Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * SH RSPI driver
0004  *
0005  * Copyright (C) 2012, 2013  Renesas Solutions Corp.
0006  * Copyright (C) 2014 Glider bvba
0007  *
0008  * Based on spi-sh.c:
0009  * Copyright (C) 2011 Renesas Solutions Corp.
0010  */
0011 
0012 #include <linux/module.h>
0013 #include <linux/kernel.h>
0014 #include <linux/sched.h>
0015 #include <linux/errno.h>
0016 #include <linux/interrupt.h>
0017 #include <linux/platform_device.h>
0018 #include <linux/io.h>
0019 #include <linux/clk.h>
0020 #include <linux/dmaengine.h>
0021 #include <linux/dma-mapping.h>
0022 #include <linux/of_device.h>
0023 #include <linux/pm_runtime.h>
0024 #include <linux/reset.h>
0025 #include <linux/sh_dma.h>
0026 #include <linux/spi/spi.h>
0027 #include <linux/spi/rspi.h>
0028 #include <linux/spinlock.h>
0029 
0030 #define RSPI_SPCR       0x00    /* Control Register */
0031 #define RSPI_SSLP       0x01    /* Slave Select Polarity Register */
0032 #define RSPI_SPPCR      0x02    /* Pin Control Register */
0033 #define RSPI_SPSR       0x03    /* Status Register */
0034 #define RSPI_SPDR       0x04    /* Data Register */
0035 #define RSPI_SPSCR      0x08    /* Sequence Control Register */
0036 #define RSPI_SPSSR      0x09    /* Sequence Status Register */
0037 #define RSPI_SPBR       0x0a    /* Bit Rate Register */
0038 #define RSPI_SPDCR      0x0b    /* Data Control Register */
0039 #define RSPI_SPCKD      0x0c    /* Clock Delay Register */
0040 #define RSPI_SSLND      0x0d    /* Slave Select Negation Delay Register */
0041 #define RSPI_SPND       0x0e    /* Next-Access Delay Register */
0042 #define RSPI_SPCR2      0x0f    /* Control Register 2 (SH only) */
0043 #define RSPI_SPCMD0     0x10    /* Command Register 0 */
0044 #define RSPI_SPCMD1     0x12    /* Command Register 1 */
0045 #define RSPI_SPCMD2     0x14    /* Command Register 2 */
0046 #define RSPI_SPCMD3     0x16    /* Command Register 3 */
0047 #define RSPI_SPCMD4     0x18    /* Command Register 4 */
0048 #define RSPI_SPCMD5     0x1a    /* Command Register 5 */
0049 #define RSPI_SPCMD6     0x1c    /* Command Register 6 */
0050 #define RSPI_SPCMD7     0x1e    /* Command Register 7 */
0051 #define RSPI_SPCMD(i)       (RSPI_SPCMD0 + (i) * 2)
0052 #define RSPI_NUM_SPCMD      8
0053 #define RSPI_RZ_NUM_SPCMD   4
0054 #define QSPI_NUM_SPCMD      4
0055 
0056 /* RSPI on RZ only */
0057 #define RSPI_SPBFCR     0x20    /* Buffer Control Register */
0058 #define RSPI_SPBFDR     0x22    /* Buffer Data Count Setting Register */
0059 
0060 /* QSPI only */
0061 #define QSPI_SPBFCR     0x18    /* Buffer Control Register */
0062 #define QSPI_SPBDCR     0x1a    /* Buffer Data Count Register */
0063 #define QSPI_SPBMUL0        0x1c    /* Transfer Data Length Multiplier Setting Register 0 */
0064 #define QSPI_SPBMUL1        0x20    /* Transfer Data Length Multiplier Setting Register 1 */
0065 #define QSPI_SPBMUL2        0x24    /* Transfer Data Length Multiplier Setting Register 2 */
0066 #define QSPI_SPBMUL3        0x28    /* Transfer Data Length Multiplier Setting Register 3 */
0067 #define QSPI_SPBMUL(i)      (QSPI_SPBMUL0 + (i) * 4)
0068 
0069 /* SPCR - Control Register */
0070 #define SPCR_SPRIE      0x80    /* Receive Interrupt Enable */
0071 #define SPCR_SPE        0x40    /* Function Enable */
0072 #define SPCR_SPTIE      0x20    /* Transmit Interrupt Enable */
0073 #define SPCR_SPEIE      0x10    /* Error Interrupt Enable */
0074 #define SPCR_MSTR       0x08    /* Master/Slave Mode Select */
0075 #define SPCR_MODFEN     0x04    /* Mode Fault Error Detection Enable */
0076 /* RSPI on SH only */
0077 #define SPCR_TXMD       0x02    /* TX Only Mode (vs. Full Duplex) */
0078 #define SPCR_SPMS       0x01    /* 3-wire Mode (vs. 4-wire) */
0079 /* QSPI on R-Car Gen2 only */
0080 #define SPCR_WSWAP      0x02    /* Word Swap of read-data for DMAC */
0081 #define SPCR_BSWAP      0x01    /* Byte Swap of read-data for DMAC */
0082 
0083 /* SSLP - Slave Select Polarity Register */
0084 #define SSLP_SSLP(i)        BIT(i)  /* SSLi Signal Polarity Setting */
0085 
0086 /* SPPCR - Pin Control Register */
0087 #define SPPCR_MOIFE     0x20    /* MOSI Idle Value Fixing Enable */
0088 #define SPPCR_MOIFV     0x10    /* MOSI Idle Fixed Value */
0089 #define SPPCR_SPOM      0x04
0090 #define SPPCR_SPLP2     0x02    /* Loopback Mode 2 (non-inverting) */
0091 #define SPPCR_SPLP      0x01    /* Loopback Mode (inverting) */
0092 
0093 #define SPPCR_IO3FV     0x04    /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
0094 #define SPPCR_IO2FV     0x04    /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
0095 
0096 /* SPSR - Status Register */
0097 #define SPSR_SPRF       0x80    /* Receive Buffer Full Flag */
0098 #define SPSR_TEND       0x40    /* Transmit End */
0099 #define SPSR_SPTEF      0x20    /* Transmit Buffer Empty Flag */
0100 #define SPSR_PERF       0x08    /* Parity Error Flag */
0101 #define SPSR_MODF       0x04    /* Mode Fault Error Flag */
0102 #define SPSR_IDLNF      0x02    /* RSPI Idle Flag */
0103 #define SPSR_OVRF       0x01    /* Overrun Error Flag (RSPI only) */
0104 
0105 /* SPSCR - Sequence Control Register */
0106 #define SPSCR_SPSLN_MASK    0x07    /* Sequence Length Specification */
0107 
0108 /* SPSSR - Sequence Status Register */
0109 #define SPSSR_SPECM_MASK    0x70    /* Command Error Mask */
0110 #define SPSSR_SPCP_MASK     0x07    /* Command Pointer Mask */
0111 
0112 /* SPDCR - Data Control Register */
