0001
0002
0003
0004
0005
0006
0007 #include <linux/delay.h>
0008 #include <linux/err.h>
0009 #include <linux/fsl_devices.h>
0010 #include <linux/interrupt.h>
0011 #include <linux/module.h>
0012 #include <linux/mm.h>
0013 #include <linux/of.h>
0014 #include <linux/of_address.h>
0015 #include <linux/of_irq.h>
0016 #include <linux/of_platform.h>
0017 #include <linux/platform_device.h>
0018 #include <linux/spi/spi.h>
0019 #include <linux/pm_runtime.h>
0020 #include <sysdev/fsl_soc.h>
0021
0022
0023 #define ESPI_SPMODE 0x00
0024 #define ESPI_SPIE 0x04
0025 #define ESPI_SPIM 0x08
0026 #define ESPI_SPCOM 0x0c
0027 #define ESPI_SPITF 0x10
0028 #define ESPI_SPIRF 0x14
0029 #define ESPI_SPMODE0 0x20
0030
0031 #define ESPI_SPMODEx(x) (ESPI_SPMODE0 + (x) * 4)
0032
0033
0034 #define SPMODE_ENABLE BIT(31)
0035 #define SPMODE_LOOP BIT(30)
0036 #define SPMODE_TXTHR(x) ((x) << 8)
0037 #define SPMODE_RXTHR(x) ((x) << 0)
0038
0039
0040 #define CSMODE_CI_INACTIVEHIGH BIT(31)
0041 #define CSMODE_CP_BEGIN_EDGECLK BIT(30)
0042 #define CSMODE_REV BIT(29)
0043 #define CSMODE_DIV16 BIT(28)
0044 #define CSMODE_PM(x) ((x) << 24)
0045 #define CSMODE_POL_1 BIT(20)
0046 #define CSMODE_LEN(x) ((x) << 16)
0047 #define CSMODE_BEF(x) ((x) << 12)
0048 #define CSMODE_AFT(x) ((x) << 8)
0049 #define CSMODE_CG(x) ((x) << 3)
0050
0051 #define FSL_ESPI_FIFO_SIZE 32
0052 #define FSL_ESPI_RXTHR 15
0053
0054
0055 #define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(FSL_ESPI_RXTHR))
0056 #define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
0057 | CSMODE_AFT(0) | CSMODE_CG(1))
0058
0059
0060 #define SPIE_RXCNT(reg) ((reg >> 24) & 0x3F)
0061 #define SPIE_TXCNT(reg) ((reg >> 16) & 0x3F)
0062 #define SPIE_TXE BIT(15)
0063 #define SPIE_DON BIT(14)
0064 #define SPIE_RXT BIT(13)
0065 #define SPIE_RXF BIT(12)
0066 #define SPIE_TXT BIT(11)
0067 #define SPIE_RNE BIT(9)
0068 #define SPIE_TNF BIT(8)
0069
0070
0071 #define SPIM_TXE BIT(15)
0072 #define SPIM_DON BIT(14)
0073 #define SPIM_RXT BIT(13)
0074 #define SPIM_RXF BIT(12)
0075 #define SPIM_TXT BIT(11)
0076 #define SPIM_RNE BIT(9)
0077 #define SPIM_TNF BIT(8)
0078
0079
0080 #define SPCOM_CS(x) ((x) << 30)
0081 #define SPCOM_DO BIT(28)
0082 #define SPCOM_TO BIT(27)
0083 #define SPCOM_RXSKIP(x) ((x) << 16)
0084 #define SPCOM_TRANLEN(x) ((x) << 0)
0085
0086 #define SPCOM_TRANLEN_MAX 0x10000
0087
0088 #define AUTOSUSPEND_TIMEOUT 2000
0089
0090 struct fsl_espi {
0091 struct device *dev;
0092 void __iomem *reg_base;
0093
0094 struct list_head *m_transfers;
0095 struct spi_transfer *tx_t;
0096 unsigned int tx_pos;
0097 bool tx_done;
0098 struct spi_transfer *rx_t;
0099 unsigned int rx_pos;
0100 bool rx_done;
0101
0102 bool swab;
0103 unsigned int rxskip;
0104
0105 spinlock_t lock;
0106
0107 u32 spibrg;
0108
0109 struct completion done;
0110 };
0111
0112 struct fsl_espi_cs {
0113 u32 hw_mode;
0114 };
0115
0116 static inline u32 fsl_espi_read_reg(struct fsl_espi *espi, int offset)
0117 {
0118 return ioread32be(espi->reg_base + offset);
0119 }
0120
0121 static inline u16 fsl_espi_read_reg16(struct fsl_espi *espi, int offset)
0122 {
0123 return ioread16be(espi->reg_base + offset);
0124 }
0125
