0001
0002
0003
0004
0005
0006
0007
0008
0009 #include <linux/clk.h>
0010 #include <linux/delay.h>
0011 #include <linux/dmaengine.h>
0012 #include <linux/dma-mapping.h>
0013 #include <linux/iopoll.h>
0014 #include <linux/module.h>
0015 #include <linux/of_device.h>
0016 #include <linux/platform_device.h>
0017 #include <linux/regmap.h>
0018 #include <linux/spi/spi.h>
0019
0020 #define REG_SSIDR 0x0
0021 #define REG_SSICR0 0x4
0022 #define REG_SSICR1 0x8
0023 #define REG_SSISR 0xc
0024 #define REG_SSIGR 0x18
0025
0026 #define REG_SSICR0_TENDIAN_LSB BIT(19)
0027 #define REG_SSICR0_RENDIAN_LSB BIT(17)
0028 #define REG_SSICR0_SSIE BIT(15)
0029 #define REG_SSICR0_LOOP BIT(10)
0030 #define REG_SSICR0_EACLRUN BIT(7)
0031 #define REG_SSICR0_FSEL BIT(6)
0032 #define REG_SSICR0_TFLUSH BIT(2)
0033 #define REG_SSICR0_RFLUSH BIT(1)
0034
0035 #define REG_SSICR1_FRMHL_MASK (BIT(31) | BIT(30))
0036 #define REG_SSICR1_FRMHL BIT(30)
0037 #define REG_SSICR1_LFST BIT(25)
0038 #define REG_SSICR1_UNFIN BIT(23)
0039 #define REG_SSICR1_PHA BIT(1)
0040 #define REG_SSICR1_POL BIT(0)
0041
0042 #define REG_SSISR_END BIT(7)
0043 #define REG_SSISR_BUSY BIT(6)
0044 #define REG_SSISR_TFF BIT(5)
0045 #define REG_SSISR_RFE BIT(4)
0046 #define REG_SSISR_RFHF BIT(2)
0047 #define REG_SSISR_UNDR BIT(1)
0048 #define REG_SSISR_OVER BIT(0)
0049
0050 #define SPI_INGENIC_FIFO_SIZE 128u
0051
0052 struct jz_soc_info {
0053 u32 bits_per_word_mask;
0054 struct reg_field flen_field;
0055 bool has_trendian;
0056
0057 unsigned int max_speed_hz;
0058 unsigned int max_native_cs;
0059 };
0060
0061 struct ingenic_spi {
0062 const struct jz_soc_info *soc_info;
0063 struct clk *clk;
0064 struct resource *mem_res;
0065
0066 struct regmap *map;
0067 struct regmap_field *flen_field;
0068 };
0069
0070 static int spi_ingenic_wait(struct ingenic_spi *priv,
0071 unsigned long mask,
0072 bool condition)
0073 {
0074 unsigned int val;
0075
0076 return regmap_read_poll_timeout(priv->map, REG_SSISR, val,
0077 !!(val & mask) == condition,
0078 100, 10000);
0079 }
0080
0081 static void spi_ingenic_set_cs(struct spi_device *spi, bool disable)
0082 {
0083 struct ingenic_spi *priv = spi_controller_get_devdata(spi->controller);
0084
0085 if (disable) {
0086 regmap_clear_bits(priv->map, REG_SSICR1, REG_SSICR1_UNFIN);
0087 regmap_clear_bits(priv->map, REG_SSISR,
0088 REG_SSISR_UNDR | REG_SSISR_OVER);
0089
0090 spi_ingenic_wait(priv, REG_SSISR_END, true);
0091 } else {
0092 regmap_set_bits(priv->map, REG_SSICR1, REG_SSICR1_UNFIN);
0093 }
0094
0095 regmap_set_bits(priv->map, REG_SSICR0,
0096 REG_SSICR0_RFLUSH | REG_SSICR0_TFLUSH);
0097 }
0098
0099 static void spi_ingenic_prepare_transfer(struct ingenic_spi *priv,
0100 struct spi_device *spi,
0101 struct spi_transfer *xfer)
0102 {
0103 unsigned long clk_hz = clk_get_rate(priv->clk);
0104 u32 cdiv, speed_hz = xfer->speed_hz ?: spi->max_speed_hz,
0105 bits_per_word = xfer->bits_per_word ?: spi->bits_per_word;
0106
0107 cdiv = clk_hz / (speed_hz * 2);
0108 cdiv = clamp(cdiv, 1u, 0x100u) - 1;
0109
0110 regmap_write(priv->map, REG_SSIGR, cdiv);
0111
