0001
0002
0003
0004
0005
0006
0007 #include <linux/bits.h>
0008 #include <linux/clk.h>
0009 #include <linux/completion.h>
0010 #include <linux/dma-mapping.h>
0011 #include <linux/interrupt.h>
0012 #include <linux/io.h>
0013 #include <linux/iopoll.h>
0014 #include <linux/kernel.h>
0015 #include <linux/module.h>
0016 #include <linux/of_device.h>
0017 #include <linux/pm_runtime.h>
0018 #include <linux/spi/spi.h>
0019 #include <linux/spi/spi-mem.h>
0020 #include <linux/string.h>
0021
0022 #define DRIVER_NAME "mtk-spi-nor"
0023
0024 #define MTK_NOR_REG_CMD 0x00
0025 #define MTK_NOR_CMD_WRITE BIT(4)
0026 #define MTK_NOR_CMD_PROGRAM BIT(2)
0027 #define MTK_NOR_CMD_READ BIT(0)
0028 #define MTK_NOR_CMD_MASK GENMASK(5, 0)
0029
0030 #define MTK_NOR_REG_PRG_CNT 0x04
0031 #define MTK_NOR_PRG_CNT_MAX 56
0032 #define MTK_NOR_REG_RDATA 0x0c
0033
0034 #define MTK_NOR_REG_RADR0 0x10
0035 #define MTK_NOR_REG_RADR(n) (MTK_NOR_REG_RADR0 + 4 * (n))
0036 #define MTK_NOR_REG_RADR3 0xc8
0037
0038 #define MTK_NOR_REG_WDATA 0x1c
0039
0040 #define MTK_NOR_REG_PRGDATA0 0x20
0041 #define MTK_NOR_REG_PRGDATA(n) (MTK_NOR_REG_PRGDATA0 + 4 * (n))
0042 #define MTK_NOR_REG_PRGDATA_MAX 5
0043
0044 #define MTK_NOR_REG_SHIFT0 0x38
0045 #define MTK_NOR_REG_SHIFT(n) (MTK_NOR_REG_SHIFT0 + 4 * (n))
0046 #define MTK_NOR_REG_SHIFT_MAX 9
0047
0048 #define MTK_NOR_REG_CFG1 0x60
0049 #define MTK_NOR_FAST_READ BIT(0)
0050
0051 #define MTK_NOR_REG_CFG2 0x64
0052 #define MTK_NOR_WR_CUSTOM_OP_EN BIT(4)
0053 #define MTK_NOR_WR_BUF_EN BIT(0)
0054
0055 #define MTK_NOR_REG_PP_DATA 0x98
0056
0057 #define MTK_NOR_REG_IRQ_STAT 0xa8
0058 #define MTK_NOR_REG_IRQ_EN 0xac
0059 #define MTK_NOR_IRQ_DMA BIT(7)
0060 #define MTK_NOR_IRQ_MASK GENMASK(7, 0)
0061
0062 #define MTK_NOR_REG_CFG3 0xb4
0063 #define MTK_NOR_DISABLE_WREN BIT(7)
0064 #define MTK_NOR_DISABLE_SR_POLL BIT(5)
0065
0066 #define MTK_NOR_REG_WP 0xc4
0067 #define MTK_NOR_ENABLE_SF_CMD 0x30
0068
0069 #define MTK_NOR_REG_BUSCFG 0xcc
0070 #define MTK_NOR_4B_ADDR BIT(4)
0071 #define MTK_NOR_QUAD_ADDR BIT(3)
0072 #define MTK_NOR_QUAD_READ BIT(2)
0073 #define MTK_NOR_DUAL_ADDR BIT(1)
0074 #define MTK_NOR_DUAL_READ BIT(0)
0075 #define MTK_NOR_BUS_MODE_MASK GENMASK(4, 0)
0076
0077 #define MTK_NOR_REG_DMA_CTL 0x718
0078 #define MTK_NOR_DMA_START BIT(0)
0079
0080 #define MTK_NOR_REG_DMA_FADR 0x71c
0081 #define MTK_NOR_REG_DMA_DADR 0x720
0082 #define MTK_NOR_REG_DMA_END_DADR 0x724
0083 #define MTK_NOR_REG_DMA_DADR_HB 0x738
0084 #define MTK_NOR_REG_DMA_END_DADR_HB 0x73c
0085
0086 #define MTK_NOR_PRG_MAX_SIZE 6
0087
0088 #define MTK_NOR_DMA_ALIGN 16
0089 #define MTK_NOR_DMA_ALIGN_MASK (MTK_NOR_DMA_ALIGN - 1)
0090
0091 #define MTK_NOR_BOUNCE_BUF_SIZE PAGE_SIZE
0092
0093
0094 #define MTK_NOR_PP_SIZE 128
0095
0096 #define CLK_TO_US(sp, clkcnt) DIV_ROUND_UP(clkcnt, sp->spi_freq / 1000000)
0097
0098 struct mtk_nor_caps {
0099 u8 dma_bits;
0100
0101
0102
0103
0104
0105
0106 u8 extra_dummy_bit;
0107 };
0108
0109 struct mtk_nor {
0110 struct spi_controller *ctlr;
0111 struct device *dev;
0112 void __iomem *base;
0113 u8 *buffer;
0114 dma_addr_t buffer_dma;
0115 struct clk *spi_clk;
0116 struct clk *ctlr_clk;
0117 struct clk *axi_clk;
0118 struct clk *axi_s_clk;
0119 unsigned int spi_freq;
0120 bool wbuf_en;
0121 bool has_irq;
0122 bool high_dma;
0123 struct completion op_done;
0124 const struct mtk_nor_caps *caps;
0125 };
0126
0127 static inline void mtk_nor_rmw(struct mtk_nor *sp, u32 reg, u32 set, u32 clr)
0128 {
0129 u32 val = readl(sp->base + reg);