0126 static inline u8 fsl_espi_read_reg8(struct fsl_espi *espi, int offset)
0127 {
0128 return ioread8(espi->reg_base + offset);
0129 }
0130
0131 static inline void fsl_espi_write_reg(struct fsl_espi *espi, int offset,
0132 u32 val)
0133 {
0134 iowrite32be(val, espi->reg_base + offset);
0135 }
0136
0137 static inline void fsl_espi_write_reg16(struct fsl_espi *espi, int offset,
0138 u16 val)
0139 {
0140 iowrite16be(val, espi->reg_base + offset);
0141 }
0142
0143 static inline void fsl_espi_write_reg8(struct fsl_espi *espi, int offset,
0144 u8 val)
0145 {
0146 iowrite8(val, espi->reg_base + offset);
0147 }
0148
0149 static int fsl_espi_check_message(struct spi_message *m)
0150 {
0151 struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
0152 struct spi_transfer *t, *first;
0153
0154 if (m->frame_length > SPCOM_TRANLEN_MAX) {
0155 dev_err(espi->dev, "message too long, size is %u bytes\n",
0156 m->frame_length);
0157 return -EMSGSIZE;
0158 }
0159
0160 first = list_first_entry(&m->transfers, struct spi_transfer,
0161 transfer_list);
0162
0163 list_for_each_entry(t, &m->transfers, transfer_list) {
0164 if (first->bits_per_word != t->bits_per_word ||
0165 first->speed_hz != t->speed_hz) {
0166 dev_err(espi->dev, "bits_per_word/speed_hz should be the same for all transfers\n");
0167 return -EINVAL;
0168 }
0169 }
0170
0171
0172 if (!(m->spi->mode & SPI_LSB_FIRST) && first->bits_per_word != 8 &&
0173 first->bits_per_word != 16) {
0174 dev_err(espi->dev,
0175 "MSB-first transfer not supported for wordsize %u\n",
0176 first->bits_per_word);
0177 return -EINVAL;
0178 }
0179
0180 return 0;
0181 }
0182
0183 static unsigned int fsl_espi_check_rxskip_mode(struct spi_message *m)
0184 {
0185 struct spi_transfer *t;
0186 unsigned int i = 0, rxskip = 0;
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198 list_for_each_entry(t, &m->transfers, transfer_list) {
0199 if (i == 0) {
0200 if (!t->tx_buf || t->rx_buf ||
0201 t->len > FSL_ESPI_FIFO_SIZE)
0202 return 0;
0203 rxskip = t->len;
0204 } else if (i == 1) {
0205 if (t->tx_buf || !t->rx_buf)
0206 return 0;
0207 }
0208 i++;
0209 }
0210
0211 return i == 2 ? rxskip : 0;
0212 }
0213
0214 static void fsl_espi_fill_tx_fifo(struct fsl_espi *espi, u32 events)
0215 {
0216 u32 tx_fifo_avail;
0217 unsigned int tx_left;
0218 const void *tx_buf;
0219
0220
0221 tx_fifo_avail = events ? SPIE_TXCNT(events) : FSL_ESPI_FIFO_SIZE;
0222 start:
0223 tx_left = espi->tx_t->len - espi->tx_pos;
0224 tx_buf = espi->tx_t->tx_buf;
0225 while (tx_fifo_avail >= min(4U, tx_left) && tx_left) {
0226 if (tx_left >= 4) {
0227 if (!tx_buf)
0228 fsl_espi_write_reg(espi, ESPI_SPITF, 0);
0229 else if (espi->swab)
0230 fsl_espi_write_reg(espi, ESPI_SPITF,
0231 swahb32p(tx_buf + espi->tx_pos));
0232 else
0233 fsl_espi_write_reg(espi, ESPI_SPITF,
0234 *(u32 *)(tx_buf + espi->tx_pos));
0235 espi->tx_pos += 4;
0236 tx_left -= 4;
0237 tx_fifo_avail -= 4;
0238 } else if (tx_left >= 2 && tx_buf && espi->swab) {
0239 fsl_espi_write_reg16(espi, ESPI_SPITF,
0240 swab16p(tx_buf + espi->tx_pos));
0241 espi->tx_pos += 2;
0242 tx_left -= 2;
0243 tx_fifo_avail -= 2;
0244 } else {
0245 if (!tx_buf)
0246 fsl_espi_write_reg8(espi, ESPI_SPITF, 0);
0247 else