0112 regmap_field_write(priv->flen_field, bits_per_word - 2);
0113 }
0114
0115 static void spi_ingenic_finalize_transfer(void *controller)
0116 {
0117 spi_finalize_current_transfer(controller);
0118 }
0119
0120 static struct dma_async_tx_descriptor *
0121 spi_ingenic_prepare_dma(struct spi_controller *ctlr, struct dma_chan *chan,
0122 struct sg_table *sg, enum dma_transfer_direction dir,
0123 unsigned int bits)
0124 {
0125 struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
0126 struct dma_slave_config cfg = {
0127 .direction = dir,
0128 .src_addr = priv->mem_res->start + REG_SSIDR,
0129 .dst_addr = priv->mem_res->start + REG_SSIDR,
0130 };
0131 struct dma_async_tx_descriptor *desc;
0132 dma_cookie_t cookie;
0133 int ret;
0134
0135 if (bits > 16) {
0136 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
0137 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
0138 cfg.src_maxburst = cfg.dst_maxburst = 4;
0139 } else if (bits > 8) {
0140 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
0141 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
0142 cfg.src_maxburst = cfg.dst_maxburst = 2;
0143 } else {
0144 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
0145 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
0146 cfg.src_maxburst = cfg.dst_maxburst = 1;
0147 }
0148
0149 ret = dmaengine_slave_config(chan, &cfg);
0150 if (ret)
0151 return ERR_PTR(ret);
0152
0153 desc = dmaengine_prep_slave_sg(chan, sg->sgl, sg->nents, dir,
0154 DMA_PREP_INTERRUPT);
0155 if (!desc)
0156 return ERR_PTR(-ENOMEM);
0157
0158 if (dir == DMA_DEV_TO_MEM) {
0159 desc->callback = spi_ingenic_finalize_transfer;
0160 desc->callback_param = ctlr;
0161 }
0162
0163 cookie = dmaengine_submit(desc);
0164
0165 ret = dma_submit_error(cookie);
0166 if (ret) {
0167 dmaengine_desc_free(desc);
0168 return ERR_PTR(ret);
0169 }
0170
0171 return desc;
0172 }
0173
0174 static int spi_ingenic_dma_tx(struct spi_controller *ctlr,
0175 struct spi_transfer *xfer, unsigned int bits)
0176 {
0177 struct dma_async_tx_descriptor *rx_desc, *tx_desc;
0178
0179 rx_desc = spi_ingenic_prepare_dma(ctlr, ctlr->dma_rx,
0180 &xfer->rx_sg, DMA_DEV_TO_MEM, bits);
0181 if (IS_ERR(rx_desc))
0182 return PTR_ERR(rx_desc);
0183
0184 tx_desc = spi_ingenic_prepare_dma(ctlr, ctlr->dma_tx,
0185 &xfer->tx_sg, DMA_MEM_TO_DEV, bits);
0186 if (IS_ERR(tx_desc)) {
0187 dmaengine_terminate_async(ctlr->dma_rx);
0188 dmaengine_desc_free(rx_desc);
0189 return PTR_ERR(tx_desc);
0190 }
0191
0192 dma_async_issue_pending(ctlr->dma_rx);
0193 dma_async_issue_pending(ctlr->dma_tx);
0194
0195 return 1;
0196 }
0197
0198 #define SPI_INGENIC_TX(x) \
0199 static int spi_ingenic_tx##x(struct ingenic_spi *priv, \
0200 struct spi_transfer *xfer) \
0201 { \
0202 unsigned int count = xfer->len / (x / 8); \
0203 unsigned int prefill = min(count, SPI_INGENIC_FIFO_SIZE); \
0204 const u##x *tx_buf = xfer->tx_buf; \
0205 u##x *rx_buf = xfer->rx_buf; \
0206 unsigned int i, val; \
0207 int err; \
0208 \
0209 \
0210 for (i = 0; i < prefill; i++) { \
0211 val = tx_buf ? tx_buf[i] : 0; \
0212 \
0213 regmap_write(priv->map, REG_SSIDR, val); \
0214 } \
