0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012 #include <linux/module.h>
0013 #include <linux/kernel.h>
0014 #include <linux/sched.h>
0015 #include <linux/errno.h>
0016 #include <linux/interrupt.h>
0017 #include <linux/platform_device.h>
0018 #include <linux/io.h>
0019 #include <linux/clk.h>
0020 #include <linux/dmaengine.h>
0021 #include <linux/dma-mapping.h>
0022 #include <linux/of_device.h>
0023 #include <linux/pm_runtime.h>
0024 #include <linux/reset.h>
0025 #include <linux/sh_dma.h>
0026 #include <linux/spi/spi.h>
0027 #include <linux/spi/rspi.h>
0028 #include <linux/spinlock.h>
0029
0030 #define RSPI_SPCR 0x00
0031 #define RSPI_SSLP 0x01
0032 #define RSPI_SPPCR 0x02
0033 #define RSPI_SPSR 0x03
0034 #define RSPI_SPDR 0x04
0035 #define RSPI_SPSCR 0x08
0036 #define RSPI_SPSSR 0x09
0037 #define RSPI_SPBR 0x0a
0038 #define RSPI_SPDCR 0x0b
0039 #define RSPI_SPCKD 0x0c
0040 #define RSPI_SSLND 0x0d
0041 #define RSPI_SPND 0x0e
0042 #define RSPI_SPCR2 0x0f
0043 #define RSPI_SPCMD0 0x10
0044 #define RSPI_SPCMD1 0x12
0045 #define RSPI_SPCMD2 0x14
0046 #define RSPI_SPCMD3 0x16
0047 #define RSPI_SPCMD4 0x18
0048 #define RSPI_SPCMD5 0x1a
0049 #define RSPI_SPCMD6 0x1c
0050 #define RSPI_SPCMD7 0x1e
0051 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
0052 #define RSPI_NUM_SPCMD 8
0053 #define RSPI_RZ_NUM_SPCMD 4
0054 #define QSPI_NUM_SPCMD 4
0055
0056
0057 #define RSPI_SPBFCR 0x20
0058 #define RSPI_SPBFDR 0x22
0059
0060
0061 #define QSPI_SPBFCR 0x18
0062 #define QSPI_SPBDCR 0x1a
0063 #define QSPI_SPBMUL0 0x1c
0064 #define QSPI_SPBMUL1 0x20
0065 #define QSPI_SPBMUL2 0x24
0066 #define QSPI_SPBMUL3 0x28
0067 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
0068
0069
0070 #define SPCR_SPRIE 0x80
0071 #define SPCR_SPE 0x40
0072 #define SPCR_SPTIE 0x20
0073 #define SPCR_SPEIE 0x10
0074 #define SPCR_MSTR 0x08
0075 #define SPCR_MODFEN 0x04
0076
0077 #define SPCR_TXMD 0x02
0078 #define SPCR_SPMS 0x01
0079
0080 #define SPCR_WSWAP 0x02
0081 #define SPCR_BSWAP 0x01
0082
0083
0084 #define SSLP_SSLP(i) BIT(i)
0085
0086
0087 #define SPPCR_MOIFE 0x20
0088 #define SPPCR_MOIFV 0x10
0089 #define SPPCR_SPOM 0x04
0090 #define SPPCR_SPLP2 0x02
0091 #define SPPCR_SPLP 0x01
0092
0093 #define SPPCR_IO3FV 0x04
0094 #define SPPCR_IO2FV 0x04
0095
0096
0097 #define SPSR_SPRF 0x80
0098 #define SPSR_TEND 0x40
0099 #define SPSR_SPTEF 0x20
0100 #define SPSR_PERF 0x08
0101 #define SPSR_MODF 0x04
0102 #define SPSR_IDLNF 0x02
0103 #define SPSR_OVRF 0x01
0104
0105
0106 #define SPSCR_SPSLN_MASK 0x07
0107
0108
0109 #define SPSSR_SPECM_MASK 0x70
0110 #define SPSSR_SPCP_MASK 0x07
0111
0112
0113 #define SPDCR_TXDMY 0x80
0114 #define SPDCR_SPLW1 0x40
0115 #define SPDCR_SPLW0 0x20
0116 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
0117 #define SPDCR_SPLWORD SPDCR_SPLW1
0118 #define SPDCR_SPLBYTE SPDCR_SPLW0
0119 #define SPDCR_SPLW 0x20
0120 #define SPDCR_SPRDTD 0x10
0121 #define SPDCR_SLSEL1 0x08
0122 #define SPDCR_SLSEL0 0x04
0123 #define SPDCR_SLSEL_MASK 0x0c
0124 #define SPDCR_SPFC1 0x02
0125 #define SPDCR_SPFC0 0x01
0126 #define SPDCR_SPFC_MASK 0x03
0127
0128
0129 #define SPCKD_SCKDL_MASK 0x07
0130
0131
0132 #define SSLND_SLNDL_MASK 0x07
0133
0134
0135 #define SPND_SPNDL_MASK 0x07
0136
0137
0138 #define SPCR2_PTE 0x08
0139 #define SPCR2_SPIE 0x04
0140 #define SPCR2_SPOE 0x02
0141 #define SPCR2_SPPE 0x01
0142
0143
0144 #define SPCMD_SCKDEN 0x8000
0145 #define SPCMD_SLNDEN 0x4000
0146 #define SPCMD_SPNDEN 0x2000
0147 #define SPCMD_LSBF 0x1000
0148 #define SPCMD_SPB_MASK 0x0f00
0149 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
0150 #define SPCMD_SPB_8BIT 0x0000
0151 #define SPCMD_SPB_16BIT 0x0100
0152 #define SPCMD_SPB_20BIT 0x0000
0153 #define SPCMD_SPB_24BIT 0x0100
0154 #define SPCMD_SPB_32BIT 0x0200
0155 #define SPCMD_SSLKP 0x0080
0156 #define SPCMD_SPIMOD_MASK 0x0060
0157 #define SPCMD_SPIMOD1 0x0040
0158 #define SPCMD_SPIMOD0 0x0020
0159 #define SPCMD_SPIMOD_SINGLE 0
0160 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
0161 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
0162 #define SPCMD_SPRW 0x0010
0163 #define SPCMD_SSLA(i) ((i) << 4)
0164 #define SPCMD_BRDV_MASK 0x000c
0165 #define SPCMD_BRDV(brdv) ((brdv) << 2)
0166 #define SPCMD_CPOL 0x0002
0167 #define SPCMD_CPHA 0x0001
0168
0169
0170 #define SPBFCR_TXRST 0x80
0171 #define SPBFCR_RXRST 0x40
0172 #define SPBFCR_TXTRG_MASK 0x30
0173 #define SPBFCR_RXTRG_MASK 0x07
0174
0175 #define SPBFCR_TXTRG_1B 0x00
0176 #define SPBFCR_TXTRG_32B 0x30
0177 #define SPBFCR_RXTRG_1B 0x00