0248 fsl_espi_write_reg8(espi, ESPI_SPITF,
0249 *(u8 *)(tx_buf + espi->tx_pos));
0250 espi->tx_pos += 1;
0251 tx_left -= 1;
0252 tx_fifo_avail -= 1;
0253 }
0254 }
0255
0256 if (!tx_left) {
0257
0258 if (list_is_last(&espi->tx_t->transfer_list,
0259 espi->m_transfers) || espi->rxskip) {
0260 espi->tx_done = true;
0261 return;
0262 }
0263 espi->tx_t = list_next_entry(espi->tx_t, transfer_list);
0264 espi->tx_pos = 0;
0265
0266 if (tx_fifo_avail)
0267 goto start;
0268 }
0269 }
0270
0271 static void fsl_espi_read_rx_fifo(struct fsl_espi *espi, u32 events)
0272 {
0273 u32 rx_fifo_avail = SPIE_RXCNT(events);
0274 unsigned int rx_left;
0275 void *rx_buf;
0276
0277 start:
0278 rx_left = espi->rx_t->len - espi->rx_pos;
0279 rx_buf = espi->rx_t->rx_buf;
0280 while (rx_fifo_avail >= min(4U, rx_left) && rx_left) {
0281 if (rx_left >= 4) {
0282 u32 val = fsl_espi_read_reg(espi, ESPI_SPIRF);
0283
0284 if (rx_buf && espi->swab)
0285 *(u32 *)(rx_buf + espi->rx_pos) = swahb32(val);
0286 else if (rx_buf)
0287 *(u32 *)(rx_buf + espi->rx_pos) = val;
0288 espi->rx_pos += 4;
0289 rx_left -= 4;
0290 rx_fifo_avail -= 4;
0291 } else if (rx_left >= 2 && rx_buf && espi->swab) {
0292 u16 val = fsl_espi_read_reg16(espi, ESPI_SPIRF);
0293
0294 *(u16 *)(rx_buf + espi->rx_pos) = swab16(val);
0295 espi->rx_pos += 2;
0296 rx_left -= 2;
0297 rx_fifo_avail -= 2;
0298 } else {
0299 u8 val = fsl_espi_read_reg8(espi, ESPI_SPIRF);
0300
0301 if (rx_buf)
0302 *(u8 *)(rx_buf + espi->rx_pos) = val;
0303 espi->rx_pos += 1;
0304 rx_left -= 1;
0305 rx_fifo_avail -= 1;
0306 }
0307 }
0308
0309 if (!rx_left) {
0310 if (list_is_last(&espi->rx_t->transfer_list,
0311 espi->m_transfers)) {
0312 espi->rx_done = true;
0313 return;
0314 }
0315 espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
0316 espi->rx_pos = 0;
0317
0318 if (rx_fifo_avail)
0319 goto start;
0320 }
0321 }
0322
0323 static void fsl_espi_setup_transfer(struct spi_device *spi,
0324 struct spi_transfer *t)
0325 {
0326 struct fsl_espi *espi = spi_master_get_devdata(spi->master);
0327 int bits_per_word = t ? t->bits_per_word : spi->bits_per_word;
0328 u32 pm, hz = t ? t->speed_hz : spi->max_speed_hz;
0329 struct fsl_espi_cs *cs = spi_get_ctldata(spi);
0330 u32 hw_mode_old = cs->hw_mode;
0331
0332
0333 cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
0334
0335 cs->hw_mode |= CSMODE_LEN(bits_per_word - 1);
0336
0337 pm = DIV_ROUND_UP(espi->spibrg, hz * 4) - 1;
0338
0339 if (pm > 15) {
0340 cs->hw_mode |= CSMODE_DIV16;
0341 pm = DIV_ROUND_UP(espi->spibrg, hz * 16 * 4) - 1;
0342 }
0343
0344 cs->hw_mode |= CSMODE_PM(pm);
0345
0346
0347 if (cs->hw_mode != hw_mode_old)
0348 fsl_espi_write_reg(espi, ESPI_SPMODEx(spi->chip_select),
0349 cs->hw_mode);
0350 }
0351
0352 static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
0353 {
0354 struct fsl_espi *espi = spi_master_get_devdata(spi->master);
0355 unsigned int rx_len = t->len;
0356 u32 mask, spcom;
0357 int ret;
0358
0359 reinit_completion(&espi->done);
0360
0361
0362 spcom = SPCOM_CS(spi->chip_select);
0363 spcom |= SPCOM_TRANLEN(t->len - 1);
0364
0365
0366 if (espi->rxskip) {
0367 spcom |= SPCOM_RXSKIP(espi->rxskip);
0368 rx_len = t->len - espi->rxskip;
