0001
0002
0003
0004
0005
0006
0007
0008
0009
0010 #include <linux/bitmap.h>
0011 #include <linux/clk.h>
0012 #include <linux/completion.h>
0013 #include <linux/delay.h>
0014 #include <linux/dma-mapping.h>
0015 #include <linux/dmaengine.h>
0016 #include <linux/err.h>
0017 #include <linux/interrupt.h>
0018 #include <linux/io.h>
0019 #include <linux/iopoll.h>
0020 #include <linux/kernel.h>
0021 #include <linux/module.h>
0022 #include <linux/of.h>
0023 #include <linux/of_device.h>
0024 #include <linux/platform_device.h>
0025 #include <linux/pm_runtime.h>
0026 #include <linux/sh_dma.h>
0027
0028 #include <linux/spi/sh_msiof.h>
0029 #include <linux/spi/spi.h>
0030
0031 #include <asm/unaligned.h>
0032
0033 struct sh_msiof_chipdata {
0034 u32 bits_per_word_mask;
0035 u16 tx_fifo_size;
0036 u16 rx_fifo_size;
0037 u16 ctlr_flags;
0038 u16 min_div_pow;
0039 };
0040
0041 struct sh_msiof_spi_priv {
0042 struct spi_controller *ctlr;
0043 void __iomem *mapbase;
0044 struct clk *clk;
0045 struct platform_device *pdev;
0046 struct sh_msiof_spi_info *info;
0047 struct completion done;
0048 struct completion done_txdma;
0049 unsigned int tx_fifo_size;
0050 unsigned int rx_fifo_size;
0051 unsigned int min_div_pow;
0052 void *tx_dma_page;
0053 void *rx_dma_page;
0054 dma_addr_t tx_dma_addr;
0055 dma_addr_t rx_dma_addr;
0056 bool native_cs_inited;
0057 bool native_cs_high;
0058 bool slave_aborted;
0059 };
0060
0061 #define MAX_SS 3
0062
0063 #define SITMDR1 0x00
0064 #define SITMDR2 0x04
0065 #define SITMDR3 0x08
0066 #define SIRMDR1 0x10
0067 #define SIRMDR2 0x14
0068 #define SIRMDR3 0x18
0069 #define SITSCR 0x20
0070 #define SIRSCR 0x22
0071 #define SICTR 0x28
0072 #define SIFCTR 0x30
0073 #define SISTR 0x40
0074 #define SIIER 0x44
0075 #define SITDR1 0x48
0076 #define SITDR2 0x4c
0077 #define SITFDR 0x50
0078 #define SIRDR1 0x58
0079 #define SIRDR2 0x5c
0080 #define SIRFDR 0x60
0081
0082
0083 #define SIMDR1_TRMD BIT(31)
0084 #define SIMDR1_SYNCMD_MASK GENMASK(29, 28)
0085 #define SIMDR1_SYNCMD_SPI (2 << 28)
0086 #define SIMDR1_SYNCMD_LR (3 << 28)
0087 #define SIMDR1_SYNCAC_SHIFT 25
0088 #define SIMDR1_BITLSB_SHIFT 24
0089 #define SIMDR1_DTDL_SHIFT 20
0090 #define SIMDR1_SYNCDL_SHIFT 16
0091 #define SIMDR1_FLD_MASK GENMASK(3, 2)
0092 #define SIMDR1_FLD_SHIFT 2
0093 #define SIMDR1_XXSTP BIT(0)
0094
0095 #define SITMDR1_PCON BIT(30)
0096 #define SITMDR1_SYNCCH_MASK GENMASK(27, 26)
0097 #define SITMDR1_SYNCCH_SHIFT 26
0098
0099
0100 #define SIMDR2_BITLEN1(i) (((i) - 1) << 24)
0101 #define SIMDR2_WDLEN1(i) (((i) - 1) << 16)
0102 #define SIMDR2_GRPMASK1 BIT(0)
0103
0104
0105 #define SISCR_BRPS_MASK GENMASK(12, 8)
0106 #define SISCR_BRPS(i) (((i) - 1) << 8)
0107 #define SISCR_BRDV_MASK GENMASK(2, 0)
0108 #define SISCR_BRDV_DIV_2 0
0109 #define SISCR_BRDV_DIV_4 1
0110 #define SISCR_BRDV_DIV_8 2
0111 #define SISCR_BRDV_DIV_16 3
0112 #define SISCR_BRDV_DIV_32 4
0113 #define SISCR_BRDV_DIV_1 7
0114
0115
0116 #define SICTR_TSCKIZ_MASK GENMASK(31, 30)
0117 #define SICTR_TSCKIZ_SCK BIT(31)
0118 #define SICTR_TSCKIZ_POL_SHIFT 30
0119 #define SICTR_RSCKIZ_MASK GENMASK(29, 28)
0120 #define SICTR_RSCKIZ_SCK BIT(29)
0121 #define SICTR_RSCKIZ_POL_SHIFT 28
0122 #define SICTR_TEDG_SHIFT 27
0123 #define SICTR_REDG_SHIFT 26
0124 #define SICTR_TXDIZ_MASK GENMASK(23, 22)
0125 #define SICTR_TXDIZ_LOW (0 << 22)
0126 #define SICTR_TXDIZ_HIGH (1 << 22)
0127 #define SICTR_TXDIZ_HIZ (2 << 22)
0128 #define SICTR_TSCKE BIT(15)
0129 #define SICTR_TFSE BIT(14)
0130 #define SICTR_TXE BIT(9)
0131 #define SICTR_RXE BIT(8)
0132 #define SICTR_TXRST BIT(1)
0133 #define SICTR_RXRST BIT(0)
0134
0135
0136 #define SIFCTR_TFWM_MASK GENMASK(31, 29)
0137 #define SIFCTR_TFWM_64 (0 << 29)
0138 #define SIFCTR_TFWM_32 (1 << 29)
0139 #define SIFCTR_TFWM_24 (2 << 29)
0140 #define SIFCTR_TFWM_16 (3 << 29)
0141 #define SIFCTR_TFWM_12 (4 << 29)
0142 #define SIFCTR_TFWM_8 (5 << 29)
0143 #define SIFCTR_TFWM_4 (6 << 29)
0144 #define SIFCTR_TFWM_1 (7 << 29)
0145 #define SIFCTR_TFUA_MASK GENMASK(26, 20)
0146 #define SIFCTR_TFUA_SHIFT 20
0147 #define SIFCTR_TFUA(i) ((i) << SIFCTR_TFUA_SHIFT)
0148 #define SIFCTR_RFWM_MASK GENMASK(15, 13)
0149 #define SIFCTR_RFWM_1 (0 << 13)
0150 #define SIFCTR_RFWM_4 (1 << 13)
0151 #define SIFCTR_RFWM_8 (2 << 13)
0152 #define SIFCTR_RFWM_16 (3 << 13)
0153 #define SIFCTR_RFWM_32 (4 << 13)
0154 #define SIFCTR_RFWM_64 (5 << 13)
0155 #define SIFCTR_RFWM_128 (6 << 13)
0156 #define SIFCTR_RFWM_256 (7 << 13)
0157 #define SIFCTR_RFUA_MASK GENMASK(12, 4)
0158 #define SIFCTR_RFUA_SHIFT 4
0159 #define SIFCTR_RFUA(i) ((i) << SIFCTR_RFUA_SHIFT)
0160
0161
0162 #define SISTR_TFEMP BIT(29)
0163 #define SISTR_TDREQ BIT(28)
0164 #define SISTR_TEOF BIT(23)
0165 #define SISTR_TFSERR BIT(21)
0166 #define SISTR_TFOVF BIT(20)
