) {
0583 dev_err(tspi->dev,
0584 "DMA slave config failed: %d\n", ret);
0585 return ret;
0586 }
0587
0588 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
0589 ret = tegra_spi_start_tx_dma(tspi, len);
0590 if (ret < 0) {
0591 dev_err(tspi->dev,
0592 "Starting tx dma failed, err %d\n", ret);
0593 return ret;
0594 }
0595 }
0596
0597 if (tspi->cur_direction & DATA_DIR_RX) {
0598 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
0599 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
0600 dma_sconfig.src_maxburst = dma_burst;
0601 ret = dmaengine_slave_config(tspi->rx_dma_chan, &dma_sconfig);
0602 if (ret < 0) {
0603 dev_err(tspi->dev,
0604 "DMA slave config failed: %d\n", ret);
0605 return ret;
0606 }
0607
0608
0609 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
0610 tspi->dma_buf_size, DMA_FROM_DEVICE);
0611
0612 ret = tegra_spi_start_rx_dma(tspi, len);
0613 if (ret < 0) {
0614 dev_err(tspi->dev,
0615 "Starting rx dma failed, err %d\n", ret);
0616 if (tspi->cur_direction & DATA_DIR_TX)
0617 dmaengine_terminate_all(tspi->tx_dma_chan);
0618 return ret;
0619 }
0620 }
0621 tspi->is_curr_dma_xfer = true;
0622 tspi->dma_control_reg = val;
0623
0624 val |= SPI_DMA_EN;
0625 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
0626 return ret;
0627 }
0628
0629 static int tegra_spi_start_cpu_based_transfer(
0630 struct tegra_spi_data *tspi, struct spi_transfer *t)
0631 {
0632 u32 val;
0633 unsigned cur_words;
0634
0635 if (tspi->cur_direction & DATA_DIR_TX)
0636 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
0637 else
0638 cur_words = tspi->curr_dma_words;
0639
0640 val = SPI_DMA_BLK_SET(cur_words - 1);
0641 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
0642
0643 val = 0;
0644 if (tspi->cur_direction & DATA_DIR_TX)
0645 val |= SPI_IE_TX;
0646
0647 if (tspi->cur_direction & DATA_DIR_RX)
0648 val |= SPI_IE_RX;
0649
0650 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
0651 tspi->dma_control_reg = val;
0652
0653 tspi->is_curr_dma_xfer = false;
0654
0655 val = tspi->command1_reg;
0656 val |= SPI_PIO;
0657 tegra_spi_writel(tspi, val, SPI_COMMAND1);
0658 return 0;
0659 }
0660
0661 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
0662 bool dma_to_memory)
0663 {
0664 struct dma_chan *dma_chan;
0665 u32 *dma_buf;
0666 dma_addr_t dma_phys;
0667
0668 dma_chan = dma_request_chan(tspi->dev, dma_to_memory ? "rx" : "tx");
0669 if (IS_ERR(dma_chan))
0670 return dev_err_probe(tspi->dev, PTR_ERR(dma_chan),
0671 "Dma channel is not available\n");
0672
0673 dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
0674 &dma_phys, GFP_KERNEL);
0675 if (!dma_buf) {
0676 dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
0677 dma_release_channel(dma_chan);
0678 return -ENOMEM;
0679 }
0680
0681 if (dma_to_memory) {
0682 tspi->rx_dma_chan = dma_chan;
0683 tspi->rx_dma_buf = dma_buf;
0684 tspi->rx_dma_phys = dma_phys;
0685 } else {
0686 tspi->tx_dma_chan = dma_chan;
0687 tspi->tx_dma_buf = dma_buf;
0688 tspi->tx_dma_phys = dma_phys;
0689 }
0690 return 0;
0691 }
0692
0693 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
0694 bool dma_to_memory)
0695 {
0696 u32 *dma_buf;
0697 dma_addr_t dma_phys;
0698 struct dma_chan *dma_chan;
0699
0700 if (dma_to_memory) {
0701 dma_buf = tspi->rx_dma_buf;
0702 dma_chan = tspi->rx_dma_chan;
0703 dma_phys = tspi->rx_dma_phys;
0704 tspi->rx_dma_chan = NULL;
0705 tspi->rx_dma_buf = NULL;
0706 } else {
0707 dma_buf = tspi->tx_dma_buf;
0708 dma_chan = tspi->tx_dma_chan;
0709 dma_phys = tspi->tx_dma_phys;
0710 tspi->tx_dma_buf = NULL;
