0001
0002
0003
0004
0005
0006
0007
0008
0009 #include <linux/clk.h>
0010 #include <linux/delay.h>
0011 #include <linux/dmaengine.h>
0012 #include <linux/dma-mapping.h>
0013 #include <linux/interrupt.h>
0014 #include <linux/kernel.h>
0015 #include <linux/module.h>
0016 #include <linux/of_device.h>
0017 #include <linux/pinctrl/consumer.h>
0018 #include <linux/regmap.h>
0019 #include <linux/spi/spi.h>
0020 #include <linux/spi/spi-fsl-dspi.h>
0021
0022 #define DRIVER_NAME "fsl-dspi"
0023
0024 #define SPI_MCR 0x00
0025 #define SPI_MCR_MASTER BIT(31)
0026 #define SPI_MCR_PCSIS(x) ((x) << 16)
0027 #define SPI_MCR_CLR_TXF BIT(11)
0028 #define SPI_MCR_CLR_RXF BIT(10)
0029 #define SPI_MCR_XSPI BIT(3)
0030 #define SPI_MCR_DIS_TXF BIT(13)
0031 #define SPI_MCR_DIS_RXF BIT(12)
0032 #define SPI_MCR_HALT BIT(0)
0033
0034 #define SPI_TCR 0x08
0035 #define SPI_TCR_GET_TCNT(x) (((x) & GENMASK(31, 16)) >> 16)
0036
0037 #define SPI_CTAR(x) (0x0c + (((x) & GENMASK(1, 0)) * 4))
0038 #define SPI_CTAR_FMSZ(x) (((x) << 27) & GENMASK(30, 27))
0039 #define SPI_CTAR_CPOL BIT(26)
0040 #define SPI_CTAR_CPHA BIT(25)
0041 #define SPI_CTAR_LSBFE BIT(24)
0042 #define SPI_CTAR_PCSSCK(x) (((x) << 22) & GENMASK(23, 22))
0043 #define SPI_CTAR_PASC(x) (((x) << 20) & GENMASK(21, 20))
0044 #define SPI_CTAR_PDT(x) (((x) << 18) & GENMASK(19, 18))
0045 #define SPI_CTAR_PBR(x) (((x) << 16) & GENMASK(17, 16))
0046 #define SPI_CTAR_CSSCK(x) (((x) << 12) & GENMASK(15, 12))
0047 #define SPI_CTAR_ASC(x) (((x) << 8) & GENMASK(11, 8))
0048 #define SPI_CTAR_DT(x) (((x) << 4) & GENMASK(7, 4))
0049 #define SPI_CTAR_BR(x) ((x) & GENMASK(3, 0))
0050 #define SPI_CTAR_SCALE_BITS 0xf
0051
0052 #define SPI_CTAR0_SLAVE 0x0c
0053
0054 #define SPI_SR 0x2c
0055 #define SPI_SR_TCFQF BIT(31)
0056 #define SPI_SR_TFUF BIT(27)
0057 #define SPI_SR_TFFF BIT(25)
0058 #define SPI_SR_CMDTCF BIT(23)
0059 #define SPI_SR_SPEF BIT(21)
0060 #define SPI_SR_RFOF BIT(19)
0061 #define SPI_SR_TFIWF BIT(18)
0062 #define SPI_SR_RFDF BIT(17)
0063 #define SPI_SR_CMDFFF BIT(16)
0064 #define SPI_SR_CLEAR (SPI_SR_TCFQF | \
0065 SPI_SR_TFUF | SPI_SR_TFFF | \
0066 SPI_SR_CMDTCF | SPI_SR_SPEF | \
0067 SPI_SR_RFOF | SPI_SR_TFIWF | \
0068 SPI_SR_RFDF | SPI_SR_CMDFFF)
0069
0070 #define SPI_RSER_TFFFE BIT(25)
0071 #define SPI_RSER_TFFFD BIT(24)
0072 #define SPI_RSER_RFDFE BIT(17)
0073 #define SPI_RSER_RFDFD BIT(16)
0074
0075 #define SPI_RSER 0x30
0076 #define SPI_RSER_TCFQE BIT(31)
0077 #define SPI_RSER_CMDTCFE BIT(23)
0078
0079 #define SPI_PUSHR 0x34
0080 #define SPI_PUSHR_CMD_CONT BIT(15)
0081 #define SPI_PUSHR_CMD_CTAS(x) (((x) << 12 & GENMASK(14, 12)))
0082 #define SPI_PUSHR_CMD_EOQ BIT(11)
0083 #define SPI_PUSHR_CMD_CTCNT BIT(10)
0084 #define SPI_PUSHR_CMD_PCS(x) (BIT(x) & GENMASK(5, 0))
0085
0086 #define SPI_PUSHR_SLAVE 0x34
0087
0088 #define SPI_POPR 0x38
0089
0090 #define SPI_TXFR0 0x3c
0091 #define SPI_TXFR1 0x40
0092 #define SPI_TXFR2 0x44
0093 #define SPI_TXFR3 0x48
0094 #define SPI_RXFR0 0x7c
0095 #define SPI_RXFR1 0x80
0096 #define SPI_RXFR2 0x84
0097 #define SPI_RXFR3 0x88
0098
0099 #define SPI_CTARE(x) (0x11c + (((x) & GENMASK(1, 0)) * 4))
0100 #define SPI_CTARE_FMSZE(x) (((x) & 0x1) << 16)
0101 #define SPI_CTARE_DTCP(x) ((x) & 0x7ff)
0102
0103 #define SPI_SREX 0x13c
0104
0105 #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1)
0106 #define SPI_FRAME_EBITS(bits) SPI_CTARE_FMSZE(((bits) - 1) >> 4)
0107
0108 #define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000)
0109
0110 struct chip_data {
0111 u32 ctar_val;
0112 };
0113
0114 enum dspi_trans_mode {
0115 DSPI_XSPI_MODE,
0116 DSPI_DMA_MODE,
0117 };
0118
0119 struct fsl_dspi_devtype_data {
0120 enum dspi_trans_mode trans_mode;
0121 u8 max_clock_factor;
0122 int fifo_size;
0123 };
0124
0125 enum {
0126 LS1021A,
0127 LS1012A,
0128 LS1028A,
0129 LS1043A,
0130 LS1046A,
0131 LS2080A,
0132 LS2085A,
0133 LX2160A,
0134 MCF5441X,
0135 VF610,
0136 };
0137
0138 static const struct fsl_dspi_devtype_data devtype_data[] = {
0139 [VF610] = {
0140 .trans_mode = DSPI_DMA_MODE,
0141 .max_clock_factor = 2,
0142 .fifo_size = 4,
0143 },
0144 [LS1021A] = {
0145
0146 .trans_mode = DSPI_XSPI_MODE,
0147 .max_clock_factor = 8,
0148 .fifo_size = 4,
0149 },
0150 [LS1012A] = {
0151
0152 .trans_mode = DSPI_XSPI_MODE,
0153 .max_clock_factor = 8,
0154 .fifo_size = 16,
0155 },
0156 [LS1028A] = {
0157 .trans_mode = DSPI_XSPI_MODE,
0158 .max_clock_factor = 8,
0159 .fifo_size = 4,
0160 },
0161 [LS1043A] = {
0162
0163 .trans_mode = DSPI_XSPI_MODE,
0164 .max_clock_factor = 8,
0165 .fifo_size = 16,
0166 },
0167 [LS1046A] = {
0168
0169 .trans_mode = DSPI_XSPI_MODE,
0170 .max_clock_factor = 8,
0171 .fifo_size = 16,
0172 },
