Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 //
0003 // STMicroelectronics STM32 SPI Controller driver (master mode only)
0004 //
0005 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
0006 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
0007 
0008 #include <linux/bitfield.h>
0009 #include <linux/debugfs.h>
0010 #include <linux/clk.h>
0011 #include <linux/delay.h>
0012 #include <linux/dmaengine.h>
0013 #include <linux/interrupt.h>
0014 #include <linux/iopoll.h>
0015 #include <linux/module.h>
0016 #include <linux/of_platform.h>
0017 #include <linux/pinctrl/consumer.h>
0018 #include <linux/pm_runtime.h>
0019 #include <linux/reset.h>
0020 #include <linux/spi/spi.h>
0021 
0022 #define DRIVER_NAME "spi_stm32"
0023 
0024 /* STM32F4 SPI registers */
0025 #define STM32F4_SPI_CR1         0x00
0026 #define STM32F4_SPI_CR2         0x04
0027 #define STM32F4_SPI_SR          0x08
0028 #define STM32F4_SPI_DR          0x0C
0029 #define STM32F4_SPI_I2SCFGR     0x1C
0030 
0031 /* STM32F4_SPI_CR1 bit fields */
0032 #define STM32F4_SPI_CR1_CPHA        BIT(0)
0033 #define STM32F4_SPI_CR1_CPOL        BIT(1)
0034 #define STM32F4_SPI_CR1_MSTR        BIT(2)
0035 #define STM32F4_SPI_CR1_BR_SHIFT    3
0036 #define STM32F4_SPI_CR1_BR      GENMASK(5, 3)
0037 #define STM32F4_SPI_CR1_SPE     BIT(6)
0038 #define STM32F4_SPI_CR1_LSBFRST     BIT(7)
0039 #define STM32F4_SPI_CR1_SSI     BIT(8)
0040 #define STM32F4_SPI_CR1_SSM     BIT(9)
0041 #define STM32F4_SPI_CR1_RXONLY      BIT(10)
0042 #define STM32F4_SPI_CR1_DFF     BIT(11)
0043 #define STM32F4_SPI_CR1_CRCNEXT     BIT(12)
0044 #define STM32F4_SPI_CR1_CRCEN       BIT(13)
0045 #define STM32F4_SPI_CR1_BIDIOE      BIT(14)
0046 #define STM32F4_SPI_CR1_BIDIMODE    BIT(15)
0047 #define STM32F4_SPI_CR1_BR_MIN      0
0048 #define STM32F4_SPI_CR1_BR_MAX      (GENMASK(5, 3) >> 3)
0049 
0050 /* STM32F4_SPI_CR2 bit fields */
0051 #define STM32F4_SPI_CR2_RXDMAEN     BIT(0)
0052 #define STM32F4_SPI_CR2_TXDMAEN     BIT(1)
0053 #define STM32F4_SPI_CR2_SSOE        BIT(2)
0054 #define STM32F4_SPI_CR2_FRF     BIT(4)
0055 #define STM32F4_SPI_CR2_ERRIE       BIT(5)
0056 #define STM32F4_SPI_CR2_RXNEIE      BIT(6)
0057 #define STM32F4_SPI_CR2_TXEIE       BIT(7)
0058 
0059 /* STM32F4_SPI_SR bit fields */
0060 #define STM32F4_SPI_SR_RXNE     BIT(0)
0061 #define STM32F4_SPI_SR_TXE      BIT(1)
0062 #define STM32F4_SPI_SR_CHSIDE       BIT(2)
0063 #define STM32F4_SPI_SR_UDR      BIT(3)
0064 #define STM32F4_SPI_SR_CRCERR       BIT(4)
0065 #define STM32F4_SPI_SR_MODF     BIT(5)
0066 #define STM32F4_SPI_SR_OVR      BIT(6)
0067 #define STM32F4_SPI_SR_BSY      BIT(7)
0068 #define STM32F4_SPI_SR_FRE      BIT(8)
0069 
0070 /* STM32F4_SPI_I2SCFGR bit fields */
0071 #define STM32F4_SPI_I2SCFGR_I2SMOD  BIT(11)
0072 
0073 /* STM32F4 SPI Baud Rate min/max divisor */
0074 #define STM32F4_SPI_BR_DIV_MIN      (2 << STM32F4_SPI_CR1_BR_MIN)
0075 #define STM32F4_SPI_BR_DIV_MAX      (2 << STM32F4_SPI_CR1_BR_MAX)
0076 
0077 /* STM32H7 SPI registers */
0078 #define STM32H7_SPI_CR1         0x00
0079 #define STM32H7_SPI_CR2         0x04
0080 #define STM32H7_SPI_CFG1        0x08
0081 #define STM32H7_SPI_CFG2        0x0C
0082 #define STM32H7_SPI_IER         0x10
0083 #define STM32H7_SPI_SR          0x14
0084 #define STM32H7_SPI_IFCR        0x18
0085 #define STM32H7_SPI_TXDR        0x20
0086 #define STM32H7_SPI_RXDR        0x30
0087 #define STM32H7_SPI_I2SCFGR     0x50
0088 
0089 /* STM32H7_SPI_CR1 bit fields */
0090 #define STM32H7_SPI_CR1_SPE     BIT(0)
0091 #define STM32H7_SPI_CR1_MASRX       BIT(8)
0092 #define STM32H7_SPI_CR1_CSTART      BIT(9)
0093 #define STM32H7_SPI_CR1_CSUSP       BIT(10)
0094 #define STM32H7_SPI_CR1_HDDIR       BIT(11)
0095 #define STM32H7_SPI_CR1_SSI     BIT(12)
0096 
0097 /* STM32H7_SPI_CR2 bit fields */
0098 #define STM32H7_SPI_CR2_TSIZE       GENMASK(15, 0)
0099 #define STM32H7_SPI_TSIZE_MAX       GENMASK(15, 0)
0100 
0101 /* STM32H7_SPI_CFG1 bit fields */
0102 #define STM32H7_SPI_CFG1_DSIZE      GENMASK(4, 0)
0103 #define STM32H7_SPI_CFG1_FTHLV      GENMASK(8, 5)
0104 #define STM32H7_SPI_CFG1_RXDMAEN    BIT(14)
0105 #define STM32H7_SPI_CFG1_TXDMAEN    BIT(15)
0106 #define STM32H7_SPI_CFG1_MBR        GENMASK(30, 28)
0107 #define STM32H7_SPI_CFG1_MBR_SHIFT  28
0108 #define STM32H7_SPI_CFG1_MBR_MIN    0
0109 #define STM32H7_SPI_CFG1_MBR_MAX    (GENMASK(30, 28) >> 28)
0110 
0111 /* STM32H7_SPI_CFG2 bit fields */
0112 #define STM32H7_SPI_CFG2_MIDI       GENMASK(7, 4)
0113 #define STM32H7_SPI_CFG2_COMM       GENMASK(18, 17)
0114 #define STM32H7_SPI_CFG2_SP     GENMASK(21, 19)
0115 #define STM32H7_SPI_CFG2_MASTER     BIT(22)
0116 #define STM32H7_SPI_CFG2_LSBFRST    BIT(23)
0117 #define STM32H7_SPI_CFG2_CPHA       BIT(24)
0118 #define STM32H7_SPI_CFG2_CPOL       BIT(25)
0119 #define STM32H7_SPI_CFG2_SSM        BIT(26)
0120 #define STM32H7_SPI_CFG2_AFCNTR     BIT(31)
0121 
0122 /* STM32H7_SPI_IER bit fields */
0123 #define STM32H7_SPI_IER_RXPIE       BIT(0)
0124 #define STM32H7_SPI_IER_TXPIE       BIT(1)
0125 #define STM32H7_SPI_IER_DXPIE       BIT(2)
0126 #define STM32H7_SPI_IER_EOTIE       BIT(3)
0127 #define STM32H7_SPI_IER_TXTFIE      BIT(4)
0128 #define STM32H7_SPI_IER_OVRIE       BIT(6)
0129 #define STM32H7_SPI_IER_MODFIE      BIT(9)
0130 #define STM32H7_SPI_IER_ALL     GENMASK(10, 0)
0131 
0132 /* STM32H7_SPI_SR bit fields */
0133 #define STM32H7_SPI_SR_RXP      BIT(0)
0134 #define STM32H7_SPI_SR_TXP      BIT(1)
0135 #define STM32H7_SPI_SR_EOT      BIT(3)
0136 #define STM32H7_SPI_SR_OVR      BIT(6)
0137 #define STM32H7_SPI_SR_MODF     BIT(9)
0138 #define STM32H7_SPI_SR_SUSP     BIT(11)
0139 #define STM32H7_SPI_SR_RXPLVL       GENMASK(14, 13)
0140 #define STM32H7_SPI_SR_RXWNE        BIT(15)
0141 
0142 /* STM32H7_SPI_IFCR bit fields */
0143 #define STM32H7_SPI_IFCR_ALL        GENMASK(11, 3)
0144 
0145 /* STM32H7_SPI_I2SCFGR bit fields */
0146 #define STM32H7_SPI_I2SCFGR_I2SMOD  BIT(0)
0147 
0148 /* STM32H7 SPI Master Baud Rate min/max divisor */
0149 #define STM32H7_SPI_MBR_DIV_MIN     (2 << STM32H7_SPI_CFG1_MBR_MIN)
0150 #define STM32H7_SPI_MBR_DIV_MAX     (2 << STM32H7_SPI_CFG1_MBR_MAX)
0151 
0152 /* STM32H7 SPI Communication mode */
0153 #define STM32H7_SPI_FULL_DUPLEX     0
0154 #define STM32H7_SPI_SIMPLEX_TX      1
0155 #define STM32H7_SPI_SIMPLEX_RX      2
0156 #define STM32H7_SPI_HALF_DUPLEX     3
0157 
0158 /* SPI Communication type */
0159 #define SPI_FULL_DUPLEX     0
0160 #define SPI_SIMPLEX_TX      1
0161 #define SPI_SIMPLEX_RX      2
0162 #define SPI_3WIRE_TX        3
0163 #define SPI_3WIRE_RX        4
0164 
0165 #define STM32_SPI_AUTOSUSPEND_DELAY     1   /* 1 ms */
0166 
0167 /*
0168  * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
0169  * without fifo buffers.