0711 tspi->tx_dma_chan = NULL;
0712 }
0713 if (!dma_chan)
0714 return;
0715
0716 dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
0717 dma_release_channel(dma_chan);
0718 }
0719
0720 static int tegra_spi_set_hw_cs_timing(struct spi_device *spi)
0721 {
0722 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
0723 struct spi_delay *setup = &spi->cs_setup;
0724 struct spi_delay *hold = &spi->cs_hold;
0725 struct spi_delay *inactive = &spi->cs_inactive;
0726 u8 setup_dly, hold_dly, inactive_dly;
0727 u32 setup_hold;
0728 u32 spi_cs_timing;
0729 u32 inactive_cycles;
0730 u8 cs_state;
0731
0732 if ((setup && setup->unit != SPI_DELAY_UNIT_SCK) ||
0733 (hold && hold->unit != SPI_DELAY_UNIT_SCK) ||
0734 (inactive && inactive->unit != SPI_DELAY_UNIT_SCK)) {
0735 dev_err(&spi->dev,
0736 "Invalid delay unit %d, should be SPI_DELAY_UNIT_SCK\n",
0737 SPI_DELAY_UNIT_SCK);
0738 return -EINVAL;
0739 }
0740
0741 setup_dly = setup ? setup->value : 0;
0742 hold_dly = hold ? hold->value : 0;
0743 inactive_dly = inactive ? inactive->value : 0;
0744
0745 setup_dly = min_t(u8, setup_dly, MAX_SETUP_HOLD_CYCLES);
0746 hold_dly = min_t(u8, hold_dly, MAX_SETUP_HOLD_CYCLES);
0747 if (setup_dly && hold_dly) {
0748 setup_hold = SPI_SETUP_HOLD(setup_dly - 1, hold_dly - 1);
0749 spi_cs_timing = SPI_CS_SETUP_HOLD(tspi->spi_cs_timing1,
0750 spi->chip_select,
0751 setup_hold);
0752 if (tspi->spi_cs_timing1 != spi_cs_timing) {
0753 tspi->spi_cs_timing1 = spi_cs_timing;
0754 tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING1);
0755 }
0756 }
0757
0758 inactive_cycles = min_t(u8, inactive_dly, MAX_INACTIVE_CYCLES);
0759 if (inactive_cycles)
0760 inactive_cycles--;
0761 cs_state = inactive_cycles ? 0 : 1;
0762 spi_cs_timing = tspi->spi_cs_timing2;
0763 SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(spi_cs_timing, spi->chip_select,
0764 cs_state);
0765 SPI_SET_CYCLES_BETWEEN_PACKETS(spi_cs_timing, spi->chip_select,
0766 inactive_cycles);
0767 if (tspi->spi_cs_timing2 != spi_cs_timing) {
0768 tspi->spi_cs_timing2 = spi_cs_timing;
0769 tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING2);
0770 }
0771
0772 return 0;
0773 }
0774
0775 static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
0776 struct spi_transfer *t,
0777 bool is_first_of_msg,
0778 bool is_single_xfer)
0779 {
0780 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
0781 struct tegra_spi_client_data *cdata = spi->controller_data;
0782 u32 speed = t->speed_hz;
0783 u8 bits_per_word = t->bits_per_word;
0784 u32 command1, command2;
0785 int req_mode;
0786 u32 tx_tap = 0, rx_tap = 0;
0787
0788 if (speed != tspi->cur_speed) {
0789 clk_set_rate(tspi->clk, speed);
0790 tspi->cur_speed = speed;
0791 }
0792
0793 tspi->cur_spi = spi;
0794 tspi->cur_pos = 0;
0795 tspi->cur_rx_pos = 0;
0796 tspi->cur_tx_pos = 0;
0797 tspi->curr_xfer = t;
0798
0799 if (is_first_of_msg) {
0800 tegra_spi_clear_status(tspi);
0801
0802 command1 = tspi->def_command1_reg;
0803 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
0804
0805 command1 &= ~SPI_CONTROL_MODE_MASK;
0806 req_mode = spi->mode & 0x3;
0807 if (req_mode == SPI_MODE_0)
0808 command1 |= SPI_CONTROL_MODE_0;
0809 else if (req_mode == SPI_MODE_1)
0810 command1 |= SPI_CONTROL_MODE_1;
0811 else if (req_mode == SPI_MODE_2)
0812 command1 |= SPI_CONTROL_MODE_2;
0813 else if (req_mode == SPI_MODE_3)
0814 command1 |= SPI_CONTROL_MODE_3;
0815
0816 if (spi->mode & SPI_LSB_FIRST)
0817 command1 |= SPI_LSBIT_FE;
0818 else
0819 command1 &= ~SPI_LSBIT_FE;
0820
0821 if (spi->mode & SPI_3WIRE)