0167 #define SISTR_TFUDF BIT(19)
0168 #define SISTR_RFFUL BIT(13)
0169 #define SISTR_RDREQ BIT(12)
0170 #define SISTR_REOF BIT(7)
0171 #define SISTR_RFSERR BIT(5)
0172 #define SISTR_RFUDF BIT(4)
0173 #define SISTR_RFOVF BIT(3)
0174
0175
0176 #define SIIER_TDMAE BIT(31)
0177 #define SIIER_TFEMPE BIT(29)
0178 #define SIIER_TDREQE BIT(28)
0179 #define SIIER_TEOFE BIT(23)
0180 #define SIIER_TFSERRE BIT(21)
0181 #define SIIER_TFOVFE BIT(20)
0182 #define SIIER_TFUDFE BIT(19)
0183 #define SIIER_RDMAE BIT(15)
0184 #define SIIER_RFFULE BIT(13)
0185 #define SIIER_RDREQE BIT(12)
0186 #define SIIER_REOFE BIT(7)
0187 #define SIIER_RFSERRE BIT(5)
0188 #define SIIER_RFUDFE BIT(4)
0189 #define SIIER_RFOVFE BIT(3)
0190
0191
0192 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
0193 {
0194 switch (reg_offs) {
0195 case SITSCR:
0196 case SIRSCR:
0197 return ioread16(p->mapbase + reg_offs);
0198 default:
0199 return ioread32(p->mapbase + reg_offs);
0200 }
0201 }
0202
0203 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
0204 u32 value)
0205 {
0206 switch (reg_offs) {
0207 case SITSCR:
0208 case SIRSCR:
0209 iowrite16(value, p->mapbase + reg_offs);
0210 break;
0211 default:
0212 iowrite32(value, p->mapbase + reg_offs);
0213 break;
0214 }
0215 }
0216
0217 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
0218 u32 clr, u32 set)
0219 {
0220 u32 mask = clr | set;
0221 u32 data;
0222
0223 data = sh_msiof_read(p, SICTR);
0224 data &= ~clr;
0225 data |= set;
0226 sh_msiof_write(p, SICTR, data);
0227
0228 return readl_poll_timeout_atomic(p->mapbase + SICTR, data,
0229 (data & mask) == set, 1, 100);
0230 }
0231
0232 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
0233 {
0234 struct sh_msiof_spi_priv *p = data;
0235
0236
0237 sh_msiof_write(p, SIIER, 0);
0238 complete(&p->done);
0239
0240 return IRQ_HANDLED;
0241 }
0242
0243 static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
0244 {
0245 u32 mask = SICTR_TXRST | SICTR_RXRST;
0246 u32 data;
0247
0248 data = sh_msiof_read(p, SICTR);
0249 data |= mask;
0250 sh_msiof_write(p, SICTR, data);
0251
0252 readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1,
0253 100);
0254 }
0255
0256 static const u32 sh_msiof_spi_div_array[] = {
0257 SISCR_BRDV_DIV_1, SISCR_BRDV_DIV_2, SISCR_BRDV_DIV_4,
0258 SISCR_BRDV_DIV_8, SISCR_BRDV_DIV_16, SISCR_BRDV_DIV_32,
0259 };
0260
0261 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
0262 struct spi_transfer *t)
0263 {
0264 unsigned long parent_rate = clk_get_rate(p->clk);
0265 unsigned int div_pow = p->min_div_pow;
0266 u32 spi_hz = t->speed_hz;
0267 unsigned long div;
0268 u32 brps, scr;
0269
0270 if (!spi_hz || !parent_rate) {
0271 WARN(1, "Invalid clock rate parameters %lu and %u\n",
0272 parent_rate, spi_hz);
0273 return;
0274 }
0275
0276 div = DIV_ROUND_UP(parent_rate, spi_hz);
0277 if (div <= 1024) {
0278
0279 if (!div_pow && div <= 32 && div > 2)
0280 div_pow = 1;
0281
0282 if (div_pow)
0283 brps = (div + 1) >> div_pow;
0284 else
0285 brps = div;
0286
0287 for (; brps > 32; div_pow++)
0288 brps = (brps + 1) >> 1;
0289 } else {
0290
0291 dev_err(&p->pdev->dev,
0292 "Requested SPI transfer rate %d is too low\n", spi_hz);
0293 div_pow = 5;
0294 brps = 32;
0295 }
0296
0297 t->effective_speed_hz = parent_rate / (brps << div_pow);
0298
0299 scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps);
0300 sh_msiof_write(p, SITSCR, scr);
0301 if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
0302 sh_msiof_write(p, SIRSCR, scr);
0303 }
0304
0305 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
0306 {
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316 if (dtdl_or_syncdl % 100)
0317 return dtdl_or_syncdl / 100 + 5;
0318 else
0319 return dtdl_or_syncdl / 100;
0320 }
0321
0322 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
0323 {
0324 u32 val;
0325
0326 if (!p->info)
0327 return 0;
0328
0329
0330 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
0331 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
0332 return 0;
0333 }
0334
0335
0336 if ((p->info->dtdl + p->info->syncdl) % 100) {
0337 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
0338 return 0;
0339 }
0340
0341 val = sh_msiof_get_delay_bit(p->info->dtdl) << SIMDR1_DTDL_SHIFT;
0342 val |= sh_msiof_get_delay_bit(p->info->syncdl) << SIMDR1_SYNCDL_SHIFT;
0343
0344 return val;
0345 }
0346
0347 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
0348 u32 cpol, u32 cpha,
0349 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
0350 {
0351 u32 tmp;
0352 int edge;
0353
0354
0355
0356
0357
0358
0359
0360
0361 tmp = SIMDR1_SYNCMD_SPI | 1 << SIMDR1_FLD_SHIFT | SIMDR1_XXSTP;
0362 tmp |= !cs_high << SIMDR1_SYNCAC_SHIFT;
0363 tmp |= lsb_first << SIMDR1_BITLSB_SHIFT;
0364 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