0215 \
0216 for (i = 0; i < count; i++) { \
0217 err = spi_ingenic_wait(priv, REG_SSISR_RFE, false); \
0218 if (err) \
0219 return err; \
0220 \
0221 regmap_read(priv->map, REG_SSIDR, &val); \
0222 if (rx_buf) \
0223 rx_buf[i] = val; \
0224 \
0225 if (i < count - prefill) { \
0226 val = tx_buf ? tx_buf[i + prefill] : 0; \
0227 \
0228 regmap_write(priv->map, REG_SSIDR, val); \
0229 } \
0230 } \
0231 \
0232 return 0; \
0233 }
0234 SPI_INGENIC_TX(8)
0235 SPI_INGENIC_TX(16)
0236 SPI_INGENIC_TX(32)
0237 #undef SPI_INGENIC_TX
0238
0239 static int spi_ingenic_transfer_one(struct spi_controller *ctlr,
0240 struct spi_device *spi,
0241 struct spi_transfer *xfer)
0242 {
0243 struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
0244 unsigned int bits = xfer->bits_per_word ?: spi->bits_per_word;
0245 bool can_dma = ctlr->can_dma && ctlr->can_dma(ctlr, spi, xfer);
0246
0247 spi_ingenic_prepare_transfer(priv, spi, xfer);
0248
0249 if (ctlr->cur_msg_mapped && can_dma)
0250 return spi_ingenic_dma_tx(ctlr, xfer, bits);
0251
0252 if (bits > 16)
0253 return spi_ingenic_tx32(priv, xfer);
0254
0255 if (bits > 8)
0256 return spi_ingenic_tx16(priv, xfer);
0257
0258 return spi_ingenic_tx8(priv, xfer);
0259 }
0260
0261 static int spi_ingenic_prepare_message(struct spi_controller *ctlr,
0262 struct spi_message *message)
0263 {
0264 struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
0265 struct spi_device *spi = message->spi;
0266 unsigned int cs = REG_SSICR1_FRMHL << spi->chip_select;
0267 unsigned int ssicr0_mask = REG_SSICR0_LOOP | REG_SSICR0_FSEL;
0268 unsigned int ssicr1_mask = REG_SSICR1_PHA | REG_SSICR1_POL | cs;
0269 unsigned int ssicr0 = 0, ssicr1 = 0;
0270
0271 if (priv->soc_info->has_trendian) {
0272 ssicr0_mask |= REG_SSICR0_RENDIAN_LSB | REG_SSICR0_TENDIAN_LSB;
0273
0274 if (spi->mode & SPI_LSB_FIRST)
0275 ssicr0 |= REG_SSICR0_RENDIAN_LSB | REG_SSICR0_TENDIAN_LSB;
0276 } else {
0277 ssicr1_mask |= REG_SSICR1_LFST;
0278
0279 if (spi->mode & SPI_LSB_FIRST)
0280 ssicr1 |= REG_SSICR1_LFST;
0281 }
0282
0283 if (spi->mode & SPI_LOOP)
0284 ssicr0 |= REG_SSICR0_LOOP;
0285 if (spi->chip_select)
0286 ssicr0 |= REG_SSICR0_FSEL;
0287
0288 if (spi->mode & SPI_CPHA)
0289 ssicr1 |= REG_SSICR1_PHA;
0290 if (spi->mode & SPI_CPOL)
0291 ssicr1 |= REG_SSICR1_POL;
0292 if (spi->mode & SPI_CS_HIGH)
0293 ssicr1 |= cs;
0294
0295 regmap_update_bits(priv->map, REG_SSICR0, ssicr0_mask, ssicr0);
0296 regmap_update_bits(priv->map, REG_SSICR1, ssicr1_mask, ssicr1);
0297
0298 return 0;
0299 }
0300
0301 static int spi_ingenic_prepare_hardware(struct spi_controller *ctlr)
0302 {
0303 struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
0304 int ret;
0305
0306 ret = clk_prepare_enable(priv->clk);
0307 if (ret)
0308 return ret;
0309
0310 regmap_write(priv->map, REG_SSICR0, REG_SSICR0_EACLRUN);
0311 regmap_write(priv->map, REG_SSICR1, 0);
0312 regmap_write(priv->map, REG_SSISR, 0);
0313 regmap_set_bits(priv->map, REG_SSICR0, REG_SSICR0_SSIE);
0314
0315 return 0;
0316 }
0317
0318 static int spi_ingenic_unprepare_hardware(struct spi_controller *ctlr)
0319 {