0170  */
0171 #define SPI_DMA_MIN_BYTES   16
0172 
0173 /**
0174  * struct stm32_spi_reg - stm32 SPI register & bitfield desc
0175  * @reg:        register offset
0176  * @mask:       bitfield mask
0177  * @shift:      left shift
0178  */
0179 struct stm32_spi_reg {
0180     int reg;
0181     int mask;
0182     int shift;
0183 };
0184 
0185 /**
0186  * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
0187  * @en: enable register and SPI enable bit
0188  * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
0189  * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
0190  * @cpol: clock polarity register and polarity bit
0191  * @cpha: clock phase register and phase bit
0192  * @lsb_first: LSB transmitted first register and bit
0193  * @br: baud rate register and bitfields
0194  * @rx: SPI RX data register
0195  * @tx: SPI TX data register
0196  */
0197 struct stm32_spi_regspec {
0198     const struct stm32_spi_reg en;
0199     const struct stm32_spi_reg dma_rx_en;
0200     const struct stm32_spi_reg dma_tx_en;
0201     const struct stm32_spi_reg cpol;
0202     const struct stm32_spi_reg cpha;
0203     const struct stm32_spi_reg lsb_first;
0204     const struct stm32_spi_reg br;
0205     const struct stm32_spi_reg rx;
0206     const struct stm32_spi_reg tx;
0207 };
0208 
0209 struct stm32_spi;
0210 
0211 /**
0212  * struct stm32_spi_cfg - stm32 compatible configuration data
0213  * @regs: registers descriptions
0214  * @get_fifo_size: routine to get fifo size
0215  * @get_bpw_mask: routine to get bits per word mask
0216  * @disable: routine to disable controller
0217  * @config: routine to configure controller as SPI Master
0218  * @set_bpw: routine to configure registers to for bits per word
0219  * @set_mode: routine to configure registers to desired mode
0220  * @set_data_idleness: optional routine to configure registers to desired idle
0221  * time between frames (if driver has this functionality)
0222  * @set_number_of_data: optional routine to configure registers to desired
0223  * number of data (if driver has this functionality)
0224  * @transfer_one_dma_start: routine to start transfer a single spi_transfer
0225  * using DMA
0226  * @dma_rx_cb: routine to call after DMA RX channel operation is complete
0227  * @dma_tx_cb: routine to call after DMA TX channel operation is complete
0228  * @transfer_one_irq: routine to configure interrupts for driver
0229  * @irq_handler_event: Interrupt handler for SPI controller events
0230  * @irq_handler_thread: thread of interrupt handler for SPI controller
0231  * @baud_rate_div_min: minimum baud rate divisor
0232  * @baud_rate_div_max: maximum baud rate divisor
0233  * @has_fifo: boolean to know if fifo is used for driver
0234  * @flags: compatible specific SPI controller flags used at registration time
0235  */
0236 struct stm32_spi_cfg {
0237     const struct stm32_spi_regspec *regs;
0238     int (*get_fifo_size)(struct stm32_spi *spi);
0239     int (*get_bpw_mask)(struct stm32_spi *spi);
0240     void (*disable)(struct stm32_spi *spi);
0241     int (*config)(struct stm32_spi *spi);
0242     void (*set_bpw)(struct stm32_spi *spi);
0243     int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
0244     void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
0245     int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
0246     void (*transfer_one_dma_start)(struct stm32_spi *spi);
0247     void (*dma_rx_cb)(void *data);
0248     void (*dma_tx_cb)(void *data);
0249     int (*transfer_one_irq)(struct stm32_spi *spi);
0250     irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
0251     irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
0252     unsigned int baud_rate_div_min;
0253     unsigned int baud_rate_div_max;
0254     bool has_fifo;
0255     u16 flags;
0256 };
0257 
0258 /**
0259  * struct stm32_spi - private data of the SPI controller
0260  * @dev: driver model representation of the controller
0261  * @master: controller master interface
0262  * @cfg: compatible configuration data
0263  * @base: virtual memory area
0264  * @clk: hw kernel clock feeding the SPI clock generator
0265  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
0266  * @lock: prevent I/O concurrent access
0267  * @irq: SPI controller interrupt line
0268  * @fifo_size: size of the embedded fifo in bytes
0269  * @cur_midi: master inter-data idleness in ns
0270  * @cur_speed: speed configured in Hz
0271  * @cur_bpw: number of bits in a single SPI data frame
0272  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
0273  * @cur_comm: SPI communication mode
0274  * @cur_xferlen: current transfer length in bytes
0275  * @cur_usedma: boolean to know if dma is used in current transfer
0276  * @tx_buf: data to be written, or NULL
0277  * @rx_buf: data to be read, or NULL
0278  * @tx_len: number of data to be written in bytes
0279  * @rx_len: number of data to be read in bytes
0280  * @dma_tx: dma channel for TX transfer
0281  * @dma_rx: dma channel for RX transfer
0282  * @phys_addr: SPI registers physical base address
0283  */
0284 struct stm32_spi {
0285     struct device *dev;
0286     struct spi_master *master;
0287     const struct stm32_spi_cfg *cfg;
0288     void __iomem *base;
0289     struct clk *clk;
0290     u32 clk_rate;
0291     spinlock_t lock; /* prevent I/O concurrent access */
0292     int irq;
0293     unsigned int fifo_size;
0294 
0295     unsigned int cur_midi;
0296     unsigned int cur_speed;
0297     unsigned int cur_bpw;
0298     unsigned int cur_fthlv;
0299     unsigned int cur_comm;
0300     unsigned int cur_xferlen;
0301     bool cur_usedma;
0302 
0303     const void *tx_buf;
0304     void *rx_buf;
0305     int tx_len;
0306     int rx_len;
0307     struct dma_chan *dma_tx;
0308     struct dma_chan *dma_rx;
0309     dma_addr_t phys_addr;
0310 };
0311 
0312 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
0313     .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
0314 
0315     .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
0316     .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
0317 
0318     .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
0319     .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
0320     .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
0321     .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
0322 
0323     .rx = { STM32F4_SPI_DR },
0324     .tx = { STM32F4_SPI_DR },
0325 };
0326 
0327 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
0328     /* SPI data transfer is enabled but spi_ker_ck is idle.
0329      * CFG1 and CFG2 registers are write protected when SPE is enabled.