0365 if (spi_controller_is_slave(p->ctlr)) {
0366 sh_msiof_write(p, SITMDR1, tmp | SITMDR1_PCON);
0367 } else {
0368 sh_msiof_write(p, SITMDR1,
0369 tmp | SIMDR1_TRMD | SITMDR1_PCON |
0370 (ss < MAX_SS ? ss : 0) << SITMDR1_SYNCCH_SHIFT);
0371 }
0372 if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
0373
0374 tmp &= ~0x0000ffff;
0375 }
0376 sh_msiof_write(p, SIRMDR1, tmp);
0377
0378 tmp = 0;
0379 tmp |= SICTR_TSCKIZ_SCK | cpol << SICTR_TSCKIZ_POL_SHIFT;
0380 tmp |= SICTR_RSCKIZ_SCK | cpol << SICTR_RSCKIZ_POL_SHIFT;
0381
0382 edge = cpol ^ !cpha;
0383
0384 tmp |= edge << SICTR_TEDG_SHIFT;
0385 tmp |= edge << SICTR_REDG_SHIFT;
0386 tmp |= tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW;
0387 sh_msiof_write(p, SICTR, tmp);
0388 }
0389
0390 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
0391 const void *tx_buf, void *rx_buf,
0392 u32 bits, u32 words)
0393 {
0394 u32 dr2 = SIMDR2_BITLEN1(bits) | SIMDR2_WDLEN1(words);
0395
0396 if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
0397 sh_msiof_write(p, SITMDR2, dr2);
0398 else
0399 sh_msiof_write(p, SITMDR2, dr2 | SIMDR2_GRPMASK1);
0400
0401 if (rx_buf)
0402 sh_msiof_write(p, SIRMDR2, dr2);
0403 }
0404
0405 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
0406 {
0407 sh_msiof_write(p, SISTR,
0408 sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ));
0409 }
0410
0411 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
0412 const void *tx_buf, int words, int fs)
0413 {
0414 const u8 *buf_8 = tx_buf;
0415 int k;
0416
0417 for (k = 0; k < words; k++)
0418 sh_msiof_write(p, SITFDR, buf_8[k] << fs);
0419 }
0420
0421 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
0422 const void *tx_buf, int words, int fs)
0423 {
0424 const u16 *buf_16 = tx_buf;
0425 int k;
0426
0427 for (k = 0; k < words; k++)
0428 sh_msiof_write(p, SITFDR, buf_16[k] << fs);
0429 }
0430
0431 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
0432 const void *tx_buf, int words, int fs)
0433 {
0434 const u16 *buf_16 = tx_buf;
0435 int k;
0436
0437 for (k = 0; k < words; k++)
0438 sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs);
0439 }
0440
0441 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
0442 const void *tx_buf, int words, int fs)
0443 {
0444 const u32 *buf_32 = tx_buf;
0445 int k;
0446
0447 for (k = 0; k < words; k++)
0448 sh_msiof_write(p, SITFDR, buf_32[k] << fs);
0449 }
0450
0451 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
0452 const void *tx_buf, int words, int fs)
0453 {
0454 const u32 *buf_32 = tx_buf;
0455 int k;
0456
0457 for (k = 0; k < words; k++)
0458 sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs);
0459 }
0460
0461 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
0462 const void *tx_buf, int words, int fs)
0463 {
0464 const u32 *buf_32 = tx_buf;
0465 int k;
0466
0467 for (k = 0; k < words; k++)
0468 sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs));
0469 }
0470
0471 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
0472 const void *tx_buf, int words, int fs)
0473 {
0474 const u32 *buf_32 = tx_buf;
0475 int k;
0476
0477 for (k = 0; k < words; k++)
0478 sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs));
0479 }
0480
0481 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
0482 void *rx_buf, int words, int fs)
0483 {
0484 u8 *buf_8 = rx_buf;
0485 int k;
0486
0487 for (k = 0; k < words; k++)
0488 buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs;
0489 }
0490
0491 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
0492 void *rx_buf, int words, int fs)
0493 {
0494 u16 *buf_16 = rx_buf;
0495 int k;
0496
0497 for (k = 0; k < words; k++)
0498 buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs;
0499 }
0500
0501 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
0502 void *rx_buf, int words, int fs)
0503 {
0504 u16 *buf_16 = rx_buf;
0505 int k;
0506
0507 for (k = 0; k < words; k++)
0508 put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]);
0509 }
0510
0511 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
0512 void *rx_buf, int words, int fs)
0513 {
0514 u32 *buf_32 = rx_buf;
0515 int k;
0516
0517 for (k = 0; k < words; k++)
0518 buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs;
0519 }
0520
0521 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
0522 void *rx_buf, int words, int fs)
0523 {
0524 u32 *buf_32 = rx_buf;
0525 int k;
0526
0527 for (k = 0; k < words; k++)
0528 put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]);
0529 }
0530
0531 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
0532 void *rx_buf, int words, int fs)
0533 {
0534 u32 *buf_32 = rx_buf;
0535 int k;
0536
0537 for (k = 0; k < words; k++)
0538 buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs);
0539 }
0540
