Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 //
0003 // Driver for Cadence QSPI Controller
0004 //
0005 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
0006 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
0007 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
0008 
0009 #include <linux/clk.h>
0010 #include <linux/completion.h>
0011 #include <linux/delay.h>
0012 #include <linux/dma-mapping.h>
0013 #include <linux/dmaengine.h>
0014 #include <linux/err.h>
0015 #include <linux/errno.h>
0016 #include <linux/firmware/xlnx-zynqmp.h>
0017 #include <linux/interrupt.h>
0018 #include <linux/io.h>
0019 #include <linux/iopoll.h>
0020 #include <linux/jiffies.h>
0021 #include <linux/kernel.h>
0022 #include <linux/log2.h>
0023 #include <linux/module.h>
0024 #include <linux/of_device.h>
0025 #include <linux/of.h>
0026 #include <linux/platform_device.h>
0027 #include <linux/pm_runtime.h>
0028 #include <linux/reset.h>
0029 #include <linux/sched.h>
0030 #include <linux/spi/spi.h>
0031 #include <linux/spi/spi-mem.h>
0032 #include <linux/timer.h>
0033 
0034 #define CQSPI_NAME          "cadence-qspi"
0035 #define CQSPI_MAX_CHIPSELECT        16
0036 
0037 /* Quirks */
0038 #define CQSPI_NEEDS_WR_DELAY        BIT(0)
0039 #define CQSPI_DISABLE_DAC_MODE      BIT(1)
0040 #define CQSPI_SUPPORT_EXTERNAL_DMA  BIT(2)
0041 #define CQSPI_NO_SUPPORT_WR_COMPLETION  BIT(3)
0042 #define CQSPI_SLOW_SRAM     BIT(4)
0043 
0044 /* Capabilities */
0045 #define CQSPI_SUPPORTS_OCTAL        BIT(0)
0046 
0047 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
0048 
0049 struct cqspi_st;
0050 
0051 struct cqspi_flash_pdata {
0052     struct cqspi_st *cqspi;
0053     u32     clk_rate;
0054     u32     read_delay;
0055     u32     tshsl_ns;
0056     u32     tsd2d_ns;
0057     u32     tchsh_ns;
0058     u32     tslch_ns;
0059     u8      cs;
0060 };
0061 
0062 struct cqspi_st {
0063     struct platform_device  *pdev;
0064     struct spi_master   *master;
0065     struct clk      *clk;
0066     unsigned int        sclk;
0067 
0068     void __iomem        *iobase;
0069     void __iomem        *ahb_base;
0070     resource_size_t     ahb_size;
0071     struct completion   transfer_complete;
0072 
0073     struct dma_chan     *rx_chan;
0074     struct completion   rx_dma_complete;
0075     dma_addr_t      mmap_phys_base;
0076 
0077     int         current_cs;
0078     unsigned long       master_ref_clk_hz;
0079     bool            is_decoded_cs;
0080     u32         fifo_depth;
0081     u32         fifo_width;
0082     u32         num_chipselect;
0083     bool            rclk_en;
0084     u32         trigger_address;
0085     u32         wr_delay;
0086     bool            use_direct_mode;
0087     struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
0088     bool            use_dma_read;
0089     u32         pd_dev_id;
0090     bool            wr_completion;
0091     bool            slow_sram;
0092 };
0093 
0094 struct cqspi_driver_platdata {
0095     u32 hwcaps_mask;
0096     u8 quirks;
0097     int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
0098                  u_char *rxbuf, loff_t from_addr, size_t n_rx);
0099     u32 (*get_dma_status)(struct cqspi_st *cqspi);
0100 };
0101 
0102 /* Operation timeout value */
0103 #define CQSPI_TIMEOUT_MS            500
0104 #define CQSPI_READ_TIMEOUT_MS           10
0105 
0106 #define CQSPI_DUMMY_CLKS_PER_BYTE       8
0107 #define CQSPI_DUMMY_BYTES_MAX           4
0108 #define CQSPI_DUMMY_CLKS_MAX            31
0109 
0110 #define CQSPI_STIG_DATA_LEN_MAX         8
0111 
0112 /* Register map */
0113 #define CQSPI_REG_CONFIG            0x00
0114 #define CQSPI_REG_CONFIG_ENABLE_MASK        BIT(0)
0115 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL   BIT(7)
0116 #define CQSPI_REG_CONFIG_DECODE_MASK        BIT(9)
0117 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB     10
0118 #define CQSPI_REG_CONFIG_DMA_MASK       BIT(15)
0119 #define CQSPI_REG_CONFIG_BAUD_LSB       19
0120 #define CQSPI_REG_CONFIG_DTR_PROTO      BIT(24)
0121 #define CQSPI_REG_CONFIG_DUAL_OPCODE        BIT(30)
0122 #define CQSPI_REG_CONFIG_IDLE_LSB       31
0123 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK    0xF
0124 #define CQSPI_REG_CONFIG_BAUD_MASK      0xF
0125 
0126 #define CQSPI_REG_RD_INSTR          0x04
0127 #define CQSPI_REG_RD_INSTR_OPCODE_LSB       0
0128 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB   8
0129 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB    12
0130 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB    16
0131 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB      20
0132 #define CQSPI_REG_RD_INSTR_DUMMY_LSB        24
0133 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK  0x3
0134 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK   0x3
0135 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK   0x3
0136 #define CQSPI_REG_RD_INSTR_DUMMY_MASK       0x1F
0137 
0138 #define CQSPI_REG_WR_INSTR          0x08
0139 #define CQSPI_REG_WR_INSTR_OPCODE_LSB       0
0140 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB    12
0141 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB    16
0142 
0143 #define CQSPI_REG_DELAY             0x0C
0144 #define CQSPI_REG_DELAY_TSLCH_LSB       0
0145 #define CQSPI_REG_DELAY_TCHSH_LSB       8
0146 #define CQSPI_REG_DELAY_TSD2D_LSB       16
0147 #define CQSPI_REG_DELAY_TSHSL_LSB       24
0148 #define CQSPI_REG_DELAY_TSLCH_MASK      0xFF
0149 #define CQSPI_REG_DELAY_TCHSH_MASK      0xFF
0150 #define CQSPI_REG_DELAY_TSD2D_MASK      0xFF
0151 #define CQSPI_REG_DELAY_TSHSL_MASK      0xFF
0152 
0153 #define CQSPI_REG_READCAPTURE           0x10
0154 #define CQSPI_REG_READCAPTURE_BYPASS_LSB    0
0155 #define CQSPI_REG_READCAPTURE_DELAY_LSB     1
0156 #define CQSPI_REG_READCAPTURE_DELAY_MASK    0xF
0157 
0158 #define CQSPI_REG_SIZE              0x14
0159 #define CQSPI_REG_SIZE_ADDRESS_LSB      0
0160 #define CQSPI_REG_SIZE_PAGE_LSB         4
0161 #define CQSPI_REG_SIZE_BLOCK_LSB        16
0162 #define CQSPI_REG_SIZE_ADDRESS_MASK     0xF
0163 #define CQSPI_REG_SIZE_PAGE_MASK        0xFFF
0164 #define CQSPI_REG_SIZE_BLOCK_MASK       0x3F
0165 
0166 #define CQSPI_REG_SRAMPARTITION         0x18
0167 #define CQSPI_REG_INDIRECTTRIGGER       0x1C
0168 
0169 #define CQSPI_REG_DMA               0x20
0170 #define CQSPI_REG_DMA_SINGLE_LSB        0
0171 #define CQSPI_REG_DMA_BURST_LSB         8
0172 #define CQSPI_REG_DMA_SINGLE_MASK       0xFF
0173 #define CQSPI_REG_DMA_BURST_MASK        0xFF
0174 
0175 #define CQSPI_REG_REMAP             0x24
0176 #define CQSPI_REG_MODE_BIT          0x28
0177 
0178 #define CQSPI_REG_SDRAMLEVEL            0x2C
0179 #define CQSPI_REG_SDRAMLEVEL_RD_LSB     0
0180 #define CQSPI_REG_SDRAMLEVEL_WR_LSB     16
0181 #define CQSPI_REG_SDRAMLEVEL_RD_MASK        0xFFFF
0182 #define CQSPI_REG_SDRAMLEVEL_WR_MASK        0xFFFF
0183 
0184 #define CQSPI_REG_WR_COMPLETION_CTRL        0x38
0185 #define CQSPI_REG_WR_DISABLE_AUTO_POLL      BIT(14)
0186 
0187 #define CQSPI_REG_IRQSTATUS         0x40
0188 #define CQSPI_REG_IRQMASK           0x44
0189 
0190 #define CQSPI_REG_INDIRECTRD            0x60
0191 #define CQSPI_REG_INDIRECTRD_START_MASK     BIT(0)
0192 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK    BIT(1)