0130
0131 val &= ~clr;
0132 val |= set;
0133 writel(val, sp->base + reg);
0134 }
0135
0136 static inline int mtk_nor_cmd_exec(struct mtk_nor *sp, u32 cmd, ulong clk)
0137 {
0138 ulong delay = CLK_TO_US(sp, clk);
0139 u32 reg;
0140 int ret;
0141
0142 writel(cmd, sp->base + MTK_NOR_REG_CMD);
0143 ret = readl_poll_timeout(sp->base + MTK_NOR_REG_CMD, reg, !(reg & cmd),
0144 delay / 3, (delay + 1) * 200);
0145 if (ret < 0)
0146 dev_err(sp->dev, "command %u timeout.\n", cmd);
0147 return ret;
0148 }
0149
0150 static void mtk_nor_set_addr(struct mtk_nor *sp, const struct spi_mem_op *op)
0151 {
0152 u32 addr = op->addr.val;
0153 int i;
0154
0155 for (i = 0; i < 3; i++) {
0156 writeb(addr & 0xff, sp->base + MTK_NOR_REG_RADR(i));
0157 addr >>= 8;
0158 }
0159 if (op->addr.nbytes == 4) {
0160 writeb(addr & 0xff, sp->base + MTK_NOR_REG_RADR3);
0161 mtk_nor_rmw(sp, MTK_NOR_REG_BUSCFG, MTK_NOR_4B_ADDR, 0);
0162 } else {
0163 mtk_nor_rmw(sp, MTK_NOR_REG_BUSCFG, 0, MTK_NOR_4B_ADDR);
0164 }
0165 }
0166
0167 static bool need_bounce(struct mtk_nor *sp, const struct spi_mem_op *op)
0168 {
0169 return ((uintptr_t)op->data.buf.in & MTK_NOR_DMA_ALIGN_MASK);
0170 }
0171
0172 static bool mtk_nor_match_read(const struct spi_mem_op *op)
0173 {
0174 int dummy = 0;
0175
0176 if (op->dummy.nbytes)
0177 dummy = op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth;
0178
0179 if ((op->data.buswidth == 2) || (op->data.buswidth == 4)) {
0180 if (op->addr.buswidth == 1)
0181 return dummy == 8;
0182 else if (op->addr.buswidth == 2)
0183 return dummy == 4;
0184 else if (op->addr.buswidth == 4)
0185 return dummy == 6;
0186 } else if ((op->addr.buswidth == 1) && (op->data.buswidth == 1)) {
0187 if (op->cmd.opcode == 0x03)
0188 return dummy == 0;
0189 else if (op->cmd.opcode == 0x0b)
0190 return dummy == 8;
0191 }
0192 return false;
0193 }
0194
0195 static bool mtk_nor_match_prg(const struct spi_mem_op *op)
0196 {
0197 int tx_len, rx_len, prg_len, prg_left;
0198
0199
0200 if ((op->cmd.buswidth > 1) || (op->addr.buswidth > 1) ||
0201 (op->dummy.buswidth > 1) || (op->data.buswidth > 1))
0202 return false;
0203
0204 tx_len = op->cmd.nbytes + op->addr.nbytes;
0205
0206 if (op->data.dir == SPI_MEM_DATA_OUT) {
0207
0208 tx_len += op->dummy.nbytes;
0209
0210
0211 if (tx_len > MTK_NOR_REG_PRGDATA_MAX)
0212 return false;
0213
0214
0215
0216 if ((!op->addr.nbytes) &&
0217 (tx_len + op->data.nbytes > MTK_NOR_REG_PRGDATA_MAX + 1))
0218 return false;
0219 } else if (op->data.dir == SPI_MEM_DATA_IN) {
0220 if (tx_len > MTK_NOR_REG_PRGDATA_MAX + 1)
0221 return false;
0222
0223 rx_len = op->data.nbytes;
0224 prg_left = MTK_NOR_PRG_CNT_MAX / 8 - tx_len - op->dummy.nbytes;
0225 if (prg_left > MTK_NOR_REG_SHIFT_MAX + 1)
0226 prg_left = MTK_NOR_REG_SHIFT_MAX + 1;
0227 if (rx_len > prg_left) {
0228 if (!op->addr.nbytes)
0229 return false;
0230 rx_len = prg_left;
0231 }
0232
0233 prg_len = tx_len + op->dummy.nbytes + rx_len;
0234 if (prg_len > MTK_NOR_PRG_CNT_MAX / 8)
0235 return false;
0236 } else {
0237 prg_len = tx_len + op->dummy.nbytes;
0238 if (prg_len > MTK_NOR_PRG_CNT_MAX / 8)
0239 return false;
0240 }
0241 return true;
0242 }
0243
0244 static void mtk_nor_adj_prg_size(struct spi_mem_op *op)
0245 {
0246 int tx_len, tx_left, prg_left;
0247
0248 tx_len = op->cmd.nbytes + op->addr.nbytes;
0249 if (op->data.dir == SPI_MEM_DATA_OUT) {
0250 tx_len += op->dummy.nbytes;
0251 tx_left = MTK_NOR_REG_PRGDATA_MAX + 1 - tx_len;
0252 if (op->data.nbytes > tx_left)
0253 op->data.nbytes = tx_left;