0541 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
0542 void *rx_buf, int words, int fs)
0543 {
0544 u32 *buf_32 = rx_buf;
0545 int k;
0546
0547 for (k = 0; k < words; k++)
0548 put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]);
0549 }
0550
0551 static int sh_msiof_spi_setup(struct spi_device *spi)
0552 {
0553 struct sh_msiof_spi_priv *p =
0554 spi_controller_get_devdata(spi->controller);
0555 u32 clr, set, tmp;
0556
0557 if (spi->cs_gpiod || spi_controller_is_slave(p->ctlr))
0558 return 0;
0559
0560 if (p->native_cs_inited &&
0561 (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
0562 return 0;
0563
0564
0565 clr = SIMDR1_SYNCMD_MASK;
0566 set = SIMDR1_SYNCMD_SPI;
0567 if (spi->mode & SPI_CS_HIGH)
0568 clr |= BIT(SIMDR1_SYNCAC_SHIFT);
0569 else
0570 set |= BIT(SIMDR1_SYNCAC_SHIFT);
0571 pm_runtime_get_sync(&p->pdev->dev);
0572 tmp = sh_msiof_read(p, SITMDR1) & ~clr;
0573 sh_msiof_write(p, SITMDR1, tmp | set | SIMDR1_TRMD | SITMDR1_PCON);
0574 tmp = sh_msiof_read(p, SIRMDR1) & ~clr;
0575 sh_msiof_write(p, SIRMDR1, tmp | set);
0576 pm_runtime_put(&p->pdev->dev);
0577 p->native_cs_high = spi->mode & SPI_CS_HIGH;
0578 p->native_cs_inited = true;
0579 return 0;
0580 }
0581
0582 static int sh_msiof_prepare_message(struct spi_controller *ctlr,
0583 struct spi_message *msg)
0584 {
0585 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
0586 const struct spi_device *spi = msg->spi;
0587 u32 ss, cs_high;
0588
0589
0590 if (spi->cs_gpiod) {
0591 ss = ctlr->unused_native_cs;
0592 cs_high = p->native_cs_high;
0593 } else {
0594 ss = spi->chip_select;
0595 cs_high = !!(spi->mode & SPI_CS_HIGH);
0596 }
0597 sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
0598 !!(spi->mode & SPI_CPHA),
0599 !!(spi->mode & SPI_3WIRE),
0600 !!(spi->mode & SPI_LSB_FIRST), cs_high);
0601 return 0;
0602 }
0603
0604 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
0605 {
0606 bool slave = spi_controller_is_slave(p->ctlr);
0607 int ret = 0;
0608
0609
0610 if (!slave)
0611 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TSCKE);
0612 if (rx_buf && !ret)
0613 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_RXE);
0614 if (!ret)
0615 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TXE);
0616
0617
0618 if (!ret && !slave)
0619 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TFSE);
0620
0621 return ret;
0622 }
0623
0624 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
0625 {
0626 bool slave = spi_controller_is_slave(p->ctlr);
0627 int ret = 0;
0628
0629
0630 if (!slave)
0631 ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, 0);
0632 if (!ret)
0633 ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, 0);
0634 if (rx_buf && !ret)
0635 ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, 0);
0636 if (!ret && !slave)
0637 ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, 0);
0638
0639 return ret;
0640 }
0641
0642 static int sh_msiof_slave_abort(struct spi_controller *ctlr)
0643 {
0644 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
0645
0646 p->slave_aborted = true;
0647 complete(&p->done);
0648 complete(&p->done_txdma);
0649 return 0;
0650 }
0651
0652 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
0653 struct completion *x)
0654 {
0655 if (spi_controller_is_slave(p->ctlr)) {
0656 if (wait_for_completion_interruptible(x) ||
0657 p->slave_aborted) {
0658 dev_dbg(&p->pdev->dev, "interrupted\n");
0659 return -EINTR;
0660 }
0661 } else {
0662 if (!wait_for_completion_timeout(x, HZ)) {
0663 dev_err(&p->pdev->dev, "timeout\n");
0664 return -ETIMEDOUT;
0665 }
0666 }
0667
0668 return 0;
0669 }
0670
0671 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
0672 void (*tx_fifo)(struct sh_msiof_spi_priv *,
0673 const void *, int, int),
0674 void (*rx_fifo)(struct sh_msiof_spi_priv *,
0675 void *, int, int),
0676 const void *tx_buf, void *rx_buf,
0677 int words, int bits)
0678 {
0679 int fifo_shift;
0680 int ret;
0681
0682
0683 if (tx_buf)
0684 words = min_t(int, words, p->tx_fifo_size);
0685 if (rx_buf)
0686 words = min_t(int, words, p->rx_fifo_size);
0687
0688
0689 fifo_shift = 32 - bits;
0690
0691
0692 sh_msiof_write(p, SIFCTR, 0);
0693
0694
0695 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
0696 sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE);
0697
0698
0699 if (tx_buf)
0700 tx_fifo(p, tx_buf, words, fifo_shift);
0701
0702 reinit_completion(&p->done);
0703 p->slave_aborted = false;
0704
0705 ret = sh_msiof_spi_start(p, rx_buf);
0706 if (ret) {
0707 dev_err(&p->pdev->dev, "failed to start hardware\n");
0708 goto stop_ier;
0709 }
0710
0711
0712 ret = sh_msiof_wait_for_completion(p, &p->done);
0713 if (ret)
0714 goto stop_reset;
0715
0716
0717 if (rx_buf)
0718 rx_fifo(p, rx_buf, words, fifo_shift);
0719
0720