0822 command1 |= SPI_BIDIROE;
0823 else
0824 command1 &= ~SPI_BIDIROE;
0825
0826 if (tspi->cs_control) {
0827 if (tspi->cs_control != spi)
0828 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
0829 tspi->cs_control = NULL;
0830 } else
0831 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
0832
0833
0834 if (spi->cs_gpiod)
0835 gpiod_set_value(spi->cs_gpiod, 1);
0836
0837 if (is_single_xfer && !(t->cs_change)) {
0838 tspi->use_hw_based_cs = true;
0839 command1 &= ~(SPI_CS_SW_HW | SPI_CS_SW_VAL);
0840 } else {
0841 tspi->use_hw_based_cs = false;
0842 command1 |= SPI_CS_SW_HW;
0843 if (spi->mode & SPI_CS_HIGH)
0844 command1 |= SPI_CS_SW_VAL;
0845 else
0846 command1 &= ~SPI_CS_SW_VAL;
0847 }
0848
0849 if (tspi->last_used_cs != spi->chip_select) {
0850 if (cdata && cdata->tx_clk_tap_delay)
0851 tx_tap = cdata->tx_clk_tap_delay;
0852 if (cdata && cdata->rx_clk_tap_delay)
0853 rx_tap = cdata->rx_clk_tap_delay;
0854 command2 = SPI_TX_TAP_DELAY(tx_tap) |
0855 SPI_RX_TAP_DELAY(rx_tap);
0856 if (command2 != tspi->def_command2_reg)
0857 tegra_spi_writel(tspi, command2, SPI_COMMAND2);
0858 tspi->last_used_cs = spi->chip_select;
0859 }
0860
0861 } else {
0862 command1 = tspi->command1_reg;
0863 command1 &= ~SPI_BIT_LENGTH(~0);
0864 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
0865 }
0866
0867 return command1;
0868 }
0869
0870 static int tegra_spi_start_transfer_one(struct spi_device *spi,
0871 struct spi_transfer *t, u32 command1)
0872 {
0873 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
0874 unsigned total_fifo_words;
0875 int ret;
0876
0877 total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
0878
0879 if (t->rx_nbits == SPI_NBITS_DUAL || t->tx_nbits == SPI_NBITS_DUAL)
0880 command1 |= SPI_BOTH_EN_BIT;
0881 else
0882 command1 &= ~SPI_BOTH_EN_BIT;
0883
0884 if (tspi->is_packed)
0885 command1 |= SPI_PACKED;
0886 else
0887 command1 &= ~SPI_PACKED;
0888
0889 command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
0890 tspi->cur_direction = 0;
0891 if (t->rx_buf) {
0892 command1 |= SPI_RX_EN;
0893 tspi->cur_direction |= DATA_DIR_RX;
0894 }
0895 if (t->tx_buf) {
0896 command1 |= SPI_TX_EN;
0897 tspi->cur_direction |= DATA_DIR_TX;
0898 }
0899 command1 |= SPI_CS_SEL(spi->chip_select);
0900 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
0901 tspi->command1_reg = command1;
0902
0903 dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
0904 tspi->def_command1_reg, (unsigned)command1);
0905
0906 ret = tegra_spi_flush_fifos(tspi);
0907 if (ret < 0)
0908 return ret;
0909 if (total_fifo_words > SPI_FIFO_DEPTH)
0910 ret = tegra_spi_start_dma_based_transfer(tspi, t);
0911 else
0912 ret = tegra_spi_start_cpu_based_transfer(tspi, t);
0913 return ret;
0914 }
0915
0916 static struct tegra_spi_client_data
0917 *tegra_spi_parse_cdata_dt(struct spi_device *spi)
0918 {
0919 struct tegra_spi_client_data *cdata;
0920 struct device_node *slave_np;
0921
0922 slave_np = spi->dev.of_node;
0923 if (!slave_np) {
0924 dev_dbg(&spi->dev, "device node not found\n");
0925 return NULL;
0926 }
0927
0928 cdata = kzalloc(sizeof(*cdata), GFP_KERNEL);
0929 if (!cdata)
0930 return NULL;
0931
0932 of_property_read_u32(slave_np, "nvidia,tx-clk-tap-delay",
0933 &cdata->tx_clk_tap_delay);
0934 of_property_read_u32(slave_np, "nvidia,rx-clk-tap-delay",
0935 &cdata->rx_clk_tap_delay);
0936 return cdata;
0937 }
0938
0939 static void tegra_spi_cleanup(struct spi_device *spi)
0940 {
0941 struct tegra_spi_client_data *cdata = spi->controller_data;
0942
0943 spi->controller_data = NULL;