0254 } else if (op->data.dir == SPI_MEM_DATA_IN) {
0255 prg_left = MTK_NOR_PRG_CNT_MAX / 8 - tx_len - op->dummy.nbytes;
0256 if (prg_left > MTK_NOR_REG_SHIFT_MAX + 1)
0257 prg_left = MTK_NOR_REG_SHIFT_MAX + 1;
0258 if (op->data.nbytes > prg_left)
0259 op->data.nbytes = prg_left;
0260 }
0261 }
0262
0263 static int mtk_nor_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
0264 {
0265 struct mtk_nor *sp = spi_controller_get_devdata(mem->spi->master);
0266
0267 if (!op->data.nbytes)
0268 return 0;
0269
0270 if ((op->addr.nbytes == 3) || (op->addr.nbytes == 4)) {
0271 if ((op->data.dir == SPI_MEM_DATA_IN) &&
0272 mtk_nor_match_read(op)) {
0273
0274 if (op->data.nbytes > 0x400000)
0275 op->data.nbytes = 0x400000;
0276
0277 if ((op->addr.val & MTK_NOR_DMA_ALIGN_MASK) ||
0278 (op->data.nbytes < MTK_NOR_DMA_ALIGN))
0279 op->data.nbytes = 1;
0280 else if (!need_bounce(sp, op))
0281 op->data.nbytes &= ~MTK_NOR_DMA_ALIGN_MASK;
0282 else if (op->data.nbytes > MTK_NOR_BOUNCE_BUF_SIZE)
0283 op->data.nbytes = MTK_NOR_BOUNCE_BUF_SIZE;
0284 return 0;
0285 } else if (op->data.dir == SPI_MEM_DATA_OUT) {
0286 if (op->data.nbytes >= MTK_NOR_PP_SIZE)
0287 op->data.nbytes = MTK_NOR_PP_SIZE;
0288 else
0289 op->data.nbytes = 1;
0290 return 0;
0291 }
0292 }
0293
0294 mtk_nor_adj_prg_size(op);
0295 return 0;
0296 }
0297
0298 static bool mtk_nor_supports_op(struct spi_mem *mem,
0299 const struct spi_mem_op *op)
0300 {
0301 if (!spi_mem_default_supports_op(mem, op))
0302 return false;
0303
0304 if (op->cmd.buswidth != 1)
0305 return false;
0306
0307 if ((op->addr.nbytes == 3) || (op->addr.nbytes == 4)) {
0308 switch (op->data.dir) {
0309 case SPI_MEM_DATA_IN:
0310 if (mtk_nor_match_read(op))
0311 return true;
0312 break;
0313 case SPI_MEM_DATA_OUT:
0314 if ((op->addr.buswidth == 1) &&
0315 (op->dummy.nbytes == 0) &&
0316 (op->data.buswidth == 1))
0317 return true;
0318 break;
0319 default:
0320 break;
0321 }
0322 }
0323
0324 return mtk_nor_match_prg(op);
0325 }
0326
0327 static void mtk_nor_setup_bus(struct mtk_nor *sp, const struct spi_mem_op *op)
0328 {
0329 u32 reg = 0;
0330
0331 if (op->addr.nbytes == 4)
0332 reg |= MTK_NOR_4B_ADDR;
0333
0334 if (op->data.buswidth == 4) {
0335 reg |= MTK_NOR_QUAD_READ;
0336 writeb(op->cmd.opcode, sp->base + MTK_NOR_REG_PRGDATA(4));
0337 if (op->addr.buswidth == 4)
0338 reg |= MTK_NOR_QUAD_ADDR;
0339 } else if (op->data.buswidth == 2) {
0340 reg |= MTK_NOR_DUAL_READ;
0341 writeb(op->cmd.opcode, sp->base + MTK_NOR_REG_PRGDATA(3));
0342 if (op->addr.buswidth == 2)
0343 reg |= MTK_NOR_DUAL_ADDR;
0344 } else {
0345 if (op->cmd.opcode == 0x0b)
0346 mtk_nor_rmw(sp, MTK_NOR_REG_CFG1, MTK_NOR_FAST_READ, 0);
0347 else
0348 mtk_nor_rmw(sp, MTK_NOR_REG_CFG1, 0, MTK_NOR_FAST_READ);
0349 }
0350 mtk_nor_rmw(sp, MTK_NOR_REG_BUSCFG, reg, MTK_NOR_BUS_MODE_MASK);
0351 }
0352
0353 static int mtk_nor_dma_exec(struct mtk_nor *sp, u32 from, unsigned int length,
0354 dma_addr_t dma_addr)
0355 {
0356 int ret = 0;
0357 ulong delay;
0358 u32 reg;
0359
0360 writel(from, sp->base + MTK_NOR_REG_DMA_FADR);
0361 writel(dma_addr, sp->base + MTK_NOR_REG_DMA_DADR);
0362 writel(dma_addr + length, sp->base + MTK_NOR_REG_DMA_END_DADR);
0363
0364 if (sp->high_dma) {
0365 writel(upper_32_bits(dma_addr),
0366 sp->base + MTK_NOR_REG_DMA_DADR_HB);
0367 writel(upper_32_bits(dma_addr + length),
0368 sp->base + MTK_NOR_REG_DMA_END_DADR_HB);
0369 }
0370
0371 if (sp->has_irq) {
0372 reinit_completion(&sp->op_done);
0373 mtk_nor_rmw(sp, MTK_NOR_REG_IRQ_EN, MTK_NOR_IRQ_DMA, 0);