0113 #define SPDCR_TXDMY     0x80    /* Dummy Data Transmission Enable */
0114 #define SPDCR_SPLW1     0x40    /* Access Width Specification (RZ) */
0115 #define SPDCR_SPLW0     0x20    /* Access Width Specification (RZ) */
0116 #define SPDCR_SPLLWORD      (SPDCR_SPLW1 | SPDCR_SPLW0)
0117 #define SPDCR_SPLWORD       SPDCR_SPLW1
0118 #define SPDCR_SPLBYTE       SPDCR_SPLW0
0119 #define SPDCR_SPLW      0x20    /* Access Width Specification (SH) */
0120 #define SPDCR_SPRDTD        0x10    /* Receive Transmit Data Select (SH) */
0121 #define SPDCR_SLSEL1        0x08
0122 #define SPDCR_SLSEL0        0x04
0123 #define SPDCR_SLSEL_MASK    0x0c    /* SSL1 Output Select (SH) */
0124 #define SPDCR_SPFC1     0x02
0125 #define SPDCR_SPFC0     0x01
0126 #define SPDCR_SPFC_MASK     0x03    /* Frame Count Setting (1-4) (SH) */
0127 
0128 /* SPCKD - Clock Delay Register */
0129 #define SPCKD_SCKDL_MASK    0x07    /* Clock Delay Setting (1-8) */
0130 
0131 /* SSLND - Slave Select Negation Delay Register */
0132 #define SSLND_SLNDL_MASK    0x07    /* SSL Negation Delay Setting (1-8) */
0133 
0134 /* SPND - Next-Access Delay Register */
0135 #define SPND_SPNDL_MASK     0x07    /* Next-Access Delay Setting (1-8) */
0136 
0137 /* SPCR2 - Control Register 2 */
0138 #define SPCR2_PTE       0x08    /* Parity Self-Test Enable */
0139 #define SPCR2_SPIE      0x04    /* Idle Interrupt Enable */
0140 #define SPCR2_SPOE      0x02    /* Odd Parity Enable (vs. Even) */
0141 #define SPCR2_SPPE      0x01    /* Parity Enable */
0142 
0143 /* SPCMDn - Command Registers */
0144 #define SPCMD_SCKDEN        0x8000  /* Clock Delay Setting Enable */
0145 #define SPCMD_SLNDEN        0x4000  /* SSL Negation Delay Setting Enable */
0146 #define SPCMD_SPNDEN        0x2000  /* Next-Access Delay Enable */
0147 #define SPCMD_LSBF      0x1000  /* LSB First */
0148 #define SPCMD_SPB_MASK      0x0f00  /* Data Length Setting */
0149 #define SPCMD_SPB_8_TO_16(bit)  (((bit - 1) << 8) & SPCMD_SPB_MASK)
0150 #define SPCMD_SPB_8BIT      0x0000  /* QSPI only */
0151 #define SPCMD_SPB_16BIT     0x0100
0152 #define SPCMD_SPB_20BIT     0x0000
0153 #define SPCMD_SPB_24BIT     0x0100
0154 #define SPCMD_SPB_32BIT     0x0200
0155 #define SPCMD_SSLKP     0x0080  /* SSL Signal Level Keeping */
0156 #define SPCMD_SPIMOD_MASK   0x0060  /* SPI Operating Mode (QSPI only) */
0157 #define SPCMD_SPIMOD1       0x0040
0158 #define SPCMD_SPIMOD0       0x0020
0159 #define SPCMD_SPIMOD_SINGLE 0
0160 #define SPCMD_SPIMOD_DUAL   SPCMD_SPIMOD0
0161 #define SPCMD_SPIMOD_QUAD   SPCMD_SPIMOD1
0162 #define SPCMD_SPRW      0x0010  /* SPI Read/Write Access (Dual/Quad) */
0163 #define SPCMD_SSLA(i)       ((i) << 4)  /* SSL Assert Signal Setting */
0164 #define SPCMD_BRDV_MASK     0x000c  /* Bit Rate Division Setting */
0165 #define SPCMD_BRDV(brdv)    ((brdv) << 2)
0166 #define SPCMD_CPOL      0x0002  /* Clock Polarity Setting */
0167 #define SPCMD_CPHA      0x0001  /* Clock Phase Setting */
0168 
0169 /* SPBFCR - Buffer Control Register */
0170 #define SPBFCR_TXRST        0x80    /* Transmit Buffer Data Reset */
0171 #define SPBFCR_RXRST        0x40    /* Receive Buffer Data Reset */
0172 #define SPBFCR_TXTRG_MASK   0x30    /* Transmit Buffer Data Triggering Number */
0173 #define SPBFCR_RXTRG_MASK   0x07    /* Receive Buffer Data Triggering Number */
0174 /* QSPI on R-Car Gen2 */
0175 #define SPBFCR_TXTRG_1B     0x00    /* 31 bytes (1 byte available) */
0176 #define SPBFCR_TXTRG_32B    0x30    /* 0 byte (32 bytes available) */
0177 #define SPBFCR_RXTRG_1B     0x00    /* 1 byte (31 bytes available) */
0178 #define SPBFCR_RXTRG_32B    0x07    /* 32 bytes (0 byte available) */
0179 
0180 #define QSPI_BUFFER_SIZE        32u
0181 
0182 struct rspi_data {
0183     void __iomem *addr;
0184     u32 speed_hz;
0185     struct spi_controller *ctlr;
0186     struct platform_device *pdev;
0187     wait_queue_head_t wait;
0188     spinlock_t lock;        /* Protects RMW-access to RSPI_SSLP */
0189     struct clk *clk;
0190     u16 spcmd;
0191     u8 spsr;
0192     u8 sppcr;
0193     int rx_irq, tx_irq;
0194     const struct spi_ops *ops;
0195 
0196     unsigned dma_callbacked:1;
0197     unsigned byte_access:1;
0198 };
0199 
0200 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
0201 {
0202     iowrite8(data, rspi->addr + offset);
0203 }
0204 
0205 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
0206 {
0207     iowrite16(data, rspi->addr + offset);
0208 }
0209 
0210 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
0211 {
0212     iowrite32(data, rspi->addr + offset);
0213 }
0214 
0215 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
0216 {
0217     return ioread8(rspi->addr + offset);
0218 }
0219 
0220 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
0221 {
0222     return ioread16(rspi->addr + offset);
0223 }
0224 
0225 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
0226 {
0227     if (rspi->byte_access)
0228         rspi_write8(rspi, data, RSPI_SPDR);
0229     else /* 16 bit */
0230         rspi_write16(rspi, data, RSPI_SPDR);
0231 }
0232 
0233 static u16 rspi_read_data(const struct rspi_data *rspi)
0234 {
0235     if (rspi->byte_access)
0236         return rspi_read8(rspi, RSPI_SPDR);
0237     else /* 16 bit */
0238         return rspi_read16(rspi, RSPI_SPDR);
0239 }
0240 
0241 /* optional functions */
0242 struct spi_ops {
0243     int (*set_config_register)(struct rspi_data *rspi, int access_size);
0244     int (*transfer_one)(struct spi_controller *ctlr,