0944 if (spi->dev.of_node)
0945 kfree(cdata);
0946 }
0947
0948 static int tegra_spi_setup(struct spi_device *spi)
0949 {
0950 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
0951 struct tegra_spi_client_data *cdata = spi->controller_data;
0952 u32 val;
0953 unsigned long flags;
0954 int ret;
0955
0956 dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
0957 spi->bits_per_word,
0958 spi->mode & SPI_CPOL ? "" : "~",
0959 spi->mode & SPI_CPHA ? "" : "~",
0960 spi->max_speed_hz);
0961
0962 if (!cdata) {
0963 cdata = tegra_spi_parse_cdata_dt(spi);
0964 spi->controller_data = cdata;
0965 }
0966
0967 ret = pm_runtime_resume_and_get(tspi->dev);
0968 if (ret < 0) {
0969 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
0970 if (cdata)
0971 tegra_spi_cleanup(spi);
0972 return ret;
0973 }
0974
0975 if (tspi->soc_data->has_intr_mask_reg) {
0976 val = tegra_spi_readl(tspi, SPI_INTR_MASK);
0977 val &= ~SPI_INTR_ALL_MASK;
0978 tegra_spi_writel(tspi, val, SPI_INTR_MASK);
0979 }
0980
0981 spin_lock_irqsave(&tspi->lock, flags);
0982
0983 if (spi->cs_gpiod)
0984 gpiod_set_value(spi->cs_gpiod, 0);
0985
0986 val = tspi->def_command1_reg;
0987 if (spi->mode & SPI_CS_HIGH)
0988 val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
0989 else
0990 val |= SPI_CS_POL_INACTIVE(spi->chip_select);
0991 tspi->def_command1_reg = val;
0992 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
0993 spin_unlock_irqrestore(&tspi->lock, flags);
0994
0995 pm_runtime_put(tspi->dev);
0996 return 0;
0997 }
0998
0999 static void tegra_spi_transfer_end(struct spi_device *spi)
1000 {
1001 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
1002 int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1;
1003
1004
1005 if (spi->cs_gpiod)
1006 gpiod_set_value(spi->cs_gpiod, 0);
1007
1008 if (!tspi->use_hw_based_cs) {
1009 if (cs_val)
1010 tspi->command1_reg |= SPI_CS_SW_VAL;
1011 else
1012 tspi->command1_reg &= ~SPI_CS_SW_VAL;
1013 tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1014 }
1015
1016 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1017 }
1018
1019 static void tegra_spi_dump_regs(struct tegra_spi_data *tspi)
1020 {
1021 dev_dbg(tspi->dev, "============ SPI REGISTER DUMP ============\n");
1022 dev_dbg(tspi->dev, "Command1: 0x%08x | Command2: 0x%08x\n",
1023 tegra_spi_readl(tspi, SPI_COMMAND1),
1024 tegra_spi_readl(tspi, SPI_COMMAND2));
1025 dev_dbg(tspi->dev, "DMA_CTL: 0x%08x | DMA_BLK: 0x%08x\n",
1026 tegra_spi_readl(tspi, SPI_DMA_CTL),
1027 tegra_spi_readl(tspi, SPI_DMA_BLK));
1028 dev_dbg(tspi->dev, "TRANS_STAT: 0x%08x | FIFO_STATUS: 0x%08x\n",
1029 tegra_spi_readl(tspi, SPI_TRANS_STATUS),
1030 tegra_spi_readl(tspi, SPI_FIFO_STATUS));
1031 }
1032
1033 static int tegra_spi_transfer_one_message(struct spi_master *master,
1034 struct spi_message *msg)
1035 {
1036 bool is_first_msg = true;
1037 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1038 struct spi_transfer *xfer;
1039 struct spi_device *spi = msg->spi;
1040 int ret;
1041 bool skip = false;
1042 int single_xfer;
1043
1044 msg->status = 0;
1045 msg->actual_length = 0;
1046
1047 single_xfer = list_is_singular(&msg->transfers);
1048 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1049 u32 cmd1;
1050
1051 reinit_completion(&tspi->xfer_completion);
1052
1053 cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg,
1054 single_xfer);
1055
1056 if (!xfer->len) {
1057 ret = 0;
1058 skip = true;
1059 goto complete_xfer;
1060 }
1061
1062 ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
1063 if (ret < 0) {