0369 if (t->rx_nbits == SPI_NBITS_DUAL)
0370 spcom |= SPCOM_DO;
0371 }
0372
0373 fsl_espi_write_reg(espi, ESPI_SPCOM, spcom);
0374
0375
0376 mask = SPIM_DON;
0377 if (rx_len > FSL_ESPI_FIFO_SIZE)
0378 mask |= SPIM_RXT;
0379 fsl_espi_write_reg(espi, ESPI_SPIM, mask);
0380
0381
0382 spin_lock_irq(&espi->lock);
0383 fsl_espi_fill_tx_fifo(espi, 0);
0384 spin_unlock_irq(&espi->lock);
0385
0386
0387 ret = wait_for_completion_timeout(&espi->done, 2 * HZ);
0388 if (ret == 0)
0389 dev_err(espi->dev, "Transfer timed out!\n");
0390
0391
0392 fsl_espi_write_reg(espi, ESPI_SPIM, 0);
0393
0394 return ret == 0 ? -ETIMEDOUT : 0;
0395 }
0396
0397 static int fsl_espi_trans(struct spi_message *m, struct spi_transfer *trans)
0398 {
0399 struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
0400 struct spi_device *spi = m->spi;
0401 int ret;
0402
0403
0404 espi->swab = spi->mode & SPI_LSB_FIRST && trans->bits_per_word > 8;
0405
0406 espi->m_transfers = &m->transfers;
0407 espi->tx_t = list_first_entry(&m->transfers, struct spi_transfer,
0408 transfer_list);
0409 espi->tx_pos = 0;
0410 espi->tx_done = false;
0411 espi->rx_t = list_first_entry(&m->transfers, struct spi_transfer,
0412 transfer_list);
0413 espi->rx_pos = 0;
0414 espi->rx_done = false;
0415
0416 espi->rxskip = fsl_espi_check_rxskip_mode(m);
0417 if (trans->rx_nbits == SPI_NBITS_DUAL && !espi->rxskip) {
0418 dev_err(espi->dev, "Dual output mode requires RXSKIP mode!\n");
0419 return -EINVAL;
0420 }
0421
0422
0423 if (espi->rxskip)
0424 espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
0425
0426 fsl_espi_setup_transfer(spi, trans);
0427
0428 ret = fsl_espi_bufs(spi, trans);
0429
0430 spi_transfer_delay_exec(trans);
0431
0432 return ret;
0433 }
0434
0435 static int fsl_espi_do_one_msg(struct spi_master *master,
0436 struct spi_message *m)
0437 {
0438 unsigned int rx_nbits = 0, delay_nsecs = 0;
0439 struct spi_transfer *t, trans = {};
0440 int ret;
0441
0442 ret = fsl_espi_check_message(m);
0443 if (ret)
0444 goto out;
0445
0446 list_for_each_entry(t, &m->transfers, transfer_list) {
0447 unsigned int delay = spi_delay_to_ns(&t->delay, t);
0448
0449 if (delay > delay_nsecs)
0450 delay_nsecs = delay;
0451 if (t->rx_nbits > rx_nbits)
0452 rx_nbits = t->rx_nbits;
0453 }
0454
0455 t = list_first_entry(&m->transfers, struct spi_transfer,
0456 transfer_list);
0457
0458 trans.len = m->frame_length;
0459 trans.speed_hz = t->speed_hz;
0460 trans.bits_per_word = t->bits_per_word;
0461 trans.delay.value = delay_nsecs;
0462 trans.delay.unit = SPI_DELAY_UNIT_NSECS;
0463 trans.rx_nbits = rx_nbits;
0464
0465 if (trans.len)
0466 ret = fsl_espi_trans(m, &trans);
0467
0468 m->actual_length = ret ? 0 : trans.len;
0469 out:
0470 if (m->status == -EINPROGRESS)
0471 m->status = ret;
0472
0473 spi_finalize_current_message(master);
0474
0475 return ret;
0476 }
0477
0478 static int fsl_espi_setup(struct spi_device *spi)
0479 {
0480 struct fsl_espi *espi;
0481 u32 loop_mode;
0482 struct fsl_espi_cs *cs = spi_get_ctldata(spi);
0483
0484 if (!cs) {
0485 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
0486 if (!cs)
0487 return -ENOMEM;
0488 spi_set_ctldata(spi, cs);
0489 }
0490