0721 sh_msiof_reset_str(p);
0722
0723 ret = sh_msiof_spi_stop(p, rx_buf);
0724 if (ret) {
0725 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
0726 return ret;
0727 }
0728
0729 return words;
0730
0731 stop_reset:
0732 sh_msiof_reset_str(p);
0733 sh_msiof_spi_stop(p, rx_buf);
0734 stop_ier:
0735 sh_msiof_write(p, SIIER, 0);
0736 return ret;
0737 }
0738
0739 static void sh_msiof_dma_complete(void *arg)
0740 {
0741 complete(arg);
0742 }
0743
0744 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
0745 void *rx, unsigned int len)
0746 {
0747 u32 ier_bits = 0;
0748 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
0749 dma_cookie_t cookie;
0750 int ret;
0751
0752
0753 if (rx) {
0754 ier_bits |= SIIER_RDREQE | SIIER_RDMAE;
0755 desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
0756 p->rx_dma_addr, len, DMA_DEV_TO_MEM,
0757 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
0758 if (!desc_rx)
0759 return -EAGAIN;
0760
0761 desc_rx->callback = sh_msiof_dma_complete;
0762 desc_rx->callback_param = &p->done;
0763 cookie = dmaengine_submit(desc_rx);
0764 if (dma_submit_error(cookie))
0765 return cookie;
0766 }
0767
0768 if (tx) {
0769 ier_bits |= SIIER_TDREQE | SIIER_TDMAE;
0770 dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
0771 p->tx_dma_addr, len, DMA_TO_DEVICE);
0772 desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
0773 p->tx_dma_addr, len, DMA_MEM_TO_DEV,
0774 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
0775 if (!desc_tx) {
0776 ret = -EAGAIN;
0777 goto no_dma_tx;
0778 }
0779
0780 desc_tx->callback = sh_msiof_dma_complete;
0781 desc_tx->callback_param = &p->done_txdma;
0782 cookie = dmaengine_submit(desc_tx);
0783 if (dma_submit_error(cookie)) {
0784 ret = cookie;
0785 goto no_dma_tx;
0786 }
0787 }
0788
0789
0790 sh_msiof_write(p, SIFCTR, SIFCTR_TFWM_1 | SIFCTR_RFWM_1);
0791
0792
0793 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
0794
0795 sh_msiof_write(p, SIIER, ier_bits);
0796
0797 reinit_completion(&p->done);
0798 if (tx)
0799 reinit_completion(&p->done_txdma);
0800 p->slave_aborted = false;
0801
0802
0803 if (rx)
0804 dma_async_issue_pending(p->ctlr->dma_rx);
0805 if (tx)
0806 dma_async_issue_pending(p->ctlr->dma_tx);
0807
0808 ret = sh_msiof_spi_start(p, rx);
0809 if (ret) {
0810 dev_err(&p->pdev->dev, "failed to start hardware\n");
0811 goto stop_dma;
0812 }
0813
0814 if (tx) {
0815
0816 ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
0817 if (ret)
0818 goto stop_reset;
0819 }
0820
0821 if (rx) {
0822
0823 ret = sh_msiof_wait_for_completion(p, &p->done);
0824 if (ret)
0825 goto stop_reset;
0826
0827 sh_msiof_write(p, SIIER, 0);
0828 } else {
0829
0830 sh_msiof_write(p, SIIER, SIIER_TEOFE);
0831 ret = sh_msiof_wait_for_completion(p, &p->done);
0832 if (ret)
0833 goto stop_reset;
0834 }
0835
0836
0837 sh_msiof_reset_str(p);
0838
0839 ret = sh_msiof_spi_stop(p, rx);
0840 if (ret) {
0841 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
0842 return ret;
0843 }
0844
0845 if (rx)
0846 dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
0847 p->rx_dma_addr, len, DMA_FROM_DEVICE);
0848
0849 return 0;
0850
0851 stop_reset:
0852 sh_msiof_reset_str(p);
0853 sh_msiof_spi_stop(p, rx);
0854 stop_dma:
0855 if (tx)
0856 dmaengine_terminate_sync(p->ctlr->dma_tx);
0857 no_dma_tx:
0858 if (rx)
0859 dmaengine_terminate_sync(p->ctlr->dma_rx);
0860 sh_msiof_write(p, SIIER, 0);
0861 return ret;
0862 }
0863
0864 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
0865 {
0866
0867 if ((unsigned long)src & 3) {
0868 while (words--) {
0869 *dst++ = swab32(get_unaligned(src));
0870 src++;
0871 }
0872 } else if ((unsigned long)dst & 3) {
0873 while (words--) {
0874 put_unaligned(swab32(*src++), dst);
0875 dst++;
0876 }
0877 } else {
0878 while (words--)
0879 *dst++ = swab32(*src++);
0880 }
0881 }
0882
0883 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
0884 {
0885
0886 if ((unsigned long)src & 3) {
0887 while (words--) {
0888 *dst++ = swahw32(get_unaligned(src));
0889 src++;
0890 }
0891 } else if ((unsigned long)dst & 3) {
0892 while (words--) {
0893 put_unaligned(swahw32(*src++), dst);
0894 dst++;
0895 }
0896 } else {
0897 while (words--)
0898 *dst++ = swahw32(*src++);
0899 }
0900 }
0901
0902 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
0903 {
0904 memcpy(dst, src, words * 4);
0905 }
0906
0907 static int sh_msiof_transfer_one(struct spi_controller *ctlr,
0908 struct spi_device *spi,
0909 struct spi_transfer *t)
0910 {
0911 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
0912 void (*copy32)(u32 *, const u32 *, unsigned int);
0913 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
0914 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
0915 const void *tx_buf = t->tx_buf;
0916 void *rx_buf = t->rx_buf;