0374 }
0375
0376 mtk_nor_rmw(sp, MTK_NOR_REG_DMA_CTL, MTK_NOR_DMA_START, 0);
0377
0378 delay = CLK_TO_US(sp, (length + 5) * BITS_PER_BYTE);
0379
0380 if (sp->has_irq) {
0381 if (!wait_for_completion_timeout(&sp->op_done,
0382 (delay + 1) * 100))
0383 ret = -ETIMEDOUT;
0384 } else {
0385 ret = readl_poll_timeout(sp->base + MTK_NOR_REG_DMA_CTL, reg,
0386 !(reg & MTK_NOR_DMA_START), delay / 3,
0387 (delay + 1) * 100);
0388 }
0389
0390 if (ret < 0)
0391 dev_err(sp->dev, "dma read timeout.\n");
0392
0393 return ret;
0394 }
0395
0396 static int mtk_nor_read_bounce(struct mtk_nor *sp, const struct spi_mem_op *op)
0397 {
0398 unsigned int rdlen;
0399 int ret;
0400
0401 if (op->data.nbytes & MTK_NOR_DMA_ALIGN_MASK)
0402 rdlen = (op->data.nbytes + MTK_NOR_DMA_ALIGN) & ~MTK_NOR_DMA_ALIGN_MASK;
0403 else
0404 rdlen = op->data.nbytes;
0405
0406 ret = mtk_nor_dma_exec(sp, op->addr.val, rdlen, sp->buffer_dma);
0407
0408 if (!ret)
0409 memcpy(op->data.buf.in, sp->buffer, op->data.nbytes);
0410
0411 return ret;
0412 }
0413
0414 static int mtk_nor_read_dma(struct mtk_nor *sp, const struct spi_mem_op *op)
0415 {
0416 int ret;
0417 dma_addr_t dma_addr;
0418
0419 if (need_bounce(sp, op))
0420 return mtk_nor_read_bounce(sp, op);
0421
0422 dma_addr = dma_map_single(sp->dev, op->data.buf.in,
0423 op->data.nbytes, DMA_FROM_DEVICE);
0424
0425 if (dma_mapping_error(sp->dev, dma_addr))
0426 return -EINVAL;
0427
0428 ret = mtk_nor_dma_exec(sp, op->addr.val, op->data.nbytes, dma_addr);
0429
0430 dma_unmap_single(sp->dev, dma_addr, op->data.nbytes, DMA_FROM_DEVICE);
0431
0432 return ret;
0433 }
0434
0435 static int mtk_nor_read_pio(struct mtk_nor *sp, const struct spi_mem_op *op)
0436 {
0437 u8 *buf = op->data.buf.in;
0438 int ret;
0439
0440 ret = mtk_nor_cmd_exec(sp, MTK_NOR_CMD_READ, 6 * BITS_PER_BYTE);
0441 if (!ret)
0442 buf[0] = readb(sp->base + MTK_NOR_REG_RDATA);
0443 return ret;
0444 }
0445
0446 static int mtk_nor_write_buffer_enable(struct mtk_nor *sp)
0447 {
0448 int ret;
0449 u32 val;
0450
0451 if (sp->wbuf_en)
0452 return 0;
0453
0454 val = readl(sp->base + MTK_NOR_REG_CFG2);
0455 writel(val | MTK_NOR_WR_BUF_EN, sp->base + MTK_NOR_REG_CFG2);
0456 ret = readl_poll_timeout(sp->base + MTK_NOR_REG_CFG2, val,
0457 val & MTK_NOR_WR_BUF_EN, 0, 10000);
0458 if (!ret)
0459 sp->wbuf_en = true;
0460 return ret;
0461 }
0462
0463 static int mtk_nor_write_buffer_disable(struct mtk_nor *sp)
0464 {
0465 int ret;
0466 u32 val;
0467
0468 if (!sp->wbuf_en)
0469 return 0;
0470 val = readl(sp->base + MTK_NOR_REG_CFG2);
0471 writel(val & ~MTK_NOR_WR_BUF_EN, sp->base + MTK_NOR_REG_CFG2);
0472 ret = readl_poll_timeout(sp->base + MTK_NOR_REG_CFG2, val,
0473 !(val & MTK_NOR_WR_BUF_EN), 0, 10000);
0474 if (!ret)
0475 sp->wbuf_en = false;
0476 return ret;
0477 }
0478
0479 static int mtk_nor_pp_buffered(struct mtk_nor *sp, const struct spi_mem_op *op)
0480 {
0481 const u8 *buf = op->data.buf.out;
0482 u32 val;
0483 int ret, i;
0484
0485 ret = mtk_nor_write_buffer_enable(sp);
0486 if (ret < 0)
0487 return ret;
0488
0489 for (i = 0; i < op->data.nbytes; i += 4) {
0490 val = buf[i + 3] << 24 | buf[i + 2] << 16 | buf[i + 1] << 8 |
0491 buf[i];
0492 writel(val, sp->base + MTK_NOR_REG_PP_DATA);
0493 }
0494 return mtk_nor_cmd_exec(sp, MTK_NOR_CMD_WRITE,
0495 (op->data.nbytes + 5) * BITS_PER_BYTE);
0496 }
0497
0498 static int mtk_nor_pp_unbuffered(struct mtk_nor *sp,
0499 const struct spi_mem_op *op)
0500 {
0501 const u8 *buf = op->data.buf.out;
0502 int ret;
0503