0193 #define CQSPI_REG_INDIRECTRD_DONE_MASK      BIT(5)
0194 
0195 #define CQSPI_REG_INDIRECTRDWATERMARK       0x64
0196 #define CQSPI_REG_INDIRECTRDSTARTADDR       0x68
0197 #define CQSPI_REG_INDIRECTRDBYTES       0x6C
0198 
0199 #define CQSPI_REG_CMDCTRL           0x90
0200 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK      BIT(0)
0201 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK   BIT(1)
0202 #define CQSPI_REG_CMDCTRL_DUMMY_LSB     7
0203 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB      12
0204 #define CQSPI_REG_CMDCTRL_WR_EN_LSB     15
0205 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB     16
0206 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB       19
0207 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB      20
0208 #define CQSPI_REG_CMDCTRL_RD_EN_LSB     23
0209 #define CQSPI_REG_CMDCTRL_OPCODE_LSB        24
0210 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK     0x7
0211 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK    0x3
0212 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK     0x7
0213 #define CQSPI_REG_CMDCTRL_DUMMY_MASK        0x1F
0214 
0215 #define CQSPI_REG_INDIRECTWR            0x70
0216 #define CQSPI_REG_INDIRECTWR_START_MASK     BIT(0)
0217 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK    BIT(1)
0218 #define CQSPI_REG_INDIRECTWR_DONE_MASK      BIT(5)
0219 
0220 #define CQSPI_REG_INDIRECTWRWATERMARK       0x74
0221 #define CQSPI_REG_INDIRECTWRSTARTADDR       0x78
0222 #define CQSPI_REG_INDIRECTWRBYTES       0x7C
0223 
0224 #define CQSPI_REG_INDTRIG_ADDRRANGE     0x80
0225 
0226 #define CQSPI_REG_CMDADDRESS            0x94
0227 #define CQSPI_REG_CMDREADDATALOWER      0xA0
0228 #define CQSPI_REG_CMDREADDATAUPPER      0xA4
0229 #define CQSPI_REG_CMDWRITEDATALOWER     0xA8
0230 #define CQSPI_REG_CMDWRITEDATAUPPER     0xAC
0231 
0232 #define CQSPI_REG_POLLING_STATUS        0xB0
0233 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB  16
0234 
0235 #define CQSPI_REG_OP_EXT_LOWER          0xE0
0236 #define CQSPI_REG_OP_EXT_READ_LSB       24
0237 #define CQSPI_REG_OP_EXT_WRITE_LSB      16
0238 #define CQSPI_REG_OP_EXT_STIG_LSB       0
0239 
0240 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR       0x1000
0241 
0242 #define CQSPI_REG_VERSAL_DMA_DST_ADDR       0x1800
0243 #define CQSPI_REG_VERSAL_DMA_DST_SIZE       0x1804
0244 
0245 #define CQSPI_REG_VERSAL_DMA_DST_CTRL       0x180C
0246 
0247 #define CQSPI_REG_VERSAL_DMA_DST_I_STS      0x1814
0248 #define CQSPI_REG_VERSAL_DMA_DST_I_EN       0x1818
0249 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS      0x181C
0250 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK  BIT(1)
0251 
0252 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB   0x1828
0253 
0254 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL   0xF43FFA00
0255 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL    0x6
0256 
0257 /* Interrupt status bits */
0258 #define CQSPI_REG_IRQ_MODE_ERR          BIT(0)
0259 #define CQSPI_REG_IRQ_UNDERFLOW         BIT(1)
0260 #define CQSPI_REG_IRQ_IND_COMP          BIT(2)
0261 #define CQSPI_REG_IRQ_IND_RD_REJECT     BIT(3)
0262 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR      BIT(4)
0263 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR       BIT(5)
0264 #define CQSPI_REG_IRQ_WATERMARK         BIT(6)
0265 #define CQSPI_REG_IRQ_IND_SRAM_FULL     BIT(12)
0266 
0267 #define CQSPI_IRQ_MASK_RD       (CQSPI_REG_IRQ_WATERMARK    | \
0268                      CQSPI_REG_IRQ_IND_SRAM_FULL    | \
0269                      CQSPI_REG_IRQ_IND_COMP)
0270 
0271 #define CQSPI_IRQ_MASK_WR       (CQSPI_REG_IRQ_IND_COMP     | \
0272                      CQSPI_REG_IRQ_WATERMARK    | \
0273                      CQSPI_REG_IRQ_UNDERFLOW)
0274 
0275 #define CQSPI_IRQ_STATUS_MASK       0x1FFFF
0276 #define CQSPI_DMA_UNALIGN       0x3
0277 
0278 #define CQSPI_REG_VERSAL_DMA_VAL        0x602
0279 
0280 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
0281 {
0282     u32 val;
0283 
0284     return readl_relaxed_poll_timeout(reg, val,
0285                       (((clr ? ~val : val) & mask) == mask),
0286                       10, CQSPI_TIMEOUT_MS * 1000);
0287 }
0288 
0289 static bool cqspi_is_idle(struct cqspi_st *cqspi)
0290 {
0291     u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
0292 
0293     return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
0294 }
0295 
0296 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
0297 {
0298     u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
0299 
0300     reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
0301     return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
0302 }
0303 
0304 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
0305 {
0306     u32 dma_status;
0307 
0308     dma_status = readl(cqspi->iobase +
0309                        CQSPI_REG_VERSAL_DMA_DST_I_STS);
0310     writel(dma_status, cqspi->iobase +
0311            CQSPI_REG_VERSAL_DMA_DST_I_STS);
0312 
0313     return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
0314 }
0315 
0316 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
0317 {
0318     struct cqspi_st *cqspi = dev;
0319     unsigned int irq_status;
0320     struct device *device = &cqspi->pdev->dev;
0321     const struct cqspi_driver_platdata *ddata;
0322 
0323     ddata = of_device_get_match_data(device);
0324 
0325     /* Read interrupt status */
0326     irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
0327 
0328     /* Clear interrupt */
0329     writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
0330 
0331     if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
0332         if (ddata->get_dma_status(cqspi)) {
0333             complete(&cqspi->transfer_complete);
0334             return IRQ_HANDLED;
0335         }
0336     }
0337 
0338     else if (!cqspi->slow_sram)
0339         irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
0340     else
0341         irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
0342 
0343     if (irq_status)
0344         complete(&cqspi->transfer_complete);
0345 
0346     return IRQ_HANDLED;
0347 }
0348 
0349 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
0350 {
0351     u32 rdreg = 0;
0352 
0353     rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
0354     rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
0355     rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
0356 
0357     return rdreg;
0358 }
0359 
0360 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
0361 {
0362     unsigned int dummy_clk;
0363 
0364     if (!op->dummy.nbytes)
0365         return 0;
0366 
0367     dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
0368     if (op->cmd.dtr)
0369         dummy_clk /= 2;
0370 
0371     return dummy_clk;
0372 }
0373 
0374 static int cqspi_wait_idle(struct cqspi_st *cqspi)
0375 {
0376     const unsigned int poll_idle_retry = 3;
0377     unsigned int count = 0;
0378     unsigned long timeout;
0379 
0380     timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
0381     while (1) {
0382         /*
0383          * Read few times in succession to ensure the controller
0384          * is indeed idle, that is, the bit does not transition
0385          * low again.