0178 #define SPBFCR_RXTRG_32B 0x07
0179
0180 #define QSPI_BUFFER_SIZE 32u
0181
0182 struct rspi_data {
0183 void __iomem *addr;
0184 u32 speed_hz;
0185 struct spi_controller *ctlr;
0186 struct platform_device *pdev;
0187 wait_queue_head_t wait;
0188 spinlock_t lock;
0189 struct clk *clk;
0190 u16 spcmd;
0191 u8 spsr;
0192 u8 sppcr;
0193 int rx_irq, tx_irq;
0194 const struct spi_ops *ops;
0195
0196 unsigned dma_callbacked:1;
0197 unsigned byte_access:1;
0198 };
0199
0200 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
0201 {
0202 iowrite8(data, rspi->addr + offset);
0203 }
0204
0205 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
0206 {
0207 iowrite16(data, rspi->addr + offset);
0208 }
0209
0210 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
0211 {
0212 iowrite32(data, rspi->addr + offset);
0213 }
0214
0215 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
0216 {
0217 return ioread8(rspi->addr + offset);
0218 }
0219
0220 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
0221 {
0222 return ioread16(rspi->addr + offset);
0223 }
0224
0225 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
0226 {
0227 if (rspi->byte_access)
0228 rspi_write8(rspi, data, RSPI_SPDR);
0229 else
0230 rspi_write16(rspi, data, RSPI_SPDR);
0231 }
0232
0233 static u16 rspi_read_data(const struct rspi_data *rspi)
0234 {
0235 if (rspi->byte_access)
0236 return rspi_read8(rspi, RSPI_SPDR);
0237 else
0238 return rspi_read16(rspi, RSPI_SPDR);
0239 }
0240
0241
0242 struct spi_ops {
0243 int (*set_config_register)(struct rspi_data *rspi, int access_size);
0244 int (*transfer_one)(struct spi_controller *ctlr,
0245 struct spi_device *spi, struct spi_transfer *xfer);
0246 u16 extra_mode_bits;
0247 u16 min_div;
0248 u16 max_div;
0249 u16 flags;
0250 u16 fifo_size;
0251 u8 num_hw_ss;
0252 };
0253
0254 static void rspi_set_rate(struct rspi_data *rspi)
0255 {
0256 unsigned long clksrc;
0257 int brdv = 0, spbr;
0258
0259 clksrc = clk_get_rate(rspi->clk);
0260 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
0261 while (spbr > 255 && brdv < 3) {
0262 brdv++;
0263 spbr = DIV_ROUND_UP(spbr + 1, 2) - 1;
0264 }
0265
0266 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
0267 rspi->spcmd |= SPCMD_BRDV(brdv);
0268 rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * (spbr + 1));
0269 }
0270
0271
0272
0273
0274 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
0275 {
0276
0277 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
0278
0279
0280 rspi_set_rate(rspi);
0281
0282
0283 rspi_write8(rspi, 0, RSPI_SPDCR);
0284 rspi->byte_access = 0;
0285
0286
0287 rspi_write8(rspi, 0x00, RSPI_SPCKD);
0288 rspi_write8(rspi, 0x00, RSPI_SSLND);
0289 rspi_write8(rspi, 0x00, RSPI_SPND);
0290
0291
0292 rspi_write8(rspi, 0x00, RSPI_SPCR2);
0293
0294
0295 rspi_write8(rspi, 0, RSPI_SPSCR);
0296 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
0297 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
0298
0299
0300 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
0301
0302 return 0;
0303 }
0304
0305
0306
0307
0308 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
0309 {
0310
0311 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
0312
0313
0314 rspi_set_rate(rspi);
0315
0316
0317 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
0318 rspi->byte_access = 1;
0319
0320
0321 rspi_write8(rspi, 0x00, RSPI_SPCKD);
0322 rspi_write8(rspi, 0x00, RSPI_SSLND);
0323 rspi_write8(rspi, 0x00, RSPI_SPND);
0324
0325
0326 rspi_write8(rspi, 0, RSPI_SPSCR);
0327 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
0328 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
0329
0330
0331 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
0332
0333 return 0;
0334 }
0335
0336
0337
0338
0339 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
0340 {
0341 unsigned long clksrc;
0342 int brdv = 0, spbr;
0343
0344
0345 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
0346
0347
0348 clksrc = clk_get_rate(rspi->clk);
0349 if (rspi->speed_hz >= clksrc) {
0350 spbr = 0;
0351 rspi->speed_hz = clksrc;
0352 } else {
0353 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz);
0354 while (spbr > 255 && brdv < 3) {
0355 brdv++;
0356 spbr = DIV_ROUND_UP(spbr, 2);
0357 }
0358 spbr = clamp(spbr, 0, 255);
0359 rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * spbr);
0360 }
0361 rspi_write8(rspi, spbr, RSPI_SPBR);
0362 rspi->spcmd |= SPCMD_BRDV(brdv);
0363
0364
0365 rspi_write8(rspi, 0, RSPI_SPDCR);
0366 rspi->byte_access = 1;
0367
0368