0491 espi = spi_master_get_devdata(spi->master);
0492
0493 pm_runtime_get_sync(espi->dev);
0494
0495 cs->hw_mode = fsl_espi_read_reg(espi, ESPI_SPMODEx(spi->chip_select));
0496
0497 cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
0498 | CSMODE_REV);
0499
0500 if (spi->mode & SPI_CPHA)
0501 cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
0502 if (spi->mode & SPI_CPOL)
0503 cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
0504 if (!(spi->mode & SPI_LSB_FIRST))
0505 cs->hw_mode |= CSMODE_REV;
0506
0507
0508 loop_mode = fsl_espi_read_reg(espi, ESPI_SPMODE);
0509 loop_mode &= ~SPMODE_LOOP;
0510 if (spi->mode & SPI_LOOP)
0511 loop_mode |= SPMODE_LOOP;
0512 fsl_espi_write_reg(espi, ESPI_SPMODE, loop_mode);
0513
0514 fsl_espi_setup_transfer(spi, NULL);
0515
0516 pm_runtime_mark_last_busy(espi->dev);
0517 pm_runtime_put_autosuspend(espi->dev);
0518
0519 return 0;
0520 }
0521
0522 static void fsl_espi_cleanup(struct spi_device *spi)
0523 {
0524 struct fsl_espi_cs *cs = spi_get_ctldata(spi);
0525
0526 kfree(cs);
0527 spi_set_ctldata(spi, NULL);
0528 }
0529
0530 static void fsl_espi_cpu_irq(struct fsl_espi *espi, u32 events)
0531 {
0532 if (!espi->rx_done)
0533 fsl_espi_read_rx_fifo(espi, events);
0534
0535 if (!espi->tx_done)
0536 fsl_espi_fill_tx_fifo(espi, events);
0537
0538 if (!espi->tx_done || !espi->rx_done)
0539 return;
0540
0541
0542 events = fsl_espi_read_reg(espi, ESPI_SPIE);
0543
0544 if (!(events & SPIE_DON))
0545 dev_err(espi->dev,
0546 "Transfer done but SPIE_DON isn't set!\n");
0547
0548 if (SPIE_RXCNT(events) || SPIE_TXCNT(events) != FSL_ESPI_FIFO_SIZE) {
0549 dev_err(espi->dev, "Transfer done but rx/tx fifo's aren't empty!\n");
0550 dev_err(espi->dev, "SPIE_RXCNT = %d, SPIE_TXCNT = %d\n",
0551 SPIE_RXCNT(events), SPIE_TXCNT(events));
0552 }
0553
0554 complete(&espi->done);
0555 }
0556
0557 static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
0558 {
0559 struct fsl_espi *espi = context_data;
0560 u32 events, mask;
0561
0562 spin_lock(&espi->lock);
0563
0564
0565 events = fsl_espi_read_reg(espi, ESPI_SPIE);
0566 mask = fsl_espi_read_reg(espi, ESPI_SPIM);
0567 if (!(events & mask)) {
0568 spin_unlock(&espi->lock);
0569 return IRQ_NONE;
0570 }
0571
0572 dev_vdbg(espi->dev, "%s: events %x\n", __func__, events);
0573
0574 fsl_espi_cpu_irq(espi, events);
0575
0576
0577 fsl_espi_write_reg(espi, ESPI_SPIE, events);
0578
0579 spin_unlock(&espi->lock);
0580
0581 return IRQ_HANDLED;
0582 }
0583
0584 #ifdef CONFIG_PM
0585 static int fsl_espi_runtime_suspend(struct device *dev)
0586 {
0587 struct spi_master *master = dev_get_drvdata(dev);
0588 struct fsl_espi *espi = spi_master_get_devdata(master);
0589 u32 regval;
0590
0591 regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
0592 regval &= ~SPMODE_ENABLE;
0593 fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
0594
0595 return 0;
0596 }
0597
0598 static int fsl_espi_runtime_resume(struct device *dev)
0599 {
0600 struct spi_master *master = dev_get_drvdata(dev);
0601 struct fsl_espi *espi = spi_master_get_devdata(master);
0602 u32 regval;
0603
0604 regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
0605 regval |= SPMODE_ENABLE;
