0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011 #include <linux/module.h>
0012 #include <linux/kernel.h>
0013 #include <linux/sched.h>
0014 #include <linux/errno.h>
0015 #include <linux/timer.h>
0016 #include <linux/delay.h>
0017 #include <linux/list.h>
0018 #include <linux/workqueue.h>
0019 #include <linux/interrupt.h>
0020 #include <linux/platform_device.h>
0021 #include <linux/io.h>
0022 #include <linux/spi/spi.h>
0023
0024 #define SPI_SH_TBR 0x00
0025 #define SPI_SH_RBR 0x00
0026 #define SPI_SH_CR1 0x08
0027 #define SPI_SH_CR2 0x10
0028 #define SPI_SH_CR3 0x18
0029 #define SPI_SH_CR4 0x20
0030 #define SPI_SH_CR5 0x28
0031
0032
0033 #define SPI_SH_TBE 0x80
0034 #define SPI_SH_TBF 0x40
0035 #define SPI_SH_RBE 0x20
0036 #define SPI_SH_RBF 0x10
0037 #define SPI_SH_PFONRD 0x08
0038 #define SPI_SH_SSDB 0x04
0039 #define SPI_SH_SSD 0x02
0040 #define SPI_SH_SSA 0x01
0041
0042
0043 #define SPI_SH_RSTF 0x80
0044 #define SPI_SH_LOOPBK 0x40
0045 #define SPI_SH_CPOL 0x20
0046 #define SPI_SH_CPHA 0x10
0047 #define SPI_SH_L1M0 0x08
0048
0049
0050 #define SPI_SH_MAX_BYTE 0xFF
0051
0052
0053 #define SPI_SH_TBEI 0x80
0054 #define SPI_SH_TBFI 0x40
0055 #define SPI_SH_RBEI 0x20
0056 #define SPI_SH_RBFI 0x10
0057 #define SPI_SH_WPABRT 0x04
0058 #define SPI_SH_SSS 0x01
0059
0060
0061 #define SPI_SH_P1L0 0x80
0062 #define SPI_SH_PP1L0 0x40
0063 #define SPI_SH_MUXI 0x20
0064 #define SPI_SH_MUXIRQ 0x10
0065
0066 #define SPI_SH_FIFO_SIZE 32
0067 #define SPI_SH_SEND_TIMEOUT (3 * HZ)
0068 #define SPI_SH_RECEIVE_TIMEOUT (HZ >> 3)
0069
0070 #undef DEBUG
0071
0072 struct spi_sh_data {
0073 void __iomem *addr;
0074 int irq;
0075 struct spi_master *master;
0076 unsigned long cr1;
0077 wait_queue_head_t wait;
0078 int width;
0079 };
0080
0081 static void spi_sh_write(struct spi_sh_data *ss, unsigned long data,
0082 unsigned long offset)
0083 {
0084 if (ss->width == 8)
0085 iowrite8(data, ss->addr + (offset >> 2));
0086 else if (ss->width == 32)
0087 iowrite32(data, ss->addr + offset);
0088 }
0089
0090 static unsigned long spi_sh_read(struct spi_sh_data *ss, unsigned long offset)
0091 {
0092 if (ss->width == 8)
0093 return ioread8(ss->addr + (offset >> 2));
0094 else if (ss->width == 32)
0095 return ioread32(ss->addr + offset);
0096 else
0097 return 0;
0098 }
0099
0100 static void spi_sh_set_bit(struct spi_sh_data *ss, unsigned long val,
0101 unsigned long offset)
0102 {
0103 unsigned long tmp;
0104
0105 tmp = spi_sh_read(ss, offset);
0106 tmp |= val;
0107 spi_sh_write(ss, tmp, offset);
0108 }
0109
0110 static void spi_sh_clear_bit(struct spi_sh_data *ss, unsigned long val,
0111 unsigned long offset)
0112 {
0113 unsigned long tmp;
0114
0115 tmp = spi_sh_read(ss, offset);
0116 tmp &= ~val;
0117 spi_sh_write(ss, tmp, offset);
0118 }
0119
0120 static void clear_fifo(struct spi_sh_data *ss)
0121 {
0122 spi_sh_set_bit(ss, SPI_SH_RSTF, SPI_SH_CR2);
0123 spi_sh_clear_bit(ss, SPI_SH_RSTF, SPI_SH_CR2);
0124 }
0125