0386          */
0387         if (cqspi_is_idle(cqspi))
0388             count++;
0389         else
0390             count = 0;
0391 
0392         if (count >= poll_idle_retry)
0393             return 0;
0394 
0395         if (time_after(jiffies, timeout)) {
0396             /* Timeout, in busy mode. */
0397             dev_err(&cqspi->pdev->dev,
0398                 "QSPI is still busy after %dms timeout.\n",
0399                 CQSPI_TIMEOUT_MS);
0400             return -ETIMEDOUT;
0401         }
0402 
0403         cpu_relax();
0404     }
0405 }
0406 
0407 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
0408 {
0409     void __iomem *reg_base = cqspi->iobase;
0410     int ret;
0411 
0412     /* Write the CMDCTRL without start execution. */
0413     writel(reg, reg_base + CQSPI_REG_CMDCTRL);
0414     /* Start execute */
0415     reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
0416     writel(reg, reg_base + CQSPI_REG_CMDCTRL);
0417 
0418     /* Polling for completion. */
0419     ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
0420                  CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
0421     if (ret) {
0422         dev_err(&cqspi->pdev->dev,
0423             "Flash command execution timed out.\n");
0424         return ret;
0425     }
0426 
0427     /* Polling QSPI idle status. */
0428     return cqspi_wait_idle(cqspi);
0429 }
0430 
0431 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
0432                   const struct spi_mem_op *op,
0433                   unsigned int shift)
0434 {
0435     struct cqspi_st *cqspi = f_pdata->cqspi;
0436     void __iomem *reg_base = cqspi->iobase;
0437     unsigned int reg;
0438     u8 ext;
0439 
0440     if (op->cmd.nbytes != 2)
0441         return -EINVAL;
0442 
0443     /* Opcode extension is the LSB. */
0444     ext = op->cmd.opcode & 0xff;
0445 
0446     reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
0447     reg &= ~(0xff << shift);
0448     reg |= ext << shift;
0449     writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
0450 
0451     return 0;
0452 }
0453 
0454 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
0455                 const struct spi_mem_op *op, unsigned int shift)
0456 {
0457     struct cqspi_st *cqspi = f_pdata->cqspi;
0458     void __iomem *reg_base = cqspi->iobase;
0459     unsigned int reg;
0460     int ret;
0461 
0462     reg = readl(reg_base + CQSPI_REG_CONFIG);
0463 
0464     /*
0465      * We enable dual byte opcode here. The callers have to set up the
0466      * extension opcode based on which type of operation it is.
0467      */
0468     if (op->cmd.dtr) {
0469         reg |= CQSPI_REG_CONFIG_DTR_PROTO;
0470         reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
0471 
0472         /* Set up command opcode extension. */
0473         ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
0474         if (ret)
0475             return ret;
0476     } else {
0477         reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
0478         reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
0479     }
0480 
0481     writel(reg, reg_base + CQSPI_REG_CONFIG);
0482 
0483     return cqspi_wait_idle(cqspi);
0484 }
0485 
0486 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
0487                   const struct spi_mem_op *op)
0488 {
0489     struct cqspi_st *cqspi = f_pdata->cqspi;
0490     void __iomem *reg_base = cqspi->iobase;
0491     u8 *rxbuf = op->data.buf.in;
0492     u8 opcode;
0493     size_t n_rx = op->data.nbytes;
0494     unsigned int rdreg;
0495     unsigned int reg;
0496     unsigned int dummy_clk;
0497     size_t read_len;
0498     int status;
0499 
0500     status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
0501     if (status)
0502         return status;
0503 
0504     if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
0505         dev_err(&cqspi->pdev->dev,
0506             "Invalid input argument, len %zu rxbuf 0x%p\n",
0507             n_rx, rxbuf);
0508         return -EINVAL;
0509     }
0510 
0511     if (op->cmd.dtr)
0512         opcode = op->cmd.opcode >> 8;
0513     else
0514         opcode = op->cmd.opcode;
0515 
0516     reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
0517 
0518     rdreg = cqspi_calc_rdreg(op);
0519     writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
0520 
0521     dummy_clk = cqspi_calc_dummy(op);
0522     if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
0523         return -EOPNOTSUPP;
0524 
0525     if (dummy_clk)
0526         reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
0527              << CQSPI_REG_CMDCTRL_DUMMY_LSB;
0528 
0529     reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
0530 
0531     /* 0 means 1 byte. */
0532     reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
0533         << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
0534     status = cqspi_exec_flash_cmd(cqspi, reg);
0535     if (status)
0536         return status;
0537 
0538     reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
0539 
0540     /* Put the read value into rx_buf */
0541     read_len = (n_rx > 4) ? 4 : n_rx;
0542     memcpy(rxbuf, &reg, read_len);
0543     rxbuf += read_len;
0544 
0545     if (n_rx > 4) {
0546         reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
0547 
0548         read_len = n_rx - read_len;
0549         memcpy(rxbuf, &reg, read_len);
0550     }
0551 
0552     return 0;
0553 }
0554 
0555 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
0556                    const struct spi_mem_op *op)
0557 {
0558     struct cqspi_st *cqspi = f_pdata->cqspi;
0559     void __iomem *reg_base = cqspi->iobase;
0560     u8 opcode;
0561     const u8 *txbuf = op->data.buf.out;
0562     size_t n_tx = op->data.nbytes;
0563     unsigned int reg;
0564     unsigned int data;
0565     size_t write_len;
0566     int ret;
0567 
0568     ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
0569     if (ret)
0570         return ret;
0571 
0572     if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
0573         dev_err(&cqspi->pdev->dev,
0574             "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
0575             n_tx, txbuf);
0576         return -EINVAL;
0577     }
0578 
0579     reg = cqspi_calc_rdreg(op);
0580     writel(reg, reg_base + CQSPI_REG_RD_INSTR);
0581 
0582     if (op->cmd.dtr)
0583         opcode = op->cmd.opcode >> 8;
0584     else
0585         opcode = op->cmd.opcode;
0586 
0587     reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
0588 
0589     if (op->addr.nbytes) {
0590         reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
0591         reg |= ((op->addr.nbytes - 1) &
0592             CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
0593             << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
0594 
0595         writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
0596     }
0597 
0598     if (n_tx) {
0599         reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
0600         reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
0601             << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
0602         data = 0;
0603         write_len = (n_tx > 4) ? 4 : n_tx;
0604         memcpy(&data, txbuf, write_len);
0605         txbuf += write_len;
0606         writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
0607 
0608         if (n_tx > 4) {
0609             data = 0;
0610             write_len = n_tx - 4;
0611             memcpy(&data, txbuf, write_len);
0612             writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
0613         }
0614     }
0615 
0616     return cqspi_exec_flash_cmd(cqspi, reg);
0617 }
0618 
0619 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
0620                 const struct spi_mem_op *op)
0621 {
0622     struct cqspi_st *cqspi = f_pdata->cqspi;
0623     void __iomem *reg_base = cqspi->iobase;
0624     unsigned int dummy_clk = 0;
0625     unsigned int reg;
0626     int ret;
0627     u8 opcode;
0628 
0629     ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
0630     if (ret)
0631         return ret;
0632 
0633     if (op->cmd.dtr)
0634         opcode = op->cmd.opcode >> 8;
0635     else
0636         opcode = op->cmd.opcode;
0637 
0638     reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
0639     reg |= cqspi_calc_rdreg(op);
0640 
0641     /* Setup dummy clock cycles */
0642     dummy_clk = cqspi_calc_dummy(op);
0643 
0644     if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
0645         return -EOPNOTSUPP;
0646 
0647     if (dummy_clk)
0648         reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
0649                << CQSPI_REG_RD_INSTR_DUMMY_LSB;
0650 
0651     writel(reg, reg_base + CQSPI_REG_RD_INSTR);
0652 
0653     /* Set address width */
0654     reg = readl(reg_base + CQSPI_REG_SIZE);
0655     reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
0656     reg |= (op->addr.nbytes - 1);
0657     writel(reg, reg_base + CQSPI_REG_SIZE);
0658     return 0;
0659 }
0660 
0661 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
0662                        u8 *rxbuf, loff_t from_addr,
0663                        const size_t n_rx)
0664 {
0665     struct cqspi_st *cqspi = f_pdata->cqspi;
0666     struct device *dev = &cqspi->pdev->dev;
0667     void __iomem *reg_base = cqspi->iobase;
0668     void __iomem *ahb_base = cqspi->ahb_base;
0669     unsigned int remaining = n_rx;
0670     unsigned int mod_bytes = n_rx % 4;
0671     unsigned int bytes_to_read = 0;
0672     u8 *rxbuf_end = rxbuf + n_rx;
0673     int ret = 0;
0674 
0675     writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
0676     writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
0677 
0678     /* Clear all interrupts. */
0679     writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
0680 
0681     /*
0682      * On SoCFPGA platform reading the SRAM is slow due to
0683      * hardware limitation and causing read interrupt storm to CPU,
0684      * so enabling only watermark interrupt to disable all read
0685      * interrupts later as we want to run "bytes to read" loop with
0686      * all the read interrupts disabled for max performance.