0369 rspi_write8(rspi, 0x00, RSPI_SPCKD);
0370 rspi_write8(rspi, 0x00, RSPI_SSLND);
0371 rspi_write8(rspi, 0x00, RSPI_SPND);
0372
0373
0374 if (access_size == 8)
0375 rspi->spcmd |= SPCMD_SPB_8BIT;
0376 else if (access_size == 16)
0377 rspi->spcmd |= SPCMD_SPB_16BIT;
0378 else
0379 rspi->spcmd |= SPCMD_SPB_32BIT;
0380
0381 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
0382
0383
0384 rspi_write32(rspi, 0, QSPI_SPBMUL0);
0385
0386
0387 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
0388
0389 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
0390
0391
0392 rspi_write8(rspi, 0, RSPI_SPSCR);
0393 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
0394
0395
0396 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
0397
0398 return 0;
0399 }
0400
0401 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
0402 {
0403 u8 data;
0404
0405 data = rspi_read8(rspi, reg);
0406 data &= ~mask;
0407 data |= (val & mask);
0408 rspi_write8(rspi, data, reg);
0409 }
0410
0411 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
0412 unsigned int len)
0413 {
0414 unsigned int n;
0415
0416 n = min(len, QSPI_BUFFER_SIZE);
0417
0418 if (len >= QSPI_BUFFER_SIZE) {
0419
0420 qspi_update(rspi, SPBFCR_TXTRG_MASK,
0421 SPBFCR_TXTRG_32B, QSPI_SPBFCR);
0422 } else {
0423
0424 qspi_update(rspi, SPBFCR_TXTRG_MASK,
0425 SPBFCR_TXTRG_1B, QSPI_SPBFCR);
0426 }
0427
0428 return n;
0429 }
0430
0431 static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
0432 {
0433 unsigned int n;
0434
0435 n = min(len, QSPI_BUFFER_SIZE);
0436
0437 if (len >= QSPI_BUFFER_SIZE) {
0438
0439 qspi_update(rspi, SPBFCR_RXTRG_MASK,
0440 SPBFCR_RXTRG_32B, QSPI_SPBFCR);
0441 } else {
0442
0443 qspi_update(rspi, SPBFCR_RXTRG_MASK,
0444 SPBFCR_RXTRG_1B, QSPI_SPBFCR);
0445 }
0446 return n;
0447 }
0448
0449 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
0450 {
0451 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
0452 }
0453
0454 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
0455 {
0456 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
0457 }
0458
0459 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
0460 u8 enable_bit)
0461 {
0462 int ret;
0463
0464 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
0465 if (rspi->spsr & wait_mask)
0466 return 0;
0467
0468 rspi_enable_irq(rspi, enable_bit);
0469 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
0470 if (ret == 0 && !(rspi->spsr & wait_mask))
0471 return -ETIMEDOUT;
0472
0473 return 0;
0474 }
0475
0476 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
0477 {
0478 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
0479 }
0480
0481 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
0482 {
0483 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
0484 }
0485
0486 static int rspi_data_out(struct rspi_data *rspi, u8 data)
0487 {
0488 int error = rspi_wait_for_tx_empty(rspi);
0489 if (error < 0) {
0490 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
0491 return error;
0492 }
0493 rspi_write_data(rspi, data);
0494 return 0;
0495 }
0496
0497 static int rspi_data_in(struct rspi_data *rspi)
0498 {
0499 int error;
0500 u8 data;
0501
0502 error = rspi_wait_for_rx_full(rspi);
0503 if (error < 0) {
0504 dev_err(&rspi->ctlr->dev, "receive timeout\n");
0505 return error;
0506 }
0507 data = rspi_read_data(rspi);
0508 return data;
0509 }
0510
0511 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
0512 unsigned int n)
0513 {
0514 while (n-- > 0) {
0515 if (tx) {
0516 int ret = rspi_data_out(rspi, *tx++);
0517 if (ret < 0)
0518 return ret;
0519 }
0520 if (rx) {
0521 int ret = rspi_data_in(rspi);
0522 if (ret < 0)
0523 return ret;
0524 *rx++ = ret;
0525 }
0526 }
0527
0528 return 0;
0529 }
0530
0531 static void rspi_dma_complete(void *arg)
0532 {
0533 struct rspi_data *rspi = arg;
0534
0535 rspi->dma_callbacked = 1;
0536 wake_up_interruptible(&rspi->wait);
0537 }
0538
0539 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
0540 struct sg_table *rx)
0541 {
0542 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
0543 u8 irq_mask = 0;
0544 unsigned int other_irq = 0;
0545 dma_cookie_t cookie;
0546 int ret;
0547
0548
0549 if (rx) {
0550 desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
0551 rx->nents, DMA_DEV_TO_MEM,
0552 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
0553 if (!desc_rx) {
0554 ret = -EAGAIN;
0555 goto no_dma_rx;
0556 }
0557
0558 desc_rx->callback = rspi_dma_complete;
0559 desc_rx->callback_param = rspi;
0560 cookie = dmaengine_submit(desc_rx);
0561 if (dma_submit_error(cookie)) {