0330      */
0331     .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
0332 
0333     .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
0334     .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
0335 
0336     .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
0337     .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
0338     .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
0339     .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
0340         STM32H7_SPI_CFG1_MBR_SHIFT },
0341 
0342     .rx = { STM32H7_SPI_RXDR },
0343     .tx = { STM32H7_SPI_TXDR },
0344 };
0345 
0346 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
0347                       u32 offset, u32 bits)
0348 {
0349     writel_relaxed(readl_relaxed(spi->base + offset) | bits,
0350                spi->base + offset);
0351 }
0352 
0353 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
0354                       u32 offset, u32 bits)
0355 {
0356     writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
0357                spi->base + offset);
0358 }
0359 
0360 /**
0361  * stm32h7_spi_get_fifo_size - Return fifo size
0362  * @spi: pointer to the spi controller data structure
0363  */
0364 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
0365 {
0366     unsigned long flags;
0367     u32 count = 0;
0368 
0369     spin_lock_irqsave(&spi->lock, flags);
0370 
0371     stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
0372 
0373     while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
0374         writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
0375 
0376     stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
0377 
0378     spin_unlock_irqrestore(&spi->lock, flags);
0379 
0380     dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
0381 
0382     return count;
0383 }
0384 
0385 /**
0386  * stm32f4_spi_get_bpw_mask - Return bits per word mask
0387  * @spi: pointer to the spi controller data structure
0388  */
0389 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
0390 {
0391     dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
0392     return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
0393 }
0394 
0395 /**
0396  * stm32h7_spi_get_bpw_mask - Return bits per word mask
0397  * @spi: pointer to the spi controller data structure
0398  */
0399 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
0400 {
0401     unsigned long flags;
0402     u32 cfg1, max_bpw;
0403 
0404     spin_lock_irqsave(&spi->lock, flags);
0405 
0406     /*
0407      * The most significant bit at DSIZE bit field is reserved when the
0408      * maximum data size of periperal instances is limited to 16-bit
0409      */
0410     stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
0411 
0412     cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
0413     max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
0414 
0415     spin_unlock_irqrestore(&spi->lock, flags);
0416 
0417     dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
0418 
0419     return SPI_BPW_RANGE_MASK(4, max_bpw);
0420 }
0421 
0422 /**
0423  * stm32_spi_prepare_mbr - Determine baud rate divisor value
0424  * @spi: pointer to the spi controller data structure
0425  * @speed_hz: requested speed
0426  * @min_div: minimum baud rate divisor
0427  * @max_div: maximum baud rate divisor
0428  *
0429  * Return baud rate divisor value in case of success or -EINVAL
0430  */
0431 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
0432                  u32 min_div, u32 max_div)
0433 {
0434     u32 div, mbrdiv;
0435 
0436     /* Ensure spi->clk_rate is even */
0437     div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz);
0438 
0439     /*
0440      * SPI framework set xfer->speed_hz to master->max_speed_hz if
0441      * xfer->speed_hz is greater than master->max_speed_hz, and it returns
0442      * an error when xfer->speed_hz is lower than master->min_speed_hz, so
0443      * no need to check it there.
0444      * However, we need to ensure the following calculations.
0445      */
0446     if ((div < min_div) || (div > max_div))
0447         return -EINVAL;
0448 
0449     /* Determine the first power of 2 greater than or equal to div */
0450     if (div & (div - 1))
0451         mbrdiv = fls(div);
0452     else
0453         mbrdiv = fls(div) - 1;
0454 
0455     spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
0456 
0457     return mbrdiv - 1;
0458 }
0459 
0460 /**
0461  * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
0462  * @spi: pointer to the spi controller data structure
0463  * @xfer_len: length of the message to be transferred
0464  */
0465 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
0466 {
0467     u32 packet, bpw;
0468 
0469     /* data packet should not exceed 1/2 of fifo space */
0470     packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
0471 
0472     /* align packet size with data registers access */
0473     bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
0474     return DIV_ROUND_UP(packet, bpw);
0475 }
0476 
0477 /**
0478  * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
0479  * @spi: pointer to the spi controller data structure
0480  *
0481  * Read from tx_buf depends on remaining bytes to avoid to read beyond
0482  * tx_buf end.
0483  */
0484 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
0485 {
0486     if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
0487                   STM32F4_SPI_SR_TXE)) {
0488         u32 offs = spi->cur_xferlen - spi->tx_len;
0489 
0490         if (spi->cur_bpw == 16) {
0491             const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
0492 
0493             writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
0494             spi->tx_len -= sizeof(u16);
0495         } else {
0496             const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
0497 
0498             writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
0499             spi->tx_len -= sizeof(u8);
0500         }
0501     }
0502 
0503     dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
0504 }
0505 
0506 /**
0507  * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
0508  * @spi: pointer to the spi controller data structure
0509  *
0510  * Read from tx_buf depends on remaining bytes to avoid to read beyond
0511  * tx_buf end.
0512  */
0513 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
0514 {
0515     while ((spi->tx_len > 0) &&
0516                (readl_relaxed(spi->base + STM32H7_SPI_SR) &
0517             STM32H7_SPI_SR_TXP)) {
0518         u32 offs = spi->cur_xferlen - spi->tx_len;
0519 
0520         if (spi->tx_len >= sizeof(u32)) {
0521             const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
0522 
0523             writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
0524             spi->tx_len -= sizeof(u32);
0525         } else if (spi->tx_len >= sizeof(u16)) {
0526             const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
0527 
0528             writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
0529             spi->tx_len -= sizeof(u16);
0530         } else {
0531             const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
0532 
0533             writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
0534             spi->tx_len -= sizeof(u8);
0535         }
0536     }
0537 
0538     dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
0539 }
0540 
0541 /**
0542  * stm32f4_spi_read_rx - Read bytes from Receive Data Register
0543  * @spi: pointer to the spi controller data structure
0544  *
0545  * Write in rx_buf depends on remaining bytes to avoid to write beyond
0546  * rx_buf end.
0547  */
0548 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
0549 {
0550     if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
0551                   STM32F4_SPI_SR_RXNE)) {
0552         u32 offs = spi->cur_xferlen - spi->rx_len;
0553 
0554         if (spi->cur_bpw == 16) {
0555             u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
0556 
0557             *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
0558             spi->rx_len -= sizeof(u16);
0559         } else {
0560             u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
0561 
0562             *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
0563             spi->rx_len -= sizeof(u8);
0564         }
0565     }
0566 
0567     dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
0568 }
0569 
0570 /**
0571  * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
0572  * @spi: pointer to the spi controller data structure
0573  *
0574  * Write in rx_buf depends on remaining bytes to avoid to write beyond
0575  * rx_buf end.
0576  */
0577 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi)
0578 {
0579     u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
0580     u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
0581 
0582     while ((spi->rx_len > 0) &&
0583            ((sr & STM32H7_SPI_SR_RXP) ||
0584         ((sr & STM32H7_SPI_SR_EOT) &&
0585          ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
0586         u32 offs = spi->cur_xferlen - spi->rx_len;
0587 
0588         if ((spi->rx_len >= sizeof(u32)) ||
0589             (sr & STM32H7_SPI_SR_RXWNE)) {
0590             u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
0591 
0592             *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
0593             spi->rx_len -= sizeof(u32);
0594         } else if ((spi->rx_len >= sizeof(u16)) ||
0595                (!(sr & STM32H7_SPI_SR_RXWNE) &&
0596                 (rxplvl >= 2 || spi->cur_bpw > 8))) {
0597             u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
0598 
0599             *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
0600             spi->rx_len -= sizeof(u16);
0601         } else {
0602             u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
0603 
0604             *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
0605             spi->rx_len -= sizeof(u8);
0606         }
0607 
0608         sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
0609         rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
0610     }
0611 
0612     dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n",
0613         __func__, spi->rx_len, sr);
0614 }
0615 
0616 /**
0617  * stm32_spi_enable - Enable SPI controller
0618  * @spi: pointer to the spi controller data structure
0619  */
0620 static void stm32_spi_enable(struct stm32_spi *spi)
0621 {
0622     dev_dbg(spi->dev, "enable controller\n");
0623 
0624     stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
0625                spi->cfg->regs->en.mask);
0626 }
0627 
0628 /**
0629  * stm32f4_spi_disable - Disable SPI controller
0630  * @spi: pointer to the spi controller data structure
0631  */
0632 static void stm32f4_spi_disable(struct stm32_spi *spi)
0633 {
0634     unsigned long flags;
0635     u32 sr;
0636 
0637     dev_dbg(spi->dev, "disable controller\n");
0638 
0639     spin_lock_irqsave(&spi->lock, flags);
0640 
0641     if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
0642           STM32F4_SPI_CR1_SPE)) {
0643         spin_unlock_irqrestore(&spi->lock, flags);
0644         return;
0645     }
0646 
0647     /* Disable interrupts */
0648     stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
0649                          STM32F4_SPI_CR2_RXNEIE |
0650                          STM32F4_SPI_CR2_ERRIE);
0651 
0652     /* Wait until BSY = 0 */
0653     if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
0654                           sr, !(sr & STM32F4_SPI_SR_BSY),
0655                           10, 100000) < 0) {
0656         dev_warn(spi->dev, "disabling condition timeout\n");
0657     }
0658 
0659     if (spi->cur_usedma && spi->dma_tx)
0660         dmaengine_terminate_all(spi->dma_tx);
0661     if (spi->cur_usedma && spi->dma_rx)
0662         dmaengine_terminate_all(spi->dma_rx);
0663 
0664     stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
0665 
0666     stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
0667                          STM32F4_SPI_CR2_RXDMAEN);
0668 
0669     /* Sequence to clear OVR flag */
0670     readl_relaxed(spi->base + STM32F4_SPI_DR);
0671     readl_relaxed(spi->base + STM32F4_SPI_SR);
0672 
0673     spin_unlock_irqrestore(&spi->lock, flags);
0674 }
0675 
0676 /**
0677  * stm32h7_spi_disable - Disable SPI controller
0678  * @spi: pointer to the spi controller data structure
0679  *
0680  * RX-Fifo is flushed when SPI controller is disabled.