0687      */
0688 
0689     if (!cqspi->slow_sram)
0690         writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
0691     else
0692         writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
0693 
0694     reinit_completion(&cqspi->transfer_complete);
0695     writel(CQSPI_REG_INDIRECTRD_START_MASK,
0696            reg_base + CQSPI_REG_INDIRECTRD);
0697 
0698     while (remaining > 0) {
0699         if (!wait_for_completion_timeout(&cqspi->transfer_complete,
0700                          msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
0701             ret = -ETIMEDOUT;
0702 
0703         /*
0704          * Disable all read interrupts until
0705          * we are out of "bytes to read"
0706          */
0707         if (cqspi->slow_sram)
0708             writel(0x0, reg_base + CQSPI_REG_IRQMASK);
0709 
0710         bytes_to_read = cqspi_get_rd_sram_level(cqspi);
0711 
0712         if (ret && bytes_to_read == 0) {
0713             dev_err(dev, "Indirect read timeout, no bytes\n");
0714             goto failrd;
0715         }
0716 
0717         while (bytes_to_read != 0) {
0718             unsigned int word_remain = round_down(remaining, 4);
0719 
0720             bytes_to_read *= cqspi->fifo_width;
0721             bytes_to_read = bytes_to_read > remaining ?
0722                     remaining : bytes_to_read;
0723             bytes_to_read = round_down(bytes_to_read, 4);
0724             /* Read 4 byte word chunks then single bytes */
0725             if (bytes_to_read) {
0726                 ioread32_rep(ahb_base, rxbuf,
0727                          (bytes_to_read / 4));
0728             } else if (!word_remain && mod_bytes) {
0729                 unsigned int temp = ioread32(ahb_base);
0730 
0731                 bytes_to_read = mod_bytes;
0732                 memcpy(rxbuf, &temp, min((unsigned int)
0733                              (rxbuf_end - rxbuf),
0734                              bytes_to_read));
0735             }
0736             rxbuf += bytes_to_read;
0737             remaining -= bytes_to_read;
0738             bytes_to_read = cqspi_get_rd_sram_level(cqspi);
0739         }
0740 
0741         if (remaining > 0) {
0742             reinit_completion(&cqspi->transfer_complete);
0743             if (cqspi->slow_sram)
0744                 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
0745         }
0746     }
0747 
0748     /* Check indirect done status */
0749     ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
0750                  CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
0751     if (ret) {
0752         dev_err(dev, "Indirect read completion error (%i)\n", ret);
0753         goto failrd;
0754     }
0755 
0756     /* Disable interrupt */
0757     writel(0, reg_base + CQSPI_REG_IRQMASK);
0758 
0759     /* Clear indirect completion status */
0760     writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
0761 
0762     return 0;
0763 
0764 failrd:
0765     /* Disable interrupt */
0766     writel(0, reg_base + CQSPI_REG_IRQMASK);
0767 
0768     /* Cancel the indirect read */
0769     writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
0770            reg_base + CQSPI_REG_INDIRECTRD);
0771     return ret;
0772 }
0773 
0774 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
0775                       u_char *rxbuf, loff_t from_addr,
0776                       size_t n_rx)
0777 {
0778     struct cqspi_st *cqspi = f_pdata->cqspi;
0779     struct device *dev = &cqspi->pdev->dev;
0780     void __iomem *reg_base = cqspi->iobase;
0781     u32 reg, bytes_to_dma;
0782     loff_t addr = from_addr;
0783     void *buf = rxbuf;
0784     dma_addr_t dma_addr;
0785     u8 bytes_rem;
0786     int ret = 0;
0787 
0788     bytes_rem = n_rx % 4;
0789     bytes_to_dma = (n_rx - bytes_rem);
0790 
0791     if (!bytes_to_dma)
0792         goto nondmard;
0793 
0794     ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
0795     if (ret)
0796         return ret;
0797 
0798     reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
0799     reg |= CQSPI_REG_CONFIG_DMA_MASK;
0800     writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
0801 
0802     dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
0803     if (dma_mapping_error(dev, dma_addr)) {
0804         dev_err(dev, "dma mapping failed\n");
0805         return -ENOMEM;
0806     }
0807 
0808     writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
0809     writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
0810     writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
0811            reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
0812 
0813     /* Clear all interrupts. */
0814     writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
0815 
0816     /* Enable DMA done interrupt */
0817     writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
0818            reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
0819 
0820     /* Default DMA periph configuration */
0821     writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
0822 
0823     /* Configure DMA Dst address */
0824     writel(lower_32_bits(dma_addr),
0825            reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
0826     writel(upper_32_bits(dma_addr),
0827            reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
0828 
0829     /* Configure DMA Src address */
0830     writel(cqspi->trigger_address, reg_base +
0831            CQSPI_REG_VERSAL_DMA_SRC_ADDR);
0832 
0833     /* Set DMA destination size */
0834     writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
0835 
0836     /* Set DMA destination control */
0837     writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
0838            reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
0839 
0840     writel(CQSPI_REG_INDIRECTRD_START_MASK,
0841            reg_base + CQSPI_REG_INDIRECTRD);
0842 
0843     reinit_completion(&cqspi->transfer_complete);
0844 
0845     if (!wait_for_completion_timeout(&cqspi->transfer_complete,
0846                      msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) {
0847         ret = -ETIMEDOUT;
0848         goto failrd;
0849     }
0850 
0851     /* Disable DMA interrupt */
0852     writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
0853 
0854     /* Clear indirect completion status */
0855     writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
0856            cqspi->iobase + CQSPI_REG_INDIRECTRD);
0857     dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
0858 
0859     reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
0860     reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
0861     writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
0862 
0863     ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
0864                     PM_OSPI_MUX_SEL_LINEAR);
0865     if (ret)
0866         return ret;
0867 
0868 nondmard:
0869     if (bytes_rem) {
0870         addr += bytes_to_dma;
0871         buf += bytes_to_dma;
0872         ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
0873                           bytes_rem);
0874         if (ret)
0875             return ret;
0876     }
0877 
0878     return 0;
0879 
0880 failrd:
0881     /* Disable DMA interrupt */
0882     writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
0883 
0884     /* Cancel the indirect read */
0885     writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
0886            reg_base + CQSPI_REG_INDIRECTRD);
0887 
0888     dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
0889 
0890     reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
0891     reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
0892     writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
0893 
0894     zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
0895 
0896     return ret;
0897 }
0898 
0899 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
0900                  const struct spi_mem_op *op)
0901 {
0902     unsigned int reg;
0903     int ret;
0904     struct cqspi_st *cqspi = f_pdata->cqspi;
0905     void __iomem *reg_base = cqspi->iobase;
0906     u8 opcode;
0907 
0908     ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
0909     if (ret)
0910         return ret;
0911 
0912     if (op->cmd.dtr)
0913         opcode = op->cmd.opcode >> 8;
0914     else
0915         opcode = op->cmd.opcode;
0916 
0917     /* Set opcode. */
0918     reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
0919     reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
0920     reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
0921     writel(reg, reg_base + CQSPI_REG_WR_INSTR);
0922     reg = cqspi_calc_rdreg(op);
0923     writel(reg, reg_base + CQSPI_REG_RD_INSTR);
0924 
0925     /*
0926      * SPI NAND flashes require the address of the status register to be
0927      * passed in the Read SR command. Also, some SPI NOR flashes like the
0928      * cypress Semper flash expect a 4-byte dummy address in the Read SR
0929      * command in DTR mode.