0562 ret = cookie;
0563 goto no_dma_rx;
0564 }
0565
0566 irq_mask |= SPCR_SPRIE;
0567 }
0568
0569 if (tx) {
0570 desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
0571 tx->nents, DMA_MEM_TO_DEV,
0572 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
0573 if (!desc_tx) {
0574 ret = -EAGAIN;
0575 goto no_dma_tx;
0576 }
0577
0578 if (rx) {
0579
0580 desc_tx->callback = NULL;
0581 } else {
0582 desc_tx->callback = rspi_dma_complete;
0583 desc_tx->callback_param = rspi;
0584 }
0585 cookie = dmaengine_submit(desc_tx);
0586 if (dma_submit_error(cookie)) {
0587 ret = cookie;
0588 goto no_dma_tx;
0589 }
0590
0591 irq_mask |= SPCR_SPTIE;
0592 }
0593
0594
0595
0596
0597
0598 if (tx)
0599 disable_irq(other_irq = rspi->tx_irq);
0600 if (rx && rspi->rx_irq != other_irq)
0601 disable_irq(rspi->rx_irq);
0602
0603 rspi_enable_irq(rspi, irq_mask);
0604 rspi->dma_callbacked = 0;
0605
0606
0607 if (rx)
0608 dma_async_issue_pending(rspi->ctlr->dma_rx);
0609 if (tx)
0610 dma_async_issue_pending(rspi->ctlr->dma_tx);
0611
0612 ret = wait_event_interruptible_timeout(rspi->wait,
0613 rspi->dma_callbacked, HZ);
0614 if (ret > 0 && rspi->dma_callbacked) {
0615 ret = 0;
0616 if (tx)
0617 dmaengine_synchronize(rspi->ctlr->dma_tx);
0618 if (rx)
0619 dmaengine_synchronize(rspi->ctlr->dma_rx);
0620 } else {
0621 if (!ret) {
0622 dev_err(&rspi->ctlr->dev, "DMA timeout\n");
0623 ret = -ETIMEDOUT;
0624 }
0625 if (tx)
0626 dmaengine_terminate_sync(rspi->ctlr->dma_tx);
0627 if (rx)
0628 dmaengine_terminate_sync(rspi->ctlr->dma_rx);
0629 }
0630
0631 rspi_disable_irq(rspi, irq_mask);
0632
0633 if (tx)
0634 enable_irq(rspi->tx_irq);
0635 if (rx && rspi->rx_irq != other_irq)
0636 enable_irq(rspi->rx_irq);
0637
0638 return ret;
0639
0640 no_dma_tx:
0641 if (rx)
0642 dmaengine_terminate_sync(rspi->ctlr->dma_rx);
0643 no_dma_rx:
0644 if (ret == -EAGAIN) {
0645 dev_warn_once(&rspi->ctlr->dev,
0646 "DMA not available, falling back to PIO\n");
0647 }
0648 return ret;
0649 }
0650
0651 static void rspi_receive_init(const struct rspi_data *rspi)
0652 {
0653 u8 spsr;
0654
0655 spsr = rspi_read8(rspi, RSPI_SPSR);
0656 if (spsr & SPSR_SPRF)
0657 rspi_read_data(rspi);
0658 if (spsr & SPSR_OVRF)
0659 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
0660 RSPI_SPSR);
0661 }
0662
0663 static void rspi_rz_receive_init(const struct rspi_data *rspi)
0664 {
0665 rspi_receive_init(rspi);
0666 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
0667 rspi_write8(rspi, 0, RSPI_SPBFCR);
0668 }
0669
0670 static void qspi_receive_init(const struct rspi_data *rspi)
0671 {
0672 u8 spsr;
0673
0674 spsr = rspi_read8(rspi, RSPI_SPSR);
0675 if (spsr & SPSR_SPRF)
0676 rspi_read_data(rspi);
0677 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
0678 rspi_write8(rspi, 0, QSPI_SPBFCR);
0679 }
0680
0681 static bool __rspi_can_dma(const struct rspi_data *rspi,
0682 const struct spi_transfer *xfer)
0683 {
0684 return xfer->len > rspi->ops->fifo_size;
0685 }
0686
0687 static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
0688 struct spi_transfer *xfer)
0689 {
0690 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
0691
0692 return __rspi_can_dma(rspi, xfer);
0693 }
0694
0695 static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
0696 struct spi_transfer *xfer)
0697 {
0698 if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
0699 return -EAGAIN;
0700
0701
0702 return rspi_dma_transfer(rspi, &xfer->tx_sg,
0703 xfer->rx_buf ? &xfer->rx_sg : NULL);
0704 }
0705
0706 static int rspi_common_transfer(struct rspi_data *rspi,
0707 struct spi_transfer *xfer)
0708 {
0709 int ret;
0710
0711 xfer->effective_speed_hz = rspi->speed_hz;
0712
0713 ret = rspi_dma_check_then_transfer(rspi, xfer);
0714 if (ret != -EAGAIN)
0715 return ret;
0716
0717 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
0718 if (ret < 0)
0719 return ret;
0720
0721
0722 rspi_wait_for_tx_empty(rspi);
0723
0724 return 0;
0725 }
0726
0727 static int rspi_transfer_one(struct spi_controller *ctlr,
0728 struct spi_device *spi, struct spi_transfer *xfer)
0729 {
0730 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
0731 u8 spcr;
0732
0733 spcr = rspi_read8(rspi, RSPI_SPCR);
0734 if (xfer->rx_buf) {
0735 rspi_receive_init(rspi);
0736 spcr &= ~SPCR_TXMD;
0737 } else {
0738 spcr |= SPCR_TXMD;
0739 }
0740 rspi_write8(rspi, spcr, RSPI_SPCR);
0741
0742 return rspi_common_transfer(rspi, xfer);
0743 }
0744
0745 static int rspi_rz_transfer_one(struct spi_controller *ctlr,
0746 struct spi_device *spi,