1064 dev_err(tspi->dev,
1065 "spi can not start transfer, err %d\n", ret);
1066 goto complete_xfer;
1067 }
1068
1069 is_first_msg = false;
1070 ret = wait_for_completion_timeout(&tspi->xfer_completion,
1071 SPI_DMA_TIMEOUT);
1072 if (WARN_ON(ret == 0)) {
1073 dev_err(tspi->dev, "spi transfer timeout\n");
1074 if (tspi->is_curr_dma_xfer &&
1075 (tspi->cur_direction & DATA_DIR_TX))
1076 dmaengine_terminate_all(tspi->tx_dma_chan);
1077 if (tspi->is_curr_dma_xfer &&
1078 (tspi->cur_direction & DATA_DIR_RX))
1079 dmaengine_terminate_all(tspi->rx_dma_chan);
1080 ret = -EIO;
1081 tegra_spi_dump_regs(tspi);
1082 tegra_spi_flush_fifos(tspi);
1083 reset_control_assert(tspi->rst);
1084 udelay(2);
1085 reset_control_deassert(tspi->rst);
1086 tspi->last_used_cs = master->num_chipselect + 1;
1087 goto complete_xfer;
1088 }
1089
1090 if (tspi->tx_status || tspi->rx_status) {
1091 dev_err(tspi->dev, "Error in Transfer\n");
1092 ret = -EIO;
1093 tegra_spi_dump_regs(tspi);
1094 goto complete_xfer;
1095 }
1096 msg->actual_length += xfer->len;
1097
1098 complete_xfer:
1099 if (ret < 0 || skip) {
1100 tegra_spi_transfer_end(spi);
1101 spi_transfer_delay_exec(xfer);
1102 goto exit;
1103 } else if (list_is_last(&xfer->transfer_list,
1104 &msg->transfers)) {
1105 if (xfer->cs_change)
1106 tspi->cs_control = spi;
1107 else {
1108 tegra_spi_transfer_end(spi);
1109 spi_transfer_delay_exec(xfer);
1110 }
1111 } else if (xfer->cs_change) {
1112 tegra_spi_transfer_end(spi);
1113 spi_transfer_delay_exec(xfer);
1114 }
1115
1116 }
1117 ret = 0;
1118 exit:
1119 msg->status = ret;
1120 spi_finalize_current_message(master);
1121 return ret;
1122 }
1123
1124 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
1125 {
1126 struct spi_transfer *t = tspi->curr_xfer;
1127 unsigned long flags;
1128
1129 spin_lock_irqsave(&tspi->lock, flags);
1130 if (tspi->tx_status || tspi->rx_status) {
1131 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
1132 tspi->status_reg);
1133 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
1134 tspi->command1_reg, tspi->dma_control_reg);
1135 tegra_spi_dump_regs(tspi);
1136 tegra_spi_flush_fifos(tspi);
1137 complete(&tspi->xfer_completion);
1138 spin_unlock_irqrestore(&tspi->lock, flags);
1139 reset_control_assert(tspi->rst);
1140 udelay(2);
1141 reset_control_deassert(tspi->rst);
1142 return IRQ_HANDLED;
1143 }
1144
1145 if (tspi->cur_direction & DATA_DIR_RX)
1146 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
1147
1148 if (tspi->cur_direction & DATA_DIR_TX)
1149 tspi->cur_pos = tspi->cur_tx_pos;
1150 else
1151 tspi->cur_pos = tspi->cur_rx_pos;
1152
1153 if (tspi->cur_pos == t->len) {
1154 complete(&tspi->xfer_completion);
1155 goto exit;
1156 }
1157
1158 tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
1159 tegra_spi_start_cpu_based_transfer(tspi, t);
1160 exit:
1161 spin_unlock_irqrestore(&tspi->lock, flags);
1162 return IRQ_HANDLED;
1163 }
1164
1165 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
1166 {
1167 struct spi_transfer *t = tspi->curr_xfer;
1168 long wait_status;
1169 int err = 0;
1170 unsigned total_fifo_words;
1171 unsigned long flags;
1172
1173
1174 if (tspi->cur_direction & DATA_DIR_TX) {
1175 if (tspi->tx_status) {
1176 dmaengine_terminate_all(tspi->tx_dma_chan);
1177 err += 1;
1178 } else {
1179 wait_status = wait_for_completion_interruptible_timeout(
1180 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
1181 if (wait_status <= 0) {
1182 dmaengine_terminate_all(tspi->tx_dma_chan);
1183 dev_err(tspi->dev, "TxDma Xfer failed\n");