0606 fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
0607
0608 return 0;
0609 }
0610 #endif
0611
0612 static size_t fsl_espi_max_message_size(struct spi_device *spi)
0613 {
0614 return SPCOM_TRANLEN_MAX;
0615 }
0616
0617 static void fsl_espi_init_regs(struct device *dev, bool initial)
0618 {
0619 struct spi_master *master = dev_get_drvdata(dev);
0620 struct fsl_espi *espi = spi_master_get_devdata(master);
0621 struct device_node *nc;
0622 u32 csmode, cs, prop;
0623 int ret;
0624
0625
0626 fsl_espi_write_reg(espi, ESPI_SPMODE, 0);
0627 fsl_espi_write_reg(espi, ESPI_SPIM, 0);
0628 fsl_espi_write_reg(espi, ESPI_SPCOM, 0);
0629 fsl_espi_write_reg(espi, ESPI_SPIE, 0xffffffff);
0630
0631
0632 for_each_available_child_of_node(master->dev.of_node, nc) {
0633
0634 ret = of_property_read_u32(nc, "reg", &cs);
0635 if (ret || cs >= master->num_chipselect)
0636 continue;
0637
0638 csmode = CSMODE_INIT_VAL;
0639
0640
0641 ret = of_property_read_u32(nc, "fsl,csbef", &prop);
0642 if (!ret) {
0643 csmode &= ~(CSMODE_BEF(0xf));
0644 csmode |= CSMODE_BEF(prop);
0645 }
0646
0647
0648 ret = of_property_read_u32(nc, "fsl,csaft", &prop);
0649 if (!ret) {
0650 csmode &= ~(CSMODE_AFT(0xf));
0651 csmode |= CSMODE_AFT(prop);
0652 }
0653
0654 fsl_espi_write_reg(espi, ESPI_SPMODEx(cs), csmode);
0655
0656 if (initial)
0657 dev_info(dev, "cs=%u, init_csmode=0x%x\n", cs, csmode);
0658 }
0659
0660
0661 fsl_espi_write_reg(espi, ESPI_SPMODE, SPMODE_INIT_VAL | SPMODE_ENABLE);
0662 }
0663
0664 static int fsl_espi_probe(struct device *dev, struct resource *mem,
0665 unsigned int irq, unsigned int num_cs)
0666 {
0667 struct spi_master *master;
0668 struct fsl_espi *espi;
0669 int ret;
0670
0671 master = spi_alloc_master(dev, sizeof(struct fsl_espi));
0672 if (!master)
0673 return -ENOMEM;
0674
0675 dev_set_drvdata(dev, master);
0676
0677 master->mode_bits = SPI_RX_DUAL | SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
0678 SPI_LSB_FIRST | SPI_LOOP;
0679 master->dev.of_node = dev->of_node;
0680 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
0681 master->setup = fsl_espi_setup;
0682 master->cleanup = fsl_espi_cleanup;
0683 master->transfer_one_message = fsl_espi_do_one_msg;
0684 master->auto_runtime_pm = true;
0685 master->max_message_size = fsl_espi_max_message_size;
0686 master->num_chipselect = num_cs;
0687
0688 espi = spi_master_get_devdata(master);
0689 spin_lock_init(&espi->lock);
0690
0691 espi->dev = dev;
0692 espi->spibrg = fsl_get_sys_freq();
0693 if (espi->spibrg == -1) {
0694 dev_err(dev, "Can't get sys frequency!\n");
0695 ret = -EINVAL;
0696 goto err_probe;
0697 }
0698
0699 master->min_speed_hz = DIV_ROUND_UP(espi->spibrg, 4 * 16 * 16);
0700 master->max_speed_hz = DIV_ROUND_UP(espi->spibrg, 4);
0701
0702 init_completion(&espi->done);
0703
0704 espi->reg_base = devm_ioremap_resource(dev, mem);
0705 if (IS_ERR(espi->reg_base)) {
0706 ret = PTR_ERR(espi->reg_base);
0707 goto err_probe;
0708 }
0709
0710
0711 ret = devm_request_irq(dev, irq, fsl_espi_irq, 0, "fsl_espi", espi);
0712 if (ret)
0713 goto err_probe;
0714
0715 fsl_espi_init_regs(dev, true);
0716
0717 pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
0718 pm_runtime_use_autosuspend(dev);