0126 static int spi_sh_wait_receive_buffer(struct spi_sh_data *ss)
0127 {
0128 int timeout = 100000;
0129
0130 while (spi_sh_read(ss, SPI_SH_CR1) & SPI_SH_RBE) {
0131 udelay(10);
0132 if (timeout-- < 0)
0133 return -ETIMEDOUT;
0134 }
0135 return 0;
0136 }
0137
0138 static int spi_sh_wait_write_buffer_empty(struct spi_sh_data *ss)
0139 {
0140 int timeout = 100000;
0141
0142 while (!(spi_sh_read(ss, SPI_SH_CR1) & SPI_SH_TBE)) {
0143 udelay(10);
0144 if (timeout-- < 0)
0145 return -ETIMEDOUT;
0146 }
0147 return 0;
0148 }
0149
0150 static int spi_sh_send(struct spi_sh_data *ss, struct spi_message *mesg,
0151 struct spi_transfer *t)
0152 {
0153 int i, retval = 0;
0154 int remain = t->len;
0155 int cur_len;
0156 unsigned char *data;
0157 long ret;
0158
0159 if (t->len)
0160 spi_sh_set_bit(ss, SPI_SH_SSA, SPI_SH_CR1);
0161
0162 data = (unsigned char *)t->tx_buf;
0163 while (remain > 0) {
0164 cur_len = min(SPI_SH_FIFO_SIZE, remain);
0165 for (i = 0; i < cur_len &&
0166 !(spi_sh_read(ss, SPI_SH_CR4) &
0167 SPI_SH_WPABRT) &&
0168 !(spi_sh_read(ss, SPI_SH_CR1) & SPI_SH_TBF);
0169 i++)
0170 spi_sh_write(ss, (unsigned long)data[i], SPI_SH_TBR);
0171
0172 if (spi_sh_read(ss, SPI_SH_CR4) & SPI_SH_WPABRT) {
0173
0174 spi_sh_set_bit(ss, SPI_SH_WPABRT, SPI_SH_CR4);
0175 retval = -EIO;
0176 break;
0177 }
0178
0179 cur_len = i;
0180
0181 remain -= cur_len;
0182 data += cur_len;
0183
0184 if (remain > 0) {
0185 ss->cr1 &= ~SPI_SH_TBE;
0186 spi_sh_set_bit(ss, SPI_SH_TBE, SPI_SH_CR4);
0187 ret = wait_event_interruptible_timeout(ss->wait,
0188 ss->cr1 & SPI_SH_TBE,
0189 SPI_SH_SEND_TIMEOUT);
0190 if (ret == 0 && !(ss->cr1 & SPI_SH_TBE)) {
0191 printk(KERN_ERR "%s: timeout\n", __func__);
0192 return -ETIMEDOUT;
0193 }
0194 }
0195 }
0196
0197 if (list_is_last(&t->transfer_list, &mesg->transfers)) {
0198 spi_sh_clear_bit(ss, SPI_SH_SSD | SPI_SH_SSDB, SPI_SH_CR1);
0199 spi_sh_set_bit(ss, SPI_SH_SSA, SPI_SH_CR1);
0200
0201 ss->cr1 &= ~SPI_SH_TBE;
0202 spi_sh_set_bit(ss, SPI_SH_TBE, SPI_SH_CR4);
0203 ret = wait_event_interruptible_timeout(ss->wait,
0204 ss->cr1 & SPI_SH_TBE,
0205 SPI_SH_SEND_TIMEOUT);
0206 if (ret == 0 && (ss->cr1 & SPI_SH_TBE)) {
0207 printk(KERN_ERR "%s: timeout\n", __func__);
0208 return -ETIMEDOUT;
0209 }
0210 }
0211
0212 return retval;
0213 }
0214
0215 static int spi_sh_receive(struct spi_sh_data *ss, struct spi_message *mesg,
0216 struct spi_transfer *t)
0217 {
0218 int i;
0219 int remain = t->len;
0220 int cur_len;
0221 unsigned char *data;
0222 long ret;
0223
0224 if (t->len > SPI_SH_MAX_BYTE)
0225 spi_sh_write(ss, SPI_SH_MAX_BYTE, SPI_SH_CR3);
0226 else
0227 spi_sh_write(ss, t->len, SPI_SH_CR3);
0228
0229 spi_sh_clear_bit(ss, SPI_SH_SSD | SPI_SH_SSDB, SPI_SH_CR1);
0230 spi_sh_set_bit(ss, SPI_SH_SSA, SPI_SH_CR1);
0231
0232 spi_sh_wait_write_buffer_empty(ss);
0233
0234 data = (unsigned char *)t->rx_buf;
0235 while (remain > 0) {
0236 if (remain >= SPI_SH_FIFO_SIZE) {
0237 ss->cr1 &= ~SPI_SH_RBF;