0747 struct spi_transfer *xfer)
0748 {
0749 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
0750
0751 rspi_rz_receive_init(rspi);
0752
0753 return rspi_common_transfer(rspi, xfer);
0754 }
0755
0756 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
0757 u8 *rx, unsigned int len)
0758 {
0759 unsigned int i, n;
0760 int ret;
0761
0762 while (len > 0) {
0763 n = qspi_set_send_trigger(rspi, len);
0764 qspi_set_receive_trigger(rspi, len);
0765 ret = rspi_wait_for_tx_empty(rspi);
0766 if (ret < 0) {
0767 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
0768 return ret;
0769 }
0770 for (i = 0; i < n; i++)
0771 rspi_write_data(rspi, *tx++);
0772
0773 ret = rspi_wait_for_rx_full(rspi);
0774 if (ret < 0) {
0775 dev_err(&rspi->ctlr->dev, "receive timeout\n");
0776 return ret;
0777 }
0778 for (i = 0; i < n; i++)
0779 *rx++ = rspi_read_data(rspi);
0780
0781 len -= n;
0782 }
0783
0784 return 0;
0785 }
0786
0787 static int qspi_transfer_out_in(struct rspi_data *rspi,
0788 struct spi_transfer *xfer)
0789 {
0790 int ret;
0791
0792 qspi_receive_init(rspi);
0793
0794 ret = rspi_dma_check_then_transfer(rspi, xfer);
0795 if (ret != -EAGAIN)
0796 return ret;
0797
0798 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
0799 xfer->rx_buf, xfer->len);
0800 }
0801
0802 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
0803 {
0804 const u8 *tx = xfer->tx_buf;
0805 unsigned int n = xfer->len;
0806 unsigned int i, len;
0807 int ret;
0808
0809 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
0810 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
0811 if (ret != -EAGAIN)
0812 return ret;
0813 }
0814
0815 while (n > 0) {
0816 len = qspi_set_send_trigger(rspi, n);
0817 ret = rspi_wait_for_tx_empty(rspi);
0818 if (ret < 0) {
0819 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
0820 return ret;
0821 }
0822 for (i = 0; i < len; i++)
0823 rspi_write_data(rspi, *tx++);
0824
0825 n -= len;
0826 }
0827
0828
0829 rspi_wait_for_tx_empty(rspi);
0830
0831 return 0;
0832 }
0833
0834 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
0835 {
0836 u8 *rx = xfer->rx_buf;
0837 unsigned int n = xfer->len;
0838 unsigned int i, len;
0839 int ret;
0840
0841 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
0842 ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
0843 if (ret != -EAGAIN)
0844 return ret;
0845 }
0846
0847 while (n > 0) {
0848 len = qspi_set_receive_trigger(rspi, n);
0849 ret = rspi_wait_for_rx_full(rspi);
0850 if (ret < 0) {
0851 dev_err(&rspi->ctlr->dev, "receive timeout\n");
0852 return ret;
0853 }
0854 for (i = 0; i < len; i++)
0855 *rx++ = rspi_read_data(rspi);
0856
0857 n -= len;
0858 }
0859
0860 return 0;
0861 }
0862
0863 static int qspi_transfer_one(struct spi_controller *ctlr,
0864 struct spi_device *spi, struct spi_transfer *xfer)
0865 {
0866 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
0867
0868 xfer->effective_speed_hz = rspi->speed_hz;
0869 if (spi->mode & SPI_LOOP) {
0870 return qspi_transfer_out_in(rspi, xfer);
0871 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
0872
0873 return qspi_transfer_out(rspi, xfer);
0874 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
0875
0876 return qspi_transfer_in(rspi, xfer);
0877 } else {
0878
0879 return qspi_transfer_out_in(rspi, xfer);
0880 }
0881 }
0882
0883 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
0884 {
0885 if (xfer->tx_buf)
0886 switch (xfer->tx_nbits) {
0887 case SPI_NBITS_QUAD:
0888 return SPCMD_SPIMOD_QUAD;
0889 case SPI_NBITS_DUAL:
0890 return SPCMD_SPIMOD_DUAL;
0891 default:
0892 return 0;
0893 }
0894 if (xfer->rx_buf)
0895 switch (xfer->rx_nbits) {
0896 case SPI_NBITS_QUAD:
0897 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
0898 case SPI_NBITS_DUAL:
0899 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
0900 default:
0901 return 0;
0902 }
0903
0904 return 0;
0905 }
0906
0907 static int qspi_setup_sequencer(struct rspi_data *rspi,
0908 const struct spi_message *msg)
0909 {
0910 const struct spi_transfer *xfer;
0911 unsigned int i = 0, len = 0;
0912 u16 current_mode = 0xffff, mode;
0913
0914 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
0915 mode = qspi_transfer_mode(xfer);
0916 if (mode == current_mode) {
0917 len += xfer->len;
0918 continue;
0919 }
0920
0921
0922 if (i) {
0923
0924 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
0925 }
0926
0927 if (i >= QSPI_NUM_SPCMD) {
0928 dev_err(&msg->spi->dev,
0929 "Too many different transfer modes");
0930 return -EINVAL;
0931 }
0932
0933
0934 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