0504 ret = mtk_nor_write_buffer_disable(sp);
0505 if (ret < 0)
0506 return ret;
0507 writeb(buf[0], sp->base + MTK_NOR_REG_WDATA);
0508 return mtk_nor_cmd_exec(sp, MTK_NOR_CMD_WRITE, 6 * BITS_PER_BYTE);
0509 }
0510
0511 static int mtk_nor_spi_mem_prg(struct mtk_nor *sp, const struct spi_mem_op *op)
0512 {
0513 int rx_len = 0;
0514 int reg_offset = MTK_NOR_REG_PRGDATA_MAX;
0515 int tx_len, prg_len;
0516 int i, ret;
0517 void __iomem *reg;
0518 u8 bufbyte;
0519
0520 tx_len = op->cmd.nbytes + op->addr.nbytes;
0521
0522
0523 if (op->data.dir == SPI_MEM_DATA_OUT)
0524 tx_len += op->dummy.nbytes + op->data.nbytes;
0525 else if (op->data.dir == SPI_MEM_DATA_IN)
0526 rx_len = op->data.nbytes;
0527
0528 prg_len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes +
0529 op->data.nbytes;
0530
0531
0532
0533
0534 if ((tx_len > MTK_NOR_REG_PRGDATA_MAX + 1) ||
0535 (rx_len > MTK_NOR_REG_SHIFT_MAX + 1) ||
0536 (prg_len > MTK_NOR_PRG_CNT_MAX / 8))
0537 return -EINVAL;
0538
0539
0540 for (i = op->cmd.nbytes; i > 0; i--, reg_offset--) {
0541 reg = sp->base + MTK_NOR_REG_PRGDATA(reg_offset);
0542 bufbyte = (op->cmd.opcode >> ((i - 1) * BITS_PER_BYTE)) & 0xff;
0543 writeb(bufbyte, reg);
0544 }
0545
0546 for (i = op->addr.nbytes; i > 0; i--, reg_offset--) {
0547 reg = sp->base + MTK_NOR_REG_PRGDATA(reg_offset);
0548 bufbyte = (op->addr.val >> ((i - 1) * BITS_PER_BYTE)) & 0xff;
0549 writeb(bufbyte, reg);
0550 }
0551
0552 if (op->data.dir == SPI_MEM_DATA_OUT) {
0553 for (i = 0; i < op->dummy.nbytes; i++, reg_offset--) {
0554 reg = sp->base + MTK_NOR_REG_PRGDATA(reg_offset);
0555 writeb(0, reg);
0556 }
0557
0558 for (i = 0; i < op->data.nbytes; i++, reg_offset--) {
0559 reg = sp->base + MTK_NOR_REG_PRGDATA(reg_offset);
0560 writeb(((const u8 *)(op->data.buf.out))[i], reg);
0561 }
0562 }
0563
0564 for (; reg_offset >= 0; reg_offset--) {
0565 reg = sp->base + MTK_NOR_REG_PRGDATA(reg_offset);
0566 writeb(0, reg);
0567 }
0568
0569
0570 if (rx_len)
0571 writel(prg_len * BITS_PER_BYTE + sp->caps->extra_dummy_bit,
0572 sp->base + MTK_NOR_REG_PRG_CNT);
0573 else
0574 writel(prg_len * BITS_PER_BYTE, sp->base + MTK_NOR_REG_PRG_CNT);
0575
0576 ret = mtk_nor_cmd_exec(sp, MTK_NOR_CMD_PROGRAM,
0577 prg_len * BITS_PER_BYTE);
0578 if (ret)
0579 return ret;
0580
0581
0582 reg_offset = 0;
0583 if (op->data.dir == SPI_MEM_DATA_IN) {
0584 for (i = op->data.nbytes - 1; i >= 0; i--, reg_offset++) {
0585 reg = sp->base + MTK_NOR_REG_SHIFT(reg_offset);
0586 ((u8 *)(op->data.buf.in))[i] = readb(reg);
0587 }
0588 }
0589
0590 return 0;
0591 }
0592
0593 static int mtk_nor_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
0594 {
0595 struct mtk_nor *sp = spi_controller_get_devdata(mem->spi->master);
0596 int ret;
0597
0598 if ((op->data.nbytes == 0) ||
0599 ((op->addr.nbytes != 3) && (op->addr.nbytes != 4)))
0600 return mtk_nor_spi_mem_prg(sp, op);
0601
0602 if (op->data.dir == SPI_MEM_DATA_OUT) {
0603 mtk_nor_set_addr(sp, op);
0604 writeb(op->cmd.opcode, sp->base + MTK_NOR_REG_PRGDATA0);
0605 if (op->data.nbytes == MTK_NOR_PP_SIZE)
0606 return mtk_nor_pp_buffered(sp, op);
0607 return mtk_nor_pp_unbuffered(sp, op);
0608 }
0609
0610 if ((op->data.dir == SPI_MEM_DATA_IN) && mtk_nor_match_read(op)) {
0611 ret = mtk_nor_write_buffer_disable(sp);
0612 if (ret < 0)
0613 return ret;
0614 mtk_nor_setup_bus(sp, op);
0615 if (op->data.nbytes == 1) {
0616 mtk_nor_set_addr(sp, op);
0617 return mtk_nor_read_pio(sp, op);
0618 } else {
0619 return mtk_nor_read_dma(sp, op);
0620 }
0621 }
0622