0681  */
0682 static void stm32h7_spi_disable(struct stm32_spi *spi)
0683 {
0684     unsigned long flags;
0685     u32 cr1;
0686 
0687     dev_dbg(spi->dev, "disable controller\n");
0688 
0689     spin_lock_irqsave(&spi->lock, flags);
0690 
0691     cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
0692 
0693     if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
0694         spin_unlock_irqrestore(&spi->lock, flags);
0695         return;
0696     }
0697 
0698     if (spi->cur_usedma && spi->dma_tx)
0699         dmaengine_terminate_all(spi->dma_tx);
0700     if (spi->cur_usedma && spi->dma_rx)
0701         dmaengine_terminate_all(spi->dma_rx);
0702 
0703     stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
0704 
0705     stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
0706                         STM32H7_SPI_CFG1_RXDMAEN);
0707 
0708     /* Disable interrupts and clear status flags */
0709     writel_relaxed(0, spi->base + STM32H7_SPI_IER);
0710     writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
0711 
0712     spin_unlock_irqrestore(&spi->lock, flags);
0713 }
0714 
0715 /**
0716  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
0717  * @master: controller master interface
0718  * @spi_dev: pointer to the spi device
0719  * @transfer: pointer to spi transfer
0720  *
0721  * If driver has fifo and the current transfer size is greater than fifo size,
0722  * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
0723  */
0724 static bool stm32_spi_can_dma(struct spi_master *master,
0725                   struct spi_device *spi_dev,
0726                   struct spi_transfer *transfer)
0727 {
0728     unsigned int dma_size;
0729     struct stm32_spi *spi = spi_master_get_devdata(master);
0730 
0731     if (spi->cfg->has_fifo)
0732         dma_size = spi->fifo_size;
0733     else
0734         dma_size = SPI_DMA_MIN_BYTES;
0735 
0736     dev_dbg(spi->dev, "%s: %s\n", __func__,
0737         (transfer->len > dma_size) ? "true" : "false");
0738 
0739     return (transfer->len > dma_size);
0740 }
0741 
0742 /**
0743  * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
0744  * @irq: interrupt line
0745  * @dev_id: SPI controller master interface
0746  */
0747 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
0748 {
0749     struct spi_master *master = dev_id;
0750     struct stm32_spi *spi = spi_master_get_devdata(master);
0751     u32 sr, mask = 0;
0752     bool end = false;
0753 
0754     spin_lock(&spi->lock);
0755 
0756     sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
0757     /*
0758      * BSY flag is not handled in interrupt but it is normal behavior when
0759      * this flag is set.
0760      */
0761     sr &= ~STM32F4_SPI_SR_BSY;
0762 
0763     if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
0764                  spi->cur_comm == SPI_3WIRE_TX)) {
0765         /* OVR flag shouldn't be handled for TX only mode */
0766         sr &= ~(STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE);
0767         mask |= STM32F4_SPI_SR_TXE;
0768     }
0769 
0770     if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
0771                 spi->cur_comm == SPI_SIMPLEX_RX ||
0772                 spi->cur_comm == SPI_3WIRE_RX)) {
0773         /* TXE flag is set and is handled when RXNE flag occurs */
0774         sr &= ~STM32F4_SPI_SR_TXE;
0775         mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
0776     }
0777 
0778     if (!(sr & mask)) {
0779         dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
0780         spin_unlock(&spi->lock);
0781         return IRQ_NONE;
0782     }
0783 
0784     if (sr & STM32F4_SPI_SR_OVR) {
0785         dev_warn(spi->dev, "Overrun: received value discarded\n");
0786 
0787         /* Sequence to clear OVR flag */
0788         readl_relaxed(spi->base + STM32F4_SPI_DR);
0789         readl_relaxed(spi->base + STM32F4_SPI_SR);
0790 
0791         /*
0792          * If overrun is detected, it means that something went wrong,
0793          * so stop the current transfer. Transfer can wait for next
0794          * RXNE but DR is already read and end never happens.
0795          */
0796         end = true;
0797         goto end_irq;
0798     }
0799 
0800     if (sr & STM32F4_SPI_SR_TXE) {
0801         if (spi->tx_buf)
0802             stm32f4_spi_write_tx(spi);
0803         if (spi->tx_len == 0)
0804             end = true;
0805     }
0806 
0807     if (sr & STM32F4_SPI_SR_RXNE) {
0808         stm32f4_spi_read_rx(spi);
0809         if (spi->rx_len == 0)
0810             end = true;
0811         else if (spi->tx_buf)/* Load data for discontinuous mode */
0812             stm32f4_spi_write_tx(spi);
0813     }
0814 
0815 end_irq:
0816     if (end) {
0817         /* Immediately disable interrupts to do not generate new one */
0818         stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
0819                     STM32F4_SPI_CR2_TXEIE |
0820                     STM32F4_SPI_CR2_RXNEIE |
0821                     STM32F4_SPI_CR2_ERRIE);
0822         spin_unlock(&spi->lock);
0823         return IRQ_WAKE_THREAD;
0824     }
0825 
0826     spin_unlock(&spi->lock);
0827     return IRQ_HANDLED;
0828 }
0829 
0830 /**
0831  * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
0832  * @irq: interrupt line
0833  * @dev_id: SPI controller master interface
0834  */
0835 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
0836 {
0837     struct spi_master *master = dev_id;
0838     struct stm32_spi *spi = spi_master_get_devdata(master);
0839 
0840     spi_finalize_current_transfer(master);
0841     stm32f4_spi_disable(spi);
0842 
0843     return IRQ_HANDLED;
0844 }
0845 
0846 /**
0847  * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
0848  * @irq: interrupt line
0849  * @dev_id: SPI controller master interface
0850  */
0851 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
0852 {
0853     struct spi_master *master = dev_id;
0854     struct stm32_spi *spi = spi_master_get_devdata(master);
0855     u32 sr, ier, mask;
0856     unsigned long flags;
0857     bool end = false;
0858 
0859     spin_lock_irqsave(&spi->lock, flags);
0860 
0861     sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
0862     ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
0863 
0864     mask = ier;
0865     /*
0866      * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
0867      * SUSP to acknowledge it later. TXC is automatically cleared
0868      */
0869 
0870     mask |= STM32H7_SPI_SR_SUSP;
0871     /*
0872      * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
0873      * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
0874      */
0875     if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
0876         mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
0877 
0878     if (!(sr & mask)) {
0879         dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
0880              sr, ier);
0881         spin_unlock_irqrestore(&spi->lock, flags);
0882         return IRQ_NONE;
0883     }
0884 
0885     if (sr & STM32H7_SPI_SR_SUSP) {
0886         static DEFINE_RATELIMIT_STATE(rs,
0887                           DEFAULT_RATELIMIT_INTERVAL * 10,
0888                           1);
0889         if (__ratelimit(&rs))
0890             dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
0891         if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
0892             stm32h7_spi_read_rxfifo(spi);
0893         /*
0894          * If communication is suspended while using DMA, it means
0895          * that something went wrong, so stop the current transfer
0896          */
0897         if (spi->cur_usedma)
0898             end = true;
0899     }
0900 
0901     if (sr & STM32H7_SPI_SR_MODF) {
0902         dev_warn(spi->dev, "Mode fault: transfer aborted\n");
0903         end = true;
0904     }
0905 
0906     if (sr & STM32H7_SPI_SR_OVR) {
0907         dev_err(spi->dev, "Overrun: RX data lost\n");
0908         end = true;
0909     }
0910 
0911     if (sr & STM32H7_SPI_SR_EOT) {
0912         if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
0913             stm32h7_spi_read_rxfifo(spi);
0914         if (!spi->cur_usedma ||
0915             (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX))
0916             end = true;
0917     }
0918 
0919     if (sr & STM32H7_SPI_SR_TXP)
0920         if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
0921             stm32h7_spi_write_txfifo(spi);
0922 
0923     if (sr & STM32H7_SPI_SR_RXP)
0924         if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
0925             stm32h7_spi_read_rxfifo(spi);
0926 
0927     writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
0928 
0929     spin_unlock_irqrestore(&spi->lock, flags);
0930 
0931     if (end) {
0932         stm32h7_spi_disable(spi);
0933         spi_finalize_current_transfer(master);
0934     }
0935 
0936     return IRQ_HANDLED;
0937 }
0938 
0939 /**
0940  * stm32_spi_prepare_msg - set up the controller to transfer a single message
0941  * @master: controller master interface
0942  * @msg: pointer to spi message
0943  */
0944 static int stm32_spi_prepare_msg(struct spi_master *master,
0945                  struct spi_message *msg)
0946 {
0947     struct stm32_spi *spi = spi_master_get_devdata(master);
0948     struct spi_device *spi_dev = msg->spi;
0949     struct device_node *np = spi_dev->dev.of_node;
0950     unsigned long flags;
0951     u32 clrb = 0, setb = 0;
0952 
0953     /* SPI slave device may need time between data frames */
0954     spi->cur_midi = 0;
0955     if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
0956         dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
0957 
0958     if (spi_dev->mode & SPI_CPOL)
0959         setb |= spi->cfg->regs->cpol.mask;
0960     else
0961         clrb |= spi->cfg->regs->cpol.mask;
0962 
0963     if (spi_dev->mode & SPI_CPHA)
0964         setb |= spi->cfg->regs->cpha.mask;
0965     else
0966         clrb |= spi->cfg->regs->cpha.mask;
0967 
0968     if (spi_dev->mode & SPI_LSB_FIRST)
0969         setb |= spi->cfg->regs->lsb_first.mask;
0970     else
0971         clrb |= spi->cfg->regs->lsb_first.mask;
0972 
0973     dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
0974         !!(spi_dev->mode & SPI_CPOL),
0975         !!(spi_dev->mode & SPI_CPHA),
0976         !!(spi_dev->mode & SPI_LSB_FIRST),
0977         !!(spi_dev->mode & SPI_CS_HIGH));
0978 
0979     /* On STM32H7, messages should not exceed a maximum size setted
0980      * afterward via the set_number_of_data function. In order to
0981      * ensure that, split large messages into several messages
0982      */
0983     if (spi->cfg->set_number_of_data) {
0984         int ret;
0985 
0986         ret = spi_split_transfers_maxsize(master, msg,
0987                           STM32H7_SPI_TSIZE_MAX,
0988                           GFP_KERNEL | GFP_DMA);
0989         if (ret)
0990             return ret;
0991     }
0992 
0993     spin_lock_irqsave(&spi->lock, flags);
0994 
0995     /* CPOL, CPHA and LSB FIRST bits have common register */
0996     if (clrb || setb)
0997         writel_relaxed(
0998             (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
0999              ~clrb) | setb,
1000             spi->base + spi->cfg->regs->cpol.reg);
1001 
1002     spin_unlock_irqrestore(&spi->lock, flags);
1003 
1004     return 0;
1005 }
1006 
1007 /**
1008  * stm32f4_spi_dma_tx_cb - dma callback
1009  * @data: pointer to the spi controller data structure
1010  *
1011  * DMA callback is called when the transfer is complete for DMA TX channel.