0935 current_mode = mode;
0936 len = xfer->len;
0937 i++;
0938 }
0939 if (i) {
0940
0941 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
0942 rspi_write8(rspi, i - 1, RSPI_SPSCR);
0943 }
0944
0945 return 0;
0946 }
0947
0948 static int rspi_setup(struct spi_device *spi)
0949 {
0950 struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
0951 u8 sslp;
0952
0953 if (spi->cs_gpiod)
0954 return 0;
0955
0956 pm_runtime_get_sync(&rspi->pdev->dev);
0957 spin_lock_irq(&rspi->lock);
0958
0959 sslp = rspi_read8(rspi, RSPI_SSLP);
0960 if (spi->mode & SPI_CS_HIGH)
0961 sslp |= SSLP_SSLP(spi->chip_select);
0962 else
0963 sslp &= ~SSLP_SSLP(spi->chip_select);
0964 rspi_write8(rspi, sslp, RSPI_SSLP);
0965
0966 spin_unlock_irq(&rspi->lock);
0967 pm_runtime_put(&rspi->pdev->dev);
0968 return 0;
0969 }
0970
0971 static int rspi_prepare_message(struct spi_controller *ctlr,
0972 struct spi_message *msg)
0973 {
0974 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
0975 struct spi_device *spi = msg->spi;
0976 const struct spi_transfer *xfer;
0977 int ret;
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989 rspi->speed_hz = spi->max_speed_hz;
0990 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
0991 if (xfer->speed_hz < rspi->speed_hz)
0992 rspi->speed_hz = xfer->speed_hz;
0993 }
0994
0995 rspi->spcmd = SPCMD_SSLKP;
0996 if (spi->mode & SPI_CPOL)
0997 rspi->spcmd |= SPCMD_CPOL;
0998 if (spi->mode & SPI_CPHA)
0999 rspi->spcmd |= SPCMD_CPHA;
1000 if (spi->mode & SPI_LSB_FIRST)
1001 rspi->spcmd |= SPCMD_LSBF;
1002
1003
1004 rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs
1005 : spi->chip_select);
1006
1007
1008 rspi->sppcr = 0;
1009 if (spi->mode & SPI_LOOP)
1010 rspi->sppcr |= SPPCR_SPLP;
1011
1012 rspi->ops->set_config_register(rspi, 8);
1013
1014 if (msg->spi->mode &
1015 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
1016
1017 ret = qspi_setup_sequencer(rspi, msg);
1018 if (ret < 0)
1019 return ret;
1020 }
1021
1022
1023 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
1024 return 0;
1025 }
1026
1027 static int rspi_unprepare_message(struct spi_controller *ctlr,
1028 struct spi_message *msg)
1029 {
1030 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
1031
1032
1033 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
1034
1035
1036 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
1037 rspi_write8(rspi, 0, RSPI_SPSCR);
1038 return 0;
1039 }
1040
1041 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
1042 {
1043 struct rspi_data *rspi = _sr;
1044 u8 spsr;
1045 irqreturn_t ret = IRQ_NONE;
1046 u8 disable_irq = 0;
1047
1048 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1049 if (spsr & SPSR_SPRF)
1050 disable_irq |= SPCR_SPRIE;
1051 if (spsr & SPSR_SPTEF)
1052 disable_irq |= SPCR_SPTIE;
1053
1054 if (disable_irq) {
1055 ret = IRQ_HANDLED;
1056 rspi_disable_irq(rspi, disable_irq);
1057 wake_up(&rspi->wait);
1058 }
1059
1060 return ret;
1061 }
1062
1063 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1064 {
1065 struct rspi_data *rspi = _sr;
1066 u8 spsr;
1067
1068 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1069 if (spsr & SPSR_SPRF) {
1070 rspi_disable_irq(rspi, SPCR_SPRIE);
1071 wake_up(&rspi->wait);
1072 return IRQ_HANDLED;
1073 }
1074
1075 return 0;
1076 }
1077
1078 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1079 {
1080 struct rspi_data *rspi = _sr;
1081 u8 spsr;
1082
1083 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1084 if (spsr & SPSR_SPTEF) {
1085 rspi_disable_irq(rspi, SPCR_SPTIE);
1086 wake_up(&rspi->wait);
1087 return IRQ_HANDLED;
1088 }
1089
1090 return 0;
1091 }
1092
1093 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1094 enum dma_transfer_direction dir,
1095 unsigned int id,
1096 dma_addr_t port_addr)
1097 {
1098 dma_cap_mask_t mask;
1099 struct dma_chan *chan;
1100 struct dma_slave_config cfg;
1101 int ret;
1102
1103 dma_cap_zero(mask);
1104 dma_cap_set(DMA_SLAVE, mask);
1105
1106 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1107 (void *)(unsigned long)id, dev,
1108 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1109 if (!chan) {
1110 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1111 return NULL;
1112 }
1113
1114 memset(&cfg, 0, sizeof(cfg));
1115 cfg.dst_addr = port_addr + RSPI_SPDR;
1116 cfg.src_addr = port_addr + RSPI_SPDR;
1117 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1118 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1119 cfg.direction = dir;
1120