1184 err += 1;
1185 }
1186 }
1187 }
1188
1189 if (tspi->cur_direction & DATA_DIR_RX) {
1190 if (tspi->rx_status) {
1191 dmaengine_terminate_all(tspi->rx_dma_chan);
1192 err += 2;
1193 } else {
1194 wait_status = wait_for_completion_interruptible_timeout(
1195 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
1196 if (wait_status <= 0) {
1197 dmaengine_terminate_all(tspi->rx_dma_chan);
1198 dev_err(tspi->dev, "RxDma Xfer failed\n");
1199 err += 2;
1200 }
1201 }
1202 }
1203
1204 spin_lock_irqsave(&tspi->lock, flags);
1205 if (err) {
1206 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
1207 tspi->status_reg);
1208 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
1209 tspi->command1_reg, tspi->dma_control_reg);
1210 tegra_spi_dump_regs(tspi);
1211 tegra_spi_flush_fifos(tspi);
1212 complete(&tspi->xfer_completion);
1213 spin_unlock_irqrestore(&tspi->lock, flags);
1214 reset_control_assert(tspi->rst);
1215 udelay(2);
1216 reset_control_deassert(tspi->rst);
1217 return IRQ_HANDLED;
1218 }
1219
1220 if (tspi->cur_direction & DATA_DIR_RX)
1221 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
1222
1223 if (tspi->cur_direction & DATA_DIR_TX)
1224 tspi->cur_pos = tspi->cur_tx_pos;
1225 else
1226 tspi->cur_pos = tspi->cur_rx_pos;
1227
1228 if (tspi->cur_pos == t->len) {
1229 complete(&tspi->xfer_completion);
1230 goto exit;
1231 }
1232
1233
1234 total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
1235 tspi, t);
1236 if (total_fifo_words > SPI_FIFO_DEPTH)
1237 err = tegra_spi_start_dma_based_transfer(tspi, t);
1238 else
1239 err = tegra_spi_start_cpu_based_transfer(tspi, t);
1240
1241 exit:
1242 spin_unlock_irqrestore(&tspi->lock, flags);
1243 return IRQ_HANDLED;
1244 }
1245
1246 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
1247 {
1248 struct tegra_spi_data *tspi = context_data;
1249
1250 if (!tspi->is_curr_dma_xfer)
1251 return handle_cpu_based_xfer(tspi);
1252 return handle_dma_based_xfer(tspi);
1253 }
1254
1255 static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1256 {
1257 struct tegra_spi_data *tspi = context_data;
1258
1259 tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1260 if (tspi->cur_direction & DATA_DIR_TX)
1261 tspi->tx_status = tspi->status_reg &
1262 (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1263
1264 if (tspi->cur_direction & DATA_DIR_RX)
1265 tspi->rx_status = tspi->status_reg &
1266 (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1267 tegra_spi_clear_status(tspi);
1268
1269 return IRQ_WAKE_THREAD;
1270 }
1271
1272 static struct tegra_spi_soc_data tegra114_spi_soc_data = {
1273 .has_intr_mask_reg = false,
1274 };
1275
1276 static struct tegra_spi_soc_data tegra124_spi_soc_data = {
1277 .has_intr_mask_reg = false,
1278 };
1279
1280 static struct tegra_spi_soc_data tegra210_spi_soc_data = {
1281 .has_intr_mask_reg = true,
1282 };
1283
1284 static const struct of_device_id tegra_spi_of_match[] = {
1285 {
1286 .compatible = "nvidia,tegra114-spi",
1287 .data = &tegra114_spi_soc_data,
1288 }, {
1289 .compatible = "nvidia,tegra124-spi",
1290 .data = &tegra124_spi_soc_data,
1291 }, {
1292 .compatible = "nvidia,tegra210-spi",
1293 .data = &tegra210_spi_soc_data,
1294 },
1295 {}
1296 };
1297 MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1298
1299 static int tegra_spi_probe(struct platform_device *pdev)
1300 {
1301 struct spi_master *master;
1302 struct tegra_spi_data *tspi;
1303 struct resource *r;
1304 int ret, spi_irq;
1305 int bus_num;
1306
1307 master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1308 if (!master) {