1012  */
1013 static void stm32f4_spi_dma_tx_cb(void *data)
1014 {
1015     struct stm32_spi *spi = data;
1016 
1017     if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1018         spi_finalize_current_transfer(spi->master);
1019         stm32f4_spi_disable(spi);
1020     }
1021 }
1022 
1023 /**
1024  * stm32_spi_dma_rx_cb - dma callback
1025  * @data: pointer to the spi controller data structure
1026  *
1027  * DMA callback is called when the transfer is complete for DMA RX channel.
1028  */
1029 static void stm32_spi_dma_rx_cb(void *data)
1030 {
1031     struct stm32_spi *spi = data;
1032 
1033     spi_finalize_current_transfer(spi->master);
1034     spi->cfg->disable(spi);
1035 }
1036 
1037 /**
1038  * stm32_spi_dma_config - configure dma slave channel depending on current
1039  *            transfer bits_per_word.
1040  * @spi: pointer to the spi controller data structure
1041  * @dma_conf: pointer to the dma_slave_config structure
1042  * @dir: direction of the dma transfer
1043  */
1044 static void stm32_spi_dma_config(struct stm32_spi *spi,
1045                  struct dma_slave_config *dma_conf,
1046                  enum dma_transfer_direction dir)
1047 {
1048     enum dma_slave_buswidth buswidth;
1049     u32 maxburst;
1050 
1051     if (spi->cur_bpw <= 8)
1052         buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1053     else if (spi->cur_bpw <= 16)
1054         buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1055     else
1056         buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1057 
1058     if (spi->cfg->has_fifo) {
1059         /* Valid for DMA Half or Full Fifo threshold */
1060         if (spi->cur_fthlv == 2)
1061             maxburst = 1;
1062         else
1063             maxburst = spi->cur_fthlv;
1064     } else {
1065         maxburst = 1;
1066     }
1067 
1068     memset(dma_conf, 0, sizeof(struct dma_slave_config));
1069     dma_conf->direction = dir;
1070     if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1071         dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1072         dma_conf->src_addr_width = buswidth;
1073         dma_conf->src_maxburst = maxburst;
1074 
1075         dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1076             buswidth, maxburst);
1077     } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1078         dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1079         dma_conf->dst_addr_width = buswidth;
1080         dma_conf->dst_maxburst = maxburst;
1081 
1082         dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1083             buswidth, maxburst);
1084     }
1085 }
1086 
1087 /**
1088  * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1089  *                interrupts
1090  * @spi: pointer to the spi controller data structure
1091  *
1092  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1093  * in progress.
1094  */
1095 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1096 {
1097     unsigned long flags;
1098     u32 cr2 = 0;
1099 
1100     /* Enable the interrupts relative to the current communication mode */
1101     if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1102         cr2 |= STM32F4_SPI_CR2_TXEIE;
1103     } else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1104                 spi->cur_comm == SPI_SIMPLEX_RX ||
1105                 spi->cur_comm == SPI_3WIRE_RX) {
1106         /* In transmit-only mode, the OVR flag is set in the SR register
1107          * since the received data are never read. Therefore set OVR
1108          * interrupt only when rx buffer is available.
1109          */
1110         cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1111     } else {
1112         return -EINVAL;
1113     }
1114 
1115     spin_lock_irqsave(&spi->lock, flags);
1116 
1117     stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1118 
1119     stm32_spi_enable(spi);
1120 
1121     /* starting data transfer when buffer is loaded */
1122     if (spi->tx_buf)
1123         stm32f4_spi_write_tx(spi);
1124 
1125     spin_unlock_irqrestore(&spi->lock, flags);
1126 
1127     return 1;
1128 }
1129 
1130 /**
1131  * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1132  *                interrupts
1133  * @spi: pointer to the spi controller data structure
1134  *
1135  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1136  * in progress.
1137  */
1138 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1139 {
1140     unsigned long flags;
1141     u32 ier = 0;
1142 
1143     /* Enable the interrupts relative to the current communication mode */
1144     if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1145         ier |= STM32H7_SPI_IER_DXPIE;
1146     else if (spi->tx_buf)       /* Half-Duplex TX dir or Simplex TX */
1147         ier |= STM32H7_SPI_IER_TXPIE;
1148     else if (spi->rx_buf)       /* Half-Duplex RX dir or Simplex RX */
1149         ier |= STM32H7_SPI_IER_RXPIE;
1150 
1151     /* Enable the interrupts relative to the end of transfer */
1152     ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1153            STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1154 
1155     spin_lock_irqsave(&spi->lock, flags);
1156 
1157     stm32_spi_enable(spi);
1158 
1159     /* Be sure to have data in fifo before starting data transfer */
1160     if (spi->tx_buf)
1161         stm32h7_spi_write_txfifo(spi);
1162 
1163     stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1164 
1165     writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1166 
1167     spin_unlock_irqrestore(&spi->lock, flags);
1168 
1169     return 1;
1170 }
1171 
1172 /**
1173  * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1174  *                  transfer using DMA
1175  * @spi: pointer to the spi controller data structure
1176  */
1177 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1178 {
1179     /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1180     if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1181         spi->cur_comm == SPI_FULL_DUPLEX) {
1182         /*
1183          * In transmit-only mode, the OVR flag is set in the SR register
1184          * since the received data are never read. Therefore set OVR
1185          * interrupt only when rx buffer is available.
1186          */
1187         stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1188     }
1189 
1190     stm32_spi_enable(spi);
1191 }
1192 
1193 /**
1194  * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1195  *                  transfer using DMA
1196  * @spi: pointer to the spi controller data structure
1197  */
1198 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1199 {
1200     uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1201 
1202     /* Enable the interrupts */
1203     if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)
1204         ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE;
1205 
1206     stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier);
1207 
1208     stm32_spi_enable(spi);
1209 
1210     stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1211 }
1212 
1213 /**
1214  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1215  * @spi: pointer to the spi controller data structure
1216  * @xfer: pointer to the spi_transfer structure
1217  *
1218  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1219  * in progress.