0245                 struct spi_device *spi, struct spi_transfer *xfer);
0246     u16 extra_mode_bits;
0247     u16 min_div;
0248     u16 max_div;
0249     u16 flags;
0250     u16 fifo_size;
0251     u8 num_hw_ss;
0252 };
0253 
0254 static void rspi_set_rate(struct rspi_data *rspi)
0255 {
0256     unsigned long clksrc;
0257     int brdv = 0, spbr;
0258 
0259     clksrc = clk_get_rate(rspi->clk);
0260     spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
0261     while (spbr > 255 && brdv < 3) {
0262         brdv++;
0263         spbr = DIV_ROUND_UP(spbr + 1, 2) - 1;
0264     }
0265 
0266     rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
0267     rspi->spcmd |= SPCMD_BRDV(brdv);
0268     rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * (spbr + 1));
0269 }
0270 
0271 /*
0272  * functions for RSPI on legacy SH
0273  */
0274 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
0275 {
0276     /* Sets output mode, MOSI signal, and (optionally) loopback */
0277     rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
0278 
0279     /* Sets transfer bit rate */
0280     rspi_set_rate(rspi);
0281 
0282     /* Disable dummy transmission, set 16-bit word access, 1 frame */
0283     rspi_write8(rspi, 0, RSPI_SPDCR);
0284     rspi->byte_access = 0;
0285 
0286     /* Sets RSPCK, SSL, next-access delay value */
0287     rspi_write8(rspi, 0x00, RSPI_SPCKD);
0288     rspi_write8(rspi, 0x00, RSPI_SSLND);
0289     rspi_write8(rspi, 0x00, RSPI_SPND);
0290 
0291     /* Sets parity, interrupt mask */
0292     rspi_write8(rspi, 0x00, RSPI_SPCR2);
0293 
0294     /* Resets sequencer */
0295     rspi_write8(rspi, 0, RSPI_SPSCR);
0296     rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
0297     rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
0298 
0299     /* Sets RSPI mode */
0300     rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
0301 
0302     return 0;
0303 }
0304 
0305 /*
0306  * functions for RSPI on RZ
0307  */
0308 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
0309 {
0310     /* Sets output mode, MOSI signal, and (optionally) loopback */
0311     rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
0312 
0313     /* Sets transfer bit rate */
0314     rspi_set_rate(rspi);
0315 
0316     /* Disable dummy transmission, set byte access */
0317     rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
0318     rspi->byte_access = 1;
0319 
0320     /* Sets RSPCK, SSL, next-access delay value */
0321     rspi_write8(rspi, 0x00, RSPI_SPCKD);
0322     rspi_write8(rspi, 0x00, RSPI_SSLND);
0323     rspi_write8(rspi, 0x00, RSPI_SPND);
0324 
0325     /* Resets sequencer */
0326     rspi_write8(rspi, 0, RSPI_SPSCR);
0327     rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
0328     rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
0329 
0330     /* Sets RSPI mode */
0331     rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
0332 
0333     return 0;
0334 }
0335 
0336 /*
0337  * functions for QSPI
0338  */
0339 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
0340 {
0341     unsigned long clksrc;
0342     int brdv = 0, spbr;
0343 
0344     /* Sets output mode, MOSI signal, and (optionally) loopback */
0345     rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
0346 
0347     /* Sets transfer bit rate */
0348     clksrc = clk_get_rate(rspi->clk);
0349     if (rspi->speed_hz >= clksrc) {
0350         spbr = 0;
0351         rspi->speed_hz = clksrc;
0352     } else {
0353         spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz);
0354         while (spbr > 255 && brdv < 3) {
0355             brdv++;
0356             spbr = DIV_ROUND_UP(spbr, 2);
0357         }
0358         spbr = clamp(spbr, 0, 255);
0359         rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * spbr);
0360     }
0361     rspi_write8(rspi, spbr, RSPI_SPBR);
0362     rspi->spcmd |= SPCMD_BRDV(brdv);
0363 
0364     /* Disable dummy transmission, set byte access */
0365     rspi_write8(rspi, 0, RSPI_SPDCR);
0366     rspi->byte_access = 1;
0367 
0368     /* Sets RSPCK, SSL, next-access delay value */
0369     rspi_write8(rspi, 0x00, RSPI_SPCKD);
0370     rspi_write8(rspi, 0x00, RSPI_SSLND);
0371     rspi_write8(rspi, 0x00, RSPI_SPND);
0372 
0373     /* Data Length Setting */
0374     if (access_size == 8)
0375         rspi->spcmd |= SPCMD_SPB_8BIT;
0376     else if (access_size == 16)
0377         rspi->spcmd |= SPCMD_SPB_16BIT;
0378     else
0379         rspi->spcmd |= SPCMD_SPB_32BIT;
0380 
0381     rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
0382 
0383     /* Resets transfer data length */
0384     rspi_write32(rspi, 0, QSPI_SPBMUL0);
0385 
0386     /* Resets transmit and receive buffer */
0387     rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
0388     /* Sets buffer to allow normal operation */
0389     rspi_write8(rspi, 0x00, QSPI_SPBFCR);
0390 
0391     /* Resets sequencer */
0392     rspi_write8(rspi, 0, RSPI_SPSCR);
0393     rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
0394 
0395     /* Sets RSPI mode */
0396     rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
0397 
0398     return 0;
0399 }
0400 
0401 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
0402 {
0403     u8 data;
0404 
0405     data = rspi_read8(rspi, reg);
0406     data &= ~mask;
0407     data |= (val & mask);
0408     rspi_write8(rspi, data, reg);
0409 }
0410 
0411 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
0412                       unsigned int len)
0413 {