0173 [LS2080A] = {
0174 .trans_mode = DSPI_XSPI_MODE,
0175 .max_clock_factor = 8,
0176 .fifo_size = 4,
0177 },
0178 [LS2085A] = {
0179 .trans_mode = DSPI_XSPI_MODE,
0180 .max_clock_factor = 8,
0181 .fifo_size = 4,
0182 },
0183 [LX2160A] = {
0184 .trans_mode = DSPI_XSPI_MODE,
0185 .max_clock_factor = 8,
0186 .fifo_size = 4,
0187 },
0188 [MCF5441X] = {
0189 .trans_mode = DSPI_DMA_MODE,
0190 .max_clock_factor = 8,
0191 .fifo_size = 16,
0192 },
0193 };
0194
0195 struct fsl_dspi_dma {
0196 u32 *tx_dma_buf;
0197 struct dma_chan *chan_tx;
0198 dma_addr_t tx_dma_phys;
0199 struct completion cmd_tx_complete;
0200 struct dma_async_tx_descriptor *tx_desc;
0201
0202 u32 *rx_dma_buf;
0203 struct dma_chan *chan_rx;
0204 dma_addr_t rx_dma_phys;
0205 struct completion cmd_rx_complete;
0206 struct dma_async_tx_descriptor *rx_desc;
0207 };
0208
0209 struct fsl_dspi {
0210 struct spi_controller *ctlr;
0211 struct platform_device *pdev;
0212
0213 struct regmap *regmap;
0214 struct regmap *regmap_pushr;
0215 int irq;
0216 struct clk *clk;
0217
0218 struct spi_transfer *cur_transfer;
0219 struct spi_message *cur_msg;
0220 struct chip_data *cur_chip;
0221 size_t progress;
0222 size_t len;
0223 const void *tx;
0224 void *rx;
0225 u16 tx_cmd;
0226 const struct fsl_dspi_devtype_data *devtype_data;
0227
0228 struct completion xfer_done;
0229
0230 struct fsl_dspi_dma *dma;
0231
0232 int oper_word_size;
0233 int oper_bits_per_word;
0234
0235 int words_in_flight;
0236
0237
0238
0239
0240
0241 int pushr_cmd;
0242 int pushr_tx;
0243
0244 void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
0245 void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
0246 };
0247
0248 static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
0249 {
0250 switch (dspi->oper_word_size) {
0251 case 1:
0252 *txdata = *(u8 *)dspi->tx;
0253 break;
0254 case 2:
0255 *txdata = *(u16 *)dspi->tx;
0256 break;
0257 case 4:
0258 *txdata = *(u32 *)dspi->tx;
0259 break;
0260 }
0261 dspi->tx += dspi->oper_word_size;
0262 }
0263
0264 static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
0265 {
0266 switch (dspi->oper_word_size) {
0267 case 1:
0268 *(u8 *)dspi->rx = rxdata;
0269 break;
0270 case 2:
0271 *(u16 *)dspi->rx = rxdata;
0272 break;
0273 case 4:
0274 *(u32 *)dspi->rx = rxdata;
0275 break;
0276 }
0277 dspi->rx += dspi->oper_word_size;
0278 }
0279
0280 static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
0281 {
0282 *txdata = cpu_to_be32(*(u32 *)dspi->tx);
0283 dspi->tx += sizeof(u32);
0284 }
0285
0286 static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
0287 {
0288 *(u32 *)dspi->rx = be32_to_cpu(rxdata);
0289 dspi->rx += sizeof(u32);
0290 }
0291
0292 static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
0293 {
0294 *txdata = cpu_to_be16(*(u16 *)dspi->tx);
0295 dspi->tx += sizeof(u16);
0296 }
0297
0298 static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
0299 {
0300 *(u16 *)dspi->rx = be16_to_cpu(rxdata);
0301 dspi->rx += sizeof(u16);
0302 }
0303
0304 static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
0305 {
0306 u16 hi = *(u16 *)dspi->tx;
0307 u16 lo = *(u16 *)(dspi->tx + 2);
0308
0309 *txdata = (u32)hi << 16 | lo;
0310 dspi->tx += sizeof(u32);
0311 }
0312
0313 static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
0314 {
0315 u16 hi = rxdata & 0xffff;
0316 u16 lo = rxdata >> 16;
0317
0318 *(u16 *)dspi->rx = lo;
0319 *(u16 *)(dspi->rx + 2) = hi;
0320 dspi->rx += sizeof(u32);
0321 }
0322
0323
0324
0325
0326
0327 static u32 dspi_pop_tx(struct fsl_dspi *dspi)
0328 {
0329 u32 txdata = 0;
0330
0331 if (dspi->tx)
0332 dspi->host_to_dev(dspi, &txdata);
0333 dspi->len -= dspi->oper_word_size;
0334 return txdata;
0335 }
0336
0337
0338 static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
0339 {
0340 u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
0341
0342 if (spi_controller_is_slave(dspi->ctlr))
0343 return data;
0344
0345 if (dspi->len > 0)
0346 cmd |= SPI_PUSHR_CMD_CONT;
0347 return cmd << 16 | data;
0348 }
0349
0350
0351 static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
0352 {
0353 if (!dspi->rx)
0354 return;
0355 dspi->dev_to_host(dspi, rxdata);
0356 }
0357
0358 static void dspi_tx_dma_callback(void *arg)
0359 {
0360 struct fsl_dspi *dspi = arg;
0361 struct fsl_dspi_dma *dma = dspi->dma;
0362
0363 complete(&dma->cmd_tx_complete);
0364 }
0365
0366 static void dspi_rx_dma_callback(void *arg)
0367 {
0368 struct fsl_dspi *dspi = arg;
0369 struct fsl_dspi_dma *dma = dspi->dma;
0370 int i;
0371
0372 if (dspi->rx) {
0373 for (i = 0; i < dspi->words_in_flight; i++)
0374 dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
0375 }
0376
