0001
0002
0003
0004
0005
0006
0007
0008
0009 #include <linux/spi/spi.h>
0010 #include <linux/module.h>
0011 #include <linux/delay.h>
0012 #include <linux/io.h>
0013
0014 #include "spi-cavium.h"
0015
0016 static void octeon_spi_wait_ready(struct octeon_spi *p)
0017 {
0018 union cvmx_mpi_sts mpi_sts;
0019 unsigned int loops = 0;
0020
0021 do {
0022 if (loops++)
0023 __delay(500);
0024 mpi_sts.u64 = readq(p->register_base + OCTEON_SPI_STS(p));
0025 } while (mpi_sts.s.busy);
0026 }
0027
0028 static int octeon_spi_do_transfer(struct octeon_spi *p,
0029 struct spi_message *msg,
0030 struct spi_transfer *xfer,
0031 bool last_xfer)
0032 {
0033 struct spi_device *spi = msg->spi;
0034 union cvmx_mpi_cfg mpi_cfg;
0035 union cvmx_mpi_tx mpi_tx;
0036 unsigned int clkdiv;
0037 int mode;
0038 bool cpha, cpol;
0039 const u8 *tx_buf;
0040 u8 *rx_buf;
0041 int len;
0042 int i;
0043
0044 mode = spi->mode;
0045 cpha = mode & SPI_CPHA;
0046 cpol = mode & SPI_CPOL;
0047
0048 clkdiv = p->sys_freq / (2 * xfer->speed_hz);
0049
0050 mpi_cfg.u64 = 0;
0051
0052 mpi_cfg.s.clkdiv = clkdiv;
0053 mpi_cfg.s.cshi = (mode & SPI_CS_HIGH) ? 1 : 0;
0054 mpi_cfg.s.lsbfirst = (mode & SPI_LSB_FIRST) ? 1 : 0;
0055 mpi_cfg.s.wireor = (mode & SPI_3WIRE) ? 1 : 0;
0056 mpi_cfg.s.idlelo = cpha != cpol;
0057 mpi_cfg.s.cslate = cpha ? 1 : 0;
0058 mpi_cfg.s.enable = 1;
0059
0060 if (spi->chip_select < 4)
0061 p->cs_enax |= 1ull << (12 + spi->chip_select);
0062 mpi_cfg.u64 |= p->cs_enax;
0063
0064 if (mpi_cfg.u64 != p->last_cfg) {
0065 p->last_cfg = mpi_cfg.u64;
0066 writeq(mpi_cfg.u64, p->register_base + OCTEON_SPI_CFG(p));
0067 }
0068 tx_buf = xfer->tx_buf;
0069 rx_buf = xfer->rx_buf;
0070 len = xfer->len;
0071 while (len > OCTEON_SPI_MAX_BYTES) {
0072 for (i = 0; i < OCTEON_SPI_MAX_BYTES; i++) {
0073 u8 d;
0074 if (tx_buf)
0075 d = *tx_buf++;
0076 else
0077 d = 0;
0078 writeq(d, p->register_base + OCTEON_SPI_DAT0(p) + (8 * i));
0079 }
0080 mpi_tx.u64 = 0;
0081 mpi_tx.s.csid = spi->chip_select;
0082 mpi_tx.s.leavecs = 1;
0083 mpi_tx.s.txnum = tx_buf ? OCTEON_SPI_MAX_BYTES : 0;
0084 mpi_tx.s.totnum = OCTEON_SPI_MAX_BYTES;
0085 writeq(mpi_tx.u64, p->register_base + OCTEON_SPI_TX(p));
0086
0087 octeon_spi_wait_ready(p);
0088 if (rx_buf)
0089 for (i = 0; i < OCTEON_SPI_MAX_BYTES; i++) {
0090 u64 v = readq(p->register_base + OCTEON_SPI_DAT0(p) + (8 * i));
0091 *rx_buf++ = (u8)v;
0092 }
0093 len -= OCTEON_SPI_MAX_BYTES;
0094 }
0095
0096 for (i = 0; i < len; i++) {
0097 u8 d;
0098 if (tx_buf)
0099 d = *tx_buf++;
0100 else
0101 d = 0;
0102 writeq(d, p->register_base + OCTEON_SPI_DAT0(p) + (8 * i));
0103 }
0104
0105 mpi_tx.u64 = 0;
0106 mpi_tx.s.csid = spi->chip_select;
0107 if (last_xfer)
0108 mpi_tx.s.leavecs = xfer->cs_change;
0109 else
0110 mpi_tx.s.leavecs = !xfer->cs_change;
0111 mpi_tx.s.txnum = tx_buf ? len : 0;
0112 mpi_tx.s.totnum = len;
0113 writeq(mpi_tx.u64, p->register_base + OCTEON_SPI_TX(p));
0114
0115 octeon_spi_wait_ready(p);
0116 if (rx_buf)
0117 for (i = 0; i < len; i++) {
0118 u64 v = readq(p->register_base + OCTEON_SPI_DAT0(p) + (8 * i));
0119 *rx_buf++ = (u8)v;
0120 }
0121
0122 spi_transfer_delay_exec(xfer);
0123
0124 return xfer->len;
0125 }
0126
0127 int octeon_spi_transfer_one_message(struct spi_master *master,
0128 struct spi_message *msg)
0129 {
0130 struct octeon_spi *p = spi_master_get_devdata(master);
0131 unsigned int total_len = 0;
0132 int status = 0;
0133 struct spi_transfer *xfer;
0134
0135 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
0136 bool last_xfer = list_is_last(&xfer->transfer_list,
0137 &msg->transfers);
0138 int r = octeon_spi_do_transfer(p, msg, xfer, last_xfer);
0139 if (r < 0) {
0140 status = r;
0141 goto err;
0142 }
0143 total_len += r;
0144 }
0145 err:
0146 msg->status = status;
0147 msg->actual_length = total_len;
0148 spi_finalize_current_message(master);
0149 return status;
0150 }