0238 spi_sh_set_bit(ss, SPI_SH_RBF, SPI_SH_CR4);
0239 ret = wait_event_interruptible_timeout(ss->wait,
0240 ss->cr1 & SPI_SH_RBF,
0241 SPI_SH_RECEIVE_TIMEOUT);
0242 if (ret == 0 &&
0243 spi_sh_read(ss, SPI_SH_CR1) & SPI_SH_RBE) {
0244 printk(KERN_ERR "%s: timeout\n", __func__);
0245 return -ETIMEDOUT;
0246 }
0247 }
0248
0249 cur_len = min(SPI_SH_FIFO_SIZE, remain);
0250 for (i = 0; i < cur_len; i++) {
0251 if (spi_sh_wait_receive_buffer(ss))
0252 break;
0253 data[i] = (unsigned char)spi_sh_read(ss, SPI_SH_RBR);
0254 }
0255
0256 remain -= cur_len;
0257 data += cur_len;
0258 }
0259
0260
0261 if (t->len > SPI_SH_MAX_BYTE) {
0262 clear_fifo(ss);
0263 spi_sh_write(ss, 1, SPI_SH_CR3);
0264 } else {
0265 spi_sh_write(ss, 0, SPI_SH_CR3);
0266 }
0267
0268 return 0;
0269 }
0270
0271 static int spi_sh_transfer_one_message(struct spi_controller *ctlr,
0272 struct spi_message *mesg)
0273 {
0274 struct spi_sh_data *ss = spi_controller_get_devdata(ctlr);
0275 struct spi_transfer *t;
0276 int ret;
0277
0278 pr_debug("%s: enter\n", __func__);
0279
0280 spi_sh_clear_bit(ss, SPI_SH_SSA, SPI_SH_CR1);
0281
0282 list_for_each_entry(t, &mesg->transfers, transfer_list) {
0283 pr_debug("tx_buf = %p, rx_buf = %p\n",
0284 t->tx_buf, t->rx_buf);
0285 pr_debug("len = %d, delay.value = %d\n",
0286 t->len, t->delay.value);
0287
0288 if (t->tx_buf) {
0289 ret = spi_sh_send(ss, mesg, t);
0290 if (ret < 0)
0291 goto error;
0292 }
0293 if (t->rx_buf) {
0294 ret = spi_sh_receive(ss, mesg, t);
0295 if (ret < 0)
0296 goto error;
0297 }
0298 mesg->actual_length += t->len;
0299 }
0300
0301 mesg->status = 0;
0302 spi_finalize_current_message(ctlr);
0303
0304 clear_fifo(ss);
0305 spi_sh_set_bit(ss, SPI_SH_SSD, SPI_SH_CR1);
0306 udelay(100);
0307
0308 spi_sh_clear_bit(ss, SPI_SH_SSA | SPI_SH_SSDB | SPI_SH_SSD,
0309 SPI_SH_CR1);
0310
0311 clear_fifo(ss);
0312
0313 return 0;
0314
0315 error:
0316 mesg->status = ret;
0317 spi_finalize_current_message(ctlr);
0318 if (mesg->complete)
0319 mesg->complete(mesg->context);
0320
0321 spi_sh_clear_bit(ss, SPI_SH_SSA | SPI_SH_SSDB | SPI_SH_SSD,
0322 SPI_SH_CR1);
0323 clear_fifo(ss);
0324
0325 return ret;
0326 }
0327
0328 static int spi_sh_setup(struct spi_device *spi)
0329 {
0330 struct spi_sh_data *ss = spi_master_get_devdata(spi->master);
0331
0332 pr_debug("%s: enter\n", __func__);
0333
0334 spi_sh_write(ss, 0xfe, SPI_SH_CR1);
0335 spi_sh_write(ss, 0x00, SPI_SH_CR1);
0336 spi_sh_write(ss, 0x00, SPI_SH_CR3);
0337
0338 clear_fifo(ss);
0339
0340
0341 spi_sh_write(ss, spi_sh_read(ss, SPI_SH_CR2) | 0x07, SPI_SH_CR2);
0342 udelay(10);
0343
0344 return 0;
0345 }
0346
0347 static void spi_sh_cleanup(struct spi_device *spi)
0348 {
0349 struct spi_sh_data *ss = spi_master_get_devdata(spi->master);
0350
0351 pr_debug("%s: enter\n", __func__);
0352
0353 spi_sh_clear_bit(ss, SPI_SH_SSA | SPI_SH_SSDB | SPI_SH_SSD,
0354 SPI_SH_CR1);
0355 }
0356
0357 static irqreturn_t spi_sh_irq(int irq, void *_ss)