0377 complete(&dma->cmd_rx_complete);
0378 }
0379
0380 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
0381 {
0382 struct device *dev = &dspi->pdev->dev;
0383 struct fsl_dspi_dma *dma = dspi->dma;
0384 int time_left;
0385 int i;
0386
0387 for (i = 0; i < dspi->words_in_flight; i++)
0388 dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
0389
0390 dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
0391 dma->tx_dma_phys,
0392 dspi->words_in_flight *
0393 DMA_SLAVE_BUSWIDTH_4_BYTES,
0394 DMA_MEM_TO_DEV,
0395 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
0396 if (!dma->tx_desc) {
0397 dev_err(dev, "Not able to get desc for DMA xfer\n");
0398 return -EIO;
0399 }
0400
0401 dma->tx_desc->callback = dspi_tx_dma_callback;
0402 dma->tx_desc->callback_param = dspi;
0403 if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
0404 dev_err(dev, "DMA submit failed\n");
0405 return -EINVAL;
0406 }
0407
0408 dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
0409 dma->rx_dma_phys,
0410 dspi->words_in_flight *
0411 DMA_SLAVE_BUSWIDTH_4_BYTES,
0412 DMA_DEV_TO_MEM,
0413 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
0414 if (!dma->rx_desc) {
0415 dev_err(dev, "Not able to get desc for DMA xfer\n");
0416 return -EIO;
0417 }
0418
0419 dma->rx_desc->callback = dspi_rx_dma_callback;
0420 dma->rx_desc->callback_param = dspi;
0421 if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
0422 dev_err(dev, "DMA submit failed\n");
0423 return -EINVAL;
0424 }
0425
0426 reinit_completion(&dspi->dma->cmd_rx_complete);
0427 reinit_completion(&dspi->dma->cmd_tx_complete);
0428
0429 dma_async_issue_pending(dma->chan_rx);
0430 dma_async_issue_pending(dma->chan_tx);
0431
0432 if (spi_controller_is_slave(dspi->ctlr)) {
0433 wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
0434 return 0;
0435 }
0436
0437 time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
0438 DMA_COMPLETION_TIMEOUT);
0439 if (time_left == 0) {
0440 dev_err(dev, "DMA tx timeout\n");
0441 dmaengine_terminate_all(dma->chan_tx);
0442 dmaengine_terminate_all(dma->chan_rx);
0443 return -ETIMEDOUT;
0444 }
0445
0446 time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
0447 DMA_COMPLETION_TIMEOUT);
0448 if (time_left == 0) {
0449 dev_err(dev, "DMA rx timeout\n");
0450 dmaengine_terminate_all(dma->chan_tx);
0451 dmaengine_terminate_all(dma->chan_rx);
0452 return -ETIMEDOUT;
0453 }
0454
0455 return 0;
0456 }
0457
0458 static void dspi_setup_accel(struct fsl_dspi *dspi);
0459
0460 static int dspi_dma_xfer(struct fsl_dspi *dspi)
0461 {
0462 struct spi_message *message = dspi->cur_msg;
0463 struct device *dev = &dspi->pdev->dev;
0464 int ret = 0;
0465
0466
0467
0468
0469
0470 while (dspi->len) {
0471
0472 dspi_setup_accel(dspi);
0473
0474 dspi->words_in_flight = dspi->len / dspi->oper_word_size;
0475 if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
0476 dspi->words_in_flight = dspi->devtype_data->fifo_size;
0477
0478 message->actual_length += dspi->words_in_flight *
0479 dspi->oper_word_size;
0480
0481 ret = dspi_next_xfer_dma_submit(dspi);
0482 if (ret) {
0483 dev_err(dev, "DMA transfer failed\n");
0484 break;
0485 }
0486 }
0487
0488 return ret;
0489 }
0490
0491 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
0492 {
0493 int dma_bufsize = dspi->devtype_data->fifo_size * 2;
0494 struct device *dev = &dspi->pdev->dev;
0495 struct dma_slave_config cfg;
0496 struct fsl_dspi_dma *dma;
0497 int ret;
0498
0499 dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
0500 if (!dma)
0501 return -ENOMEM;
0502
0503 dma->chan_rx = dma_request_chan(dev, "rx");
0504 if (IS_ERR(dma->chan_rx)) {
0505 dev_err(dev, "rx dma channel not available\n");
0506 ret = PTR_ERR(dma->chan_rx);
0507 return ret;
0508 }
0509
0510 dma->chan_tx = dma_request_chan(dev, "tx");
0511 if (IS_ERR(dma->chan_tx)) {
0512 dev_err(dev, "tx dma channel not available\n");
0513 ret = PTR_ERR(dma->chan_tx);
0514 goto err_tx_channel;
0515 }
0516
0517 dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
0518 dma_bufsize, &dma->tx_dma_phys,
0519 GFP_KERNEL);
0520 if (!dma->tx_dma_buf) {
0521 ret = -ENOMEM;
0522 goto err_tx_dma_buf;
0523 }
0524
0525 dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
0526 dma_bufsize, &dma->rx_dma_phys,
0527 GFP_KERNEL);
0528 if (!dma->rx_dma_buf) {
0529 ret = -ENOMEM;
0530 goto err_rx_dma_buf;
0531 }
0532
0533 memset(&cfg, 0, sizeof(cfg));
0534 cfg.src_addr = phy_addr + SPI_POPR;
0535 cfg.dst_addr = phy_addr + SPI_PUSHR;
0536 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
0537 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
0538 cfg.src_maxburst = 1;
0539 cfg.dst_maxburst = 1;
0540
0541 cfg.direction = DMA_DEV_TO_MEM;