0414     unsigned int n;
0415 
0416     n = min(len, QSPI_BUFFER_SIZE);
0417 
0418     if (len >= QSPI_BUFFER_SIZE) {
0419         /* sets triggering number to 32 bytes */
0420         qspi_update(rspi, SPBFCR_TXTRG_MASK,
0421                  SPBFCR_TXTRG_32B, QSPI_SPBFCR);
0422     } else {
0423         /* sets triggering number to 1 byte */
0424         qspi_update(rspi, SPBFCR_TXTRG_MASK,
0425                  SPBFCR_TXTRG_1B, QSPI_SPBFCR);
0426     }
0427 
0428     return n;
0429 }
0430 
0431 static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
0432 {
0433     unsigned int n;
0434 
0435     n = min(len, QSPI_BUFFER_SIZE);
0436 
0437     if (len >= QSPI_BUFFER_SIZE) {
0438         /* sets triggering number to 32 bytes */
0439         qspi_update(rspi, SPBFCR_RXTRG_MASK,
0440                  SPBFCR_RXTRG_32B, QSPI_SPBFCR);
0441     } else {
0442         /* sets triggering number to 1 byte */
0443         qspi_update(rspi, SPBFCR_RXTRG_MASK,
0444                  SPBFCR_RXTRG_1B, QSPI_SPBFCR);
0445     }
0446     return n;
0447 }
0448 
0449 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
0450 {
0451     rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
0452 }
0453 
0454 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
0455 {
0456     rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
0457 }
0458 
0459 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
0460                    u8 enable_bit)
0461 {
0462     int ret;
0463 
0464     rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
0465     if (rspi->spsr & wait_mask)
0466         return 0;
0467 
0468     rspi_enable_irq(rspi, enable_bit);
0469     ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
0470     if (ret == 0 && !(rspi->spsr & wait_mask))
0471         return -ETIMEDOUT;
0472 
0473     return 0;
0474 }
0475 
0476 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
0477 {
0478     return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
0479 }
0480 
0481 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
0482 {
0483     return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
0484 }
0485 
0486 static int rspi_data_out(struct rspi_data *rspi, u8 data)
0487 {
0488     int error = rspi_wait_for_tx_empty(rspi);
0489     if (error < 0) {
0490         dev_err(&rspi->ctlr->dev, "transmit timeout\n");
0491         return error;
0492     }
0493     rspi_write_data(rspi, data);
0494     return 0;
0495 }
0496 
0497 static int rspi_data_in(struct rspi_data *rspi)
0498 {
0499     int error;
0500     u8 data;
0501 
0502     error = rspi_wait_for_rx_full(rspi);
0503     if (error < 0) {
0504         dev_err(&rspi->ctlr->dev, "receive timeout\n");
0505         return error;
0506     }
0507     data = rspi_read_data(rspi);
0508     return data;
0509 }
0510 
0511 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
0512                  unsigned int n)
0513 {
0514     while (n-- > 0) {
0515         if (tx) {
0516             int ret = rspi_data_out(rspi, *tx++);
0517             if (ret < 0)
0518                 return ret;
0519         }
0520         if (rx) {
0521             int ret = rspi_data_in(rspi);
0522             if (ret < 0)
0523                 return ret;
0524             *rx++ = ret;
0525         }
0526     }
0527 
0528     return 0;
0529 }
0530 
0531 static void rspi_dma_complete(void *arg)
0532 {
0533     struct rspi_data *rspi = arg;
0534 
0535     rspi->dma_callbacked = 1;
0536     wake_up_interruptible(&rspi->wait);
0537 }
0538 
0539 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
0540                  struct sg_table *rx)
0541 {
0542     struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
0543     u8 irq_mask = 0;
0544     unsigned int other_irq = 0;
0545     dma_cookie_t cookie;
0546     int ret;
0547 
0548     /* First prepare and submit the DMA request(s), as this may fail */
0549     if (rx) {
0550         desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
0551                     rx->nents, DMA_DEV_TO_MEM,
0552                     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
0553         if (!desc_rx) {
0554             ret = -EAGAIN;
0555             goto no_dma_rx;
0556         }
0557 
0558         desc_rx->callback = rspi_dma_complete;
0559         desc_rx->callback_param = rspi;
0560         cookie = dmaengine_submit(desc_rx);
0561         if (dma_submit_error(cookie)) {
0562             ret = cookie;
0563             goto no_dma_rx;
0564         }
0565 
0566         irq_mask |= SPCR_SPRIE;
0567     }
0568 
0569     if (tx) {
0570         desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
0571                     tx->nents, DMA_MEM_TO_DEV,
0572                     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
0573         if (!desc_tx) {
0574             ret = -EAGAIN;
0575             goto no_dma_tx;
0576         }
0577 
0578         if (rx) {
0579             /* No callback */
0580             desc_tx->callback = NULL;
0581         } else {
0582             desc_tx->callback = rspi_dma_complete;
0583             desc_tx->callback_param = rspi;
0584         }
0585         cookie = dmaengine_submit(desc_tx);
0586         if (dma_submit_error(cookie)) {
0587             ret = cookie;
0588             goto no_dma_tx;
0589         }
0590 
0591         irq_mask |= SPCR_SPTIE;
0592     }
0593 
0594     /*
0595      * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
0596      * called. So, this driver disables the IRQ while DMA transfer.