1121 ret = dmaengine_slave_config(chan, &cfg);
1122 if (ret) {
1123 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1124 dma_release_channel(chan);
1125 return NULL;
1126 }
1127
1128 return chan;
1129 }
1130
1131 static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1132 const struct resource *res)
1133 {
1134 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1135 unsigned int dma_tx_id, dma_rx_id;
1136
1137 if (dev->of_node) {
1138
1139 dma_tx_id = 0;
1140 dma_rx_id = 0;
1141 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1142 dma_tx_id = rspi_pd->dma_tx_id;
1143 dma_rx_id = rspi_pd->dma_rx_id;
1144 } else {
1145
1146 return 0;
1147 }
1148
1149 ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1150 res->start);
1151 if (!ctlr->dma_tx)
1152 return -ENODEV;
1153
1154 ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1155 res->start);
1156 if (!ctlr->dma_rx) {
1157 dma_release_channel(ctlr->dma_tx);
1158 ctlr->dma_tx = NULL;
1159 return -ENODEV;
1160 }
1161
1162 ctlr->can_dma = rspi_can_dma;
1163 dev_info(dev, "DMA available");
1164 return 0;
1165 }
1166
1167 static void rspi_release_dma(struct spi_controller *ctlr)
1168 {
1169 if (ctlr->dma_tx)
1170 dma_release_channel(ctlr->dma_tx);
1171 if (ctlr->dma_rx)
1172 dma_release_channel(ctlr->dma_rx);
1173 }
1174
1175 static int rspi_remove(struct platform_device *pdev)
1176 {
1177 struct rspi_data *rspi = platform_get_drvdata(pdev);
1178
1179 rspi_release_dma(rspi->ctlr);
1180 pm_runtime_disable(&pdev->dev);
1181
1182 return 0;
1183 }
1184
1185 static const struct spi_ops rspi_ops = {
1186 .set_config_register = rspi_set_config_register,
1187 .transfer_one = rspi_transfer_one,
1188 .min_div = 2,
1189 .max_div = 4096,
1190 .flags = SPI_CONTROLLER_MUST_TX,
1191 .fifo_size = 8,
1192 .num_hw_ss = 2,
1193 };
1194
1195 static const struct spi_ops rspi_rz_ops = {
1196 .set_config_register = rspi_rz_set_config_register,
1197 .transfer_one = rspi_rz_transfer_one,
1198 .min_div = 2,
1199 .max_div = 4096,
1200 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1201 .fifo_size = 8,
1202 .num_hw_ss = 1,
1203 };
1204
1205 static const struct spi_ops qspi_ops = {
1206 .set_config_register = qspi_set_config_register,
1207 .transfer_one = qspi_transfer_one,
1208 .extra_mode_bits = SPI_TX_DUAL | SPI_TX_QUAD |
1209 SPI_RX_DUAL | SPI_RX_QUAD,
1210 .min_div = 1,
1211 .max_div = 4080,
1212 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1213 .fifo_size = 32,
1214 .num_hw_ss = 1,
1215 };
1216
1217 #ifdef CONFIG_OF
1218 static const struct of_device_id rspi_of_match[] = {
1219
1220 { .compatible = "renesas,rspi", .data = &rspi_ops },
1221
1222 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1223
1224 { .compatible = "renesas,qspi", .data = &qspi_ops },
1225 { }
1226 };
1227
1228 MODULE_DEVICE_TABLE(of, rspi_of_match);
1229
1230 static void rspi_reset_control_assert(void *data)
1231 {
1232 reset_control_assert(data);
1233 }
1234
1235 static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1236 {
1237 struct reset_control *rstc;
1238 u32 num_cs;
1239 int error;
1240
1241
1242 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1243 if (error) {
1244 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1245 return error;
1246 }
1247
1248 ctlr->num_chipselect = num_cs;
1249
1250 rstc = devm_reset_control_get_optional_exclusive(dev, NULL);
1251 if (IS_ERR(rstc))
1252 return dev_err_probe(dev, PTR_ERR(rstc),
1253 "failed to get reset ctrl\n");
1254
1255 error = reset_control_deassert(rstc);
1256 if (error) {
1257 dev_err(dev, "failed to deassert reset %d\n", error);
1258 return error;
1259 }
1260
1261 error = devm_add_action_or_reset(dev, rspi_reset_control_assert, rstc);
1262 if (error) {
1263 dev_err(dev, "failed to register assert devm action, %d\n", error);
1264 return error;
1265 }
1266
1267 return 0;
1268 }
1269 #else
1270 #define rspi_of_match NULL
1271 static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1272 {
1273 return -EINVAL;
1274 }
1275 #endif
1276
1277 static int rspi_request_irq(struct device *dev, unsigned int irq,
1278 irq_handler_t handler, const char *suffix,
1279 void *dev_id)
1280 {
1281 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1282 dev_name(dev), suffix);
1283 if (!name)
1284 return -ENOMEM;
1285
1286 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1287 }
1288
1289 static int rspi_probe(struct platform_device *pdev)
1290 {
1291 struct resource *res;
1292 struct spi_controller *ctlr;
1293 struct rspi_data *rspi;
1294 int ret;