0542 ret = dmaengine_slave_config(dma->chan_rx, &cfg);
0543 if (ret) {
0544 dev_err(dev, "can't configure rx dma channel\n");
0545 ret = -EINVAL;
0546 goto err_slave_config;
0547 }
0548
0549 cfg.direction = DMA_MEM_TO_DEV;
0550 ret = dmaengine_slave_config(dma->chan_tx, &cfg);
0551 if (ret) {
0552 dev_err(dev, "can't configure tx dma channel\n");
0553 ret = -EINVAL;
0554 goto err_slave_config;
0555 }
0556
0557 dspi->dma = dma;
0558 init_completion(&dma->cmd_tx_complete);
0559 init_completion(&dma->cmd_rx_complete);
0560
0561 return 0;
0562
0563 err_slave_config:
0564 dma_free_coherent(dma->chan_rx->device->dev,
0565 dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
0566 err_rx_dma_buf:
0567 dma_free_coherent(dma->chan_tx->device->dev,
0568 dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
0569 err_tx_dma_buf:
0570 dma_release_channel(dma->chan_tx);
0571 err_tx_channel:
0572 dma_release_channel(dma->chan_rx);
0573
0574 devm_kfree(dev, dma);
0575 dspi->dma = NULL;
0576
0577 return ret;
0578 }
0579
0580 static void dspi_release_dma(struct fsl_dspi *dspi)
0581 {
0582 int dma_bufsize = dspi->devtype_data->fifo_size * 2;
0583 struct fsl_dspi_dma *dma = dspi->dma;
0584
0585 if (!dma)
0586 return;
0587
0588 if (dma->chan_tx) {
0589 dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize,
0590 dma->tx_dma_buf, dma->tx_dma_phys);
0591 dma_release_channel(dma->chan_tx);
0592 }
0593
0594 if (dma->chan_rx) {
0595 dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize,
0596 dma->rx_dma_buf, dma->rx_dma_phys);
0597 dma_release_channel(dma->chan_rx);
0598 }
0599 }
0600
0601 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
0602 unsigned long clkrate)
0603 {
0604
0605 int pbr_tbl[4] = {2, 3, 5, 7};
0606 int brs[16] = { 2, 4, 6, 8,
0607 16, 32, 64, 128,
0608 256, 512, 1024, 2048,
0609 4096, 8192, 16384, 32768 };
0610 int scale_needed, scale, minscale = INT_MAX;
0611 int i, j;
0612
0613 scale_needed = clkrate / speed_hz;
0614 if (clkrate % speed_hz)
0615 scale_needed++;
0616
0617 for (i = 0; i < ARRAY_SIZE(brs); i++)
0618 for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
0619 scale = brs[i] * pbr_tbl[j];
0620 if (scale >= scale_needed) {
0621 if (scale < minscale) {
0622 minscale = scale;
0623 *br = i;
0624 *pbr = j;
0625 }
0626 break;
0627 }
0628 }
0629
0630 if (minscale == INT_MAX) {
0631 pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
0632 speed_hz, clkrate);
0633 *pbr = ARRAY_SIZE(pbr_tbl) - 1;
0634 *br = ARRAY_SIZE(brs) - 1;
0635 }
0636 }
0637
0638 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
0639 unsigned long clkrate)
0640 {
0641 int scale_needed, scale, minscale = INT_MAX;
0642 int pscale_tbl[4] = {1, 3, 5, 7};
0643 u32 remainder;
0644 int i, j;
0645
0646 scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
0647 &remainder);
0648 if (remainder)
0649 scale_needed++;
0650
0651 for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
0652 for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
0653 scale = pscale_tbl[i] * (2 << j);
0654 if (scale >= scale_needed) {
0655 if (scale < minscale) {
0656 minscale = scale;
0657 *psc = i;
0658 *sc = j;
0659 }
0660 break;
0661 }
0662 }
0663
0664 if (minscale == INT_MAX) {
0665 pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
0666 delay_ns, clkrate);
0667 *psc = ARRAY_SIZE(pscale_tbl) - 1;
0668 *sc = SPI_CTAR_SCALE_BITS;
0669 }
0670 }
0671
0672 static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
0673 {
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684 if (dspi->len > dspi->oper_word_size)
0685 cmd |= SPI_PUSHR_CMD_CONT;
0686 regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
0687 }
0688
0689 static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
0690 {
0691 regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
0692 }
0693
0694 static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
0695 {
0696 int num_bytes = num_words * dspi->oper_word_size;
0697 u16 tx_cmd = dspi->tx_cmd;
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707 if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
0708 tx_cmd |= SPI_PUSHR_CMD_EOQ;
0709
0710
0711 regmap_write(dspi->regmap, SPI_CTARE(0),
0712 SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
0713 SPI_CTARE_DTCP(num_words));
0714
0715
0716
0717
0718
0719 dspi_pushr_cmd_write(dspi, tx_cmd);
0720
0721
0722 while (num_words--) {
0723 u32 data = dspi_pop_tx(dspi);
0724
0725 dspi_pushr_txdata_write(dspi, data & 0xFFFF);
0726 if (dspi->oper_bits_per_word > 16)
0727 dspi_pushr_txdata_write(dspi, data >> 16);
0728 }
0729 }
0730
0731 static u32 dspi_popr_read(struct fsl_dspi *dspi)
0732 {
0733 u32 rxdata = 0;