0623 return mtk_nor_spi_mem_prg(sp, op);
0624 }
0625
0626 static int mtk_nor_setup(struct spi_device *spi)
0627 {
0628 struct mtk_nor *sp = spi_controller_get_devdata(spi->master);
0629
0630 if (spi->max_speed_hz && (spi->max_speed_hz < sp->spi_freq)) {
0631 dev_err(&spi->dev, "spi clock should be %u Hz.\n",
0632 sp->spi_freq);
0633 return -EINVAL;
0634 }
0635 spi->max_speed_hz = sp->spi_freq;
0636
0637 return 0;
0638 }
0639
0640 static int mtk_nor_transfer_one_message(struct spi_controller *master,
0641 struct spi_message *m)
0642 {
0643 struct mtk_nor *sp = spi_controller_get_devdata(master);
0644 struct spi_transfer *t = NULL;
0645 unsigned long trx_len = 0;
0646 int stat = 0;
0647 int reg_offset = MTK_NOR_REG_PRGDATA_MAX;
0648 void __iomem *reg;
0649 const u8 *txbuf;
0650 u8 *rxbuf;
0651 int i;
0652
0653 list_for_each_entry(t, &m->transfers, transfer_list) {
0654 txbuf = t->tx_buf;
0655 for (i = 0; i < t->len; i++, reg_offset--) {
0656 reg = sp->base + MTK_NOR_REG_PRGDATA(reg_offset);
0657 if (txbuf)
0658 writeb(txbuf[i], reg);
0659 else
0660 writeb(0, reg);
0661 }
0662 trx_len += t->len;
0663 }
0664
0665 writel(trx_len * BITS_PER_BYTE, sp->base + MTK_NOR_REG_PRG_CNT);
0666
0667 stat = mtk_nor_cmd_exec(sp, MTK_NOR_CMD_PROGRAM,
0668 trx_len * BITS_PER_BYTE);
0669 if (stat < 0)
0670 goto msg_done;
0671
0672 reg_offset = trx_len - 1;
0673 list_for_each_entry(t, &m->transfers, transfer_list) {
0674 rxbuf = t->rx_buf;
0675 for (i = 0; i < t->len; i++, reg_offset--) {
0676 reg = sp->base + MTK_NOR_REG_SHIFT(reg_offset);
0677 if (rxbuf)
0678 rxbuf[i] = readb(reg);
0679 }
0680 }
0681
0682 m->actual_length = trx_len;
0683 msg_done:
0684 m->status = stat;
0685 spi_finalize_current_message(master);
0686
0687 return 0;
0688 }
0689
0690 static void mtk_nor_disable_clk(struct mtk_nor *sp)
0691 {
0692 clk_disable_unprepare(sp->spi_clk);
0693 clk_disable_unprepare(sp->ctlr_clk);
0694 clk_disable_unprepare(sp->axi_clk);
0695 clk_disable_unprepare(sp->axi_s_clk);
0696 }
0697
0698 static int mtk_nor_enable_clk(struct mtk_nor *sp)
0699 {
0700 int ret;
0701
0702 ret = clk_prepare_enable(sp->spi_clk);
0703 if (ret)
0704 return ret;
0705
0706 ret = clk_prepare_enable(sp->ctlr_clk);
0707 if (ret) {
0708 clk_disable_unprepare(sp->spi_clk);
0709 return ret;
0710 }
0711
0712 ret = clk_prepare_enable(sp->axi_clk);
0713 if (ret) {
0714 clk_disable_unprepare(sp->spi_clk);
0715 clk_disable_unprepare(sp->ctlr_clk);
0716 return ret;
0717 }
0718
0719 ret = clk_prepare_enable(sp->axi_s_clk);
0720 if (ret) {
0721 clk_disable_unprepare(sp->spi_clk);
0722 clk_disable_unprepare(sp->ctlr_clk);
0723 clk_disable_unprepare(sp->axi_clk);
0724 return ret;
0725 }
0726
0727 return 0;
0728 }
0729
0730 static void mtk_nor_init(struct mtk_nor *sp)
0731 {
0732 writel(0, sp->base + MTK_NOR_REG_IRQ_EN);
0733 writel(MTK_NOR_IRQ_MASK, sp->base + MTK_NOR_REG_IRQ_STAT);
0734
0735 writel(MTK_NOR_ENABLE_SF_CMD, sp->base + MTK_NOR_REG_WP);
0736 mtk_nor_rmw(sp, MTK_NOR_REG_CFG2, MTK_NOR_WR_CUSTOM_OP_EN, 0);
0737 mtk_nor_rmw(sp, MTK_NOR_REG_CFG3,
0738 MTK_NOR_DISABLE_WREN | MTK_NOR_DISABLE_SR_POLL, 0);
0739 }
0740
0741 static irqreturn_t mtk_nor_irq_handler(int irq, void *data)
0742 {
0743 struct mtk_nor *sp = data;
0744 u32 irq_status, irq_enabled;
0745
0746 irq_status = readl(sp->base + MTK_NOR_REG_IRQ_STAT);
0747 irq_enabled = readl(sp->base + MTK_NOR_REG_IRQ_EN);
0748
0749 writel(irq_status, sp->base + MTK_NOR_REG_IRQ_STAT);
0750
0751 if (!(irq_status & irq_enabled))
0752 return IRQ_NONE;
0753