0597      */
0598     if (tx)
0599         disable_irq(other_irq = rspi->tx_irq);
0600     if (rx && rspi->rx_irq != other_irq)
0601         disable_irq(rspi->rx_irq);
0602 
0603     rspi_enable_irq(rspi, irq_mask);
0604     rspi->dma_callbacked = 0;
0605 
0606     /* Now start DMA */
0607     if (rx)
0608         dma_async_issue_pending(rspi->ctlr->dma_rx);
0609     if (tx)
0610         dma_async_issue_pending(rspi->ctlr->dma_tx);
0611 
0612     ret = wait_event_interruptible_timeout(rspi->wait,
0613                            rspi->dma_callbacked, HZ);
0614     if (ret > 0 && rspi->dma_callbacked) {
0615         ret = 0;
0616         if (tx)
0617             dmaengine_synchronize(rspi->ctlr->dma_tx);
0618         if (rx)
0619             dmaengine_synchronize(rspi->ctlr->dma_rx);
0620     } else {
0621         if (!ret) {
0622             dev_err(&rspi->ctlr->dev, "DMA timeout\n");
0623             ret = -ETIMEDOUT;
0624         }
0625         if (tx)
0626             dmaengine_terminate_sync(rspi->ctlr->dma_tx);
0627         if (rx)
0628             dmaengine_terminate_sync(rspi->ctlr->dma_rx);
0629     }
0630 
0631     rspi_disable_irq(rspi, irq_mask);
0632 
0633     if (tx)
0634         enable_irq(rspi->tx_irq);
0635     if (rx && rspi->rx_irq != other_irq)
0636         enable_irq(rspi->rx_irq);
0637 
0638     return ret;
0639 
0640 no_dma_tx:
0641     if (rx)
0642         dmaengine_terminate_sync(rspi->ctlr->dma_rx);
0643 no_dma_rx:
0644     if (ret == -EAGAIN) {
0645         dev_warn_once(&rspi->ctlr->dev,
0646                   "DMA not available, falling back to PIO\n");
0647     }
0648     return ret;
0649 }
0650 
0651 static void rspi_receive_init(const struct rspi_data *rspi)
0652 {
0653     u8 spsr;
0654 
0655     spsr = rspi_read8(rspi, RSPI_SPSR);
0656     if (spsr & SPSR_SPRF)
0657         rspi_read_data(rspi);   /* dummy read */
0658     if (spsr & SPSR_OVRF)
0659         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
0660                 RSPI_SPSR);
0661 }
0662 
0663 static void rspi_rz_receive_init(const struct rspi_data *rspi)
0664 {
0665     rspi_receive_init(rspi);
0666     rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
0667     rspi_write8(rspi, 0, RSPI_SPBFCR);
0668 }
0669 
0670 static void qspi_receive_init(const struct rspi_data *rspi)
0671 {
0672     u8 spsr;
0673 
0674     spsr = rspi_read8(rspi, RSPI_SPSR);
0675     if (spsr & SPSR_SPRF)
0676         rspi_read_data(rspi);   /* dummy read */
0677     rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
0678     rspi_write8(rspi, 0, QSPI_SPBFCR);
0679 }
0680 
0681 static bool __rspi_can_dma(const struct rspi_data *rspi,
0682                const struct spi_transfer *xfer)
0683 {
0684     return xfer->len > rspi->ops->fifo_size;
0685 }
0686 
0687 static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
0688              struct spi_transfer *xfer)
0689 {
0690     struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
0691 
0692     return __rspi_can_dma(rspi, xfer);
0693 }
0694 
0695 static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
0696                      struct spi_transfer *xfer)
0697 {
0698     if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
0699         return -EAGAIN;
0700 
0701     /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
0702     return rspi_dma_transfer(rspi, &xfer->tx_sg,
0703                 xfer->rx_buf ? &xfer->rx_sg : NULL);
0704 }
0705 
0706 static int rspi_common_transfer(struct rspi_data *rspi,
0707                 struct spi_transfer *xfer)
0708 {
0709     int ret;
0710 
0711     xfer->effective_speed_hz = rspi->speed_hz;
0712 
0713     ret = rspi_dma_check_then_transfer(rspi, xfer);
0714     if (ret != -EAGAIN)
0715         return ret;
0716 
0717     ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
0718     if (ret < 0)
0719         return ret;
0720 
0721     /* Wait for the last transmission */
0722     rspi_wait_for_tx_empty(rspi);
0723 
0724     return 0;
0725 }
0726 
0727 static int rspi_transfer_one(struct spi_controller *ctlr,
0728                  struct spi_device *spi, struct spi_transfer *xfer)
0729 {
0730     struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
0731     u8 spcr;
0732 
0733     spcr = rspi_read8(rspi, RSPI_SPCR);
0734     if (xfer->rx_buf) {
0735         rspi_receive_init(rspi);
0736         spcr &= ~SPCR_TXMD;
0737     } else {
0738         spcr |= SPCR_TXMD;
0739     }
0740     rspi_write8(rspi, spcr, RSPI_SPCR);
0741 
0742     return rspi_common_transfer(rspi, xfer);
0743 }
0744 
0745 static int rspi_rz_transfer_one(struct spi_controller *ctlr,
0746                 struct spi_device *spi,
0747                 struct spi_transfer *xfer)
0748 {
0749     struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
0750 
0751     rspi_rz_receive_init(rspi);
0752 
0753     return rspi_common_transfer(rspi, xfer);
0754 }
0755 
0756 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
0757                     u8 *rx, unsigned int len)
0758 {
0759     unsigned int i, n;
0760     int ret;
0761 
0762     while (len > 0) {
0763         n = qspi_set_send_trigger(rspi, len);
0764         qspi_set_receive_trigger(rspi, len);
0765         ret = rspi_wait_for_tx_empty(rspi);
0766         if (ret < 0) {
0767             dev_err(&rspi->ctlr->dev, "transmit timeout\n");
0768             return ret;
0769         }
0770         for (i = 0; i < n; i++)
0771             rspi_write_data(rspi, *tx++);
0772 
0773         ret = rspi_wait_for_rx_full(rspi);
0774         if (ret < 0) {
0775             dev_err(&rspi->ctlr->dev, "receive timeout\n");
0776             return ret;
0777         }
0778         for (i = 0; i < n; i++)
0779             *rx++ = rspi_read_data(rspi);
0780 
0781         len -= n;
0782     }
0783 
0784     return 0;
0785 }
0786 
0787 static int qspi_transfer_out_in(struct rspi_data *rspi,
0788                 struct spi_transfer *xfer)
0789 {
0790     int ret;
0791 
0792     qspi_receive_init(rspi);
0793 
0794     ret = rspi_dma_check_then_transfer(rspi, xfer);
0795     if (ret != -EAGAIN)
0796         return ret;
0797 
0798     return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
0799                         xfer->rx_buf, xfer->len);
0800 }
0801 
0802 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
0803 {
0804     const u8 *tx = xfer->tx_buf;
0805     unsigned int n = xfer->len;
0806     unsigned int i, len;
0807     int ret;
0808 
0809     if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
0810         ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
0811         if (ret != -EAGAIN)
0812             return ret;
0813     }
0814 
0815     while (n > 0) {
0816         len = qspi_set_send_trigger(rspi, n);
0817         ret = rspi_wait_for_tx_empty(rspi);
0818         if (ret < 0) {
0819             dev_err(&rspi->ctlr->dev, "transmit timeout\n");
0820             return ret;
0821         }
0822         for (i = 0; i < len; i++)