0734
0735 regmap_read(dspi->regmap, SPI_POPR, &rxdata);
0736 return rxdata;
0737 }
0738
0739 static void dspi_fifo_read(struct fsl_dspi *dspi)
0740 {
0741 int num_fifo_entries = dspi->words_in_flight;
0742
0743
0744 while (num_fifo_entries--)
0745 dspi_push_rx(dspi, dspi_popr_read(dspi));
0746 }
0747
0748 static void dspi_setup_accel(struct fsl_dspi *dspi)
0749 {
0750 struct spi_transfer *xfer = dspi->cur_transfer;
0751 bool odd = !!(dspi->len & 1);
0752
0753
0754 if (xfer->bits_per_word % 8)
0755 goto no_accel;
0756
0757 if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
0758 dspi->oper_bits_per_word = 16;
0759 } else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
0760 dspi->oper_bits_per_word = 8;
0761 } else {
0762
0763 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
0764 dspi->oper_bits_per_word = 32;
0765 else
0766 dspi->oper_bits_per_word = 16;
0767
0768
0769
0770
0771
0772 do {
0773 if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
0774 break;
0775
0776 dspi->oper_bits_per_word /= 2;
0777 } while (dspi->oper_bits_per_word > 8);
0778 }
0779
0780 if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
0781 dspi->dev_to_host = dspi_8on32_dev_to_host;
0782 dspi->host_to_dev = dspi_8on32_host_to_dev;
0783 } else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
0784 dspi->dev_to_host = dspi_8on16_dev_to_host;
0785 dspi->host_to_dev = dspi_8on16_host_to_dev;
0786 } else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
0787 dspi->dev_to_host = dspi_16on32_dev_to_host;
0788 dspi->host_to_dev = dspi_16on32_host_to_dev;
0789 } else {
0790 no_accel:
0791 dspi->dev_to_host = dspi_native_dev_to_host;
0792 dspi->host_to_dev = dspi_native_host_to_dev;
0793 dspi->oper_bits_per_word = xfer->bits_per_word;
0794 }
0795
0796 dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
0797
0798
0799
0800
0801
0802
0803 regmap_write(dspi->regmap, SPI_CTAR(0),
0804 dspi->cur_chip->ctar_val |
0805 SPI_FRAME_BITS(dspi->oper_bits_per_word));
0806 }
0807
0808 static void dspi_fifo_write(struct fsl_dspi *dspi)
0809 {
0810 int num_fifo_entries = dspi->devtype_data->fifo_size;
0811 struct spi_transfer *xfer = dspi->cur_transfer;
0812 struct spi_message *msg = dspi->cur_msg;
0813 int num_words, num_bytes;
0814
0815 dspi_setup_accel(dspi);
0816
0817
0818 if (dspi->oper_word_size == 4)
0819 num_fifo_entries /= 2;
0820
0821
0822
0823
0824
0825
0826 num_words = dspi->len / dspi->oper_word_size;
0827 if (num_words > num_fifo_entries)
0828 num_words = num_fifo_entries;
0829
0830
0831 num_bytes = num_words * dspi->oper_word_size;
0832 msg->actual_length += num_bytes;
0833 dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
0834
0835
0836
0837
0838
0839 dspi->words_in_flight = num_words;
0840
0841 spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
0842
0843 dspi_xspi_fifo_write(dspi, num_words);
0844
0845
0846
0847
0848
0849
0850 spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
0851 dspi->progress, !dspi->irq);
0852 }
0853
0854 static int dspi_rxtx(struct fsl_dspi *dspi)
0855 {
0856 dspi_fifo_read(dspi);
0857
0858 if (!dspi->len)
0859
0860 return 0;
0861
0862 dspi_fifo_write(dspi);
0863
0864 return -EINPROGRESS;
0865 }
0866
0867 static int dspi_poll(struct fsl_dspi *dspi)
0868 {
0869 int tries = 1000;
0870 u32 spi_sr;
0871
0872 do {
0873 regmap_read(dspi->regmap, SPI_SR, &spi_sr);
0874 regmap_write(dspi->regmap, SPI_SR, spi_sr);
0875
0876 if (spi_sr & SPI_SR_CMDTCF)
0877 break;
0878 } while (--tries);
0879
0880 if (!tries)
0881 return -ETIMEDOUT;
0882
0883 return dspi_rxtx(dspi);
0884 }
0885
0886 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
0887 {
0888 struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
0889 u32 spi_sr;
0890
0891 regmap_read(dspi->regmap, SPI_SR, &spi_sr);
0892 regmap_write(dspi->regmap, SPI_SR, spi_sr);
0893
0894 if (!(spi_sr & SPI_SR_CMDTCF))
0895 return IRQ_NONE;
0896
0897 if (dspi_rxtx(dspi) == 0)
0898 complete(&dspi->xfer_done);
0899
0900 return IRQ_HANDLED;
0901 }
0902
0903 static int dspi_transfer_one_message(struct spi_controller *ctlr,
0904 struct spi_message *message)
0905 {
0906 struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
0907 struct spi_device *spi = message->spi;
0908 struct spi_transfer *transfer;
0909 int status = 0;
0910
0911 message->actual_length = 0;
0912
0913 list_for_each_entry(transfer, &message->transfers, transfer_list) {
0914 dspi->cur_transfer = transfer;
0915 dspi->cur_msg = message;
0916 dspi->cur_chip = spi_get_ctldata(spi);
0917
0918 dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
0919 SPI_PUSHR_CMD_PCS(spi->chip_select);
0920 if (list_is_last(&dspi->cur_transfer->transfer_list,