0358 {
0359 struct spi_sh_data *ss = (struct spi_sh_data *)_ss;
0360 unsigned long cr1;
0361
0362 cr1 = spi_sh_read(ss, SPI_SH_CR1);
0363 if (cr1 & SPI_SH_TBE)
0364 ss->cr1 |= SPI_SH_TBE;
0365 if (cr1 & SPI_SH_TBF)
0366 ss->cr1 |= SPI_SH_TBF;
0367 if (cr1 & SPI_SH_RBE)
0368 ss->cr1 |= SPI_SH_RBE;
0369 if (cr1 & SPI_SH_RBF)
0370 ss->cr1 |= SPI_SH_RBF;
0371
0372 if (ss->cr1) {
0373 spi_sh_clear_bit(ss, ss->cr1, SPI_SH_CR4);
0374 wake_up(&ss->wait);
0375 }
0376
0377 return IRQ_HANDLED;
0378 }
0379
0380 static int spi_sh_remove(struct platform_device *pdev)
0381 {
0382 struct spi_sh_data *ss = platform_get_drvdata(pdev);
0383
0384 spi_unregister_master(ss->master);
0385 free_irq(ss->irq, ss);
0386
0387 return 0;
0388 }
0389
0390 static int spi_sh_probe(struct platform_device *pdev)
0391 {
0392 struct resource *res;
0393 struct spi_master *master;
0394 struct spi_sh_data *ss;
0395 int ret, irq;
0396
0397
0398 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
0399 if (unlikely(res == NULL)) {
0400 dev_err(&pdev->dev, "invalid resource\n");
0401 return -EINVAL;
0402 }
0403
0404 irq = platform_get_irq(pdev, 0);
0405 if (irq < 0)
0406 return irq;
0407
0408 master = devm_spi_alloc_master(&pdev->dev, sizeof(struct spi_sh_data));
0409 if (master == NULL) {
0410 dev_err(&pdev->dev, "spi_alloc_master error.\n");
0411 return -ENOMEM;
0412 }
0413
0414 ss = spi_master_get_devdata(master);
0415 platform_set_drvdata(pdev, ss);
0416
0417 switch (res->flags & IORESOURCE_MEM_TYPE_MASK) {
0418 case IORESOURCE_MEM_8BIT:
0419 ss->width = 8;
0420 break;
0421 case IORESOURCE_MEM_32BIT:
0422 ss->width = 32;
0423 break;
0424 default:
0425 dev_err(&pdev->dev, "No support width\n");
0426 return -ENODEV;
0427 }
0428 ss->irq = irq;
0429 ss->master = master;
0430 ss->addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
0431 if (ss->addr == NULL) {
0432 dev_err(&pdev->dev, "ioremap error.\n");
0433 return -ENOMEM;
0434 }
0435 init_waitqueue_head(&ss->wait);
0436
0437 ret = request_irq(irq, spi_sh_irq, 0, "spi_sh", ss);
0438 if (ret < 0) {
0439 dev_err(&pdev->dev, "request_irq error\n");
0440 return ret;
0441 }
0442
0443 master->num_chipselect = 2;
0444 master->bus_num = pdev->id;
0445 master->setup = spi_sh_setup;
0446 master->transfer_one_message = spi_sh_transfer_one_message;
0447 master->cleanup = spi_sh_cleanup;
0448
0449 ret = spi_register_master(master);
0450 if (ret < 0) {
0451 printk(KERN_ERR "spi_register_master error.\n");
0452 goto error3;
0453 }
0454
0455 return 0;
0456
0457 error3:
0458 free_irq(irq, ss);
0459 return ret;
0460 }
0461
0462 static struct platform_driver spi_sh_driver = {
0463 .probe = spi_sh_probe,
0464 .remove = spi_sh_remove,
0465 .driver = {
0466 .name = "sh_spi",
0467 },
0468 };
0469 module_platform_driver(spi_sh_driver);
0470
0471 MODULE_DESCRIPTION("SH SPI bus driver");
0472 MODULE_LICENSE("GPL v2");
0473 MODULE_AUTHOR("Yoshihiro Shimoda");
0474 MODULE_ALIAS("platform:sh_spi");