0917 unsigned int len = t->len;
0918 unsigned int bits = t->bits_per_word;
0919 unsigned int bytes_per_word;
0920 unsigned int words;
0921 int n;
0922 bool swab;
0923 int ret;
0924
0925
0926 sh_msiof_spi_reset_regs(p);
0927
0928
0929 if (!spi_controller_is_slave(p->ctlr))
0930 sh_msiof_spi_set_clk_regs(p, t);
0931
0932 while (ctlr->dma_tx && len > 15) {
0933
0934
0935
0936
0937 unsigned int l = 0;
0938
0939 if (tx_buf)
0940 l = min(round_down(len, 4), p->tx_fifo_size * 4);
0941 if (rx_buf)
0942 l = min(round_down(len, 4), p->rx_fifo_size * 4);
0943
0944 if (bits <= 8) {
0945 copy32 = copy_bswap32;
0946 } else if (bits <= 16) {
0947 copy32 = copy_wswap32;
0948 } else {
0949 copy32 = copy_plain32;
0950 }
0951
0952 if (tx_buf)
0953 copy32(p->tx_dma_page, tx_buf, l / 4);
0954
0955 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
0956 if (ret == -EAGAIN) {
0957 dev_warn_once(&p->pdev->dev,
0958 "DMA not available, falling back to PIO\n");
0959 break;
0960 }
0961 if (ret)
0962 return ret;
0963
0964 if (rx_buf) {
0965 copy32(rx_buf, p->rx_dma_page, l / 4);
0966 rx_buf += l;
0967 }
0968 if (tx_buf)
0969 tx_buf += l;
0970
0971 len -= l;
0972 if (!len)
0973 return 0;
0974 }
0975
0976 if (bits <= 8 && len > 15) {
0977 bits = 32;
0978 swab = true;
0979 } else {
0980 swab = false;
0981 }
0982
0983
0984 if (bits <= 8) {
0985 bytes_per_word = 1;
0986 tx_fifo = sh_msiof_spi_write_fifo_8;
0987 rx_fifo = sh_msiof_spi_read_fifo_8;
0988 } else if (bits <= 16) {
0989 bytes_per_word = 2;
0990 if ((unsigned long)tx_buf & 0x01)
0991 tx_fifo = sh_msiof_spi_write_fifo_16u;
0992 else
0993 tx_fifo = sh_msiof_spi_write_fifo_16;
0994
0995 if ((unsigned long)rx_buf & 0x01)
0996 rx_fifo = sh_msiof_spi_read_fifo_16u;
0997 else
0998 rx_fifo = sh_msiof_spi_read_fifo_16;
0999 } else if (swab) {
1000 bytes_per_word = 4;
1001 if ((unsigned long)tx_buf & 0x03)
1002 tx_fifo = sh_msiof_spi_write_fifo_s32u;
1003 else
1004 tx_fifo = sh_msiof_spi_write_fifo_s32;
1005
1006 if ((unsigned long)rx_buf & 0x03)
1007 rx_fifo = sh_msiof_spi_read_fifo_s32u;
1008 else
1009 rx_fifo = sh_msiof_spi_read_fifo_s32;
1010 } else {
1011 bytes_per_word = 4;
1012 if ((unsigned long)tx_buf & 0x03)
1013 tx_fifo = sh_msiof_spi_write_fifo_32u;
1014 else
1015 tx_fifo = sh_msiof_spi_write_fifo_32;
1016
1017 if ((unsigned long)rx_buf & 0x03)
1018 rx_fifo = sh_msiof_spi_read_fifo_32u;
1019 else
1020 rx_fifo = sh_msiof_spi_read_fifo_32;
1021 }
1022
1023
1024 words = len / bytes_per_word;
1025
1026 while (words > 0) {
1027 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1028 words, bits);
1029 if (n < 0)
1030 return n;
1031
1032 if (tx_buf)
1033 tx_buf += n * bytes_per_word;
1034 if (rx_buf)
1035 rx_buf += n * bytes_per_word;
1036 words -= n;
1037
1038 if (words == 0 && (len % bytes_per_word)) {
1039 words = len % bytes_per_word;
1040 bits = t->bits_per_word;
1041 bytes_per_word = 1;
1042 tx_fifo = sh_msiof_spi_write_fifo_8;
1043 rx_fifo = sh_msiof_spi_read_fifo_8;
1044 }
1045 }
1046
1047 return 0;
1048 }
1049
1050 static const struct sh_msiof_chipdata sh_data = {
1051 .bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
1052 .tx_fifo_size = 64,
1053 .rx_fifo_size = 64,
1054 .ctlr_flags = 0,
1055 .min_div_pow = 0,
1056 };
1057
1058 static const struct sh_msiof_chipdata rcar_gen2_data = {
1059 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1060 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1061 .tx_fifo_size = 64,
1062 .rx_fifo_size = 64,
1063 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1064 .min_div_pow = 0,
1065 };
1066
1067 static const struct sh_msiof_chipdata rcar_gen3_data = {
1068 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1069 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1070 .tx_fifo_size = 64,
1071 .rx_fifo_size = 64,
1072 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1073 .min_div_pow = 1,
1074 };
1075
1076 static const struct of_device_id sh_msiof_match[] = {
1077 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1078 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
1079 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
1080 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
1081 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
1082 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
1083 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
1084 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
1085 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1086 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
1087 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1088 { .compatible = "renesas,sh-msiof", .data = &sh_data },
1089 {},
1090 };
1091 MODULE_DEVICE_TABLE(of, sh_msiof_match);
1092
1093 #ifdef CONFIG_OF