0921 &dspi->cur_msg->transfers)) {
0922
0923
0924
0925 if (transfer->cs_change)
0926 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
0927 } else {
0928
0929
0930
0931
0932
0933 if (!transfer->cs_change)
0934 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
0935 }
0936
0937 dspi->tx = transfer->tx_buf;
0938 dspi->rx = transfer->rx_buf;
0939 dspi->len = transfer->len;
0940 dspi->progress = 0;
0941
0942 regmap_update_bits(dspi->regmap, SPI_MCR,
0943 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
0944 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
0945
0946 spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
0947 dspi->progress, !dspi->irq);
0948
0949 if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
0950 status = dspi_dma_xfer(dspi);
0951 } else {
0952 dspi_fifo_write(dspi);
0953
0954 if (dspi->irq) {
0955 wait_for_completion(&dspi->xfer_done);
0956 reinit_completion(&dspi->xfer_done);
0957 } else {
0958 do {
0959 status = dspi_poll(dspi);
0960 } while (status == -EINPROGRESS);
0961 }
0962 }
0963 if (status)
0964 break;
0965
0966 spi_transfer_delay_exec(transfer);
0967 }
0968
0969 message->status = status;
0970 spi_finalize_current_message(ctlr);
0971
0972 return status;
0973 }
0974
0975 static int dspi_setup(struct spi_device *spi)
0976 {
0977 struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
0978 unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
0979 u32 cs_sck_delay = 0, sck_cs_delay = 0;
0980 struct fsl_dspi_platform_data *pdata;
0981 unsigned char pasc = 0, asc = 0;
0982 struct chip_data *chip;
0983 unsigned long clkrate;
0984
0985
0986 chip = spi_get_ctldata(spi);
0987 if (chip == NULL) {
0988 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
0989 if (!chip)
0990 return -ENOMEM;
0991 }
0992
0993 pdata = dev_get_platdata(&dspi->pdev->dev);
0994
0995 if (!pdata) {
0996 of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
0997 &cs_sck_delay);
0998
0999 of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
1000 &sck_cs_delay);
1001 } else {
1002 cs_sck_delay = pdata->cs_sck_delay;
1003 sck_cs_delay = pdata->sck_cs_delay;
1004 }
1005
1006 clkrate = clk_get_rate(dspi->clk);
1007 hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
1008
1009
1010 ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
1011
1012
1013 ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
1014
1015 chip->ctar_val = 0;
1016 if (spi->mode & SPI_CPOL)
1017 chip->ctar_val |= SPI_CTAR_CPOL;
1018 if (spi->mode & SPI_CPHA)
1019 chip->ctar_val |= SPI_CTAR_CPHA;
1020
1021 if (!spi_controller_is_slave(dspi->ctlr)) {
1022 chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
1023 SPI_CTAR_CSSCK(cssck) |
1024 SPI_CTAR_PASC(pasc) |
1025 SPI_CTAR_ASC(asc) |
1026 SPI_CTAR_PBR(pbr) |
1027 SPI_CTAR_BR(br);
1028
1029 if (spi->mode & SPI_LSB_FIRST)
1030 chip->ctar_val |= SPI_CTAR_LSBFE;
1031 }
1032
1033 spi_set_ctldata(spi, chip);
1034
1035 return 0;
1036 }
1037
1038 static void dspi_cleanup(struct spi_device *spi)
1039 {
1040 struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
1041
1042 dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
1043 spi->controller->bus_num, spi->chip_select);
1044
1045 kfree(chip);
1046 }
1047
1048 static const struct of_device_id fsl_dspi_dt_ids[] = {
1049 {
1050 .compatible = "fsl,vf610-dspi",
1051 .data = &devtype_data[VF610],
1052 }, {
1053 .compatible = "fsl,ls1021a-v1.0-dspi",
1054 .data = &devtype_data[LS1021A],
1055 }, {
1056 .compatible = "fsl,ls1012a-dspi",
1057 .data = &devtype_data[LS1012A],
1058 }, {
1059 .compatible = "fsl,ls1028a-dspi",
1060 .data = &devtype_data[LS1028A],
1061 }, {
1062 .compatible = "fsl,ls1043a-dspi",
1063 .data = &devtype_data[LS1043A],
1064 }, {
1065 .compatible = "fsl,ls1046a-dspi",
1066 .data = &devtype_data[LS1046A],
1067 }, {
1068 .compatible = "fsl,ls2080a-dspi",
1069 .data = &devtype_data[LS2080A],
1070 }, {
1071 .compatible = "fsl,ls2085a-dspi",
1072 .data = &devtype_data[LS2085A],
1073 }, {
1074 .compatible = "fsl,lx2160a-dspi",
1075 .data = &devtype_data[LX2160A],
1076 },
1077 { }
1078 };
1079 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
1080
1081 #ifdef CONFIG_PM_SLEEP
1082 static int dspi_suspend(struct device *dev)
1083 {
1084 struct fsl_dspi *dspi = dev_get_drvdata(dev);
1085
1086 if (dspi->irq)
1087 disable_irq(dspi->irq);
1088 spi_controller_suspend(dspi->ctlr);
1089 clk_disable_unprepare(dspi->clk);
1090
1091 pinctrl_pm_select_sleep_state(dev);
1092
1093 return 0;
1094 }
1095
1096 static int dspi_resume(struct device *dev)
1097 {
1098 struct fsl_dspi *dspi = dev_get_drvdata(dev);
1099 int ret;
1100
1101 pinctrl_pm_select_default_state(dev);