0823             rspi_write_data(rspi, *tx++);
0824 
0825         n -= len;
0826     }
0827 
0828     /* Wait for the last transmission */
0829     rspi_wait_for_tx_empty(rspi);
0830 
0831     return 0;
0832 }
0833 
0834 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
0835 {
0836     u8 *rx = xfer->rx_buf;
0837     unsigned int n = xfer->len;
0838     unsigned int i, len;
0839     int ret;
0840 
0841     if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
0842         ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
0843         if (ret != -EAGAIN)
0844             return ret;
0845     }
0846 
0847     while (n > 0) {
0848         len = qspi_set_receive_trigger(rspi, n);
0849         ret = rspi_wait_for_rx_full(rspi);
0850         if (ret < 0) {
0851             dev_err(&rspi->ctlr->dev, "receive timeout\n");
0852             return ret;
0853         }
0854         for (i = 0; i < len; i++)
0855             *rx++ = rspi_read_data(rspi);
0856 
0857         n -= len;
0858     }
0859 
0860     return 0;
0861 }
0862 
0863 static int qspi_transfer_one(struct spi_controller *ctlr,
0864                  struct spi_device *spi, struct spi_transfer *xfer)
0865 {
0866     struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
0867 
0868     xfer->effective_speed_hz = rspi->speed_hz;
0869     if (spi->mode & SPI_LOOP) {
0870         return qspi_transfer_out_in(rspi, xfer);
0871     } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
0872         /* Quad or Dual SPI Write */
0873         return qspi_transfer_out(rspi, xfer);
0874     } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
0875         /* Quad or Dual SPI Read */
0876         return qspi_transfer_in(rspi, xfer);
0877     } else {
0878         /* Single SPI Transfer */
0879         return qspi_transfer_out_in(rspi, xfer);
0880     }
0881 }
0882 
0883 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
0884 {
0885     if (xfer->tx_buf)
0886         switch (xfer->tx_nbits) {
0887         case SPI_NBITS_QUAD:
0888             return SPCMD_SPIMOD_QUAD;
0889         case SPI_NBITS_DUAL:
0890             return SPCMD_SPIMOD_DUAL;
0891         default:
0892             return 0;
0893         }
0894     if (xfer->rx_buf)
0895         switch (xfer->rx_nbits) {
0896         case SPI_NBITS_QUAD:
0897             return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
0898         case SPI_NBITS_DUAL:
0899             return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
0900         default:
0901             return 0;
0902         }
0903 
0904     return 0;
0905 }
0906 
0907 static int qspi_setup_sequencer(struct rspi_data *rspi,
0908                 const struct spi_message *msg)
0909 {
0910     const struct spi_transfer *xfer;
0911     unsigned int i = 0, len = 0;
0912     u16 current_mode = 0xffff, mode;
0913 
0914     list_for_each_entry(xfer, &msg->transfers, transfer_list) {
0915         mode = qspi_transfer_mode(xfer);
0916         if (mode == current_mode) {
0917             len += xfer->len;
0918             continue;
0919         }
0920 
0921         /* Transfer mode change */
0922         if (i) {
0923             /* Set transfer data length of previous transfer */
0924             rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
0925         }
0926 
0927         if (i >= QSPI_NUM_SPCMD) {
0928             dev_err(&msg->spi->dev,
0929                 "Too many different transfer modes");
0930             return -EINVAL;
0931         }
0932 
0933         /* Program transfer mode for this transfer */
0934         rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
0935         current_mode = mode;
0936         len = xfer->len;
0937         i++;
0938     }
0939     if (i) {
0940         /* Set final transfer data length and sequence length */
0941         rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
0942         rspi_write8(rspi, i - 1, RSPI_SPSCR);
0943     }
0944 
0945     return 0;
0946 }
0947 
0948 static int rspi_setup(struct spi_device *spi)
0949 {
0950     struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
0951     u8 sslp;
0952 
0953     if (spi->cs_gpiod)
0954         return 0;
0955 
0956     pm_runtime_get_sync(&rspi->pdev->dev);
0957     spin_lock_irq(&rspi->lock);
0958 
0959     sslp = rspi_read8(rspi, RSPI_SSLP);
0960     if (spi->mode & SPI_CS_HIGH)
0961         sslp |= SSLP_SSLP(spi->chip_select);
0962     else
0963         sslp &= ~SSLP_SSLP(spi->chip_select);
0964     rspi_write8(rspi, sslp, RSPI_SSLP);
0965 
0966     spin_unlock_irq(&rspi->lock);
0967     pm_runtime_put(&rspi->pdev->dev);
0968     return 0;
0969 }
0970 
0971 static int rspi_prepare_message(struct spi_controller *ctlr,
0972                 struct spi_message *msg)
0973 {
0974     struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
0975     struct spi_device *spi = msg->spi;
0976     const struct spi_transfer *xfer;
0977     int ret;
0978 
0979     /*
0980      * As the Bit Rate Register must not be changed while the device is
0981      * active, all transfers in a message must use the same bit rate.
0982      * In theory, the sequencer could be enabled, and each Command Register
0983      * could divide the base bit rate by a different value.
0984      * However, most RSPI variants do not have Transfer Data Length
0985      * Multiplier Setting Registers, so each sequence step would be limited
0986      * to a single word, making this feature unsuitable for large
0987      * transfers, which would gain most from it.
0988      */
0989     rspi->speed_hz = spi->max_speed_hz;
0990     list_for_each_entry(xfer, &msg->transfers, transfer_list) {
0991         if (xfer->speed_hz < rspi->speed_hz)
0992             rspi->speed_hz = xfer->speed_hz;
0993     }
0994 
0995     rspi->spcmd = SPCMD_SSLKP;
0996     if (spi->mode & SPI_CPOL)
0997         rspi->spcmd |= SPCMD_CPOL;
0998     if (spi->mode & SPI_CPHA)
0999         rspi->spcmd |= SPCMD_CPHA;
1000     if (spi->mode & SPI_LSB_FIRST)
1001         rspi->spcmd |= SPCMD_LSBF;
1002 
1003     /* Configure slave signal to assert */
1004     rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs
1005                         : spi->chip_select);
1006 
1007     /* CMOS output mode and MOSI signal from previous transfer */
1008     rspi->sppcr = 0;
1009     if (spi->mode & SPI_LOOP)
1010         rspi->sppcr |= SPPCR_SPLP;
1011 
1012     rspi->ops->set_config_register(rspi, 8);
1013 
1014     if (msg->spi->mode &
1015         (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
1016         /* Setup sequencer for messages with multiple transfer modes */
1017         ret = qspi_setup_sequencer(rspi, msg);
1018         if (ret < 0)
1019             return ret;
1020     }
1021 
1022     /* Enable SPI function in master mode */
1023     rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
1024     return 0;
1025 }
1026 
1027 static int rspi_unprepare_message(struct spi_controller *ctlr,