0320 struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
0321
0322 regmap_clear_bits(priv->map, REG_SSICR0, REG_SSICR0_SSIE);
0323
0324 clk_disable_unprepare(priv->clk);
0325
0326 return 0;
0327 }
0328
0329 static bool spi_ingenic_can_dma(struct spi_controller *ctlr,
0330 struct spi_device *spi,
0331 struct spi_transfer *xfer)
0332 {
0333 struct dma_slave_caps caps;
0334 int ret;
0335
0336 ret = dma_get_slave_caps(ctlr->dma_tx, &caps);
0337 if (ret) {
0338 dev_err(&spi->dev, "Unable to get slave caps: %d\n", ret);
0339 return false;
0340 }
0341
0342 return !caps.max_sg_burst ||
0343 xfer->len <= caps.max_sg_burst * SPI_INGENIC_FIFO_SIZE;
0344 }
0345
0346 static int spi_ingenic_request_dma(struct spi_controller *ctlr,
0347 struct device *dev)
0348 {
0349 ctlr->dma_tx = dma_request_slave_channel(dev, "tx");
0350 if (!ctlr->dma_tx)
0351 return -ENODEV;
0352
0353 ctlr->dma_rx = dma_request_slave_channel(dev, "rx");
0354
0355 if (!ctlr->dma_rx)
0356 return -ENODEV;
0357
0358 ctlr->can_dma = spi_ingenic_can_dma;
0359
0360 return 0;
0361 }
0362
0363 static void spi_ingenic_release_dma(void *data)
0364 {
0365 struct spi_controller *ctlr = data;
0366
0367 if (ctlr->dma_tx)
0368 dma_release_channel(ctlr->dma_tx);
0369 if (ctlr->dma_rx)
0370 dma_release_channel(ctlr->dma_rx);
0371 }
0372
0373 static const struct regmap_config spi_ingenic_regmap_config = {
0374 .reg_bits = 32,
0375 .val_bits = 32,
0376 .reg_stride = 4,
0377 .max_register = REG_SSIGR,
0378 };
0379
0380 static int spi_ingenic_probe(struct platform_device *pdev)
0381 {
0382 const struct jz_soc_info *pdata;
0383 struct device *dev = &pdev->dev;
0384 struct spi_controller *ctlr;
0385 struct ingenic_spi *priv;
0386 void __iomem *base;
0387 int num_cs, ret;
0388
0389 pdata = of_device_get_match_data(dev);
0390 if (!pdata) {
0391 dev_err(dev, "Missing platform data.\n");
0392 return -EINVAL;
0393 }
0394
0395 ctlr = devm_spi_alloc_master(dev, sizeof(*priv));
0396 if (!ctlr) {
0397 dev_err(dev, "Unable to allocate SPI controller.\n");
0398 return -ENOMEM;
0399 }
0400
0401 priv = spi_controller_get_devdata(ctlr);
0402 priv->soc_info = pdata;
0403
0404 priv->clk = devm_clk_get(dev, NULL);
0405 if (IS_ERR(priv->clk)) {
0406 return dev_err_probe(dev, PTR_ERR(priv->clk),
0407 "Unable to get clock.\n");
0408 }
0409
0410 base = devm_platform_get_and_ioremap_resource(pdev, 0, &priv->mem_res);
0411 if (IS_ERR(base))
0412 return PTR_ERR(base);
0413
0414 priv->map = devm_regmap_init_mmio(dev, base, &spi_ingenic_regmap_config);
0415 if (IS_ERR(priv->map))
0416 return PTR_ERR(priv->map);
0417
0418 priv->flen_field = devm_regmap_field_alloc(dev, priv->map,
0419 pdata->flen_field);
0420 if (IS_ERR(priv->flen_field))
0421 return PTR_ERR(priv->flen_field);
0422
0423 if (device_property_read_u32(dev, "num-cs", &num_cs))
0424 num_cs = pdata->max_native_cs;
0425
0426 platform_set_drvdata(pdev, ctlr);
0427
0428 ctlr->prepare_transfer_hardware = spi_ingenic_prepare_hardware;
0429 ctlr->unprepare_transfer_hardware = spi_ingenic_unprepare_hardware;
0430 ctlr->prepare_message = spi_ingenic_prepare_message;
0431 ctlr->set_cs = spi_ingenic_set_cs;