1094 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1095 {
1096 struct sh_msiof_spi_info *info;
1097 struct device_node *np = dev->of_node;
1098 u32 num_cs = 1;
1099
1100 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1101 if (!info)
1102 return NULL;
1103
1104 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1105 : MSIOF_SPI_MASTER;
1106
1107
1108 if (info->mode == MSIOF_SPI_MASTER)
1109 of_property_read_u32(np, "num-cs", &num_cs);
1110 of_property_read_u32(np, "renesas,tx-fifo-size",
1111 &info->tx_fifo_override);
1112 of_property_read_u32(np, "renesas,rx-fifo-size",
1113 &info->rx_fifo_override);
1114 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1115 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1116
1117 info->num_chipselect = num_cs;
1118
1119 return info;
1120 }
1121 #else
1122 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1123 {
1124 return NULL;
1125 }
1126 #endif
1127
1128 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1129 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1130 {
1131 dma_cap_mask_t mask;
1132 struct dma_chan *chan;
1133 struct dma_slave_config cfg;
1134 int ret;
1135
1136 dma_cap_zero(mask);
1137 dma_cap_set(DMA_SLAVE, mask);
1138
1139 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1140 (void *)(unsigned long)id, dev,
1141 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1142 if (!chan) {
1143 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1144 return NULL;
1145 }
1146
1147 memset(&cfg, 0, sizeof(cfg));
1148 cfg.direction = dir;
1149 if (dir == DMA_MEM_TO_DEV) {
1150 cfg.dst_addr = port_addr;
1151 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1152 } else {
1153 cfg.src_addr = port_addr;
1154 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1155 }
1156
1157 ret = dmaengine_slave_config(chan, &cfg);
1158 if (ret) {
1159 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1160 dma_release_channel(chan);
1161 return NULL;
1162 }
1163
1164 return chan;
1165 }
1166
1167 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1168 {
1169 struct platform_device *pdev = p->pdev;
1170 struct device *dev = &pdev->dev;
1171 const struct sh_msiof_spi_info *info = p->info;
1172 unsigned int dma_tx_id, dma_rx_id;
1173 const struct resource *res;
1174 struct spi_controller *ctlr;
1175 struct device *tx_dev, *rx_dev;
1176
1177 if (dev->of_node) {
1178
1179 dma_tx_id = 0;
1180 dma_rx_id = 0;
1181 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1182 dma_tx_id = info->dma_tx_id;
1183 dma_rx_id = info->dma_rx_id;
1184 } else {
1185
1186 return 0;
1187 }
1188
1189
1190 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1191 if (!res)
1192 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1193
1194 ctlr = p->ctlr;
1195 ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1196 dma_tx_id, res->start + SITFDR);
1197 if (!ctlr->dma_tx)
1198 return -ENODEV;
1199
1200 ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1201 dma_rx_id, res->start + SIRFDR);
1202 if (!ctlr->dma_rx)
1203 goto free_tx_chan;
1204
1205 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1206 if (!p->tx_dma_page)
1207 goto free_rx_chan;
1208
1209 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1210 if (!p->rx_dma_page)
1211 goto free_tx_page;
1212
1213 tx_dev = ctlr->dma_tx->device->dev;
1214 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1215 DMA_TO_DEVICE);
1216 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1217 goto free_rx_page;
1218
1219 rx_dev = ctlr->dma_rx->device->dev;
1220 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1221 DMA_FROM_DEVICE);
1222 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1223 goto unmap_tx_page;
1224
1225 dev_info(dev, "DMA available");
1226 return 0;
1227
1228 unmap_tx_page:
1229 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1230 free_rx_page:
1231 free_page((unsigned long)p->rx_dma_page);
1232 free_tx_page:
1233 free_page((unsigned long)p->tx_dma_page);
1234 free_rx_chan:
1235 dma_release_channel(ctlr->dma_rx);
1236 free_tx_chan:
1237 dma_release_channel(ctlr->dma_tx);
1238 ctlr->dma_tx = NULL;
1239 return -ENODEV;
1240 }
1241
1242 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1243 {
1244 struct spi_controller *ctlr = p->ctlr;
1245
1246 if (!ctlr->dma_tx)
1247 return;
1248
1249 dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
1250 DMA_FROM_DEVICE);
1251 dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
1252 DMA_TO_DEVICE);
1253 free_page((unsigned long)p->rx_dma_page);
1254 free_page((unsigned long)p->tx_dma_page);
1255 dma_release_channel(ctlr->dma_rx);
1256 dma_release_channel(ctlr->dma_tx);
1257 }
1258
1259 static int sh_msiof_spi_probe(struct platform_device *pdev)
1260 {
1261 struct spi_controller *ctlr;
1262 const struct sh_msiof_chipdata *chipdata;