0930      *
0931      * But this controller does not support address phase in the Read SR
0932      * command when doing auto-HW polling. So, disable write completion
0933      * polling on the controller's side. spinand and spi-nor will take
0934      * care of polling the status register.
0935      */
0936     if (cqspi->wr_completion) {
0937         reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
0938         reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
0939         writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
0940     }
0941 
0942     reg = readl(reg_base + CQSPI_REG_SIZE);
0943     reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
0944     reg |= (op->addr.nbytes - 1);
0945     writel(reg, reg_base + CQSPI_REG_SIZE);
0946     return 0;
0947 }
0948 
0949 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
0950                     loff_t to_addr, const u8 *txbuf,
0951                     const size_t n_tx)
0952 {
0953     struct cqspi_st *cqspi = f_pdata->cqspi;
0954     struct device *dev = &cqspi->pdev->dev;
0955     void __iomem *reg_base = cqspi->iobase;
0956     unsigned int remaining = n_tx;
0957     unsigned int write_bytes;
0958     int ret;
0959 
0960     writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
0961     writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
0962 
0963     /* Clear all interrupts. */
0964     writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
0965 
0966     writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
0967 
0968     reinit_completion(&cqspi->transfer_complete);
0969     writel(CQSPI_REG_INDIRECTWR_START_MASK,
0970            reg_base + CQSPI_REG_INDIRECTWR);
0971     /*
0972      * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
0973      * Controller programming sequence, couple of cycles of
0974      * QSPI_REF_CLK delay is required for the above bit to
0975      * be internally synchronized by the QSPI module. Provide 5
0976      * cycles of delay.
0977      */
0978     if (cqspi->wr_delay)
0979         ndelay(cqspi->wr_delay);
0980 
0981     while (remaining > 0) {
0982         size_t write_words, mod_bytes;
0983 
0984         write_bytes = remaining;
0985         write_words = write_bytes / 4;
0986         mod_bytes = write_bytes % 4;
0987         /* Write 4 bytes at a time then single bytes. */
0988         if (write_words) {
0989             iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
0990             txbuf += (write_words * 4);
0991         }
0992         if (mod_bytes) {
0993             unsigned int temp = 0xFFFFFFFF;
0994 
0995             memcpy(&temp, txbuf, mod_bytes);
0996             iowrite32(temp, cqspi->ahb_base);
0997             txbuf += mod_bytes;
0998         }
0999 
1000         if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1001                          msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1002             dev_err(dev, "Indirect write timeout\n");
1003             ret = -ETIMEDOUT;
1004             goto failwr;
1005         }
1006 
1007         remaining -= write_bytes;
1008 
1009         if (remaining > 0)
1010             reinit_completion(&cqspi->transfer_complete);
1011     }
1012 
1013     /* Check indirect done status */
1014     ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1015                  CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1016     if (ret) {
1017         dev_err(dev, "Indirect write completion error (%i)\n", ret);
1018         goto failwr;
1019     }
1020 
1021     /* Disable interrupt. */
1022     writel(0, reg_base + CQSPI_REG_IRQMASK);
1023 
1024     /* Clear indirect completion status */
1025     writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1026 
1027     cqspi_wait_idle(cqspi);
1028 
1029     return 0;
1030 
1031 failwr:
1032     /* Disable interrupt. */
1033     writel(0, reg_base + CQSPI_REG_IRQMASK);
1034 
1035     /* Cancel the indirect write */
1036     writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1037            reg_base + CQSPI_REG_INDIRECTWR);
1038     return ret;
1039 }
1040 
1041 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1042 {
1043     struct cqspi_st *cqspi = f_pdata->cqspi;
1044     void __iomem *reg_base = cqspi->iobase;
1045     unsigned int chip_select = f_pdata->cs;
1046     unsigned int reg;
1047 
1048     reg = readl(reg_base + CQSPI_REG_CONFIG);
1049     if (cqspi->is_decoded_cs) {
1050         reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1051     } else {
1052         reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1053 
1054         /* Convert CS if without decoder.