0719 pm_runtime_set_active(dev);
0720 pm_runtime_enable(dev);
0721 pm_runtime_get_sync(dev);
0722
0723 ret = devm_spi_register_master(dev, master);
0724 if (ret < 0)
0725 goto err_pm;
0726
0727 dev_info(dev, "irq = %u\n", irq);
0728
0729 pm_runtime_mark_last_busy(dev);
0730 pm_runtime_put_autosuspend(dev);
0731
0732 return 0;
0733
0734 err_pm:
0735 pm_runtime_put_noidle(dev);
0736 pm_runtime_disable(dev);
0737 pm_runtime_set_suspended(dev);
0738 err_probe:
0739 spi_master_put(master);
0740 return ret;
0741 }
0742
0743 static int of_fsl_espi_get_chipselects(struct device *dev)
0744 {
0745 struct device_node *np = dev->of_node;
0746 u32 num_cs;
0747 int ret;
0748
0749 ret = of_property_read_u32(np, "fsl,espi-num-chipselects", &num_cs);
0750 if (ret) {
0751 dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
0752 return 0;
0753 }
0754
0755 return num_cs;
0756 }
0757
0758 static int of_fsl_espi_probe(struct platform_device *ofdev)
0759 {
0760 struct device *dev = &ofdev->dev;
0761 struct device_node *np = ofdev->dev.of_node;
0762 struct resource mem;
0763 unsigned int irq, num_cs;
0764 int ret;
0765
0766 if (of_property_read_bool(np, "mode")) {
0767 dev_err(dev, "mode property is not supported on ESPI!\n");
0768 return -EINVAL;
0769 }
0770
0771 num_cs = of_fsl_espi_get_chipselects(dev);
0772 if (!num_cs)
0773 return -EINVAL;
0774
0775 ret = of_address_to_resource(np, 0, &mem);
0776 if (ret)
0777 return ret;
0778
0779 irq = irq_of_parse_and_map(np, 0);
0780 if (!irq)
0781 return -EINVAL;
0782
0783 return fsl_espi_probe(dev, &mem, irq, num_cs);
0784 }
0785
0786 static int of_fsl_espi_remove(struct platform_device *dev)
0787 {
0788 pm_runtime_disable(&dev->dev);
0789
0790 return 0;
0791 }
0792
0793 #ifdef CONFIG_PM_SLEEP
0794 static int of_fsl_espi_suspend(struct device *dev)
0795 {
0796 struct spi_master *master = dev_get_drvdata(dev);
0797 int ret;
0798
0799 ret = spi_master_suspend(master);
0800 if (ret)
0801 return ret;
0802
0803 return pm_runtime_force_suspend(dev);
0804 }
0805
0806 static int of_fsl_espi_resume(struct device *dev)
0807 {
0808 struct spi_master *master = dev_get_drvdata(dev);
0809 int ret;
0810
0811 fsl_espi_init_regs(dev, false);
0812
0813 ret = pm_runtime_force_resume(dev);
0814 if (ret < 0)
0815 return ret;
0816
0817 return spi_master_resume(master);
0818 }
0819 #endif
0820
0821 static const struct dev_pm_ops espi_pm = {
0822 SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend,
0823 fsl_espi_runtime_resume, NULL)
0824 SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume)
0825 };
0826
0827 static const struct of_device_id of_fsl_espi_match[] = {
0828 { .compatible = "fsl,mpc8536-espi" },
0829 {}
0830 };
0831 MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
0832
0833 static struct platform_driver fsl_espi_driver = {
0834 .driver = {
0835 .name = "fsl_espi",
0836 .of_match_table = of_fsl_espi_match,
0837 .pm = &espi_pm,
0838 },
0839 .probe = of_fsl_espi_probe,
0840 .remove = of_fsl_espi_remove,
0841 };
0842 module_platform_driver(fsl_espi_driver);
0843
0844 MODULE_AUTHOR("Mingkai Hu");
0845 MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
0846 MODULE_LICENSE("GPL");