1220  */
1221 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1222                       struct spi_transfer *xfer)
1223 {
1224     struct dma_slave_config tx_dma_conf, rx_dma_conf;
1225     struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1226     unsigned long flags;
1227 
1228     spin_lock_irqsave(&spi->lock, flags);
1229 
1230     rx_dma_desc = NULL;
1231     if (spi->rx_buf && spi->dma_rx) {
1232         stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1233         dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1234 
1235         /* Enable Rx DMA request */
1236         stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1237                    spi->cfg->regs->dma_rx_en.mask);
1238 
1239         rx_dma_desc = dmaengine_prep_slave_sg(
1240                     spi->dma_rx, xfer->rx_sg.sgl,
1241                     xfer->rx_sg.nents,
1242                     rx_dma_conf.direction,
1243                     DMA_PREP_INTERRUPT);
1244     }
1245 
1246     tx_dma_desc = NULL;
1247     if (spi->tx_buf && spi->dma_tx) {
1248         stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1249         dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1250 
1251         tx_dma_desc = dmaengine_prep_slave_sg(
1252                     spi->dma_tx, xfer->tx_sg.sgl,
1253                     xfer->tx_sg.nents,
1254                     tx_dma_conf.direction,
1255                     DMA_PREP_INTERRUPT);
1256     }
1257 
1258     if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1259         (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1260         goto dma_desc_error;
1261 
1262     if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1263         goto dma_desc_error;
1264 
1265     if (rx_dma_desc) {
1266         rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1267         rx_dma_desc->callback_param = spi;
1268 
1269         if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1270             dev_err(spi->dev, "Rx DMA submit failed\n");
1271             goto dma_desc_error;
1272         }
1273         /* Enable Rx DMA channel */
1274         dma_async_issue_pending(spi->dma_rx);
1275     }
1276 
1277     if (tx_dma_desc) {
1278         if (spi->cur_comm == SPI_SIMPLEX_TX ||
1279             spi->cur_comm == SPI_3WIRE_TX) {
1280             tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1281             tx_dma_desc->callback_param = spi;
1282         }
1283 
1284         if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1285             dev_err(spi->dev, "Tx DMA submit failed\n");
1286             goto dma_submit_error;
1287         }
1288         /* Enable Tx DMA channel */
1289         dma_async_issue_pending(spi->dma_tx);
1290 
1291         /* Enable Tx DMA request */
1292         stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1293                    spi->cfg->regs->dma_tx_en.mask);
1294     }
1295 
1296     spi->cfg->transfer_one_dma_start(spi);
1297 
1298     spin_unlock_irqrestore(&spi->lock, flags);
1299 
1300     return 1;
1301 
1302 dma_submit_error:
1303     if (spi->dma_rx)
1304         dmaengine_terminate_all(spi->dma_rx);
1305 
1306 dma_desc_error:
1307     stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1308                spi->cfg->regs->dma_rx_en.mask);
1309 
1310     spin_unlock_irqrestore(&spi->lock, flags);
1311 
1312     dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1313 
1314     spi->cur_usedma = false;
1315     return spi->cfg->transfer_one_irq(spi);
1316 }
1317 
1318 /**
1319  * stm32f4_spi_set_bpw - Configure bits per word
1320  * @spi: pointer to the spi controller data structure
1321  */
1322 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1323 {
1324     if (spi->cur_bpw == 16)
1325         stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1326     else
1327         stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1328 }
1329 
1330 /**
1331  * stm32h7_spi_set_bpw - configure bits per word
1332  * @spi: pointer to the spi controller data structure
1333  */
1334 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1335 {
1336     u32 bpw, fthlv;
1337     u32 cfg1_clrb = 0, cfg1_setb = 0;
1338 
1339     bpw = spi->cur_bpw - 1;
1340 
1341     cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1342     cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
1343 
1344     spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1345     fthlv = spi->cur_fthlv - 1;
1346 
1347     cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1348     cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
1349 
1350     writel_relaxed(
1351         (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1352          ~cfg1_clrb) | cfg1_setb,
1353         spi->base + STM32H7_SPI_CFG1);
1354 }
1355 
1356 /**
1357  * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1358  * @spi: pointer to the spi controller data structure
1359  * @mbrdiv: baud rate divisor value
1360  */
1361 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1362 {
1363     u32 clrb = 0, setb = 0;
1364 
1365     clrb |= spi->cfg->regs->br.mask;
1366     setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
1367 
1368     writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1369             ~clrb) | setb,
1370                spi->base + spi->cfg->regs->br.reg);
1371 }
1372 
1373 /**
1374  * stm32_spi_communication_type - return transfer communication type
1375  * @spi_dev: pointer to the spi device
1376  * @transfer: pointer to spi transfer
1377  */
1378 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1379                          struct spi_transfer *transfer)
1380 {
1381     unsigned int type = SPI_FULL_DUPLEX;
1382 
1383     if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1384         /*
1385          * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1386          * is forbidden and unvalidated by SPI subsystem so depending
1387          * on the valid buffer, we can determine the direction of the
1388          * transfer.
1389          */
1390         if (!transfer->tx_buf)
1391             type = SPI_3WIRE_RX;
1392         else
1393             type = SPI_3WIRE_TX;
1394     } else {
1395         if (!transfer->tx_buf)
1396             type = SPI_SIMPLEX_RX;
1397         else if (!transfer->rx_buf)
1398             type = SPI_SIMPLEX_TX;
1399     }
1400 
1401     return type;
1402 }
1403 
1404 /**
1405  * stm32f4_spi_set_mode - configure communication mode
1406  * @spi: pointer to the spi controller data structure
1407  * @comm_type: type of communication to configure
1408  */
1409 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1410 {
1411     if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1412         stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1413                     STM32F4_SPI_CR1_BIDIMODE |
1414                     STM32F4_SPI_CR1_BIDIOE);
1415     } else if (comm_type == SPI_FULL_DUPLEX ||
1416                 comm_type == SPI_SIMPLEX_RX) {
1417         stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1418                     STM32F4_SPI_CR1_BIDIMODE |
1419                     STM32F4_SPI_CR1_BIDIOE);
1420     } else if (comm_type == SPI_3WIRE_RX) {
1421         stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1422                     STM32F4_SPI_CR1_BIDIMODE);
1423         stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1424                     STM32F4_SPI_CR1_BIDIOE);
1425     } else {
1426         return -EINVAL;
1427     }
1428 
1429     return 0;
1430 }
1431 
1432 /**
1433  * stm32h7_spi_set_mode - configure communication mode
1434  * @spi: pointer to the spi controller data structure
1435  * @comm_type: type of communication to configure
1436  */
1437 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1438 {
1439     u32 mode;
1440     u32 cfg2_clrb = 0, cfg2_setb = 0;
1441 
1442     if (comm_type == SPI_3WIRE_RX) {
1443         mode = STM32H7_SPI_HALF_DUPLEX;
1444         stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1445     } else if (comm_type == SPI_3WIRE_TX) {
1446         mode = STM32H7_SPI_HALF_DUPLEX;
1447         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1448     } else if (comm_type == SPI_SIMPLEX_RX) {
1449         mode = STM32H7_SPI_SIMPLEX_RX;
1450     } else if (comm_type == SPI_SIMPLEX_TX) {
1451         mode = STM32H7_SPI_SIMPLEX_TX;
1452     } else {
1453         mode = STM32H7_SPI_FULL_DUPLEX;
1454     }
1455 
1456     cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1457     cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
1458 
1459     writel_relaxed(
1460         (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1461          ~cfg2_clrb) | cfg2_setb,
1462         spi->base + STM32H7_SPI_CFG2);
1463 
1464     return 0;
1465 }
1466 
1467 /**
1468  * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1469  *                 consecutive data frames in master mode
1470  * @spi: pointer to the spi controller data structure
1471  * @len: transfer len
1472  */
1473 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1474 {
1475     u32 cfg2_clrb = 0, cfg2_setb = 0;
1476 
1477     cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1478     if ((len > 1) && (spi->cur_midi > 0)) {
1479         u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
1480         u32 midi = min_t(u32,
1481                  DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1482                  FIELD_GET(STM32H7_SPI_CFG2_MIDI,
1483                  STM32H7_SPI_CFG2_MIDI));
1484 
1485 
1486         dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1487             sck_period_ns, midi, midi * sck_period_ns);
1488         cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
1489     }
1490 
1491     writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1492             ~cfg2_clrb) | cfg2_setb,
1493                spi->base + STM32H7_SPI_CFG2);
1494 }
1495 
1496 /**
1497  * stm32h7_spi_number_of_data - configure number of data at current transfer
1498  * @spi: pointer to the spi controller data structure
1499  * @nb_words: transfer length (in words)
1500  */
1501 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1502 {
1503     if (nb_words <= STM32H7_SPI_TSIZE_MAX) {
1504         writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
1505                    spi->base + STM32H7_SPI_CR2);
1506     } else {
1507         return -EMSGSIZE;
1508     }
1509 
1510     return 0;
1511 }
1512 
1513 /**
1514  * stm32_spi_transfer_one_setup - common setup to transfer a single
1515  *                spi_transfer either using DMA or
1516  *                interrupts.