1028                   struct spi_message *msg)
1029 {
1030     struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
1031 
1032     /* Disable SPI function */
1033     rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
1034 
1035     /* Reset sequencer for Single SPI Transfers */
1036     rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
1037     rspi_write8(rspi, 0, RSPI_SPSCR);
1038     return 0;
1039 }
1040 
1041 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
1042 {
1043     struct rspi_data *rspi = _sr;
1044     u8 spsr;
1045     irqreturn_t ret = IRQ_NONE;
1046     u8 disable_irq = 0;
1047 
1048     rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1049     if (spsr & SPSR_SPRF)
1050         disable_irq |= SPCR_SPRIE;
1051     if (spsr & SPSR_SPTEF)
1052         disable_irq |= SPCR_SPTIE;
1053 
1054     if (disable_irq) {
1055         ret = IRQ_HANDLED;
1056         rspi_disable_irq(rspi, disable_irq);
1057         wake_up(&rspi->wait);
1058     }
1059 
1060     return ret;
1061 }
1062 
1063 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1064 {
1065     struct rspi_data *rspi = _sr;
1066     u8 spsr;
1067 
1068     rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1069     if (spsr & SPSR_SPRF) {
1070         rspi_disable_irq(rspi, SPCR_SPRIE);
1071         wake_up(&rspi->wait);
1072         return IRQ_HANDLED;
1073     }
1074 
1075     return 0;
1076 }
1077 
1078 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1079 {
1080     struct rspi_data *rspi = _sr;
1081     u8 spsr;
1082 
1083     rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1084     if (spsr & SPSR_SPTEF) {
1085         rspi_disable_irq(rspi, SPCR_SPTIE);
1086         wake_up(&rspi->wait);
1087         return IRQ_HANDLED;
1088     }
1089 
1090     return 0;
1091 }
1092 
1093 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1094                           enum dma_transfer_direction dir,
1095                           unsigned int id,
1096                           dma_addr_t port_addr)
1097 {
1098     dma_cap_mask_t mask;
1099     struct dma_chan *chan;
1100     struct dma_slave_config cfg;
1101     int ret;
1102 
1103     dma_cap_zero(mask);
1104     dma_cap_set(DMA_SLAVE, mask);
1105 
1106     chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1107                 (void *)(unsigned long)id, dev,
1108                 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1109     if (!chan) {
1110         dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1111         return NULL;
1112     }
1113 
1114     memset(&cfg, 0, sizeof(cfg));
1115     cfg.dst_addr = port_addr + RSPI_SPDR;
1116     cfg.src_addr = port_addr + RSPI_SPDR;
1117     cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1118     cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1119     cfg.direction = dir;
1120 
1121     ret = dmaengine_slave_config(chan, &cfg);
1122     if (ret) {
1123         dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1124         dma_release_channel(chan);
1125         return NULL;
1126     }
1127 
1128     return chan;
1129 }
1130 
1131 static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1132                 const struct resource *res)
1133 {
1134     const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1135     unsigned int dma_tx_id, dma_rx_id;
1136 
1137     if (dev->of_node) {
1138         /* In the OF case we will get the slave IDs from the DT */
1139         dma_tx_id = 0;
1140         dma_rx_id = 0;
1141     } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1142         dma_tx_id = rspi_pd->dma_tx_id;
1143         dma_rx_id = rspi_pd->dma_rx_id;
1144     } else {
1145         /* The driver assumes no error. */
1146         return 0;
1147     }
1148 
1149     ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1150                          res->start);
1151     if (!ctlr->dma_tx)
1152         return -ENODEV;
1153 
1154     ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1155                          res->start);
1156     if (!ctlr->dma_rx) {
1157         dma_release_channel(ctlr->dma_tx);
1158         ctlr->dma_tx = NULL;
1159         return -ENODEV;
1160     }
1161 
1162     ctlr->can_dma = rspi_can_dma;
1163     dev_info(dev, "DMA available");
1164     return 0;
1165 }
1166 
1167 static void rspi_release_dma(struct spi_controller *ctlr)
1168 {
1169     if (ctlr->dma_tx)
1170         dma_release_channel(ctlr->dma_tx);
1171     if (ctlr->dma_rx)
1172         dma_release_channel(ctlr->dma_rx);
1173 }
1174 
1175 static int rspi_remove(struct platform_device *pdev)
1176 {
1177     struct rspi_data *rspi = platform_get_drvdata(pdev);
1178 
1179     rspi_release_dma(rspi->ctlr);
1180     pm_runtime_disable(&pdev->dev);
1181 
1182     return 0;
1183 }
1184 
1185 static const struct spi_ops rspi_ops = {
1186     .set_config_register =  rspi_set_config_register,
1187     .transfer_one =     rspi_transfer_one,
1188     .min_div =      2,
1189     .max_div =      4096,
1190     .flags =        SPI_CONTROLLER_MUST_TX,
1191     .fifo_size =        8,
1192     .num_hw_ss =        2,
1193 };
1194 
1195 static const struct spi_ops rspi_rz_ops = {
1196     .set_config_register =  rspi_rz_set_config_register,
1197     .transfer_one =     rspi_rz_transfer_one,
1198     .min_div =      2,
1199     .max_div =      4096,
1200     .flags =        SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1201     .fifo_size =        8,  /* 8 for TX, 32 for RX */
1202     .num_hw_ss =        1,
1203 };
1204 
1205 static const struct spi_ops qspi_ops = {
1206     .set_config_register =  qspi_set_config_register,
1207     .transfer_one =     qspi_transfer_one,
1208     .extra_mode_bits =  SPI_TX_DUAL | SPI_TX_QUAD |
1209                 SPI_RX_DUAL | SPI_RX_QUAD,
1210     .min_div =      1,
1211     .max_div =      4080,
1212     .flags =        SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1213     .fifo_size =        32,
1214     .num_hw_ss =        1,
1215 };
1216 
1217 #ifdef CONFIG_OF
1218 static const struct of_device_id rspi_of_match[] = {
1219     /* RSPI on legacy SH */
1220     { .compatible = "renesas,rspi", .data = &rspi_ops },
1221     /* RSPI on RZ/A1H */
1222     { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1223     /* QSPI on R-Car Gen2 */
1224     { .compatible = "renesas,qspi", .data = &qspi_ops },
1225     { /* sentinel */ }
1226 };
1227 
1228 MODULE_DEVICE_TABLE(of, rspi_of_match);
1229 
1230 static void rspi_reset_control_assert(void *data)
1231 {
1232     reset_control_assert(data);
1233 }
1234 
1235 static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1236 {
1237     struct reset_control *rstc;
1238     u32 num_cs;
1239     int error;
1240 
1241     /* Parse DT properties */
1242     error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1243     if (error) {
1244         dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1245         return error;