1309 dev_err(&pdev->dev, "master allocation failed\n");
1310 return -ENOMEM;
1311 }
1312 platform_set_drvdata(pdev, master);
1313 tspi = spi_master_get_devdata(master);
1314
1315 if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
1316 &master->max_speed_hz))
1317 master->max_speed_hz = 25000000;
1318
1319
1320 master->use_gpio_descriptors = true;
1321 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
1322 SPI_TX_DUAL | SPI_RX_DUAL | SPI_3WIRE;
1323 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1324 master->setup = tegra_spi_setup;
1325 master->cleanup = tegra_spi_cleanup;
1326 master->transfer_one_message = tegra_spi_transfer_one_message;
1327 master->set_cs_timing = tegra_spi_set_hw_cs_timing;
1328 master->num_chipselect = MAX_CHIP_SELECT;
1329 master->auto_runtime_pm = true;
1330 bus_num = of_alias_get_id(pdev->dev.of_node, "spi");
1331 if (bus_num >= 0)
1332 master->bus_num = bus_num;
1333
1334 tspi->master = master;
1335 tspi->dev = &pdev->dev;
1336 spin_lock_init(&tspi->lock);
1337
1338 tspi->soc_data = of_device_get_match_data(&pdev->dev);
1339 if (!tspi->soc_data) {
1340 dev_err(&pdev->dev, "unsupported tegra\n");
1341 ret = -ENODEV;
1342 goto exit_free_master;
1343 }
1344
1345 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1346 tspi->base = devm_ioremap_resource(&pdev->dev, r);
1347 if (IS_ERR(tspi->base)) {
1348 ret = PTR_ERR(tspi->base);
1349 goto exit_free_master;
1350 }
1351 tspi->phys = r->start;
1352
1353 spi_irq = platform_get_irq(pdev, 0);
1354 if (spi_irq < 0) {
1355 ret = spi_irq;
1356 goto exit_free_master;
1357 }
1358 tspi->irq = spi_irq;
1359
1360 tspi->clk = devm_clk_get(&pdev->dev, "spi");
1361 if (IS_ERR(tspi->clk)) {
1362 dev_err(&pdev->dev, "can not get clock\n");
1363 ret = PTR_ERR(tspi->clk);
1364 goto exit_free_master;
1365 }
1366
1367 tspi->rst = devm_reset_control_get_exclusive(&pdev->dev, "spi");
1368 if (IS_ERR(tspi->rst)) {
1369 dev_err(&pdev->dev, "can not get reset\n");
1370 ret = PTR_ERR(tspi->rst);
1371 goto exit_free_master;
1372 }
1373
1374 tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1375 tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1376
1377 ret = tegra_spi_init_dma_param(tspi, true);
1378 if (ret < 0)
1379 goto exit_free_master;
1380 ret = tegra_spi_init_dma_param(tspi, false);
1381 if (ret < 0)
1382 goto exit_rx_dma_free;
1383 tspi->max_buf_size = tspi->dma_buf_size;
1384 init_completion(&tspi->tx_dma_complete);
1385 init_completion(&tspi->rx_dma_complete);
1386
1387 init_completion(&tspi->xfer_completion);
1388
1389 pm_runtime_enable(&pdev->dev);
1390 if (!pm_runtime_enabled(&pdev->dev)) {
1391 ret = tegra_spi_runtime_resume(&pdev->dev);
1392 if (ret)
1393 goto exit_pm_disable;
1394 }
1395
1396 ret = pm_runtime_resume_and_get(&pdev->dev);
1397 if (ret < 0) {
1398 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1399 goto exit_pm_disable;
1400 }
1401
1402 reset_control_assert(tspi->rst);
1403 udelay(2);
1404 reset_control_deassert(tspi->rst);
1405 tspi->def_command1_reg = SPI_M_S;
1406 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1407 tspi->spi_cs_timing1 = tegra_spi_readl(tspi, SPI_CS_TIMING1);
1408 tspi->spi_cs_timing2 = tegra_spi_readl(tspi, SPI_CS_TIMING2);
1409 tspi->def_command2_reg = tegra_spi_readl(tspi, SPI_COMMAND2);
1410 tspi->last_used_cs = master->num_chipselect + 1;
1411 pm_runtime_put(&pdev->dev);
1412 ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1413 tegra_spi_isr_thread, IRQF_ONESHOT,
1414 dev_name(&pdev->dev), tspi);