0754 if (irq_status & MTK_NOR_IRQ_DMA) {
0755 complete(&sp->op_done);
0756 writel(0, sp->base + MTK_NOR_REG_IRQ_EN);
0757 }
0758
0759 return IRQ_HANDLED;
0760 }
0761
0762 static size_t mtk_max_msg_size(struct spi_device *spi)
0763 {
0764 return MTK_NOR_PRG_MAX_SIZE;
0765 }
0766
0767 static const struct spi_controller_mem_ops mtk_nor_mem_ops = {
0768 .adjust_op_size = mtk_nor_adjust_op_size,
0769 .supports_op = mtk_nor_supports_op,
0770 .exec_op = mtk_nor_exec_op
0771 };
0772
0773 static const struct mtk_nor_caps mtk_nor_caps_mt8173 = {
0774 .dma_bits = 32,
0775 .extra_dummy_bit = 0,
0776 };
0777
0778 static const struct mtk_nor_caps mtk_nor_caps_mt8186 = {
0779 .dma_bits = 32,
0780 .extra_dummy_bit = 1,
0781 };
0782
0783 static const struct mtk_nor_caps mtk_nor_caps_mt8192 = {
0784 .dma_bits = 36,
0785 .extra_dummy_bit = 0,
0786 };
0787
0788 static const struct of_device_id mtk_nor_match[] = {
0789 { .compatible = "mediatek,mt8173-nor", .data = &mtk_nor_caps_mt8173 },
0790 { .compatible = "mediatek,mt8186-nor", .data = &mtk_nor_caps_mt8186 },
0791 { .compatible = "mediatek,mt8192-nor", .data = &mtk_nor_caps_mt8192 },
0792 { }
0793 };
0794 MODULE_DEVICE_TABLE(of, mtk_nor_match);
0795
0796 static int mtk_nor_probe(struct platform_device *pdev)
0797 {
0798 struct spi_controller *ctlr;
0799 struct mtk_nor *sp;
0800 struct mtk_nor_caps *caps;
0801 void __iomem *base;
0802 struct clk *spi_clk, *ctlr_clk, *axi_clk, *axi_s_clk;
0803 int ret, irq;
0804
0805 base = devm_platform_ioremap_resource(pdev, 0);
0806 if (IS_ERR(base))
0807 return PTR_ERR(base);
0808
0809 spi_clk = devm_clk_get(&pdev->dev, "spi");
0810 if (IS_ERR(spi_clk))
0811 return PTR_ERR(spi_clk);
0812
0813 ctlr_clk = devm_clk_get(&pdev->dev, "sf");
0814 if (IS_ERR(ctlr_clk))
0815 return PTR_ERR(ctlr_clk);
0816
0817 axi_clk = devm_clk_get_optional(&pdev->dev, "axi");
0818 if (IS_ERR(axi_clk))
0819 return PTR_ERR(axi_clk);
0820
0821 axi_s_clk = devm_clk_get_optional(&pdev->dev, "axi_s");
0822 if (IS_ERR(axi_s_clk))
0823 return PTR_ERR(axi_s_clk);
0824
0825 caps = (struct mtk_nor_caps *)of_device_get_match_data(&pdev->dev);
0826
0827 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(caps->dma_bits));
0828 if (ret) {
0829 dev_err(&pdev->dev, "failed to set dma mask(%u)\n", caps->dma_bits);
0830 return ret;
0831 }
0832
0833 ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*sp));
0834 if (!ctlr) {
0835 dev_err(&pdev->dev, "failed to allocate spi controller\n");
0836 return -ENOMEM;
0837 }
0838
0839 ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
0840 ctlr->dev.of_node = pdev->dev.of_node;
0841 ctlr->max_message_size = mtk_max_msg_size;
0842 ctlr->mem_ops = &mtk_nor_mem_ops;
0843 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
0844 ctlr->num_chipselect = 1;
0845 ctlr->setup = mtk_nor_setup;
0846 ctlr->transfer_one_message = mtk_nor_transfer_one_message;
0847 ctlr->auto_runtime_pm = true;
0848
0849 dev_set_drvdata(&pdev->dev, ctlr);
0850
0851 sp = spi_controller_get_devdata(ctlr);
0852 sp->base = base;
0853 sp->has_irq = false;
0854 sp->wbuf_en = false;
0855 sp->ctlr = ctlr;
0856 sp->dev = &pdev->dev;
0857 sp->spi_clk = spi_clk;
0858 sp->ctlr_clk = ctlr_clk;
0859 sp->axi_clk = axi_clk;
0860 sp->axi_s_clk = axi_s_clk;
0861 sp->caps = caps;
0862 sp->high_dma = caps->dma_bits > 32;
0863 sp->buffer = dmam_alloc_coherent(&pdev->dev,
0864 MTK_NOR_BOUNCE_BUF_SIZE + MTK_NOR_DMA_ALIGN,
0865 &sp->buffer_dma, GFP_KERNEL);
0866 if (!sp->buffer)
0867 return -ENOMEM;
0868