1055          * CS0 to 4b'1110
1056          * CS1 to 4b'1101
1057          * CS2 to 4b'1011
1058          * CS3 to 4b'0111
1059          */
1060         chip_select = 0xF & ~(1 << chip_select);
1061     }
1062 
1063     reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1064          << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1065     reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1066         << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1067     writel(reg, reg_base + CQSPI_REG_CONFIG);
1068 }
1069 
1070 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1071                        const unsigned int ns_val)
1072 {
1073     unsigned int ticks;
1074 
1075     ticks = ref_clk_hz / 1000;  /* kHz */
1076     ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1077 
1078     return ticks;
1079 }
1080 
1081 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1082 {
1083     struct cqspi_st *cqspi = f_pdata->cqspi;
1084     void __iomem *iobase = cqspi->iobase;
1085     const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1086     unsigned int tshsl, tchsh, tslch, tsd2d;
1087     unsigned int reg;
1088     unsigned int tsclk;
1089 
1090     /* calculate the number of ref ticks for one sclk tick */
1091     tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1092 
1093     tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1094     /* this particular value must be at least one sclk */
1095     if (tshsl < tsclk)
1096         tshsl = tsclk;
1097 
1098     tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1099     tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1100     tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1101 
1102     reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1103            << CQSPI_REG_DELAY_TSHSL_LSB;
1104     reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1105         << CQSPI_REG_DELAY_TCHSH_LSB;
1106     reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1107         << CQSPI_REG_DELAY_TSLCH_LSB;
1108     reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1109         << CQSPI_REG_DELAY_TSD2D_LSB;
1110     writel(reg, iobase + CQSPI_REG_DELAY);
1111 }
1112 
1113 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1114 {
1115     const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1116     void __iomem *reg_base = cqspi->iobase;
1117     u32 reg, div;
1118 
1119     /* Recalculate the baudrate divisor based on QSPI specification. */
1120     div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1121 
1122     reg = readl(reg_base + CQSPI_REG_CONFIG);
1123     reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1124     reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1125     writel(reg, reg_base + CQSPI_REG_CONFIG);
1126 }
1127 
1128 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1129                    const bool bypass,
1130                    const unsigned int delay)
1131 {
1132     void __iomem *reg_base = cqspi->iobase;
1133     unsigned int reg;
1134 
1135     reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1136 
1137     if (bypass)
1138         reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1139     else
1140         reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1141 
1142     reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1143          << CQSPI_REG_READCAPTURE_DELAY_LSB);
1144 
1145     reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1146         << CQSPI_REG_READCAPTURE_DELAY_LSB;
1147 
1148     writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1149 }
1150 
1151 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
1152 {
1153     void __iomem *reg_base = cqspi->iobase;
1154     unsigned int reg;
1155 
1156     reg = readl(reg_base + CQSPI_REG_CONFIG);
1157 
1158     if (enable)
1159         reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
1160     else
1161         reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
1162 
1163     writel(reg, reg_base + CQSPI_REG_CONFIG);
1164 }
1165 
1166 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1167                 unsigned long sclk)
1168 {
1169     struct cqspi_st *cqspi = f_pdata->cqspi;
1170     int switch_cs = (cqspi->current_cs != f_pdata->cs);
1171     int switch_ck = (cqspi->sclk != sclk);
1172 
1173     if (switch_cs || switch_ck)
1174         cqspi_controller_enable(cqspi, 0);
1175 
1176     /* Switch chip select. */
1177     if (switch_cs) {
1178         cqspi->current_cs = f_pdata->cs;
1179         cqspi_chipselect(f_pdata);
1180     }
1181 
1182     /* Setup baudrate divisor and delays */
1183     if (switch_ck) {
1184         cqspi->sclk = sclk;
1185         cqspi_config_baudrate_div(cqspi);
1186         cqspi_delay(f_pdata);
1187         cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1188                        f_pdata->read_delay);
1189     }
1190 
1191     if (switch_cs || switch_ck)
1192         cqspi_controller_enable(cqspi, 1);
1193 }
1194 
1195 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1196                const struct spi_mem_op *op)
1197 {
1198     struct cqspi_st *cqspi = f_pdata->cqspi;
1199     loff_t to = op->addr.val;
1200     size_t len = op->data.nbytes;
1201     const u_char *buf = op->data.buf.out;
1202     int ret;
1203 
1204     ret = cqspi_write_setup(f_pdata, op);
1205     if (ret)
1206         return ret;
1207 
1208     /*
1209      * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1210      * address (all 0s) with the read status register command in DTR mode.
1211      * But this controller does not support sending dummy address bytes to
1212      * the flash when it is polling the write completion register in DTR
1213      * mode. So, we can not use direct mode when in DTR mode for writing
1214      * data.
1215      */
1216     if (!op->cmd.dtr && cqspi->use_direct_mode &&
1217         ((to + len) <= cqspi->ahb_size)) {
1218         memcpy_toio(cqspi->ahb_base + to, buf, len);
1219         return cqspi_wait_idle(cqspi);
1220     }
1221 
1222     return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1223 }
1224 
1225 static void cqspi_rx_dma_callback(void *param)
1226 {
1227     struct cqspi_st *cqspi = param;
1228 
1229     complete(&cqspi->rx_dma_complete);
1230 }
1231 
1232 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1233                      u_char *buf, loff_t from, size_t len)
1234 {
1235     struct cqspi_st *cqspi = f_pdata->cqspi;
1236     struct device *dev = &cqspi->pdev->dev;
1237     enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1238     dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1239     int ret = 0;
1240     struct dma_async_tx_descriptor *tx;
1241     dma_cookie_t cookie;
1242     dma_addr_t dma_dst;
1243     struct device *ddev;
1244 
1245     if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1246         memcpy_fromio(buf, cqspi->ahb_base + from, len);
1247         return 0;
1248     }
1249 
1250     ddev = cqspi->rx_chan->device->dev;
1251     dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1252     if (dma_mapping_error(ddev, dma_dst)) {
1253         dev_err(dev, "dma mapping failed\n");
1254         return -ENOMEM;
1255     }
1256     tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1257                        len, flags);
1258     if (!tx) {
1259         dev_err(dev, "device_prep_dma_memcpy error\n");
1260         ret = -EIO;
1261         goto err_unmap;
1262     }
1263 
1264     tx->callback = cqspi_rx_dma_callback;
1265     tx->callback_param = cqspi;
1266     cookie = tx->tx_submit(tx);
1267     reinit_completion(&cqspi->rx_dma_complete);
1268 
1269     ret = dma_submit_error(cookie);
1270     if (ret) {
1271         dev_err(dev, "dma_submit_error %d\n", cookie);
1272         ret = -EIO;
1273         goto err_unmap;
1274     }
1275 
1276     dma_async_issue_pending(cqspi->rx_chan);
1277     if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1278                      msecs_to_jiffies(max_t(size_t, len, 500)))) {
1279         dmaengine_terminate_sync(cqspi->rx_chan);
1280         dev_err(dev, "DMA wait_for_completion_timeout\n");
1281         ret = -ETIMEDOUT;
1282         goto err_unmap;
1283     }
1284 
1285 err_unmap:
1286     dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1287 
1288     return ret;
1289 }
1290 
1291 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1292               const struct spi_mem_op *op)
1293 {
1294     struct cqspi_st *cqspi = f_pdata->cqspi;
1295     struct device *dev = &cqspi->pdev->dev;
1296     const struct cqspi_driver_platdata *ddata;
1297     loff_t from = op->addr.val;
1298     size_t len = op->data.nbytes;
1299     u_char *buf = op->data.buf.in;
1300     u64 dma_align = (u64)(uintptr_t)buf;
1301     int ret;
1302 
1303     ddata = of_device_get_match_data(dev);
1304 
1305     ret = cqspi_read_setup(f_pdata, op);
1306     if (ret)
1307         return ret;
1308 
1309     if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1310         return cqspi_direct_read_execute(f_pdata, buf, from, len);
1311 
1312     if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1313         virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1314         return ddata->indirect_read_dma(f_pdata, buf, from, len);
1315 
1316     return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1317 }
1318 
1319 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1320 {
1321     struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1322     struct cqspi_flash_pdata *f_pdata;
1323 
1324     f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
1325     cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1326 
1327     if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1328         if (!op->addr.nbytes)
1329             return cqspi_command_read(f_pdata, op);
1330 
1331         return cqspi_read(f_pdata, op);
1332     }
1333 
1334     if (!op->addr.nbytes || !op->data.buf.out)
1335         return cqspi_command_write(f_pdata, op);
1336 
1337     return cqspi_write(f_pdata, op);
1338 }
1339 
1340 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1341 {
1342     int ret;
1343 
1344     ret = cqspi_mem_process(mem, op);
1345     if (ret)
1346         dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1347 
1348     return ret;
1349 }
1350 
1351 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1352                   const struct spi_mem_op *op)
1353 {
1354     bool all_true, all_false;
1355 
1356     /*
1357      * op->dummy.dtr is required for converting nbytes into ncycles.
1358      * Also, don't check the dtr field of the op phase having zero nbytes.