1517  * @spi: pointer to the spi controller data structure
1518  * @spi_dev: pointer to the spi device
1519  * @transfer: pointer to spi transfer
1520  */
1521 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1522                     struct spi_device *spi_dev,
1523                     struct spi_transfer *transfer)
1524 {
1525     unsigned long flags;
1526     unsigned int comm_type;
1527     int nb_words, ret = 0;
1528     int mbr;
1529 
1530     spin_lock_irqsave(&spi->lock, flags);
1531 
1532     spi->cur_xferlen = transfer->len;
1533 
1534     spi->cur_bpw = transfer->bits_per_word;
1535     spi->cfg->set_bpw(spi);
1536 
1537     /* Update spi->cur_speed with real clock speed */
1538     mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1539                     spi->cfg->baud_rate_div_min,
1540                     spi->cfg->baud_rate_div_max);
1541     if (mbr < 0) {
1542         ret = mbr;
1543         goto out;
1544     }
1545 
1546     transfer->speed_hz = spi->cur_speed;
1547     stm32_spi_set_mbr(spi, mbr);
1548 
1549     comm_type = stm32_spi_communication_type(spi_dev, transfer);
1550     ret = spi->cfg->set_mode(spi, comm_type);
1551     if (ret < 0)
1552         goto out;
1553 
1554     spi->cur_comm = comm_type;
1555 
1556     if (spi->cfg->set_data_idleness)
1557         spi->cfg->set_data_idleness(spi, transfer->len);
1558 
1559     if (spi->cur_bpw <= 8)
1560         nb_words = transfer->len;
1561     else if (spi->cur_bpw <= 16)
1562         nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1563     else
1564         nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1565 
1566     if (spi->cfg->set_number_of_data) {
1567         ret = spi->cfg->set_number_of_data(spi, nb_words);
1568         if (ret < 0)
1569             goto out;
1570     }
1571 
1572     dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1573         spi->cur_comm);
1574     dev_dbg(spi->dev,
1575         "data frame of %d-bit, data packet of %d data frames\n",
1576         spi->cur_bpw, spi->cur_fthlv);
1577     dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1578     dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1579         spi->cur_xferlen, nb_words);
1580     dev_dbg(spi->dev, "dma %s\n",
1581         (spi->cur_usedma) ? "enabled" : "disabled");
1582 
1583 out:
1584     spin_unlock_irqrestore(&spi->lock, flags);
1585 
1586     return ret;
1587 }
1588 
1589 /**
1590  * stm32_spi_transfer_one - transfer a single spi_transfer
1591  * @master: controller master interface
1592  * @spi_dev: pointer to the spi device
1593  * @transfer: pointer to spi transfer
1594  *
1595  * It must return 0 if the transfer is finished or 1 if the transfer is still
1596  * in progress.
1597  */
1598 static int stm32_spi_transfer_one(struct spi_master *master,
1599                   struct spi_device *spi_dev,
1600                   struct spi_transfer *transfer)
1601 {
1602     struct stm32_spi *spi = spi_master_get_devdata(master);
1603     int ret;
1604 
1605     spi->tx_buf = transfer->tx_buf;
1606     spi->rx_buf = transfer->rx_buf;
1607     spi->tx_len = spi->tx_buf ? transfer->len : 0;
1608     spi->rx_len = spi->rx_buf ? transfer->len : 0;
1609 
1610     spi->cur_usedma = (master->can_dma &&
1611                master->can_dma(master, spi_dev, transfer));
1612 
1613     ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1614     if (ret) {
1615         dev_err(spi->dev, "SPI transfer setup failed\n");
1616         return ret;
1617     }
1618 
1619     if (spi->cur_usedma)
1620         return stm32_spi_transfer_one_dma(spi, transfer);
1621     else
1622         return spi->cfg->transfer_one_irq(spi);
1623 }
1624 
1625 /**
1626  * stm32_spi_unprepare_msg - relax the hardware
1627  * @master: controller master interface
1628  * @msg: pointer to the spi message
1629  */
1630 static int stm32_spi_unprepare_msg(struct spi_master *master,
1631                    struct spi_message *msg)
1632 {
1633     struct stm32_spi *spi = spi_master_get_devdata(master);
1634 
1635     spi->cfg->disable(spi);
1636 
1637     return 0;
1638 }
1639 
1640 /**
1641  * stm32f4_spi_config - Configure SPI controller as SPI master
1642  * @spi: pointer to the spi controller data structure
1643  */
1644 static int stm32f4_spi_config(struct stm32_spi *spi)
1645 {
1646     unsigned long flags;
1647 
1648     spin_lock_irqsave(&spi->lock, flags);
1649 
1650     /* Ensure I2SMOD bit is kept cleared */
1651     stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1652                STM32F4_SPI_I2SCFGR_I2SMOD);
1653 
1654     /*
1655      * - SS input value high
1656      * - transmitter half duplex direction
1657      * - Set the master mode (default Motorola mode)
1658      * - Consider 1 master/n slaves configuration and
1659      *   SS input value is determined by the SSI bit
1660      */
1661     stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1662                          STM32F4_SPI_CR1_BIDIOE |
1663                          STM32F4_SPI_CR1_MSTR |
1664                          STM32F4_SPI_CR1_SSM);
1665 
1666     spin_unlock_irqrestore(&spi->lock, flags);
1667 
1668     return 0;
1669 }
1670 
1671 /**
1672  * stm32h7_spi_config - Configure SPI controller as SPI master
1673  * @spi: pointer to the spi controller data structure
1674  */
1675 static int stm32h7_spi_config(struct stm32_spi *spi)
1676 {
1677     unsigned long flags;
1678 
1679     spin_lock_irqsave(&spi->lock, flags);
1680 
1681     /* Ensure I2SMOD bit is kept cleared */
1682     stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1683                STM32H7_SPI_I2SCFGR_I2SMOD);
1684 
1685     /*
1686      * - SS input value high
1687      * - transmitter half duplex direction
1688      * - automatic communication suspend when RX-Fifo is full
1689      */
1690     stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1691                          STM32H7_SPI_CR1_HDDIR |
1692                          STM32H7_SPI_CR1_MASRX);
1693 
1694     /*
1695      * - Set the master mode (default Motorola mode)
1696      * - Consider 1 master/n slaves configuration and
1697      *   SS input value is determined by the SSI bit
1698      * - keep control of all associated GPIOs
1699      */
1700     stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1701                           STM32H7_SPI_CFG2_SSM |
1702                           STM32H7_SPI_CFG2_AFCNTR);
1703 
1704     spin_unlock_irqrestore(&spi->lock, flags);
1705 
1706     return 0;
1707 }
1708 
1709 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1710     .regs = &stm32f4_spi_regspec,
1711     .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1712     .disable = stm32f4_spi_disable,
1713     .config = stm32f4_spi_config,
1714     .set_bpw = stm32f4_spi_set_bpw,
1715     .set_mode = stm32f4_spi_set_mode,
1716     .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1717     .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1718     .dma_rx_cb = stm32_spi_dma_rx_cb,
1719     .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1720     .irq_handler_event = stm32f4_spi_irq_event,
1721     .irq_handler_thread = stm32f4_spi_irq_thread,
1722     .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1723     .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1724     .has_fifo = false,
1725     .flags = SPI_MASTER_MUST_TX,
1726 };
1727 
1728 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1729     .regs = &stm32h7_spi_regspec,
1730     .get_fifo_size = stm32h7_spi_get_fifo_size,
1731     .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1732     .disable = stm32h7_spi_disable,
1733     .config = stm32h7_spi_config,
1734     .set_bpw = stm32h7_spi_set_bpw,
1735     .set_mode = stm32h7_spi_set_mode,
1736     .set_data_idleness = stm32h7_spi_data_idleness,
1737     .set_number_of_data = stm32h7_spi_number_of_data,
1738     .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1739     .dma_rx_cb = stm32_spi_dma_rx_cb,
1740     /*
1741      * dma_tx_cb is not necessary since in case of TX, dma is followed by
1742      * SPI access hence handling is performed within the SPI interrupt
1743      */
1744     .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1745     .irq_handler_thread = stm32h7_spi_irq_thread,
1746     .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1747     .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1748     .has_fifo = true,
1749 };
1750 
1751 static const struct of_device_id stm32_spi_of_match[] = {
1752     { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1753     { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1754     {},
1755 };
1756 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1757 
1758 static int stm32_spi_probe(struct platform_device *pdev)
1759 {
1760     struct spi_master *master;
1761     struct stm32_spi *spi;
1762     struct resource *res;
1763     struct reset_control *rst;
1764     int ret;