0432 ctlr->transfer_one = spi_ingenic_transfer_one;
0433 ctlr->mode_bits = SPI_MODE_3 | SPI_LSB_FIRST | SPI_LOOP | SPI_CS_HIGH;
0434 ctlr->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
0435 ctlr->max_dma_len = SPI_INGENIC_FIFO_SIZE;
0436 ctlr->bits_per_word_mask = pdata->bits_per_word_mask;
0437 ctlr->min_speed_hz = 7200;
0438 ctlr->max_speed_hz = pdata->max_speed_hz;
0439 ctlr->use_gpio_descriptors = true;
0440 ctlr->max_native_cs = pdata->max_native_cs;
0441 ctlr->num_chipselect = num_cs;
0442 ctlr->dev.of_node = pdev->dev.of_node;
0443
0444 if (spi_ingenic_request_dma(ctlr, dev))
0445 dev_warn(dev, "DMA not available.\n");
0446
0447 ret = devm_add_action_or_reset(dev, spi_ingenic_release_dma, ctlr);
0448 if (ret) {
0449 dev_err(dev, "Unable to add action.\n");
0450 return ret;
0451 }
0452
0453 ret = devm_spi_register_controller(dev, ctlr);
0454 if (ret)
0455 dev_err(dev, "Unable to register SPI controller.\n");
0456
0457 return ret;
0458 }
0459
0460 static const struct jz_soc_info jz4750_soc_info = {
0461 .bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 17),
0462 .flen_field = REG_FIELD(REG_SSICR1, 4, 7),
0463 .has_trendian = false,
0464
0465 .max_speed_hz = 54000000,
0466 .max_native_cs = 2,
0467 };
0468
0469 static const struct jz_soc_info jz4780_soc_info = {
0470 .bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 32),
0471 .flen_field = REG_FIELD(REG_SSICR1, 3, 7),
0472 .has_trendian = true,
0473
0474 .max_speed_hz = 54000000,
0475 .max_native_cs = 2,
0476 };
0477
0478 static const struct jz_soc_info x1000_soc_info = {
0479 .bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 32),
0480 .flen_field = REG_FIELD(REG_SSICR1, 3, 7),
0481 .has_trendian = true,
0482
0483 .max_speed_hz = 50000000,
0484 .max_native_cs = 2,
0485 };
0486
0487 static const struct jz_soc_info x2000_soc_info = {
0488 .bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 32),
0489 .flen_field = REG_FIELD(REG_SSICR1, 3, 7),
0490 .has_trendian = true,
0491
0492 .max_speed_hz = 50000000,
0493 .max_native_cs = 1,
0494 };
0495
0496 static const struct of_device_id spi_ingenic_of_match[] = {
0497 { .compatible = "ingenic,jz4750-spi", .data = &jz4750_soc_info },
0498 { .compatible = "ingenic,jz4775-spi", .data = &jz4780_soc_info },
0499 { .compatible = "ingenic,jz4780-spi", .data = &jz4780_soc_info },
0500 { .compatible = "ingenic,x1000-spi", .data = &x1000_soc_info },
0501 { .compatible = "ingenic,x2000-spi", .data = &x2000_soc_info },
0502 {}
0503 };
0504 MODULE_DEVICE_TABLE(of, spi_ingenic_of_match);
0505
0506 static struct platform_driver spi_ingenic_driver = {
0507 .driver = {
0508 .name = "spi-ingenic",
0509 .of_match_table = spi_ingenic_of_match,
0510 },
0511 .probe = spi_ingenic_probe,
0512 };
0513
0514 module_platform_driver(spi_ingenic_driver);
0515 MODULE_DESCRIPTION("SPI bus driver for the Ingenic SoCs");
0516 MODULE_AUTHOR("Artur Rojek <contact@artur-rojek.eu>");
0517 MODULE_AUTHOR("Paul Cercueil <paul@crapouillou.net>");
0518 MODULE_AUTHOR("周琰杰 (Zhou Yanjie) <zhouyanjie@wanyeetech.com>");
0519 MODULE_LICENSE("GPL");