1359      */
1360     all_true = op->cmd.dtr &&
1361            (!op->addr.nbytes || op->addr.dtr) &&
1362            (!op->dummy.nbytes || op->dummy.dtr) &&
1363            (!op->data.nbytes || op->data.dtr);
1364 
1365     all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1366             !op->data.dtr;
1367 
1368     if (all_true) {
1369         /* Right now we only support 8-8-8 DTR mode. */
1370         if (op->cmd.nbytes && op->cmd.buswidth != 8)
1371             return false;
1372         if (op->addr.nbytes && op->addr.buswidth != 8)
1373             return false;
1374         if (op->data.nbytes && op->data.buswidth != 8)
1375             return false;
1376     } else if (!all_false) {
1377         /* Mixed DTR modes are not supported. */
1378         return false;
1379     }
1380 
1381     return spi_mem_default_supports_op(mem, op);
1382 }
1383 
1384 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1385                     struct cqspi_flash_pdata *f_pdata,
1386                     struct device_node *np)
1387 {
1388     if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1389         dev_err(&pdev->dev, "couldn't determine read-delay\n");
1390         return -ENXIO;
1391     }
1392 
1393     if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1394         dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1395         return -ENXIO;
1396     }
1397 
1398     if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1399         dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1400         return -ENXIO;
1401     }
1402 
1403     if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1404         dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1405         return -ENXIO;
1406     }
1407 
1408     if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1409         dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1410         return -ENXIO;
1411     }
1412 
1413     if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1414         dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1415         return -ENXIO;
1416     }
1417 
1418     return 0;
1419 }
1420 
1421 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1422 {
1423     struct device *dev = &cqspi->pdev->dev;
1424     struct device_node *np = dev->of_node;
1425     u32 id[2];
1426 
1427     cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1428 
1429     if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1430         dev_err(dev, "couldn't determine fifo-depth\n");
1431         return -ENXIO;
1432     }
1433 
1434     if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1435         dev_err(dev, "couldn't determine fifo-width\n");
1436         return -ENXIO;
1437     }
1438 
1439     if (of_property_read_u32(np, "cdns,trigger-address",
1440                  &cqspi->trigger_address)) {
1441         dev_err(dev, "couldn't determine trigger-address\n");
1442         return -ENXIO;
1443     }
1444 
1445     if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1446         cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1447 
1448     cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1449 
1450     if (!of_property_read_u32_array(np, "power-domains", id,
1451                     ARRAY_SIZE(id)))
1452         cqspi->pd_dev_id = id[1];
1453 
1454     return 0;
1455 }
1456 
1457 static void cqspi_controller_init(struct cqspi_st *cqspi)
1458 {
1459     u32 reg;
1460 
1461     cqspi_controller_enable(cqspi, 0);
1462 
1463     /* Configure the remap address register, no remap */
1464     writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1465 
1466     /* Disable all interrupts. */
1467     writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1468 
1469     /* Configure the SRAM split to 1:1 . */
1470     writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1471 
1472     /* Load indirect trigger address. */
1473     writel(cqspi->trigger_address,
1474            cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1475 
1476     /* Program read watermark -- 1/2 of the FIFO. */
1477     writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1478            cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1479     /* Program write watermark -- 1/8 of the FIFO. */
1480     writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1481            cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1482 
1483     /* Disable direct access controller */
1484     if (!cqspi->use_direct_mode) {
1485         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1486         reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1487         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1488     }
1489 
1490     /* Enable DMA interface */
1491     if (cqspi->use_dma_read) {
1492         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1493         reg |= CQSPI_REG_CONFIG_DMA_MASK;
1494         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1495     }
1496 
1497     cqspi_controller_enable(cqspi, 1);
1498 }
1499 
1500 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1501 {
1502     dma_cap_mask_t mask;
1503 
1504     dma_cap_zero(mask);
1505     dma_cap_set(DMA_MEMCPY, mask);
1506 
1507     cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1508     if (IS_ERR(cqspi->rx_chan)) {
1509         int ret = PTR_ERR(cqspi->rx_chan);
1510 
1511         cqspi->rx_chan = NULL;
1512         return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1513     }
1514     init_completion(&cqspi->rx_dma_complete);
1515 
1516     return 0;
1517 }
1518 
1519 static const char *cqspi_get_name(struct spi_mem *mem)
1520 {
1521     struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1522     struct device *dev = &cqspi->pdev->dev;
1523 
1524     return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1525 }
1526 
1527 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1528     .exec_op = cqspi_exec_mem_op,
1529     .get_name = cqspi_get_name,
1530     .supports_op = cqspi_supports_mem_op,
1531 };
1532 
1533 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1534     .dtr = true,
1535 };
1536 
1537 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1538 {
1539     struct platform_device *pdev = cqspi->pdev;
1540     struct device *dev = &pdev->dev;
1541     struct device_node *np = dev->of_node;
1542     struct cqspi_flash_pdata *f_pdata;
1543     unsigned int cs;
1544     int ret;
1545 
1546     /* Get flash device data */
1547     for_each_available_child_of_node(dev->of_node, np) {
1548         ret = of_property_read_u32(np, "reg", &cs);
1549         if (ret) {
1550             dev_err(dev, "Couldn't determine chip select.\n");
1551             of_node_put(np);
1552             return ret;
1553         }
1554 
1555         if (cs >= CQSPI_MAX_CHIPSELECT) {
1556             dev_err(dev, "Chip select %d out of range.\n", cs);
1557             of_node_put(np);
1558             return -EINVAL;
1559         }
1560 
1561         f_pdata = &cqspi->f_pdata[cs];
1562         f_pdata->cqspi = cqspi;
1563         f_pdata->cs = cs;
1564 
1565         ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1566         if (ret) {
1567             of_node_put(np);
1568             return ret;
1569         }
1570     }
1571 
1572     return 0;
1573 }
1574 
1575 static int cqspi_probe(struct platform_device *pdev)
1576 {
1577     const struct cqspi_driver_platdata *ddata;
1578     struct reset_control *rstc, *rstc_ocp;
1579     struct device *dev = &pdev->dev;
1580     struct spi_master *master;
1581     struct resource *res_ahb;
1582     struct cqspi_st *cqspi;
1583     struct resource *res;
1584     int ret;
1585     int irq;
1586 
1587     master = devm_spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1588     if (!master) {
1589         dev_err(&pdev->dev, "spi_alloc_master failed\n");
1590         return -ENOMEM;
1591     }
1592     master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1593     master->mem_ops = &cqspi_mem_ops;
1594     master->mem_caps = &cqspi_mem_caps;
1595     master->dev.of_node = pdev->dev.of_node;
1596 
1597     cqspi = spi_master_get_devdata(master);
1598 
1599     cqspi->pdev = pdev;
1600     cqspi->master = master;
1601     platform_set_drvdata(pdev, cqspi);
1602 
1603     /* Obtain configuration from OF. */
1604     ret = cqspi_of_get_pdata(cqspi);
1605     if (ret) {
1606         dev_err(dev, "Cannot get mandatory OF data.\n");
1607         return -ENODEV;
1608     }
1609 
1610     /* Obtain QSPI clock. */
1611     cqspi->clk = devm_clk_get(dev, NULL);