1102
1103 ret = clk_prepare_enable(dspi->clk);
1104 if (ret)
1105 return ret;
1106 spi_controller_resume(dspi->ctlr);
1107 if (dspi->irq)
1108 enable_irq(dspi->irq);
1109
1110 return 0;
1111 }
1112 #endif
1113
1114 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
1115
1116 static const struct regmap_range dspi_volatile_ranges[] = {
1117 regmap_reg_range(SPI_MCR, SPI_TCR),
1118 regmap_reg_range(SPI_SR, SPI_SR),
1119 regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1120 };
1121
1122 static const struct regmap_access_table dspi_volatile_table = {
1123 .yes_ranges = dspi_volatile_ranges,
1124 .n_yes_ranges = ARRAY_SIZE(dspi_volatile_ranges),
1125 };
1126
1127 static const struct regmap_config dspi_regmap_config = {
1128 .reg_bits = 32,
1129 .val_bits = 32,
1130 .reg_stride = 4,
1131 .max_register = 0x88,
1132 .volatile_table = &dspi_volatile_table,
1133 };
1134
1135 static const struct regmap_range dspi_xspi_volatile_ranges[] = {
1136 regmap_reg_range(SPI_MCR, SPI_TCR),
1137 regmap_reg_range(SPI_SR, SPI_SR),
1138 regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1139 regmap_reg_range(SPI_SREX, SPI_SREX),
1140 };
1141
1142 static const struct regmap_access_table dspi_xspi_volatile_table = {
1143 .yes_ranges = dspi_xspi_volatile_ranges,
1144 .n_yes_ranges = ARRAY_SIZE(dspi_xspi_volatile_ranges),
1145 };
1146
1147 static const struct regmap_config dspi_xspi_regmap_config[] = {
1148 {
1149 .reg_bits = 32,
1150 .val_bits = 32,
1151 .reg_stride = 4,
1152 .max_register = 0x13c,
1153 .volatile_table = &dspi_xspi_volatile_table,
1154 },
1155 {
1156 .name = "pushr",
1157 .reg_bits = 16,
1158 .val_bits = 16,
1159 .reg_stride = 2,
1160 .max_register = 0x2,
1161 },
1162 };
1163
1164 static int dspi_init(struct fsl_dspi *dspi)
1165 {
1166 unsigned int mcr;
1167
1168
1169 mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->max_native_cs - 1, 0));
1170
1171 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1172 mcr |= SPI_MCR_XSPI;
1173 if (!spi_controller_is_slave(dspi->ctlr))
1174 mcr |= SPI_MCR_MASTER;
1175
1176 regmap_write(dspi->regmap, SPI_MCR, mcr);
1177 regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1178
1179 switch (dspi->devtype_data->trans_mode) {
1180 case DSPI_XSPI_MODE:
1181 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
1182 break;
1183 case DSPI_DMA_MODE:
1184 regmap_write(dspi->regmap, SPI_RSER,
1185 SPI_RSER_TFFFE | SPI_RSER_TFFFD |
1186 SPI_RSER_RFDFE | SPI_RSER_RFDFD);
1187 break;
1188 default:
1189 dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
1190 dspi->devtype_data->trans_mode);
1191 return -EINVAL;
1192 }
1193
1194 return 0;
1195 }
1196
1197 static int dspi_slave_abort(struct spi_master *master)
1198 {
1199 struct fsl_dspi *dspi = spi_master_get_devdata(master);
1200
1201
1202
1203
1204
1205 if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1206 dmaengine_terminate_sync(dspi->dma->chan_rx);
1207 dmaengine_terminate_sync(dspi->dma->chan_tx);
1208 }
1209
1210
1211 regmap_update_bits(dspi->regmap, SPI_MCR,
1212 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1213 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1214
1215 return 0;
1216 }
1217
1218 static int dspi_probe(struct platform_device *pdev)
1219 {
1220 struct device_node *np = pdev->dev.of_node;
1221 const struct regmap_config *regmap_config;
1222 struct fsl_dspi_platform_data *pdata;
1223 struct spi_controller *ctlr;
1224 int ret, cs_num, bus_num = -1;
1225 struct fsl_dspi *dspi;
1226 struct resource *res;
1227 void __iomem *base;
1228 bool big_endian;
1229
1230 dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL);
1231 if (!dspi)
1232 return -ENOMEM;
1233
1234 ctlr = spi_alloc_master(&pdev->dev, 0);
1235 if (!ctlr)
1236 return -ENOMEM;
1237
1238 spi_controller_set_devdata(ctlr, dspi);
1239 platform_set_drvdata(pdev, dspi);
1240
1241 dspi->pdev = pdev;
1242 dspi->ctlr = ctlr;
1243
1244 ctlr->setup = dspi_setup;
1245 ctlr->transfer_one_message = dspi_transfer_one_message;
1246 ctlr->dev.of_node = pdev->dev.of_node;
1247
1248 ctlr->cleanup = dspi_cleanup;
1249 ctlr->slave_abort = dspi_slave_abort;
1250 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1251
1252 pdata = dev_get_platdata(&pdev->dev);
1253 if (pdata) {
1254 ctlr->num_chipselect = ctlr->max_native_cs = pdata->cs_num;
1255 ctlr->bus_num = pdata->bus_num;
1256
1257
1258 dspi->devtype_data = &devtype_data[MCF5441X];
1259 big_endian = true;
1260 } else {
1261
1262 ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1263 if (ret < 0) {
1264 dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1265 goto out_ctlr_put;
1266 }
1267 ctlr->num_chipselect = ctlr->max_native_cs = cs_num;