1263 struct sh_msiof_spi_info *info;
1264 struct sh_msiof_spi_priv *p;
1265 unsigned long clksrc;
1266 int i;
1267 int ret;
1268
1269 chipdata = of_device_get_match_data(&pdev->dev);
1270 if (chipdata) {
1271 info = sh_msiof_spi_parse_dt(&pdev->dev);
1272 } else {
1273 chipdata = (const void *)pdev->id_entry->driver_data;
1274 info = dev_get_platdata(&pdev->dev);
1275 }
1276
1277 if (!info) {
1278 dev_err(&pdev->dev, "failed to obtain device info\n");
1279 return -ENXIO;
1280 }
1281
1282 if (info->mode == MSIOF_SPI_SLAVE)
1283 ctlr = spi_alloc_slave(&pdev->dev,
1284 sizeof(struct sh_msiof_spi_priv));
1285 else
1286 ctlr = spi_alloc_master(&pdev->dev,
1287 sizeof(struct sh_msiof_spi_priv));
1288 if (ctlr == NULL)
1289 return -ENOMEM;
1290
1291 p = spi_controller_get_devdata(ctlr);
1292
1293 platform_set_drvdata(pdev, p);
1294 p->ctlr = ctlr;
1295 p->info = info;
1296 p->min_div_pow = chipdata->min_div_pow;
1297
1298 init_completion(&p->done);
1299 init_completion(&p->done_txdma);
1300
1301 p->clk = devm_clk_get(&pdev->dev, NULL);
1302 if (IS_ERR(p->clk)) {
1303 dev_err(&pdev->dev, "cannot get clock\n");
1304 ret = PTR_ERR(p->clk);
1305 goto err1;
1306 }
1307
1308 i = platform_get_irq(pdev, 0);
1309 if (i < 0) {
1310 ret = i;
1311 goto err1;
1312 }
1313
1314 p->mapbase = devm_platform_ioremap_resource(pdev, 0);
1315 if (IS_ERR(p->mapbase)) {
1316 ret = PTR_ERR(p->mapbase);
1317 goto err1;
1318 }
1319
1320 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1321 dev_name(&pdev->dev), p);
1322 if (ret) {
1323 dev_err(&pdev->dev, "unable to request irq\n");
1324 goto err1;
1325 }
1326
1327 p->pdev = pdev;
1328 pm_runtime_enable(&pdev->dev);
1329
1330
1331 p->tx_fifo_size = chipdata->tx_fifo_size;
1332 p->rx_fifo_size = chipdata->rx_fifo_size;
1333 if (p->info->tx_fifo_override)
1334 p->tx_fifo_size = p->info->tx_fifo_override;
1335 if (p->info->rx_fifo_override)
1336 p->rx_fifo_size = p->info->rx_fifo_override;
1337
1338
1339 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1340 ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1341 clksrc = clk_get_rate(p->clk);
1342 ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, 1024);
1343 ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, 1 << p->min_div_pow);
1344 ctlr->flags = chipdata->ctlr_flags;
1345 ctlr->bus_num = pdev->id;
1346 ctlr->num_chipselect = p->info->num_chipselect;
1347 ctlr->dev.of_node = pdev->dev.of_node;
1348 ctlr->setup = sh_msiof_spi_setup;
1349 ctlr->prepare_message = sh_msiof_prepare_message;
1350 ctlr->slave_abort = sh_msiof_slave_abort;
1351 ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
1352 ctlr->auto_runtime_pm = true;
1353 ctlr->transfer_one = sh_msiof_transfer_one;
1354 ctlr->use_gpio_descriptors = true;
1355 ctlr->max_native_cs = MAX_SS;
1356
1357 ret = sh_msiof_request_dma(p);
1358 if (ret < 0)
1359 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1360
1361 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1362 if (ret < 0) {
1363 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1364 goto err2;
1365 }
1366
1367 return 0;
1368
1369 err2:
1370 sh_msiof_release_dma(p);
1371 pm_runtime_disable(&pdev->dev);
1372 err1:
1373 spi_controller_put(ctlr);
1374 return ret;
1375 }
1376
1377 static int sh_msiof_spi_remove(struct platform_device *pdev)
1378 {
1379 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1380
1381 sh_msiof_release_dma(p);
1382 pm_runtime_disable(&pdev->dev);
1383 return 0;
1384 }
1385
1386 static const struct platform_device_id spi_driver_ids[] = {
1387 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
1388 {},
1389 };
1390 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1391
1392 #ifdef CONFIG_PM_SLEEP
1393 static int sh_msiof_spi_suspend(struct device *dev)
1394 {
1395 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1396
1397 return spi_controller_suspend(p->ctlr);
1398 }
1399
1400 static int sh_msiof_spi_resume(struct device *dev)
1401 {
1402 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1403
1404 return spi_controller_resume(p->ctlr);
1405 }
1406
1407 static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1408 sh_msiof_spi_resume);
1409 #define DEV_PM_OPS (&sh_msiof_spi_pm_ops)
1410 #else
1411 #define DEV_PM_OPS NULL
1412 #endif
1413
1414 static struct platform_driver sh_msiof_spi_drv = {
1415 .probe = sh_msiof_spi_probe,
1416 .remove = sh_msiof_spi_remove,
1417 .id_table = spi_driver_ids,
1418 .driver = {
1419 .name = "spi_sh_msiof",
1420 .pm = DEV_PM_OPS,
1421 .of_match_table = of_match_ptr(sh_msiof_match),
1422 },
1423 };
1424 module_platform_driver(sh_msiof_spi_drv);
1425
1426 MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
1427 MODULE_AUTHOR("Magnus Damm");
1428 MODULE_LICENSE("GPL v2");