1246     }
1247 
1248     ctlr->num_chipselect = num_cs;
1249 
1250     rstc = devm_reset_control_get_optional_exclusive(dev, NULL);
1251     if (IS_ERR(rstc))
1252         return dev_err_probe(dev, PTR_ERR(rstc),
1253                          "failed to get reset ctrl\n");
1254 
1255     error = reset_control_deassert(rstc);
1256     if (error) {
1257         dev_err(dev, "failed to deassert reset %d\n", error);
1258         return error;
1259     }
1260 
1261     error = devm_add_action_or_reset(dev, rspi_reset_control_assert, rstc);
1262     if (error) {
1263         dev_err(dev, "failed to register assert devm action, %d\n", error);
1264         return error;
1265     }
1266 
1267     return 0;
1268 }
1269 #else
1270 #define rspi_of_match   NULL
1271 static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1272 {
1273     return -EINVAL;
1274 }
1275 #endif /* CONFIG_OF */
1276 
1277 static int rspi_request_irq(struct device *dev, unsigned int irq,
1278                 irq_handler_t handler, const char *suffix,
1279                 void *dev_id)
1280 {
1281     const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1282                       dev_name(dev), suffix);
1283     if (!name)
1284         return -ENOMEM;
1285 
1286     return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1287 }
1288 
1289 static int rspi_probe(struct platform_device *pdev)
1290 {
1291     struct resource *res;
1292     struct spi_controller *ctlr;
1293     struct rspi_data *rspi;
1294     int ret;
1295     const struct rspi_plat_data *rspi_pd;
1296     const struct spi_ops *ops;
1297     unsigned long clksrc;
1298 
1299     ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1300     if (ctlr == NULL)
1301         return -ENOMEM;
1302 
1303     ops = of_device_get_match_data(&pdev->dev);
1304     if (ops) {
1305         ret = rspi_parse_dt(&pdev->dev, ctlr);
1306         if (ret)
1307             goto error1;
1308     } else {
1309         ops = (struct spi_ops *)pdev->id_entry->driver_data;
1310         rspi_pd = dev_get_platdata(&pdev->dev);
1311         if (rspi_pd && rspi_pd->num_chipselect)
1312             ctlr->num_chipselect = rspi_pd->num_chipselect;
1313         else
1314             ctlr->num_chipselect = 2; /* default */
1315     }
1316 
1317     rspi = spi_controller_get_devdata(ctlr);
1318     platform_set_drvdata(pdev, rspi);
1319     rspi->ops = ops;
1320     rspi->ctlr = ctlr;
1321 
1322     res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1323     rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1324     if (IS_ERR(rspi->addr)) {
1325         ret = PTR_ERR(rspi->addr);
1326         goto error1;
1327     }
1328 
1329     rspi->clk = devm_clk_get(&pdev->dev, NULL);
1330     if (IS_ERR(rspi->clk)) {
1331         dev_err(&pdev->dev, "cannot get clock\n");
1332         ret = PTR_ERR(rspi->clk);
1333         goto error1;
1334     }
1335 
1336     rspi->pdev = pdev;
1337     pm_runtime_enable(&pdev->dev);
1338 
1339     init_waitqueue_head(&rspi->wait);
1340     spin_lock_init(&rspi->lock);
1341 
1342     ctlr->bus_num = pdev->id;
1343     ctlr->setup = rspi_setup;
1344     ctlr->auto_runtime_pm = true;
1345     ctlr->transfer_one = ops->transfer_one;
1346     ctlr->prepare_message = rspi_prepare_message;
1347     ctlr->unprepare_message = rspi_unprepare_message;
1348     ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1349               SPI_LOOP | ops->extra_mode_bits;
1350     clksrc = clk_get_rate(rspi->clk);
1351     ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, ops->max_div);
1352     ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, ops->min_div);
1353     ctlr->flags = ops->flags;
1354     ctlr->dev.of_node = pdev->dev.of_node;
1355     ctlr->use_gpio_descriptors = true;
1356     ctlr->max_native_cs = rspi->ops->num_hw_ss;
1357 
1358     ret = platform_get_irq_byname_optional(pdev, "rx");
1359     if (ret < 0) {
1360         ret = platform_get_irq_byname_optional(pdev, "mux");
1361         if (ret < 0)
1362             ret = platform_get_irq(pdev, 0);
1363         if (ret >= 0)
1364             rspi->rx_irq = rspi->tx_irq = ret;
1365     } else {
1366         rspi->rx_irq = ret;
1367         ret = platform_get_irq_byname(pdev, "tx");
1368         if (ret >= 0)
1369             rspi->tx_irq = ret;
1370     }
1371 
1372     if (rspi->rx_irq == rspi->tx_irq) {
1373         /* Single multiplexed interrupt */
1374         ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1375                        "mux", rspi);
1376     } else {
1377         /* Multi-interrupt mode, only SPRI and SPTI are used */
1378         ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1379                        "rx", rspi);
1380         if (!ret)
1381             ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1382                            rspi_irq_tx, "tx", rspi);
1383     }
1384     if (ret < 0) {
1385         dev_err(&pdev->dev, "request_irq error\n");
1386         goto error2;
1387     }
1388 
1389     ret = rspi_request_dma(&pdev->dev, ctlr, res);
1390     if (ret < 0)
1391         dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1392 
1393     ret = devm_spi_register_controller(&pdev->dev, ctlr);
1394     if (ret < 0) {
1395         dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1396         goto error3;
1397     }
1398 
1399     dev_info(&pdev->dev, "probed\n");
1400 
1401     return 0;
1402 
1403 error3:
1404     rspi_release_dma(ctlr);
1405 error2:
1406     pm_runtime_disable(&pdev->dev);
1407 error1:
1408     spi_controller_put(ctlr);
1409 
1410     return ret;
1411 }
1412 
1413 static const struct platform_device_id spi_driver_ids[] = {
1414     { "rspi",   (kernel_ulong_t)&rspi_ops },
1415     {},
1416 };
1417 
1418 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1419 
1420 #ifdef CONFIG_PM_SLEEP
1421 static int rspi_suspend(struct device *dev)
1422 {
1423     struct rspi_data *rspi = dev_get_drvdata(dev);
1424 
1425     return spi_controller_suspend(rspi->ctlr);
1426 }
1427 
1428 static int rspi_resume(struct device *dev)
1429 {
1430     struct rspi_data *rspi = dev_get_drvdata(dev);
1431 
1432     return spi_controller_resume(rspi->ctlr);
1433 }
1434 
1435 static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1436 #define DEV_PM_OPS  &rspi_pm_ops
1437 #else
1438 #define DEV_PM_OPS  NULL
1439 #endif /* CONFIG_PM_SLEEP */
1440 
1441 static struct platform_driver rspi_driver = {
1442     .probe =    rspi_probe,
1443     .remove =   rspi_remove,
1444     .id_table = spi_driver_ids,
1445     .driver     = {
1446         .name = "renesas_spi",
1447         .pm = DEV_PM_OPS,
1448         .of_match_table = of_match_ptr(rspi_of_match),
1449     },
1450 };
1451 module_platform_driver(rspi_driver);
1452 
1453 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1454 MODULE_LICENSE("GPL v2");
1455 MODULE_AUTHOR("Yoshihiro Shimoda");