1268
1269 of_property_read_u32(np, "bus-num", &bus_num);
1270 ctlr->bus_num = bus_num;
1271
1272 if (of_property_read_bool(np, "spi-slave"))
1273 ctlr->slave = true;
1274
1275 dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1276 if (!dspi->devtype_data) {
1277 dev_err(&pdev->dev, "can't get devtype_data\n");
1278 ret = -EFAULT;
1279 goto out_ctlr_put;
1280 }
1281
1282 big_endian = of_device_is_big_endian(np);
1283 }
1284 if (big_endian) {
1285 dspi->pushr_cmd = 0;
1286 dspi->pushr_tx = 2;
1287 } else {
1288 dspi->pushr_cmd = 2;
1289 dspi->pushr_tx = 0;
1290 }
1291
1292 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1293 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1294 else
1295 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1296
1297 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1298 base = devm_ioremap_resource(&pdev->dev, res);
1299 if (IS_ERR(base)) {
1300 ret = PTR_ERR(base);
1301 goto out_ctlr_put;
1302 }
1303
1304 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1305 regmap_config = &dspi_xspi_regmap_config[0];
1306 else
1307 regmap_config = &dspi_regmap_config;
1308 dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1309 if (IS_ERR(dspi->regmap)) {
1310 dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1311 PTR_ERR(dspi->regmap));
1312 ret = PTR_ERR(dspi->regmap);
1313 goto out_ctlr_put;
1314 }
1315
1316 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
1317 dspi->regmap_pushr = devm_regmap_init_mmio(
1318 &pdev->dev, base + SPI_PUSHR,
1319 &dspi_xspi_regmap_config[1]);
1320 if (IS_ERR(dspi->regmap_pushr)) {
1321 dev_err(&pdev->dev,
1322 "failed to init pushr regmap: %ld\n",
1323 PTR_ERR(dspi->regmap_pushr));
1324 ret = PTR_ERR(dspi->regmap_pushr);
1325 goto out_ctlr_put;
1326 }
1327 }
1328
1329 dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1330 if (IS_ERR(dspi->clk)) {
1331 ret = PTR_ERR(dspi->clk);
1332 dev_err(&pdev->dev, "unable to get clock\n");
1333 goto out_ctlr_put;
1334 }
1335 ret = clk_prepare_enable(dspi->clk);
1336 if (ret)
1337 goto out_ctlr_put;
1338
1339 ret = dspi_init(dspi);
1340 if (ret)
1341 goto out_clk_put;
1342
1343 dspi->irq = platform_get_irq(pdev, 0);
1344 if (dspi->irq <= 0) {
1345 dev_info(&pdev->dev,
1346 "can't get platform irq, using poll mode\n");
1347 dspi->irq = 0;
1348 goto poll_mode;
1349 }
1350
1351 init_completion(&dspi->xfer_done);
1352
1353 ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
1354 IRQF_SHARED, pdev->name, dspi);
1355 if (ret < 0) {
1356 dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1357 goto out_clk_put;
1358 }
1359
1360 poll_mode:
1361
1362 if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1363 ret = dspi_request_dma(dspi, res->start);
1364 if (ret < 0) {
1365 dev_err(&pdev->dev, "can't get dma channels\n");
1366 goto out_free_irq;
1367 }
1368 }
1369
1370 ctlr->max_speed_hz =
1371 clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1372
1373 if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
1374 ctlr->ptp_sts_supported = true;
1375
1376 ret = spi_register_controller(ctlr);
1377 if (ret != 0) {
1378 dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1379 goto out_release_dma;
1380 }
1381
1382 return ret;
1383
1384 out_release_dma:
1385 dspi_release_dma(dspi);
1386 out_free_irq:
1387 if (dspi->irq)
1388 free_irq(dspi->irq, dspi);
1389 out_clk_put:
1390 clk_disable_unprepare(dspi->clk);
1391 out_ctlr_put:
1392 spi_controller_put(ctlr);
1393
1394 return ret;
1395 }
1396
1397 static int dspi_remove(struct platform_device *pdev)
1398 {
1399 struct fsl_dspi *dspi = platform_get_drvdata(pdev);
1400
1401
1402 spi_unregister_controller(dspi->ctlr);
1403
1404
1405 regmap_update_bits(dspi->regmap, SPI_MCR,
1406 SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
1407 SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
1408
1409
1410 regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
1411
1412 dspi_release_dma(dspi);
1413 if (dspi->irq)
1414 free_irq(dspi->irq, dspi);
1415 clk_disable_unprepare(dspi->clk);
1416
1417 return 0;
1418 }
1419
1420 static void dspi_shutdown(struct platform_device *pdev)
1421 {
1422 dspi_remove(pdev);
1423 }
1424
1425 static struct platform_driver fsl_dspi_driver = {
1426 .driver.name = DRIVER_NAME,
1427 .driver.of_match_table = fsl_dspi_dt_ids,
1428 .driver.owner = THIS_MODULE,
1429 .driver.pm = &dspi_pm,
1430 .probe = dspi_probe,
1431 .remove = dspi_remove,
1432 .shutdown = dspi_shutdown,
1433 };
1434 module_platform_driver(fsl_dspi_driver);
1435
1436 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1437 MODULE_LICENSE("GPL");
1438 MODULE_ALIAS("platform:" DRIVER_NAME);