1765 
1766     master = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1767     if (!master) {
1768         dev_err(&pdev->dev, "spi master allocation failed\n");
1769         return -ENOMEM;
1770     }
1771     platform_set_drvdata(pdev, master);
1772 
1773     spi = spi_master_get_devdata(master);
1774     spi->dev = &pdev->dev;
1775     spi->master = master;
1776     spin_lock_init(&spi->lock);
1777 
1778     spi->cfg = (const struct stm32_spi_cfg *)
1779         of_match_device(pdev->dev.driver->of_match_table,
1780                 &pdev->dev)->data;
1781 
1782     res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1783     spi->base = devm_ioremap_resource(&pdev->dev, res);
1784     if (IS_ERR(spi->base))
1785         return PTR_ERR(spi->base);
1786 
1787     spi->phys_addr = (dma_addr_t)res->start;
1788 
1789     spi->irq = platform_get_irq(pdev, 0);
1790     if (spi->irq <= 0)
1791         return dev_err_probe(&pdev->dev, spi->irq,
1792                      "failed to get irq\n");
1793 
1794     ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1795                     spi->cfg->irq_handler_event,
1796                     spi->cfg->irq_handler_thread,
1797                     IRQF_ONESHOT, pdev->name, master);
1798     if (ret) {
1799         dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1800             ret);
1801         return ret;
1802     }
1803 
1804     spi->clk = devm_clk_get(&pdev->dev, NULL);
1805     if (IS_ERR(spi->clk)) {
1806         ret = PTR_ERR(spi->clk);
1807         dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1808         return ret;
1809     }
1810 
1811     ret = clk_prepare_enable(spi->clk);
1812     if (ret) {
1813         dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1814         return ret;
1815     }
1816     spi->clk_rate = clk_get_rate(spi->clk);
1817     if (!spi->clk_rate) {
1818         dev_err(&pdev->dev, "clk rate = 0\n");
1819         ret = -EINVAL;
1820         goto err_clk_disable;
1821     }
1822 
1823     rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1824     if (rst) {
1825         if (IS_ERR(rst)) {
1826             ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
1827                         "failed to get reset\n");
1828             goto err_clk_disable;
1829         }
1830 
1831         reset_control_assert(rst);
1832         udelay(2);
1833         reset_control_deassert(rst);
1834     }
1835 
1836     if (spi->cfg->has_fifo)
1837         spi->fifo_size = spi->cfg->get_fifo_size(spi);
1838 
1839     ret = spi->cfg->config(spi);
1840     if (ret) {
1841         dev_err(&pdev->dev, "controller configuration failed: %d\n",
1842             ret);
1843         goto err_clk_disable;
1844     }
1845 
1846     master->dev.of_node = pdev->dev.of_node;
1847     master->auto_runtime_pm = true;
1848     master->bus_num = pdev->id;
1849     master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1850                 SPI_3WIRE;
1851     master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1852     master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1853     master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1854     master->use_gpio_descriptors = true;
1855     master->prepare_message = stm32_spi_prepare_msg;
1856     master->transfer_one = stm32_spi_transfer_one;
1857     master->unprepare_message = stm32_spi_unprepare_msg;
1858     master->flags = spi->cfg->flags;
1859 
1860     spi->dma_tx = dma_request_chan(spi->dev, "tx");
1861     if (IS_ERR(spi->dma_tx)) {
1862         ret = PTR_ERR(spi->dma_tx);
1863         spi->dma_tx = NULL;
1864         if (ret == -EPROBE_DEFER)
1865             goto err_clk_disable;
1866 
1867         dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1868     } else {
1869         master->dma_tx = spi->dma_tx;
1870     }
1871 
1872     spi->dma_rx = dma_request_chan(spi->dev, "rx");
1873     if (IS_ERR(spi->dma_rx)) {
1874         ret = PTR_ERR(spi->dma_rx);
1875         spi->dma_rx = NULL;
1876         if (ret == -EPROBE_DEFER)
1877             goto err_dma_release;
1878 
1879         dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1880     } else {
1881         master->dma_rx = spi->dma_rx;
1882     }
1883 
1884     if (spi->dma_tx || spi->dma_rx)
1885         master->can_dma = stm32_spi_can_dma;
1886 
1887     pm_runtime_set_autosuspend_delay(&pdev->dev,
1888                      STM32_SPI_AUTOSUSPEND_DELAY);
1889     pm_runtime_use_autosuspend(&pdev->dev);
1890     pm_runtime_set_active(&pdev->dev);
1891     pm_runtime_get_noresume(&pdev->dev);
1892     pm_runtime_enable(&pdev->dev);
1893 
1894     ret = spi_register_master(master);
1895     if (ret) {
1896         dev_err(&pdev->dev, "spi master registration failed: %d\n",
1897             ret);
1898         goto err_pm_disable;
1899     }
1900 
1901     pm_runtime_mark_last_busy(&pdev->dev);
1902     pm_runtime_put_autosuspend(&pdev->dev);
1903 
1904     dev_info(&pdev->dev, "driver initialized\n");
1905 
1906     return 0;
1907 
1908 err_pm_disable:
1909     pm_runtime_disable(&pdev->dev);
1910     pm_runtime_put_noidle(&pdev->dev);
1911     pm_runtime_set_suspended(&pdev->dev);
1912     pm_runtime_dont_use_autosuspend(&pdev->dev);
1913 err_dma_release:
1914     if (spi->dma_tx)
1915         dma_release_channel(spi->dma_tx);
1916     if (spi->dma_rx)
1917         dma_release_channel(spi->dma_rx);
1918 err_clk_disable:
1919     clk_disable_unprepare(spi->clk);
1920 
1921     return ret;
1922 }
1923 
1924 static int stm32_spi_remove(struct platform_device *pdev)
1925 {
1926     struct spi_master *master = platform_get_drvdata(pdev);
1927     struct stm32_spi *spi = spi_master_get_devdata(master);
1928 
1929     pm_runtime_get_sync(&pdev->dev);
1930 
1931     spi_unregister_master(master);
1932     spi->cfg->disable(spi);
1933 
1934     pm_runtime_disable(&pdev->dev);
1935     pm_runtime_put_noidle(&pdev->dev);
1936     pm_runtime_set_suspended(&pdev->dev);
1937     pm_runtime_dont_use_autosuspend(&pdev->dev);
1938 
1939     if (master->dma_tx)
1940         dma_release_channel(master->dma_tx);
1941     if (master->dma_rx)
1942         dma_release_channel(master->dma_rx);
1943 
1944     clk_disable_unprepare(spi->clk);
1945 
1946 
1947     pinctrl_pm_select_sleep_state(&pdev->dev);
1948 
1949     return 0;
1950 }
1951 
1952 static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
1953 {
1954     struct spi_master *master = dev_get_drvdata(dev);
1955     struct stm32_spi *spi = spi_master_get_devdata(master);
1956 
1957     clk_disable_unprepare(spi->clk);
1958 
1959     return pinctrl_pm_select_sleep_state(dev);
1960 }
1961 
1962 static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
1963 {
1964     struct spi_master *master = dev_get_drvdata(dev);
1965     struct stm32_spi *spi = spi_master_get_devdata(master);
1966     int ret;
1967 
1968     ret = pinctrl_pm_select_default_state(dev);
1969     if (ret)
1970         return ret;
1971 
1972     return clk_prepare_enable(spi->clk);
1973 }
1974 
1975 static int __maybe_unused stm32_spi_suspend(struct device *dev)
1976 {
1977     struct spi_master *master = dev_get_drvdata(dev);
1978     int ret;
1979 
1980     ret = spi_master_suspend(master);
1981     if (ret)
1982         return ret;
1983 
1984     return pm_runtime_force_suspend(dev);
1985 }
1986 
1987 static int __maybe_unused stm32_spi_resume(struct device *dev)
1988 {
1989     struct spi_master *master = dev_get_drvdata(dev);
1990     struct stm32_spi *spi = spi_master_get_devdata(master);
1991     int ret;
1992 
1993     ret = pm_runtime_force_resume(dev);
1994     if (ret)
1995         return ret;
1996 
1997     ret = spi_master_resume(master);
1998     if (ret) {
1999         clk_disable_unprepare(spi->clk);
2000         return ret;
2001     }
2002 
2003     ret = pm_runtime_resume_and_get(dev);
2004     if (ret < 0) {
2005         dev_err(dev, "Unable to power device:%d\n", ret);
2006         return ret;
2007     }
2008 
2009     spi->cfg->config(spi);
2010 
2011     pm_runtime_mark_last_busy(dev);
2012     pm_runtime_put_autosuspend(dev);
2013 
2014     return 0;
2015 }
2016 
2017 static const struct dev_pm_ops stm32_spi_pm_ops = {
2018     SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2019     SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2020                stm32_spi_runtime_resume, NULL)
2021 };
2022 
2023 static struct platform_driver stm32_spi_driver = {
2024     .probe = stm32_spi_probe,
2025     .remove = stm32_spi_remove,
2026     .driver = {
2027         .name = DRIVER_NAME,
2028         .pm = &stm32_spi_pm_ops,
2029         .of_match_table = stm32_spi_of_match,
2030     },
2031 };
2032 
2033 module_platform_driver(stm32_spi_driver);
2034 
2035 MODULE_ALIAS("platform:" DRIVER_NAME);
2036 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2037 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2038 MODULE_LICENSE("GPL v2");