1415 if (ret < 0) {
1416 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1417 tspi->irq);
1418 goto exit_pm_disable;
1419 }
1420
1421 master->dev.of_node = pdev->dev.of_node;
1422 ret = devm_spi_register_master(&pdev->dev, master);
1423 if (ret < 0) {
1424 dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1425 goto exit_free_irq;
1426 }
1427 return ret;
1428
1429 exit_free_irq:
1430 free_irq(spi_irq, tspi);
1431 exit_pm_disable:
1432 pm_runtime_disable(&pdev->dev);
1433 if (!pm_runtime_status_suspended(&pdev->dev))
1434 tegra_spi_runtime_suspend(&pdev->dev);
1435 tegra_spi_deinit_dma_param(tspi, false);
1436 exit_rx_dma_free:
1437 tegra_spi_deinit_dma_param(tspi, true);
1438 exit_free_master:
1439 spi_master_put(master);
1440 return ret;
1441 }
1442
1443 static int tegra_spi_remove(struct platform_device *pdev)
1444 {
1445 struct spi_master *master = platform_get_drvdata(pdev);
1446 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1447
1448 free_irq(tspi->irq, tspi);
1449
1450 if (tspi->tx_dma_chan)
1451 tegra_spi_deinit_dma_param(tspi, false);
1452
1453 if (tspi->rx_dma_chan)
1454 tegra_spi_deinit_dma_param(tspi, true);
1455
1456 pm_runtime_disable(&pdev->dev);
1457 if (!pm_runtime_status_suspended(&pdev->dev))
1458 tegra_spi_runtime_suspend(&pdev->dev);
1459
1460 return 0;
1461 }
1462
1463 #ifdef CONFIG_PM_SLEEP
1464 static int tegra_spi_suspend(struct device *dev)
1465 {
1466 struct spi_master *master = dev_get_drvdata(dev);
1467
1468 return spi_master_suspend(master);
1469 }
1470
1471 static int tegra_spi_resume(struct device *dev)
1472 {
1473 struct spi_master *master = dev_get_drvdata(dev);
1474 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1475 int ret;
1476
1477 ret = pm_runtime_resume_and_get(dev);
1478 if (ret < 0) {
1479 dev_err(dev, "pm runtime failed, e = %d\n", ret);
1480 return ret;
1481 }
1482 tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1483 tegra_spi_writel(tspi, tspi->def_command2_reg, SPI_COMMAND2);
1484 tspi->last_used_cs = master->num_chipselect + 1;
1485 pm_runtime_put(dev);
1486
1487 return spi_master_resume(master);
1488 }
1489 #endif
1490
1491 static int tegra_spi_runtime_suspend(struct device *dev)
1492 {
1493 struct spi_master *master = dev_get_drvdata(dev);
1494 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1495
1496
1497 tegra_spi_readl(tspi, SPI_COMMAND1);
1498
1499 clk_disable_unprepare(tspi->clk);
1500 return 0;
1501 }
1502
1503 static int tegra_spi_runtime_resume(struct device *dev)
1504 {
1505 struct spi_master *master = dev_get_drvdata(dev);
1506 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1507 int ret;
1508
1509 ret = clk_prepare_enable(tspi->clk);
1510 if (ret < 0) {
1511 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1512 return ret;
1513 }
1514 return 0;
1515 }
1516
1517 static const struct dev_pm_ops tegra_spi_pm_ops = {
1518 SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1519 tegra_spi_runtime_resume, NULL)
1520 SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1521 };
1522 static struct platform_driver tegra_spi_driver = {
1523 .driver = {
1524 .name = "spi-tegra114",
1525 .pm = &tegra_spi_pm_ops,
1526 .of_match_table = tegra_spi_of_match,
1527 },
1528 .probe = tegra_spi_probe,
1529 .remove = tegra_spi_remove,
1530 };
1531 module_platform_driver(tegra_spi_driver);
1532
1533 MODULE_ALIAS("platform:spi-tegra114");
1534 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1535 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1536 MODULE_LICENSE("GPL v2");