1295 const struct rspi_plat_data *rspi_pd;
1296 const struct spi_ops *ops;
1297 unsigned long clksrc;
1298
1299 ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1300 if (ctlr == NULL)
1301 return -ENOMEM;
1302
1303 ops = of_device_get_match_data(&pdev->dev);
1304 if (ops) {
1305 ret = rspi_parse_dt(&pdev->dev, ctlr);
1306 if (ret)
1307 goto error1;
1308 } else {
1309 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1310 rspi_pd = dev_get_platdata(&pdev->dev);
1311 if (rspi_pd && rspi_pd->num_chipselect)
1312 ctlr->num_chipselect = rspi_pd->num_chipselect;
1313 else
1314 ctlr->num_chipselect = 2;
1315 }
1316
1317 rspi = spi_controller_get_devdata(ctlr);
1318 platform_set_drvdata(pdev, rspi);
1319 rspi->ops = ops;
1320 rspi->ctlr = ctlr;
1321
1322 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1323 rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1324 if (IS_ERR(rspi->addr)) {
1325 ret = PTR_ERR(rspi->addr);
1326 goto error1;
1327 }
1328
1329 rspi->clk = devm_clk_get(&pdev->dev, NULL);
1330 if (IS_ERR(rspi->clk)) {
1331 dev_err(&pdev->dev, "cannot get clock\n");
1332 ret = PTR_ERR(rspi->clk);
1333 goto error1;
1334 }
1335
1336 rspi->pdev = pdev;
1337 pm_runtime_enable(&pdev->dev);
1338
1339 init_waitqueue_head(&rspi->wait);
1340 spin_lock_init(&rspi->lock);
1341
1342 ctlr->bus_num = pdev->id;
1343 ctlr->setup = rspi_setup;
1344 ctlr->auto_runtime_pm = true;
1345 ctlr->transfer_one = ops->transfer_one;
1346 ctlr->prepare_message = rspi_prepare_message;
1347 ctlr->unprepare_message = rspi_unprepare_message;
1348 ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1349 SPI_LOOP | ops->extra_mode_bits;
1350 clksrc = clk_get_rate(rspi->clk);
1351 ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, ops->max_div);
1352 ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, ops->min_div);
1353 ctlr->flags = ops->flags;
1354 ctlr->dev.of_node = pdev->dev.of_node;
1355 ctlr->use_gpio_descriptors = true;
1356 ctlr->max_native_cs = rspi->ops->num_hw_ss;
1357
1358 ret = platform_get_irq_byname_optional(pdev, "rx");
1359 if (ret < 0) {
1360 ret = platform_get_irq_byname_optional(pdev, "mux");
1361 if (ret < 0)
1362 ret = platform_get_irq(pdev, 0);
1363 if (ret >= 0)
1364 rspi->rx_irq = rspi->tx_irq = ret;
1365 } else {
1366 rspi->rx_irq = ret;
1367 ret = platform_get_irq_byname(pdev, "tx");
1368 if (ret >= 0)
1369 rspi->tx_irq = ret;
1370 }
1371
1372 if (rspi->rx_irq == rspi->tx_irq) {
1373
1374 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1375 "mux", rspi);
1376 } else {
1377
1378 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1379 "rx", rspi);
1380 if (!ret)
1381 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1382 rspi_irq_tx, "tx", rspi);
1383 }
1384 if (ret < 0) {
1385 dev_err(&pdev->dev, "request_irq error\n");
1386 goto error2;
1387 }
1388
1389 ret = rspi_request_dma(&pdev->dev, ctlr, res);
1390 if (ret < 0)
1391 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1392
1393 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1394 if (ret < 0) {
1395 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1396 goto error3;
1397 }
1398
1399 dev_info(&pdev->dev, "probed\n");
1400
1401 return 0;
1402
1403 error3:
1404 rspi_release_dma(ctlr);
1405 error2:
1406 pm_runtime_disable(&pdev->dev);
1407 error1:
1408 spi_controller_put(ctlr);
1409
1410 return ret;
1411 }
1412
1413 static const struct platform_device_id spi_driver_ids[] = {
1414 { "rspi", (kernel_ulong_t)&rspi_ops },
1415 {},
1416 };
1417
1418 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1419
1420 #ifdef CONFIG_PM_SLEEP
1421 static int rspi_suspend(struct device *dev)
1422 {
1423 struct rspi_data *rspi = dev_get_drvdata(dev);
1424
1425 return spi_controller_suspend(rspi->ctlr);
1426 }
1427
1428 static int rspi_resume(struct device *dev)
1429 {
1430 struct rspi_data *rspi = dev_get_drvdata(dev);
1431
1432 return spi_controller_resume(rspi->ctlr);
1433 }
1434
1435 static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1436 #define DEV_PM_OPS &rspi_pm_ops
1437 #else
1438 #define DEV_PM_OPS NULL
1439 #endif
1440
1441 static struct platform_driver rspi_driver = {
1442 .probe = rspi_probe,
1443 .remove = rspi_remove,
1444 .id_table = spi_driver_ids,
1445 .driver = {
1446 .name = "renesas_spi",
1447 .pm = DEV_PM_OPS,
1448 .of_match_table = of_match_ptr(rspi_of_match),
1449 },
1450 };
1451 module_platform_driver(rspi_driver);
1452
1453 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1454 MODULE_LICENSE("GPL v2");
1455 MODULE_AUTHOR("Yoshihiro Shimoda");