1612     if (IS_ERR(cqspi->clk)) {
1613         dev_err(dev, "Cannot claim QSPI clock.\n");
1614         ret = PTR_ERR(cqspi->clk);
1615         return ret;
1616     }
1617 
1618     /* Obtain and remap controller address. */
1619     res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1620     cqspi->iobase = devm_ioremap_resource(dev, res);
1621     if (IS_ERR(cqspi->iobase)) {
1622         dev_err(dev, "Cannot remap controller address.\n");
1623         ret = PTR_ERR(cqspi->iobase);
1624         return ret;
1625     }
1626 
1627     /* Obtain and remap AHB address. */
1628     res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1629     cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1630     if (IS_ERR(cqspi->ahb_base)) {
1631         dev_err(dev, "Cannot remap AHB address.\n");
1632         ret = PTR_ERR(cqspi->ahb_base);
1633         return ret;
1634     }
1635     cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1636     cqspi->ahb_size = resource_size(res_ahb);
1637 
1638     init_completion(&cqspi->transfer_complete);
1639 
1640     /* Obtain IRQ line. */
1641     irq = platform_get_irq(pdev, 0);
1642     if (irq < 0)
1643         return -ENXIO;
1644 
1645     pm_runtime_enable(dev);
1646     ret = pm_runtime_resume_and_get(dev);
1647     if (ret < 0)
1648         return ret;
1649 
1650     ret = clk_prepare_enable(cqspi->clk);
1651     if (ret) {
1652         dev_err(dev, "Cannot enable QSPI clock.\n");
1653         goto probe_clk_failed;
1654     }
1655 
1656     /* Obtain QSPI reset control */
1657     rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1658     if (IS_ERR(rstc)) {
1659         ret = PTR_ERR(rstc);
1660         dev_err(dev, "Cannot get QSPI reset.\n");
1661         goto probe_reset_failed;
1662     }
1663 
1664     rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1665     if (IS_ERR(rstc_ocp)) {
1666         ret = PTR_ERR(rstc_ocp);
1667         dev_err(dev, "Cannot get QSPI OCP reset.\n");
1668         goto probe_reset_failed;
1669     }
1670 
1671     reset_control_assert(rstc);
1672     reset_control_deassert(rstc);
1673 
1674     reset_control_assert(rstc_ocp);
1675     reset_control_deassert(rstc_ocp);
1676 
1677     cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1678     master->max_speed_hz = cqspi->master_ref_clk_hz;
1679 
1680     /* write completion is supported by default */
1681     cqspi->wr_completion = true;
1682 
1683     ddata  = of_device_get_match_data(dev);
1684     if (ddata) {
1685         if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1686             cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1687                         cqspi->master_ref_clk_hz);
1688         if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1689             master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1690         if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1691             cqspi->use_direct_mode = true;
1692         if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1693             cqspi->use_dma_read = true;
1694         if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1695             cqspi->wr_completion = false;
1696         if (ddata->quirks & CQSPI_SLOW_SRAM)
1697             cqspi->slow_sram = true;
1698 
1699         if (of_device_is_compatible(pdev->dev.of_node,
1700                         "xlnx,versal-ospi-1.0"))
1701             dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1702     }
1703 
1704     ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1705                    pdev->name, cqspi);
1706     if (ret) {
1707         dev_err(dev, "Cannot request IRQ.\n");
1708         goto probe_reset_failed;
1709     }
1710 
1711     cqspi_wait_idle(cqspi);
1712     cqspi_controller_init(cqspi);
1713     cqspi->current_cs = -1;
1714     cqspi->sclk = 0;
1715 
1716     master->num_chipselect = cqspi->num_chipselect;
1717 
1718     ret = cqspi_setup_flash(cqspi);
1719     if (ret) {
1720         dev_err(dev, "failed to setup flash parameters %d\n", ret);
1721         goto probe_setup_failed;
1722     }
1723 
1724     if (cqspi->use_direct_mode) {
1725         ret = cqspi_request_mmap_dma(cqspi);
1726         if (ret == -EPROBE_DEFER)
1727             goto probe_setup_failed;
1728     }
1729 
1730     ret = spi_register_master(master);
1731     if (ret) {
1732         dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1733         goto probe_setup_failed;
1734     }
1735 
1736     return 0;
1737 probe_setup_failed:
1738     cqspi_controller_enable(cqspi, 0);
1739 probe_reset_failed:
1740     clk_disable_unprepare(cqspi->clk);
1741 probe_clk_failed:
1742     pm_runtime_put_sync(dev);
1743     pm_runtime_disable(dev);
1744     return ret;
1745 }
1746 
1747 static int cqspi_remove(struct platform_device *pdev)
1748 {
1749     struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1750 
1751     spi_unregister_master(cqspi->master);
1752     cqspi_controller_enable(cqspi, 0);
1753 
1754     if (cqspi->rx_chan)
1755         dma_release_channel(cqspi->rx_chan);
1756 
1757     clk_disable_unprepare(cqspi->clk);
1758 
1759     pm_runtime_put_sync(&pdev->dev);
1760     pm_runtime_disable(&pdev->dev);
1761 
1762     return 0;
1763 }
1764 
1765 #ifdef CONFIG_PM_SLEEP
1766 static int cqspi_suspend(struct device *dev)
1767 {
1768     struct cqspi_st *cqspi = dev_get_drvdata(dev);
1769 
1770     cqspi_controller_enable(cqspi, 0);
1771     return 0;
1772 }
1773 
1774 static int cqspi_resume(struct device *dev)
1775 {
1776     struct cqspi_st *cqspi = dev_get_drvdata(dev);
1777 
1778     cqspi_controller_enable(cqspi, 1);
1779     return 0;
1780 }
1781 
1782 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1783     .suspend = cqspi_suspend,
1784     .resume = cqspi_resume,
1785 };
1786 
1787 #define CQSPI_DEV_PM_OPS    (&cqspi__dev_pm_ops)
1788 #else
1789 #define CQSPI_DEV_PM_OPS    NULL
1790 #endif
1791 
1792 static const struct cqspi_driver_platdata cdns_qspi = {
1793     .quirks = CQSPI_DISABLE_DAC_MODE,
1794 };
1795 
1796 static const struct cqspi_driver_platdata k2g_qspi = {
1797     .quirks = CQSPI_NEEDS_WR_DELAY,
1798 };
1799 
1800 static const struct cqspi_driver_platdata am654_ospi = {
1801     .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1802     .quirks = CQSPI_NEEDS_WR_DELAY,
1803 };
1804 
1805 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1806     .quirks = CQSPI_DISABLE_DAC_MODE,
1807 };
1808 
1809 static const struct cqspi_driver_platdata socfpga_qspi = {
1810     .quirks = CQSPI_DISABLE_DAC_MODE
1811             | CQSPI_NO_SUPPORT_WR_COMPLETION
1812             | CQSPI_SLOW_SRAM,
1813 };
1814 
1815 static const struct cqspi_driver_platdata versal_ospi = {
1816     .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1817     .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1818     .indirect_read_dma = cqspi_versal_indirect_read_dma,
1819     .get_dma_status = cqspi_get_versal_dma_status,
1820 };
1821 
1822 static const struct of_device_id cqspi_dt_ids[] = {
1823     {
1824         .compatible = "cdns,qspi-nor",
1825         .data = &cdns_qspi,
1826     },
1827     {
1828         .compatible = "ti,k2g-qspi",
1829         .data = &k2g_qspi,
1830     },
1831     {
1832         .compatible = "ti,am654-ospi",
1833         .data = &am654_ospi,
1834     },
1835     {
1836         .compatible = "intel,lgm-qspi",
1837         .data = &intel_lgm_qspi,
1838     },
1839     {
1840         .compatible = "xlnx,versal-ospi-1.0",
1841         .data = &versal_ospi,
1842     },
1843     {
1844         .compatible = "intel,socfpga-qspi",
1845         .data = &socfpga_qspi,
1846     },
1847     { /* end of table */ }
1848 };
1849 
1850 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1851 
1852 static struct platform_driver cqspi_platform_driver = {
1853     .probe = cqspi_probe,
1854     .remove = cqspi_remove,
1855     .driver = {
1856         .name = CQSPI_NAME,
1857         .pm = CQSPI_DEV_PM_OPS,
1858         .of_match_table = cqspi_dt_ids,
1859     },
1860 };
1861 
1862 module_platform_driver(cqspi_platform_driver);
1863 
1864 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1865 MODULE_LICENSE("GPL v2");
1866 MODULE_ALIAS("platform:" CQSPI_NAME);
1867 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1868 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1869 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1870 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1871 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");