0869 if ((uintptr_t)sp->buffer & MTK_NOR_DMA_ALIGN_MASK) {
0870 dev_err(sp->dev, "misaligned allocation of internal buffer.\n");
0871 return -ENOMEM;
0872 }
0873
0874 ret = mtk_nor_enable_clk(sp);
0875 if (ret < 0)
0876 return ret;
0877
0878 sp->spi_freq = clk_get_rate(sp->spi_clk);
0879
0880 mtk_nor_init(sp);
0881
0882 irq = platform_get_irq_optional(pdev, 0);
0883
0884 if (irq < 0) {
0885 dev_warn(sp->dev, "IRQ not available.");
0886 } else {
0887 ret = devm_request_irq(sp->dev, irq, mtk_nor_irq_handler, 0,
0888 pdev->name, sp);
0889 if (ret < 0) {
0890 dev_warn(sp->dev, "failed to request IRQ.");
0891 } else {
0892 init_completion(&sp->op_done);
0893 sp->has_irq = true;
0894 }
0895 }
0896
0897 pm_runtime_set_autosuspend_delay(&pdev->dev, -1);
0898 pm_runtime_use_autosuspend(&pdev->dev);
0899 pm_runtime_set_active(&pdev->dev);
0900 pm_runtime_enable(&pdev->dev);
0901 pm_runtime_get_noresume(&pdev->dev);
0902
0903 ret = devm_spi_register_controller(&pdev->dev, ctlr);
0904 if (ret < 0)
0905 goto err_probe;
0906
0907 pm_runtime_mark_last_busy(&pdev->dev);
0908 pm_runtime_put_autosuspend(&pdev->dev);
0909
0910 dev_info(&pdev->dev, "spi frequency: %d Hz\n", sp->spi_freq);
0911
0912 return 0;
0913
0914 err_probe:
0915 pm_runtime_disable(&pdev->dev);
0916 pm_runtime_set_suspended(&pdev->dev);
0917 pm_runtime_dont_use_autosuspend(&pdev->dev);
0918
0919 mtk_nor_disable_clk(sp);
0920
0921 return ret;
0922 }
0923
0924 static int mtk_nor_remove(struct platform_device *pdev)
0925 {
0926 struct spi_controller *ctlr = dev_get_drvdata(&pdev->dev);
0927 struct mtk_nor *sp = spi_controller_get_devdata(ctlr);
0928
0929 pm_runtime_disable(&pdev->dev);
0930 pm_runtime_set_suspended(&pdev->dev);
0931 pm_runtime_dont_use_autosuspend(&pdev->dev);
0932
0933 mtk_nor_disable_clk(sp);
0934
0935 return 0;
0936 }
0937
0938 static int __maybe_unused mtk_nor_runtime_suspend(struct device *dev)
0939 {
0940 struct spi_controller *ctlr = dev_get_drvdata(dev);
0941 struct mtk_nor *sp = spi_controller_get_devdata(ctlr);
0942
0943 mtk_nor_disable_clk(sp);
0944
0945 return 0;
0946 }
0947
0948 static int __maybe_unused mtk_nor_runtime_resume(struct device *dev)
0949 {
0950 struct spi_controller *ctlr = dev_get_drvdata(dev);
0951 struct mtk_nor *sp = spi_controller_get_devdata(ctlr);
0952
0953 return mtk_nor_enable_clk(sp);
0954 }
0955
0956 static int __maybe_unused mtk_nor_suspend(struct device *dev)
0957 {
0958 return pm_runtime_force_suspend(dev);
0959 }
0960
0961 static int __maybe_unused mtk_nor_resume(struct device *dev)
0962 {
0963 struct spi_controller *ctlr = dev_get_drvdata(dev);
0964 struct mtk_nor *sp = spi_controller_get_devdata(ctlr);
0965 int ret;
0966
0967 ret = pm_runtime_force_resume(dev);
0968 if (ret)
0969 return ret;
0970
0971 mtk_nor_init(sp);
0972
0973 return 0;
0974 }
0975
0976 static const struct dev_pm_ops mtk_nor_pm_ops = {
0977 SET_RUNTIME_PM_OPS(mtk_nor_runtime_suspend,
0978 mtk_nor_runtime_resume, NULL)
0979 SET_SYSTEM_SLEEP_PM_OPS(mtk_nor_suspend, mtk_nor_resume)
0980 };
0981
0982 static struct platform_driver mtk_nor_driver = {
0983 .driver = {
0984 .name = DRIVER_NAME,
0985 .of_match_table = mtk_nor_match,
0986 .pm = &mtk_nor_pm_ops,
0987 },
0988 .probe = mtk_nor_probe,
0989 .remove = mtk_nor_remove,
0990 };
0991
0992 module_platform_driver(mtk_nor_driver);
0993
0994 MODULE_DESCRIPTION("Mediatek SPI NOR controller driver");
0995 MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
0996 MODULE_LICENSE("GPL v2");
0997 MODULE_ALIAS("platform:" DRIVER_NAME);